Sample records for acids aldehydes ketones

  1. Emission of volatile aldehydes and ketones from wood pellets under controlled conditions.

    PubMed

    Arshadi, Mehrdad; Geladi, Paul; Gref, Rolf; Fjällström, Pär

    2009-11-01

    Different qualities of biofuel pellets were made from pine and spruce sawdust according to an industrial experimental design. The fatty/resin acid compositions were determined by gas chromatography-mass spectrometry for both newly produced pellets and those after 2 and 4 weeks of storage. The aldehydes/ketones compositions were determined by high performance liquid chromatography at 0, 2, and 4 weeks. The designs were analyzed for the response variables: total fatty/resin acids and total aldehydes/ketones. The design showed a strong correlation between the pine fraction in the pellets and the fatty/resin acid content but the influence decreased over storage time. The amount of fatty/resin acids decreased approximately 40% during 4 weeks. The influence of drying temperature on the aldehyde/ketone emission of fresh pellets was also shown. The amounts of emitted aldehydes/ketones generally decreased by 45% during storage as a consequence of fatty/resin acid oxidation. The matrices of individual concentrations were subjected to multivariate data analysis. This showed clustering of the different experimental runs and demonstrated the important mechanism of fatty/resin acid conversion.

  2. Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes.

    PubMed

    Orozco, Lina M; Renz, Michael; Corma, Avelino

    2016-09-08

    Aldehydes possess relatively high chemical energy, which is the driving force for disproportionation reactions such as Cannizzaro and Tishchenko reactions. Generally, this energy is wasted if aldehydes are transformed into carboxylic acids with a sacrificial oxidant. Here, we describe a cascade reaction in which the surplus energy of the transformation is liberated as molecular hydrogen for the oxidation of heptanal to heptanoic acid by water, and the carboxylic acid is transformed into potentially industrially relevant symmetrical ketones by ketonic decarboxylation. The cascade reaction is catalyzed by monoclinic zirconium oxide (m-ZrO2 ). The reaction mechanism has been studied through cross-coupling experiments between different aldehydes and acids, and the final symmetrical ketones are formed by a reaction pathway that involves the previously formed carboxylic acids. Isotopic studies indicate that the carboxylic acid can be formed by a hydride shift from the adsorbed aldehyde on the metal oxide surface in the absence of noble metals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Aryl Ketone Synthesis via Tandem Orthoplatinated Triarylphosphite-Catalyzed Addition Reactions of Arylboronic Acids with Aldehydes Followed by Oxidation

    PubMed Central

    Liao, Yuan-Xi; Hu, Qiao-Sheng

    2010-01-01

    Tandem orthoplatinated triarylphosphite-catalyzed addition reactions of arylboronic acids with aldehydes followed by oxidation to yield aryl ketones is described. 3-Pentanone was identified as a suitable oxidant for the tandem aryl ketone formation reaction. By using microwave energy, aryl ketones were obtained in high yields with the catalyst loading as low as 0.01%. PMID:20849092

  4. Synthesis of functionalized chromenes from Meldrum's acid, 4-hydroxycoumarin, and ketones or aldehydes.

    PubMed

    Sabbaghan, Maryam; Yavari, Issa; Hossaini, Zinatossadat

    2010-11-01

    An efficient synthesis of 4-alkyl-4-methyl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-dione or 4-aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones via reaction 4-hydroxycoumarin with Meldrum's acid and ketones or aldehydes is described.

  5. Sequential aldol condensation-transition metal-catalyzed addition reactions of aldehydes, methyl ketones, and arylboronic acids.

    PubMed

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-04-15

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1'-spirobiindane-7,7'-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. © 2011 American Chemical Society

  6. Allyl transfer to aldehydes and ketones by Brønsted acid activation of allyl and crotyl 1,3,2-dioxazaborolidines.

    PubMed

    Reilly, Maureen K; Rychnovsky, Scott D

    2010-11-05

    Alkyl dioxazaborolidines are air-stable and often crystalline organoboranes. A variety of Brønsted acids activate allyl dioxazaborolidines to generate reactive allyl-transfer reagents in situ. These reagents add to aldehydes and ketones to generate the corresponding alcohols in good yields under mild conditions. The E- and Z-crotyl reagents react diastereoselectively with aldehydes and ketones to produce anti and syn adducts, respectively, a result consistent with a cyclic transition state (type I mechanism).

  7. Sequential Aldol Condensation – Transition Metal-Catalyzed Addition Reactions of Aldehydes, Methyl Ketones and Arylboronic Acids

    PubMed Central

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-01-01

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1′-spirobiindane-7,7′-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step. PMID:21417359

  8. Colorimetric Recognition of Aldehydes and Ketones.

    PubMed

    Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S

    2017-08-07

    A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Two-carbon homologation of aldehydes and ketones to α,β-unsaturated aldehydes.

    PubMed

    Petroski, Richard J; Vermillion, Karl; Cossé, Allard A

    2011-06-17

    Phosphonate reagents were developed for the two-carbon homologation of aldehydes or ketones to unbranched- or methyl-branched α,β-unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a protected aldehyde group instead of the usual ester group. A homologation cycle entailed condensation of the reagent with the starting aldehyde, followed by removal of the dimethylhydrazone protective group with a biphasic mixture of 1 M HCl and petroleum ether. This robust two-step process worked with a variety of aldehydes and ketones. Overall isolated yields of unsaturated aldehyde products ranged from 71% to 86% after the condensation and deprotection steps.

  10. Allyl Transfer to Aldehydes and Ketones by Brønsted Acid Activation of Allyl and Crotyl 1,3,2-Dioxazaborolidines

    PubMed Central

    Reilly, Maureen K.; Rychnovsky, Scott D.

    2010-01-01

    Alkyl dioxazaborolidines are air-stable and often crystalline organoboranes. A variety of Brønsted acids activate allyl dioxazaborolidines to generate reactive allyl-transfer reagents in situ. These reagents add to aldehydes and ketones to generate the corresponding alcohols in good yields under mild conditions. The E- and Z-crotyl reagents react diastereoselectively with aldehydes and ketones to produce anti and syn adducts, respectively, a result consistent with a cyclic transition state (Type I mechanism). PMID:20942379

  11. N-triflylthiophosphoramide catalyzed enantioselective Mukaiyama aldol reaction of aldehydes with silyl enol ethers of ketones.

    PubMed

    Cheon, Cheol Hong; Yamamoto, Hisashi

    2010-06-04

    The first Brønsted acid catalyzed asymmetric Mukaiyama aldol reaction of aldehydes using silyl enol ethers of ketones as nucleophiles has been reported. A variety of aldehydes and silyl enol ethers of ketones afforded the aldol products in excellent yields and good to excellent enantioselectivities. Mechanistic studies revealed that the actual catalyst may be changed from the silylated Brønsted acid to the Brønsted acid itself depending on the reaction temperature.

  12. N-Triflylthiophosphoramide Catalyzed Enantioselective Mukaiyama Aldol Reaction of Aldehydes with Silyl Enol Ethers of Ketones

    PubMed Central

    Cheon, Cheol Hong; Yamamoto, Hisashi

    2010-01-01

    The first Brønsted acid catalyzed asymmetric Mukaiyama aldol reaction of aldehydes using silyl enol ethers of ketones as nucleophiles has been reported. A variety of aldehydes and silyl enol ethers of ketones afforded the aldol products in excellent yields and good to excellent enantioselectivities. Mechanistic studies revealed that the actual catalyst may be changed from the silylated Brønsted acid to Brønsted acid itself depending on the reaction temperature. PMID:20465277

  13. Simple one-pot conversion of aldehydes and ketones to enals.

    PubMed

    Valenta, Petr; Drucker, Natalie A; Bode, Jeffrey W; Walsh, Patrick J

    2009-05-21

    A simple and efficient method to convert aldehydes into alpha,beta-unsaturated aldehydes with a two-carbon homologation is presented. Hydroboration of ethoxy acetylene with BH(3).SMe(2) generates tris(ethoxyvinyl) borane. Transmetalation with diethylzinc, addition to aldehydes or ketones, and acidic workup affords enals. When the addition is quenched with anilinium hydrochloride, 1,2-dithioglycol, or acetic anhydride, the unsaturated imine, dithiolane, or 1,1-diacetate is isolated in high yield. These transformations can be performed in a one-pot procedure.

  14. Trifluoromethylation of ketones and aldehydes with Bu₃SnCF₃.

    PubMed

    Sanhueza, Italo A; Bonney, Karl J; Nielsen, Mads C; Schoenebeck, Franziska

    2013-08-02

    The (trifluoromethyl)stannane reagent, Bu3SnCF3, was found to react under CsF activation with ketones and aldehydes to the corresponding trifluoromethylated stannane ether intermediates at room temperature in high yield. Only a mildly acidic extraction (aqueous NH4Cl) is required to release the corresponding trifluoromethyl alcohol products. The protocol is compatible with acid-sensitive functional groups.

  15. Sources and concentrations of aldehydes and ketones in indoor environments in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crump, D.R.; Gardiner, D.

    1989-01-01

    Individual aldehydes and ketones can be separated, identified and quantitatively estimated by trapping the 2,4-dinitrophenylhydrazine (DNPH) derivatives and analysis by HPLC. Appropriate methods and detection limits are reported. Many sources of formaldehyde have been identified by this means and some are found to emit other aldehydes and ketones. The application of this method to determine the concentration of these compounds in the atmospheres of buildings is described and the results compared with those obtained using chromotropic acid or MBTH.

  16. Effect of hydrothermal carbonization on storage process of woody pellets: Pellets' properties and aldehydes/ketones emission.

    PubMed

    Li, Hui; Wang, Siyuan; Huang, Zhongliang; Yuan, Xingzhong; Wang, Ziliang; He, Rao; Xi, Yanni; Zhang, Xuan; Tan, Mengjiao; Huang, Jing; Mo, Dan; Li, Changzhu

    2018-07-01

    Effect of hydrothermal carbonization (HTC) on the hydrochar pelletization and the aldehydes/ketones emission from pellets during storage was investigated. Pellets made from the hydrochar were stored in sealed apparatuses for sampling. The energy consumption during pelletization and the pellets' properties before/after storage, including dimension, density, moisture content, hardness, aldehyde/ketones emission amount/rate and unsaturated fatty acid amount, were analyzed. Compared with untreated-sawdust-pellets, the hydrochar-pellets required more energy consumption for pelletization, and achieved the improved qualities, resulting in the higher stability degree during storage. The species and amount of unsaturated fatty acids in the hydrochar-pellets were higher than those in the untreated-sawdust-pellets. The unsaturated fatty acids content in the hydrochar-pellets was decreased with increasing HTC temperature. Higher aldehydes/ketones emission amount and rates with a longer emission period were found for the hydrochar-pellets, associated with variations of structure and unsaturated fatty acid composition in pellets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A Simple One-pot Conversion of Aldehydes and Ketones to Enals

    PubMed Central

    Valenta, Petr; Drucker, Natalie A.; Bode, Jeffrey W.; Walsh, Patrick J.

    2009-01-01

    A simple and efficient method to convert aldehydes into α,β-unsaturated aldehydes with a two-carbon homologation is presented. Hydroboration of ethoxy acetylene with BH3•SMe2 generates tris(ethoxyvinyl) borane. Transmetallation with diethylzinc, addition to aldehydes or ketones, and acidic workup affords enals. When the addition is quenched with anilinium hydrochloride, 1,2-dithioglycol, or acetic anhydride the unsaturated imine, dithiolane, or 1,1-diacetate is isolated in high yield. These transformations can be performed in a one-pot procedure. PMID:19419211

  18. Two-carbon homologation of aldehydes and ketones to a,ß-unsaturated aldehydes

    USDA-ARS?s Scientific Manuscript database

    Phosphonate reagents were developed for the two-carbon homologation of aldehydes or ketones to unbranched- or methyl-branched a,ß-unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a...

  19. Direct conversion of alcohols to α-chloro aldehydes and α-chloro ketones.

    PubMed

    Jing, Yuanyuan; Daniliuc, Constantin G; Studer, Armido

    2014-09-19

    Direct conversion of primary and secondary alcohols into the corresponding α-chloro aldehydes and α-chloro ketones using trichloroisocyanuric acid, serving both as stoichiometric oxidant and α-halogenating reagent, is reported. For primary alcohols, TEMPO has to be added as an oxidation catalyst, and for the transformation of secondary alcohols (TEMPO-free protocol), MeOH as an additive is essential to promote chlorination of the intermediary ketones.

  20. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    PubMed

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited.

  1. Uptake of aldehydes and ketones at typical indoor concentrations by houseplants.

    PubMed

    Tani, Akira; Hewitt, C Nicholas

    2009-11-01

    The uptake rates of low-molecular weight aldehydes and ketones by peace lily (Spathiphyllum clevelandii) and golden pothos (Epipremnum aureum) leaves at typical indoor ambient concentrations (10(1)-10(2) ppbv) were determined. The C3-C6 aldehydes and C4-C6 ketones were taken up by the plant leaves, but the C3 ketone acetone was not. The uptake rate normalized to the ambient concentration C(a) ranged from 7 to 19 mmol m(-2) s(-1) and from 2 to 7 mmol m(-2) s(-1) for the aldehydes and ketones, respectively. Longer-term fumigation results revealed that the total uptake amounts were 30-100 times as much as the amounts dissolved in the leaf, suggesting that volatile organic carbons are metabolized in the leaf and/or translocated through the petiole. The ratio of the intercellular concentration to the external (ambient) concentration (C(i)/C(a)) was significantly lower for most aldehydes than for most ketones. In particular, a linear unsaturated aldehyde, crotonaldehyde, had a C(i)/C(a) ratio of approximately 0, probably because of its highest solubility in water.

  2. Efficient palladium-catalyzed asymmetric allylic alkylation of ketones and aldehydes.

    PubMed

    Zhao, Xiaohu; Liu, Delong; Xie, Fang; Liu, Yangang; Zhang, Wanbin

    2011-03-21

    Palladium-catalyzed asymmetric allylic alkylation of ketones, via enamines generated in situ as nucleophiles, were carried out smoothly with chiral metallocene-based P,N-ligands. Under the same conditions, however, reactions of aldehydes could hardly be observed. Subsequently, this obstacle was resolved by using chiral metallocene-based P,P-ligands. Both ketones and aldehydes afforded excellent enantioselectivities with up to 98% ee and 94% ee, respectively.

  3. Photochemical Production of Aldehydes and Ketones from Petroleum Films on Seawater

    NASA Astrophysics Data System (ADS)

    Tarr, M. A.; Rebet, K.; Monin, L.; Bastian, G.

    2016-02-01

    While numerous reports have demonstrated that sunlight results in oxygenation of petroleum in environmental systems, few details are available regarding the specific mechanisms of these reactions. Previous studies have not been able to identify specific chemicals formed when oil is subjected to photochemical transformation. In this study, we have utilized several petroleum samples to investigate the formation of aldehyde and ketone photoproducts. These samples included oil from the MC252 well (source of the Deepwater Horizon spill), surrogate oil provided by BP to represent the MC252 oil, and residual fuel oil (NIST 2717a). Thin films of oil ( 100 μm) were placed over water and irradiated with a solar simulator for the equivalent of 1.5-12 days. After irradiation, the water was carefully separated from the oil and derivatized with 2,4-dinitrophenylhydrazine, a selective derivatization agent for aldehydes and ketones. The derivatized material was then analyzed by HPLC. Additional analysis by electrospray MS was also performed, and absorbance and fluorescence spectra of the underivatized aqueous phase were recorded. For all oils, exposure to sunlight resulted in release of aldehydes and ketones to the aqueous phase. The amount of released photoproducts was proportional to the length of solar exposure, but no production was seen for dark controls. Despite some similarities, the pattern of product formation varied from oil to oil. Addition of dispersant (Corexit 9500a or 9527a) resulted in larger amounts of aldehydes and ketones detected in the aqueous phase after solar irradiation of the oil. Electrospray mass spectrometry was utilized in an attempt to provide structural information about the aldehydes and ketones formed. Results of this study demonstrate that aldehydes and ketones are important photoproducts resulting from solar irradiation of oil on water. These products will affect the transport and bioavailability of oil spilled in aquatic systems.

  4. A nickel catalyst for the addition of organoboronate esters to ketones and aldehydes.

    PubMed

    Bouffard, Jean; Itami, Kenichiro

    2009-10-01

    A Ni(cod)(2)/IPr catalyst promotes the intermolecular 1,2-addition of arylboronate esters to unactivated aldehydes and ketones. Diaryl, alkyl aryl, and dialkyl ketones show good reactivity under mild reaction conditions (< or = 80 degrees C, nonpolar solvents, no strong base or acid additives). A dramatic ligand effect favors either carbonyl addition (IPr) or C-OR cross-coupling (PCy(3)) with aryl ether substrates. A Ni(0)/Ni(II) catalytic cycle initiated by the oxidative cyclization of the carbonyl substrate is proposed.

  5. Aminosilica materials as adsorbents for the selective removal of aldehydes and ketones from simulated bio-oil.

    PubMed

    Drese, Jeffrey H; Talley, Anne D; Jones, Christopher W

    2011-03-21

    The fast pyrolysis of biomass is a potential route to the production of liquid biorenewable fuel sources. However, degradation of the bio-oil mixtures due to reaction of oxygenates, such as aldehydes and ketones, reduces the stability of the liquids and can impact long-term storage and shipping. Herein, solid aminosilica adsorbents are described for the selective adsorptive removal of reactive aldehyde and ketone species. Three aminosilica adsorbents are prepared through the reaction of amine-containing silanes with pore-expanded mesoporous silica. A fourth aminosilica adsorbent is prepared through the ring-opening polymerization of aziridine from pore-expanded mesoporous silica. Adsorption experiments with a representative mixture of bio-oil model compounds are presented using each adsorbent at room temperature and 45 °C. The adsorbent comprising only primary amines adsorbs the largest amount of aldehydes and ketones. The overall reactivity of this adsorbent increases with increasing temperature. Additional aldehyde screening experiments show that the reactivity of aldehydes with aminosilicas varies depending on their chemical functionality. Initial attempts to regenerate an aminosilica adsorbent by acid hydrolysis show that they can be at least partially regenerated for further use. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photoredox activation for the direct β-arylation of ketones and aldehydes.

    PubMed

    Pirnot, Michael T; Rankic, Danica A; Martin, David B C; MacMillan, David W C

    2013-03-29

    The direct β-activation of saturated aldehydes and ketones has long been an elusive transformation. We found that photoredox catalysis in combination with organocatalysis can lead to the transient generation of 5π-electron β-enaminyl radicals from ketones and aldehydes that rapidly couple with cyano-substituted aryl rings at the carbonyl β-position. This mode of activation is suitable for a broad range of carbonyl β-functionalization reactions and is amenable to enantioselective catalysis.

  7. Doubly Vinylogous Aldol Reaction of Furoate Esters with Aldehydes and Ketones.

    PubMed

    Hartwig, William T; Sammakia, Tarek

    2017-01-06

    The use of bulky Lewis acids, aluminum tris(2,6-diphenylphenoxide) (ATPH) and aluminum tris(2,6-di-2-naphthylphenoxide) (ATNP), in the doubly vinylogous aldol reaction between methyl-5-methyl-2-furoate and aldehydes or ketones is described. These reactions proceed smoothly and in high yields with both enolizable and non-enolizable substrates. This C-C bond-forming reaction enables a new bond construction for the synthesis of functionalized furans.

  8. Photoredox Activation for the Direct β-Arylation of Ketones and Aldehydes

    PubMed Central

    Pirnot, Michael T.; Rankic, Danica A.; Martin, David B. C.; MacMillan, David W. C.

    2013-01-01

    The direct β-activation of saturated aldehydes and ketones has long been an elusive transformation. We found that photoredox catalysis in combination with organocatalysis can lead to the transient generation of 5π-electron β-enaminyl radicals from ketones and aldehydes that rapidly couple with cyano-substituted aryl rings at the carbonyl β-position. This mode of activation is suitable for a broad range of carbonyl β-functionalization reactions and is amenable to enantioselective catalysis. PMID:23539600

  9. Palladium-catalyzed, pyrrolidine-mediated arylmethylation of ketones and aldehydes with coumarinyl(methyl) acetates.

    PubMed

    Cattopadhyay, Kalicharan; Recio, Antonio; Tunge, Jon A

    2012-09-14

    We report the palladium-catalyzed, pyrrolidine-mediated α-benzylation of enamines generated from aldehydes and ketones. The method allows for direct coupling of medicinally relevant coumarin moieties with aldehydes and ketones in good yield under mild conditions. The reaction is believed to proceed via a Pd-π-benzyl complex generated from (coumarinyl)methyl acetates.

  10. Organocatalytic C-H bond arylation of aldehydes to bis-heteroaryl ketones.

    PubMed

    Toh, Qiao Yan; McNally, Andrew; Vera, Silvia; Erdmann, Nico; Gaunt, Matthew J

    2013-03-13

    An organocatalytic aldehyde C-H bond arylation process for the synthesis of complex heteroaryl ketones has been developed. By exploiting the inherent electrophilicity of diaryliodonium salts, we have found that a commercial N-heterocyclic carbene catalyst promotes the union of heteroaryl aldehydes and these heteroaromatic electrophile equivalents in good yields. This straightforward catalytic protocol offers access to ketones bearing a diverse array of arene and heteroarene substituents that can subsequently be converted into molecules displaying structural motifs commonly found in medicinal agents.

  11. Palladium-catalyzed, pyrrolidine-mediated arylmethylation of ketones and aldehydes with coumarinyl(methyl) acetates†

    PubMed Central

    Cattopadhyay, Kalicharan; Recio, Antonio; Tunge, Jon A.

    2012-01-01

    We report the palladium-catalyzed, pyrrolidine-mediated α-benzylation of enamines generated from aldehydes and ketones. The method allows for direct coupling of medicinally relevant coumarin moieties with aldehydes and ketones in good yield under mild conditions. The reaction is believed to proceed via a Pd-π-benzyl complex generated from (coumarinyl)methyl acetates. PMID:22832549

  12. Nickel-catalyzed cycloadditions of unsaturated hydrocarbons, aldehydes, and ketones.

    PubMed

    Tekavec, Thomas N; Louie, Janis

    2008-04-04

    The nickel-catalyzed cycloaddition of unsaturated hydrocarbons and carbonyls is reported. Diynes and enynes were used as coupling partners. Carbonyl substrates include both aldehdyes and ketones. Reactions of diynes and aldehydes afforded the [3,3] electrocyclic ring-opened tautomers, rather than pyrans, in high yields. The cycloaddition reaction of enynes and aldehydes afforded two distinct products. A new carbon-carbon bond is formed, prior to a competitive beta-hydrogen elimination of a nickel alkoxide, between the carbonyl carbon and either one of the carbons of the olefin or the alkyne. The steric hindrance of the enyne greatly affected the chemoselectivity of the cycloaddition of enynes and aldehydes. In some cases, dihydropyran was also formed. The scope of the cycloaddition reaction was expanded to include the coupling of enynes and ketones. No beta-hydrogen elimination was observed in cycloaddition reaction of enynes and ketones. Instead, C-O bond-forming reductive elimination occurred exclusively to afford dihydropyrans in excellent yields. In all cases, complete chemoselectivity was observed; only dihydropyrans where the carbonyl carbon forms a carbon-carbon bond with a carbon of the olefin, rather than of the alkyne, were observed. All cycloaddition reactions occur at room temperature and employ nickel catalysts bearing the hindered 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) or its saturated analogue, 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolin-2-ylidene (SIPr).

  13. Nickel-Catalyzed Cycloadditions of Unsaturated Hydrocarbons, Aldehydes, and Ketones

    PubMed Central

    Tekavec, Thomas N.

    2014-01-01

    The nickel-catalyzed cycloaddition of unsaturated hydrocarbons and carbonyls is reported. Diynes and enynes were used as coupling partners. Carbonyl substrates include both aldehdyes and ketones. Reactions of diynes and aldehydes afforded the [3, 3] electrocyclic ring-opened tautomers, rather than pyrans, in high yields. The cycloaddition reaction of enynes and aldehydes afforded two distinct products. A new carbon–carbon bond is formed, prior to a competitive β-hydrogen elimination of a nickel alkoxide, between the carbonyl carbon and either one of the carbons of the olefin or the alkyne. The steric hindrance of the enyne greatly affected the chemoselectivity of the cycloaddition of enynes and aldehydes. In some cases, dihydropyran was also formed. The scope of the cycloaddition reaction was expanded to include the coupling of enynes and ketones. No β-hydrogen elimination was observed in cycloaddition reaction of enynes and ketones. Instead, C–O bond-forming reductive elimination occurred exclusively to afford dihydropyrans in excellent yields. In all cases, complete chemoselectivity was observed; only dihydropyrans where the carbonyl carbon forms a carbon–carbon bond with a carbon of the olefin, rather than of the alkyne, were observed. All cycloaddition reactions occur at room temperature and employ nickel catalysts bearing the hindered 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) or its saturated analogue, 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazolin-2-ylidene (SIPr). PMID:18318544

  14. ANALYSIS OF ALDEHYDES AND KETONES IN THE GAS PHASE

    EPA Science Inventory

    The development and testing of a 2,4-dinitrophenylhydrazine-acetonitrile (DNPH-ACN) method for the analysis of aldehydes and ketones in ambient air are described. A discussion of interferences, preparation of calibration standards, analytical testing, fluorescence methods and car...

  15. Studies of Azetidin-2-one as a Reactive Enolate Synthon of β-Alanine for Condensations with Aldehydes and Ketones.

    PubMed

    Williams, David R; Donnell, Andrew F; Kammler, David C; Ward, Sarah A; Taylor, Levin

    2016-11-04

    Studies describe formation of the lithium enolate of N-(4-methoxybenzyloxy)azetidin-2-one (1) and characterization of representative aldol reactions with aldehydes and ketones. Diastereoselectivity features the production of anti-aldol adducts from α,β-unsaturated ketones and α-branched aliphatic aldehydes. The stereoselectivity is rationalized via closed, six-membered transition-state arrangements leading to the formation of Felkin-Anh and anti-Felkin products. Examples illustrate the direct incorporation of monocyclic β-lactams into a variety of molecular architectures. The utility of 1 as an enolate synthon of homoglycine (β-alanine) is illustrated by the efficient synthesis of novel β-amino acid derivatives, including complex 4-hydroxy-2-pyridinones.

  16. Anionic Four Electron Donor-Based Palladacycles as Catalysts for Addition Reactions of Arylboronic Acids with α,β-Unsaturated Ketones, Aldehydes and α-Ketoesters

    PubMed Central

    He, Ping; Lu, Yong; Dong, Cheng-Guo; Hu, Qiao-Sheng

    2008-01-01

    Anionic four electron donor-based palladacycle-catalyzed 1,4-additions of arylboronic acids with α,β-unsaturated ketones and 1,2-additions of arylboronic acids with aldehydes and α-ketoesters are described. Our study demonstrated that palladacycles were highly efficient, practical catalysts for these addition reactions. The work described here not only opened a new paradigm for the application of palladacycles, but may also pave the road for other metalacycles as practically useful catalysts for such addition reactions including asymmetric ones. PMID:17217300

  17. Highly efficient Cu(I)-catalyzed oxidation of alcohols to ketones and aldehydes with diaziridinone.

    PubMed

    Zhu, Yingguang; Zhao, Baoguo; Shi, Yian

    2013-03-01

    A novel and efficient Cu(I)-catalyzed oxidation of alcohols has been achieved with di-tert-butyldiaziridinone as the oxidant under mild conditions. A wide variety of primary and secondary alcohols with various functional groups can be oxidized to aldehydes and ketones in high yields. The reaction proceeds under neutral conditions making it compatible with acid- or base-sensitive substrates, and it is amenable to gram scale.

  18. Et3B-mediated radical-polar crossover reaction for single-step coupling of O,Te-acetal, α,β-unsaturated ketones, and aldehydes/ketones.

    PubMed

    Kamimura, Daigo; Urabe, Daisuke; Nagatomo, Masanori; Inoue, Masayuki

    2013-10-04

    Et3B-mediated three-component coupling reactions between O,Te-acetal, α,β-unsaturated ketones, and aldehydes/ketones were developed. Et3B promoted the generation of the potently reactive bridgehead radical from the O,Te-acetal of the trioxaadamantane structure and converted the α-carbonyl radical of the resultant two-component adduct to the boron enolate, which then underwent a stereoselective aldol reaction with the aldehyde/ketone. This powerful, yet mild, radical-polar crossover reaction efficiently connected the hindered linkages between the three units and selectively introduced three new stereocenters.

  19. Metal-free trifluoromethylation of aromatic and heteroaromatic aldehydes and ketones.

    PubMed

    Qiao, Yupu; Si, Tuda; Yang, Ming-Hsiu; Altman, Ryan A

    2014-08-01

    The ability to convert simple and common substrates into fluoroalkyl derivatives under mild conditions remains an important goal for medicinal and agricultural chemists. One representative example of a desirable transformation involves the conversion of aromatic and heteroaromatic ketones and aldehydes into aryl and heteroaryl β,β,β-trifluoroethylarenes and -heteroarenes. The traditional approach for this net transformation involves stoichiometric metals and/or multistep reaction sequences that consume excessive time, material, and labor resources while providing low yields of products. To complement these traditional strategies, we report a one-pot metal-free decarboxylative procedure for accessing β,β,β-trifluoroethylarenes and -heteroarenes from readily available ketones and aldehydes. This method features several benefits, including ease of operation, readily available reagents, mild reaction conditions, high functional-group compatibility, and scalability.

  20. Metal-Free Trifluoromethylation of Aromatic and Heteroaromatic Aldehydes and Ketones

    PubMed Central

    2015-01-01

    The ability to convert simple and common substrates into fluoroalkyl derivatives under mild conditions remains an important goal for medicinal and agricultural chemists. One representative example of a desirable transformation involves the conversion of aromatic and heteroaromatic ketones and aldehydes into aryl and heteroaryl β,β,β-trifluoroethylarenes and -heteroarenes. The traditional approach for this net transformation involves stoichiometric metals and/or multistep reaction sequences that consume excessive time, material, and labor resources while providing low yields of products. To complement these traditional strategies, we report a one-pot metal-free decarboxylative procedure for accessing β,β,β-trifluoroethylarenes and -heteroarenes from readily available ketones and aldehydes. This method features several benefits, including ease of operation, readily available reagents, mild reaction conditions, high functional-group compatibility, and scalability. PMID:25001876

  1. Zinc-catalyzed allenylations of aldehydes and ketones.

    PubMed

    Fandrick, Daniel R; Saha, Jaideep; Fandrick, Keith R; Sanyal, Sanjit; Ogikubo, Junichi; Lee, Heewon; Roschangar, Frank; Song, Jinhua J; Senanayake, Chris H

    2011-10-21

    The general zinc-catalyzed allenylation of aldehydes and ketones with an allenyl boronate is presented. Preliminary mechanistic studies support a kinetically controlled process wherein, after a site-selective B/Zn exchange to generate a propargyl zinc intermediate, the addition to the electrophile effectively competes with propargyl-allenyl zinc equilibration. The utility of the methodology was demonstrated by application to a rhodium-catalyzed [4+2] cycloaddition. © 2011 American Chemical Society

  2. OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrn, Marianne; Calvin, Melvin

    1965-12-01

    Using infra-red spectroscopy, the equilibrium exchange times have been determined for a series of ketones, aromatic aldehydes, and {beta}-ketoesters reacting with oxygen 18 enriched water. These exchange times have been evaluated in terms of steric and electronic considerations, and applied to a discussion of the exchange times of chlorophylls a and b and chlorophyll derivatives.

  3. Methodology for in situ protection of aldehydes and ketones using trimethylsilyl trifluoromethanesulfonate and phosphines: selective alkylation and reduction of ketones, esters, amides, and nitriles.

    PubMed

    Yahata, Kenzo; Minami, Masaki; Yoshikawa, Yuki; Watanabe, Kei; Fujioka, Hiromichi

    2013-01-01

    A methodology for selective transformations of ketones, esters, Weinreb amides, and nitriles in the presence of aldehydes has been developed. The use of a combination of PPh(3)-trimethylsilyl trifluoromethanesulfonate (TMSOTf) promotes selective transformation of aldehydes to their corresponding, temporarily protected, O,P-acetal type phosphonium salts. Because, hydrolytic work-up following ensuing reactions of other carbonyl moieties in the substrates liberates the aldehyde moiety, a sequence involving aldehyde protection, transformation of other carbonyl groups, and deprotection can be accomplished in a one-pot manner. Furthermore, the use of PEt(3) instead of PPh(3) enables ketones to be converted in situ to their corresponding O,P-ketal type phosphonium salts and, consequently, selective transformations of esters, Weinreb amides, and nitriles in the presence of ketones can be performed. This methodology is applicable to various dicarbonyl compounds, including substrates that possess heteroaromatic skeletons and hydroxyl protecting groups.

  4. Highly Efficient Cu(I)-Catalyzed Oxidation of Alcohols to Ketones and Aldehydes with Diaziridinone

    PubMed Central

    Zhu, Yingguang; Zhao, Baoguo

    2013-01-01

    A novel and efficient Cu(I)-catalyzed oxidation of alcohols has been achieved with di-tert-butyldiaziridinone as oxidant under mild conditions. A wide variety of primary and secondary alcohols with various functional groups can be oxidized to aldehydes and ketones in high yields. The reaction proceeds under neutral conditions making it compatible with acid or base-sensitive substrates, and it is amenable to gram scale. PMID:23413952

  5. Silica gel promotes reductions of aldehydes and ketones by N-heterocyclic carbene boranes.

    PubMed

    Taniguchi, Tsuyoshi; Curran, Dennis P

    2012-09-07

    N-Heterocyclic carbene boranes (NHC-boranes) such as 1,3-dimethylimidazol-2-ylidine trihydridoborane (diMe-Imd-BH(3)) serve as practical hydride donors for the reduction of aldehydes and ketones in the presence of silica gel. Primary and secondary alcohols are formed in good yields under ambient conditions. Aldehydes are selectively reduced in the presence of ketones. One, two, or even all three of the boron hydrides can be transferred. The process is attractive because all the components are stable and easy to handle and because both the reaction and isolation procedures are convenient.

  6. Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis.

    PubMed

    Zhang, Muliang; Li, Nan; Tao, Xingyu; Ruzi, Rehanguli; Yu, Shouyun; Zhu, Chengjian

    2017-09-12

    The direct reduction of carboxylic acids to aldehydes with hydrosilane was achieved through visible light photoredox catalysis. The combination of both single electron transfer and hydrogen atom transfer steps offers a novel and convenient approach to selective reduction of carboxylic acids to aldehydes. The method also features mild conditions, high yields, broad substrate scope, and good functional group tolerance, such as alkyne, ester, ketone, amide and amine groups.

  7. A novel microreactor approach for analysis of ketones and aldehydes in breath.

    PubMed

    Fu, Xiao-An; Li, Mingxiao; Biswas, Souvik; Nantz, Michael H; Higashi, Richard M

    2011-11-21

    We report a fabricated microreactor with thousands of micropillars in channels. Each micropillar surface is chemically functionalized to selectively preconcentrate gaseous ketones and aldehydes of exhaled breath and to enhance ultra-trace, rapid analysis by direct-infusion Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (MS). The micropillar reactive coating contains the quaternary ammonium aminooxy salt 2-(aminooxy)ethyl-N,N,N-trimethylammonium iodide (ATM) for capturing trace carbonyl VOCs by means of an oximation reaction. We demonstrate the utility of this approach for detection of C(1) to C(12) aldehydes and ketones in exhaled breath, but the approach is applicable to any gaseous sample.

  8. One-pot synthesis of β-acetamido ketones using boric acid at room temperature.

    PubMed

    Karimi-Jaberi, Zahed; Mohammadi, Korosh

    2012-01-01

    β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products.

  9. Two-Carbon Homologation of Ketones to 3-Methyl Unsaturated Aldehydes

    USDA-ARS?s Scientific Manuscript database

    The usual scheme of two-carbon homologation of ketones to 3-methyl unsaturated aldehydes by Horner-Wadsworth-Emmons condensations with phosphonate esters, such as triethyl-2-phosphonoacetate, involves three steps. The phosphonate condensation step results in extension of the carbon chain by two carb...

  10. A reactive and sensitive diffusion sampler for the determination of aldehydes and ketones in ambient air

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shigehisa; Hasegawa, Shuji

    We developed a diffusive sampling device (DSD-carbonyl) for organic carbonyl compounds (aldehydes and ketones) which is suitable for collection and analysis of low concentration levels. This sampling device is composed of three parts, an exposure part made of a porous polytetrafluoroethylene (PPTFE) tube, an analysis part made of polypropylene (PP) tubing and an absorbent part made of 2,4-dinitrophenylhydrazine (DNPH) coated silica gel (DNPH-silica). Aldehydes and ketones diffuse to the DSD-carbonyl through PPTFE-tube by the mechanism of molecular diffusion and react specifically with DNPH to form a stable DNPH-derivatives. Collection is controlled by moving the absorbent from the exposure part to the analysis part by changing the posture of the DSD-carbonyl. DNPH-derivatives were eluted from an analysis part of DSD-carbonyl with acetonitrile directly and analyzed by high performance liquid chromatography (HPLC). The advantages of the DSD-carbonyl are the following: (1) The DSD-carbonyl can be used in a wide range of concentration of aldehydes and ketones in atmosphere, as the DSD-carbonyl exposure part has a variable diffusion area, (2) DNPH-derivatives are eluted from DNPH-silica without contamination of air. (3) The sampler can be applied to active sampling by connecting it with a pump. The limit of detection (LOD) for concentrations of major aldehydes and ketones ranged from 0.072 to 0.13 ppb, and the limit of quantitation (LOQ) ranged from 0.24 to 0.42 ppb. The coefficient variation (CV) for concentrations of major aldehydes and ketones ranged from 2.5 to 3.0% in laboratory air. The DSD-carbonyl method and active sampling method (US EPA method IP-6A) showed a good correlation (formaldehyde, r2=0.995). The uptake rates for formaldehyde, acetaldehyde, and acetone were estimated as 0.078, 0.062 and 0.079 nmol ppb -1 h -1, respectively. It is possible to estimate atmospheric aldehydes and ketones at parts per billion (ppb), with high sensitivity and precision, by

  11. Preparation of unsymmetrical ketones from tosylhydrazones and aromatic aldehydes via formyl C-H bond insertion.

    PubMed

    Allwood, Daniel M; Blakemore, David C; Ley, Steven V

    2014-06-06

    Preparation of ketones by insertion of diazo compounds into the formyl C-H bond of an aldehyde is an attractive procedure, but use of structurally diverse diazo compounds is hampered by preparation and safety issues. A convenient procedure for the synthesis of unsymmetrical ketones from bench-stable tosylhydrazones and aryl aldehydes is reported. The procedure can be performed in one pot from the parent carbonyl compound and needs only a base, with no additional promoters being required.

  12. A modified Girard derivatizing reagent for universal profiling and trace analysis of aldehydes and ketones by electrospray ionization tandem mass spectrometry.

    PubMed

    Johnson, David W

    2007-01-01

    4-Hydrazino-N,N,N-trimethyl-4-oxobutanaminium iodide (HTMOB) is a modified Girard derivatizing reagent synthesized to improve the sensitivity of analysis of aldehydes and ketones with electrospray ionization tandem mass spectrometry. Compared with Girard T reagent the measured signal intensity increase is between 3.3 times (succinylacetone) and 7.0 times (17-hydroxyprogesterone). HTMOB is a universal profiling reagent for aldehydes and ketones. A neutral loss of 59 Da scan detects all aldehydes and ketones from acetone to corticosteroids. Applications described include the profiling of ketones, ketoacids and ketodiacids in the urine of children with ketosis and the profiling of long-chain aldehydes incorporated in plasma plasmalogens. Copyright (c) 2007 John Wiley & Sons, Ltd.

  13. Stability of proton-bound clusters of alkyl alcohols, aldehydes and ketones in Ion Mobility Spectrometry.

    PubMed

    Jurado-Campos, Natividad; Garrido-Delgado, Rocío; Martínez-Haya, Bruno; Eiceman, Gary A; Arce, Lourdes

    2018-08-01

    Significant substances in emerging applications of ion mobility spectrometry such as breath analysis for clinical diagnostics and headspace analysis for food purity include low molar mass alcohols, ketones, aldehydes and esters which produce mobility spectra containing protonated monomers and proton-bound dimers. Spectra for all n- alcohols, aldehydes and ketones from carbon number three to eight exhibited protonated monomers and proton-bound dimers with ion drift times of 6.5-13.3 ms at ambient pressure and from 35° to 80 °C in nitrogen. Only n-alcohols from 1-pentanol to 1-octanol produced proton-bound trimers which were sufficiently stable to be observed at these temperatures and drift times of 12.8-16.3 ms. Polar functional groups were protected in compact structures in ab initio models for proton-bound dimers of alcohols, ketones and aldehydes. Only alcohols formed a V-shaped arrangement for proton-bound trimers strengthening ion stability and lifetime. In contrast, models for proton-bound trimers of aldehydes and ketones showed association of the third neutral through weak, non-specific, long-range interactions consistent with ion dissociation in the ion mobility drift tube before arriving at the detector. Collision cross sections derived from reduced mobility coefficients in nitrogen gas atmosphere support the predicted ion structures and approximate degrees of hydration. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Synthesis of sterically hindered enamides via a Ti-mediated condensation of amides with aldehydes and ketones.

    PubMed

    Genovino, Julien; Lagu, Bharat; Wang, Yaping; Touré, B Barry

    2012-07-07

    The first TiCl(4)-mediated condensation of secondary amides with aldehydes and ketones has been achieved. The reaction proceeds at room temperature and is complete within 5 h in most cases. The optimized procedure used 5 equiv of an amine base hinting that the in situ activation of both the amide and the Lewis acid is required. The reaction affords polysubstituted (E)-enamides.

  15. Integrated quantification and identification of aldehydes and ketones in biological samples.

    PubMed

    Siegel, David; Meinema, Anne C; Permentier, Hjalmar; Hopfgartner, Gérard; Bischoff, Rainer

    2014-05-20

    The identification of unknown compounds remains to be a bottleneck of mass spectrometry (MS)-based metabolomics screening experiments. Here, we present a novel approach which facilitates the identification and quantification of analytes containing aldehyde and ketone groups in biological samples by adding chemical information to MS data. Our strategy is based on rapid autosampler-in-needle-derivatization with p-toluenesulfonylhydrazine (TSH). The resulting TSH-hydrazones are separated by ultrahigh-performance liquid chromatography (UHPLC) and detected by electrospray ionization-quadrupole-time-of-flight (ESI-QqTOF) mass spectrometry using a SWATH (Sequential Window Acquisition of all Theoretical Fragment-Ion Spectra) data-independent high-resolution mass spectrometry (HR-MS) approach. Derivatization makes small, poorly ionizable or retained analytes amenable to reversed phase chromatography and electrospray ionization in both polarities. Negatively charged TSH-hydrazone ions furthermore show a simple and predictable fragmentation pattern upon collision induced dissociation, which enables the chemo-selective screening for unknown aldehydes and ketones via a signature fragment ion (m/z 155.0172). By means of SWATH, targeted and nontargeted application scenarios of the suggested derivatization route are enabled in the frame of a single UHPLC-ESI-QqTOF-HR-MS workflow. The method's ability to simultaneously quantify and identify molecules containing aldehyde and ketone groups is demonstrated using 61 target analytes from various compound classes and a (13)C labeled yeast matrix. The identification of unknowns in biological samples is detailed using the example of indole-3-acetaldehyde.

  16. One-Pot Synthesis of β-Acetamido Ketones Using Boric Acid at Room Temperature

    PubMed Central

    Karimi-Jaberi, Zahed; Mohammadi, Korosh

    2012-01-01

    β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products. PMID:22666168

  17. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst.

    PubMed

    de Souza, Viviane P; Oliveira, Cristiane K; de Souza, Thiago M; Menezes, Paulo H; Alves, Severino; Longo, Ricardo L; Malvestiti, Ivani

    2016-11-16

    Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  18. Direct asymmetric aldol reactions between aldehydes and ketones catalyzed by L-tryptophan in the presence of water.

    PubMed

    Jiang, Zhaoqin; Yang, Hui; Han, Xiao; Luo, Jie; Wong, Ming Wah; Lu, Yixin

    2010-03-21

    Primary amino acids and their derivatives were investigated as catalysts for the direct asymmetric aldol reactions between ketones and aldehydes in the presence of water, and L-tryptophan was shown to be the best catalyst. Solvent effects, substrate scope and the influence of water on the reactions were investigated. Quantum chemical calculations were performed to understand the origin of the observed stereoselectivity.

  19. gem-Difluoroolefination of diaryl ketones and enolizable aldehydes with difluoromethyl 2-pyridyl sulfone: new insights into the Julia-Kocienski reaction.

    PubMed

    Gao, Bing; Zhao, Yanchuan; Hu, Mingyou; Ni, Chuanfa; Hu, Jinbo

    2014-06-16

    The direct conversion of diaryl ketones and enolizable aliphatic aldehydes into gem-difluoroalkenes has been a long-standing challenge in organofluorine chemistry. Herein, we report efficient strategies to tackle this problem by using difluoromethyl 2-pyridyl sulfone as a general gem-difluoroolefination reagent. The gem-difluoroolefination of diaryl ketones proceeds by acid-promoted Smiles rearrangement of the carbinol intermediate; the gem-difluoroolefination is otherwise difficult to achieve through a conventional Julia-Kocienski olefination protocol under basic conditions due to the retro-aldol type decomposition of the key intermediate. Efficient gem-difluoroolefination of aliphatic aldehydes was achieved by the use of an amide base generated in situ (from CsF and tris(trimethylsilyl)amine), which diminishes the undesired enolization of aliphatic aldehydes and provides a powerful synthetic method for chemoselective gem-difluoroolefination of multi-carbonyl compounds. Our results provide new insights into the mechanistic understanding of the classical Julia-Kocienski reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Benzoyl radicals from (hetero)aromatic aldehydes. Decatungstate photocatalyzed synthesis of substituted aromatic ketones.

    PubMed

    Ravelli, Davide; Zema, Michele; Mella, Mariella; Fagnoni, Maurizio; Albini, Angelo

    2010-09-21

    Benzoyl radicals are generated directly from (hetero)aromatic aldehydes upon tetrabutylammonium decatungstate ((n-Bu(4)N)(4)W(10)O(32)), TBADT) photocatalysis under mild conditions. In the presence of alpha,beta-unsaturated esters, ketones and nitriles radical conjugate addition ensues and gives the corresponding beta-functionalized aryl alkyl ketones in moderate to good yields (stereoselectively in the case of 3-methylene-2-norbornanone). Due to the mild reaction conditions the presence of various functional groups on the aromatic ring is tolerated (e.g. methyl, methoxy, chloro). The method can be applied to hetero-aromatic aldehydes whether electron-rich (e.g. thiophene-2-carbaldehyde) or electron-poor (e.g. pyridine-3-carbaldehyde).

  1. Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: aldehydes and ketones.

    PubMed

    Stockton, Amanda M; Tjin, Caroline Chandra; Huang, Grace L; Benhabib, Merwan; Chiesl, Thomas N; Mathies, Richard A

    2010-11-01

    A microchip CE method is developed for the analysis of two oxidized forms of carbon, aldehydes and ketones, with the Mars Organic Analyzer (MOA). Fluorescent derivitization is achieved in ∼ 15 min by hydrazone formation with Cascade Blue hydrazide in 30 mM borate pH 5-6. The microchip CE separation and analysis method is optimized via separation in 30 mM borate buffer, pH 9.5, at 20°C. A carbonyl standard consisting of ten aldehydes and ketones found in extraterrestrial matter is successfully separated; the resulting LOD depends on the reactivity of the compound and range from 70 pM for formaldehyde to 2 μM for benzophenone. To explore the utility of this method for analyzing complex samples, analyses of several fermented beverages are conducted, identifying ten aldehydes and ketones ranging from 30 nM to 5 mM. A Martian regolith simulant sample, consisting of a basalt matrix spiked with soluble ions and acetone, is designed and analyzed, but acetone is found to have a limited detectable lifetime under simulant Martian conditions. This work establishes the capability of the MOA for studying aldehydes and ketones, a critical class of oxidized organic molecules of interest in planetary and in terrestrial environmental and health studies. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thiazolylidene-catalyzed cleavage of methyl oleate-derived α-hydroxy ketone to the corresponding free aldehydes.

    PubMed

    Deruer, Elsa; Duguet, Nicolas; Lemaire, Marc

    2015-08-10

    The thiazolylidene-catalyzed cleavage of the α-hydroxy ketone derived from methyl oleate gave the corresponding aldehydes under nonoxidative conditions through a retro-benzoin process. The aldehydes produced are in equilibrium with their corresponding acyloins. To illustrate the synthetic utility of this protocol, the aldehydes were recovered by distillation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly enantioselective alpha-aminoxylation of aldehydes and ketones with a polymer-supported organocatalyst.

    PubMed

    Font, Daniel; Bastero, Amaia; Sayalero, Sonia; Jimeno, Ciril; Pericàs, Miquel A

    2007-05-10

    The first catalytic enantioselective alpha-aminoxylation of aldehydes and ketones using an insoluble, polymer-supported organocatalyst (1) derived from trans-4-hydroxyproline is reported (ee: 96-99%). Reaction rates in the aminoxylation of cyclic ketones with 1 are higher than those reported with l-proline. The insoluble nature of 1 simplifies workup conditions and allows catalyst recycling without an apparent decrease in enantioselectivity or yield.

  4. STIMULATION OF TARSAL RECEPTORS OF THE BLOWFLY BY ALIPHATIC ALDEHYDES AND KETONES

    PubMed Central

    Chadwick, L. E.; Dethier, V. G.

    1949-01-01

    Rejection of eight aldehydes, eight ketones, five secondary alcohols, and 3-pentanol has been studied in the blowfly Phormia regina Meigen. The data agree with results previously reported for normal alcohols and several series of glycols in showing a logarithmic increase in stimulating effect with increasing chain length. The order of increasing effectiveness among the different species of compounds thus far investigated is the following: polyglycols, diols, secondary alcohols, iso-alcohols, normal alcohols, ketones, iso-aldehydes, normal aldehydes. Curves relating the logarithms of threshold concentration to the logarithms of chain length for diols, alcohols, aldehydes, and ketones show inflections in the 3 to 6 carbon range. Above and below the region of inflection the curves are nearly rectilinear. The slopes for the upper limbs (smaller molecules) are of the order of –2; for the lower limbs, about –10. Comparisons of the threshold data with numerical values for molecular weights, molecular areas and volumes, oil-water distribution coefficients, activity coefficients, standard free energies, vapor pressures, boiling points, melting points, dipole moments, dielectric constants, and degree of association are discussed briefly, and it is concluded that none of the comparisons serves to bring the data from the several series and from the two portions of each series into a single homogeneous system. A qualitative comparison with water solubilities shows fewer discrepancies. It is suggested that the existence of a combination of aqueous and lipoid phases at the receptor surface would fit best with what is presently known about the relationship between chemical structure and stimulating effect in contact chemoreception. In this hypothesis the smaller and more highly water-soluble compounds are envisaged as gaining access to the receptors partly through the aqueous phase, the larger molecules predominantly through the lipoid phase. PMID:18114559

  5. Highly stereoselective three-component reactions of phenylselenomagnesium bromide, acetylenic sulfones, and saturated aldehydes/ketones or alpha,beta-unsaturated enals or enones.

    PubMed

    Huang, Xian; Xie, Meihua

    2002-12-13

    beta-Phenylseleno-alpha-tolylsulfonyl-substituted alkenes were synthesized via the three-component conjugate-nucleophilic addition of acetylenic sulfones, phenylselenomagnesium bromide, and carbonyl compounds, such as aldehydes, aliphatic ketones, or alpha,beta-unsaturated enals or enones. The reaction is highly regio- and stereoselective with moderate to good yields. Functionalized allylic alcohols were obtained in the case of aldehydes and aliphatic ketones. In the case of alpha,beta-unsaturated enones, functionalized allylic alcohols or functionalized gamma,delta-unsaturated ketones were obtained, depending on the structures of the ketones.

  6. Direct asymmetric aldol reaction of aryl ketones with aryl aldehydes catalyzed by chiral BINOL-derived zincate catalyst.

    PubMed

    Li, Hong; Da, Chao-Shan; Xiao, Yu-Hua; Li, Xiao; Su, Ya-Ning

    2008-09-19

    Direct asymmetric aldol reaction of aryl ketones with aryl aldehydes catalyzed by chiral metal complex is reported for the first time herein. Two novel semicrown chiral ligands 1a and 1b were synthesized from (S)- and (R)-BINOL, respectively, and then employed to catalyze the direct asymmetric aldol addition of aryl ketones to aryl aldehydes. Introduced with 2.0 equiv of diethylzinc, 1b had higher enantioselectivity than 1a. Up to 97% yield and up to 80% enantioselectivity were achieved.

  7. Field validation of the dnph method for aldehydes and ketones. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Workman, G.S.; Steger, J.L.

    1996-04-01

    A stationary source emission test method for selected aldehydes and ketones has been validated. The method employs a sampling train with impingers containing 2,4-dinitrophenylhydrazine (DNPH) to derivatize the analytes. The resulting hydrazones are recovered and analyzed by high performance liquid chromatography. Nine analytes were studied; the method was validated for formaldehyde, acetaldehyde, propionaldehyde, acetophenone and isophorone. Acrolein, menthyl ethyl ketone, menthyl isobutyl ketone, and quinone did not meet the validation criteria. The study employed the validation techniques described in EPA method 301, which uses train spiking to determine bias, and collocated sampling trains to determine precision. The studies were carriedmore » out at a plywood veneer dryer and a polyester manufacturing plant.« less

  8. Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters.

    PubMed

    Böhme, Alexander; Thaens, Diana; Schramm, Franziska; Paschke, Albrecht; Schüürmann, Gerrit

    2010-12-20

    A recently introduced chemoassay has been used to determine second-order rate constants of the electrophile-nucleophile reaction of 15 α,β-unsaturated aldehydes with glutathione. The respective kGSH values vary for more than 3 orders of magnitude, and are within the range determined previously for 31 α,β-unsaturated ketones and esters. Structure-reactivity analyses yield distinct relationships between kGSH and structural features of the compounds. Moreover, increasing kGSH increases the aldehyde toxicity toward ciliates in terms of 48 h-EC50 values (effective concentration yielding 50% growth inhibition of Tetrahymena pyriformis within 48 h). A respective log-log regression equation including both kGSH and the octanol/water partition coefficient, Kow, yields a squared correlation coefficient of 0.96. Comparative analysis with corresponding data for 15 ketones and 16 esters reveals systematic differences between the three compound classes with regard to the individual contributions of hydrophobicity and electrophilic reactivity to aquatic toxicity. The former is particularly pronounced for aldehydes, while the ester toxicity is largely governed by reactivity, with ketones showing an intermediate pattern that is more similar to the one of esters than of aldehydes. It follows that within the Michael acceptor domain of α,β-unsaturated carbonyls, a distinction between aldehydes and nonaldehydic derivatives appears necessary when employing electrophilic reactivity as a component for the quantitative prediction of their reactive toxicity toward aquatic organisms.

  9. Determination of hydride affinities of various aldehydes and ketones in acetonitrile.

    PubMed

    Zhu, Xiao-Qing; Chen, Xi; Mei, Lian-Rui

    2011-05-06

    The hydride affinities of 21 typical aldehydes and ketones in acetonitrile were determined by using an experimental method, which is valuable for chemists choosing suitable reducing agents to reduce them. The focus of this paper is to introduce a very facile experimental method, which can be used to determine the hydride affinities of various carbonyl compounds in solution.

  10. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    NASA Astrophysics Data System (ADS)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars ( d-allose and d-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars d-allose and d-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  11. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates.

    PubMed

    Small, Meagan C; Aytenfisu, Asaminew H; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  12. Syn/anti isomerization of 2,4-dinitrophenylhydrazones in the determination of airborne unsymmetrical aldehydes and ketones using 2,4-dinitrophenylhydrazine derivation.

    PubMed

    Binding, N; Müller, W; Witting, U

    1996-10-01

    Aldehydes and ketones readily react with 2,4-dinitrophenylhydrazine (2,4-DNPH) to form the corresponding hydrazones. This reaction has been frequently used for the quantification of airborne carbonyl compounds. Since unsymmetrical aldehydes and ketones are known to form isomeric 2,4-dinitrophenylhydrazones (syn/ anti-isomers), the influence of isomerization on the practicability and accuracy of the 2,4-DNPH-method using 2,4-dinitrophenylhydrazine-coated solid sorbent samplers has been studied with three ketones (methyl ethyl ketone (MEK), methyl isopropyl ketone (MIPK), and methyl isobutyl ketone (MIBK)). With all three ketones the reaction with 2,4-DNPH resulted in mixtures of the isomeric hydrazones which were separated by HPLC and GC and identified by mass spectroscopy and (1)H nuclear magnetic resonance spectroscopy. The isomers show similar chromatographic behaviour in HPLC as well as in GC, thus leading to problems in quantification and interpretation of chromatographic results.

  13. Compound-Specific Carbon Isotope Compositions of Aldehydes and Ketones in the Tagish Lake Meteorite

    NASA Astrophysics Data System (ADS)

    Simkus, D. N.; Aponte, J. C.; Hilts, R. W.; Elsila, J. E.; Herd, C. D. K.

    2016-08-01

    Aldehydes and ketones detected in the Tagish Lake meteorite are highly depleted in 13C, indicating that they are unlikely relic Strecker synthesis precursors. Potential sources for these compounds and the effects of aqueous alteration are discussed.

  14. Bioreduction of α,β-unsaturated ketones and aldehydes by non-conventional yeast (NCY) whole-cells.

    PubMed

    Goretti, Marta; Ponzoni, Chiara; Caselli, Elisa; Marchegiani, Elisabetta; Cramarossa, Maria Rita; Turchetti, Benedetta; Forti, Luca; Buzzini, Pietro

    2011-03-01

    The bioreduction of α,β-unsaturated ketones (ketoisophorone, 2-methyl- and 3-methyl-cyclopentenone) and aldehydes [(S)-(-)-perillaldehyde and α-methyl-cinnamaldehyde] by 23 "non-conventional" yeasts (NCYs) belonging to 21 species of the genera Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Kazachstania, Kluyveromyces, Lindnera, Nakaseomyces, Vanderwaltozyma, and Wickerhamomyces was reported. The results highlight the potential of NCYs as whole-cell biocatalysts for selective biotransformation of electron-poor alkenes. A few NCYs exhibited extremely high (>90%) or even total ketoisophorone and 2-methyl-cyclopentenone bioconversion yields via asymmetric reduction of the conjugated CC bond catalyzed by enoate reductases. Catalytic efficiency declined after switching from ketones to aldehydes. High chemoselectivity due to low competing carbonyl reductases was also sometimes observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Drude Polarizable Force Field for Aliphatic Ketones and Aldehydes, and their Associated Acyclic Carbohydrates

    PubMed Central

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-01-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF. PMID:28190218

  16. Tandem nucleophilic addition-Oppenauer oxidation of aromatic aldehydes to aryl ketones with triorganoaluminium reagents.

    PubMed

    Fu, Ying; Yang, Yanshou; Hügel, Helmut M; Du, Zhengyin; Wang, Kehu; Huang, Danfeng; Hu, Yulai

    2013-07-21

    In the presence of pinacolone, the in situ prepared triorganoaluminium reagents reacted with aromatic aldehydes to give ketones in moderate to high yield. We propose that the products are formed via a tandem organoaluminium reagents addition-Oppenauer oxidation sequence.

  17. Difluoromethyl 2-pyridyl sulfone: a new gem-difluoroolefination reagent for aldehydes and ketones.

    PubMed

    Zhao, Yanchuan; Huang, Weizhou; Zhu, Lingui; Hu, Jinbo

    2010-04-02

    Difluoromethyl 2-pyridyl sulfone, a previously unknown compound, was found to act as a novel and efficient gem-difluoroolefination reagent for both aldehydes and ketones. It was found that the fluorinated sulfinate intermediate in the reaction is relatively stable, which can be observed by (19)F NMR and trapped with CH(3)I.

  18. A Bio-Catalytic Approach to Aliphatic Ketones

    PubMed Central

    Xiong, Mingyong; Deng, Jin; Woodruff, Adam P.; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun

    2012-01-01

    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid “Bio-Catalytic conversion” approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals. PMID:22416247

  19. A bio-catalytic approach to aliphatic ketones.

    PubMed

    Xiong, Mingyong; Deng, Jin; Woodruff, Adam P; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun

    2012-01-01

    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid "Bio-Catalytic conversion" approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals.

  20. N-heterocyclic carbene catalysed asymmetric cross-benzoin reactions of heteroaromatic aldehydes with trifluoromethyl ketones.

    PubMed

    Enders, Dieter; Grossmann, André; Fronert, Jeanne; Raabe, Gerhard

    2010-09-14

    A new triazolium salt derived N-heterocyclic carbene catalyses an asymmetric cross-benzoin-type reaction of heteroaromatic aldehydes and various trifluoromethyl ketones in good to excellent yields (69-96%) and moderate to good enantioselectivities (ee = 39-85%). Up to 99% ee can be achieved by recrystallisation.

  1. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    PubMed

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Pyrrolidine-mediated direct preparation of (e)-monoarylidene derivatives of homo- and heterocyclic ketones with various aldehydes.

    PubMed

    Gu, Xin; Wang, Xiaoyan; Wang, Fengtian; Sun, Hongbao; Liu, Jie; Xie, Yongmei; Xiang, Mingli

    2014-02-12

    An efficient method for the facile synthesis of (E)-monoarylidene derivatives of homo- and heterocyclic ketones with various aldehydes in the presence of a pyrrolidine organocatalyst has been achieved. A range of α,β-unsaturated ketones were obtained in moderate to high yields (up to 99%). Unlike the Claisen-Schmidt condensation process, the formation of undesired bisarylidene byproducts is not observed. The possible reaction mechanism suggests that the reaction proceeds via a Mannich-elimination sequence.

  3. Advanced emissions-speciation methodologies for the auto/oil air-quality improvement research program. 2. Aldehydes, ketones, and alcohols. SAE technical paper series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swarin, S.J.; Loo, J.F.; Chladek, E.

    1992-01-01

    Analytical methods for determining individual aldehyde, ketone, and alcohol emissions from gasoline-, methanol-, and variable-fueled vehicles are described. These methods were used in the Auto/Oil Air Quality Improvement Research Program to provide emission data for comparison of individual reformulated fuels, individual vehicles, and for air modeling studies. The emission samples are collected in impingers which contain either 2,4-dinitrophenylhydrazine solution for the aldehydes and ketones or deionized water for the alcohols. Subsequent analyses by liquid chromatography for the aldehydes and ketones and gas chromatography for the alcohols utilized auto injectors and computerized data systems which permit high sample throughput with minimalmore » operator intervention. The quality control procedures developed and interlaboratory comparisons conducted as part of the program are also described. (Copyright (c) 1992 Society of Automotive Engineers, Inc.)« less

  4. Stereogenic phosphorus-induced diastereoselective formation of chiral carbon during nucleophilic addition of chiral H-P species to aldehydes or ketones.

    PubMed

    Zhang, He; Sun, Yong-Ming; Yao, Lan; Ji, Si-Yu; Zhao, Chang-Qiu; Han, Li-Biao

    2014-05-01

    P,C-stereogenic α-hydroxyl phosphinates or phosphine oxides were prepared from the additions of (RP)-phosphinate to ketones or (RP)-phosphine oxide to aldehydes, respectively, catalyzed by bases at room temperature in up to >99:1 diasteromeric ratio (d.r.P/d.r.C) and 99 % yields. The diastereoselectivity was induced by reversible equilibrium and different stabilities between two diastereomers of adduct, which was caused by the spatial interaction between menthoxyl or menthyl to alkyl groups of aldehydes or ketones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Indium-mediated asymmetric Barbier-type propargylations: additions to aldehydes and ketones and mechanistic investigation of the organoindium reagents.

    PubMed

    Haddad, Terra D; Hirayama, Lacie C; Buckley, Jannise J; Singaram, Bakthan

    2012-01-20

    We report a simple, efficient, and general method for the indium-mediated enantioselective propargylation of aromatic and aliphatic aldehydes under Barbier-type conditions in a one-pot synthesis affording the corresponding chiral alcohol products in very good yield (up to 90%) and enantiomeric excess (up to 95%). The extension of this methodology to ketones demonstrated the need for electrophilic ketones more reactive than acetophenone as the reaction would not proceed with just acetophenone. Using the Lewis acid indium triflate [In(OTf)(3)] induced regioselective formation of the corresponding homoallenic alcohol product from acetophenone. However, this methodology demonstrated excellent chemoselectivity in formation of only the corresponding secondary homopropargylic alcohol product in the presence of a ketone functionality. Investigation of the organoindium intermediates under our reaction conditions shows the formation of allenylindium species, and we suggest that these species contain an indium(III) center. In addition, we have observed the presence of a shiny, indium(0) nugget throughout the reaction, irrespective of the stoichiometry, indicating disproportionation of indium halide byproduct formed during the reaction.

  6. Diene Hydroacylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation: Synthesis of β,γ-Unsaturated Ketones

    PubMed Central

    Shibahara, Fumitoshi; Bower, John F.; Krische, Michael J.

    2011-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation, isoprene couples to benzylic and aliphatic alcohols 1a–1g to deliver β,γ-unsaturated ketones 3a–3g in good to excellent isolated yields. Under identical conditions, aldehydes 2a–2g couple to isoprene to provide an identical set of β,γ-unsaturated ketones 3a–3g in good to excellent isolated yields. As demonstrated by the coupling of butadiene, myrcene and 1,2-dimethylbutadiene to representative alcohols 1b, 1c and 1e, diverse acyclic dienes participate in transfer hydrogenative coupling to form β,γ-unsaturated ketones. In all cases, complete branch-regioselectivity is observed and, with the exception of adduct 3j, isomerization to the conjugated enone is not detected. Thus, formal intermolecular diene hydroacylation is achieved from the alcohol or aldehyde oxidation level. In earlier studies employing a related ruthenium catalyst, acyclic dienes were coupled to carbonyl partners from the alcohol or aldehyde oxidation level to furnish branched homoallylic alcohols. Thus, under transfer hydrogenative coupling conditions, all oxidations levels of substrate (alcohol or aldehyde) and product (homoallyl alcohol or β,γ-unsaturated ketone) are accessible. PMID:18841895

  7. Effect of carbonates/phosphates as nucleophilic catalysts in dimethylformamide for efficient cyanosilylation of aldehydes and ketones

    PubMed Central

    Prakash, G. K. Surya; Vaghoo, Habiba; Panja, Chiradeep; Surampudi, Vijayalakshmi; Kultyshev, Roman; Mathew, Thomas; Olah, George A.

    2007-01-01

    Cyanosilylation of aldehydes and aliphatic ketones can be carried out in dimethylformamide even without the use of any catalyst. In the presence of nucleophilic catalysts such as carbonate and phosphate salts, the reaction rate is significantly enhanced. PMID:17360603

  8. n-BuLi as a highly efficient precatalyst for hydrophosphonylation of aldehydes and unactivated ketones.

    PubMed

    Liu, Chengwei; Zhang, Yu; Qian, Qinqin; Yuan, Dan; Yao, Yingming

    2014-12-05

    It was found for the first time that organic alkali metal compounds serve as highly efficient precatalysts for the hydrophosphonylation reactions of aldehydes and unactivated ketones with dialkyl phosphite under mild conditions. For ketone substrates, a reversible reaction was observed, and the influence of catalyst loading and reaction temperature on the reaction equilibrium was studied in detail. Overall, the hydrophosphonylation reactions catalyzed by 0.1 mol % n-BuLi were completed within 5 min for a broad range of substrates and generated a series of α-hydroxy phosphonates in high yields.

  9. Alcohol, Aldehyde, and Ketone Liberation and Intracellular Cargo Release through Peroxide-Mediated α-Boryl Ether Fragmentation.

    PubMed

    Hanna, Ramsey D; Naro, Yuta; Deiters, Alexander; Floreancig, Paul E

    2016-10-12

    α-Boryl ethers, carbonates, and acetals, readily prepared from the corresponding alcohols that are accessed through ketone diboration, react rapidly with hydrogen peroxide to release alcohols, aldehydes, and ketones through the collapse of hemiacetal intermediates. Experiments with α-boryl acetals containing a latent fluorophore clearly demonstrate that cargo can be released inside cells in the presence of exogenous or endogenous hydrogen peroxide. These experiments show that this protocol can be used for drug activation in an oxidative environment without generating toxic byproducts.

  10. The allylation reactions of aromatic aldehydes and ketones with tin dichloride in water.

    PubMed

    Bian, Yan-Jiang; Xue, Wei-Li; Yu, Xu-Guang

    2010-01-01

    The allylation reactions of aromatic aldehydes and ketones were carried out in 31-86% yield using SnCl(2)-H(2)O system under ultrasound irradiation at r.t. for 5h. The reactions in the same system gave homoallyl alcohols in 21-84% yield with stirring at r.t. for 24h. Compared with traditional stirring methods, ultrasonic irradiation is more convenient and efficient.

  11. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less

  12. Selective synthesis of secondary amines by Pt nanowire catalyzed reductive amination of aldehydes and ketones with ammonia.

    PubMed

    Qi, Fenqiang; Hu, Lei; Lu, Shuanglong; Cao, Xueqin; Gu, Hongwei

    2012-10-07

    The process of the reductive amination of aldehydes or ketones in the presence of ammonia using unsupported ultra-thin Pt nanowires has been developed. This catalytic system shows high activity and selectivity under mild reaction conditions.

  13. Efficient Three-Component Strecker Reaction of Aldehydes/Ketones via NHC-Amidate Palladium(II) Complex Catalysis

    PubMed Central

    Jarusiewicz, Jamie; Choe, Yvonne; Yoo, Kyung Soo; Park, Chan Pil

    2009-01-01

    A simple and efficient one-pot three-component method has been developed for the synthesis of α-aminonitriles. This Strecker reaction is applicable for aldehydes and ketones with aliphatic or aromatic amines and trimethyl siliyl cyanide in the presence of a palladium Lewis aid catalyst in dichloromethane solvent at room temperature. PMID:19265413

  14. Copper-catalyst-controlled site-selective allenylation of ketones and aldehydes with propargyl boronates.

    PubMed

    Fandrick, Keith R; Ogikubo, Junichi; Fandrick, Daniel R; Patel, Nitinchandra D; Saha, Jaideep; Lee, Heewon; Ma, Shengli; Grinberg, Nelu; Busacca, Carl A; Senanayake, Chris H

    2013-03-15

    A practical and highly site-selective copper-PhBPE-catalyst-controlled allenylation with propargyl boronates has been developed. The methodology has shown to be tolerant of diverse ketones and aldehydes providing the allenyl adducts in high selectivity. The BPE ligand and boronate substituents were shown to direct the site selectivity for which either propargyl or allenyl adducts can be acquired in high selectivity. A model is proposed that explains the origin of the site selectivity.

  15. ADVANCED EMISSIONS SPECIATION METHODOLOGIES FOR THE AUTO/OIL AIR QUALITY IMPROVEMENT RESEARCH PROGRAM - II. ALDEHYDES, KETONES, AND ALCOHOLS

    EPA Science Inventory

    Analytical methods for determining individual aldehyde, ketone, and alcohol emissions from gasoline-, methanol-, and variable-fueled vehicles are described. These methods were used in the Auto/Oil Air quality Improvement Research Program to provide emission data for comparison of...

  16. Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones.

    PubMed

    Lee, Byeongno; Lee, Kyu Hyung; Cho, Jaeheung; Nam, Wonwoo; Hur, Nam Hwi

    2011-12-16

    Highly conjugated azines were prepared by solid state grinding of solid hydrazine and carbonyl compounds such as aldehydes and ketones, using a mortar and a pestle. Complete conversion to the azine product is generally achieved at room temperature within 24 h, without using solvents or additives. The solid-state reactions afford azines as the sole products with greater than 97% yield, producing only water and carbon dioxide as waste.

  17. Cross-reactions in patch testing and photopatch testing with ketoprofen, thiaprophenic acid, and cinnamic aldehyde.

    PubMed

    Pigatto, P; Bigardi, A; Legori, A; Valsecchi, R; Picardo, M

    1996-12-01

    In the last 7 years, we have studied 123 patients with allergic reactions to topical arylpropionic anti-inflammatory drugs. We have investigated the rate of sensitization and the irritant potential of one of them, ketoprofen, and its cross-reactivity with such other derivatives as ibuproxam, ibuprofen, naproxen, fenoprofen, flurbiprofen, and thiaprofenic acid. Sensitization was single in most cases, and ketoprofen was the drug most often involved. The combination most frequently found was ketoprofen plus ibuproxam. The most frequent cross-reactions were to fragrance mix, especially cinnamic aldehyde and balsam of Peru, both contact and photocontact sensitizers. Because there is a ketonic group in the molecule of ketoprofen and cinnamic aldehyde and after conversion of thiaprofenic acid, this could be the trigger for this particular allergy and cross-reactivity.

  18. Experimental verification, and domain definition, of structural alerts for protein binding: epoxides, lactones, nitroso, nitros, aldehydes and ketones.

    PubMed

    Nelms, M D; Cronin, M T D; Schultz, T W; Enoch, S J

    2013-01-01

    This study outlines how a combination of in chemico and Tetrahymena pyriformis data can be used to define the applicability domain of selected structural alerts within the profilers of the OECD QSAR Toolbox. Thirty-three chemicals were profiled using the OECD and OASIS profilers, enabling the applicability domain of six structural alerts to be defined, the alerts being: epoxides, lactones, nitrosos, nitros, aldehydes and ketones. Analysis of the experimental data showed the applicability domains for the epoxide, nitroso, aldehyde and ketone structural alerts to be well defined. In contrast, the data showed the applicability domains for the lactone and nitro structural alerts needed modifying. The accurate definition of the applicability domain for structural alerts within in silico profilers is important due to their use in the chemical category in predictive and regulatory toxicology. This study highlights the importance of utilizing multiple profilers in category formation.

  19. Mechanistic Insights on the Hydrogenation of α,β-Unsaturated Ketones and Aldehydes to Unsaturated Alcohols over Metal Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ide, Matthew S.; Hao, Bing; Neurock, Matthew

    The selective hydrogenation of unsaturated ketones (methyl vinyl ketone and benzalacetone) and unsaturated aldehydes (crotonaldehyde and cinnamaldehyde) was carried out with H₂ at 2 bar absolute over Pd/C, Pt/C, Ru/C, Au/C, Au/TiO₂, or Au/Fe₂O₃ catalysts in ethanol or water solvent at 333 K. Comparison of the turnover frequencies revealed Pd/C to be the most active hydrogenation catalyst, but the catalyst failed to produce unsaturated alcohols, indicating hydrogenation of the C=C bond was highly preferred over the C=O bond on Pd. The Pt and Ru catalysts were able to produce unsaturated alcohols from unsaturated aldehydes, but not from unsaturated ketones. Althoughmore » Au/ Fe₂O₃ was able to partially hydrogenate unsaturated ketones to unsaturated alcohols, the overall hydrogenation rate over gold was the lowest of all of the metals examined. First-principles density functional theory calculations were therefore used to explore the reactivity trends of methyl vinyl ketone (MVK) and benzalacetone (BA) hydrogenation over model Pt(111) and Ru(0001) surfaces. The observed selectivity over these metals is likely controlled by the significantly higher activation barriers to hydrogenate the C=O bond compared with those required to hydrogenate the C=C bond. Both the unsaturated alcohol and the saturated ketone, which are the primary reaction products, are strongly bound to Ru and can react further to the saturated alcohol. The lower calculated barriers for the hydrogenation steps over Pt compared with Ru account for the higher observed turnover frequencies for the hydrogenation of MVK and BA over Pt. The presence of a phenyl substituent α to the C=C bond in BA increased the barrier for C=C hydrogenation over those associated with the C=C bond in MVK; however, the increase in barriers with phenyl substitution was not adequate to reverse the selectivity trend.« less

  20. Contribution of Quinones and Ketones/Aldehydes to the Optical Properties of Humic Substances (HS) and Chromophoric Dissolved Organic Matter (CDOM).

    PubMed

    Del Vecchio, Rossana; Schendorf, Tara Marie; Blough, Neil V

    2017-12-05

    The molecular basis of the optical properties of chromophoric dissolved organic matter (CDOM) and humic substances (HS) remains poorly understood and yet to be investigated adequately. This study evaluates the relative contributions of two broad classes of carbonyl-containing compounds, ketones/aldehydes versus quinones, to the absorption and emission properties of a representative suite of HS as well as a lignin sample. Selective reduction of quinones to hydroquinones by addition of small molar excesses of dithionite to these samples under anoxic conditions produced small or negligible changes in their optical properties; however, when measurable, these changes were largely reversible upon exposure to air, consistent with the reoxidation of hydroquinones to quinones. With one exception, estimates of quinone content based on dithionite consumption by the HS under anoxic conditions were in good agreement with past electrochemical measurements. In contrast, reduction of ketones/aldehydes to alcohols employing excess sodium borohydride produced pronounced and largely, but not completely, irreversible changes in the optical properties. The results demonstrate that (aromatic) ketones/aldehydes, as opposed to quinones, play a far more prominent role in the optical absorption and emission properties of these HS, consistent with these moieties acting as the primary acceptors in charge-transfer transitions within these samples. As a method, anoxic dithionite titrations may further allow additional insight into the content and impact of quinones/hydroquinones on the optical properties of HS and CDOM.

  1. Laboratory Studies of Aedes aegypti Attraction to Ketones, Sulfides, and Primary Chloroalkanes Tested Alone and in Combination with L-Lactic Acid.

    PubMed

    Bernier, Ulrich R; Kline, Daniel L; Allan, Sandra A; Barnard, Donald R

    2015-03-01

    The attraction of female Aedes aegypti to single compounds and binary compositions containing L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because of their structural relation to acetone, dimethyl disulfide, and dichloromethane, which have all been reported to synergize attraction to L-lactic acid. Human odors, carbon dioxide, and the binary mixture of L-lactic acid and CO₂served as controls for comparison of attraction responses produced by the binary mixtures. All tested mixtures that contained chloroalkanes attracted mosquitoes at synergistic levels, as did L-lactic acid and CO₂. Synergism was less frequent in mixtures of L-lactic acid with sulfides and ketones; in the case of ketones, synergistic attraction was observed only for L-lactic acid combined with acetone or butanone. Suppression or inhibition of attraction response was observed for combinations that contained ketones of C7-C12 molecular chain length (optimum in the C8-C10 range). This inhibition effect is similar to that observed previously for specific ranges of carboxylic acids, aldehydes, and alcohols.

  2. Hydrosilylation of aldehydes and ketones catalyzed by hydrido iron complexes bearing imine ligands.

    PubMed

    Zuo, Zhenyu; Sun, Hongjian; Wang, Lin; Li, Xiaoyan

    2014-08-14

    Two new hydrido iron complexes (2 and 4) were synthesized by the reactions of (4-methoxyphenyl)phenylketimine ((4-MeOPh)PhC=NH) with Fe(PMe3)4 or FeMe2(PMe3)4. The molecular structures of complexes 2 and 4 were confirmed by X-ray single crystal diffraction. Using hydrido iron complexes (1-4) as catalysts, the hydrosilylations of aldehydes and ketones were investigated. The four complexes were effective catalysts for this reduction reaction. Complex 1 among them is the best catalyst.

  3. Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids.

    PubMed

    Dalle-Donne, Isabella; Carini, Marina; Orioli, Marica; Vistoli, Giulio; Regazzoni, Luca; Colombo, Graziano; Rossi, Ranieri; Milzani, Aldo; Aldini, Giancarlo

    2009-05-15

    Most of the assays for detection of carbonylated proteins, the most general and widely used marker of severe protein oxidation, involve derivatization of the carbonyl group with 2,4-dinitrophenylhydrazine (DNPH), which leads to formation of a stable dinitrophenyl hydrazone product. Here, by using a Cys-containing model peptide and high-resolution mass spectrometry, we demonstrate that DNPH is not exclusively selective for carbonyl groups, because it also reacts with sulfenic acids, forming a DNPH adduct, through the acid-catalyzed formation of a thioaldehyde intermediate that is further converted to an aldehyde. beta-Mercaptoethanol prevents the formation of the DNPH derivative because it reacts with the oxidized Cys residue, forming the corresponding disulfide.

  4. Dual palladium- and proline-catalyzed allylic alkylation of enolizable ketones and aldehydes with allylic alcohols.

    PubMed

    Usui, Ippei; Schmidt, Stefan; Breit, Bernhard

    2009-03-19

    The dual Pd/proline-catalyzed alpha-allylation reaction of a variety of enolizable ketones and aldehydes with allylic alcohols is described. In this reaction, the choice of a large-bite angle ligand Xantphos and proline as the organocatalyst was essential for generation of the crucial pi-allyl Pd intermediate from allylic alcohol, followed by nucleophilic attack of the enamine formed in situ from the corresponding enolizable carbonyl substrate and proline.

  5. Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes.

    PubMed

    Zhou, Shuangliu; Wu, Zhangshuan; Rong, Jiewei; Wang, Shaowu; Yang, Gaosheng; Zhu, Xiancui; Zhang, Lijun

    2012-02-27

    A series of rare earth metal amido complexes bearing methylene-linked pyrrolyl-amido ligands were prepared through silylamine elimination reactions and displayed high catalytic activities in hydrophosphonylations of aldehydes and unactivated ketones under solvent-free conditions for liquid substrates. Treatment of [(Me(3)Si)(2)N](3)Ln(μ-Cl)Li(THF)(3) with 2-(2,6-Me(2)C(6)H(3)NHCH(2))C(4)H(3)NH (1, 1 equiv) in toluene afforded the corresponding trivalent rare earth metal amides of formula {(μ-η(5):η(1)):η(1)-2-[(2,6-Me(2)C(6)H(3))NCH(2)](C(4)H(3)N)LnN(SiMe(3))(2)}(2) [Ln=Y (2), Nd (3), Sm (4), Dy (5), Yb (6)] in moderate to good yields. All compounds were fully characterized by spectroscopic methods and elemental analyses. The yttrium complex was also characterized by (1)H NMR spectroscopic analyses. The structures of complexes 2, 3, 4, and 6 were determined by single-crystal X-ray analyses. Study of the catalytic activities of the complexes showed that these rare earth metal amido complexes were excellent catalysts for hydrophosphonylations of aldehydes and unactivated ketones. The catalyzed reactions between diethyl phosphite and aldehydes in the presence of the rare earth metal amido complexes (0.1 mol%) afforded the products in high yields (up to 99%) at room temperature in short times of 5 to 10 min. Furthermore, the catalytic addition of diethyl phosphite to unactivated ketones also afforded the products in high yields of up to 99% with employment of low loadings (0.1 to 0.5 mol%) of the rare earth metal amido complexes at room temperature in short times of 20 min. The system works well for a wide range of unactivated aliphatic, aromatic or heteroaromatic ketones, especially for substituted benzophenones, giving the corresponding α-hydroxy diaryl phosphonates in moderate to high yields. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Catalyzed formation of α,β-unsaturated ketones or aldehydes from propargylic acetates by a recoverable and recyclable nanocluster catalyst

    NASA Astrophysics Data System (ADS)

    Li, Man-Bo; Tian, Shi-Kai; Wu, Zhikun

    2014-05-01

    An active, recoverable, and recyclable nanocluster catalyst, Au25(SR)18-, has been developed to catalyze the formation of α,β-unsaturated ketones or aldehydes from propargylic acetates. The catalytic process has been proposed to be initialized by an SN2' addition of OH-. Moreover, a dramatic solvent effect was observed, for which a rational explanation was provided.An active, recoverable, and recyclable nanocluster catalyst, Au25(SR)18-, has been developed to catalyze the formation of α,β-unsaturated ketones or aldehydes from propargylic acetates. The catalytic process has been proposed to be initialized by an SN2' addition of OH-. Moreover, a dramatic solvent effect was observed, for which a rational explanation was provided. Electronic supplementary information (ESI) available: Experimental procedures, UV-Vis spectra and fluorescence spectra of catalysts, characterization data, and copies of MS spectra. See DOI: 10.1039/c4nr00658e

  7. Chemoselective formation of unsymmetrically substituted ethers from catalytic reductive coupling of aldehydes and ketones with alcohols in aqueous solution.

    PubMed

    Kalutharage, Nishantha; Yi, Chae S

    2015-04-03

    A well-defined cationic Ru-H complex catalyzes reductive etherification of aldehydes and ketones with alcohols. The catalytic method employs environmentally benign water as the solvent and cheaply available molecular hydrogen as the reducing agent to afford unsymmetrical ethers in a highly chemoselective manner.

  8. Cu(I)-catalyzed transannulation of N-heteroaryl aldehydes or ketones with alkylamines via C(sp3)-H amination.

    PubMed

    Li, Mingyang; Xie, Ying; Ye, Yong; Zou, Yong; Jiang, Huanfeng; Zeng, Wei

    2014-12-05

    A copper(I)-catalyzed direct transannulation of N-heteroaryl aldehydes or ketones with alkylamines via Csp(3)-H amination has been achieved using molecular oxygen as a sole oxidant. N-Heteroarenes are employed as the amine source. This transformation provides a rapid and concise access to multifunctional imidazo[1,5-a]pyridines.

  9. Monte Carlo simulations of mixtures involving ketones and aldehydes by a direct bubble pressure calculation.

    PubMed

    Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne

    2010-07-08

    Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest.

  10. Aldehydes and ketones form intermediate π complexes with the Gilman reagent, Me2CuLi, at low temperatures in tetrahydrofuran.

    PubMed

    Bertz, Steven H; Hardin, Richard A; Ogle, Craig A

    2013-07-03

    Typical aldehydes and ketones form π complexes with Me2CuLi at low temperatures in tetrahydrofuran. They range in stability from fleeting intermediates at -100 °C to entities that persist up to -20 °C. Three subsequent reaction pathways have been identified.

  11. Lewis base-catalyzed three-component Strecker reaction on water. An efficient manifold for the direct alpha-cyanoamination of ketones and aldehydes.

    PubMed

    Cruz-Acosta, Fabio; Santos-Expósito, Alicia; de Armas, Pedro; García-Tellado, Fernando

    2009-11-28

    The first three-component organocatalyzed Strecker reaction operating on water has been developed. The manifold utilizes ketones (aldehydes) as the starting carbonyl component, aniline as the primary amine, acetyl cyanide as the cyanide source and N,N-dimethylcyclohexylamine as the catalyst.

  12. Gold-catalyzed three-component annulation: efficient synthesis of highly functionalized dihydropyrazoles from alkynes, hydrazines, and aldehydes or ketones.

    PubMed

    Suzuki, Yamato; Naoe, Saori; Oishi, Shinya; Fujii, Nobutaka; Ohno, Hiroaki

    2012-01-06

    Polysubstituted dihydropyrazoles were directly obtained by a gold-catalyzed three-component annulation. This reaction consists of a Mannich-type coupling of alkynes with N,N'-disubstituted hydrazines and aldehydes/ketones followed by intramolecular hydroamination. Cascade cyclization using 1,2-dialkynylbenzene derivatives as the alkyne component was also performed producing fused tricyclic dihydropyrazoles in good yields. © 2011 American Chemical Society

  13. Ca(OH)2-Catalyzed Condensation of Aldehydes with Methyl ketones in Dilute Aqueous Ethanol: A Comprehensive Access to α,β-Unsaturated Ketones

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Han, Mengting; Luan, Jie; Xu, Lin; Ding, Yuanhua; Xu, Qing

    2016-07-01

    Cheap, abundant but seldom-employed Ca(OH)2 was found to be an excellent low-loading (5-10 mol%) catalyst for Claisen-Schmidt condensation of aldehydes with methyl ketones under mild conditions. It was interesting that dilute aqueous ethanol (20 v/v%) was unexpectedly discovered to be the optimal solvent. The reaction was scalable at least to 100 mmol and calcium could be precipitated by CO2 and removed by filtration. Evaporation of solvent directly afforded the product in the excellent 96% yield with high purity, as confirmed by its 1H NMR spectrum.

  14. Cellular fatty acids and aldehydes of oral Eubacterium.

    PubMed

    Itoh, U; Sato, M; Tsuchiya, H; Namikawa, I

    1995-02-01

    The cellular fatty acids and aldehydes of oral Eubacterium species were determined by gas chromatography-mass spectrometry. E. brachy and E. lentum contained mainly branched-chain fatty acids, whereas the others contained straight-chain acids. E. brachy, E. lentum, E. yurii ssp. yurii, E. yurii spp. margaretiae, E. limosum, E. plauti and E. aerofaciens also contained aldehydes with even carbon numbers. In addition to species-specific components, the compositional ratios of fatty acids and aldehydes characterized each individual species. The 10 species tested were divided into 5 groups by the principal component analysis. Cellular fatty acids and aldehydes would be chemical markers for interspecies differentiation of oral Eubacterium.

  15. General and highly α-regioselective zinc-mediated prenylation of aldehydes and ketones.

    PubMed

    Zhao, Li-Ming; Jin, Hai-Shan; Wan, Li-Jing; Zhang, Li-Ming

    2011-03-18

    A simple, efficient, and general α-prenylation approach for the synthesis of a variety of α-prenylated alcohols has been successfully developed. A wide range of α-prenylated alcohol derivatives could be obtained in good yields by highly α-regioselective zinc-mediated prenylation of various aldehydes and ketones with prenyl bromide at 120 °C in HMPA. By simply altering the reaciton solvent and temperature, the method allows the achievement of a highly notable opposite regiocontrol, providing the expected regiochemical product. The method provides a convenient route for the direct α-prenylation of carbonyl compounds in a highly α-regioselective manner using a cheap and convenient mediator. Two possible pathways are proposed to account for the formation of these synthetically difficult-to-obtain molecules.

  16. Trail Pheromones: Responses of the Texas Leafcutting Ant, Atta texana to Select Halo- and Cyanopyrrole-2-Aldehydes, Ketones, and Esters

    Treesearch

    P. E. Sonnet; John C. Moser

    1973-01-01

    Several halo- and cyanopyrroles related to the trail pheromone of Atta texana (Buckley), were prepared and tested by a faster and more sensitive bioassay that was previously available. Responsiveness of the ants in descending order to these compounds, based on the substituent in the number two position, is: esters, methyl ketones, aldehydes. Slight...

  17. Production of methyl-vinyl ketone from levulinic acid

    DOEpatents

    Dumesic, James A [Verona, WI; West,; Ryan, M [Madison, WI

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  18. Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones: An Inquiry-Based Experiment in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald

    2007-01-01

    An experiment for the undergraduate chemistry laboratory in which students perform the aldol condensation on an unknown aldehyde and an unknown ketone is described. The experiment involves the use of techniques such as TLC, column chromatography, and recrystallization, and compounds are characterized by [to the first power]H NMR, GC-MS, and FTIR.…

  19. Lanthanide anilido complexes: synthesis, characterization, and use as highly efficient catalysts for hydrophosphonylation of aldehydes and unactivated ketones.

    PubMed

    Liu, Chengwei; Qian, Qinqin; Nie, Kun; Wang, Yaorong; Shen, Qi; Yuan, Dan; Yao, Yingming

    2014-06-14

    Lanthanide anilido complexes stabilized by the 2,6-diisopropylanilido ligand have been synthesized and characterized, and their catalytic activity for hydrophosphonylation reaction was explored. A reaction of anhydrous LnCl3 with 5 equivalents of LiNHPh-(I)Pr2-2,6 in THF generated the heterobimetallic lanthanide-lithium anilido complexes (2,6-(I)Pr2PhNH)5LnLi2(THF)2 [Ln = Sm(1), Nd(2), Y(3)] in good isolated yields. These complexes are well characterized by elemental analysis, IR, NMR (for complex ) and single-crystal structure determination. Complexes 1 - 3 are isostructural. In these complexes, the lanthanide metal ion is five-coordinated by five nitrogen atoms from five 2,6-diisopropylanilido ligands to form a distorted trigonal bipyramidal geometry. The lithium ion is coordinated by two nitrogen atoms from two 2,6-diisopropylanilido ligands, and one oxygen atom from a THF molecule. It was found that these simple lanthanide anilido complexes are highly efficient for catalyzing hydrophosphonylation reactions of various aldehydes and unactivated ketones to generate α-hydroxyphosphonates in good to excellent yields (up to 99%) within a short time (5 min for aldehydes, 20 min for ketones). Furthermore, the mechanism of hydrophosphonylation reactions has also been elucidated via(1)H NMR monitoring of reaction.

  20. Me3SiI-promoted reaction of salicylic aldehydes with ketones: a facile way to construct benzopyranic [2,3-b]ketals and spiroketals.

    PubMed

    Wang, Feijun; Qu, Mingliang; Lu, Xi; Chen, Feng; Chen, Feng; Shi, Min

    2012-06-25

    Me(3)SiI-promoted reaction of salicylic aldehydes with ketones via arylmethylation at the α-site of the carbonyl group and cyclodehydration of keto-diol provided a facile way to construct heteroannular ketals, furnishing benzopyranic [2,3-b]ketals and spiroketals in moderate to good yields.

  1. A dehydrogenative cross-coupling reaction between aromatic aldehydes or ketones and dialkyl H-phosphonates for formyl or acylphenylphosphonates.

    PubMed

    Huang, Xing-Fen; Wu, Qing-Lai; He, Jian-Shi; Huang, Zhi-Zhen

    2015-04-21

    A novel DCC reaction between aromatic aldehydes or ketones and H-phosphonates has been developed for the synthesis of p-formyl or p-acylphenylphosphonates. The synthetic method has excellent para regioselectivities, good yields, and broad substrate scopes and is more benign to the environment. The DCC reaction also tolerates many functional groups, and results in a series of new p-formyl and p-acylphenylphosphonates, which should be important building blocks for the synthesis of versatile arylphosphonate derivatives.

  2. Formal [4+2] cycloaddition of di-tert-butyl 2-ethoxycyclobutane-1,1-dicarboxylate with ketones or aldehydes and tandem lactonization.

    PubMed

    Okado, Ryohei; Nowaki, Aya; Matsuo, Jun-Ichi; Ishibashi, Hiroyuki

    2012-01-01

    A catalytic amount of tin(IV) chloride catalyzed formal [4+2] cycloaddition reaction of di-tert-butyl 2-ethoxycyclobutane-1,1-carboxylate with ketones or aldehydes to give diethyl 6-ethoxydihydro-2H-pyran-3,3(4H)-dicarboxylates, whereas two equivalents of trimethylsilyl triflate promoted tandem [4+2] cycloaddition and lactonization to afford 3-oxo-2,6-dioxabicyclo[2.2.2]octane-4-carboxylate esters.

  3. Sustainable synthesis of aldehydes, ketones or acids from neat alcohols using nitrogen dioxide gas, and related reactions.

    PubMed

    Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd

    2009-01-01

    Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries.

  4. Highly efficient and direct heterocyclization of dipyridyl ketone to N,N-bidentate ligands

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Dyers, Leon Jr; Mason, Richard Jr; Amoyaw, Prince; Bu, Xiu R.

    2005-01-01

    [reaction: see text] Reaction of various aromatic aldehydes with 2,2'-dipyridyl ketone and ammonium acetate in hot acetic acid provides ready access to a series of substituted 1-pyridylimidazo[1,5-a]pyridines, a class of ligands possessing an N,N-bidentate feature, in good yields.

  5. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid–base pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baylon, Rebecca A. L.; Sun, Junming; Martin, Kevin J.

    Dwindling petroleum reserves combined with increased energy demand and political factors encouraging an increase in energy independence have led to a large amount of research on sustainable alternatives. To this end, biomass conversion has been recognized as themost readily viable technology to produce biofuel concerning our reliance on liquid fuels for transportation and has the advantage of being easily integrated into our heavy use of combustion engines. The interest in biomass conversion has also resulted in reduced costs and a greater abundance of bio-oil, a mixture of hundreds of oxygenates including alcohols, aldehydes, carboxylic acids, and ketones. However, the presencemore » of carboxylic acids in bio-oil derived from lignocellulose pyrolysis leads to low pH, instability, and corrosiveness. In addition, carboxylic acids (i.e. acetic acid) can also be produced via fermentation of sugars. This can be accomplished by a variety of homoacetogenic microorganisms that can produce acetic acid with 100% carbon yield.« less

  6. N-heterocyclic carbene catalyzed regioselective oxo-acyloxylation of alkenes with aromatic aldehydes: a high yield synthesis of α-acyloxy ketones and esters.

    PubMed

    Reddi, Rambabu N; Malekar, Pushpa V; Sudalai, Arumugam

    2013-10-14

    An N-heterocyclic carbene (NHC)-catalyzed reaction of alkenes with aromatic aldehydes providing for a high yield synthesis of α-acyloxy ketones and esters has been described. This unprecedented regioselective oxidative process employs NBS and Et3N in stoichiometric amounts and O2 (1 atm) as an oxidant under ambient conditions in DMSO as a solvent.

  7. Pyrrolidinyl-camphor derivatives as a new class of organocatalyst for direct asymmetric Michael addition of aldehydes and ketones to beta-nitroalkenes.

    PubMed

    Ting, Ying-Fang; Chang, Chihliang; Reddy, Raju Jannapu; Magar, Dhananjay R; Chen, Kwunmin

    2010-06-18

    Practical and convenient synthetic routes have been developed for the synthesis of a new class of pyrrolidinyl-camphor derivatives (7 a-h). These novel compounds were screened as catalysts for the direct Michael addition of symmetrical alpha,alpha-disubstituted aldehydes to beta-nitroalkenes. When this asymmetric transformation was catalyzed by organocatalyst 7 f, the desired Michael adducts were obtained in high chemical yields, with high to excellent stereoselectivities (up to 98:2 diastereomeric ratio (d.r.) and 99 % enantiomeric excess (ee)). The scope of the catalytic system was expanded to encompass various aldehydes and ketones as the donor sources. The synthetic application was demonstrated by the synthesis of a tetrasubstituted-cyclohexane derivative from (S)-citronellal, with high stereoselectivity.

  8. Mild and efficient strontium chloride hexahydrate-catalyzed conversion of ketones and aldehydes into corresponding gem-dihydroperoxides by aqueous H2O2.

    PubMed

    Azarifar, Davood; Khosravi, Kaveh; Soleimanei, Fatemeh

    2010-03-08

    SrCl2 x 6 H2O has been shown to act as an efficient catalyst for the conversion of aldehydes or ketones into the corresponding gem-dihydroperoxides (DHPs) by treatment with aqueous H2O2 (30%) in acetonitrile. The reactions proceed under mild and neutral conditions at room temperature to afford good to excellent yields of product.

  9. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    ERIC Educational Resources Information Center

    Nicholson, John W.; Wilson, Alan D.

    2004-01-01

    The conversion of carboxylic acids to ketones is a useful chemical transformation with a long history. Several chemists have claimed that they discovered the conversion of carboxylic acids to ketones yet in fact the reaction is actually known for centuries.

  10. Breaking the Dogma of Aldolase Specificity: Simple Aliphatic Ketones and Aldehydes are Nucleophiles for Fructose-6-phosphate Aldolase.

    PubMed

    Roldán, Raquel; Sanchez-Moreno, Israel; Scheidt, Thomas; Hélaine, Virgil; Lemaire, Marielle; Parella, Teodor; Clapés, Pere; Fessner, Wolf-Dieter; Guérard-Hélaine, Christine

    2017-04-11

    d-Fructose-6-phosphate aldolase (FSA) was probed for extended nucleophile promiscuity by using a series of fluorogenic substrates to reveal retro-aldol activity. Four nucleophiles ethanal, propanone, butanone, and cyclopentanone were subsequently confirmed to be non-natural substrates in the synthesis direction using the wild-type enzyme and its D6H variant. This exceptional widening of the nucleophile substrate scope offers a rapid entry, in good yields and high stereoselectivity, to less oxygenated alkyl ketones and aldehydes, which was hitherto impossible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chiral Brønsted Acid-Catalyzed Allylboration of Aldehydes

    PubMed Central

    Jain, Pankaj; Antilla, Jon C.

    2010-01-01

    The catalytic enantioselective allylation of aldehydes is a long-standing problem with considerable interest to the chemical community. We wish to disclose a new high yielding and highly enantioselective chiral Brønsted acid-catalyzed allylboration of aldehydes. The reaction is shown to be highly general, with broad substrate scope that covers aryl, heteroaryl, α,β-unsaturated, and aliphatic aldehydes. The reaction conditions were also shown to be effective for the catalytic enantioselective crotylation of aldehydes. We believe that the high reactivity of the allyl boronate is due to protonation of the boronate oxygen by the chiral phosphoric acid catalyst. PMID:20690662

  12. RESEARCH NOTE: INTERFERENCES DUE TO OZONE-SCAVENGING REAGENTS IN THE GC-ECD DETERMINATION OF ALDEHYDES AND KETONS AS THE O-(2,3,4,5,6-PENTAFLUOROBENZYL)OXIMES

    EPA Science Inventory

    Six potential ozone-scavenging reagents were tested for possible interference in the GC-ECD determination of aldehydes and ketones after derivatization with O-(2,3,4,5,6-pentafluorobenzyl)oxylamine (PFBOA). All six-nitrite, cynaide, methanoate (formate), indigo-55'-disulfonate d...

  13. Evaluation of silica-gel cartridges coated in situ with acidified 2,4-dinitrophenylhydrazine for sampling aldehydes and ketones in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tejada, S.B.

    1986-01-01

    A procedure for coating in-situ silica in commercially available prepacked cartridges with 2,4-dinitrophenylhydrazine (DNPH) acidified with hydrochloric acid is described. The coated cartridge was compared with a validated DNPH impinger method for sampling organic carbonyl compounds (aldehydes and ketones) in diluted automotive exhaust emissions and in ambient air for subsequent analysis of the DNPH derivatives by high performance liquid chromatography. Qualitative and quantitative results show that the two sampling devices are equivalent. An unknown degradation product of acrolein has been tentatively identified as x-acrolein. The disappearance of acrolein in the analytical sample matrix correlated quantitatively almost on a mole-for-mole basismore » with the growth of x-acrolein. The sum of the concentration of acrolein and x-acrolein appears to be invariant with time. This sum could possibly be used as a more-accurate value of the concentration of acrolein in the integratated sample.« less

  14. Synthesis of chiral alpha-amino aldehydes linked by their amine function to solid support.

    PubMed

    Cantel, Sonia; Heitz, Annie; Martinez, Jean; Fehrentz, Jean-Alain

    2004-09-01

    The anchoring of an alpha-amino-acid derivative by its amine function on to a solid support allows some chemical reactions starting from the carboxylic acid function. This paper describes the preparation of alpha-amino aldehydes linked to the support by their amine function. This was performed by reduction with LiAlH4 of the corresponding Weinreb amide linked to the resin. The aldehydes obtained were then involved in Wittig or reductive amination reactions. In addition, the linked Weinreb amide was reacted with methylmagnesium bromide to yield the corresponding ketone. After cleavage from the support, the compounds were obtained in good to excellent yields and characterized.

  15. A first principles analysis of the hydrogenation of C1C4 aldehydes and ketones over Ru(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Nishant K.; Neurock, Matthew

    The structure and degree of substitution of C₁–C₄ oxygenate molecules can influence their chemisorption and reactivity on metal surfaces. Gradient-corrected periodic density functional theory calculations were carried out to analyze alkyl substituent effects on the hydrogenation of C₁–C₄ aldehydes and ketones to their corresponding alcohols. All of these aldehydes along with acetone were found to adsorb in a di-ση1η2(C,O) mode onto the Ru(0001) surface and result in rehybridization of the C=O bond. Steric hindrance from two alkyl substituents on the carbonyl backbone of methyl ethyl ketone (MEK), however, prevents it from binding di-ση1η2(C,O). It adsorbs instead atop a Ru atommore » in an g1(O) configuration through its oxygen atom. Hydrogenation of both aldehydes and ketones can occur through either a hydroxy or an alkoxy mechanism. The hydroxy route proceeds via the formation of the hydroxyalkyl intermediate R₁R₂C*OH by the addition of hydrogen to the oxygen of the carbonyl, whereas the alkoxy mechanism proceeds by the addition of hydrogen to the carbon end to form the alkoxy intermediate R₂CHO*). DFT calculations indicate that the activation barrier for the initial addition of hydrogen to the carbon to form the C–H bond in the alkoxy mechanism is independent of the substituent groups that are attached to the carbon center as these groups are oriented away from the surface in the transition state and thus have little influence on the activation energies. The activation barriers for the addition of hydrogen to the oxygen of the carbonyl to form the O–H bond in the hydroxy mechanism, however, was found to linearly correlate with the binding energy of the hydroxyalkyl intermediate that forms. This trend can be explained through the Brønsted–Evans–Polanyi relationship and the fact that both the hydroxyalkyl products and carbonyl reactants interact via their carbon centers and are correlated with one another. All of the carbonyls

  16. Development of a headspace GC/MS analysis for carbonyl compounds (aldehydes and ketones) in household products after derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine.

    PubMed

    Sugaya, Naeko; Sakurai, Katsumi; Nakagawa, Tomoo; Onda, Nobuhiko; Onodera, Sukeo; Morita, Masatoshi; Tezuka, Masakatsu

    2004-05-01

    Carbonyl compounds (aldehydes and ketones) are suspected to be among the chemical compounds responsible for Sick Building Syndrome and Multiple Chemical Sensitivities. A headspace gas chromatography/mass spectrometry (GC/MS) analysis for these compounds was developed using derivatization of the compounds into volatile derivatives with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBOA). For GC/MS detection, two ionization modes including electron impact ionization (EI) and negative chemical ionization (NCI) were compared. The NCI mode seemed to be better because of its higher selectivity and sensitivity. This headspace GC/MS (NCI mode) was employed as analysis for aldehydes and ketones in materials (fiber products, adhesives, and printed materials). Formaldehyde was detected in the range of N.D. (not detected) to 39 microg/g; acetaldehyde, N.D. to 4.1 microg/g; propionaldehyde, N.D. to 1.0 microg/g; n-butyraldehyde, N.D. to 0.10 microg/g; and acetone, N.D. to 3.1 microg/g in the samples analyzed.

  17. Unexpected formation of (E)-4-alkene 1,3-diketones from the three-component reaction of lithium selenolates with 1-(1-alkynyl)cyclopropyl ketones and aldehydes.

    PubMed

    Xu, Jianfeng; Wu, Luling; Huang, Xian

    2011-07-15

    A novel three-component stereoselective synthesis of (E)-4-alkene 1,3-diketones from lithium selenolates, 1-(1-alkynyl)cyclopropyl ketones, and aldehydes is reported. This reaction afforded the products in moderate to good yields with the formation of a new C-Se single bond, a new C-C double bond, and a new C-O double bond.

  18. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Sr., Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.

    Here, converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and themore » method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less

  19. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.

    Converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and the methodmore » is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less

  20. Determining aromatic and aliphatic carboxylic acids in biomass-derived oil samples using 2,4-dinitrophenylhydrazine and liquid chromatography-electrospray injection-mass spectrometry/mass spectrometry

    DOE PAGES

    Lewis, Sr., Samuel A.; Connatser, Raynella M.; Olarte, Mariefel V.; ...

    2017-11-22

    Here, converting biomass to a useful fuel commonly incorporates the pyrolysis of the biomass feed stock. The base liquid fraction usually contains high concentrations of ketones, aldehydes and carboxylic acids, of which each can cause detrimental issues related to the storage and upgrading process. Knowing the carbonyl species and the concentration of each will provide value information to the pyrolysis researchers, specifically as that community branches into more targeted end-products such as jet fuel or biogenic-derived oxygenate-containing fuel products. The analysis of aldehydes, ketones and small alkyl carboxylic acids using 2,4-dinitrophenylhydrazine (DNPH) derivation method has been well documented and themore » method is commonly used the analytical community. By using liquid chromatograph coupled to tandem mass spectrometry, biomass sample analysis can be complete with identification of most carbonyl species. The issue of identifying isobaric ketone and aldehyde compounds can be resolved by utilizing differences in retention time or characteristic fragment ions of ketones and aldehydes. One issue which could not resolved using published methods was identifying aromatic or large non-aromatic carboxylic acids from their corresponding hydroxyl aldehyde or ketone analogs. By modifying the current method for determining carbonyls in biomass samples, carboxylic and hydroxyl-carbonyl can be determined. A careful adjustment of the pH during the extraction procedure and extended heating time of the DNPH solution allowed for the successful derivation of aromatic carboxylic acids. Like other dinitrophenylhydrazones, carboxylic acid derivatives also produce a unique secondary ion pattern, which was useful to distinguish these species from the non-acid analogs.« less

  1. Mild Deoxygenation of Aromatic Ketones and Aldehydes over Pd/C Using Polymethylhydrosiloxane as the Reducing Agent**

    PubMed Central

    Volkov, Alexey; Gustafson, Karl P J; Tai, Cheuk-Wai; Verho, Oscar; Bäckvall, Jan-E; Adolfsson, Hans

    2015-01-01

    Herein, a practical and mild method for the deoxygenation of a wide range of benzylic aldehydes and ketones is described, which utilizes heterogeneous Pd/C as the catalyst together with the green hydride source, polymethylhydrosiloxane. The developed catalytic protocol is scalable and robust, as exemplified by the deoxygenation of ethyl vanillin, which was performed on a 30 mmol scale in an open-to-air setup using only 0.085 mol % Pd/C catalyst to furnish the corresponding deoxygenated product in 93 % yield within 3 hours at room temperature. Furthermore, the Pd/C catalyst was shown to be recyclable up to 6 times without any observable decrease in efficiency and it exhibited low metal leaching under the reaction conditions. PMID:25728614

  2. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated.

  3. Novel thiourea-amine bifunctional catalysts for asymmetric conjugate addition of ketones/aldehydes to nitroalkenes: rational structural combination for high catalytic efficiency.

    PubMed

    Chen, Jia-Rong; Cao, Yi-Ju; Zou, You-Quan; Tan, Fen; Fu, Liang; Zhu, Xiao-Yu; Xiao, Wen-Jing

    2010-03-21

    A series of thiourea-amine bifunctional catalysts have been developed by a rational combination of prolines with cinchona alkaloids, which are connected by a thiourea motif. The catalyst 3a, prepared from L-proline and cinchonidine, was found to be a highly efficient catalyst for the conjugate addition of ketones/aldehydes to a wide range of nitroalkenes (up to 98/2 dr and 96% ee). The privileged cinchonidine backbone and the thiourea motif are essential to the reaction activity and enantioselectivity.

  4. Characterization of an allylic/benzyl alcohol dehydrogenase from Yokenella sp. strain WZY002, an organism potentially useful for the synthesis of α,β-unsaturated alcohols from allylic aldehydes and ketones.

    PubMed

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan; Wang, Zhao

    2014-04-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg(-1) for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg(-1) using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP(+), suggesting the nature of being an aldehyde reductase.

  5. Characterization of an Allylic/Benzyl Alcohol Dehydrogenase from Yokenella sp. Strain WZY002, an Organism Potentially Useful for the Synthesis of α,β-Unsaturated Alcohols from Allylic Aldehydes and Ketones

    PubMed Central

    Ying, Xiangxian; Wang, Yifang; Xiong, Bin; Wu, Tingting; Xie, Liping; Yu, Meilan

    2014-01-01

    A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase. PMID:24509923

  6. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    NASA Astrophysics Data System (ADS)

    Nicholson, John W.; Wilson, Alan

    2004-09-01

    This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries. The best known version of the process is the Dakin West reaction (1928), which applies to α-amino acids and also involves the simultaneous conversion of the amine group to amido functionality. Unlike other examples, this particular reaction has attracted a reasonable amount of attention and it appears to be better known than the conversion of simple carboxylic acids to ketones. However, this reaction was described as long ago as 1612, when Beguin published an account of it in his book, Tyrocinium Chymicum . Since then, many chemists have rediscovered the reaction, apparently independently. One of the earliest modern accounts was by W. H. Perkin, Sr., in 1886, who made various simple ketones by refluxing the appropriate carboxylic acids with base. However, this work has been largely ignored, including by his son, W. H. Perkin, Jr., who used a more complicated base-catalyzed ketonization to prepare small ring compounds in the early years of the 20th century. Other articles detailing the application of ketonization to organic acids are discussed, including our own work, which employed the process to crosslink carboxylated polymers for possible technical application in coatings. Despite its relative obscurity, the reaction was used by Woodward et al. in the total synthesis of strychnine, reported in 1963, and this is discussed in detail at the end of the article. See Featured Molecules .

  7. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Lopez-Ruiz, Juan A.; Cooper, Alan R.

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxylmore » groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  8. Cs₂CO₃-Initiated Trifluoro-Methylation of Chalcones and Ketones for Practical Synthesis of Trifluoromethylated Tertiary Silyl Ethers.

    PubMed

    Dong, Cheng; Bai, Xing-Feng; Lv, Ji-Yuan; Cui, Yu-Ming; Cao, Jian; Zheng, Zhan-Jiang; Xu, Li-Wen

    2017-05-18

    It was found that 1,2-trifluoromethylation reactions of ketones, enones, and aldehydes were easily accomplished using the Prakash reagent in the presence of catalytic amounts of cesium carbonate, which represents an experimentally convenient, atom-economic process for this anionic trifluoromethylation of non-enolisable aldehydes and ketones.

  9. Process for conversion of levulinic acid to ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Vanessa M.; Dagle, Robert A.

    A method for generating desired platform chemicals from feedstocks such as cellulosic biomass feedstocks containing levulinic acid by decarboxylating a feed stock comprising levulinic acid to generate ketones. This is done by passing a feed stock comprising levulinic acid in a gas phase over a non-precious metal catalyst on a neutral support.

  10. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic

    PubMed Central

    Luo, Chaosheng; Wang, Zhen; Huang, Yong

    2015-01-01

    Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194

  11. Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products.

    PubMed

    Adeboye, Peter Temitope; Bettiga, Maurizio; Aldaeus, Fredrik; Larsson, Per Tomas; Olsson, Lisbeth

    2015-09-21

    Lignocellulosic substrates and pulping process streams are of increasing relevance to biorefineries for second generation biofuels and biochemical production. They are known to be rich in sugars and inhibitors such as phenolic compounds, organic acids and furaldehydes. Phenolic compounds are a group of aromatic compounds known to be inhibitory to fermentative organisms. It is known that inhibition of Sacchromyces cerevisiae varies among phenolic compounds and the yeast is capable of in situ catabolic conversion and metabolism of some phenolic compounds. In an approach to engineer a S. cerevisiae strain with higher tolerance to phenolic inhibitors, we selectively investigated the metabolic conversion and physiological effects of coniferyl aldehyde, ferulic acid, and p-coumaric acid in Saccharomyces cerevisiae. Aerobic batch cultivations were separately performed with each of the three phenolic compounds. Conversion of each of the phenolic compounds was observed on time-based qualitative analysis of the culture broth to monitor various intermediate and final metabolites. Coniferyl aldehyde was rapidly converted within the first 24 h, while ferulic acid and p-coumaric acid were more slowly converted over a period of 72 h. The conversion of the three phenolic compounds was observed to involved several transient intermediates that were concurrently formed and converted to other phenolic products. Although there were several conversion products formed from coniferyl aldehyde, ferulic acid and p-coumaric acid, the conversion products profile from the three compounds were similar. On the physiology of Saccharomyces cerevisiae, the maximum specific growth rates of the yeast was not affected in the presence of coniferyl aldehyde or ferulic acid, but it was significantly reduced in the presence of p-coumaric acid. The biomass yields on glucose were reduced to 73 and 54 % of the control in the presence of coniferyl aldehyde and ferulic acid, respectively, biomass yield

  12. Knölker's iron complex: an efficient in situ generated catalyst for reductive amination of alkyl aldehydes and amines.

    PubMed

    Pagnoux-Ozherelyeva, Anastassiya; Pannetier, Nicolas; Mbaye, Mbaye Diagne; Gaillard, Sylvain; Renaud, Jean-Luc

    2012-05-14

    An aminated series: a well-defined iron-catalyzed reductive amination reaction of aldehydes and ketones with aliphatic amines using molecular hydrogen is presented. Under mild conditions, good yields for a broad range of alkyl ketones as well as aldehydes were achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line.

    PubMed

    Nonaka, Yudai; Takagi, Tetsuo; Inai, Makoto; Nishimura, Shuhei; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2016-08-01

    Coconut oil has recently attracted considerable attention as a potential Alzheimer's disease therapy because it contains large amounts of medium-chain fatty acids (MCFAs) and its consumption is thought to stimulate hepatic ketogenesis, supplying an alternative energy source for brains with impaired glucose metabolism. In this study, we first reevaluated the responses of plasma ketone bodies to oral administration of coconut oil to rats. We found that the coconut oil-induced increase in plasma ketone body concentration was negligible and did not significantly differ from that observed after high-oleic sunflower oil administration. In contrast, the administration of coconut oil substantially increased the plasma free fatty acid concentration and lauric acid content, which is the major MCFA in coconut oil. Next, to elucidate whether lauric acid can activate ketogenesis in astrocytes with the capacity to generate ketone bodies from fatty acids, we treated the KT-5 astrocyte cell line with 50 and 100 μM lauric acid for 4 h. The lauric acid treatments increased the total ketone body concentration in the cell culture supernatant to a greater extent than oleic acid, suggesting that lauric acid can directly and potently activate ketogenesis in KT-5 astrocytes. These results suggest that coconut oil intake may improve brain health by directly activating ketogenesis in astrocytes and thereby by providing fuel to neighboring neurons.

  14. [1,5]-Anion relay via intramolecular proton transfer to generate 3,3-bis(silyl) allyloxy lithium: a useful scaffold for syn-addition to aldehydes and ketones.

    PubMed

    Lin, Xinglong; Ye, Xincui; Sun, Xianwei; Zhang, Yuebao; Gao, Lu; Song, Zhenlei

    2014-02-21

    A [1,5]-anion relay has been achieved in 3,3-bis(silyl) benzyl enol ether. Deprotonation at the sterically more accessible benzyl position triggers an intramolecular proton transfer to generate the thermodynamically more stable 3,3-bis(silyl) allyloxy lithium. This endo-oriented allyl anion is stable at -78 °C and undergoes diastereoselective syn-addition at the γ-position with aldehydes and ketones to give monobenzyl-substituted 1,2-diols.

  15. Microwave-assisted synthesis of 3,6-di(pyridin-2-yl)pyridazines: unexpected ketone and aldehyde cycloadditions.

    PubMed

    Hoogenboom, Richard; Moore, Brian C; Schubert, Ulrich S

    2006-06-23

    3,6-Di(pyridin-2-yl)pyridazines are an interesting class of compounds because of their metal-coordinating ability resulting in the self-assembly into [2x2] gridlike metal complexes with copper(I) or silver(I) ions. These and other substituted pyridazines can be prepared by the inverse-electron-demand Diels-Alder reactions between acetylenes and 1,2,4,5-tetrazines. In this contribution, the effect of (superheated) microwave conditions on these generally slow cycloadditions is described. The cycloaddition of acetylenes to 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine could be accelerated from several days reflux in toluene or N,N-dimethylformamide to several hours in dichloromethane at 150 degrees C. In addition, the unexpected cycloaddition of the enol tautomers of various ketones and aldehydes to 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine is described in detail providing an alternative route for the synthesis of (substituted) pyridazines.

  16. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective

    PubMed Central

    2015-01-01

    Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,β-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,β-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause “type-2 alkene toxicity” through additive interactions

  17. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    PubMed

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-09

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Highly enantioselective arylation of aldehydes and ketones using AlArEt(2)(THF) as aryl sources.

    PubMed

    Zhou, Shuangliu; Wu, Kuo-Hui; Chen, Chien-An; Gau, Han-Mou

    2009-05-01

    A series of AlArEt(2)(THF) (Ar = Ph (1a), 4-MeC(6)H(4) (1b), 4-MeOC(6)H(4) (1c), 4-Me(3)SiC(6)H(4) (1d), 2-naphthyl (1e)) were synthesized from reactions of AlEt(2)Br(THF) with ArMgBr. In CDCl(3) solution, the (1)H NMR spectra showed that AlArEt(2)(THF) compounds exist as a mixture of four species of formulas of AlAr(x)Et(3-x) (THF) (x = 0, 1, 2, or 3). AlArEt(2)(THF) compounds were found to be superior and atom-economic reagents for asymmetric aryl additions to organic carbonyls. Aryl additions of AlArEt(2)(THF) to aldehydes catalyzed by the titanium(IV) complex of (R)-H(8)-BINOL were efficient with a short reaction time of 1 h, affording aryl addition products as exclusive or main products in high yields and excellent enantioselectivities of up to 98% ee. Although ethyl additions to aldehydes occurred in minor extent, this study demonstrates that increasing the amount of AlArEt(2)(THF) from 1.2 to 1.4 or to 1.6 equiv significantly improved the aryl addition products of up to >99%. On the other hand, asymmetric arylations of AlArEt(2)(THF) to ketones employing a titanium(IV) catalyst of (S)-BINOL produced optically active tertiary alcohols exclusively in excellent enantioselectivities of up to 94% ee.

  19. TiO2 supported gold nanoparticles: An efficient photocatalyst for oxidation of alcohol to aldehyde and ketone in presence of visible light irradiation

    NASA Astrophysics Data System (ADS)

    Gogoi, Nibedita; Borah, Geetika; Gogoi, Pradip K.; Chetia, Tridip Ranjan

    2018-01-01

    An efficient heterogeneous photocatalyst composed of Au nanoparticle supported on TiO2 (anatase) is prepared by sol-gel method. This prepared nanocomposite showed good catalytic activity in the oxidation of various alcohols to aldehyde and ketone under irradiation of visible light. Various spectroscopic techniques including UV-Visible absorption spectral studies and photoluminescence study are employed to characterize the catalyst. It was also characterized by XRD, TEM, BET, XPS and ICP-AES analysis. In contrast to air and H2O2, use of TBHP as oxidant gave good yield. The reaction conditions with respect to solvent and amount of catalyst are optimized.

  20. Sinterable Ceramic Powders from Laser-Heated Gases.

    DTIC Science & Technology

    1988-02-01

    ether . carboxylic acid. and aldehyde clases: water is also included.Acrigto William and Goodman.’ a single crystalline sili- The single-crstalline...represent commonly available organic families, Including aliphatic and aromatic hydrocarbons, chlorides, ethers , ketones , esters, alcohols, aldehydes...Hydrocarbons Ketone Amine Chlorides Low-alcohols 8f . Ether Ester - _Aldehyde Ether Ketones High-alcohols 04 Carboxylic Ester I acid Ether o . Nitrile

  1. Simultaneous determination of trace concentrations of aldehydes and carboxylic acids in particulate matter.

    PubMed

    Rousová, Jana; Chintapalli, Manikyala R; Lindahl, Anastasia; Casey, Jana; Kubátová, Alena

    2018-04-06

    Carboxylic acids and aldehydes are present in ambient air particulate matter (PM) originating from both primary emission and secondary production in air and may, due to their polarity have, an impact on formation of cloud condensation nuclei. Their simultaneous determination may provide improved understanding of atmospheric processes. We developed a new analytical method allowing for a single step determination of majority of carboxylic acids and aldehydes (+95 compounds). This sample preparation employed O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA·HCl) in methanol to yield oximes (for aldehydes) and methyl esters (for majority of acids); with the limits of detection of 0.02-1 ng per injection, corresponding to approximately 0.4-20 μg/g PM . Subsequent trimethylsilylation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was employed only for aromatic acids, which were not completely esterified, and for hydroxyl groups. Our method, in contrast to previous primarily qualitative studies, based on derivatization with an aqueous PFBHA followed by BSTFA derivatization, is less labor-intesive and reduces sample losses caused by an evaporation. The method was tested with a broad range of functionalized compounds (95), including monocarboxylic, dicarboxylic and aromatic acids, ketoacids, hydroxyacids and aldehydes. The developed protocol was applied to wood smoke (WS) and urban air standard reference material 1648b (UA) PM. The observed concentrations of aldehydes were 10-3000 μg/g PM in WS PM and 10-900 μg/g PM in UA PM, while those of acids were 20-1800 μg/g PM in WS PM and 15-1200 μg/g PM in UA PM. The most prominent aldehydes were syringaldehyde and vanillin in WS PM and glyoxal in UA PM. The most abundant acids in both PM samples were short-chain dicarboxylic acids (≤C 10 ). WS PM had a high abundance of hydroxyacids (vanillic and malic acids) as well as ketoacids (glutaric and oxalacetic) while UA PM also featured a high abundance of

  2. Mild deoxygenation of aromatic ketones and aldehydes over Pd/C using polymethylhydrosiloxane as the reducing agent.

    PubMed

    Volkov, Alexey; Gustafson, Karl P J; Tai, Cheuk-Wai; Verho, Oscar; Bäckvall, Jan-E; Adolfsson, Hans

    2015-04-20

    Herein, a practical and mild method for the deoxygenation of a wide range of benzylic aldehydes and ketones is described, which utilizes heterogeneous Pd/C as the catalyst together with the green hydride source, polymethylhydrosiloxane. The developed catalytic protocol is scalable and robust, as exemplified by the deoxygenation of ethyl vanillin, which was performed on a 30 mmol scale in an open-to-air setup using only 0.085 mol % Pd/C catalyst to furnish the corresponding deoxygenated product in 93 % yield within 3 hours at room temperature. Furthermore, the Pd/C catalyst was shown to be recyclable up to 6 times without any observable decrease in efficiency and it exhibited low metal leaching under the reaction conditions. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  3. PHENOLIC ACIDS AND LIGNINS IN THE LYCOPODIALES,

    DTIC Science & Technology

    ethanolysis or alkaline oxidation of their extracted wood-meals. p-Hydroxybenzoic, vanillic, p-coumaric and ferulic acids were identified in phenolic acid ...Twenty-one species and varieties of Lycopodium have been examined for phenolic acids and for phenolic aldehydes, ketones and acids obtained on...found to yield syringic acid in the ethanol-soluble fraction and on degradation of lignin whereas species included in the genera Huperzia and Lepidotis

  4. Determination of aldehydes and ketones using derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography-atmospheric pressure photoionization-mass spectrometry.

    PubMed

    van Leeuwen, Suze M; Hendriksen, Laurens; Karst, Uwe

    2004-11-26

    Atmospheric pressure photoionization-mass spectrometry (APPI-MS) is used for the analysis of aldehydes and ketones after derivatization with 2,4-dinitrophenylhydrazine (DNPH) and liquid chromatographic separation. In the negative ion mode, the [M - H]- pseudomolecular ions are most abundant for the carbonyls. Compared with the established atmospheric pressure chemical ionization (APCI)-MS, limits of detection are typically lower using similar conditions. Automobile exhaust and cigarette exhaust samples were analyzed with APPI-MS and APCI-MS in combination with an ion trap mass analyzer. Due to improved limits of detection, more of the less abundant long-chain carbonyls are detected with APPI-MS in real samples. While 2,4-dinitrophenylazide, a known reaction product of DNPH with nitrogen dioxide, is detected in APCI-MS due to dissociative electron capture, it is not observed at all in APPI-MS.

  5. Unexpected regioselective carbon-hydrogen bond activation/cyclization of indolyl aldehydes or ketones with alkynes to benzo-fused oxindoles.

    PubMed

    Liu, Xingyan; Li, Gaocan; Song, Feijie; You, Jingsong

    2014-09-25

    Rhodium-catalyzed carbon-hydrogen bond activation has attracted great interest in the construction of carbon-carbon and carbon-heteroatom bonds. In recent years, transition metal-mediated oxygen transposition through a 'dehydration-rehydration' process has been considered as a promising strategy towards oxygen-functionalized compounds. Here we describe an unexpected rhodium-catalyzed regioselective carbon-hydrogen bond activation/cyclization of easily available indolyl aldehydes or ketones with alkynes to afford benzo-fused oxindoles, involving the sequential carbonyl-assisted carbon-hydrogen activation of the indole ring at the 4-position, [4+2] cyclization, aromatization via dehydration, nucleophilic addition of water to iminium and oxidation. Isotopic labelling experiments disclose the occurrence of apparent oxygen transposition via dehydration-rehydration from the indolyl-3-carbonyl group to the 2-position of pyrrole to forge a new carbonyl bond. The tandem reaction has been used as the key step for the concise synthesis of priolines, a type of alkaloid isolated from the roots of Salvia prionitis.

  6. Evaluation of the Strecker synthesis as a source of amino acids on carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Peterson, Etta; Chang, S.

    1991-01-01

    The Strecker synthesis (SS) has been proposed as the source of amino acids (AA) formed during aqueous alteration of carbonaceous chondrites. It is postulated that the aldehyde and ketone precursors of the meteoritic AA originated in interstellar syntheses and accreted on the meteorite parent body along with other reactant species in cometesimal ices. The SS has been run with formaldehyde, acetyldehyde, propionaldehyde, acetone, and methyl ketone as starting materials. To study the effect of minerals on the reaction, the SS was run in the presence and absence of dust from the Allende meteorite using deuterated aldehydes and ketones as starting materials. The products were studied by GC/MS. With the exception of glycine, the retention of deuterium in the AA was greater than 90 pct. Some D exchange with water does occur, however, and determination of the rate of exchange as a function of pH and temperature may allow some bounds to be placed on the duration of parent body aqueous alteration. The retention of D by the AA under conditions studied thus far is consistent with the model that a SS starting from interstellar aldehydes and ketones led to the production of meteoritic AA.

  7. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae

    PubMed Central

    Adeboye, Peter Temitope; Bettiga, Maurizio; Olsson, Lisbeth

    2017-01-01

    The ability of Saccharomyces cerevisiae to catabolize phenolic compounds remains to be fully elucidated. Conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid by S. cerevisiae under aerobic conditions was previously reported. A conversion pathway was also proposed. In the present study, possible enzymes involved in the reported conversion were investigated. Aldehyde dehydrogenase Ald5, phenylacrylic acid decarboxylase Pad1, and alcohol acetyltransferases Atf1 and Atf2, were hypothesised to be involved. Corresponding genes for the four enzymes were overexpressed in a S. cerevisiae strain named APT_1. The ability of APT_1 to tolerate and convert the three phenolic compounds was tested. APT_1 was also compared to strains B_CALD heterologously expressing coniferyl aldehyde dehydrogenase from Pseudomonas, and an ald5Δ strain, all previously reported. APT_1 exhibited the fastest conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid. Using the intermediates and conversion products of each compound, the catabolic route of coniferyl aldehyde, ferulic acid and p-coumaric acid in S. cerevisiae was studied in greater detail. PMID:28205618

  8. Efficient Hydrogenation of Ketones and Aldehydes Catalyzed by Well-Defined Iron(II) PNP Pincer Complexes: Evidence for an Insertion Mechanism

    PubMed Central

    2014-01-01

    We have prepared and structurally characterized a new class of Fe(II) PNP pincer hydride complexes [Fe(PNP-iPr)(H)(CO)(L)]n (L = Br–, CH3CN, pyridine, PMe3, SCN–, CO, BH4–; n = 0, +1) based on the 2,6-diaminopyridine scaffold where the PiPr2 moieties of the PNP ligand are connected to the pyridine ring via NH and/or NMe spacers. Complexes [Fe(PNP-iPr)(H)(CO)(L)]n with labile ligands (L = Br–, CH3CN, BH4–) and NH spacers are efficient catalysts for the hydrogenation of both ketones and aldehydes to alcohols under mild conditions, while those containing inert ligands (L = pyridine, PMe3, SCN–, CO) are catalytically inactive. Interestingly, complex [Fe(PNPMe-iPr)(H)(CO)(Br)], featuring NMe spacers, is an efficient catalyst for the chemoselective hydrogenation of aldehydes. The first type of complexes involves deprotonation of the PNP ligand as well as heterolytic dihydrogen cleavage via metal-alkoxide cooperation, but no reversible aromatization/deprotonation of the PNP ligand. In the case of the N-methylated complex the mechanism remains unclear, but obviously does not allow bifunctional activation of dihydrogen. The experimental results complemented by DFT calculations strongly support an insertion of the C=O bond of the carbonyl compound into the Fe–H bond. PMID:27642211

  9. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate. Allyl cinnamate. Allyl...-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl isovalerate. Benzyl mercaptan; α-toluenethiol...

  10. Consideration of reactivity to acute fish toxicity of α,β-unsaturated carbonyl ketones and aldehydes.

    PubMed

    Furuhama, A; Aoki, Y; Shiraishi, H

    2012-01-01

    To understand the key factor for fish toxicity of 11 α,β-unsaturated carbonyl aldehydes and ketones, we used quantum chemical calculations to investigate their Michael reactions with methanethiol or glutathione. We used two reaction schemes, with and without an explicit water molecule (Scheme-1wat and Scheme-0wat, respectively), to account for the effects of a catalytic water molecule on the reaction pathway. We determined the energies of the reactants, transition states (TS), and products, as well as the activation energies of the reactions. The acute fish toxicities of nine of the carbonyl compounds were evaluated to correlate with their hydrophobicities; no correlation was observed for acrolein and crotonaldehyde. The most toxic compound, acrolein, had the lowest activation energy. The activation energy of the reaction could be estimated with Scheme-1wat but not with Scheme-0wat. The complexity of the reaction pathways of the compounds was reflected in the difficulty of the TS structure searches when Scheme-1wat was used with the polarizable continuum model. The theoretical estimations of activation energies of α,β-unsaturated carbonyl compounds with catalytic molecules or groups including hydrogen-bond networks may complement traditional tools for predicting the acute aquatic toxicities of compounds that cannot be easily obtained experimentally.

  11. Triggering the approach of an arene or heteroarene towards an aldehyde via Lewis acid-aldehyde communication.

    PubMed

    Pratihar, Sanjay

    2016-03-14

    The present work reports a combined experimental/computational study of the Lewis acid promoted hydroxyalkylation reaction involving aldehyde and arene/heteroarene and reveals a mechanism in which the rate determining aldehyde to alcohol formation via a four-member cyclic transition state (TS) involves a transfer of hydrogen from arene/heteroarene C-H to aldehyde oxygen with the breaking of the C-H bond and formation of C-C and O-H bonds. The effect of different Sn(iv) derivatives on the hydroxyalkylation reaction from different in situ NMR and computational studies reveals that although the exergonic formation of the intermediate and its gained electrophilicity at the carbonyl carbon drive the reaction in SnCl4 compared to other Sn(iv) derivatives, the overall reaction is low yielding because of its stable intermediate. With respect to different aldehydes, LA promoted hydroxylation was found to be more feasible for an electron withdrawing aldehyde compared to electron rich aldehyde because of lower stability, enhanced electrophilicity gained at the aldehyde center, and a lower activation barrier between its intermediate and TS in the former as compared to the latter. The relative stability of the LA-aldehyde adduct decreases in the order SnCl4 > AlCl3 > InCl3 > BF3 > ZnCl2 > TiCl4 > SiCl4, while the activation barrier (ΔG(#)) between intermediate and transition states increases in the order AlCl3 < SnCl4 < InCl3 < BF3 < TiCl4 < ZnCl2 < SiCl4. On the other hand, the activation barriers in the case of different arenes/heteroarenes are in the order of indole < furan < anisole < thiophene < toluene < benzene < chlorobenzene < cyanobenzene, which suggests a facile reaction in the case of indole and the most difficult reaction in the case of cyanobenzene. The ease of formation of the corresponding diaryl methyl carbocation from the alcohol-LA intermediate is responsible for the determination of the undesired product and is found to be more viable in the case of strong

  12. Sensorially important aldehyde production from amino acids in model wine systems: impact of ascorbic acid, erythorbic acid, glutathione and sulphur dioxide.

    PubMed

    Grant-Preece, Paris; Fang, Hongjuan; Schmidtke, Leigh M; Clark, Andrew C

    2013-11-01

    The efficiency of different white wine antioxidant systems in preventing aldehyde production from amino acids by oxidative processes is not well understood. The aim of this study was to assess the efficiency of sulphur dioxide alone and in combination with either glutathione, ascorbic acid or its stereoisomer erythorbic acid, in preventing formation of the sensorially important compounds methional and phenylacetaldehyde from methionine and phenylalanine in model white wine. UHPLC, GC-MS/MS, LC-MS/MS, flow injection analysis and luminescence sensors determined both compositional changes during storage, and sulphur dioxide-aldehyde apparent equilibrium constants. Depending on temperature (25 or 45°C) or extent of oxygen supply, sulphur dioxide was equally or more efficient in impeding the production of methional compared to the other antioxidant systems. For phenylacetaldehyde, erythorbic acid or glutathione with sulphur dioxide provided improved inhibition compared to sulphur dioxide alone, in conditions of limited oxygen consumption. The results also demonstrate the extent to which sulphur dioxide addition can lower the free aldehyde concentrations to below their aroma thresholds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...

  14. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...

  15. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...

  16. 21 CFR 172.515 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-hydroxyundecanoic acid γ-lactone; peach aldehyde; aldehyde C-14. Undecenal. 2-Undecanone; methyl nonyl ketone. 9.... Acetanisole; 4′-methoxyacetophenone. Acetophenone; methyl phenyl ketone. Allyl anthranilate. Allyl butyrate... ethyl ether. Benzyl formate. 3-Benzyl-4-heptanone; benzyl dipropyl ketone. Benzyl isobutyrate. Benzyl...

  17. Lewis Acid-Assisted Photoinduced Intermolecular Coupling between Acylsilanes and Aldehydes: A Formal Cross Benzoin-Type Condensation.

    PubMed

    Ishida, Kento; Tobita, Fumiya; Kusama, Hiroyuki

    2018-01-12

    Intermolecular carbon-carbon bond-forming reaction between readily available acylsilanes and aldehydes was achieved under photoirradiation conditions with assistance of a catalytic amount of Lewis acid. Nucleophilic addition of photochemically generated siloxycarbenes to aldehydes followed by 1,4-silyl migration afforded synthetically useful α-siloxyketones. Electrophilic activation of aldehydes by Lewis acid is highly important to realize this reaction efficiently, otherwise the yield of the desired coupling products were significantly decreased. Noteworthy is that a formal cross benzoin-type reaction using acylsilanes was achieved under Lewis acidic conditions. This is the first example of Lewis acid-catalyzed reaction of photochemically generated siloxycarbenes with electrophiles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    PubMed Central

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  19. Extraction and Quantitation of Ketones and Aldehydes from Mammalian Cells Using Fluorous Tagging and Capillary LC-MS.

    PubMed

    Yuan, Wei; Li, Shuwei; Edwards, James L

    2015-08-04

    The extraction and quantitation of carbonyl metabolites from cell lysate was accomplished using a carbonyl-reactive fluorous tag and capillary liquid chromatography coupled to mass spectrometry (capLC-MS). Selective fluorous tagging for ketones and aldehydes provided a 30-fold increase in sensitivity using electrospray ionization MS. Separation of fluorous tagged carbonyl resulted in good separation of all components, and tandem MS was able to differentiate structural carbonyl isomers. The average limit of detection for carbonyl standards was 37 nM (range 1.5-250 nM), with linearity of R(2) > 0.99. Reproducibility for metabolites in cell lysate averaged 9% RSD. Human aortic endothelial cells (HAECs) were exposed to varying levels of glucose, and their carbonyl metabolite levels were quantified. Significant metabolite changes were seen in glycolysis and the propanoate pathway from a glucose challenge. Using an untargeted approach, 120 carbonyl metabolites were found to change in hyperglycemic HAECs. From this list of compounds, multiple metabolites from the pentose phosphate and tryptophan metabolic pathways were discovered. This system provides excellent sensitivity and quantitation of carbonyl metabolites without the need for isotope standards or labels.

  20. Simultaneous derivatization/preconcentration of volatile aldehydes with a miniaturized fiber-packed sample preparation device designed for gas chromatographic analysis.

    PubMed

    Saito, Yoshihiro; Ueta, Ikuo; Ogawa, Mitsuhiro; Jinno, Kiyokatsu

    2006-10-01

    A novel in-needle sample preparation device has been developed for the determination of volatile aldehydes in gaseous samples. The needle device is designed for the gas chromatographic (GC) analysis of aldehydes and ketones commonly found in typical in-house environments. In order to prepare the extraction device, a bundle of polymer-coated filaments was longitudinally packed into a specially designed needle. Derivatization reactions were prompted by 2,4-dinitrophenylhydrazine (NDPH) included in the needle, and so the aldehydes and ketones were derivatized to the corresponding hydrazones and extracted with the extraction needle. A reproducible extraction needle preparation process was established, along with a repeatable derivatization/extraction process that ensures the successful determination of aldehydes. The storage performance of the extraction needle was also evaluated at room temperature for three days. The results demonstrate the successful application of the fiber-packed extraction device to the preparation of a gaseous sample of aldehydes, and the future possibility of applying the extraction device to the analysis of in-house environments.

  1. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis.

    PubMed

    Nair, Ramesh B; Bastress, Kristen L; Ruegger, Max O; Denault, Jeff W; Chapple, Clint

    2004-02-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP(+)-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall-esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes.

  2. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    PubMed

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  3. Contribution of aldehyde oxidizing enzymes on the metabolism of 3,4-dimethoxy-2-phenylethylamine to 3,4-dimethoxyphenylacetic acid by guinea pig liver slices.

    PubMed

    Panoutsopoulos, Georgios I

    2006-01-01

    3,4-Dimethoxy-2-phenylethylamine is catalyzed to its aldehyde derivative by monoamine oxidase B, but the subsequent oxidation into the corresponding acid has not yet been studied. Oxidation of aromatic aldehydes is catalyzed mainly by aldehyde dehydrogenase and aldehyde oxidase. The present study examines the metabolism of 3,4-dimethoxy-2-phenylethylamine in vitro and in freshly prepared and cryopreserved guinea pig liver slices and the relative contribution of different aldehyde-oxidizing enzymes was estimated by pharmacological means. 3,4-Dimethoxy-2- phenylethylamine was converted into the corresponding aldehyde when incubated with monoamine oxidase and further oxidized into the acid when incubated with both, monoamine oxidase and aldehyde oxidase. In freshly prepared and cryopreserved liver slices, 3,4-dimethoxyphenylacetic acid was the main metabolite of 3,4-dimethoxy-2- phenylethylamine. 3,4-Dimethoxyphenylacetic acid formation was inhibited by 85% from disulfiram (aldehyde dehydrogenase inhibitor) and by 75-80% from isovanillin (aldehyde oxidase inhibitor), whereas allopurinol (xanthine oxidase inhibitor) inhibited acid formation by only 25-30%. 3,4- Dimethoxy-2-phenylethylamine is oxidized mainly to its acid, via 3,4-dimethoxyphenylacetaldehyde, by aldehyde dehydrogenase and aldehyde oxidase with a lower contribution from xanthine oxidase.

  4. Determination of linear short chain aliphatic aldehyde and ketone vapors in air using a polystyrene-coated quartz crystal nanobalance sensor.

    PubMed

    Mirmohseni, Abdolreza; Olad, Ali

    2010-01-01

    A polystyrene coated quartz crystal nanobalance (QCN) sensor was developed for use in the determination of a number of linear short-chain aliphatic aldehyde and ketone vapors contained in air. The quartz crystal was modified by a thin-layer coating of a commercial grade general purpose polystyrene (GPPS) from Tabriz petrochemical company using a solution casting method. Determination was based on frequency shifts of the modified quartz crystal due to the adsorption of analytes at the surface of modified electrode in exposure to various concentrations of analytes. The frequency shift was found to have a linear relation to the concentration of analytes. Linear calibration curves were obtained for 7-70 mg l(-1) of analytes with correlation coefficients in the range of 0.9935-0.9989 and sensitivity factors in the range of 2.07-6.74 Hz/mg l(-1). A storage period of over three months showed no loss in the sensitivity and performance of the sensor.

  5. Bicyclic tetrapeptide histone deacetylase inhibitors with methoxymethyl ketone and boronic acid zinc-binding groups.

    PubMed

    Islam, Md Nurul; Islam, Md Shahidul; Hoque, Md Ashraful; Kato, Tamaki; Nishino, Norikazu; Ito, Akihiro; Yoshida, Minoru

    2014-12-01

    Histone deacetylase (HDAC) inhibitors are a class of potential therapeutics for the treatment of cancer. Bicyclic tetrapeptides equipped with methoxymethyl ketone and boronic acid as zinc-binding group were designed and synthesized. The inhibitory activities of these compounds were evaluated against HDAC enzymes. The cell-free and cell-based assay data showed that both potency and selectivity changed with the change in zinc-binding group. Boronic acid-based compound showed poor activity whereas methoxymethyl ketone-based compound displayed impressive activity in both cell-free and cell-based conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine.

    PubMed

    Harigae, Ryo; Moriyama, Katsuhiko; Togo, Hideo

    2014-03-07

    The reaction of terminal alkynes with n-BuLi, and then with aldehydes, followed by the treatment with molecular iodine, and subsequently hydrazines or hydroxylamine provided the corresponding 3,5-disubstituted pyrazoles or isoxazoles in good yields with high regioselectivity, through the formations of propargyl secondary alkoxides and α-alkynyl ketones. The present reactions are one-pot preparation of 3,5-disubstituted pyrazoles from terminal alkynes, aldehydes, molecular iodine, and hydrazines, and 3,5-disubstituted isoxazoles from terminal alkynes, aldehydes, molecular iodine, and hydroxylamine.

  7. Direct, enantioselective α-alkylation of aldehydes using simple olefins.

    PubMed

    Capacci, Andrew G; Malinowski, Justin T; McAlpine, Neil J; Kuhne, Jerome; MacMillan, David W C

    2017-11-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes-photoredox, enamine and hydrogen-atom transfer (HAT) catalysis-enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

  8. Direct, enantioselective α-alkylation of aldehydes using simple olefins

    NASA Astrophysics Data System (ADS)

    Capacci, Andrew G.; Malinowski, Justin T.; McAlpine, Neil J.; Kuhne, Jerome; MacMillan, David W. C.

    2017-11-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes—photoredox, enamine and hydrogen-atom transfer (HAT) catalysis—enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

  9. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasayco, M.L.; Prestwich, G.D.

    1990-02-25

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor ofmore » this enzyme. This labeled vinyl ketone, (3H)(Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes.« less

  10. Synthesis of Trifluoromethylthiolated Alkenes and Ketones by Decarboxylative Functionalization of Cinnamic Acids.

    PubMed

    Pan, Shen; Huang, Yangen; Qing, Feng-Ling

    2016-10-20

    A tunable decarboxylative trifluoromethylthiolation of cinnamic acids with AgSCF 3 was developed to afford trifluoromethylthiolated alkenes or ketones by using transition metal-mediated conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 Gene Encodes an Aldehyde Dehydrogenase Involved in Ferulic Acid and Sinapic Acid Biosynthesis

    PubMed Central

    Nair, Ramesh B.; Bastress, Kristen L.; Ruegger, Max O.; Denault, Jeff W.; Chapple, Clint

    2004-01-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP+-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall–esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes. PMID:14729911

  12. Substrate-Directed Hydroacylation: Rh-Catalyzed Coupling of Vinyl Phenols and Non-Chelating Aldehydes

    PubMed Central

    Murphy, Stephen K.; Bruch, Achim

    2014-01-01

    We report a protocol for branched-selective hydroacylation of vinylphenols with aryl, alkenyl and alkyl aldehydes. This cross-coupling yields α-aryl ketones that can be cyclized to benzofurans, and it enables access to eupomatenoid natural products in four steps or less from eugenol. Excellent reactivity and high levels of branched regioselectivity are obtained. We propose that aldehyde decarbonylation is overcome by using an anionic directing group on the olefin and a small bite-angle diphosphine ligand. PMID:24478146

  13. Ketonization of levulinic acid and γ-valerolactone to hydrocarbon fuel precursors

    DOE PAGES

    Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.; ...

    2017-06-21

    We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less

  14. A HIGHLY STEREOSELECTIVE, NOVEL COUPLING REACTION BETWEEN ALKYNES WITH ALDEHYDES. (R828129)

    EPA Science Inventory

    In the presence of indium triflate or gallium chloride, a novel coupling between internal alkynes and aldehydes occurred to give unsaturated ketones and [4+1] annulation products.


    Graphical Abstrac...

  15. Ketone body metabolism and cardiovascular disease

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.

    2013-01-01

    Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states. PMID:23396451

  16. EXTRACTION OF TETRAVALENT PLUTONIUM VALUES WITH METHYL ETHYL KETONE, METHYL ISOBUTYL KETONE ACETOPHENONE OR MENTHONE

    DOEpatents

    Seaborg, G.T.

    1961-08-01

    A process is described for extracting tetravalent plutonium from an aqueous acid solution with methyl ethyl ketone, methyl isobutyl ketone, or acetophenone and with the extraction of either tetravalent or hexavalent plutonium into menthone. (AEC)

  17. Direct, enantioselective α-alkylation of aldehydes using simple olefins

    PubMed Central

    Capacci, Andrew G.; Malinowski, Justin T.; McAlpine, Neil J.; Kuhne, Jerome; MacMillan, David W. C.

    2017-01-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes—photoredox, enamine and hydrogen-atom transfer (HAT) catalysis—enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons. PMID:29064486

  18. Regulation of hypothalamic neuronal sensing and food intake by ketone bodies and fatty acids.

    PubMed

    Le Foll, Christelle; Dunn-Meynell, Ambrose A; Miziorko, Henri M; Levin, Barry E

    2014-04-01

    Metabolic sensing neurons in the ventromedial hypothalamus (VMH) alter their activity when ambient levels of metabolic substrates, such as glucose and fatty acids (FA), change. To assess the relationship between a high-fat diet (HFD; 60%) intake on feeding and serum and VMH FA levels, rats were trained to eat a low-fat diet (LFD; 13.5%) or an HFD in 3 h/day and were monitored with VMH FA microdialysis. Despite having higher serum levels, HFD rats had lower VMH FA levels but ate less from 3 to 6 h of refeeding than did LFD rats. However, VMH β-hydroxybutyrate (β-OHB) and VMH-to-serum β-OHB ratio levels were higher in HFD rats during the first 1 h of refeeding, suggesting that VMH astrocyte ketone production mediated their reduced intake. In fact, using calcium imaging in dissociated VMH neurons showed that ketone bodies overrode normal FA sensing, primarily by exciting neurons that were activated or inhibited by oleic acid. Importantly, bilateral inhibition of VMH ketone production with a 3-hydroxy-3-methylglutaryl-CoA synthase inhibitor reversed the 3- to 6-h HFD-induced inhibition of intake but had no effect in LFD-fed rats. These data suggest that a restricted HFD intake regimen inhibits caloric intake as a consequence of FA-induced VMH ketone body production by astrocytes.

  19. Regulation of Hypothalamic Neuronal Sensing and Food Intake by Ketone Bodies and Fatty Acids

    PubMed Central

    Le Foll, Christelle; Dunn-Meynell, Ambrose A.; Miziorko, Henri M.; Levin, Barry E.

    2014-01-01

    Metabolic sensing neurons in the ventromedial hypothalamus (VMH) alter their activity when ambient levels of metabolic substrates, such as glucose and fatty acids (FA), change. To assess the relationship between a high-fat diet (HFD; 60%) intake on feeding and serum and VMH FA levels, rats were trained to eat a low-fat diet (LFD; 13.5%) or an HFD in 3 h/day and were monitored with VMH FA microdialysis. Despite having higher serum levels, HFD rats had lower VMH FA levels but ate less from 3 to 6 h of refeeding than did LFD rats. However, VMH β-hydroxybutyrate (β-OHB) and VMH-to-serum β-OHB ratio levels were higher in HFD rats during the first 1 h of refeeding, suggesting that VMH astrocyte ketone production mediated their reduced intake. In fact, using calcium imaging in dissociated VMH neurons showed that ketone bodies overrode normal FA sensing, primarily by exciting neurons that were activated or inhibited by oleic acid. Importantly, bilateral inhibition of VMH ketone production with a 3-hydroxy-3-methylglutaryl-CoA synthase inhibitor reversed the 3- to 6-h HFD-induced inhibition of intake but had no effect in LFD-fed rats. These data suggest that a restricted HFD intake regimen inhibits caloric intake as a consequence of FA-induced VMH ketone body production by astrocytes. PMID:24379353

  20. MASS SPECTROMETRY OF FATTY ALDEHYDES

    PubMed Central

    Berdyshev, Evgeny V.

    2011-01-01

    Fatty aldehydes are important components of the cellular lipidome. Significant interest has been developed towards the analysis of the short chain α,β-unsaturated and hydroxylated aldehydes formed as a result of oxidation of polyunsaturated fatty acids. Multiple gas chromatography-mass spectrometry (GC/MS) and subsequently liquid chromatography-mass spectrometry (LC/MS) approaches have been developed to identify and quantify short-chain as well as long-chain fatty aldehydes. Due to the ability to non-enzymaticaly form Schiff bases with amino groups of proteins, lipids, and with DNA guanidine, free aldehydes are viewed as a marker or metric of fatty acid oxidation and not the part of intracellular signaling pathways which has significantly limited the overall attention this group of molecules have received. This review provides an overview of current GC/MS and LC/MS approaches of fatty aldehyde analysis as well as discusses technical challenges standing in the way of free fatty aldehyde quantitation. PMID:21930240

  1. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    PubMed

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  2. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Stephen D.; Spies, Kurt A.; Mei, Donghai

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, andmore » activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.« less

  3. Indium-mediated asymmetric barbier-type allylations: additions to aldehydes and ketones and mechanistic investigation of the organoindium reagents.

    PubMed

    Haddad, Terra D; Hirayama, Lacie C; Singaram, Bakthan

    2010-02-05

    We report a simple, efficient, and general method for the indium-mediated enantioselective allylation of aromatic and aliphatic aldehydes and ketones under Barbier-type conditions in a one-pot synthesis affording the corresponding chiral alcohol products in very good yield (up to 99%) and enantiomeric excess (up to 93%). Our method is able to tolerate various functional groups, such as esters, nitriles, and phenols. Additionally, more substituted allyl bromides, such as crotyl and cinnamyl bromide, can be used providing moderate enantioselectivity (72% and 56%, respectively) and excellent diastereoselectivity when employing cinnamyl bromide (>95/5 anti/syn). However, the distereoselectivity when using crotyl bromide was poor and other functionalized allyl bromides under our method afforded low enantioselectivities for the alcohol products. In these types of indium-mediated additions, solvent plays a major role in determining the nature of the organoindium intermediate and we observed the susceptibility of some allylindium intermediates to hydrolysis in protic solvents. Under our reaction conditions using a polar aprotic solvent, we suggest that an allylindium(III) species is the active allylating intermediate. In addition, we have observed the presence of a shiny, indium(0) nugget throughout the reaction, irrespective of the stoichiometry, indicating disproportionation of indium halide byproduct formed during the reaction.

  4. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....117 Methyl isobutyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...

  5. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....117 Methyl isobutyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...

  6. Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis.

    PubMed

    Zhang, Xiaheng; MacMillan, David W C

    2017-08-23

    A mechanism that enables direct aldehyde C-H functionalization has been achieved via the synergistic merger of photoredox, nickel, and hydrogen atom transfer catalysis. This mild, operationally simple protocol transforms a wide variety of commercially available aldehydes, along with aryl or alkyl bromides, into the corresponding ketones in excellent yield. This C-H abstraction coupling technology has been successfully applied to the expedient synthesis of the medicinal agent haloperidol.

  7. Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Cooper, G. W.; Pizzarello, S.

    1995-01-01

    Eight characteristics of the unique suite of amino acids and hydroxy acids found in the Murchison meteorite can be recognized on the basis of detailed molecular and isotopic analyses. The marked structural correspondence between the alpha-amino acids and alpha-hydroxy acids and the high deuterium/hydrogen ratio argue persuasively for their formation by aqueous phase Strecker reactions in the meteorite parent body from presolar, i.e., interstellar, aldehydes, ketones, ammonia, and hydrogen cyanide. The characteristics of the meteoritic suite of amino acids and hydroxy acids are briefly enumerated and discussed with regard to their consonance with this interstellar-parent body formation hypothesis. The hypothesis has interesting implications for the organic composition of both the primitive parent body and the presolar nebula.

  8. Lipoic acid protects gastric mucosa from ethanol-induced injury in rat through a mechanism involving aldehyde dehydrogenase 2 activation.

    PubMed

    Li, Jia-Hui; Ju, Gui-Xia; Jiang, Jun-Lin; Li, Nian-Sheng; Peng, Jun; Luo, Xiu-Ju

    2016-11-01

    Numerous studies demonstrate that reactive aldehydes are highly toxic and aldehyde dehydrogenase 2 (ALDH2)-mediated detoxification of reactive aldehydes is thought as an endogenous protective mechanism against reactive aldehydes-induced cell injury. This study aims to explore whether lipoic acid, a potential ALDH2 activator, is able to protect gastric mucosa from ethanol-induced injury through a mechanism involving clearance of reactive aldehydes. The rats received 60% of acidified ethanol through intragastric administration and held for 1 h to establish a mucosal injury model. Lipoic acid (10 or 30 mg/kg) or Alda-1 (a positive control, 10 mg/kg) was given 45 min before the ethanol treatment. The gastric tissues were collected for analysis of gastric ulcer index, cellular apoptosis, 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) contents, and ALDH2 activity. The results showed that acute administration of ethanol led to an increase in gastric ulcer index, cellular apoptosis, 4-HNE and MDA contents concomitant with a decrease in ALDH2 activity; these phenomena were reversed by lipoic acid or Alda-1. The gastric protection of lipoic acid was attenuated in the presence of ALDH2 inhibitor. Based on these observations, we conclude that lipoic acid exerts the beneficial effects on ethanol-induced injury through a mechanism involving, at least in part, ALDH2 activation. As a dietary supplement or a medicine already in some countries, lipoic acid can be used to treat the ethanol - induced gastric mucosal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Fatty acid-induced astrocyte ketone production and the control of food intake

    PubMed Central

    Le Foll, Christelle

    2016-01-01

    Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where “metabolic sensing neurons” integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis. PMID:27122369

  10. Fatty acid-induced astrocyte ketone production and the control of food intake.

    PubMed

    Le Foll, Christelle; Levin, Barry E

    2016-06-01

    Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where "metabolic sensing neurons" integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis. Copyright © 2016 the American Physiological Society.

  11. 27 CFR 21.118 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...

  12. 27 CFR 21.118 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl n-butyl ketone. 21.118 Section 21.118 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....118 Methyl n-butyl ketone. (a) Acidity (as acetic acid). 0.02 percent by weight, maximum. (b) Color...

  13. Lewis base activation of Lewis acids: catalytic, enantioselective addition of silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Beutner, Gregory L; Wynn, Thomas; Eastgate, Martin D

    2005-03-23

    The concept of Lewis base activation of Lewis acids has been reduced to practice for catalysis of the aldol reaction of silyl ketene acetals and silyl dienol ethers with aldehydes. The weakly acidic species, silicon tetrachloride (SiCl4), can be activated by binding of a strongly Lewis basic chiral phosphoramide, leading to in situ formation of a chiral Lewis acid. This species has proven to be a competent catalyst for the aldol addition of acetate-, propanoate-, and isobutyrate-derived silyl ketene acetals to conjugated and nonconjugated aldehydes. Furthermore, vinylogous aldol reactions of silyl dienol ethers are also demonstrated. The high levels of regio-, anti diastereo-, and enantioselectivity observed in these reactions can be rationalized through consideration of an open transition structure where steric interactions between the silyl cation complex and the approaching nucleophile are dominant.

  14. Lewis acid catalysis and ligand exchange in the asymmetric binaphthol-catalyzed propargylation of ketones.

    PubMed

    Grayson, Matthew N; Goodman, Jonathan M

    2013-09-06

    1,1'-Bi-2-naphthol (BINOL)-derived catalysts catalyze the asymmetric propargylation of ketones. Density functional theory (DFT) calculations show that the reaction proceeds via a closed six-membered transition structure (TS) in which the chiral catalyst undergoes an exchange process with the original cyclic boronate ligand. This leads to a Lewis acid type activation mode, not a Brønsted acid process, which accurately predicts the stereochemical outcome observed experimentally.

  15. Highly Enantioselective Three-Component Direct Mannich Reactions of Unfunctionalized Ketones Catalyzed by Bifunctional Organocatalysts

    PubMed Central

    Guo, Qunsheng; Zhao, John Cong-Gui

    2013-01-01

    A highly stereoselective three-component direct Mannich reaction between aromatic aldehydes, p-toluenesulfonamide, and unfunctionalized ketones was achieved through an enolate mechanism for the first time with a bifunctional quinidine thiourea catalyst. The corresponding N-tosylated β-aminoketones were obtained in high yields and excellent diastereo- and enantioselectivities (up to >99:1 dr and >99% ee). PMID:23343472

  16. Enantioselective α-amination of branched aldehydes promoted by simple chiral primary amino acids.

    PubMed

    Fu, Ji-Ya; Yang, Qing-Chuan; Wang, Qi-Lin; Ming, Jun-Nan; Wang, Fei-Ying; Xu, Xiao-Ying; Wang, Li-Xin

    2011-06-03

    A series of simple chiral primary amino acids were first successfully applied to promote the enantioselective α-amination of branched aldehydes with azadicarboxylates and the desired adducts bearing quaternary stereogenic centers were obtained in excellent yields (up to 99%) and enantioselectivities (up to 97% ee).

  17. New insights into the formation mechanism of Ag, Au and AgAu nanoparticles in aqueous alkaline media: alkoxides from alcohols, aldehydes and ketones as universal reducing agents.

    PubMed

    Gomes, Janaina F; Garcia, Amanda C; Ferreira, Eduardo B; Pires, Cleiton; Oliveira, Vanessa L; Tremiliosi-Filho, Germano; Gasparotto, Luiz H S

    2015-09-07

    In this report we present new insights into the formation mechanism of Ag, Au and AgAu nanoparticles with alcohols, aldehydes and ketones in alkaline medium at room temperature. We selected methanol, ethanol, glycerol, formaldehyde, acetaldehyde and acetone to demonstrate their capability of reducing gold and silver ions under the above-mentioned conditions. We showed that the particles are also formed with potassium tert-butoxide in the absence of hydroxides. Our results strongly suggest that alkoxides, formed from any molecule containing a hydroxyl or a functional group capable of generating them in alkaline medium, are the actual and universal reducing agent of silver and gold ions, in opposition to the currently accepted mechanisms. The universality of the reaction mechanism proposed in this work may impact on the production of noble nanoparticles with simple chemicals normally found in standard laboratories.

  18. A quick responding quartz crystal microbalance sensor array based on molecular imprinted polyacrylic acids coating for selective identification of aldehydes in body odor.

    PubMed

    Jha, Sunil K; Hayashi, Kenshi

    2015-03-01

    In present work, a novel quartz crystal microbalance (QCM) sensor array has been developed for prompt identification of primary aldehydes in human body odor. Molecularly imprinted polymers (MIP) are prepared using the polyacrylic acid (PAA) polymer matrix and three organic acids (propenoic acid, hexanoic acid and octanoic acid) as template molecules, and utilized as QCM surface coating layer. The performance of MIP films is characterized by 4-element QCM sensor array (three coated with MIP layers and one with pure PAA for reference) dynamic and static responses to target aldehydes: hexanal, heptanal, and nonanal in single, binary, and tertiary mixtures at distinct concentrations. The target aldehydes were selected subsequent to characterization of body odor samples with solid phase-micro extraction gas chromatography mass spectrometer (SPME-GC-MS). The hexanoic acid and octanoic acid imprinted PAA exhibit fast response, and better sensitivity, selectivity and reproducibility than the propenoic acid, and non-imprinted PAA in array. The response time and recovery time for hexanoic acid imprinted PAA are obtained as 5 s and 12 s respectively to typical concentrations of binary and tertiary mixtures of aldehydes using the static response. Dynamic sensor array response matrix has been processed with principal component analysis (PCA) for visual, and support vector machine (SVM) classifier for quantitative identification of target odors. Aldehyde odors were identified successfully in principal component (PC) space. SVM classifier results maximum recognition rate 79% for three classes of binary odors and 83% including single, binary, and tertiary odor classes in 3-fold cross validation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Ambient Temperature Synthesis of High Enantiopurity N-Protected Peptidyl Ketones by Peptidyl Thiol Ester–Boronic Acid Cross-Coupling

    PubMed Central

    Yang, Hao; Li, Hao; Wittenberg, Rüdiger; Egi, Masahiro; Huang, Wenwei; Liebeskind, Lanny S.

    2009-01-01

    α-Amino acid thiol esters derived from N-protected mono-, di-, and tripeptides couple with aryl, π-electron-rich heteroaryl, or alkenyl boronic acids in the presence of stoichiometric Cu(I) thiophene-2-carboxylate (CuTC) and catalytic Pd2(dba)3/triethylphosphite to generate the corresponding N-protected peptidyl ketones in good to excellent yields and in high enantiopurity. Triethylphosphite plays a key role as a supporting ligand by mitigating an undesired palladium-catalyzed decarbonylation-β-elimination of the α-amino thiol esters. The peptidyl ketone synthesis proceeds at room temperature under non-basic conditions and demonstrates a high tolerance to functionality. PMID:17263394

  20. Engineering of bacterial methyl ketone synthesis for biofuels.

    PubMed

    Goh, Ee-Been; Baidoo, Edward E K; Keasling, Jay D; Beller, Harry R

    2012-01-01

    We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C₁₁ to C₁₅ (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of β-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the β-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in β-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications.

  1. Enantioselective Organocatalytic Aminomethylation of Aldehydes: A Role for Ionic Interactions and Efficient Access to β2-Amino Acids

    PubMed Central

    Chi, Yonggui; Gellman, Samuel H.

    2009-01-01

    Organocatalytic Mannich addition of aldehydes to a formaldehyde-derived iminium species catalyzed by proline-derived chiral pyrrolidines provides β-amino aldehydes with ≥ 90% ee. Mechanistic analysis of the proline-catalyzed reactions suggests that non-hydrogen-bonded ionic interactions at the Mannich reaction transition state can influence stereochemical outcome. The β-amino aldehydes from our process bear a substituent adjacent to the carbonyl and can be efficiently converted to protected β2-amino acids, which are important building blocks for β-peptide foldamers that display useful biological activities. PMID:16719457

  2. (CF3CO)2O/CF3SO3H-mediated synthesis of 1,3-diketones from carboxylic acids and aromatic ketones

    PubMed Central

    Kim, JungKeun; Shokova, Elvira; Tafeenko, Victor

    2014-01-01

    Summary A very simple and convenient reaction for 1,3-diketone preparation from carboxylic acids and aromatic ketones in TFAA/TfOH system is described. When the β-phenylpropionic acids were used as starting materials, they initially gave 1-indanones and then underwent further acylation with the formation of 2-(β-phenylpropionyl)-1-indanones as the main reaction products. In addition, the application of the proposed protocol allowed for the synthesis of selected polysubstituted pyrazoles in a one-pot procedure directly from acids and ketones. PMID:25298794

  3. Fast Hydrazone Reactants: Electronic and Acid/Base Effects Strongly Influence Rate at Biological pH

    PubMed Central

    Kool, Eric T.; Park, Do-Hyoung; Crisalli, Pete

    2013-01-01

    Kinetics studies with structurally varied aldehydes and ketones in aqueous buffer at pH 7.4 reveal that carbonyl compounds with neighboring acid/base groups form hydrazones at accelerated rates. Similarly, tests of a hydrazine with a neighboring carboxylic acid group show that it also reacts at an accelerated rate. Rate constants for the fastest carbonyl/hydrazine combinations are 2–20 M−1sec−1, which is faster than recent strain-promoted cycloaddition reactions. PMID:24224646

  4. Cross ketonization of Cuphea sp. oil with acetic acid over a composite oxide of Fe, Ce, and Al

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to demonstrate the viability of the cross ketonization reaction with the triacylglycerol from Cuphea sp. and acetic acid in a fixed-bed plug-flow reactor. The seed oil from Cuphea sp. contains up to 71% decanoic acid and the reaction of this fatty acid residue with ac...

  5. DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes

    PubMed Central

    Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.

    2009-01-01

    The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each

  6. Formation of Aldehydic Phosphatidylcholines during the Anaerobic Decomposition of a Phosphatidylcholine Bearing the 9-Hydroperoxide of Linoleic Acid

    PubMed Central

    2016-01-01

    Lipid oxidation-derived carbonyl compounds are associated with the development of various physiological disorders. Formation of most of these products has recently been suggested to require further reactions of oxygen with lipid hydroperoxides. However, in rat and human tissues, the formation of 4-hydroxy-2-nonenal is greatly elevated during hypoxic/ischemic conditions. Furthermore, a previous study found an unexpected result that the decomposition of a phosphatidylcholine (PC) bearing the 13-hydroperoxide of linoleic acid under a nitrogen atmosphere afforded 9-oxononanoyl-PC rather than 13-oxo-9,11-tridecadienoyl-PC as the main aldehydic PC. In the present study, products of the anaerobic decomposition of a PC bearing the 9-hydroperoxide of linoleic acid were analysed by electrospray ionization mass spectrometry. 9-Oxononanoyl-PC (ONA-PC) and several well-known bioactive aldehydes including 12-oxo-9-hydroperoxy-(or oxo or hydroxy)-10-dodecenoyl-PCs were detected. Hydrolysis of the oxidized PC products, methylation of the acids obtained thereby, and subsequent gas chromatography-mass spectroscopy with electron impact ionization further confirmed structures of some of the key aldehydic PCs. Novel, hydroxyl radical-dependent mechanisms of formation of ONA-PC and peroxyl-radical dependent mechanisms of formation of the rest of the aldehydes are proposed. The latter mechanisms will mainly be relevant to tissue injury under hypoxic/anoxic conditions, while the former are relevant under both normoxia and hypoxia/anoxia. PMID:27366754

  7. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41).

    PubMed

    Kimura, Ikuo; Inoue, Daisuke; Maeda, Takeshi; Hara, Takafumi; Ichimura, Atsuhiko; Miyauchi, Satoshi; Kobayashi, Makio; Hirasawa, Akira; Tsujimoto, Gozoh

    2011-05-10

    The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.

  8. Inborn errors of ketogenesis and ketone body utilization.

    PubMed

    Sass, Jörn Oliver

    2012-01-01

    Ketone bodies acetoacetate and 3-hydroxy-n-butyric acid are metabolites derived from fatty acids and ketogenic amino acids such as leucine. They are mainly produced in the liver via reactions catalyzed by the ketogenic enzymes mitochondrial 3-hydroxy-3-methylglutary-coenzyme A synthase and 3-hydroxy-3-methylglutary-coenzyme A lyase. After prolonged starvation, ketone bodies can provide up to two-thirds of the brain's energy requirements. The rate-limiting enzyme of ketone body utilization (ketolysis) is succinyl-coenzyme A:3-oxoacid coenzyme A transferase. The subsequent step of ketolysis is catalyzed by 2-methylactoacetyl-coenzyme A thiolase, which is also involved in isoleucine catabolism. Inborn errors of metabolism affecting those four enzymes are presented and discussed in the context of differential diagnoses. While disorders of ketogenesis can present with hypoketotic hypoglycemia, inborn errors of ketolysis are characterized by metabolic decompensations with ketoacidosis. If those diseases are considered early and appropriate treatment is initiated without delay, patients with inborn errors of ketone body metabolism often have a good clinical outcome.

  9. Scope and mechanism of the highly stereoselective metal-mediated domino aldol reactions of enolates with aldehydes

    PubMed Central

    Engelen, Bernward; Panthöfer, Martin; Deiseroth, Hans-Jörg; Schlirf, Jens

    2016-01-01

    Summary A one-pot transformation, which involves the reaction of ketones with aldehydes in the presence of metal halides to furnish tetrahydro-2H-pyran-2,4-diols in a highly diastereoselective manner, is investigated thoroughly by experiments and computations. The reaction was also successfully implemented on a flow micro reactor system. PMID:27340472

  10. Artificial photosynthesis of. beta. -ketocarboxylic acids from carbon dioxide and ketones via enolate complexes of aluminum porphyrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirai, Yasuhiro; Aida, Takuzo; Inoue, Shohei

    1989-04-12

    Photochemical fixation of carbon dioxide is of much interest in connection with biological photosynthesis by green plants as well as from the viewpoint of carbon resource utilization. One of the important steps in the assimilation of carbon dioxide is the carboxylation of a carbonyl compound into ketocarboxylic acid, where the reaction proceeds via an enolate species as reactive intermediate. For example, in four carbon (C{sub 4}) pathway and Crassulacean acid metabolism (CAM) processes, pyruvate is converted with the aid of ATP into phosphoenolpyruvate, which is subsequently carboxylated to give oxaloacetate by the action of pyruvate carboxylase. In relation to thismore » interesting biological process, some artificial systems have been exploited for the synthesis of {beta}-ketocarboxylic acid derivatives from carbon dioxide and ketones using nucleophiles such as metal carbonates, thiazolates, phenolates, alkoxides, and strong organic as well as inorganic basis, which promote the enolization of ketones in the intermediate step. We wish to report here a novel, visible light-induced fixation of carbon dioxide with the enolate complex of aluminum porphyrin, giving {beta}-ketocarboxylic acid under mild conditions.« less

  11. Five Fatty Aldehyde Dehydrogenase Enzymes from Marinobacter and Acinetobacter spp. and Structural Insights into the Aldehyde Binding Pocket

    PubMed Central

    Bertram, Jonathan H.; Mulliner, Kalene M.; Shi, Ke; Plunkett, Mary H.; Nixon, Peter; Serratore, Nicholas A.; Douglas, Christopher J.; Aihara, Hideki

    2017-01-01

    ABSTRACT Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes from Marinobacter aquaeolei VT8 and an additional enzyme from Acinetobacter baylyi were heterologously expressed in Escherichia coli and shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572, and the enzyme reported under RefSeq accession no. WP_004927398) were found to act on aldehydes ranging from acetaldehyde to hexadecanal and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificities of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction-quality crystals of one particular FAldDH (Maqu_3316) from M. aquaeolei VT8. Crystals were independently treated with both the NAD+ cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how catalysis by the enzyme is accomplished is also provided. IMPORTANCE This study provides a comparison of multiple enzymes with the ability to oxidize fatty aldehydes to fatty acids and provides a likely picture of how the fatty aldehyde and NAD+ are bound to the enzyme to facilitate catalysis. Based on the information obtained from this structural analysis and comparisons of specificities for the five enzymes that were characterized, correlations to the potential roles played by specific residues within the structure may be drawn. PMID:28389542

  12. Five Fatty Aldehyde Dehydrogenase Enzymes from Marinobacter and Acinetobacter spp. and Structural Insights into the Aldehyde Binding Pocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertram, Jonathan H.; Mulliner, Kalene M.; Shi, Ke

    ABSTRACT Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes fromMarinobacter aquaeoleiVT8 and an additional enzyme fromAcinetobacter baylyiwere heterologously expressed inEscherichia coliand shown to display FAldDH activity.more » Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572, and the enzyme reported under RefSeq accession no.WP_004927398) were found to act on aldehydes ranging from acetaldehyde to hexadecanal and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificities of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction-quality crystals of one particular FAldDH (Maqu_3316) fromM. aquaeoleiVT8. Crystals were independently treated with both the NAD +cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how catalysis by the enzyme is accomplished is also provided. IMPORTANCEThis study provides a comparison of multiple enzymes with the ability to oxidize fatty aldehydes to fatty acids and provides a likely picture of how the fatty aldehyde and NAD +are bound to the enzyme to facilitate catalysis. Based on the information obtained from this structural analysis and comparisons of specificities for the five enzymes that were characterized, correlations to the potential roles played by specific residues within the structure may be drawn.« less

  13. Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor of other classes of aliphatic compounds.

    PubMed

    Eliasson, Moa; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2015-10-01

    Aliphatic ketones are widely present in body-borne and food odors of primates. Therefore, we used an operant conditioning paradigm and determined olfactory detection thresholds in four spider monkeys for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and two of their isomers (3- and 4-heptanone). We found that, with the exception of the two shortest-chained ketones, all animals detected concentrations <1 ppm (parts per million), and with five odorants individual animals even reached threshold values <0.1 ppm. Further, we found a significant correlation between olfactory sensitivity of the spider monkeys and carbon chain length of the 2-ketones which can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory sensitivity and position of the functional carbonyl group. Across-odorant and across-species comparisons revealed the following: spider monkeys are significantly less sensitive to the odors of aliphatic ketones than to the odor of other classes of aliphatic compounds (1-alcohols, n-aldehydes, n-acetic esters, and n-carboxylic acids) sharing the same carbon length. Spider monkeys do not differ significantly in their olfactory sensitivity for aliphatic ketones from squirrel monkeys and pigtail macaques, but are significantly less sensitive to these odorants compared to human subjects and mice. These findings support the notion that neuroanatomical and genetic properties do not allow for reliable predictions with regard to a species' olfactory sensitivity. Further, we conclude that the frequency of occurrence of a class of odorants in a species' chemical environment does not allow for reliable predictions of the species' olfactory sensitivity. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  14. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...

  15. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...

  16. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...) test system is a device intended to identify ketones in urine and other body fluids. Identification of... acidity of body fluids) or ketosis (a condition characterized by increased production of ketone bodies...

  17. Engineering ..beta..-Oxidation in Yarrowia lipolytica for Methyl Ketone Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez i Nogue, Violeta; Ramirez, Kelsey J; Singer, Christine

    Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal ..beta..-oxidation by chromosomal deletion of pot1 resulted in themore » biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C13-C23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones.« less

  18. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification.

    PubMed

    Srivastava, Sudhakar; Brychkova, Galina; Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya; Sagi, Moshe

    2017-04-01

    The Arabidopsis ( Arabidopsis thaliana ) aldehyde oxidases are a multigene family of four oxidases (AAO1-AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Automated Discovery of New Chemical Reactions and Accurate Calculation of Their Rates

    DTIC Science & Technology

    2015-06-02

    formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones . Phys. Chem. Chem. Phys. 2013, 15, 16841-16852. [39...dioxolan-3-ol – our second case study - we confirmed that fragmentation of the cyclic peroxide leads to two possible pairs of acid and aldehyde products...Rate Prediction via Group Additivity, Part 2: H-Abstraction from Alkenes, Alkynes, Alcohols, Aldehydes , and Acids by H Atoms. J. Phys. Chem. A 2001, 105

  20. Volatiles formation in gelled emulsions enriched in polyunsaturated fatty acids during storage: type of oil and antioxidant.

    PubMed

    Gayoso, Lucía; Poyato, Candelaria; Calvo, María Isabel; Cavero, Rita Yolanda; Ansorena, Diana; Astiasarán, Iciar

    2017-08-01

    Gelled emulsions with carrageenan are a novel type of emulsion that could be used as a carrier of unsaturated fatty acids in functional foods formulations. Lipid degradation through volatile compounds was studied in gelled emulsions which were high in polyunsaturated oils (sunflower or algae oil) after 49 days of storage. Aqueous Lavandula latifolia extract was tested as a natural antioxidant. Analysis of the complete volatile profile of the samples resulted in a total of 40 compounds, classified in alkanes, alkenes, aldehydes, ketones, acids, alcohols, furans, terpenes and aromatic hydrocarbons. During storage, the formation of the volatile compounds was mostly related to the oxidation of the main fatty acids of the sunflower oil (linolenic acid) and the algae oil (docosahexaenoic acid). Despite the antioxidant capacity shown by the L. latifolia extract, its influence in the oxidative stability in terms of total volatiles was only noticed in sunflower oil gels ( p  < 0.05), where a significant decrease in the aldehydes fraction was found.

  1. Metal-free catalytic enantioselective C-B bond formation: (pinacolato)boron conjugate additions to α,β-unsaturated ketones, esters, Weinreb amides, and aldehydes promoted by chiral N-heterocyclic carbenes.

    PubMed

    Wu, Hao; Radomkit, Suttipol; O'Brien, Jeannette M; Hoveyda, Amir H

    2012-05-16

    The first broadly applicable metal-free enantioselective method for boron conjugate addition (BCA) to α,β-unsaturated carbonyls is presented. The C-B bond forming reactions are promoted in the presence of 2.5-7.5 mol % of a readily accessible C(1)-symmetric chiral imidazolinium salt, which is converted, in situ, to the catalytically active diastereo- and enantiomerically pure N-heterocyclic carbene (NHC) by the common organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu). In addition to the commercially available bis(pinacolato)diboron [B(2)(pin)(2)], and in contrast to reactions with the less sterically demanding achiral NHCs, the presence of MeOH is required for high efficiency. Acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, Weinreb amides, and aldehydes, can serve as suitable substrates; the desired β-boryl carbonyls are isolated in up to 94% yield and >98:2 enantiomer ratio (er). Transformations are often carried out at ambient temperature. In certain cases, such as when the relatively less reactive unsaturated amides are used, elevated temperatures are required (50-66 °C); nonetheless, reactions remain highly enantioselective. The utility of the NHC-catalyzed method is demonstrated through comparison with the alternative Cu-catalyzed protocols; in cases involving a polyfunctional substrate, unique profiles in chemoselectivity are exhibited by the metal-free approach (e.g., conjugate addition vs reaction with an alkyne, allene, or aldehyde).

  2. Metal-Free Catalytic Enantioselective C–B Bond Formation: (Pinacolato)boron Conjugate Additions to α,β-Unsaturated Ketones, Esters, Weinreb Amides and Aldehydes Promoted by Chiral N-Heterocyclic Carbenes

    PubMed Central

    Wu, Hao; Radomkit, Suttipol; O’Brien, Jeannette M.; Hoveyda, Amir H.

    2012-01-01

    The first broadly applicable metal-free enantioselective method for boron conjugate addition (BCA) to α,β-unsaturated carbonyls is presented. The C–B bond forming reactions are promoted in the presence of 2.5–7.5 mol % of a readily accessible C1-symmetric chiral imidazolinium salt, which is converted, in situ, to the catalytically active diastereo- and enantiomerically pure N-heterocyclic carbene (NHC) by the common organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu). In addition to the commercially available bis(pinacolato)diboron [B2(pin)2], and in contrast to reactions with the less sterically demanding achiral NHCs, the presence of MeOH is required for high efficiency. Acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, Weinreb amides and aldehydes can serve as suitable substrates; the desired β-boryl carbonyls are isolated in up to 94% yield and >98:2 enantiomer ratio (er). Transformations are often carried out at ambient temperature. In certain cases, such as when the relatively less reactive unsaturated amides are used, elevated temperatures are required (50–66 °C); nonetheless, reactions remain highly enantioselective. The utility of the NHC-catalyzed method is demonstrated through comparison with the alternative Cu-catalyzed protocols; in cases involving a polyfunctional substrate, unique profiles in chemoselectivity are exhibited by the metal-free approach (e.g., conjugate addition vs reaction with an alkyne, allene or aldehyde). PMID:22559866

  3. Biotechnological Production of Methyl-Branched Aldehydes.

    PubMed

    Fraatz, Marco Alexander; Goldmann, Michael; Geissler, Torsten; Gross, Egon; Backes, Michael; Hilmer, Jens-Michael; Ley, Jakob; Rost, Johanna; Francke, Alexander; Zorn, Holger

    2018-03-14

    A number of methyl-branched aldehydes impart interesting flavor impressions, and especially 12-methyltridecanal is a highly sought after flavoring compound for savory foods. Its smell is reminiscent of cooked meat and tallow. For the biotechnological production of 12-methyltridecanal, the literature was screened for fungi forming iso-fatty acids. Suitable organisms were identified and successfully grown in submerged cultures. The culture medium was optimized to increase the yields of branched fatty acids. A recombinant carboxylic acid reductase was used to reduce 12-methyltridecanoic acid to 12-methyltridecanal. The efficiency of whole-cell catalysis was compared to that of the purified enzyme preparation. After lipase-catalyzed hydrolysis of the fungal lipid extracts, the released fatty acids were converted to the corresponding aldehydes, including 12-methyltridecanal and 12-methyltetradecanal.

  4. A rapid and efficient one-pot method for the reduction of N-protected α-amino acids to chiral α-amino aldehydes using CDI/DIBAL-H.

    PubMed

    Ivkovic, Jakov; Lembacher-Fadum, Christian; Breinbauer, Rolf

    2015-11-14

    N-Protected amino acids can be easily converted into chiral α-amino aldehydes in a one-pot reaction by activation with CDI followed by reduction with DIBAL-H. This method delivers Boc-, Cbz- and Fmoc-protected amino aldehydes from proteinogenic amino acids in very good isolated yields and complete stereointegrity.

  5. Engineering β-oxidation in Yarrowia lipolytica for methyl ketone production.

    PubMed

    Hanko, Erik K R; Denby, Charles M; Sànchez I Nogué, Violeta; Lin, Weiyin; Ramirez, Kelsey J; Singer, Christine A; Beckham, Gregg T; Keasling, Jay D

    2018-05-28

    Medium- and long-chain methyl ketones are fatty acid-derived compounds that can be used as biofuel blending agents, flavors and fragrances. However, their large-scale production from sustainable feedstocks is currently limited due to the lack of robust microbial biocatalysts. The oleaginous yeast Yarrowia lipolytica is a promising biorefinery platform strain for the production of methyl ketones from renewable lignocellulosic biomass due to its natively high flux towards fatty acid biosynthesis. In this study, we report the metabolic engineering of Y. lipolytica to produce long- and very long-chain methyl ketones. Truncation of peroxisomal β-oxidation by chromosomal deletion of pot1 resulted in the biosynthesis of saturated, mono-, and diunsaturated methyl ketones in the C 13 -C 23 range. Additional overexpression and peroxisomal targeting of a heterologous bacterial methyl ketone biosynthesis pathway yielded an initial titer of 151.5 mg/L of saturated methyl ketones. Dissolved oxygen concentrations in the cultures were found to substantially impact cell morphology and methyl ketone biosynthesis. Bioreactor cultivation under optimized conditions resulted in a titer of 314.8 mg/L of total methyl ketones, representing more than a 6000-fold increase over the parental strain. This work highlights the potential of Y. lipolytica to serve as chassis organism for the biosynthesis of acyl-thioester derived long- and very long-chain methyl ketones. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Alcohol, Aldehydes, Adducts and Airways

    PubMed Central

    Sapkota, Muna; Wyatt, Todd A.

    2015-01-01

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease. PMID:26556381

  7. Alcohol, Aldehydes, Adducts and Airways.

    PubMed

    Sapkota, Muna; Wyatt, Todd A

    2015-11-05

    Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.

  8. Presence and potential significance of aromatic-ketone groups in aquatic humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.

    1987-01-01

    Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.

  9. Polyvinyl alcohol cross-linked with two aldehydes

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1982-01-01

    A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.

  10. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification1[OPEN

    PubMed Central

    Yarmolinsky, Dmitry; Soltabayeva, Aigerim; Samani, Talya

    2017-01-01

    The Arabidopsis (Arabidopsis thaliana) aldehyde oxidases are a multigene family of four oxidases (AAO1–AAO4) that oxidize a variety of aldehydes, among them abscisic aldehyde, which is oxidized to the phytohormone abscisic acid. Toxic aldehydes are generated in plants both under normal conditions and in response to stress. The detoxification of such aldehydes by oxidation is attributed to aldehyde dehydrogenases but never to aldehyde oxidases. The feasibility of the detoxification of aldehydes in siliques via oxidation by AAO4 was demonstrated, first, by its ability to efficiently oxidize an array of aromatic and aliphatic aldehydes, including the reactive carbonyl species (RCS) acrolein, hydroxyl-2-nonenal, and malondialdehyde. Next, exogenous application of several aldehydes to siliques in AAO4 knockout (KO) Arabidopsis plants induced severe tissue damage and enhanced malondialdehyde levels and senescence symptoms, but not in wild-type siliques. Furthermore, abiotic stresses such as dark and ultraviolet C irradiation caused an increase in endogenous RCS and higher expression levels of senescence marker genes, leading to premature senescence of KO siliques, whereas RCS and senescence marker levels in wild-type siliques were hardly affected. Finally, in naturally senesced KO siliques, higher endogenous RCS levels were associated with enhanced senescence molecular markers, chlorophyll degradation, and earlier seed shattering compared with the wild type. The aldehyde-dependent differential generation of superoxide and hydrogen peroxide by AAO4 and the induction of AAO4 expression by hydrogen peroxide shown here suggest a self-amplification mechanism for detoxifying additional reactive aldehydes produced during stress. Taken together, our results indicate that AAO4 plays a critical role in delaying senescence in siliques by catalyzing aldehyde detoxification. PMID:28188272

  11. TNT Biodegradation by Natural Microbial Assemblages at Estuarine Frontal Boundaries

    DTIC Science & Technology

    2012-07-02

    component acid, aldehyde , and ketone phenols after microwave assisted CuO-oxidation (Louchouarn et al. 2000, Goni and Montgomery 2000). Phenols...Oahu, HI, USA (20 July 2010). vii LIST OF ACRONYMS Ac:Ad: Ratio of Acid to Aldehyde Moieties ASI: Air-Sea Interface BIX: Biological... aldehyde moieties for vanillyl phenols (Ac:Alv), an index of oxidative degradation for lignin, was positively correlated with fraction of C1 in the

  12. Is there an astrocyte-neuron ketone body shuttle?

    PubMed

    Guzmán, M; Blázquez, C

    2001-01-01

    Ketone bodies can replace glucose as the major source of brain energy when glucose becomes scarce. Although it is generally assumed that the liver supplies extrahepatic tissues with ketone bodies, recent evidence shows that astrocytes are also ketogenic cells. Moreover, the partitioning of fatty acids between ketogenesis and ceramide synthesis de novo might control the survival/death decision of neural cells. These findings support the notion that astrocytes might supply neurons with ketone bodies in situ, and raise the possibility that astrocyte ketogenesis is a cytoprotective pathway.

  13. Ketones urine test

    MedlinePlus

    Ketone bodies - urine; Urine ketones; Ketoacidosis - urine ketones test; Diabetic ketoacidosis - urine ketones test ... Urine ketones are usually measured as a "spot test." This is available in a test kit that ...

  14. Chemoselective Hydrogenation of Aldehydes under Mild, Base-Free Conditions: Manganese Outperforms Rhenium

    PubMed Central

    2018-01-01

    Several hydride Mn(I) and Re(I) PNP pincer complexes were applied as catalysts for the homogeneous chemoselective hydrogenation of aldehydes. Among these, [Mn(PNP-iPr)(CO)2(H)] was found to be one of the most efficient base metal catalysts for this process and represents a rare example which permits the selective hydrogenation of aldehydes in the presence of ketones and other reducible functionalities, such as C=C double bonds, esters, or nitriles. The reaction proceeds at room temperature under base-free conditions with catalyst loadings between 0.1 and 0.05 mol% and a hydrogen pressure of 50 bar (reaching TONs of up to 2000). A mechanism which involves an outer-sphere hydride transfer and reversible PNP ligand deprotonation/protonation is proposed. Analogous isoelectronic and isostructural Re(I) complexes were only poorly active. PMID:29755828

  15. Spectroscopic characterisation of interaction of ferulic acid with aldehyde dehydrogenase (ALDH).

    PubMed

    Kolawole, Ayodele O; Agaba, Ruth J; Oluwole, Matthew O

    2017-05-01

    Interaction of a pharmacological important phenolic, ferulic acid, with Aldehyde dehydrogenase (ALDH) at the simulative pH condition, was studied using spectroscopic approach. Ferulic acid caused a decrease in the fluorescence intensity formed from ALDH-ferulic acid complex resulting in mixed inhibition of ALDH activity (IC 50 =30.65μM). The intrinsic quenching was dynamic and induced altered conformation of ALDH and made the protein less compact but might not unfold it. ALDH has two binding sites for ferulic acid at saturating concentrations having association constant of 1.35×10 3 Lmol -1 and a dissociation constant of 9.7×10 7 Lmol -1 at 25°C indicating ALDH-ferulic acid complex formation is more favourable than its dissociation. The interaction was not spontaneous and endothermic and suggests the involvement of hydrophobic interactions with a FRET binding distance of 4.49nm. Change in pH near and far from isoelectric points of ferulic acid did not affect the bonding interaction. Using trehalose as viscosogen, the result from Stoke-Einstein hypothesis showed that ferulic acid-ALDH binding and dissociation equilibrium was diffusion controlled. These results clearly suggest the unique binding properties and lipophilicity influence of ferulic acid. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Triazine-Substituted and Acyl Hydrazones: Experiment and Computation Reveal a Stability Inversion at Low pH.

    PubMed

    Ji, Kun; Lee, Changsuk; Janesko, Benjamin G; Simanek, Eric E

    2015-08-03

    Condensation of a hydrazine-substituted s-triazine with an aldehyde or ketone yields an equivalent to the widely used, acid-labile acyl hydrazone. Hydrolysis of these hydrazones using a formaldehyde trap as monitored using HPLC reveals that triazine-substituted hydrazones are more labile than acetyl hydrazones at pH>5. The reactivity trends mirror that of the corresponding acetyl hydrazones, with hydrolysis rates increasing along the series (aromatic aldehydeketoneketone). Computational and experimental studies indicate a reversal in stability around the triazine pKa (pH∼5). Protonation of the triazine moiety retards acid-catalyzed hydrolysis of triazinyl hydrazones in comparison to acetyl hydrazone analogues. This behavior supports mechanistic interpretations suggesting that resistance to protonation of the hydrazone N1 is the critical factor in affecting the reaction rate.

  17. The influence of fatty acid supply and aldehyde reductase deletion on cyanobacteria alkane generating pathway in Escherichia coli.

    PubMed

    Wang, Juli; Yu, Haiying; Song, Xuejiao; Zhu, Kun

    2018-05-01

    Cyanobacteria alkane synthetic pathway has been heterologously constructed in many microbial hosts. It is by far the most studied and reliable alkane generating pathway. Aldehyde deformylating oxygenase (i.e., ADO, key enzyme in this pathway) obtained from different cyanobacteria species showed diverse catalytic abilities. This work indicated that single aldehyde reductase deletions were beneficial to Nostoc punctiforme ADO-depended alkane production in Escherichia coli even better than double deletions. Fatty acid metabolism regulator (FadR) overexpression and low temperature increased C18:1 fatty acid supply, and in turn stimulated C18:1-derived heptadecene production, suggesting that supplying ADO with preferred substrate was important to overall alkane yield improvement. Using combinational methods, 1 g/L alkane was obtained in fed-batch fermentation with heptadecene accounting for nearly 84% of total alkane.

  18. Ketones blood test

    MedlinePlus

    Acetone bodies; Ketones - serum; Nitroprusside test; Ketone bodies - serum; Ketones - blood; Ketoacidosis - ketones blood test ... fat cells break down in the blood. This test is used to diagnose ketoacidosis . This is a ...

  19. Mechanistic Insights from Reaction of α-Oxiranyl-Aldehydes with Cyanobacterial Aldehyde Deformylating Oxygenase

    PubMed Central

    Das, Debasis; Ellington, Benjamin; Paul, Bishwajit; Marsh, E. Neil G.

    2014-01-01

    The biosynthesis of long-chain aliphatic hydrocarbons, which are derived from fatty acids, is widespread in Nature. The last step in this pathway involves the decarbonylation of fatty aldehydes to the corresponding alkanes or alkenes. In cyanobacteria this is catalyzed by an aldehyde deformylating oxygenase. We have investigated the mechanism of this enzyme using substrates bearing an oxirane ring adjacent to the aldehyde carbon. The enzyme catalyzed the deformylation of these substrates to produce the corresponding oxiranes. Performing the reaction in D2O allowed the facial selectivity of proton addition to be examined by 1H-NMR spectroscopy. The proton is delivered with equal probability to either face of the oxirane ring, indicating the formation of an oxiranyl radical intermediate that is free to rotate during the reaction. Unexpectedly, the enzyme also catalyzes a side reaction in which oxiranyl-aldehydes undergo tandem deformylation to furnish alkanes two carbons shorter. We present evidence that this involves the rearrangement of the intermediate oxiranyl radical formed in the first step, resulting an aldehyde that is further deformylated in a second step. These observations provide support for a radical mechanism for deformylation and, furthermore, allow the lifetime of the radical intermediate to be estimated based on prior measurements of rate constants for the rearrangement of oxiranyl radicals. PMID:24313866

  20. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones via the Decarboxylative Arylation of α-Oxo Acids**

    PubMed Central

    Chu, Lingling; Lipshultz, Jeffrey M.

    2015-01-01

    The direct decarboxylative arylation of α-oxo acids has been achieved via synergistic visible light-mediated photoredox and nickel catalyses. This method offers rapid entry to aryl and alkyl ketone architectures from simple α-oxo acid precursors via an acyl radical intermediate. Significant substrate scope is observed with respect to both the oxo acid and arene coupling partners. This mild decarboxylative arylation can also be utilized to efficiently access medicinal agents, as demonstrated by the rapid synthesis of fenofibrate. PMID:26014029

  1. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Ni, Chuangjiang; Wei, Yingcong; Zhao, Qi; Liu, Baijun; Sun, Zhaoyan; Gu, Yan; Zhang, Mingyao; Hu, Wei

    2018-03-01

    Two sulfonated fluorenyl-containing poly(ether ether ketone ketone)s (SFPEEKKs) were synthesized as the matrix of composite proton exchange membranes by directly sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and sulfonatable fluorenyl-containing segments. Surface-modified nanocrystalline cellulose (NCC) was produced as the "performance-enhancing" filler by treating the microcrystalline cellulose with acid. Two families of SFPEEKK/NCC nanocomposite membranes with various NCC contents were prepared via a solution-casting procedure. Results revealed that the insertion of NCC at a suitable ratio could greatly enhance the proton conductivity of the pristine membranes. For example, the proton conductivity of SFPEEKK-60/NCC-4 (SFPEEKK with 60% fluorenyl segments in the repeating unit, and inserted with 4% NCC) composite membrane was as high as 0.245 S cm-1 at 90 °C, which was 61.2% higher than that of the corresponding pure SFPEEKK-60 membrane. This effect could be attributed to the formation of hydrogen bond networks and proton conduction paths through the interaction between -SO3H/-OH groups on the surface of NCC particles and -SO3H groups on the SFPEEKK backbones. Furthermore, the chemically modified NCC filler and the optimized chemical structure of the SFPEEKK matrix also provided good dimensional stability and mechanical properties of the obtained nanocomposites. In conclusion, these novel nanocomposites can be promising proton exchange membranes for fuel cells at moderate temperatures.

  2. Methods of making organic compounds by metathesis

    DOEpatents

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  3. Aldehydes in hydrothermal solution - Standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell D.; Shock, Everett L.

    1993-01-01

    Aldehydes are common in a variety of geologic environments and are derived from a number of sources, both natural and anthropogenic. Experimental data for aqueous aldehydes were taken from the literature and used, along with parameters for the revised Helgeson-Kirkham-Flowers (HKF) equations of state, to estimate standard partial molal thermodynamic data for aqueous straight-chain alkyl aldehydes at high temperatures and pressures. Examples of calculations involving aldehydes in geological environments are given, and the stability of aldehydes relative to carboxylic acids is evaluated. These calculations indicate that aldehydes may be intermediates in the formation of carboxylic acids from hydrocarbons in sedimentary basin brines and hydrothermal systems like they are in the atmosphere. The data and parameters summarized here allow evaluation of the role of aldehydes in the formation of prebiotic precursors, such as amino acids and hydroxy acids on the early Earth and in carbonaceous chondrite parent bodies.

  4. The Failing Heart Relies on Ketone Bodies as a Fuel.

    PubMed

    Aubert, Gregory; Martin, Ola J; Horton, Julie L; Lai, Ling; Vega, Rick B; Leone, Teresa C; Koves, Timothy; Gardell, Stephen J; Krüger, Marcus; Hoppel, Charles L; Lewandowski, E Douglas; Crawford, Peter A; Muoio, Deborah M; Kelly, Daniel P

    2016-02-23

    Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of β-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure. © 2016 American Heart Association, Inc.

  5. Formation of aldehydes and carboxylic acids in ozonated surface water and wastewater: a clear relationship with fluorescence changes.

    PubMed

    Liu, Chen; Tang, Xiangyu; Kim, Jaeshin; Korshin, Gregory V

    2015-04-01

    This study examined the formation of aldehydes and carboxylic acids in ozonated surface water and municipal wastewater secondary effluent and addressed correlations between the generation of these compounds and concurrent changes of the fluorescence of natural/effluent organic matter (NOM/EfOM) substrates. Ozonation was effective in removing fluorophores in all excitation/emission matrix (EEM) regions, with those operationally assigned to humic- and protein-like species showing relatively higher reactivity than fulvic-like species. Examination of HO exposures and attendant changes of fluorescence-based parameters allows establishing strong linear relationships between formation of the aldehydes and carboxylic acids and the relative changes of integrated fluorescence (ΔIF/IF0). This demonstrates the feasibility of surrogate monitoring of the formation of biodegradable ozonation by-products via online measurements of water/wastewater EEM fluorescence. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. π-Expanded α,β-unsaturated ketones: synthesis, optical properties, and two-photon-induced polymerization.

    PubMed

    Nazir, Rashid; Bourquard, Florent; Balčiūnas, Evaldas; Smoleń, Sabina; Gray, David; Tkachenko, Nikolai V; Farsari, Maria; Gryko, Daniel T

    2015-02-23

    A library of π-expanded α,β-unsaturated ketones was designed and synthesized. They were prepared by a combination of Wittig reaction, Sonogashira reaction, and aldol condensation. It was further demonstrated that the double aldol condensation can be performed effectively for highly polarized styrene- and diphenylacetylene-derived aldehydes. The strategic placement of two dialkylamino groups at the periphery of D-π-A-π-D molecules resulted in dyes with excellent solubility. These ketones absorb light in the region 400-550 nm. Many of them display strong solvatochromism so that the emission ranges from 530-580 nm in toluene to the near-IR region in benzonitrile. Ketones based on cyclobutanone as central moieties display very high fluorescence quantum yields in nonpolar solvents, which decrease drastically in polar media. Photophysical studies of these new functional dyes revealed that they possess an enhanced two-photon absorption cross section when compared with simpler ketone derivatives. Due to strong polarization of the resulting dyes, values of two-photon absorption cross sections on the level of 200-300 GM at 800 nm were achieved, and thanks to that as well as the presence of the keto group, these new two-photon initiators display excellent performance so that the operating region is 5-75 mW in some cases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction.

    PubMed

    Zeng, Mingfei; Cao, Huachuan

    2018-04-15

    Short chain fatty acids (SCFA) and ketone bodies recently emerged as important physiological relevant metabolites because of their association with microbiota, immunology, obesity and other metabolic states. They were commonly analyzed by GC-MS with long run time and laborious sample preparation. In this study we developed a novel LC-MS/MS method using fast derivatization coupled with liquid-liquid extraction to detect SCFA and ketone bodies in plasma and feces. Several different derivatization reagents were evaluated to compare the efficiency, the sensitivity and chromatographic separation of structural isomers. O‑benzylhydroxylamine was selected for its superior overall performance in reaction time and isomeric separation that allowed the measurement of each SCFAs and ketone bodies free from interferences. The derivatization procedure is facile and reproducible in aqueous-organic medium, which abolished the evaporation procedure hampering the analysis of volatile short chain acids. Enhancement in sensitivity remarkably improved the detection limit of SCFA and ketone bodies to sub-fmol level. This novel method was applied to quantify these metabolites in fecal and plasma samples from lean and DIO mouse. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Fatty Aldehydes in Cyanobacteria Are a Metabolically Flexible Precursor for a Diversity of Biofuel Products

    PubMed Central

    Kaiser, Brett K.; Carleton, Michael; Hickman, Jason W.; Miller, Cameron; Lawson, David; Budde, Mark; Warrener, Paul; Paredes, Angel; Mullapudi, Srinivas; Navarro, Patricia; Cross, Fred; Roberts, James M.

    2013-01-01

    We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis. PMID:23505484

  9. Overview on mechanisms of acetic acid resistance in acetic acid bacteria.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Fusheng

    2015-02-01

    Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.

  10. Highly Efficient and Selective Hydrogenation of Aldehydes: A Well-Defined Fe(II) Catalyst Exhibits Noble-Metal Activity

    PubMed Central

    2016-01-01

    The synthesis and application of [Fe(PNPMe-iPr)(CO)(H)(Br)] and [Fe(PNPMe-iPr)(H)2(CO)] as catalysts for the homogeneous hydrogenation of aldehydes is described. These systems were found to be among the most efficient catalysts for this process reported to date and constitute rare examples of a catalytic process which allows selective reduction of aldehydes in the presence of ketones and other reducible functionalities. In some cases, TONs and TOFs of up to 80000 and 20000 h–1, respectively, were reached. On the basis of stoichiometric experiments and computational studies, a mechanism which proceeds via a trans-dihydride intermediate is proposed. The structure of the hydride complexes was also confirmed by X-ray crystallography. PMID:27660732

  11. Synthesis of P,N-Heterocycles from ω-Amino-H-Phosphinates: Conformationally Restricted α-Amino Acid Analogs

    PubMed Central

    Queffelec, Clémence; Ribière, Patrice; Montchamp, Jean-Luc

    2009-01-01

    P,N-Heterocycles (3-hydroxy-1,3-azaphospholane and 3-hydroxy-1,3-azaphosphorinane-3-oxide) are synthesized in moderate yield from readily available ω-amino-H-phosphinates and aldehydes or ketones via an intramolecular Kabachnik-Fields reaction. The products are conformationally restricted phosphinic analogs of α-amino acids. The multi-gram scale syntheses of the H2N(CH2)nPO2H2 phosphinic precursors (n = 1, 2, 3) and some derivatives are also described. PMID:18855477

  12. Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction.

    PubMed

    Correia, Hugo D; Marangon, Jacopo; Brondino, Carlos D; Moura, Jose J G; Romão, Maria J; González, Pablo J; Santos-Silva, Teresa

    2015-03-01

    Desulfovibrio gigas aldehyde oxidoreductase (DgAOR) is a mononuclear molybdenum-containing enzyme from the xanthine oxidase (XO) family, a group of enzymes capable of catalyzing the oxidative hydroxylation of aldehydes and heterocyclic compounds. The kinetic studies reported in this work showed that DgAOR catalyzes the oxidative hydroxylation of aromatic aldehydes, but not heterocyclic compounds. NMR spectroscopy studies using (13)C-labeled benzaldehyde confirmed that DgAOR catalyzes the conversion of aldehydes to the respective carboxylic acids. Steady-state kinetics in solution showed that high concentrations of the aromatic aldehydes produce substrate inhibition and in the case of 3-phenyl propionaldehyde a suicide substrate behavior. Hydroxyl-substituted aromatic aldehydes present none of these behaviors but the kinetic parameters are largely affected by the position of the OH group. High-resolution crystallographic structures obtained from single crystals of active-DgAOR soaked with benzaldehyde showed that the side chains of Phe425 and Tyr535 are important for the stabilization of the substrate in the active site. On the other hand, the X-ray data of DgAOR soaked with trans-cinnamaldehyde showed a cinnamic acid molecule in the substrate channel. The X-ray data of DgAOR soaked with 3-phenyl propionaldehyde showed clearly how high substrate concentrations inactivate the enzyme by binding covalently at the surface of the enzyme and blocking the substrate channel. The different reactivity of DgAOR versus aldehyde oxidase and XO towards aromatic aldehydes and N-heterocyclic compounds is explained on the basis of the present kinetic and structural data.

  13. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  14. Formaldehyde Five-Day Passive Chemical Dosimeter Badge Validation Study

    DTIC Science & Technology

    2012-11-30

    of organic carbonyl compounds ( aldehydes and ketones ) with DNPH-coated silica gel badges/cartridges in the presence of a strong acid, as a catalyst...more stringent 90-day limit of 100ppb is imminent.2 Experimental Materials Aldehyde badges (#571) were obtained from Assay Technology...Inc., Livermore, CA. This badge collects aldehydes on a glass fiber filter treated with acidified 2,4- dinitrophenylhydrazine (DNPH.) Standard field

  15. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-01-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions. PMID:27671606

  16. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    NASA Astrophysics Data System (ADS)

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-09-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions.

  17. Comparative performance assessment of point-of-care testing devices for measuring glucose and ketones at the patient bedside.

    PubMed

    Ceriotti, Ferruccio; Kaczmarek, Ewa; Guerra, Elena; Mastrantonio, Fabrizio; Lucarelli, Fausto; Valgimigli, Francesco; Mosca, Andrea

    2015-03-01

    Point-of-care (POC) testing devices for monitoring glucose and ketones can play a key role in the management of dysglycemia in hospitalized diabetes patients. The accuracy of glucose devices can be influenced by biochemical changes that commonly occur in critically ill hospital patients and by the medication prescribed. Little is known about the influence of these factors on ketone POC measurements. The aim of this study was to assess the analytical performance of POC hospital whole-blood glucose and ketone meters and the extent of glucose interference factors on the design and accuracy of ketone results. StatStrip glucose/ketone, Optium FreeStyle glucose/ketone, and Accu-Chek Performa glucose were also assessed and results compared to a central laboratory reference method. The analytical evaluation was performed according to Clinical and Laboratory Standards Institute (CLSI) protocols for precision, linearity, method comparison, and interference. The interferences assessed included acetoacetate, acetaminophen, ascorbic acid, galactose, maltose, uric acid, and sodium. The accuracies of both Optium ketone and glucose measurements were significantly influenced by varying levels of hematocrit and ascorbic acid. StatStrip ketone and glucose measurements were unaffected by the interferences tested with exception of ascorbic acid, which reduced the higher level ketone value. The accuracy of Accu-Chek glucose measurements was affected by hematocrit, by ascorbic acid, and significantly by galactose. The method correlation assessment indicated differences between the meters in compliance to ISO 15197 and CLSI 12-A3 performance criteria. Combined POC glucose/ketone methods are now available. The use of these devices in a hospital setting requires careful consideration with regard to the selection of instruments not sensitive to hematocrit variation and presence of interfering substances. © 2014 Diabetes Technology Society.

  18. A Search for CD36 Ligands from Flavor Volatiles in Foods with an Aldehyde Moiety: Identification of Saturated Aliphatic Aldehydes with 9-16 Carbon Atoms as Potential Ligands of the Receptor.

    PubMed

    Tsuzuki, Satoshi; Amitsuka, Takahiko; Okahashi, Tatsuya; Kimoto, Yusaku; Inoue, Kazuo

    2017-08-09

    Volatile compounds with an aldehyde moiety such as (Z)-9-octadecenal are potential ligands for cluster of differentiation 36 (CD36), a transmembrane receptor that has recently been shown to play a role in mammalian olfaction. In this study, by performing an assay using a peptide mimic of human CD36, we aimed to discover additional ligands for the receptor from volatiles containing a single aldehyde group commonly found in human foods. Straight-chain, saturated aliphatic aldehydes with 9-16 carbons exhibited CD36 ligand activities, albeit to varying degrees. Notably, the activities of tridecanal and tetradecanal were higher than that of oleic acid, the most potent ligand among the fatty acids tested. Among the aldehydes other than aliphatic aldehydes, only phenylacetaldehyde showed a weak activity. These findings make a contribution to our knowledge of recognition mechanisms for flavor volatiles in foods with an aldehyde group.

  19. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors

    PubMed Central

    Kim, Do Young; Vallejo, Johana; Rho, Jong M

    2010-01-01

    Abstract Ketones have previously shown beneficial effects in models of neurodegenerative disorders, particularly against associated mitochondrial dysfunction and cognitive impairment. However, evidence of a synaptic protective effect of ketones remains lacking. We tested the effects of ketones on synaptic impairment induced by mitochondrial respiratory complex (MRC) inhibitors using electrophysiological, reactive oxygen species (ROS) imaging and biochemical techniques. MRC inhibitors dose-dependently suppressed both population spike (PS) and field potential amplitudes in the CA1 hippocampus. Pre-treatment with ketones strongly prevented changes in the PS, whereas partial protection was seen in the field potential. Rotenone (Rot; 100 nmol/L), a MRC I inhibitor, suppressed synaptic function without altering ROS levels and PS depression by Rot was unaffected by antioxidants. In contrast, antioxidant-induced PS recovery against the MRC II inhibitor 3-nitropropionic acid (3-NP; 1 mmol/L) was similar to the synaptic protective effects of ketones. Ketones also suppressed ROS generation induced by 3-NP. Finally, ketones reversed the decreases in ATP levels caused by Rot and 3-NP. In summary, our data demonstrate that ketones can preserve synaptic function in CA1 hippocampus induced by MRC dysfunction, likely through an antioxidant action and enhanced ATP generation. PMID:20374433

  20. Laboratory Sampling Guide

    DTIC Science & Technology

    2012-05-11

    their uses: Table 10. Types of Solid Sorbent Tubes Tube Type Typical Uses Anasorb® 747 Methyl Ethyl Ketone , Ethylene Oxide Charcoal Tube...Silica Gel Aliphatic Amines, Methanol, Aldehydes , Acid Mist 2.5.3 Passive Samplers. Passive samplers do not require a sampling pump (Figure 9). They...often encountered within the first 6 inches of soil. Water-soluble contaminants such as metals, acids, ketones , and alcohols will be encountered at

  1. Development of monograph titled "augmented chemistry aldehida & keton" with 3 dimensional (3D) illustration as a supplement book on chemistry learning

    NASA Astrophysics Data System (ADS)

    Damayanti, Latifah Adelina; Ikhsan, Jaslin

    2017-05-01

    Integration of information technology in education more rapidly performed in a medium of learning. Three-dimensional (3D) molecular modeling was performed in Augmented Reality as a tangible manifestation of increasingly modern technology utilization. Based on augmented reality, three-dimensional virtual object is projected in real time and the exact environment. This paper reviewed the uses of chemical learning supplement book of aldehydes and ketones which are equipped with three-dimensional molecular modeling by which students can inspect molecules from various viewpoints. To plays the 3D illustration printed on the book, smartphones with the open-source software of the technology based integrated Augmented Reality can be used. The aims of this research were to develop the monograph of aldehydes and ketones with 3 dimensional (3D) illustrations, to determine the specification of the monograph, and to determine the quality of the monograph. The quality of the monograph is evaluated by experiencing chemistry teachers on the five aspects of contents/materials, presentations, language and images, graphs, and software engineering, resulted in the result that the book has a very good quality to be used as a chemistry learning supplement book.

  2. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs.

  3. Use of On-Site GC/MS Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    DTIC Science & Technology

    2013-11-01

    Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones , PAHs, Haloethers, Chlorinated...SW 8270), Nitrosamines (SW 8270), Nitroaromatics & Cyclic Ketones (SW 8270), PAHs (SW 8270), Haloethers (SW 8270), Chlorinated Hydrocarbons (SW 8270...alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT,Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde

  4. General synthesis of C-glycosyl amino acids via proline-catalyzed direct electrophilic alpha-amination of C-glycosylalkyl aldehydes.

    PubMed

    Nuzzi, Andrea; Massi, Alessandro; Dondoni, Alessandro

    2008-10-16

    Non-natural axially and equatorially linked C-glycosyl alpha-amino acids (glycines, alanines, and CH2-serine isosteres) with either S or R alpha-configuration were prepared by D- and L-proline-catalyzed (de >95%) alpha-amination of C-glycosylalkyl aldehydes using dibenzyl azodicarboxylate as the electrophilic reagent.

  5. Aromatic aldehyde-catalyzed gas-phase decarboxylation of amino acid anion via imine intermediate: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Xiang, Zhang

    2013-10-01

    It is generally appreciated that carbonyl compound can promote the decarboxylation of the amino acid. In this paper, we have performed the experimental and theoretical investigation into the gas-phase decarboxylation of the amino acid anion catalyzed by the aromatic aldehyde via the imine intermediate on the basis of the tandem mass spectrometry (MS/MS) technique and density functional theory (DFT) calculation. The results show that the aromatic aldehyde can achieve a remarkable catalytic effect. Moreover, the catalytic mechanism varies according to the type of amino acid: (i) The decarboxylation of α-amino acid anion is determined by the direct dissociation of the Csbnd C bond adjacent to the carboxylate, for the resulting carbanion can be well stabilized by the conjugation between α-carbon, Cdbnd N bond and benzene ring. (ii) The decarboxylation of non-α-amino acid anion proceeds via a SN2-like transition state, in which the dissociation of the Csbnd C bond adjacent to the carboxylate and attacking of the resulting carbanion to the Cdbnd N bond or benzene ring take place at the same time. Specifically, for β-alanine, the resulting carbanion preferentially attacks the benzene ring leading to the benzene anion, because attacking the Cdbnd N bond in the decarboxylation can produce the unstable three or four-membered ring anion. For the other non-α-amino acid anion, the Cdbnd N bond preferentially participates in the decarboxylation, which leads to the pediocratic nitrogen anion.

  6. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkylmore » esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.« less

  7. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    PubMed

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. © FASEB.

  8. An anionic rhodium eta4-quinonoid complex as a multifunctional catalyst for the arylation of aldehydes with arylboronic acids.

    PubMed

    Son, Seung Uk; Kim, Sang Bok; Reingold, Jeffrey A; Carpenter, Gene B; Sweigart, Dwight A

    2005-09-07

    The pi-bonded rhodium quinonoid complex, K+[(1,4-benzoquinone)Rh(COD)]-, functions as a good catalyst for the coupling of arylboronic acid and aldehydes to afford diaryl alcohols. The catalysis is heterobimetallic in that both the transition metal and concomitant alkali metal counterion play an integral part in the reaction. In addition, the anionic quinonoid catalyst itself plays a bifunctional role by acting as a ligand to the boronic acid and as a Lewis acid receptor site for the transferring aryl group.

  9. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1980-01-01

    Discusses analytical methods selected from current research articles. Groups information by topics of general interest, including acids, aldehydes and ketones, nitro compounds, phenols, and thiols. Cites 97 references. (CS)

  10. Bioenvironmental Engineer’s Guide to TVA-1000B Toxic Vapor Analyzer

    DTIC Science & Technology

    2014-01-01

    chemicals including aromatics, unsaturated chlorinated hydrocarbons, aldehydes , ketones , ethylene oxide, hydrogen sulfide, and glycol ether solvents. The...Dimethoxyethane 9.65 Diethyl ketone 9.32 Ethyl amine 8.86 1,1-Dimethylhydrazine 7.28 Diethyl sulfide 8.43 Ethyl benzene 8.76 1,2-Dibromoethene 9.45...Chemical IP (eV) Chemical IP (eV) Chemical IP (eV) Freon 13 (chlorotrifluoromethane) 12.91 Isobutyric acid 10.02 Methyl butyl ketone 9.34

  11. Colorimetric monitoring of solid-phase aldehydes using 2,4-dinitrophenylhydrazine.

    PubMed

    Shannon, Simon K; Barany, George

    2004-01-01

    A simple and rapid method to achieve colorimetric monitoring of resin-bound aldehydes, based on ambient temperature reaction with 2,4-dinitrophenylhydrazine (DNPH) in the presence of dilute acid, has been developed as an adjunct to solid-phase organic synthesis and combinatorial chemistry. By this test, the presence of aldehydes is indicated by a red to dark-orange appearance, within a minute. Alternatively, resins that are free of aldehydes or in which aldehyde functions have reacted completely retain their original color. The DNPH test was demonstrated for poly(ethylene glycol)-polystyrene (PEG-PS), aminomethyl polystyrene (AMP), cross-linked ethoxylate acrylate resin (CLEAR), and acryloylated O,O'-bis(2-aminopropyl)poly(ethylene glycol) (PEGA) supports and gave results visible to the naked eye at levels as low as 18 micromol of aldehyde per gram of resin.

  12. Raspberry Ketone

    MedlinePlus

    ... raspberry ketone solution to the scalp might increase hair growth in people with hair loss. Male pattern baldness ( ... raspberry ketone solution to the scalp might increase hair growth in people with male pattern baldness Obesity. Early ...

  13. Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation.

    PubMed

    Bueno, Mónica; Carrascón, Vanesa; Ferreira, Vicente

    2016-01-27

    Twenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.

  14. Different specificities of two aldehyde dehydrogenases from Saccharomyces cerevisiae var. boulardii.

    PubMed

    Datta, Suprama; Annapure, Uday S; Timson, David J

    2017-04-30

    Aldehyde dehydrogenases play crucial roles in the detoxification of exogenous and endogenous aldehydes by catalysing their oxidation to carboxylic acid counterparts. The present study reports characterization of two such isoenzymes from the yeast Saccharomyces cerevisiae var. boulardii (NCYC 3264), one mitochondrial (Ald4p) and one cytosolic (Ald6p). Both Ald4p and Ald6p were oligomeric in solution and demonstrated positive kinetic cooperativity towards aldehyde substrates. Wild-type Ald6p showed activity only with aliphatic aldehydes. Ald4p, on the contrary, showed activity with benzaldehyde along with a limited range of aliphatic aldehydes. Inspection of modelled structure of Ald6p revealed that a bulky amino acid residue (Met 177 , compared with the equivalent residue Leu 196 in Ald4p) might cause steric hindrance of cyclic substrates. Therefore, we hypothesized that specificities of the two isoenzymes towards aldehyde substrates were partly driven by steric hindrance in the active site. A variant of wild-type Ald6p with the Met 177 residue replaced by a valine was also characterized to address to the hypothesis. It showed an increased specificity range and a gain of activity towards cyclohexanecarboxaldehyde. It also demonstrated an increased thermal stability when compared with both the wild-types. These data suggest that steric bulk in the active site of yeast aldehyde dehydrogenases is partially responsible for controlling specificity. © 2017 The Author(s).

  15. Advanced selective non-invasive ketone body detection sensors based on new ionophores

    NASA Astrophysics Data System (ADS)

    Sathyapalan, A.; Sarswat, P. K.; Zhu, Y.; Free, M. L.

    2014-12-01

    New molecules and methods were examined that can be used to detect trace level ketone bodies. Diseases such as type 1 diabetes, childhood hypo-glycaemia-growth hormone deficiency, toxic inhalation, and body metabolism changes are linked with ketone bodies concentration. Here we introduce, selective ketone body detection sensors based on small, environmentally friendly organic molecules with Lewis acid additives. Density functional theory (DFT) simulation of the sensor molecules (Bromo-acetonaphthone tungstate (BANT) and acetonaphthophenyl ether propiono hydroxyl tungstate (APPHT)), indicated a fully relaxed geometry without symmetry attributes and specific coordination which enhances ketone bodies sensitivity. A portable sensing unit was made in which detection media containing ketone bodies at low concentration and new molecules show color change in visible light as well as unique irradiance during UV illumination. RGB analysis, electrochemical tests, SEM characterization, FTIR, absorbance and emission spectroscopy were also performed in order to validate the ketone sensitivity of these new molecules.

  16. Acid-degradable and bioerodible modified polyhydroxylated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frechet, Jean M. J.; Bachelder, Eric M.; Beaudette, Tristan T.

    Compositions and methods of making a modified polyhydroxylated polymer comprising a polyhydroxylated polymer having reversibly modified hydroxyl groups, whereby the hydroxyl groups are modified by an acid-catalyzed reaction between a polydroxylated polymer and a reagent such as acetals, aldehydes, vinyl ethers and ketones such that the modified polyhydroxylated polymers become insoluble in water but freely soluble in common organic solvents allowing for the facile preparation of acid-sensitive materials. Materials made from these polymers can be made to degrade in a pH-dependent manner. Both hydrophobic and hydrophilic cargoes were successfully loaded into particles made from the present polymers using single andmore » double emulsion techniques, respectively. Due to its ease of preparation, processability, pH-sensitivity, and biocompatibility, of the present modified polyhydroxylated polymers should find use in numerous drug delivery applications.« less

  17. RP-HPLC-fluorescence analysis of aliphatic aldehydes: application to aldehyde-generating enzymes HACL1 and SGPL1

    PubMed Central

    Mezzar, Serena; de Schryver, Evelyn; Van Veldhoven, Paul P.

    2014-01-01

    Long-chain aldehydes are commonly produced in various processes, such as peroxisomal α-oxidation of long-chain 3-methyl-branched and 2-hydroxy fatty acids and microsomal breakdown of phosphorylated sphingoid bases. The enzymes involved in the aldehyde-generating steps of these processes are 2-hydroxyacyl-CoA lyase (HACL1) and sphingosine-1-phosphate lyase (SGPL1), respectively. In the present work, nonradioactive assays for these enzymes were developed employing the Hantzsch reaction. Tridecanal (C13-al) and heptadecanal (C17-al) were selected as model compounds and cyclohexane-1,3-dione as 1,3-diketone, and the fluorescent derivatives were analyzed by reversed phase (RP)-HPLC. Assay mixture composition, as well as pH and heating, were optimized for C13-al and C17-al. Under optimized conditions, these aldehydes could be quantified in picomolar range and different long-chain aldehyde derivatives were well resolved with a linear gradient elution by RP-HPLC. Aldehydes generated by recombinant enzymes could easily be detected via this method. Moreover, the assay allowed to document activity or deficiency in tissue homogenates and fibroblast lysates without an extraction step. In conclusion, a simple, quick, and cheap assay for the study of HACL1 and SGPL1 activities was developed, without relying on expensive mass spectrometric detectors or radioactive substrates. PMID:24323699

  18. Mechanisms of aldehyde-induced adenosinetriphosphatase activities of kinases.

    PubMed

    Rendina, A R; Cleland, W W

    1984-10-23

    presence of keto or aldehyde analogues (N-methylhydantoic acid, D-glyceraldehyde 3-phosphate, and acetaldehyde, respectively), possibly because of the absence of an acid-base catalytic group in the latter two cases. These analogues were competitive inhibitors vs. the normal substrates, and in the latter case, the hydrate of acetaldehyde was shown to be the inhibitory species on the basis of the deuterium isotope effect on the inhibition constant.

  19. Ketone body metabolism and its defects.

    PubMed

    Fukao, Toshiyuki; Mitchell, Grant; Sass, Jörn Oliver; Hori, Tomohiro; Orii, Kenji; Aoyama, Yuka

    2014-07-01

    Acetoacetate (AcAc) and 3-hydroxybutyrate (3HB), the two main ketone bodies of humans, are important vectors of energy transport from the liver to extrahepatic tissues, especially during fasting, when glucose supply is low. Blood total ketone body (TKB) levels should be evaluated in the context of clinical history, such as fasting time and ketogenic stresses. Blood TKB should also be evaluated in parallel with blood glucose and free fatty acids (FFA). The FFA/TKB ratio is especially useful for evaluation of ketone body metabolism. Defects in ketogenesis include mitochondrial HMG-CoA synthase (mHS) deficiency and HMG-CoA lyase (HL) deficiency. mHS deficiency should be considered in non-ketotic hypoglycemia if a fatty acid beta-oxidation defect is suspected, but cannot be confirmed. Patients with HL deficiency can develop hypoglycemic crises and neurological symptoms even in adolescents and adults. Succinyl-CoA-3-oxoacid CoA transferase (SCOT) deficiency and beta-ketothiolase (T2) deficiency are two defects in ketolysis. Permanent ketosis is pathognomonic for SCOT deficiency. However, patients with "mild" SCOT mutations may have nonketotic periods. T2-deficient patients with "mild" mutations may have normal blood acylcarnitine profiles even in ketoacidotic crises. T2 deficient patients cannot be detected in a reliable manner by newborn screening using acylcarnitines. We review recent data on clinical presentation, metabolite profiles and the course of these diseases in adults, including in pregnancy.

  20. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    PubMed

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  1. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis

    PubMed Central

    Stiti, Naim; Missihoun, Tagnon D.; Kotchoni, Simeon O.; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected Arabidopsis ALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities. PMID:22639603

  2. Organic chemistry. Functionalization of C(sp3)-H bonds using a transient directing group.

    PubMed

    Zhang, Fang-Lin; Hong, Kai; Li, Tuan-Jie; Park, Hojoon; Yu, Jin-Quan

    2016-01-15

    Proximity-driven metalation has been extensively exploited to achieve reactivity and selectivity in carbon-hydrogen (C-H) bond activation. Despite the substantial improvement in developing more efficient and practical directing groups, their stoichiometric installation and removal limit efficiency and, often, applicability as well. Here we report the development of an amino acid reagent that reversibly reacts with aldehydes and ketones in situ via imine formation to serve as a transient directing group for activation of inert C-H bonds. Arylation of a wide range of aldehydes and ketones at the β or γ positions proceeds in the presence of a palladium catalyst and a catalytic amount of amino acid. The feasibility of achieving enantioselective C-H activation reactions using a chiral amino acid as the transient directing group is also demonstrated. Copyright © 2016, American Association for the Advancement of Science.

  3. Essential Oils in Foods: From Ancient Times to the 21st Century.

    PubMed

    Sendra, Esther

    2016-06-14

    Medicinal plants and culinary herbs have been used since ancient times. Essential oils (EO) are a mixture of numerous compounds, mainly terpenes, alcohols, acids, esters, epoxides, aldehydes, ketones,aminesandsulfides,thatareprobablyproducedbyplantsasaresponsetostress[1].[...].

  4. Influences of the chemical structure of entrainers on the activity coefficients in presence of biodiesel

    NASA Astrophysics Data System (ADS)

    Mäder, A.; Fleischmann, A.; Fang, Ye; Ruck, W.; Krahl, J.

    2012-05-01

    In this work we analyzed the strength of the intermolecular forces between biodiesel and the entrainer and their influence on the entrainer's ability to interact with biodiesel. Furthermore we investigated the influence of the chemical structure of an entrainer to the interaction with biodiesel. For this purpose the activity coefficients γ∞ at infinite dilution of acids, aldehydes, ketones and alcohols in biodiesel were measured with the method of headspace gas chromatography (HSGC). Short-chained acids showed the highest interaction of the analyzed entrainers caused by their ability to build hydrogen bonds with biodiesel. Increased chain length of the acids cause reduced interaction with biodiesel, which is mainly due to the higher obstruction of the acid molecule and therefore the reduced ability to build hydrogen bonds with biodiesel. Aldehydes, ketones and alcohols showed lower interaction with biodiesel compared to the acids. Longer-chained alcohols showed increased interaction with biodiesel due to the raised London Forces and an inductive +I effect of the molecule chain.

  5. Versatile Alkylation of (Hetero)Aryl Iodides with Ketones via β-C(sp3)-H Activation.

    PubMed

    Zhu, Ru-Yi; Liu, Luo-Yan; Park, Han Seul; Hong, Kai; Wu, Yongwei; Senanayake, Chris H; Yu, Jin-Quan

    2017-11-15

    We report Pd(II)-catalyzed β-C(sp 3 )-H (hetero)arylation of a variety of ketones using a commercially available 2,2-dimethyl aminooxyacetic acid auxiliary. Facile installation and removal of the auxiliary as well as its superior scope for both ketones and (hetero)aryl iodides overcome the significant limitations of the previously reported β-C(sp 3 )-H arylation of ketones. The ready availability of ketones renders this reaction a broadly useful method for alkyl-(hetero)aryl coupling involving both primary and secondary alkyls.

  6. Ketonization of Cuphea oil for the production of 2-undecanone

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to demonstrate the viability of the cross ketonization reaction with the triacylglycerol from Cuphea sp. and acetic acid in a fixed-bed plug-flow reactor. The seed oil from Cuphea sp. contains up to 71% decanoic acid and the reaction of this fatty acid residue with ac...

  7. ELASTIN: DIMINISHED REACTIVITY WITH ALDEHYDE REAGENTS IN COPPER DEFICIENCY AND LATHYRISM

    PubMed Central

    Miller, E. J.; Fullmer, Harold M.

    1966-01-01

    Elastin fibers in the aortas of control, lathyritic, copper-supplemented, and copper-deficient chicks were examined histochemically and chemically for aldehyde content. Diminished staining for aldehydes was obtained in the fibers from the aortas of lathyritic and copper-deficient chicks. Chemical studies of elastin isolated from the aortas of control and lathyritic chicks showed an apparent loss of lysine residues in control elastin to be associated with an increase in aldehyde content providing evidence that lysine is converted to an aldehyde-containing intermediate during biosynthesis of desmosine and isodesmosine. Approximately 6 aldehyde groups were present for every 1000 amino acids in elastin isolated from the aortas of control animals, while the corresponding number in lathyritic elastin was 4. At least two types of aldehydes, saturated and α,β-unsaturated, appear to be associated with elastin, suggesting the presence of more than one intermediate between lysine and the desmosines. PMID:5941783

  8. Measurements of Oxygenated Organic Chemicals In the Pacific Troposphere During TRACE-P: Higher Aldehydes (less than C(sub 1)), Their Sources, and Potential Role In Atmospheric Oxidation

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, L.; Herlth, D.; Viezee, W.; Fried, A.; Jackob, D.; Blake, D.; Heikes, B.; Talbot, R.; Sachse, G.; hide

    2002-01-01

    Airborne measurements of a large number of oxygenated organics were carried out in the Pacific troposphere (to 12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measurements included acetaldehyde, propanaldehyde, acetone, methylethyl ketone, methanol, ethanol, PAM and organic nitrates. Independent measurements of formaldehyde, peroxides, and tracers were also available. Highly polluted as well as pristine air masses were sampled. Oxygenated organics were abundant in the clean In troposphere and were greatly enhanced in the outflow regions from Asia. Extremely high concentrations of aldehydes could be measured in the troposphere. It is not possible to explain the large abundances of aldehydes in the background troposphere without invoking significant oceanic sources. A strong correlation between the observed mixing ratios of formaldehyde and acetaldehyde is present. We infer that higher aldehydes (such as acetaldehyde and propanaldehyde) may provide a large source of formaldehyde and sequester Cox throughout the troposphere. The atmospheric behavior of acetone, methylethyl ketone, and methanol is generally indicative of their common terrestrial sources with a Image contribution from biomass/biofuel burning. A vast body of data has been collected and it is being analyzed both statistically and with the help of models to better understand the role that oxygenated organics play in the atmosphere and to unravel their sources and sinks. These results will be presented.

  9. Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds.

    PubMed

    Neary, Michelle C; Parkin, Gerard

    2015-03-01

    The cyclopentadienyl molybdenum hydride compounds, Cp R Mo(PMe 3 ) 3- x (CO) x H (Cp R = Cp, Cp*; x = 0, 1, 2 or 3), are catalysts for the dehydrogenation of formic acid, with the most active catalysts having the composition Cp R Mo(PMe 3 ) 2 (CO)H. The mechanism of the catalytic cycle is proposed to involve (i) protonation of the molybdenum hydride complex, (ii) elimination of H 2 and coordination of formate, and (iii) decarboxylation of the formate ligand to regenerate the hydride species. NMR spectroscopy indicates that the nature of the resting state depends on the composition of the catalyst. For example, (i) the resting states for the CpMo(CO) 3 H and CpMo(PMe 3 )(CO) 2 H systems are the hydride complexes themselves, (ii) the resting state for the CpMo(PMe 3 ) 3 H system is the protonated species [CpMo(PMe 3 ) 3 H 2 ] + , and (iii) the resting state for the CpMo(PMe 3 ) 2 (CO)H system is the formate complex, CpMo(PMe 3 ) 2 (CO)(κ 1 -O 2 CH), in the presence of a high concentration of formic acid, but CpMo(PMe 3 ) 2 (CO)H when the concentration of acid is low. While CO 2 and H 2 are the principal products of the catalytic reaction induced by Cp R Mo(PMe 3 ) 3- x (CO) x H, methanol and methyl formate are also observed. The generation of methanol is a consequence of disproportionation of formic acid, while methyl formate is a product of subsequent esterification. The disproportionation of formic acid is a manifestation of a transfer hydrogenation reaction, which may also be applied to the reduction of aldehydes and ketones. Thus, CpMo(CO) 3 H also catalyzes the reduction of a variety of ketones and aldehydes to alcohols by formic acid, via a mechanism that involves ionic hydrogenation.

  10. [Effect of phenolic ketones on ethanol fermentation and cellular lipid composition of Pichia stipitis].

    PubMed

    Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan

    2016-02-01

    Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery.

  11. Ketone Bodies in Epilepsy

    PubMed Central

    McNally, Melanie A.; Hartman, Adam L.

    2014-01-01

    Seizures that are resistant to standard medications remain a major clinical problem. One underutilized option for patients with medication-resistant seizures is the high-fat, low-carbohydrate ketogenic diet. The diet received its name based on the observation that patients consuming this diet produce ketone bodies (e.g., acetoacetate, β-hydroxybutyrate, and acetone). Although the exact mechanisms of the diet are unknown, ketone bodies have been hypothesized to contribute to the anticonvulsant and antiepileptic effects. In this review, anticonvulsant properties of ketone bodies and the ketogenic diet are discussed (including GABAergic and glutamatergic effects). Because of the importance of ketone body metabolism in the early stages of life, the effects of ketone bodies on developing neurons in vitro also are discussed. Understanding how ketone bodies exert their effects will help optimize their use in treating epilepsy and other neurological disorders. PMID:22268909

  12. Metal-free one-pot oxidative amination of aldehydes to amides.

    PubMed

    Ekoue-Kovi, Kekeli; Wolf, Christian

    2007-08-16

    Metal-free oxidative amination of aromatic aldehydes in the presence of TBHP provides convenient access to amides in 85-99% under mild reaction conditions within 5 h. This method avoids free carboxylic acid intermediates and integrates aldehyde oxidation and amide bond formation, which are usually accomplished separately, into a single operation. Proline-derived amides can be prepared in excellent yields without noticeable racemization.

  13. Oxidation of C18 Hydroxy-Polyunsaturated Fatty Acids to Epoxide or Ketone by Catalase-Related Hemoproteins Activated with Iodosylbenzene.

    PubMed

    Teder, Tarvi; Boeglin, William E; Brash, Alan R

    2017-07-01

    Small catalase-related hemoproteins with a facility to react with fatty acid hydroperoxides were examined for their potential mono-oxygenase activity when activated using iodosylbenzene. The proteins tested were a Fusarium graminearum 41 kD catalase hemoprotein (Fg-cat, gene FGSG_02217), a Pseudomonas fluorescens Pfl01 catalase (37.5 kD, accession number WP_011333788.1), and a Mycobacterium avium ssp. paratuberculosis 33 kD catalase (gene MAP-2744c). 13-Hydroxy-octadecenoic acids (which are normally unreactive) were selected as substrates because these enzymes react specifically with the corresponding 13S-hydroperoxides (Pakhomova et al. 18:2559-2568, 5; Teder et al. 1862:706-715, 14). In the presence of iodosylbenzene Fg-cat converted 13S-hydroxy-fatty acids to two products: the 15,16-double bond of 13S-hydroxy α-linolenic acid was oxidized stereospecifically to the 15S,16R-cis-epoxide or the 13-hydroxyl was oxidized to the 13-ketone. Products were identified by UV, HPLC, LC-MS, NMR and by comparison with authentic standards prepared for this study. The Pfl01-cat displayed similar activity. MAP-2744c oxidized 13S-hydroxy-linoleic acid to the 13-ketone, and epoxidized the double bonds to form the 9,10-epoxy-13-hydroxy, 11,12-epoxy-13-hydroxy, and 9,10-epoxy-13-keto derivatives; equivalent transformations occurred with 9S-hydroxy-linoleic acid as substrate. In parallel incubations in the presence of iodosylbenzene, human catalase displayed no activity towards 13S-hydroxy-linoleic acid, as expected from the highly restricted access to its active site. The results indicated that with suitable transformation to Compound I, monooxygenase activity can be demonstrated by these catalase-related hemoproteins with tyrosine as the proximal heme ligand.

  14. Aliphatic C-C Bond Cleavage in α-Hydroxy Ketones by a Dioxygen-Derived Nucleophilic Iron-Oxygen Oxidant.

    PubMed

    Bhattacharya, Shrabanti; Rahaman, Rubina; Chatterjee, Sayanti; Paine, Tapan K

    2017-03-17

    A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O 2 , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product. Furthermore, the iron(II) complex cleaves an aliphatic C-C bond of 17-α-hydroxyprogesterone affording androstenedione and acetic acid. The O 2 -dependent aliphatic C-C bond cleavage of α-hydroxy ketones containing no α-C-H bond bears similarity to the lyase activity of the heme enzyme, cytochrome P450 17A1 (CYP17A1). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ketonization of Model Pyrolysis Oil Solutions in a Plug Flow Reactor over a Composite Oxide of Fe, Ce, and Al

    USDA-ARS?s Scientific Manuscript database

    The stabilization and upgrading of pyrolysis oil requires the neutralization of the acidic components of the oil. The conversion of small organic acids, particularly acetic acid, to ketones is one approach to addressing the instability of the oils caused by low pH. In the ketonization reaction, acet...

  16. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  17. Monocarboxylate transporter 1 deficiency and ketone utilization.

    PubMed

    van Hasselt, Peter M; Ferdinandusse, Sacha; Monroe, Glen R; Ruiter, Jos P N; Turkenburg, Marjolein; Geerlings, Maartje J; Duran, Karen; Harakalova, Magdalena; van der Zwaag, Bert; Monavari, Ardeshir A; Okur, Ilyas; Sharrard, Mark J; Cleary, Maureen; O'Connell, Nuala; Walker, Valerie; Rubio-Gozalbo, M Estela; de Vries, Maaike C; Visser, Gepke; Houwen, Roderick H J; van der Smagt, Jasper J; Verhoeven-Duif, Nanda M; Wanders, Ronald J A; van Haaften, Gijs

    2014-11-13

    Ketoacidosis is a potentially lethal condition caused by the imbalance between hepatic production and extrahepatic utilization of ketone bodies. We performed exome sequencing in a patient with recurrent, severe ketoacidosis and identified a homozygous frameshift mutation in the gene encoding monocarboxylate transporter 1 (SLC16A1, also called MCT1). Genetic analysis in 96 patients suspected of having ketolytic defects yielded seven additional inactivating mutations in MCT1, both homozygous and heterozygous. Mutational status was found to be correlated with ketoacidosis severity, MCT1 protein levels, and transport capacity. Thus, MCT1 deficiency is a novel cause of profound ketoacidosis; the present work suggests that MCT1-mediated ketone-body transport is needed to maintain acid-base balance.

  18. Microbial Engineering for Aldehyde Synthesis

    PubMed Central

    Kunjapur, Aditya M.

    2015-01-01

    Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity. PMID:25576610

  19. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity.

    PubMed

    Wang, Han-Yu; Xiao, Di-Fan; Zhou, Chang; Wang, Lin-Lu; Wu, Lan; Lu, Ya-Ting; Xiang, Quan-Ju; Zhao, Ke; Li, Xi; Ma, Meng -Gen

    2017-06-01

    The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.

  20. Laboratory studies of Aedes aegypti (L.) attraction to ketones, sulfides and primary chloroalkanes tested alone and in combination with l-lactic acid

    USDA-ARS?s Scientific Manuscript database

    The attraction of female Aedes aegypti to single compounds and binary compositions comprised of L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because o...

  1. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    NASA Astrophysics Data System (ADS)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiation(1-7 kGy) and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC.

  2. Further Insights on the Chemical Structure of Humic Substances (HS) and Chromophoric Dissolved Organic Matter (CDOM) in Relation to their Optical/Chemical Properties

    NASA Astrophysics Data System (ADS)

    Del Vecchio, R.; Schendorf, T. M.; Koech, K.; Blough, N. V.

    2016-02-01

    HS have been studied extensively over the last decades, yet the structural basis of their optical properties is still highly debated. Aromatic ketones, aldehydes and quinones along with carboxylic groups and phenolic moieties are significant constituents of HS, however their contribution to the optical properties has only recently been investigated. Chemical manipulation of selected functional groups thus represents an extremely promising approach to highlight the contribution of such groups to the HS (and CDOM) optical properties. Chemical reduction (and re-oxidation) along with pH titrations are employed herein to assess the relative contribution of aromatic ketones/aldehydes/quinones and carboxylic groups/phenolic moieties, respectively to the optical properties of HS (and CDOM). Results indicate that (a) the contribution of quinones to HS absorption and fluorescence is minor (or nil), while that of aromatic ketones (and aldehydes) is significant; (b) phenolic groups contribute more than carboxylic acids to the HS optical properties; (c) the effects of borohydride reduction and pH on the long-wavelength absorption and fluorescence is consistent with charge-transfer interactions between carbonyl and phenolic groups (as well as aromatic carboxylic acids, but to a smaller extent). Results will be presented within the context of our proposed charge-transfer model.

  3. Molecular Innovations Toward Theranostics of Aggressive Prostate Cancer

    DTIC Science & Technology

    2016-09-01

    conjugation to drugs In preparation 4 Scope and limitations of ligation of peptides bearing an aldehyde or ketone group with dendrimers displaying...that triazinylhydrazine condense with the carbonyl groups of aldehydes and ketones . The intrinsic advantage of using a triazine comes with the...reacts efficiently with simple aldehydes and ketones , and with bioactives including the drug doxorubicin and bruceantin. Peptides bearing an N

  4. Ketone bodies in epilepsy.

    PubMed

    McNally, Melanie A; Hartman, Adam L

    2012-04-01

    Seizures that are resistant to standard medications remain a major clinical problem. One underutilized option for patients with medication-resistant seizures is the high-fat, low-carbohydrate ketogenic diet. The diet received its name based on the observation that patients consuming this diet produce ketone bodies (e.g., acetoacetate, β-hydroxybutyrate, and acetone). Although the exact mechanisms of the diet are unknown, ketone bodies have been hypothesized to contribute to the anticonvulsant and antiepileptic effects. In this review, anticonvulsant properties of ketone bodies and the ketogenic diet are discussed (including GABAergic and glutamatergic effects). Because of the importance of ketone body metabolism in the early stages of life, the effects of ketone bodies on developing neurons in vitro also are discussed. Understanding how ketone bodies exert their effects will help optimize their use in treating epilepsy and other neurological disorders. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  5. Dynamic spiking studies using the DNPH sampling train

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steger, J.L.; Knoll, J.E.

    1996-12-31

    The proposed aldehyde and ketone sampling method using aqueous 2,4-dinitrophenylhydrazine (DNPH) was evaluated in the laboratory and in the field. The sampling trains studied were based on the train described in SW 846 Method 0011. Nine compounds were evaluated: formaldehyde, acetaldehyde, quinone, acrolein, propionaldeyde, methyl isobutyl ketone, methyl ethyl ketone, acetophenone, and isophorone. In the laboratory, the trains were spiked both statistically and dynamically. Laboratory studies also investigated potential interferences to the method. Based on their potential to hydrolyze in acid solution to form formaldehyde, dimethylolurea, saligenin, s-trioxane, hexamethylenetetramine, and paraformaldehyde were investigated. Ten runs were performed using quadruplicate samplingmore » trains. Two of the four trains were dynamically spiked with the nine aldehydes and ketones. The test results were evaluated using the EPA method 301 criteria for method precision (< + pr - 50% relative standard deviation) and bias (correction factor of 1.00 + or - 0.30).« less

  6. Campholenic aldehyde ozonolysis: a mechanism leading to specific biogenic secondary organic aerosol constituents

    NASA Astrophysics Data System (ADS)

    Kahnt, A.; Iinuma, Y.; Mutzel, A.; Böge, O.; Claeys, M.; Herrmann, H.

    2014-01-01

    In the present study, campholenic aldehyde ozonolysis was performed to investigate pathways leading to specific biogenic secondary organic aerosol (SOA) marker compounds. Campholenic aldehyde, a known α-pinene oxidation product, is suggested to be a key intermediate in the formation of terpenylic acid upon α-pinene ozonolysis. It was reacted with ozone in the presence and absence of an OH radical scavenger, leading to SOA formation with a yield of 0.75 and 0.8, respectively. The resulting oxidation products in the gas and particle phases were investigated employing a denuder/filter sampling combination. Gas-phase oxidation products bearing a carbonyl group, which were collected by the denuder, were derivatised by 2,4-dinitrophenylhydrazine (DNPH) followed by liquid chromatography/negative ion electrospray ionisation time-of-flight mass spectrometry analysis and were compared to the gas-phase compounds detected by online proton-transfer-reaction mass spectrometry. Particle-phase products were also analysed, directly or after DNPH derivatisation, to derive information about specific compounds leading to SOA formation. Among the detected compounds, the aldehydic precursor of terpenylic acid was identified and its presence was confirmed in ambient aerosol samples from the DNPH derivatisation, accurate mass data, and additional mass spectrometry (MS2 and MS3 fragmentation studies). Furthermore, the present investigation sheds light on a reaction pathway leading to the formation of terpenylic acid, involving α-pinene, α-pinene oxide, campholenic aldehyde, and terpenylic aldehyde. Additionally, the formation of diaterpenylic acid acetate could be connected to campholenic aldehyde oxidation. The present study also provides insights into the source of other highly functionalised oxidation products (e.g. m / z 201, C9H14O5 and m / z 215, C10H16O5), which have been observed in ambient aerosol samples and smog chamber-generated monoterpene SOA. The m / z 201 and 215

  7. The Mars Organic Analyzer: Instrumentation and Methods for Detecting Trace Organic Molecules in our Solar System

    NASA Astrophysics Data System (ADS)

    Stockton, A. M.; Kim, J.; Willis, P. A.; Lillis, R.; Amundson, R.; Beegle, L.; Butterworth, A.; Curtis, D.; Ehrenfreund, P.; Grunthaner, F.; Hazen, R.; Kaiser, R.; Ludlam, M.; Mora, M. F.; Scherer, J.; Turin, P.; Welten, K.; Williford, K.; Mathies, R. A.

    2014-07-01

    Mars Organic Analyzer was designed to give the Mars 2020 Mission capability to look for organic molecules, including amines, aldehydes, ketones, organic acids, thiols and polycyclic aromatic hydrocarbons, in martian samples with sub-ppb sensitivity.

  8. ACUTE TOXICITY OF SELECTED ORGANIC COMPOUNDS TO FATHEAD MINNOWS

    EPA Science Inventory

    Static nonrenewal laboratory bioassays were conducted with 26 organic compounds commonly used by industry. The selected compounds represented the five following chemical classes: acids, alcohols, hydrocarbons, ketones and aldehydes, and phenols. Juvenile fathead minnows (Pimephal...

  9. Halogenated Explosives to Defeat Biological Agents

    DTIC Science & Technology

    2015-09-01

    The synthetic transformation of difluoramination of ketones by difluoramine (HNF2)29 is a specialized, hazardous process that is not likely to become...defluorination in triflic acid; even 4-(trifluoromethyl)propiophenone (ethyl phenyl ketone ) does not undergo C–F cleavage.45 The prospect of this...trifluoroacetaldehyde hydrate to generate trifluoroacet- aldehyde gas, which reacts with liquefied ammonia at low temperature. Upon warming, the hemiaminal

  10. EVALUATION OF METHODS FOR THE ISOLATION OR CONCENTRATION OF ORGANIC SUBSTANCES FROM WATER USING XAD-4 QUATERNARY RESIN

    EPA Science Inventory

    A synthetic resin (Amberlite XAD-4 Quaternary in the OH- form) was evaluated as an adsorption medium for the concentration/isolation of acids, amines, aldehydes, carbohydrates, chlorobiphenyls, esters, hydrocarbons, ketones, phenols, polynuclear aromatic hydrocarbons, and trihalo...

  11. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-01-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds.

  12. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization.

    PubMed

    Barman, Bhajendra N

    2014-01-31

    Carbonyl compounds, specifically aldehydes, present in amine catalysts or amines are determined by reversed-phase liquid chromatography using ultraviolet detection of their corresponding 2,4-dinitrophenylhydrazones. The primary focus has been to establish optimum conditions for determining aldehydes accurately because these add exposure concerns when the amine catalysts are used to manufacture polyurethane products. Concentrations of aldehydes determined by this method are found to vary with the pH of the aqueous amine solution and the derivatization time, the latter being problematic when the derivatization reaction proceeds slowly and not to completion in neutral and basic media. Accurate determination of aldehydes in amines through derivatization can be carried out at an effective solution pH of about 2 and with derivatization time of 20min. Hydrochloric acid has been used for neutralization of an amine. For complete derivatization, it is essential to protonate all nitrogen atoms in the amine. An approach for the determination of an adequate amount of acid needed for complete derivatization has been described. Several 0.2M buffer solutions varying in pH from 4 to 8 have also been used to make amine solutions for carrying out derivatization of aldehydes. These solutions have effective pHs of 10 or higher and provide much lower aldehyde concentrations compared to their true values. Mechanisms for the formation of 2,4-dinitrophenylhydrazones in both acidic and basic media are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effects of Schiff Base Formation and Aldol Condensation on the Determination of Aldehydes in Rice Wine Using GC-MS.

    PubMed

    Han, Ji Hye; Lee, Sang Mi; Kim, Young-Suk

    2017-04-11

    The Schiff base reaction and aldol condensation that occur during sample preparation can lead to the reduction of aldehyde content in the analysis of traditional Korean rice wine, makgeolli. The contents of aldehydes were decreased, whereas those of hydroxy carbonyl compounds were increased by increasing the pH. In the presence of added amino acids, the levels of aldehydes in makgeolli were reduced as the amount of the amino acid alanine increased. Also, the contents of hydroxyl carbonyl compounds were reduced by alanine addition as compared to the control. Therefore, the determination of aldehydes can be affected by pH and the amount of amino acids, which can vary during fermentation and storage of alcoholic beverages because pH and amino acids affect Schiff base formation and aldol condensation.

  14. Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible and Modular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands.

    PubMed

    Yu, Jianfei; Long, Jiao; Yang, Yuhong; Wu, Weilong; Xue, Peng; Chung, Lung Wa; Dong, Xiu-Qin; Zhang, Xumu

    2017-02-03

    A series of tridentate ferrocene-based amino-phosphine acid (f-Ampha) ligands have been successfully developed. The f-Ampha ligands are extremely air stable and exhibited excellent performance in the Ir-catalyzed asymmetric hydrogenation of ketones (full conversions, up to >99% ee, and 500 000 TON). DFT calculations were performed to elucidate the reaction mechanism and the importance of the -COOH group. Control experiments also revealed that the -COOH group played a key role in this reaction.

  15. Infrared and reflectron time-of-flight mass spectroscopic analysis of methane (CH4)-carbon monoxide (CO) ices exposed to ionization radiation--toward the formation of carbonyl-bearing molecules in extraterrestrial ices.

    PubMed

    Kaiser, Ralf I; Maity, Surajit; Jones, Brant M

    2014-02-28

    Ice mixtures of methane and carbon monoxide were exposed to ionizing radiation in the form of energetic electrons at 5.5 K to investigate the formation of carbonyl bearing molecules in extraterrestrial ices. The radiation induced chemical processing of the mixed ices along with their isotopically labeled counterparts was probed online and in situ via infrared spectroscopy (solid state) aided with reflectron time-of-flight mass spectrometry (ReTOFMS) coupled to single photon photoionization (PI) at 10.49 eV (gas phase). Deconvolution of the carbonyl absorption feature centered at 1727 cm(-1) in the processed ices and subsequent kinetic fitting to the temporal growth of the newly formed species suggests the formation of acetaldehyde (CH3CHO) together with four key classes of carbonyl-bearing molecules: (i) alkyl aldehydes, (ii) alkyl ketones, (iii) α,β-unsaturated ketones/aldehydes and (iv) α,β,γ,δ-unsaturated ketones/α,β-dicarbonyl compounds in keto-enol form. The mechanistical studies indicate that acetaldehyde acts as the key building block of higher aldehydes (i) and ketones (ii) with unsaturated ketones/aldehydes (iii) and/or α,β-dicarbonyl compounds (iv) formed from the latter. Upon sublimation of the newly synthesized molecules, ReTOFMS together with isotopic shifts of the mass-to-charge ratios was exploited to identify eleven product classes containing molecules with up to six carbon atoms, which can be formally derived from C1-C5 hydrocarbons incorporating up to three carbon monoxide building blocks. The classes are (i) saturated aldehydes/ketones, (ii) unsaturated aldehydes/ketones, (iii) doubly unsaturated aldehydes/ketones, (iv) saturated dicarbonyls (aldehydes/ketones), (v) unsaturated dicarbonyls (aldehydes/ketones), (vi) saturated tricarbonyls (aldehydes/ketones), molecules containing (vii) one carbonyl - one alcohol (viii), two carbonyls - one alcohol, (ix) one carbonyl - two alcohol groups along with (x) alcohols and (xi) diols. Reaction

  16. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes.

    PubMed

    Peng, Chiung-Yu; Lan, Cheng-Hang; Lin, Pei-Chen; Kuo, Yi-Chun

    2017-02-15

    Cooking oil fumes (COFs) contain a mixture of chemicals. Of all chemicals, aldehydes draw a great attention since several of them are considered carcinogenic and formation of long-chain aldehydes is related to fatty acids in cooking oils. The objectives of this research were to compare aldehyde compositions and concentrations in COFs produced by different cooking oils, cooking methods, and food types and to suggest better cooking practices. This study compared aldehydes in COFs produced using four cooking oils (palm oil, rapeseed oil, sunflower oil, and soybean oil), three cooking methods (stir frying, pan frying, and deep frying), and two foods (potato and pork loin) in a typical kitchen. Results showed the highest total aldehyde emissions in cooking methods were produced by deep frying, followed by pan frying then by stir frying. Sunflower oil had the highest emissions of total aldehydes, regardless of cooking method and food type whereas rapeseed oil and palm oil had relatively lower emissions. This study suggests that using gentle cooking methods (e.g., stir frying) and using oils low in unsaturated fatty acids (e.g., palm oil or rapeseed oil) can reduce the production of aldehydes in COFs, especially long-chain aldehydes such as hexanal and t,t-2,4-DDE. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS.

    PubMed

    Ramírez, María Rosario; Estévez, Mario; Morcuende, David; Cava, Ramón

    2004-12-15

    The effect of the type of frying culinary fat (olive oil, sunflower oil, butter, and pig lard) on volatile compounds isolated from fried pork loin chops (m. Longissimus dorsi) was measured by SPME-GC-MS. Frying modified the fatty acid composition of lipids from pork loin chops, which tended to be similar to that of the culinary fat used to fry. Volatile compounds formed from the oxidation of fatty acids increased, such as aldehydes, ketones, alcohols, and hydrocarbons. Besides, each culinary fat used modified the volatile profiles in fried meat differently. Sunflower oil-fried pork loin chops presented the highest aldehyde aliphatic content, probably due to their highest content of polyunsaturated acids. Hexanal, the most abundant aldehyde in fried samples, presented the most elevated content in sunflower oil-fried pork loin chops. In addition, these samples presented more heterocyclic compounds from the Maillard reaction than other fried samples. Volatiles detected in olive oil-fried pork loin chops were mainly lipid-derived compounds such as pentan-1-ol, hexanal, hept-2-enal, nonanal, decanal, benzaldehyde, and nonan-2-one. Butter-fried pork loins were abundant in ketones with a high number of carbons (heptan-2-one, nonan-2-one, undecan-2-one, tridecanone, and heptadecan-2-one). Pig lard-fried pork loin chops presented some Strecker aldehydes isolated in only these samples, such as 2-methylbutanal and 3-(methylthio)propanal, and a sulfur compound (dimethyl disulfide) related to Strecker aldehydes.

  18. One-Pot Synthesis of N-Substituted β-Amino Alcohols from Aldehydes and Isocyanides.

    PubMed

    Cioc, Răzvan C; van der Niet, Daan J H; Janssen, Elwin; Ruijter, Eelco; Orru, Romano V A

    2015-05-18

    A practical two-stage one-pot synthesis of N-substituted β-amino alcohols using aldehydes and isocyanides as starting materials has been developed. This method features mild reaction conditions, broad scope, and general tolerance of functional groups. Based on a less common central carbon-carbon bond disconnection, this protocol complements traditional approaches that involve amines and various carbon electrophiles (epoxides, α-halo ketones, β-halohydrins). Medicinally relevant products can be prepared in a concise and efficient way from simple building blocks, as demonstrated in the synthesis of the antiasthma drug salbutamol. Upgrading the synthesis to an enantioselective variant is also feasible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  20. The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo

    PubMed Central

    Chowdhury, Golam MI; Jiang, Lihong; Rothman, Douglas L; Behar, Kevin L

    2014-01-01

    The capacity of ketone bodies to replace glucose in support of neuronal function is unresolved. Here, we determined the contributions of glucose and ketone bodies to neocortical oxidative metabolism over a large range of brain activity in rats fasted 36 hours and infused intravenously with [2,4-13C2]-D-β-hydroxybutyrate (BHB). Three animal groups and conditions were studied: awake ex vivo, pentobarbital-induced isoelectricity ex vivo, and halothane-anesthetized in vivo, the latter data reanalyzed from a recent study. Rates of neuronal acetyl-CoA oxidation from ketone bodies (VacCoA-kbN) and pyruvate (VpdhN), and the glutamate-glutamine cycle (Vcyc) were determined by metabolic modeling of 13C label trapped in major brain amino acid pools. VacCoA-kbN increased gradually with increasing activity, as compared with the steeper change in tricarboxylic acid (TCA) cycle rate (VtcaN), supporting a decreasing percentage of neuronal ketone oxidation: ∼100% (isoelectricity), 56% (halothane anesthesia), 36% (awake) with the BHB plasma levels achieved in our experiments (6 to 13 mM). In awake animals ketone oxidation reached saturation for blood levels >17 mM, accounting for 62% of neuronal substrate oxidation, the remainder (38%) provided by glucose. We conclude that ketone bodies present at sufficient concentration to saturate metabolism provides full support of basal (housekeeping) energy needs and up to approximately half of the activity-dependent oxidative needs of neurons. PMID:24780902

  1. The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo.

    PubMed

    Chowdhury, Golam M I; Jiang, Lihong; Rothman, Douglas L; Behar, Kevin L

    2014-07-01

    The capacity of ketone bodies to replace glucose in support of neuronal function is unresolved. Here, we determined the contributions of glucose and ketone bodies to neocortical oxidative metabolism over a large range of brain activity in rats fasted 36 hours and infused intravenously with [2,4-(13)C₂]-D-β-hydroxybutyrate (BHB). Three animal groups and conditions were studied: awake ex vivo, pentobarbital-induced isoelectricity ex vivo, and halothane-anesthetized in vivo, the latter data reanalyzed from a recent study. Rates of neuronal acetyl-CoA oxidation from ketone bodies (V(acCoA-kbN)) and pyruvate (V(pdhN)), and the glutamate-glutamine cycle (V(cyc)) were determined by metabolic modeling of (13)C label trapped in major brain amino acid pools. V(acCoA-kbN) increased gradually with increasing activity, as compared with the steeper change in tricarboxylic acid (TCA) cycle rate (V(tcaN)), supporting a decreasing percentage of neuronal ketone oxidation: ∼100% (isoelectricity), 56% (halothane anesthesia), 36% (awake) with the BHB plasma levels achieved in our experiments (6 to 13 mM). In awake animals ketone oxidation reached saturation for blood levels >17 mM, accounting for 62% of neuronal substrate oxidation, the remainder (38%) provided by glucose. We conclude that ketone bodies present at sufficient concentration to saturate metabolism provides full support of basal (housekeeping) energy needs and up to approximately half of the activity-dependent oxidative needs of neurons.

  2. Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Charles P

    Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis Charles P. Casey, Principal Investigator Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706 Phone 608-262-0584 FAX: 608-262-7144 Email: casey@chem.wisc.edu http://www.chem.wisc.edu/main/people/faculty/casey.html Executive Summary. Our goal was to learn the intimate mechanistic details of reactions involved in homogeneous catalysis and to use the insight we gain to develop new and improved catalysts. Our work centered on the hydrogenation of polar functional groups such as aldehydes and ketones and on hydroformylation. Specifically, we concentrated on catalysts capable of simultaneously transferring hydride from a metal center and a proton frommore » an acidic oxygen or nitrogen center to an aldehyde or ketone. An economical iron based catalyst was developed and patented. Better understanding of fundamental organometallic reactions and catalytic processes enabled design of energy and material efficient chemical processes. Our work contributed to the development of catalysts for the selective and mild hydrogenation of ketones and aldehydes; this will provide a modern green alternative to reductions by LiAlH4 and NaBH4, which require extensive work-up procedures and produce waste streams. (C5R4OH)Ru(CO)2H Hydrogenation Catalysts. Youval Shvo described a remarkable catalytic system in which the key intermediate (C5R4OH)Ru(CO)2H (1) has an electronically coupled acidic OH unit and a hydridic RuH unit. Our efforts centered on understanding and improving upon this important catalyst for reduction of aldehydes and ketones. Our mechanistic studies established that the reduction of aldehydes by 1 to produce alcohols and a diruthenium bridging hydride species occurs much more rapidly than regeneration of the ruthenium hydride from the diruthenium bridging hydride species. Our mechanistic studies require simultaneous transfer of hydride from

  3. Facile preparation of oxazole-4-carboxylates and 4-ketones from aldehydes using 3-oxazoline-4-carboxylates as intermediates.

    PubMed

    Murai, Kenichi; Takahara, Yusuke; Matsushita, Tomoyo; Komatsu, Hideyuki; Fujioka, Hiromichi

    2010-08-06

    A novel 2-step synthesis of oxazole-4-carboxylates from aldehydes was developed, which is characterized by the utilization of 3-oxazoline-4-carboxylates as synthetic intermediates. The facile preparation of 4-keto-oxazole derivatives from 3-oxazoline-4-carboxylates based on their interesting reactivity toward Grignard reagents is also described.

  4. The rhodium catalyzed three-component reaction of diazoacetates, titanium(IV) alkoxides and aldehydes.

    PubMed

    Lu, Chong-Dao; Liu, Hui; Chen, Zhi-Yong; Hu, Wen-Hao; Mi, Ai-Qiao

    2005-05-28

    The rhodium(II)-catalyzed three-component reaction of diazoacetates, titanium alkoxides and aldehydes is shown to give alpha-alkoxyl-beta-hydroxyl acid derivatives; the novel C-C bond formation reaction is proposed to occur through oxonium ylides derived from diazo compounds and titanium alkoxides, and followed by intermolecular trapping by aldehydes.

  5. Ketones and Human Performance.

    PubMed

    Scott, Jonathan M; Deuster, Patricia A

    Everyone is seeking nutritional strategies that might benefit performance. One approach receiving much attention is ketones, or ketosis. Ketones are very simple compounds made of hydrogen, carbon, and oxygen, and ketosis is a metabolic state whereby the body uses predominantly ketones. Ketosis can be achieved by fasting for longer than 72 hours or by following a very lowcarbohydrate, high-fat diet (ketogenic diet) for several days to weeks. Alternatively, ketone supplements purportedly induce ketosis rapidly and do not require strict adherence to any specific type of diet; however, much of the touted benefits are anecdotal. A potential role for ketosis as a performance enhancer was first introduced in 1983 with the idea that chronic ketosis without caloric restriction could preserve submaximal exercise capability by sparing glycogen or conserving the limited carbohydrate stores. Few human studies on the effects of a ketogenic diet on performance have yielded positive results, and most studies have yielded equivocal or null results, and a few negative results. Many questions about ketones relevant to Special Operations Forces (SOF) remain unanswered. At present, a ketogenic diet and/or a ketone supplement do not appear confer performance benefits for SOF. Instead, Operators should engage with their unit dietitian to develop individualized nutritional strategies based on unique mission requirements. The authors review the concept of a ketogenic diet, describe some potential benefits and risks of ketosis, review the performance literature and how to measure ketone status, and then summarize the landscape in 2017. 2017.

  6. Campholenic aldehyde ozonolysis: a possible mechanism for the formation of specific biogenic secondary organic aerosol constituents

    NASA Astrophysics Data System (ADS)

    Kahnt, A.; Iinuma, Y.; Mutzel, A.; Böge, O.; Claeys, M.; Herrmann, H.

    2013-08-01

    In the present study, campholenic aldehyde ozonolysis was performed to investigate pathways leading to specific biogenic secondary organic aerosol (SOA) marker compounds. Campholenic aldehyde, a known α-pinene oxidation product, is suggested to be a key intermediate in the formation of terpenylic acid upon α-pinene ozonolysis. It was reacted with ozone in the presence and absence of an OH radical scavenger leading to SOA formation with a yield of 0.75 and 0.8, respectively. The resulting oxidation products in the gas and particle phases were investigated employing a denuder/filter sampling combination. Gas-phase oxidation products bearing a carbonyl group, which were collected by the denuder, were derivatised with 2,4-dinitrophenylhydrazine (DNPH) followed by Liquid Chromatography/negative ion Electrospray Ionisation Time-of-Flight Mass Spectrometry analysis and were compared to the gas-phase compounds detected by online Proton-Transfer-Reaction Mass Spectrometry. Particle-phase products were also analysed, directly or after DNPH derivatisation, to derive information about specific compounds leading to SOA formation. Among the detected compounds, the aldehydic precursor of terpenylic acid was identified and its presence was confirmed in ambient aerosol samples from the DNPH derivatisation, accurate mass data, and MS2 and MS3 fragmentation studies. Furthermore, the present investigation sheds light on a reaction pathway leading to the formation of terpenylic acid, involving α-pinene, α-pinene oxide, campholenic aldehyde, and terpenylic aldehyde. Additionally, the formation of diaterpenylic acid acetate could be connected to campholenic aldehyde oxidation. The present study also provides insights into the source of other highly functionalised oxidation products (e.g. m/z 201, C9H14O5 and m/z 215, C10H16O5), which have been observed in ambient aerosol samples and smog chamber-generated monoterpene SOA. The m/z 201 and 215 compounds were tentatively identified as a

  7. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.

    PubMed

    Rodriguez, Gabriel M; Atsumi, Shota

    2014-09-01

    Advances in synthetic biology and metabolic engineering have enabled the construction of novel biological routes to valuable chemicals using suitable microbial hosts. Aldehydes serve as chemical feedstocks in the synthesis of rubbers, plastics, and other larger molecules. Microbial production of alkanes is dependent on the formation of a fatty aldehyde intermediate which is converted to an alkane by an aldehyde deformylating oxygenase (ADO). However, microbial hosts such as Escherichia coli are plagued by many highly active endogenous aldehyde reductases (ALRs) that convert aldehydes to alcohols, which greatly complicates strain engineering for aldehyde and alkane production. It has been shown that the endogenous ALR activity outcompetes the ADO enzyme for fatty aldehyde substrate. The large degree of ALR redundancy coupled with an incomplete database of ALRs represents a significant obstacle in engineering E. coli for either aldehyde or alkane production. In this study, we identified 44 ALR candidates encoded in the E. coli genome using bioinformatics tools, and undertook a comprehensive screening by measuring the ability of these enzymes to produce isobutanol. From the pool of 44 candidates, we found five new ALRs using this screening method (YahK, DkgA, GldA, YbbO, and YghA). Combined deletions of all 13 known ALRs resulted in a 90-99% reduction in endogenous ALR activity for a wide range of aldehyde substrates (C2-C12). Elucidation of the ALRs found in E. coli could guide one in reducing competing alcohol formation during alkane or aldehyde production. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Cytochromes P450 Catalyze the Reduction of α,β-Unsaturated Aldehydes

    PubMed Central

    Amunom, Immaculate; Dieter, Laura J.; Tamasi, Viola; Cai, Jan; Conklin, Daniel J.; Srivastava, Sanjay; Martin, Martha V.; Guengerich, F. Peter; Prough, Russell A.

    2011-01-01

    The metabolism of α,β-unsaturated aldehydes, e.g. 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O2, and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 & rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions, but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of reduction of α,β-unsaturated aldehydes in liver. PMID:21766881

  9. SELECTIVE OXIDATION OF ALCOHOLS - COMPARING DIFFERENT CATALYTIC PROCESSES

    EPA Science Inventory

    Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alc...

  10. ALCOHOL OXIDATION - A COMPARATIVE STUDY OF DIFFERENT CATALYTIC PROCESSES

    EPA Science Inventory

    Oxidation of alcohols to aldehydes, ketones or carboxylic acids is one of the most desirable chemical transformations in organic synthesis as these products are important precursors and intermediates for many drugs, vitamins and fragrances. Numerous methods are available for alco...

  11. Mechanisms of tolerance and in situ detoxification of biomass conversion inhibitors by Saccharomyces cerevisiae

    USDA-ARS?s Scientific Manuscript database

    Several groups of chemical compounds including aldehydes, ketones, phenols, and organic acids are inhibitory to microbial growth and fermentation. The variety of inhibitors and effects of inhibition on fermentative microbes vary upon divergent sources of biomass and pretreatment methods. Overcomin...

  12. Influence of sulfur oxidation state and steric bulk upon trifluoromethyl ketone (TFK) binding kinetics to carboxylesterases and fatty acid amide hydrolase (FAAH)

    PubMed Central

    Wheelock, Craig E.; Nishi, Kosuke; Ying, Andy; Jones, Paul D.; Colvin, Michael E.; Olmstead, Marilyn M.; Hammock, Bruce D.

    2009-01-01

    Carboxylesterases metabolize numerous exogenous and endogenous ester-containing compounds including the chemotherapeutic agent CPT-11, anti-influenza viral agent oseltamivir and many agrochemicals. Trifluoromethyl ketone (TFK)-containing compounds with a sulfur atom beta to the ketone moiety are some of the most potent carboxylesterase and amidase inhibitors identified to date. This study examined the effects of alkyl chain length (i.e., steric effects) and sulfur oxidation state upon TFK inhibitor potency (IC50) and binding kinetics (ki). The selective carboxylesterase inhibitor benzil was used as a non-TFK containing control. These effects were examined using two commercial esterases (porcine and rabbit liver esterase) and two human recombinant esterases (hCE-1 and hCE-2) as well as human recombinant fatty acid amide hydrolase (FAAH). In addition, the inhibition mechanism was examined using a combination of 1H NMR, X-ray crystallography and ab initio calculations. Overall, the data show that while sulfur oxidation state profoundly affects both inhibitor potency and binding kinetics, the steric effects dominate and override the contributions of sulfur oxidation. In addition, the data suggest that inclusion of a sulfur atom beta to the ketone contributes an increase (~5-fold) in inhibitor potency due to effects upon ketone hydration and/or intramolecular hydrogen bond formation. These results provide further information on the nature of the TFK binding interaction and will be useful in increasing our understanding of this basic biochemical process. PMID:18023188

  13. Simultaneous determination of C1-C4 carboxylic acids and aldehydes using 2,4-dinitrophenylhydrazine-impregnated silica gel and high-performance liquid chromatography.

    PubMed

    Uchiyama, Shigehisa; Matsushima, Erika; Aoyagi, Shohei; Ando, Masanori

    2004-10-01

    A new method for the simultaneous determination of aliphatic carboxylic acids and aldehydes in air is described. In this work, carboxylic acids were allowed to react with 2,4-dinitrophenylhydrazine (DNPH) to form the corresponding carboxylic 2,4-dinitrophenylhydrazides. These derivatives have excellent thermal stability, with melting points higher than those of the corresponding hydrazones by 32-50 degrees C. C1-C4 carboxylic acid 2,4-dinitrophenylhydrazides exhibited maximum absorption wavelengths of 331-334 nm and molar absorption coefficients of 1.4 x 10(4) L/mol/cm. They were completely separated by high-performance liquid chromatography (HPLC) with an RP-Amide C16 column. Cartridges packed with DNPH-coated silica particles (DNPH cartridge) were used for sampling formic acid and aldehydes. Formic acid was physically adsorbed on the silica particles as the first step of the sampling mechanism. Gradual reaction with DNPH followed. Formic acid reacted very slowly with DNPH at room temperature (20 degrees C), but reacted completely at 80 degrees C over 4 h. In field measurements, the sample air was drawn through a DNPH cartridge. After sampling, the cartridges were heated at 80 degrees C for 5 h and extracted with acetonitrile for HPLC analysis. Under these optimized conditions, the LOD is 0.4 ug/m(3) for an air sample collected for 24 h at 100 mL/min (144 L).

  14. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes

    PubMed Central

    Spite, Matthew; Baba, Shahid P.; Ahmed, Yonis; Barski, Oleg A.; Nijhawan, Kanchan; Petrash, J. Mark; Bhatnagar, Aruni; Srivastava, Sanjay

    2007-01-01

    Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone (‘core’ aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte–endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C16:0-20:4 phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C16:0-20:4 phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are

  15. Clinical review: Ketones and brain injury

    PubMed Central

    2011-01-01

    Although much feared by clinicians, the ability to produce ketones has allowed humans to withstand prolonged periods of starvation. At such times, ketones can supply up to 50% of basal energy requirements. More interesting, however, is the fact that ketones can provide as much as 70% of the brain's energy needs, more efficiently than glucose. Studies suggest that during times of acute brain injury, cerebral uptake of ketones increases significantly. Researchers have thus attempted to attenuate the effects of cerebral injury by administering ketones exogenously. Hypertonic saline is commonly utilized for management of intracranial hypertension following cerebral injury. A solution containing both hypertonic saline and ketones may prove ideal for managing the dual problems of refractory intracranial hypertension and low cerebral energy levels. The purpose of the present review is to explore the physiology of ketone body utilization by the brain in health and in a variety of neurological conditions, and to discuss the potential for ketone supplementation as a therapeutic option in traumatic brain injury. PMID:21489321

  16. Characterization of the Aldehydes and Their Transformations Induced by UV Irradiation and Air Exposure of White Guanxi Honey Pummelo (Citrus Grandis (L.) Osbeck) Essential Oil.

    PubMed

    Li, Li Jun; Hong, Peng; Chen, Feng; Sun, Hao; Yang, Yuan Fan; Yu, Xiang; Huang, Gao Ling; Wu, Li Ming; Ni, Hui

    2016-06-22

    Aldehydes are key aroma contributors of citrus essential oils. White Guanxi honey pummelo essential oil (WPEO) was investigated in its aldehyde constituents and their transformations induced by UV irradiation and air exposure by GC-MS, GC-O, and sensory evaluation. Nine aldehydes, i.e., octanal, nonanal, citronellal, decanal, trans-citral, cis-citral, perilla aldehyde, dodecanal, and dodecenal, were detected in WPEO. After treatment, the content of citronellal increased, but the concentrations of other aldehydes decreased. The aliphatic aldehydes were transformed to organic acids. Citral was transformed to neric acid, geranic acid, and cyclocitral. Aldehyde transformation caused a remarkable decrease in the minty, herbaceous, and lemon notes of WPEO. In fresh WPEO, β-myrcene, d-limonene, octanal, decanal, cis-citral, trans-citral, and dodecenal had the highest odor dilution folds. After the treatment, the dilution folds of decanal, cis-citral, trans-citral, and dodecenal decreased dramatically. This result provides information for the production and storage of aldehyde-containing products.

  17. Enhanced Hydrothermal Stability and Catalytic Activity of La x Zr y O z Mixed Oxides for the Ketonization of Acetic Acid in the Aqueous Condensed Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Ruiz, Juan A.; Cooper, Alan R.; Li, Guosheng

    Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniquesmore » suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.« less

  18. Introduction of an Aliphatic Ketone into Recombinant Proteins in a Bacterial Strain that Overexpresses an Editing-Impaired Leucyl-tRNA Synthetase

    PubMed Central

    Tang, Yi; Wang, Pin; Van Deventer, James A.; Link, A. James; Tirrell, David A.

    2011-01-01

    A leucine analog containing a ketone has been incorporated into proteins in E. coli. Only E. coli strains overexpressing an editing-deficient leucyl-tRNA synthetase were capable of synthesizing proteins with the aliphatic ketone amino acid. Modification of ketone-containing proteins under mild conditions has been demonstrated. PMID:19670197

  19. Efficient hydrodeoxygenation of biomass-derived ketones over bifunctional Pt-polyoxometalate catalyst.

    PubMed

    Alotaibi, Mshari A; Kozhevnikova, Elena F; Kozhevnikov, Ivan V

    2012-07-21

    Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.

  20. EFFECT OF PH ON THE REACTION OF 2,4-DINITROPHENYLHYDRAZINE WITH FORMALDEHYDE AND ACETALDEHYDE

    EPA Science Inventory

    The acid-catalyzed condensation reaction of a molecule of 2,4-dinitrophenyl-hydrazine (DNPH) with a carbonyl compound is a well known reaction for characterizing aldehydes and ketones. The DNPH derivatives are used to identify qualitatively the parent carbonyl compound by melting...

  1. Body odor aldehyde reduction by acetic acid bacterial extract including enzymes: alcohol dehydrogenase and aldehyde dehydrogenase.

    PubMed

    Yoshioka, N; Kurata, K; Takahashi, T; Ariizumi, M; Mori, T; Fujisawa, H; Kameyama, N; Okuyama, Y

    2018-06-13

    Body odor is mainly caused by secreted sweat. Although sweat is almost odorless immediately after secretion, decomposition or denaturation of components contained in sweat by bacteria on the skin surface contributes to unpleasant body odor. Body odor is due to various substances and aldehydes are primarily detected in body odor [1-4]. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Heat-stable, FE-dependent alcohol dehydrogenase for aldehyde detoxification

    DOEpatents

    Elkins, James G.; Clarkson, Sonya

    2018-04-24

    The present invention relates to microorganisms and polypeptides for detoxifying aldehydes associated with industrial fermentations. In particular, a heat-stable, NADPH- and iron-dependent alcohol dehydrogenase was cloned from Thermoanaerobacter pseudethanolicus 39E and displayed activity against a number of aldehydes including inhibitory compounds that are produced during the dilute-acid pretreatment process of lignocellulosic biomass before fermentation to biofuels. Methods to use the microorganisms and polypeptides of the invention for improved conversion of bio mass to biofuel are provided as well as use of the enzyme in metabolic engineering strategies for producing longer-chain alcohols from sugars using thermophilic, fermentative microorganisms.

  3. Internode length in Pisum. Gene na may block gibberellin synthesis between ent-7. cap alpha. -hydroxykaurenoic acid and biggerellin A/sub 12/-aldehyde. [Pisum sativum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, T.J.; Reid, J.B.

    1987-04-01

    The elongation response of the gibberellin (GA) deficient genotypes na, ls, and lh of peas (Pisum sativum L.) to a range of GA-precursors was examined. Plants possessing gene na did not respond to precursors in the GA biosynthetic pathway prior to GA/sub 12/-aldehyde. In contrast, plants possessing lh and ls responded as well as wild-type plants (dwarfed with AMO-1618) to these compounds. The results suggest that GA biosynthesis is blocked prior to ent-kaurene in the lh and ls mutants and between ent-7..cap alpha..-hydroxykaurenoic acid and GA/sub 12/-aldehyde in the na mutant. Feeds of ent(/sup 3/H)kaurenoic acid and (/sup 2/H)GA/sub 12/-aldehydemore » to a range of genotypes supported the above conclusions. The na line WL1766 was shown by gas chromatography-mass spectrometry (GC-MS) to metabolize(/sup 2/H)GA/sub 12/-aldehyde to a number of (/sup 2/H)C/sub 19/-GAs including GA/sub 1/. However, there was no indication in na genotypes for the metabolism of ent-(/sup 3/H)kaurenoic acid to these GAs. In contrast, the expanding shoot tissue of all Na genotypes examined metabolized ent-(/sup 3/H)kaurenoic acid to radioactive compounds that co-chromatographed with GA/sub 1/, GA/sub 8/, GA/sub 20/, and GA/sub 29/. However, insufficient material was present for unequivocal identification of the metabolites. The radioactive profiles from HPLC of extracts of the node treated with ent-(/sup 3/H)kaurenoic acid were similar for both Na and na plants and contained ent-16..cap alpha..,17-dihydroxykaurenoic acid and ent-6..cap alpha..,7..cap alpha..,16..beta..,17-tetrahydroxykaurenoic acid (both characterized by GC-MS), suggesting that the metabolites arose from side branches of the main GA-biosynthetic pathway. Thus, both Na and na plants appear capable of ent-7..cap alpha..-hydroxylation.« less

  4. Lewis Acidity of Bis(perfluorocatecholato)silane: Aldehyde Hydrosilylation Catalyzed by a Neutral Silicon Compound

    DOE PAGES

    Liberman-Martin, Allegra L.; Bergman, Robert G.; Tilley, T. Don

    2015-04-16

    Bis(perfluorocatecholato)silane Si(cat( F) 2 was prepared, and stoichiometric binding to Lewis bases was demonstrated with fluoride, triethylphosphine oxide, and N,N'-diisopropylbenzamide. The potent Lewis acidity of Si(cat( F) 2 was suggested from catalytic hydrosilylation and silylcyanation reactions with aldehydes. Mechanistic studies of hydrosilylation using an optically active silane substrate, R-(+)-methyl-(1-naphthyl)phenylsilane, proceeded with predominant stereochemical retention at silicon, consistent with a carbonyl activation pathway. The enantiospecificity was dependent on solvent and salt effects, with increasing solvent polarity or addition of NBu 4BAr( F) 4 leading to a diminished enantiomeric ratio. The medium effects are consistent with an ionic mechanism, wherein hydride transfermore » occurs prior to silicon-oxygen bond formation.« less

  5. Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise.

    PubMed

    Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A

    2017-08-15

    The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.

  6. Involvement of brain ketone bodies and the noradrenergic pathway in diabetic hyperphagia in rats.

    PubMed

    Iwata, Kinuyo; Kinoshita, Mika; Yamada, Shunji; Imamura, Takuya; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro

    2011-03-01

    Uncontrolled type 1 diabetes leads to hyperphagia and severe ketosis. This study was conducted to test the hypothesis that ketone bodies act on the hindbrain as a starvation signal to induce diabetic hyperphagia. Injection of an inhibitor of monocarboxylate transporter 1, a ketone body transporter, into the fourth ventricle normalized the increase in food intake in streptozotocin (STZ)-induced diabetic rats. Blockade of catecholamine synthesis in the hypothalamic paraventricular nucleus (PVN) also restored food intake to normal levels in diabetic animals. On the other hand, hindbrain injection of the ketone body induced feeding, hyperglycemia, and fatty acid mobilization via increased sympathetic activity and also norepinephrine release in the PVN. This result provides evidence that hyperphagia in STZ-induced type 1 diabetes is signaled by a ketone body sensed in the hindbrain, and mediated by noradrenergic inputs to the PVN.

  7. Organic Lecture Demonstrations.

    ERIC Educational Resources Information Center

    Silversmith, Ernest F.

    1988-01-01

    Provides a listing of 35 demonstrations designed to generate interest in organic chemistry and help put points across. Topics include opening lecture; molecular structure and properties; halogenation; nucleophilic substitution, alkenes and dienes, stereochemistry, spectroscopy, alcohols and phenols, aldehydes and ketones; carboxylic acids, amines,…

  8. GALLIUM-MEDIATED ALLYLATION OF CARBONYL COMPOUNDS IN WATER. (R828129)

    EPA Science Inventory

    Ga-mediated allylation of aldehydes or ketones in distilled or tap water generated the corresponding homoallyl alcohols in high yields without the assistance of either acidic media or sonication.


    Grap...

  9. Ketone bodies as signaling metabolites

    PubMed Central

    Newman, John C.; Verdin, Eric

    2014-01-01

    Traditionally, the ketone body β-hydroxybutyrate (βOHB) has been looked upon as a carrier of energy from liver to peripheral tissues during fasting or exercise. However, βOHB also signals via extracellular receptors and acts as an endogenous inhibitor of histone deacetylases (HDACs). These recent findings support a model in which βOHB functions to link the environment, in this case the diet, and gene expression via chromatin modifications. Here, we review the regulation and functions of ketone bodies, the relationship between ketone bodies and calorie restriction, and the implications of HDAC inhibition by the ketone body βOHB in the modulation of metabolism, and diseases of aging. PMID:24140022

  10. Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.

    PubMed

    Lee, Sang Mi; Oh, Jieun; Hurh, Byung-Serk; Jeong, Gwi-Hwa; Shin, Young-Keum; Kim, Young-Suk

    2016-12-01

    This study investigated the profiles of volatile compounds produced by Lactobacillus paracasei during oat fermentation using gas chromatography-mass spectrometry coupled with headspace solid-phase microextraction method. A total of 60 compounds, including acids, alcohols, aldehydes, esters, furan derivatives, hydrocarbons, ketones, sulfur-containing compounds, terpenes, and other compounds, were identified in fermented oat. Lipid oxidation products such as 2-pentylfuran, 1-octen-3-ol, hexanal, and nonanal were found to be the main contributors to oat samples fermented by L. paracasei with the level of 2-pentylfuran being the highest. In addition, the contents of ketones, alcohols, acids, and furan derivatives in the oat samples consistently increased with the fermentation time. On the other hand, the contents of degradation products of amino acids, such as 3-methylbutanal, benzaldehyde, acetophenone, dimethyl sulfide, and dimethyl disulfide, decreased in oat samples during fermentation. Principal component analysis (PCA) was applied to discriminate the fermented oat samples according to different fermentation times. The fermented oats were clearly differentiated on PCA plots. The initial fermentation stage was mainly affected by aldehydes, whereas the later samples of fermented oats were strongly associated with acids, alcohols, furan derivatives, and ketones. The application of PCA to data of the volatile profiles revealed that the oat samples fermented by L. paracasei could be distinguished according to fermentation time. © 2016 Institute of Food Technologists®.

  11. A DFT study on NHC-catalyzed intramolecular aldehyde-ketone crossed-benzoin reaction: mechanism, regioselectivity, stereoselectivity, and role of NHC.

    PubMed

    Zhang, Wei; Wang, Yang; Wei, Donghui; Tang, Mingsheng; Zhu, Xinju

    2016-07-06

    A systematic theoretical study has been carried out to understand the mechanism and stereoselectivity of N-heterocyclic carbene (NHC)-catalyzed intramolecular crossed-benzoin reaction of enolizable keto-aldehyde using density functional theory (DFT) calculations. The calculated results reveal that the most favorable pathway contains four steps, i.e., the nucleophilic attack of NHC on the carbonyl carbon atom of a formyl group, the formation of a Breslow intermediate, a ring-closure process coupled with proton transfer, and regeneration of the catalyst. For the formation of the Breslow intermediate via the [1,2]-proton transfer process, apart from the direct proton transfer mechanism, the base Et3N and the in situ generated Brønsted acid Et3N·H(+) mediated proton transfer mechanisms have also been investigated; the free energy barriers for the crucial proton transfer steps are found to be significantly lowered by explicit inclusion of the Brønsted acid Et3N·H(+). The computational results show that the ring-closure process is the stereoselectivity-determining step, in which two chirality centers assigned on the coupling carbon atoms are formed, and the S-configured diastereomer is the predominant product, which is in good agreement with the experimental observations. NCI and NBO analyses are employed to disclose the origin of stereoselectivity and regioselectivity. Moreover, a global reaction index (GRI) analysis has been performed to confirm that NHC mainly plays the role of a Lewis base. The mechanistic insights obtained in the present study should be valuable for the rational design of an effective organocatalyst for this kind of reaction with high stereoselectivity and regioselectivity.

  12. Domino-hydroformylation/aldol condensation catalysis: highly selective synthesis of α,β-unsaturated aldehydes from olefins.

    PubMed

    Fang, Xianjie; Jackstell, Ralf; Franke, Robert; Beller, Matthias

    2014-10-06

    A general and highly chemo-, regio-, and stereoselective synthesis of α,β-unsaturated aldehydes by a domino hydroformylation/aldol condensation reaction has been developed. A variety of olefins and aromatic aldehydes were efficiently converted into various substituted α,β-unsaturated aldehydes in good to excellent yields in the presence of a rhodium phosphine/acid-base catalyst system. In view of the easy availability of the substrates, the high atom-efficiency, the excellent selectivity, and the mild conditions, this method is expected to complement current methodologies for the preparation of α,β-unsaturated aldehydes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enantioselective synthesis of chiral oxazolines from unactivated ketones and isocyanoacetate esters by synergistic silver/organocatalysis.

    PubMed

    Martínez-Pardo, Pablo; Blay, Gonzalo; Muñoz, M Carmen; Pedro, José R; Sanz-Marco, Amparo; Vila, Carlos

    2018-03-15

    A multicatalytic approach that combines a bifunctional Brønsted base-squaramide organocatalyst and Ag + as Lewis acid has been applied in the reaction of unactivated ketones with tert-butyl isocyanoacetate to give chiral oxazolines bearing a quaternary stereocenter. The formal [3+2] cycloaddition provided high yields of the corresponding cis-oxazolines with good diastereoselectivity and excellent enantioselectivity, being applied to aryl-alkyl and alkyl-alkyl ketones.

  14. A Ketone Ester Drink Increases Postexercise Muscle Glycogen Synthesis in Humans.

    PubMed

    Holdsworth, David A; Cox, Peter J; Kirk, Tom; Stradling, Huw; Impey, Samuel G; Clarke, Kieran

    2017-09-01

    Physical endurance can be limited by muscle glycogen stores, in that glycogen depletion markedly reduces external work. During carbohydrate restriction, the liver synthesizes the ketone bodies, D-β-hydroxybutyrate, and acetoacetate from fatty acids. In animals and in the presence of glucose, D-β-hydroxybutyrate promotes insulin secretion and increases glycogen synthesis. Here we determined whether a dietary ketone ester, combined with plentiful glucose, can increase postexercise glycogen synthesis in human skeletal muscle. After an interval-based glycogen depletion exercise protocol, 12 well-trained male athletes completed a randomized, three-arm, blinded crossover recovery study that consisted of consumption of either a taste-matched, zero-calorie control or a ketone monoester drink, followed by a 10-mM glucose clamp or saline infusion for 2 h. The three postexercise conditions were control drink then saline infusion, control drink then hyperglycemic clamp, or ketone ester drink then hyperglycemic clamp. Skeletal muscle glycogen content was determined in muscle biopsies of vastus lateralis taken before and after the 2-h clamps. The ketone ester drink increased blood D-β-hydroxybutyrate concentrations to a maximum of 5.3 versus 0.7 mM for the control drink (P < 0.0001). During the 2-h glucose clamps, insulin levels were twofold higher (31 vs 16 mU·L, P < 0.01) and glucose uptake 32% faster (1.66 vs 1.26 g·kg, P < 0.001). The ketone drink increased by 61 g, the total glucose infused for 2 h, from 197 to 258 g, and muscle glycogen was 50% higher (246 vs 164 mmol glycosyl units per kilogram dry weight, P < 0.05) than after the control drink. In the presence of constant high glucose concentrations, a ketone ester drink increased endogenous insulin levels, glucose uptake, and muscle glycogen synthesis.

  15. Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format

    PubMed Central

    Pinzon, Neissa M.; Aukema, Kelly G.; Gralnick, Jeffrey A.; Wackett, Lawrence P.

    2011-01-01

    ABSTRACT A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone production as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. PMID:21712420

  16. On the Metabolism of Exogenous Ketones in Humans

    PubMed Central

    Stubbs, Brianna J.; Cox, Pete J.; Evans, Rhys D.; Santer, Peter; Miller, Jack J.; Faull, Olivia K.; Magor-Elliott, Snapper; Hiyama, Satoshi; Stirling, Matthew; Clarke, Kieran

    2017-01-01

    Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate “ketogenic” diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB) concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE); (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, or ketone salts (KS); sodium plus potassium βHB. Methods and Results: In the first study, 15 participants consumed KE or KS drinks that delivered ~12 or ~24 g of βHB. Both drinks elevated blood D-βHB concentrations (D-βHB Cmax: KE 2.8 mM, KS 1.0 mM, P < 0.001), which returned to baseline within 3–4 h. KS drinks were found to contain 50% of the L-βHB isoform, which remained elevated in blood for over 8 h, but was not detectable after 24 h. Urinary excretion of both D-βHB and L-βHB was <1.5% of the total βHB ingested and was in proportion to the blood AUC. D-βHB, but not L-βHB, was slowly converted to breath acetone. The KE drink decreased blood pH by 0.10 and the KS drink increased urinary pH from 5.7 to 8.5. In the second study, the effect of a meal before a KE drink on blood D-βHB concentrations was determined in 16 participants. Food lowered blood D-βHB Cmax by 33% (Fed 2.2 mM, Fasted 3.3 mM, P < 0.001), but did not alter acetoacetate or breath acetone concentrations. All ketone drinks lowered blood glucose, free fatty acid and triglyceride concentrations, and had similar effects on blood electrolytes, which remained normal. In the final study, participants were given KE over 9 h as three drinks (n = 12) or a continuous nasogastric infusion (n = 4) to maintain blood D-βHB concentrations greater than 1 mM. Both drinks and

  17. Organic Reaction Mechanisms in the Sixth Form Part 2.

    ERIC Educational Resources Information Center

    Simpson, Peter

    1989-01-01

    Presents the mechanistic ideas underlying reactions between nucleophiles and carbonyl compounds as well as some popular misconceptions. Relates reactions of carboxylic acid derivatives to those of aldehydes and ketones. Discusses leaving group ability and the ability of carbonyl oxygen to accept a negative charge. (Author/MVL)

  18. Persistence assessment of cyclohexyl- and norbornyl-derived ketones and their degradation products in different OECD screening tests.

    PubMed

    Seyfried, M; van Ginkel, C G; Boschung, A; Miffon, F; Fantini, P; Tissot, E; Baroux, L; Merle, P; Chaintreau, A

    2015-07-01

    The persistence of synthetic cyclohexyl- and norbornyl-derived ketones was assessed by using OECD 301F and 301D biodegradation tests. While cyclohexyl-derived ketones either reached or came close to the pass level (60%) after 60 d, the corresponding norbornyl derivatives yielded significantly less biodegradation (<40%). By analyzing extracts at 60 d, the key degradation products of four norbornyl derivatives were identified. Consistently, 2-bicyclo[2.2.1]heptane carboxylic acid was found as a principal degradation product with minor quantities of bicyclo[2.2.1]heptan-2-one and 2-bicyclo[2.2.1]heptane acetic acid. When the three degradation products were re-synthesized and tested individually for biodegradability, the former two were found to be ultimately biodegradable after 60 d in OECD 301D tests, thus proving non-persistence. Similarly, 2-bicyclo[2.2.1]heptane acetic acid was found to be degraded significantly, albeit with long lag phases exceeding 60 d in the case of freshwater inoculum, then ultimately reaching the pass level. On the other hand, norbornyl ketones were still only partially biodegradable in the same test. We conclude that despite the potential for ultimate biodegradation of norbornyl-derived ketones, current screening tests yield an incomplete picture of their biodegradability, particularly when applying strict OECD criteria. The appearance of long lag phases when re-testing norbornyl ketone degradation products underlines the importance of extending tests to well beyond 28 and even 60 d in the case of freshwater inocula. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Peptide/laccase cocatalyzed asymmetric α-oxyamination of aldehydes.

    PubMed

    Akagawa, Kengo; Kudo, Kazuaki

    2011-07-01

    An asymmetric α-oxyamination could be successfully performed by a peptide catalyst and laccase. The combination of peptide catalysis and enzymatic air oxidation promoted the reaction smoothly in water without employing a metal reagent. The oxyaminated compounds could be obtained as both aldehyde and carboxylic acid products depending on the reaction conditions.

  20. The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins.

    PubMed

    Miles-Barrett, Daniel M; Neal, Andrew R; Hand, Calum; Montgomery, James R D; Panovic, Isabella; Ojo, O Stephen; Lancefield, Christopher S; Cordes, David B; Slawin, Alexandra M Z; Lebl, Tomas; Westwood, Nicholas J

    2016-10-25

    Understanding the structure of technical lignins resulting from acid-catalysed treatment of lignocellulosic biomass is important for their future applications. Here we report an investigation into the fate of lignin under acidic aqueous organosolv conditions. In particular we examine in detail the formation and reactivity of non-native Hibbert ketone structures found in isolated organosolv lignins from both Douglas fir and beech woods. Through the use of model compounds combined with HSQC, HMBC and HSQC-TOCSY NMR experiments we demonstrate that, depending on the lignin source, both S and G lignin-bound Hibbert ketone units can be present. We also show that these units can serve as a source of novel mono-aromatic compounds following an additional lignin depolymerisation reaction.

  1. Catalytic Transformation of Aldehydes with Nickel Complexes through η(2) Coordination and Oxidative Cyclization.

    PubMed

    Hoshimoto, Yoichi; Ohashi, Masato; Ogoshi, Sensuke

    2015-06-16

    Chemists no longer doubt the importance of a methodology that could activate and utilize aldehydes in organic syntheses since many products prepared from them support our daily life. Tremendous effort has been devoted to the development of these methods using main-group elements and transition metals. Thus, many organic chemists have used an activator-(aldehyde oxygen) interaction, namely, η(1) coordination, whereby a Lewis or Brønsted acid activates an aldehyde. In the field of coordination chemistry, η(2) coordination of aldehydes to transition metals by coordination of a carbon-oxygen double bond has been well-studied; this activation mode, however, is rarely found in transition-metal catalysis. In view of the distinctive reactivity of an η(2)-aldehyde complex, unprecedented reactions via this intermediate are a distinct possibility. In this Account, we summarize our recent results dealing with nickel(0)-catalyzed transformations of aldehydes via η(2)-aldehyde nickel and oxanickelacycle intermediates. The combination of electron-rich nickel(0) and strong electron-donating N-heterocyclic carbene (NHC) ligands adequately form η(2)-aldehyde complexes in which the aldehyde is highly activated by back-bonding. With Ni(0)/NHC catalysts, processes involving intramolecular hydroacylation of alkenes and homo/cross-dimerization of aldehydes (the Tishchenko reaction) have been developed, and both proceed via the simultaneous η(2) coordination of aldehydes and other π components (alkenes or aldehydes). The results of the mechanistic studies are consistent with a reaction pathway that proceeds via an oxanickelacycle intermediate generated by the oxidative cyclization with a nickel(0) complex. In addition, we have used the η(2)-aldehyde nickel complex as an effective activator for an organosilane in order to generate a silicate reactant. These reactions show 100% atom efficiency, generate no wastes, and are conducted under mild conditions.

  2. Loss of H2 and CO from protonated aldehydes in electrospray ionization mass spectrometry.

    PubMed

    Neta, Pedatsur; Simón-Manso, Yamil; Liang, Yuxue; Stein, Stephen E

    2014-09-15

    Electrospray ionization mass spectrometry (ESI-MS) of many protonated aldehydes shows loss of CO as a major fragmentation pathway. However, we find that certain aldehydes undergo loss of H2 followed by reaction with water in the collision cell. This complicates interpretation of tandem mass (MS/MS) spectra and affects multiple reaction monitoring (MRM) results. 3-Formylchromone and other aldehydes were dissolved in acetonitrile/water/formic acid and studied by ESI-MS to record their MS(2) and MS(n) spectra in several mass spectrometers (QqQ, QTOF, ion trap (IT), and Orbitrap HCD). Certain product ions were found to react with water and the rate of reaction was determined in the IT instrument using zero collision energy and variable activation times. Theoretical calculations were performed to help with the interpretation of the fragmentation mechanism. Protonated 3-formylchromones and 3-formylcoumarins undergo loss of H2 as a major fragmentation route to yield a ketene cation, which reacts with water to form a protonated carboxylic acid. In general, protonated aldehydes which contain a vicinal group that forms a hydrogen bridge with the formyl group undergo significant loss of H2. Subsequent losses of CO and C3O are also observed. Theoretical calculations suggest mechanistic details for these losses. Loss of H2 is a major fragmentation channel for protonated 3-formychromones and certain other aldehydes and it is followed by reaction with water to produce a protonated carboxylic acid, which undergoes subsequent fragmentation. This presents a problem for reference libraries and raises concerns about MRM results. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. Interaction of gabaergic ketones with model membranes: A molecular dynamics and experimental approach.

    PubMed

    Miguel, Virginia; Sánchez-Borzone, Mariela E; García, Daniel A

    2018-08-01

    γ-Aminobutyric-acid receptor (GABA A -R), a membrane intrinsic protein, is activated by GABA and modulated by a wide variety of recognized drugs. GABA A -R is also target for several insecticides which act by recognition of a non-competitive blocking site. Mentha oil is rich in several ketones with established activity against various insects/pests. Considering that mint ketones are highly lipophilic, their action mechanism could involve, at least in part, a non-specific receptor modulation by interacting with the surrounding lipids. In the present work, we studied in detail the effect on membranes of five cyclic ketones present in mint plants, with demonstrated insecticide and gabaergic activity. Particularly, we have explored their effect on the organization and dynamics of the membrane, by using Molecular Dynamics (MD) Simulation studies in a bilayer model of DPPC. We performed free diffusion MD and obtained spatially resolved free energy profiles of ketones partition into bilayers based on umbrella sampling. The most favored location of ketones in the membrane corresponded to the lower region of the carbonyl groups. Both hydrocarbon chains were slightly affected by the presence of ketones, presenting an ordering effect for the methylene groups closer to the carbonyl. MD simulations results were also contrasted with experimental data from fluorescence anisotropy studies which evaluate changes in membrane fluidity. In agreement, these assays indicated that the presence of ketones between lipid molecules induced an enhancement of the intermolecular interaction, increasing the molecular order throughout the bilayer thickness. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Converting lignin derived phenolic aldehydes into microbial lipid by Trichosporon cutaneum.

    PubMed

    Hu, Mingshan; Wang, Juan; Gao, Qiuqiang; Bao, Jie

    2018-06-18

    Lignin is one of the major components of lignocellulose biomass and chemically degrades into phenolic aldehydes including 4-hydroxybenzaldehyde, vanillin, and syringaldehyde. No lipid accumulation from the phenolic aldehydes by oleaginous microbes had been succeeded. Compared with vanillin and syringaldehyde, T. cutaneum ACCC 20271 have better tolerance to 4-hydroxybenzaldehyde. 4-Hydroxybenzaldehyde was found to be able as the substrate for lipid accumulation, while vanillin and syringaldehyde were only converted to less toxic phenolic alcohols and acids without observable lipid accumulation, perhaps due to the space shelling of methoxyl group(s) in the structures. A long term fed batch fermentation of 4-hydroxybenzaldehyde accumulated 0.85 g L -1 of lipid, equivalent to 0.039 g lipid per gram of 4-hydroxybenzaldehyde substrate, approximately 3.7 folds greater than the control without 4-hydroxybenzaldehyde addition. The fatty acid composition well met the need for biodiesel synthesis. The preliminary pathway from 4-hydroxybenzaldehyde to lipid was predicted. This study took the first experimental trial on utilizing phenolic aldehydes as the sole carbon sources for microbial lipid accumulation by T. cutaneum ACCC 20271. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Cooperative catalysis by tertiary amino-thioureas: mechanism and basis for enantioselectivity of ketone cyanosilylation.

    PubMed

    Zuend, Stephan J; Jacobsen, Eric N

    2007-12-26

    The mechanism of the enantioselective cyanosilylation of ketones catalyzed by tertiary amino-thiourea derivatives was investigated using a combination of experimental and theoretical methods. The kinetic analysis is consistent with a cooperative mechanism in which both the thiourea and the tertiary amine of the catalyst are involved productively in the rate-limiting cyanide addition step. Density functional theory calculations were used to distinguish between mechanisms involving thiourea activation of ketone or of cyanide in the enantioselectivity-determining step. The strong correlation obtained between experimental and calculated ee's for a range of substrates and catalysts provides support for the most favorable calculated transition structures involving amine-bound HCN adding to thiourea-bound ketone. The calculations suggest that enantioselectivity arises from direct interactions between the ketone substrate and the amino-acid derived portion of the catalyst. On the basis of this insight, more enantioselective catalysts with broader substrate scope were prepared and evaluated experimentally.

  6. Occurance of aldehyde-fuchsin and performic acid-victoria blue positive granules in the ovarian pedicle of Dysdercus koenigii F. (Pyrrhocridae: Heteroptera).

    PubMed

    Srivastava, R C; Srivastava, B P

    1976-10-15

    A cycle of activity of aldehyde-fuchsin and performic acid-Victoria blue positive granules was observed in the ovarian pedicle of Dysdercus koenigii during the first ovipositional cycle. The quantitative variation of these granules in the pedicle can also be correlated directly with the increase or decrease of the neurosecretory material in the A-type cells of the pars intercerebralis medialis region of the protocerebrum of the brian.

  7. Fluorescence lifetime analysis and effect of magnesium ions on binding of NADH to human aldehyde dehydrogenase 1

    USDA-ARS?s Scientific Manuscript database

    Aldehyde dehydrogenase 1 (ALDH1) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence ALDH1 activity in part by increasing NADH binding affinity to the enzyme thus reducing activity. By using time-resolved fluorescence spectroscopy, we have resolved t...

  8. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes

    PubMed Central

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E.; Calcutt, Wade M.; Brash, Alan R.; Samel, Nigulas

    2015-01-01

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using 18O-labeled substrate and incubations in H218O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. PMID:26100625

  9. Kinetics of Forming Aldehydes in Frying Oils and Their Distribution in French Fries Revealed by LC-MS-Based Chemometrics.

    PubMed

    Wang, Lei; Csallany, A Saari; Kerr, Brian J; Shurson, Gerald C; Chen, Chi

    2016-05-18

    In this study, the kinetics of aldehyde formation in heated frying oils was characterized by 2-hydrazinoquinoline derivatization, liquid chromatography-mass spectrometry (LC-MS) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA). The aldehydes contributing to time-dependent separation of heated soybean oil (HSO) in a PCA model were grouped by the HCA into three clusters (A1, A2, and B) on the basis of their kinetics and fatty acid precursors. The increases of 4-hydroxynonenal (4-HNE) and the A2-to-B ratio in HSO were well-correlated with the duration of thermal stress. Chemometric and quantitative analysis of three frying oils (soybean, corn, and canola oils) and French fry extracts further supported the associations between aldehyde profiles and fatty acid precursors and also revealed that the concentrations of pentanal, hexanal, acrolein, and the A2-to-B ratio in French fry extracts were more comparable to their values in the frying oils than other unsaturated aldehydes. All of these results suggest the roles of specific aldehydes or aldehyde clusters as novel markers of the lipid oxidation status for frying oils or fried foods.

  10. An Unconventional Redox Cross Claisen Condensation-Aromatization of 4-Hydroxyprolines with Ketones.

    PubMed

    Tang, Mi; Sun, Rengwei; Li, Hao; Yu, Xinhong; Wang, Wei

    2017-08-18

    Reaction of α-amino acids, particularly prolines and their derivatives with carbonyl compounds via decarboxylative redox process, is a viable strategy for synthesis of structurally diverse nitrogen centered heterocyclics. In these processes, the decarboxylation is the essential driving force for the processes. The realization of the redox process without decarboxylation may offer an opportunity to explore new reactions. Herein, we report the discovery of an unprecedented redox Claisen-type condensation aromatization cascade reaction of 4-substituted 4-hydroxyproline and its esters with unreactive ketones. We found that the use of propionic acid as a catalyst and a co-solvent can change the reaction course. The commonly observed redox decarboxylation and aldol condensation reactions are significantly minimized. Moreover, unreactive ketones can effectively participate in the Claisen condensation reaction. The new reactivity enables a redox cyclization via an unconventional Claisen-type condensation reaction of in situ formed enamine intermediates from ketone precursors with 4-substituted 4-hydroxyproline and its esters as electrophilic acylation partners. Under the reaction conditions, the cascade process proceeds highly regio- and stereoselectively to afford highly synthetically and biologically valued cis-2,3-dihydro-1H-pyrrolizin-1-ones with a broad substrate scope in efficient 'one-pot' operation, whereas such structures generally require multiple steps.

  11. Four distinct types of E.C. 1.2.1.30 enzymes can catalyze the reduction of carboxylic acids to aldehydes.

    PubMed

    Stolterfoht, Holly; Schwendenwein, Daniel; Sensen, Christoph W; Rudroff, Florian; Winkler, Margit

    2017-09-10

    Increasing demand for chemicals from renewable resources calls for the development of new biotechnological methods for the reduction of oxidized bio-based compounds. Enzymatic carboxylate reduction is highly selective, both in terms of chemo- and product selectivity, but not many carboxylate reductase enzymes (CARs) have been identified on the sequence level to date. Thus far, their phylogeny is unexplored and very little is known about their structure-function-relationship. CARs minimally contain an adenylation domain, a phosphopantetheinylation domain and a reductase domain. We have recently identified new enzymes of fungal origin, using similarity searches against genomic sequences from organisms in which aldehydes were detected upon incubation with carboxylic acids. Analysis of sequences with known CAR functionality and CAR enzymes recently identified in our laboratory suggests that the three-domain architecture mentioned above is modular. The construction of a distance tree with a subsequent 1000-replicate bootstrap analysis showed that the CAR sequences included in our study fall into four distinct subgroups (one of bacterial origin and three of fungal origin, respectively), each with a bootstrap value of 100%. The multiple sequence alignment of all experimentally confirmed CAR protein sequences revealed fingerprint sequences of residues which are likely to be involved in substrate and co-substrate binding and one of the three catalytic substeps, respectively. The fingerprint sequences broaden our understanding of the amino acids that might be essential for the reduction of organic acids to the corresponding aldehydes in CAR proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    PubMed Central

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  13. Chitosan adsorption on nanofibrillated cellulose with different aldehyde content and interaction with phosphate buffered saline.

    PubMed

    Ondaral, Sedat; Çelik, Elif; Kurtuluş, Orçun Çağlar; Aşıkuzun, Elif; Yakın, İsmail

    2018-04-15

    The chitosan adsorption on films prepared using nanofibrillated cellulose (NFC) with different content of aldehyde group was studied by means of Quartz Crystal Microbalance with Dissipation (QCM-D). Results showed that frequency change (Δf) was higher when the chitosan adsorbed on NFC film consisting more aldehyde group indicating the higher adsorption. The (Δf) and dissipation (ΔD) factors completely changed during adsorption of chitosan pre-treated with acetic acid: Δf increased and ΔD decreased, oppositely to un-treated chitosan adsorption. After acid treatment, molecular weight and crystallinity index of chitosan decreased addition to change in chemical structure. It was found that more phosphate buffered saline (PBS), as a model liquid for wound exudate, adsorbed to acid treated chitosan-NFC film, especially to film having more aldehyde groups. Comparing with bare NFC film, chitosan-NFC films adsorbed less PBS because chitosan crosslinked the NFC network and blocked the functional groups of NFC and thus, preventing swelling film. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Results of Sediment Sampling and Elutriate Testing at the Proposed Little Sioux Bend Shallow Water Habitat Project Site

    DTIC Science & Technology

    2013-04-01

    Aroclor1248 10 50 Endrin 1.0 9.9 PCB - Aroclor1268 10 50 Endrin Aldehyde 1.0 9.9 PCB - Aroclor1232 10 50 Endrin Ketone 0.8 9.9 PCB - Aroclor1254 10 50...1.0 Endrin Aldehyde 0.011 0.1 PCB - Aroclor1232 0.2 1.0 Endrin Ketone 0.006 0.1 PCB - Aroclor1254 0.2 1.0 Heptachlor 0.009 0.05 PCB - Aroclor1242...Found Endosulfan I n.d. Endosulfan II n.d. Endosulfan sulfate n.d. Endrin n.d. Endrin aldehyde n.d. Endrin ketone n.d. Heptachlor n.d. Heptachlor

  15. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Tomofumi; Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135; Ichinose, Hirofumi

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conservedmore » domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.« less

  16. Quantification of aldehydes emissions from alternative and renewable aviation fuels using a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Li, Hu; Altaher, Mohamed A.; Wilson, Chris W.; Blakey, Simon; Chung, Winson; Rye, Lucas

    2014-02-01

    In this research three renewable aviation fuel blends including two HEFA (Hydrotreated Ester and Fatty Acid) blends and one FAE (Fatty Acids Ethyl Ester) blend with conventional Jet A-1 along with a GTL (Gas To Liquid) fuel have been tested for their aldehydes emissions on a small gas turbine engine. Three strong ozone formation precursors: formaldehyde, acetaldehyde and acrolein were measured in the exhaust at different operational modes and compared to neat Jet A-1. The aim is to assess the impact of renewable and alternative aviation fuels on aldehydes emissions from aircraft gas turbine engines so as to provide informed knowledge for the future deployment of new fuels in aviation. The results show that formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions for all fuels. Acrolein was the second major emitted aldehyde species with a fraction of ˜30%. Acetaldehyde emissions were very low for all the fuels and below the detention limit of the instrument. The formaldehyde emissions at cold idle were up to two to threefold higher than that at full power. The fractions of formaldehyde were 6-10% and 20% of total hydrocarbon emissions in ppm at idle and full power respectively and doubled on a g kg-1-fuel basis.

  17. Isoproturon Reappearance after Photosensitized Degradation in the Presence of Triplet Ketones or Fulvic Acids.

    PubMed

    Yuan, Chenyi; Chakraborty, Mrinal; Canonica, Silvio; Weavers, Linda K; Hadad, Christopher M; Chin, Yu-Ping

    2016-11-15

    Isoproturon (IPU) is a phenylurea herbicide used to control broad-leaf grasses on grain fields. Photosensitized transformation induced by excited triplet states of dissolved organic matter ( 3 DOM*) has been identified as an important degradation pathway for IPU in sunlit waters, but the reappearance of IPU in the absence of light is observed after the initial photolysis. In this study, we elucidate the kinetics of this photodegradation and dark-reappearance cycling of IPU in the presence of DOM proxies (aromatic ketones and reference fulvic acids). Using mass spectrometry and nuclear magnetic resonance spectroscopic techniques, a semi-stable intermediate (IPU int ) was found to be responsible for IPU reversion and was identified as a hydroperoxyl derivative of IPU. IPU int is photogenerated from incorporation of diatomic oxygen to IPU and is subjected to thermolysis whose rate depends on temperature, pH, the presence of DOM, and inorganic ions. These results are important to understand the overall aquatic fate of IPU and structurally similar compounds under diurnal conditions.

  18. Nickel-Catalyzed, Carbonyl-Ene-Type Reactions: Selective for Alpha Olefins and More Efficient with Electron-Rich Aldehydes

    PubMed Central

    Ho, Chun-Yu; Ng, Sze-Sze; Jamison, Timothy F.

    2011-01-01

    Described are several classes of unusual or unprecedented carbonyl-ene-type reactions, including those between alpha olefins and aromatic aldehydes. Catalyzed by nickel, these processes complement existing Lewis acid-catalyzed methods in several respects. Not only are monosubstituted alkenes, aromatic aldehydes, and tert-alkyl aldehydes effective substrates, but monosubstituted olefins also react faster than those that are more substituted, and large or electron-rich aldehydes are more effective than small or electron-poor ones. Conceptually, in the presence of a nickel-phosphine catalyst, the combination of off-the-shelf alkenes, silyl triflates, and triethylamine functions as a replacement for an allylmetal reagent. PMID:16620106

  19. DIFFERENTIATING THE TOXICITY OF CARCINOGENIC ALDEHYDES FROM NONCARCINOGENIC ALDEHYDES IN THE RAT NOSE USING CDNA ARRAYS

    EPA Science Inventory

    Differentiating the Toxicity of Carcinogenic Aldehydes from Noncarcinogenic Aldehydes in the Rat Nose Using cDNA Arrays.

    Formaldehyde is a widely used aldehyde in many industrial settings, the tanning process, household products, and is a contaminant in cigarette smoke. H...

  20. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  1. Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation.

    PubMed

    Bueno, Mónica; Marrufo-Curtido, Almudena; Carrascón, Vanesa; Fernández-Zurbano, Purificación; Escudero, Ana; Ferreira, Vicente

    2018-01-01

    The main aim of the present work is to study the accumulation of acetaldehyde and Strecker aldehydes (isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, methional, phenylacetaldehyde) during the oxidation of red wines, and to relate the patterns of accumulation to the wine chemical composition. For that, eight different wines, extensively chemically characterized, were subjected at 25°C to three different controlled O 2 exposure conditions: low (10 mg L -1 ) and medium or high (the stoichiometrically required amount to oxidize all wine total SO 2 plus 18 or 32 mg L -1 , respectively). Levels of volatile aldehydes and carbonyls were then determined and processed by different statistical techniques. Results showed that young wines (<2 years-old bottled wines) hardly accumulate any acetaldehyde regardless of the O 2 consumed. In contrast, aged wines (>3 years-old bottled wines) accumulated acetaldehyde while their content in SO 2 was not null, and the aged wine containing lowest polyphenols accumulated it throughout the whole process. Models suggest that the ability of a wine to accumulate acetaldehyde is positively related to its content in combined SO 2 , in epigallocatechin and to the mean degree of polymerization, and negatively to its content in Aldehyde Reactive Polyphenols (ARPs) which, attending to our models, are anthocyanins and small tannins. The accumulation of Strecker aldehydes is directly proportional to the wine content in the amino acid precursor, being the proportionality factor much higher for aged wines, except for phenylacetaldehyde, for which the opposite pattern was observed. Models suggest that non-aromatic Strecker aldehydes share with acetaldehyde a strong affinity toward ARPs and that the specific pattern of phenylacetaldehyde is likely due to a much reduced reactivity toward ARPs, to the possibility that diacetyl induces Strecker degradation of phenyl alanine and to the potential higher reactivity of this amino acid to some quinones

  2. Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation

    PubMed Central

    Bueno, Mónica; Marrufo-Curtido, Almudena; Carrascón, Vanesa; Fernández-Zurbano, Purificación; Escudero, Ana; Ferreira, Vicente

    2018-01-01

    The main aim of the present work is to study the accumulation of acetaldehyde and Strecker aldehydes (isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, methional, phenylacetaldehyde) during the oxidation of red wines, and to relate the patterns of accumulation to the wine chemical composition. For that, eight different wines, extensively chemically characterized, were subjected at 25°C to three different controlled O2 exposure conditions: low (10 mg L−1) and medium or high (the stoichiometrically required amount to oxidize all wine total SO2 plus 18 or 32 mg L−1, respectively). Levels of volatile aldehydes and carbonyls were then determined and processed by different statistical techniques. Results showed that young wines (<2 years-old bottled wines) hardly accumulate any acetaldehyde regardless of the O2 consumed. In contrast, aged wines (>3 years-old bottled wines) accumulated acetaldehyde while their content in SO2 was not null, and the aged wine containing lowest polyphenols accumulated it throughout the whole process. Models suggest that the ability of a wine to accumulate acetaldehyde is positively related to its content in combined SO2, in epigallocatechin and to the mean degree of polymerization, and negatively to its content in Aldehyde Reactive Polyphenols (ARPs) which, attending to our models, are anthocyanins and small tannins. The accumulation of Strecker aldehydes is directly proportional to the wine content in the amino acid precursor, being the proportionality factor much higher for aged wines, except for phenylacetaldehyde, for which the opposite pattern was observed. Models suggest that non-aromatic Strecker aldehydes share with acetaldehyde a strong affinity toward ARPs and that the specific pattern of phenylacetaldehyde is likely due to a much reduced reactivity toward ARPs, to the possibility that diacetyl induces Strecker degradation of phenyl alanine and to the potential higher reactivity of this amino acid to some quinones derived

  3. Formation and accumulation of acetaldehyde and Strecker aldehydes during red wine oxidation

    NASA Astrophysics Data System (ADS)

    Bueno, Mónica; Marrufo-Curtido, Almudena; Carrascón, Vanesa; Fernández-Zurbano, Purificación; Escudero, Ana; Ferreira, Vicente

    2018-02-01

    The main aim of the present work is to study the accumulation of acetaldehyde and Strecker aldehydes (isobutyraldehyde, 2-methylbutanal, isovaleraldehyde, methional, phenylacetaldehyde) during the oxidation of red wines, and to relate the patterns of accumulation to the wine chemical composition. For that, eight different wines, extensively chemically characterized, were subjected at 25°C to three different controlled O2 exposure conditions: low (10 mg L-1) and medium or high (the stoichiometrically required amount to oxidize all wine total SO2 plus 18 or 32 mg L-1, respectively). Levels of volatile aldehydes and carbonyls were then determined and processed by different statistical techniques. Results showed that young wines (<2 years-old bottled wines) hardly accumulate any acetaldehyde regardless of the O2 consumed. In contrast, aged wines (>3 years-old bottled wines) accumulated acetaldehyde while their content in SO2 was not null, and the aged wine containing lowest polyphenols accumulated it throughout the whole process. Models suggest that the ability of a wine to accumulate acetaldehyde is positively related to its content in combined SO2, in epigallocatechin and to the mean degree of polymerization, and negatively to its content in Aldehyde Reactive Polyphenols (ARPs) which, attending to our models, are anthocyanins and small tannins. The accumulation of Strecker aldehydes is directly proportional to the wine content in the amino acid precursor, being the proportionality factor much higher for aged wines, except for phenylacetaldehyde, for which the opposite pattern was observed. Models suggest that non-aromatic Strecker aldehydes share with acetaldehyde a strong affinity towards ARPs and that the specific pattern of phenylacetaldehyde is likely due to a much reduced reactivity towards ARPs, to the possibility that diacetyl induces Strecker degradation of phenyl alanine and to the potential higher reactivity of this amino acid to some quinones derived from

  4. 40 CFR 79.52 - Tier 1.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... identity and concentration of individual species of aldehyde and ketone compounds containing eight or fewer...) “Advanced Speciation Methodologies for the Auto/Oil Air Quality Improvement Research Program—II. Aldehydes, Ketones, and Alcohols,” Auto Oil Air Quality Improvement Research Program, SP-920, 920321, SAE, February...

  5. 40 CFR 79.52 - Tier 1.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identity and concentration of individual species of aldehyde and ketone compounds containing eight or fewer...) “Advanced Speciation Methodologies for the Auto/Oil Air Quality Improvement Research Program—II. Aldehydes, Ketones, and Alcohols,” Auto Oil Air Quality Improvement Research Program, SP-920, 920321, SAE, February...

  6. 40 CFR 79.52 - Tier 1.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... identity and concentration of individual species of aldehyde and ketone compounds containing eight or fewer...) “Advanced Speciation Methodologies for the Auto/Oil Air Quality Improvement Research Program—II. Aldehydes, Ketones, and Alcohols,” Auto Oil Air Quality Improvement Research Program, SP-920, 920321, SAE, February...

  7. 40 CFR 79.52 - Tier 1.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... identity and concentration of individual species of aldehyde and ketone compounds containing eight or fewer...) “Advanced Speciation Methodologies for the Auto/Oil Air Quality Improvement Research Program—II. Aldehydes, Ketones, and Alcohols,” Auto Oil Air Quality Improvement Research Program, SP-920, 920321, SAE, February...

  8. First general methods toward aldehyde enolphosphates.

    PubMed

    Barthes, Nicolas; Grison, Claude

    2012-02-01

    We herein report two innovative methods toward aldehyde enolphosphates and the first saccharidic aldehyde enolphosphates. Aldehyde enolphosphate function is worthwhile to be considered as a good phosphoenolpyruvate analogue. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Engineering E. coli for simultaneous glucose–xylose utilization during methyl ketone production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xi; Goh, Ee-Been; Beller, Harry R.

    Previously, we developed an E. coli strain that overproduces medium-chain methyl ketones for potential use as diesel fuel blending agents or as flavors and fragrances. To date, the strain's performance has been optimized during growth with glucose. However, lignocellulosic biomass hydrolysates also contain a substantial portion of hemicellulose-derived xylose, which is typically the second most abundant sugar after glucose. Commercialization of the methyl ketone-producing technology would benefit from the increased efficiency resulting from simultaneous, rather than the native sequential (diauxic), utilization of glucose and xylose. In this study, genetic manipulations were performed to alleviate carbon catabolite repression in our mostmore » efficient methyl ket one-producing strain. A strain engineered for constitutive expression of xylF and xylA (involved in xylose transport and metabolism) showed synchronized glucose and xylose consumption rates. However, this newly acquired capability came at the expense of methyl ketone titer, which decreased fivefold. Further efforts were made to improve methyl ketone production in this strain, and we found that two strategies were effective at enhancing methyl ketone titer: (1) chromosomal deletion of pgi (glucose-6-phosphate isomerase) to increase intracellular NADPH supply and (2) downregulation of CRP (cAMP receptor protein) expression by replacement of the native RBS with an RBS chosen based upon mutant library screening results. Combining these strategies resulted in the most favorable overall phenotypes for simultaneous glucose-xylose consumption without compromising methyl ketone titer at both 1 and 2% total sugar concentrations in shake flasks. This work demonstrated a strategy for engineering simultaneous utilization of C 6 and C 5 sugars in E. coli without sacrificing production of fatty acid-derived compounds.« less

  10. Engineering E. coli for simultaneous glucose–xylose utilization during methyl ketone production

    DOE PAGES

    Wang, Xi; Goh, Ee-Been; Beller, Harry R.

    2018-01-27

    Previously, we developed an E. coli strain that overproduces medium-chain methyl ketones for potential use as diesel fuel blending agents or as flavors and fragrances. To date, the strain's performance has been optimized during growth with glucose. However, lignocellulosic biomass hydrolysates also contain a substantial portion of hemicellulose-derived xylose, which is typically the second most abundant sugar after glucose. Commercialization of the methyl ketone-producing technology would benefit from the increased efficiency resulting from simultaneous, rather than the native sequential (diauxic), utilization of glucose and xylose. In this study, genetic manipulations were performed to alleviate carbon catabolite repression in our mostmore » efficient methyl ket one-producing strain. A strain engineered for constitutive expression of xylF and xylA (involved in xylose transport and metabolism) showed synchronized glucose and xylose consumption rates. However, this newly acquired capability came at the expense of methyl ketone titer, which decreased fivefold. Further efforts were made to improve methyl ketone production in this strain, and we found that two strategies were effective at enhancing methyl ketone titer: (1) chromosomal deletion of pgi (glucose-6-phosphate isomerase) to increase intracellular NADPH supply and (2) downregulation of CRP (cAMP receptor protein) expression by replacement of the native RBS with an RBS chosen based upon mutant library screening results. Combining these strategies resulted in the most favorable overall phenotypes for simultaneous glucose-xylose consumption without compromising methyl ketone titer at both 1 and 2% total sugar concentrations in shake flasks. This work demonstrated a strategy for engineering simultaneous utilization of C 6 and C 5 sugars in E. coli without sacrificing production of fatty acid-derived compounds.« less

  11. 40 CFR 721.4568 - Methylpolychloro aliphatic ketone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methylpolychloro aliphatic ketone. 721... Substances § 721.4568 Methylpolychloro aliphatic ketone. (a) Chemical substance and significant new uses... ketone (PMN No. P-91-1321) is subject to reporting under this section for the significant new uses...

  12. Rhodium-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Ketones: A General Approach to Chiral α-amino Ketones.

    PubMed

    Gao, Wenchao; Wang, Qingli; Xie, Yun; Lv, Hui; Zhang, Xumu

    2016-01-01

    Rhodium/DuanPhos-catalyzed asymmetric hydrogenation of aliphatic α-dehydroamino ketones has been achieved and afforded chiral α-amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β-amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α-amino ketones and chiral β-amino alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Aldehyde Detection in Electronic Cigarette Aerosols

    PubMed Central

    2017-01-01

    Acetaldehyde, acrolein, and formaldehyde are the principal toxic aldehydes present in cigarette smoke and contribute to the risk of cardiovascular disease and noncancerous pulmonary disease. The rapid growth of the use of electronic cigarettes (e-cigarettes) has raised concerns over emissions of these harmful aldehydes. This work determines emissions of these aldehydes in both free and bound (aldehyde–hemiacetal) forms and other carbonyls from the use of e-cigarettes. A novel silicon microreactor with a coating phase of 4-(2-aminooxyethyl)-morpholin-4-ium chloride (AMAH) was used to trap carbonyl compounds in the aerosols of e-cigarettes via oximation reactions. AMAH–aldehyde adducts were measured using gas chromatography–mass spectrometry. 1H nuclear magnetic resonance spectroscopy was used to analyze hemiacetals in the aerosols. These aldehydes were detected in the aerosols of all e-cigarettes. Newer-generation e-cigarette devices generated more aldehydes than the first-generation e-cigarettes because of higher battery power output. Formaldehyde–hemiacetal was detected in the aerosols generated from some e-liquids using the newer e-cigarette devices at a battery power output of 11.7 W and above. The emission of these aldehydes from all e-cigarettes, especially higher levels of aldehydes from the newer-generation e-cigarette devices, indicates the risk of using e-cigarettes. PMID:28393137

  14. Laboratory Evaluation of Synthetic Blends of l-(+)-Lactic Acid, Ammonia, and Ketones As Potential Attractants For Aedes aegypti.

    PubMed

    Venkatesh, P M; Sen, A

    2017-12-01

    Attraction of Aedes aegypti to various binary, trinary, and quaternary blends of lactic acid and ketones with or without ammonia was studied using a dual choice olfactometer. A dose dependent attraction was observed in cases of single compounds where cyclopentanone attracted the highest percentage (36.9 ± 1.8%) of Ae. aegypti when tested alone. No significant difference was observed between the attraction levels of trinary and binary blends of lactic acid and acetone or butanone when tested against clear air. However, in competitive bioassays, the trinary blend of lactic acid, acetone, and butanone was significantly preferred over binary blends of individual compounds ( P < 0.05). Acetylacetone was weakly attractive when tested alone but showed additive attraction when blended with lactic acid. However, acetylacetone acted as an attraction inhibitor when blended with other compounds. Cyclopentanone was attractive, but enhancement of attraction was not observed when blended with other components. Addition of ammonia to binary or trinary blends of lactic acid, acetone, and/or butanone did not increase the attraction significantly. In competitive bioassays, the blends containing ammonia were significantly preferred over the blends lacking ammonia ( P < 0.05). This highlights ammonia as an essential component of synthetic blends. A quaternary blend of lactic acid, ammonia, acetone, and butanone was most attractive (65 ± 1.5%) and preferred blend of all other combinations.

  15. n-Aldehydes (C6-C10) in snow samples collected at the high alpine research station Jungfraujoch during CLACE 5

    NASA Astrophysics Data System (ADS)

    Sieg, K.; Starokozhev, E.; Fries, E.; Sala, S.; Püttmann, W.

    2009-04-01

    pattern found in snow collected at Jungfraujoch. One exception is the significantly higher proportion of n-hexanal in the Jungfraujoch samples compared to vegetation emission. Additionally, indirect biogenic emissions can contribute to the atmospheric concentrations of n-aldehydes through oxidation of precursor compounds of biogenic origin. In this context, Moise and Rudich [4] and Thornberry and Abbatt [5] proposed the preferential formation of n-nonanal and n-hexanal from the cleavage by ozonolysis of double bonds in unsaturated fatty acids (namely oleic acid and linoleic acids). The predominance of n-hexanal and n-nonanal among the C6-C10 n-aldehydes in the snow samples collected at Jungfraujoch during CLACE 5 is therefore an argument for the formation of the aldehydes through oxidation of unsaturated fatty acids in the atmosphere. Anthropogenic emissions of n-aldehydes i.e. from fossil fuel burning are thought to be negligible in the air masses reaching Jungfraujoch. References: [1] P. Ciccioli, E. Brancaleoni, M. Frattoni, A. Cecinato, A. Brachetti, Atmos. Environ., Part A 27 (1993) 1891. [2] Y. Yokouchi, H. Mukai, K. Nakajima, Y. Ambe, Atmos. Environ., Part A 24 (1990) 439. [3] J. Kesselmeier, M. Staudt, J. Atmos. Chem. 33 (1999) 23. [4] T. Moise, Y. Rudich, J. Phys. Chem. 106 (2002) 6469. [5] T. Thornberry, J.P.D. Abbatt, Phys. Chem. Chem. Phys. 6 (2004) 84.

  16. Aldehyde-alcohol reactions catalyzed under mild conditions by chromium(III) terephthalate metal organic framework (MIL-101) and phosphotungstic acid composites.

    PubMed

    Bromberg, Lev; Hatton, T Alan

    2011-12-01

    Porous materials based on chromium(III) terephthalate metal organic frameworks (MIL-101) and their composites with phosphotungstic acid (PTA) were studied as heterogeneous acid catalysts in aldehyde-alcohol reactions exemplified by acetaldehyde-phenol (A-P) condensation and dimethylacetal formation from benzaldehyde and methanol (B-M reaction). The MIL-101 was synthesized solvothermically in water, and the MIL101/PTA composite materials were obtained by either impregnation of the already prepared MIL-101 porous matrix with phosphotungstic acid solution or by solvothermic treatment of aqueous mixtures of Cr(NO(3))(3), and terephthalic and phosphotungstic acids. The MIL101/PTA materials appeared to be effective catalysts for both A-P and B-M reactions occurring at room temperature, with half-lives ranging from 0.5 h (A-P) to 1.5-2 h (B-M) and turnover numbers over 600 for A-P and over 2900 for the B-M reaction, respectively. A synergistic effect of the strong acidic moieties (PTA) addition to mildly acidic Brønsted and Lewis acid cites of the MIL-101 was observed with the MIL101/PTA composites. The ability of the PTA and MIL101/PTA materials to strongly absorb and condense acetaldehyde vapors was discovered, with the MIL101/PTA absorbing over 10-fold its dry weight of acetaldehyde condensate at room temperature. The acetaldehyde was converted rapidly to crotonaldehyde and higher-molecular-weight compounds while in contact with MIL-101 and MIL101/PTA materials. The stability of the MIL-101 and MIL101/PTA catalysts was assessed within four cycles of the 1-day alcohol-aldehyde reactions in terms of the overall catalyst recovery, PTA or Cr content, and reaction rate constants in each cycle. The loss of the catalyst over 4 cycles was approximately 10 wt % for all tested catalysts due to the incomplete recovery and minute dissolution of the components. The reaction rates in all cycles remained unchanged and the catalyst losses stopped after the third cycle. The developed

  17. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties.

  18. A comparative study of aroma-active compounds between dark and milk chocolate: relationship to sensory perception.

    PubMed

    Liu, Jianbin; Liu, Mengya; He, Congcong; Song, Huanlu; Guo, Jia; Wang, Ye; Yang, Haiying; Su, Xiaoxia

    2015-04-01

    The most important aroma-active compounds of two types of chocolate and cocoa liquor used for their production were analysed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and aroma extract dilution analysis (AEDA). Furthermore, the relationship between odorants and sensory perception of chocolate was measured by quantitative analysis, sensory evaluation and correlation analysis. In addition, some chemicals were added to the original dark or milk chocolate to validate their roles in the aroma property of chocolate. A total of 32 major aroma-active compounds were identified in the chocolate with the flavour dilution factors of 27-729 by AEDA, including seven aldehydes, six pyrazines, three pyrroles, four carboxylic acids, four lactones, two alcohols, two ketones, one ester, one pyrone, one furan and one sulfur-containing compound. Further quantitative analysis showed that dark chocolate had higher contents of pyrazine, pyrrole, carboxylic acids, alcohols and Strecker aldehydes, whereas the concentration of lactones, esters, long chain aldehydes and ketones were higher in the milk type. Differences in volatile composition and descriptive flavour attributes between the dark and milk chocolate were observed. The relationship between aroma-active compounds and sensory perception in the chocolate was verified. © 2014 Society of Chemical Industry.

  19. Cerebral Ketone Metabolism During Development and Injury

    PubMed Central

    Prins, Mayumi L.

    2011-01-01

    Cerebral metabolism of ketones is a normal part of the process of brain development. While the mature brain relies on glucose as a primary fuel source, metabolism of ketone bodies remains an alternative energy source under conditions of starvation. The neuroprotective properties of brain ketone metabolism make this alternative substrate a viable therapeutic option for various pathologies. Since the ability to revert to utilizing ketones as an alternative substrate is greatest in the younger post-weaned brain, this particular therapeutic approach remains an untapped resource particularly for pediatric pathological conditions. PMID:22104087

  20. Synthesis of a ketone analogue of biotin via the intramolecular Pauson-Khand reaction.

    PubMed

    McNeill, Eric; Chen, Irwin; Ting, Alice Y

    2006-09-28

    We report an improved synthesis of 5-(5-oxohexahydrocyclopenta[c]thiophen-1-yl)pentanoic acid (ketone biotin, 1) based on the intramolecular Pauson-Khand cyclization. The synthesis proceeds in eight steps and in 2.7% overall yield from cyclohexene.

  1. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model

    NASA Astrophysics Data System (ADS)

    Song, Linjiang; Li, Ling; He, Tao; Wang, Ning; Yang, Suleixin; Yang, Xi; Zeng, Yan; Zhang, Wenli; Yang, Li; Wu, Qinjie; Gong, Changyang

    2016-11-01

    Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate.

  2. Influence of physicochemical characteristics and high pressure processing on the volatile fraction of Iberian dry-cured ham.

    PubMed

    Martínez-Onandi, Nerea; Rivas-Cañedo, Ana; Ávila, Marta; Garde, Sonia; Nuñez, Manuel; Picon, Antonia

    2017-09-01

    The volatile fraction of 30 Iberian dry-cured hams of different physicochemical characteristics and the effect of high pressure processing (HPP) at 600MPa on volatile compounds were investigated. According to the analysis of variance carried out on the levels of 122 volatile compounds, intramuscular fat content influenced the levels of 8 benzene compounds, 5 carboxylic acids, 2 ketones, 2 furanones, 1 alcohol, 1 aldehyde and 1 sulfur compound, salt concentration influenced the levels of 1 aldehyde and 1 ketone, salt-in-lean ratio had no effect on volatile compounds, and water activity influenced the levels of 3 sulfur compounds, 1 alcohol and 1 aldehyde. HPP-treated samples of Iberian ham had higher levels of 4 compounds and lower levels of 31 compounds than untreated samples. A higher influence of HPP treatment on volatile compounds than physicochemical characteristics was observed for Iberian ham. Therefore, HPP treatment conditions should be optimized in order to diminish its possible effect on Iberian ham odor and aroma characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Results of Sediment Sampling and Elutriate Testing at the Proposed Middle Decatur Revetment Shallow Water Habitat Project Site

    DTIC Science & Technology

    2014-07-01

    Aroclor1248 10 50 Endrin 1.0 9.9 PCB - Aroclor1268 10 50 Endrin Aldehyde 1.0 9.9 PCB - Aroclor1232 10 50 Endrin Ketone 0.8 9.9 PCB - Aroclor1254...1.0 Endrin Aldehyde 0.011 0.1 PCB - Aroclor1232 0.2 1.0 Endrin Ketone 0.006 0.1 PCB - Aroclor1254 0.2 1.0 Heptachlor 0.009 0.05 PCB - Aroclor1242...Composite Endrin aldehyde ɘ.009 ug/kg U EPA 8081 496.524 0.009 10 20-May-14 1401161-01 MDR-S1 8-May-14 9:30 AM 0 -10 Composite Endrin ketone ɘ.02

  4. Results of Sediment Sampling and Elutriate Testing at the Proposed Indian Cave State Park Shallow Water Habitat Project Site

    DTIC Science & Technology

    2013-08-01

    Aroclor1248 10 50 Endrin 1.0 9.9 PCB - Aroclor1268 10 50 Endrin Aldehyde 1.0 9.9 PCB - Aroclor1232 10 50 Endrin Ketone 0.8 9.9 PCB - Aroclor1254 10 50... Aldehyde 0.011 0.1 PCB - Aroclor1232 0.2 1.0 Endrin Ketone 0.006 0.1 PCB - Aroclor1254 0.2 1.0 Heptachlor 0.009 0.05 PCB - Aroclor1242 0.2 1.0 Heptachlor...9.9 PCB - Aroclor1268 10 50 Endrin Aldehyde 1.0 9.9 PCB - Aroclor1232 10 50 Endrin Ketone 0.8 9.9 PCB - Aroclor1254 10 50 Heptachlor 0.6 5.1 PCB

  5. Synthesis of a ketone analog of biotin via the intramolecular Pauson-Khand reaction

    PubMed Central

    McNeill, Eric; Chen, Irwin; Ting, Alice Y.

    2008-01-01

    We report an improved synthesis of 5-(5-oxohexahydrocyclopenta[c]thiophen-1-yl)pentanoic acid (ketone biotin, 1) based on the intramolecular Pauson-Khand cyclization. The synthesis proceeds in 8 steps and in 2.7% overall yield from cyclohexene. PMID:16986958

  6. Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine.

    PubMed

    An, Xiao-De; Yu, Shouyun

    2015-06-05

    A one-pot synthesis of phenanthridines and quinolines from commercially available or easily prepared aldehydes has been reported. O-(4-Cyanobenzoyl)hydroxylamine was utilized as the nitrogen source to generate O-acyl oximes in situ with aldehydes catalyzed by Brønsted acid. O-Acyl oximes were then subjected to visible light photoredox catalyzed cyclization via iminyl radicals to furnish aza-arenes. A variety of phenanthridines and quinolines have been prepared assisted by Brønsted acid and photocatalyst under visible light at room temperature with satisfactory yields.

  7. Fluorine bearing sydnones with styryl ketone group: synthesis and their possible analgesic and anti-inflammatory activities.

    PubMed

    Deshpande, Shreenivas Ramachandrarao; Pai, Karkala Vasantakumar

    2012-04-01

    In continuation of structure activity relationship studies, a panel of fluorine containing sydnones with styryl ketone group 4-[1-oxo-3-(substituted aryl)-2-propenyl]-3-(3-chloro-4-fluorophenyl)sydnones 2a-i, was synthesized as better analgesic and anti-inflammatory agents. The title compounds were formed by condensing 4-acetyl-3-(3-chloro-4-fluorophenyl)sydnone with various substituted aryl aldehydes, characterized by spectral studies and evaluated at 100 mg\\kg b.w., p.o. for analgesic, anti-inflammatory and ulcerogenic activities. Compounds 2c and 2e showed good analgesic effect in acetic acid-induced writhing while none showed significant activity in hot plate assay in mice. In carrageenan-induced rat paw oedema test, compound 2c and 2f exhibited good anti-inflammatory effect at 3rd h, whereas compounds 2c, 2e, 2d, 2g and 2h showed activity in croton oil induced ear oedema assay in mice. Compounds 2c and 2e were less ulcerogenic than ibuprofen in rats, when tested by ulcer index method. Compounds with electron attracting substituents such as 2c and 2e were found to be promising in terms of the ratio of efficacy and adverse effect. These compounds generally exhibited better activity than those of earlier series signifying fluorine substitution.

  8. Difficulties in Laboratory Studies and Astronomical Observations of Organic Molecules: Hydroxyacetone and Lactic Acid

    NASA Technical Reports Server (NTRS)

    Apponi, A. J.; Brewster, M. A.; Hoy, J.; Ziurys, L. M.

    2006-01-01

    For the past 35 years, radio astronomy has revealed a rich organic chemistry in the interstellar gas, which is exceptionally complex towards active star-forming regions. New solar systems condense out of this gas and may influence the evolution of life on newly formed planets. Much of the biologically important functionality is present among the some 130 gas-phase molecules found to date, including alcohols, aldehydes, ketones, acids, amines, amides and even the simplest sugar - glycolaldehyde. Still, many unidentified interstellar radio signals remain, and their identification relies on further laboratory study. The molecules hydroxyacetone and lactic acid are relatively small organic molecules, but possess rather complex rotational spectra owing to their high asymmetry. Hydroxyacetone is particularly problematic because it possess a very low barrier to internal rotation, and exhibits strong coupling of the free-rotor states with the overall rotation of the molecule. As in the case of acetamide, a full decomposition method was employed to order the resultant eigenstates onto normal asymmetric top eigenvectors.

  9. The Determination of the Smoke Hazards Resulting from the Burning of Shipboard Materials Utilized by the US Navy.

    DTIC Science & Technology

    1981-08-31

    Interior Paairt r’ts RorzotalSapleIeun Forle Tranduer Figure I. Combustion Products Test Chamber. .. 2. *Sold hda 0 Ol~n kb 3’. 8.iIdg IN= W I Vll ue2...hydrocarbons (alkanes, alkenes, and alkynes), alcohols, aldehydes, ketones, ethers, carboxylic acids , aromatic hydrocarbons, polycyclic aromatic hydrocarbons...carboxylic acids , a few nitriles, acetaldehyde, and acetone. A few exotic fluorine containing organic compounds have unusually low refractive indices for

  10. Volatilization of ketones from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1982-01-01

    The overall mass-transfer coefficients for the volatilization from water of acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-2-pentanone, 2-heptanone, and 2-octanone were measured simultaneously with the oxygen-absorption coefficient in a laboratory stirred water bath. The liquid-film and gas-film coefficients of the two-film model were determined for the ketones from the overall coefficients, and both film resistances were important for volatilization of the ketones.The liquid-film coefficients for the ketones varied with the 0.719 power of the molecular-diffusion coefficient, in agreement with the literature. The liquid-film coefficients showed a variable dependence on molecular weight, with the dependence ranging from the −0.263 power for acetone to the −0.378 power for 2-octanone. This is in contrast with the literature where a constant −0.500 power dependence on the molecular weight is assumed.The gas-film coefficients for the ketones showed no dependence on molecular weight, in contrast with the literature where a −0.500 power is assumed.

  11. Ketone bodies as epigenetic modifiers.

    PubMed

    Ruan, Hai-Bin; Crawford, Peter A

    2018-07-01

    Ketone body metabolism is a dynamic and integrated metabolic node in human physiology, whose roles include but extend beyond alternative fuel provision during carbohydrate restriction. Here we discuss the most recent observations suggesting that ketosis coordinates cellular function via epigenomic regulation. Ketosis has been linked to covalent modifications, including lysine acetylation, methylation, and hydroxybutyrylation, to key histones that serve as dynamic regulators of chromatin architecture and gene transcription. Although it remains to be fully established whether these changes to the epigenome are attributable to ketone bodies themselves or other aspects of ketotic states, the regulated genes mediate classical responses to carbohydrate restriction. Direct regulation of gene expression may occur in-vivo via through ketone body-mediated histone modifications during adherence to low-carbohydrate diets, fasting ketosis, exogenous ketone body therapy, and diabetic ketoacidosis. Additional convergent functional genomics, metabolomics, and proteomics studies are required in both animal models and in humans to identify the molecular mechanisms through which ketosis regulates nuclear signaling events in a myriad of conditions relevant to disease, and the contexts in which the benefits of ketosis might outweigh the risks.

  12. Pulsed corona discharge oxidation of aqueous lignin: decomposition and aldehydes formation.

    PubMed

    Panorel, Iris; Kaijanen, Laura; Kornev, Iakov; Preis, Sergei; Louhi-Kultanen, Marjatta; Sirén, Heli

    2014-01-01

    Lignin is the mass waste product of pulp and paper industry mostly incinerated for energy recovery. Lignin is, however, a substantial source of raw material for derivatives currently produced in costly wet oxidation processes. The pulsed corona discharge (PCD) for the first time was applied to lignin oxidation aiming a cost-effective environmentally friendly lignin removal and transformation to aldehydes. The experimental research into treatment of coniferous kraft lignin aqueous solutions was undertaken to establish the dependence of lignin oxidation and aldehyde formation on the discharge parameters, initial concentration of lignin and gas phase composition. The rate and the energy efficiency of lignin oxidation increased with increasing oxygen concentration reaching up to 82 g kW-1 h-1 in 89% vol. oxygen. Oxidation energy efficiency in PCD treatment exceeds the one for conventional ozonation by the factor of two under the experimental conditions. Oxidation at low oxygen concentrations showed a tendency of the increasing aldehydes and glyoxylic acid formation yield.

  13. Identification and characterization of aldehyde oxidases (AOXs) in the cotton bollworm

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Liao, Yalin

    2017-12-01

    Aldehyde oxidases (AOXs) are a family of metabolic enzymes that oxidize aldehydes into carboxylic acids; therefore, they play critical roles in detoxification and degradation of chemicals. By using transcriptomic and genomic approaches, we successfully identified six putative AOX genes (HarmAOX1-6) from cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In silico expression profile, reverse transcription (RT)-PCR, and quantitative PCR (qPCR) analyses showed that HarmAOX1 is highly expressed in adult antennae, tarsi, and larval mouthparts, so they may play an important role in degrading plant-derived compounds. HarmAOX2 is highly and specifically expressed in adult antennae, suggesting a candidate pheromone-degrading enzyme (PDE) to inactivate the sex pheromone components (Z)-11-hexadecenal and (Z)-9-hexadecenal. RNA sequencing data further demonstrated that a number of host plants they feed on could significantly upregulate the expression levels of HarmAOX1 in larvae. This study improves our understanding of insect aldehyde oxidases and insect-plant interactions.

  14. Effect of Docosahexaenoic Acid Ingestion on Temporal Change in Urinary Excretion of Mercapturic Acid in ODS Rats.

    PubMed

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2007-11-01

    We hypothesized a suppressive mechanism for docosahexaenoic acid (22:6n-3; DHA)-induced tissue lipid peroxidation in which the degradation products, especially aldehydic compounds, are conjugated with glutathione through catalysis by glutathione S-transferases, and then excreted into urine as mercapturic acids. In the present study, ascorbic acid-requiring ODS rats were fed a diet containing DHA (3.6% of total energy) for 31 days. Lipid peroxides including degradation products and their scavengers in the liver and kidney were determined, and the temporal change in the urinary excretion of mercapturic acids was also measured. The activity of aldehyde dehydrogenase, which catalyzes the oxidation and detoxification of aldehydes, tended to be higher in the liver of DHA-fed rats. The levels of lipid peroxides as measured by thiobarbituric acid-reactive substances and aldehydic compounds were higher and that of alpha-tocopherol was lower in the liver, and the pattern of temporal changes in the urinary excretion of mercapturic acids was also different between the n-6 linoleic acid and DHA-fed rats. Accordingly, we presume from these results that after dietary DHA-induced lipid peroxidation, a proportion of the lipid peroxidation-derived aldehydic degradation products is excreted into urine as mercapturic acids.

  15. Effect of Docosahexaenoic Acid Ingestion on Temporal Change in Urinary Excretion of Mercapturic Acid in ODS Rats

    PubMed Central

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2007-01-01

    We hypothesized a suppressive mechanism for docosahexaenoic acid (22:6n-3; DHA)-induced tissue lipid peroxidation in which the degradation products, especially aldehydic compounds, are conjugated with glutathione through catalysis by glutathione S-transferases, and then excreted into urine as mercapturic acids. In the present study, ascorbic acid-requiring ODS rats were fed a diet containing DHA (3.6% of total energy) for 31 days. Lipid peroxides including degradation products and their scavengers in the liver and kidney were determined, and the temporal change in the urinary excretion of mercapturic acids was also measured. The activity of aldehyde dehydrogenase, which catalyzes the oxidation and detoxification of aldehydes, tended to be higher in the liver of DHA-fed rats. The levels of lipid peroxides as measured by thiobarbituric acid-reactive substances and aldehydic compounds were higher and that of α-tocopherol was lower in the liver, and the pattern of temporal changes in the urinary excretion of mercapturic acids was also different between the n-6 linoleic acid and DHA-fed rats. Accordingly, we presume from these results that after dietary DHA-induced lipid peroxidation, a proportion of the lipid peroxidation-derived aldehydic degradation products is excreted into urine as mercapturic acids. PMID:18299714

  16. The failure of poly (ether ether ketone) in high speed contacts

    NASA Astrophysics Data System (ADS)

    Briscoe, B. J.; Stuart, B. H.; Sebastian, S.; Tweedale, P. J.

    1993-04-01

    The paper describes an experimental study, with an associated analysis incorporating supplementary data, of the anti-boundary lubricating action of an alkane-aliphatic carboxylic acid lubricant system in a poly (ether ether ketone)-mild steel contact. The experiments involve progressively increasing the load in a contact formed between a polymer plate and a rotating steel shaft and estimating the frictional work dissipated. Scuffing is identified when a rapid increase in frictional work is noted at a characteristic normal load. It is shown that the additive induces premature scuffing. Subsidiary data is provided using Raman spectroscopy and hardness probes, and confirms that certain additives such as decanoic acid and dodecylamine will induce surface plasticization in poly (ether ether ketone). The trends in the frictional data have been interpreted using the adhesive model of friction in conjunction with temperature-dependent interfacial theology and bulk mechanical property data. It is proposed that the scuffing process is induced prematurely as a consequence of excessive additive-induced subsurface plasticization. Restricted surface plasticization in this system provides an enhanced self-lubricating capacity.

  17. Bio-based Hydraulic Fluids

    DTIC Science & Technology

    2008-04-17

    DEHULL, FLAKE HEXANE EXTRACTION PRESS HEXANE DISTILLATION CRUDE OIL 0.1-3% phosphatides 1% fatty acids 1 ppm chlorophyll DEGUM (H2 O, H3 PO4...program www.bfrl.nist.gov/oae/bees.html 617 April 2008 Seed Oils and Their Fatty Acid and Genetic Varieties Source: Leissner, O. et al (1989) Vegetable...Oils and Fats, Karlshammn, Sweden 717 April 2008 Bio-based Oil Process Volatile impurities: odor (aldehydes & ketones) fatty acids Bio-based Oil CRACK

  18. Ketone-DNA: a versatile postsynthetic DNA decoration platform.

    PubMed

    Dey, S; Sheppard, T L

    2001-12-13

    [reaction: see text] A general strategy for the functional diversification of DNA oligonucleotides under physiological conditions was developed. We describe the synthesis of DNA molecules bearing ketone ports (ketone-DNA) and the efficient postsynthetic decoration of ketone-DNA with structurally diverse aminooxy compounds.

  19. Novel ketone diet enhances physical and cognitive performance

    PubMed Central

    Murray, Andrew J.; Knight, Nicholas S.; Cole, Mark A.; Cochlin, Lowri E.; Carter, Emma; Tchabanenko, Kirill; Pichulik, Tica; Gulston, Melanie K.; Atherton, Helen J.; Schroeder, Marie A.; Deacon, Robert M. J.; Kashiwaya, Yoshihiro; King, M. Todd; Pawlosky, Robert; Rawlins, J. Nicholas P.; Tyler, Damian J.; Griffin, Julian L.; Robertson, Jeremy; Veech, Richard L.; Clarke, Kieran

    2016-01-01

    Ketone bodies are the most energy-efficient fuel and yield more ATP per mole of substrate than pyruvate and increase the free energy released from ATP hydrolysis. Elevation of circulating ketones via high-fat, low-carbohydrate diets has been used for the treatment of drug-refractory epilepsy and for neurodegenerative diseases, such as Parkinson’s disease. Ketones may also be beneficial for muscle and brain in times of stress, such as endurance exercise. The challenge has been to raise circulating ketone levels by using a palatable diet without altering lipid levels. We found that blood ketone levels can be increased and cholesterol and triglycerides decreased by feeding rats a novel ketone ester diet: chow that is supplemented with (R)-3-hydroxybutyl (R)-3-hydroxybutyrate as 30% of calories. For 5 d, rats on the ketone diet ran 32% further on a treadmill than did control rats that ate an isocaloric diet that was supplemented with either corn starch or palm oil (P < 0.05). Ketone-fed rats completed an 8-arm radial maze test 38% faster than did those on the other diets, making more correct decisions before making a mistake (P < 0.05). Isolated, perfused hearts from rats that were fed the ketone diet had greater free energy available from ATP hydrolysis during increased work than did hearts from rats on the other diets as shown by using [31P]-NMR spectroscopy. The novel ketone diet, therefore, improved physical performance and cognitive function in rats, and its energy-sparing properties suggest that it may help to treat a range of human conditions with metabolic abnormalities.—Murray, A. J., Knight, N. S., Cole, M. A., Cochlin, L. E., Carter, E., Tchabanenko, K., Pichulik, T., Gulston, M. K., Atherton, H. J., Schroeder, M. A., Deacon, R. M. J., Kashiwaya, Y., King, M. T., Pawlosky, R., Rawlins, J. N. P., Tyler, D. J., Griffin, J. L., Robertson, J., Veech, R. L., Clarke, K. Novel ketone diet enhances physical and cognitive performance. PMID:27528626

  20. Oxidative versus Non-oxidative Decarboxylation of Amino Acids: Conditions for the Preferential Formation of Either Strecker Aldehydes or Amines in Amino Acid/Lipid-Derived Reactive Carbonyl Model Systems.

    PubMed

    Zamora, Rosario; León, M Mercedes; Hidalgo, Francisco J

    2015-09-16

    Comparative formation of both 2-phenylethylamine and phenylacetaldehyde as a consequence of phenylalanine degradation by carbonyl compounds was studied in an attempt to understand if the amine/aldehyde ratio can be changed as a function of reaction conditions. The assayed carbonyl compounds were selected because of the presence in the chain of both electron-donating and electron-withdrawing groups and included alkenals, alkadienals, epoxyalkenals, oxoalkenals, and hydroxyalkenals as well as lipid hydroperoxides. The obtained results showed that the 2-phenylethylamine/phenylacetaldehyde ratio depended upon both the carbonyls and the reaction conditions. Thus, it can be increased using electron-donating groups in the chain of the carbonyl compound, small amounts of carbonyl compound, low oxygen content, increasing the pH, or increasing the temperature at pH 6. Opposed conditions (use of electron-withdrawing groups in the chain of the carbonyl compound, large amounts of carbonyl compound, high oxygen contents, low pH values, and increasing temperatures at low pH values) would decrease the 2-phenylethylamine/phenylacetaldehyde ratio, and the formation of aldehydes over amines in amino acid degradations would be favored.

  1. Metabolism of MRX-I, a novel antibacterial oxazolidinone, in humans: the oxidative ring opening of 2,3-Dihydropyridin-4-one catalyzed by non-P450 enzymes.

    PubMed

    Meng, Jian; Zhong, Dafang; Li, Liang; Yuan, Zhengyu; Yuan, Hong; Xie, Cen; Zhou, Jialan; Li, Chen; Gordeev, Mikhail Fedorovich; Liu, Jinqian; Chen, Xiaoyan

    2015-05-01

    MRX-I is an analog of linezolid containing a 2,3-dihydropyridin-4-one (DHPO) ring rather than a morpholine ring. Our objectives were to characterize the major metabolic pathways of MRX-I in humans and clarify the mechanism underlying the oxidative ring opening of DHPO. After an oral dose of MRX-I (600 mg), nine metabolites were identified in humans. The principal metabolic pathway proposed involved the DHPO ring opening, generating the main metabolites in the plasma and urine: the hydroxyethyl amino propionic acid metabolite MRX445-1 and the carboxymethyl amino propionic acid metabolite MRX459. An in vitro phenotyping study demonstrated that multiple non-cytochrome P450 enzymes are involved in the formation of MRX445-1 and MRX459, including flavin-containing monooxygenase 5, short-chain dehydrogenase/reductase, aldehyde ketone reductase, and aldehyde dehydrogenase (ALDH). H2 (18)O experiments revealed that two (18)O atoms are incorporated into MRX445-1, one in the carboxyethyl group and the other in the hydroxyl group, and three (18)O atoms are incorporated into MRX459, two in the carboxymethyl group and one in the hydroxyl group. Based on these results, the mechanism proposed for the DHPO ring opening involves the metabolism of MRX-I via FMO5-mediated Baeyer-Villiger oxidation to an enol lactone, hydrolysis to an enol, and enol-aldehyde tautomerism to an aldehyde. The aldehyde is reduced by short-chain dehydrogenase/reductase, aldehyde ketone reductase, ALDH to MRX445-1, or oxidized by ALDH to MRX459. Our study suggests that few clinical adverse drug-drug interactions should be anticipated between MRX-I and cytochrome P450 inhibitors or inducers. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Reactive aldehyde metabolites from the anti-HIV drug abacavir: amino acid adducts as possible factors in abacavir toxicity.

    PubMed

    Charneira, Catarina; Godinho, Ana L A; Oliveira, M Conceição; Pereira, Sofia A; Monteiro, Emília C; Marques, M Matilde; Antunes, Alexandra M M

    2011-12-19

    Abacavir is a nucleoside reverse transcriptase inhibitor marketed since 1999 for the treatment of infection with the human immunodeficiency virus type 1 (HIV). Despite its clinical efficacy, abacavir administration has been associated with serious and sometimes fatal toxic events. Abacavir has been reported to undergo bioactivation in vitro, yielding reactive species that bind covalently to human serum albumin, but the haptenation mechanism and its significance to the toxic events induced by this anti-HIV drug have yet to be elucidated. Abacavir is extensively metabolized in the liver, resulting in inactive glucuronide and carboxylate metabolites. The metabolism of abacavir to the carboxylate involves a two-step oxidation via an unconjugated aldehyde, which under dehydrogenase activity isomerizes to a conjugated aldehyde. Concurrently with metabolic oxidation, the two putative aldehyde metabolites may be trapped by nucleophilic side groups in proteins yielding covalent adducts, which can be at the onset of the toxic events associated with abacavir. To gain insight into the role of aldehyde metabolites in abacavir-induced toxicity and with the ultimate goal of preparing reliable and fully characterized prospective biomarkers of exposure to the drug, we synthesized the two putative abacavir aldehyde metabolites and investigated their reaction with the α-amino group of valine. The resulting adducts were subsequently stabilized by reduction with sodium cyanoborohydride and derivatized with phenyl isothiocyanate, leading in both instances to the formation of the same phenylthiohydantoin, which was fully characterized by NMR and MS. These results suggest that the unconjugated aldehyde, initially formed in vivo, rapidly isomerizes to the thermodynamically more stable conjugated aldehyde, which is the electrophilic intermediate mainly involved in reaction with bionucleophiles. Moreover, we demonstrated that the reaction of the conjugated aldehyde with nitrogen

  3. Synthesis of α,β-unsaturated aldehydes as potential substrates for bacterial luciferases.

    PubMed

    Brodl, Eveline; Ivkovic, Jakov; Tabib, Chaitanya R; Breinbauer, Rolf; Macheroux, Peter

    2017-02-15

    Bacterial luciferase catalyzes the monooxygenation of long-chain aldehydes such as tetradecanal to the corresponding acid accompanied by light emission with a maximum at 490nm. In this study even numbered aldehydes with eight, ten, twelve and fourteen carbon atoms were compared with analogs having a double bond at the α,β-position. These α,β-unsaturated aldehydes were synthesized in three steps and were examined as potential substrates in vitro. The luciferase of Photobacterium leiognathi was found to convert these analogs and showed a reduced but significant bioluminescence activity compared to tetradecanal. This study showed the trend that aldehydes, both saturated and unsaturated, with longer chain lengths had higher activity in terms of bioluminescence than shorter chain lengths. The maximal light intensity of (E)-tetradec-2-enal was approximately half with luciferase of P. leiognathi, compared to tetradecanal. Luciferases of Vibrio harveyi and Aliivibrio fisheri accepted these newly synthesized substrates but light emission dropped drastically compared to saturated aldehydes. The onset and the decay rate of bioluminescence were much slower, when using unsaturated substrates, indicating a kinetic effect. As a result the duration of the light emission is doubled. These results suggest that the substrate scope of bacterial luciferases is broader than previously reported. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Organocatalytic Enantioselective Protonation for Photoreduction of Activated Ketones and Ketimines Induced by Visible Light.

    PubMed

    Lin, Lu; Bai, Xiangbin; Ye, Xinyi; Zhao, Xiaowei; Tan, Choon-Hong; Jiang, Zhiyong

    2017-10-23

    The first catalytic asymmetric photoreduction of 1,2-diketones and α-keto ketimines under visible light irradiation is reported. A transition-metal-free synergistic catalysis platform harnessing dicyanopyrazine-derived chromophore (DPZ) as the photoredox catalyst and a non-covalent chiral organocatalyst is effective for these transformations. With the flexible use of a chiral Brønsted acid or base in H + transfer interchange to control the elusive enantioselective protonation, a variety of chiral α-hydroxy ketones and α-amino ketones were obtained with high yields and enantioselectivities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ketone EC50 values in the Microtox test.

    PubMed

    Chen, H F; Hee, S S

    1995-03-01

    The Microtox EC50 values for the following ketones are reported in the following homologous series: straight chain methyl ketones (acetone, 2-butanone, 2-pentanone, 2-hepatonone, 2-octanone, 2-decanone, and 2-tridecanone); methyl ketones substituted at one alpha carbon (3-methyl-2-butanone; 3,3-dimethyl-2-butanone); methyl substituted at two alpha carbons (2,4-dimethyl-3-pentanone; 2,2,4,4-tetramethyl-3-pentanone); phenyl groups replacing methyl in acetone (acetophenone; benzophenone); methyl groups substituted at the alpha carbons of cyclohexanone; and 2,3- 2,4-, and 2,5-hexanediones, most for the first time. While there were linear relationships between log EC50 and MW for the straight chain methyl ketones, and for methyl substitution at the alpha carbon for methyl ketones, there were no other linear relationships. As molecular weight increased, the EC50 values of soluble ketones decreased; as distance between two carbonyl groups decreased so too did EC50 values. Thus, for the ketones the geometry around the carbonyl group is an important determinant of toxicity as well as MW, water solubility, and octanol/water coefficient.

  6. Nickel-Catalyzed Coupling of Alkenes, Aldehydes, and Silyl Triflates

    PubMed Central

    Ng, Sze-sze; Ho, Chun-Yu; Jamison, Timothy F.

    2011-01-01

    A full account of two recently developed nickel-catalyzed coupling reactions of alkenes, aldehydes and silyl triflates is presented. These reactions provide either allylic alcohol or homoallylic alcohol derivatives selectively, depending on the ligand employed. These processes are believed to be mechanistically distinct from Lewis acid-catalyzed carbonyl-ene reactions, and several lines of evidence supporting this hypothesis are discussed. PMID:16939275

  7. Direct catalytic asymmetric alpha-amination of aldehydes.

    PubMed

    List, Benjamin

    2002-05-22

    The first direct catalytic asymmetric alpha-amination of aldehydes is described herein. alpha-Unbranched aldehydes react in this novel proline-catalyzed reaction with dialkyl azodicarboxylates to give alpha-amino aldehydes in excellent yields and enantioselectivities.

  8. Results of Sediment Sampling and Elutriate Testing at the Proposed Wilson Island Shallow Water Habitat Project Site

    DTIC Science & Technology

    2013-08-01

    Aroclor1248 0.3 1.0 Endrin 0.003 0.1 PCB - Aroclor1268 0.3 1.0 Endrin Aldehyde 0.011 0.1 PCB - Aroclor1232 0.2 1.0 Endrin Ketone 0.006 0.1 PCB...Endrin aldehyde ɛ ug/kg U EPA 8081 500 3 10 W1-E4 SEDIMENT Endrin aldehyde ɛ ug/kg U EPA 8081 500 3 10 W1-E1 NONFILTERED ELUTRIATE Endrin ketone ɘ.003...Endosulfan sulfate ----- 89 89 Endrin 0.086 0.036 ----- Endrin aldehyde ----- 0.30 0.30 Heptachlor 0.52 0.00079 0.00079 Heptachlor epoxide 0.52

  9. C–H Functionalization of Cyclic Amines: Redox-Annulations with α,β-Unsaturated Carbonyl Compounds

    PubMed Central

    Kang, YoungKu; Richers, Matthew T.; Sawicki, Conrad H.; Seidel, Daniel

    2015-01-01

    Cyclic amines such as pyrrolidine and 1,2,3,4-tetrahydroisoquinoline undergo redox-annulations with α,β-unsaturated aldehydes and ketones. Carboxylic acid promoted generation of a conjugated azomethine ylide is followed by 6π-electrocylization, and, in some cases, tautomerization. The resulting ring-fused pyrrolines are readily oxidized to the corresponding pyrroles or reduced to pyrrolidines. PMID:26051897

  10. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury.

    PubMed

    Cornille, Emilie; Abou-Hamdan, Mhamad; Khrestchatisky, Michel; Nieoullon, André; de Reggi, Max; Gharib, Bouchra

    2010-04-23

    The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  11. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.

    PubMed

    Kunjapur, Aditya M; Tarasova, Yekaterina; Prather, Kristala L J

    2014-08-20

    Aromatic aldehydes are useful in numerous applications, especially as flavors, fragrances, and pharmaceutical precursors. However, microbial synthesis of aldehydes is hindered by rapid, endogenous, and redundant conversion of aldehydes to their corresponding alcohols. We report the construction of an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that serves as a platform for aromatic aldehyde biosynthesis. Six genes with reported activity on the model substrate benzaldehyde were rationally targeted for deletion: three genes that encode aldo-keto reductases and three genes that encode alcohol dehydrogenases. Upon expression of a recombinant carboxylic acid reductase in the RARE strain and addition of benzoate during growth, benzaldehyde remained in the culture after 24 h, with less than 12% conversion of benzaldehyde to benzyl alcohol. Although individual overexpression results demonstrated that all six genes could contribute to benzaldehyde reduction in vivo, additional experiments featuring subset deletion strains revealed that two of the gene deletions were dispensable under the conditions tested. The engineered strain was next investigated for the production of vanillin from vanillate and succeeded in preventing formation of the byproduct vanillyl alcohol. A pathway for the biosynthesis of vanillin directly from glucose was introduced and resulted in a 55-fold improvement in vanillin titer when using the RARE strain versus the wild-type strain. Finally, synthesis of the chiral pharmaceutical intermediate L-phenylacetylcarbinol (L-PAC) was demonstrated from benzaldehyde and glucose upon expression of a recombinant mutant pyruvate decarboxylase in the RARE strain. Beyond allowing accumulation of aromatic aldehydes as end products in E. coli, the RARE strain expands the classes of chemicals that can be produced microbially via aldehyde intermediates.

  12. Caffeine intake increases plasma ketones: an acute metabolic study in humans.

    PubMed

    Vandenberghe, Camille; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Hennebelle, Marie; Castellano, Christian-Alexandre; Cunnane, Stephen C

    2017-04-01

    Brain glucose uptake declines during aging and is significantly impaired in Alzheimer's disease. Ketones are the main alternative brain fuel to glucose so they represent a potential approach to compensate for the brain glucose reduction. Caffeine is of interest as a potential ketogenic agent owing to its actions on lipolysis and lipid oxidation but whether it is ketogenic in humans is unknown. This study aimed to evaluate the acute ketogenic effect of 2 doses of caffeine (2.5; 5.0 mg/kg) in 10 healthy adults. Caffeine given at breakfast significantly stimulated ketone production in a dose-dependent manner (+88%; +116%) and also raised plasma free fatty acids. Whether caffeine has long-term ketogenic effects or could enhance the ketogenic effect of medium chain triglycerides remains to be determined.

  13. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model

    PubMed Central

    Song, Linjiang; Li, Ling; He, Tao; Wang, Ning; Yang, Suleixin; Yang, Xi; Zeng, Yan; Zhang, Wenli; Yang, Li; Wu, Qinjie; Gong, Changyang

    2016-01-01

    Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate. PMID:27869192

  14. Myoglobin-Catalyzed Olefination of Aldehydes.

    PubMed

    Tyagi, Vikas; Fasan, Rudi

    2016-02-12

    The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinzon, NM; Aukema, KG; Gralnick, JA

    A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone productionmore » as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. IMPORTANCE In recent years, there has been renewed interest in advanced biofuel sources such as bacterial hydrocarbon production. Previous studies used solvent extraction of bacterial cultures followed by gas chromatography-mass spectrometry (GC-MS) to detect and quantify ketones and hydrocarbons (Beller HR, Goh EB, Keasling JD, Appl. Environ. Microbiol. 76: 1212-1223, 2010; Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP, Appl. Environ. Microbiol. 76: 3850-3862, 2010). While these analyses are powerful and accurate, their labor-intensive nature makes them intractable to high-throughput screening; therefore, methods for rapid identification of bacterial strains that are overproducing hydrocarbons are needed. The use of high

  16. Deodorants: an experimental provocation study with cinnamic aldehyde.

    PubMed

    Bruze, Magnus; Johansen, J D; Andersen, K E; Frosch, P; Lepoittevin, J-P; Rastogi, S; Wakelin, S; White, I; Menné, T

    2003-02-01

    Axillary dermatitis is common and overrepresented in individuals with contact allergy to fragrances. Many individuals suspect their deodorants to be the incriminating products. Our aim was to investigate the significance of cinnamic aldehyde in deodorants for the development of axillary dermatitis when used by individuals with and without contact allergy to cinnamic aldehyde. Patch tests with deodorants and ethanol solutions with cinnamic aldehyde, and repeated open application tests with roll-on deodorants without and with cinnamic aldehyde at different concentrations, were performed in 37 patients with dermatitis, 20 without and 17 with contact allergy to cinnamic aldehyde. A repeated open application test with positive findings was noted only in patients hypersensitive to cinnamic aldehyde (P <.001) and only in the axilla to which the deodorants containing cinnamic aldehyde had been applied (P <.001). Deodorants containing cinnamic aldehyde in the concentration range 0.01% to 0.32%, used twice daily on healthy skin, can elicit axillary dermatitis within a few weeks.

  17. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to reporting...

  18. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to reporting...

  19. Role of basic and acidic centers of MgO and modified MgO in catalytic transfer hydrogenation of ketones studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Szöllösi, György; Bartók, Mihály

    1999-05-01

    In this study our aim was to identify the active sites and the surface species responsible for deactivation of MgO during catalytic transfer hydrogenations (CTH) of ketones using alcohols as hydrogen donors. Our previous studies showed that deactivation of MgO could be prevented by previous treatment with chloromethanes. Therefore the surface species formed during the reaction were studied before and after treatment with chloroform or chloroform- d by in situ infrared spectroscopy (IR). As a result, it was concluded that the reaction requires the presence of surface basic and acidic centers. The presence of Lewis acid centers was not necessary, the reaction could proceed on weakly acidic surface Brönsted sites, as the alterations in intensity and position of the ν(OH) bands indicated. Modification with chloroform resulted also in the generation of surface OH groups with a proper acidity for the reaction. The shift in carbonyl vibrations led us to the conclusion that Lewis acid and base centers were responsible for the catalyst poisoning, so covering these acid sites by Cl - led to a stable catalyst.

  20. Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Niu, Sulian; Liu, Caie; Wang, Liansheng

    In this study aerosol samples of PM10 and PM2.5 collected from 18 February 2001 to 1 May 2001 in Nanjing, China were analyzed for their water-soluble organic compounds. A series of homologous dicarboxylic acids (C 2-10) and two kinds of aldehydes (methylglyoxal and 2-oxo-malonaldehyde) were detected by GC and GC/MS. Among the identified compounds, the concentration of oxalic acid was the highest at all the five sites, which ranged from 178 to 1423 ng/m 3. The second highest concentration of dicarboxylic acids were malonic and succinic acids, which ranged from 26.9 to 243 ng/m 3. Higher level of azelaic acid was also observed, of which the maximum was 301 ng/m 3. As the highest fraction of dicarboxylic acids, oxalic acid comprised from 28% to 86% of total dicarboxylic acids in PM10 and from 41% to 65% of total dicarboxylic acids in PM2.5. The dicarboxylic acids (C 2, C 3, C 4) together accounted for 38-95% of total dicarboxylic acids in PM10 and 59-87% of dicarboxylic acids in PM2.5. In this study, the total dicarboxylic acids accounted for 2.8-7.9% of total organic carbon (TOC) of water-soluble matters for PM10 and 3.4-11.8% of TOC for PM2.5. All dicarboxylic acids detected in this study together accounted for about 1% of particle mass. The concentration of azelaic acid was higher at one site than others, which may be resulted from higher level of volatile fat used for cooking. The amounts of dicarboxyic acids (C 2,3,4,9) and 2-oxo-malonaldehyde of PM2.5 were higher in winter and lower in spring. Compared with other major metropolitans in the world, the level of oxalic acid concentration of Nanjing is much higher, which may be contributed to higher level of particle loadings, especially for fine particles.

  1. Homologation Reaction of Ketones with Diazo Compounds.

    PubMed

    Candeias, Nuno R; Paterna, Roberta; Gois, Pedro M P

    2016-03-09

    This review covers the addition of diazo compounds to ketones to afford homologated ketones, either in the presence or in the absence of promoters or catalysts. Reactions with diazoalkanes, aryldiazomethanes, trimethylsilyldiazomethane, α-diazo esters, and disubstituted diazo compounds are covered, commenting on the complex regiochemistry of the reaction and the nature of the catalysts and promoters. The recent reports on the enantioselective version of ketone homologation reactions are gathered in one section, followed by reports on the use of cyclic ketones ring expansion in total synthesis. Although the first reports of this reaction appeared in the literature almost one century ago, the recent achievements, in particular, for the asymmetric version, forecast the development of new breakthroughs in the synthetically valuable field of diazo chemistry.

  2. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics.

    PubMed

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O; Wood, Andrew J; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W; Vasiliou, Vasilis

    2013-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD(+)- or NADP(+)-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as 'aldehyde scavengers' by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried out genome-wide identification of ALDH genes in a number of plant species-including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies.

  3. β-Keto esters from ketones and ethyl chloroformate: a rapid, general, efficient synthesis of pyrazolones and their antimicrobial, in silico and in vitro cytotoxicity studies

    PubMed Central

    2013-01-01

    Background Pyrazolones are traditionally synthesized by the reaction of β-keto esters with hydrazine and its derivatives. There are methods to synthesize β-keto esters from esters and aldehydes, but these methods have main limitation in varying the substituents. Often, there are a number of methods such as acylation of enolates in which a chelating effect has been employed to lock the enolate anion using lithium and magnesium salts; however, these methods suffer from inconsistent yields in the case of aliphatic acylation. There are methods to synthesize β-keto esters from ketones like caboxylation of ketone enolates using carbon dioxide and carbon monoxide sources in the presence of palladium or transition metal catalysts. Currently, the most general and simple method to synthesize β-keto ester is the reaction of dimethyl or ethyl carbonate with ketone in the presence of strong bases which also requires long reaction time, use of excessive amount of reagent and inconsistent yield. These factors lead us to develop a simple method to synthesize β-keto esters by changing the base and reagent. Results A series of β-keto esters were synthesized from ketones and ethyl chloroformate in the presence of base which in turn are converted to pyrazolones and then subjected to cytotoxicity studies towards various cancer cell lines and antimicrobial activity studies towards various bacterial and fungal strains. Conclusion The β-keto esters from ethyl chloroformate was successfully attempted, and the developed method is simple, fast and applicable to the ketones having the alkyl halogens, protecting groups like Boc and Cbz that were tolerated and proved to be useful in the synthesis of fused bicyclic and tricyclic pyrazolones efficiently using cyclic ketones. Since this method is successful for different ketones, it can be useful for the synthesis of pharmaceutically important pyrazolones also. The synthesized pyrazolones were subjected to antimicrobial, docking and

  4. Evaluation of certain food additives.

    PubMed

    2009-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation and assessment of intake of food additives (in particular, flavouring agents). A summary follows of the Committee's evaluations of technical, toxicological and intake data for certain food additives (asparaginase from Aspergillus niger expressed in A. niger, calcium lignosulfonate (40-65), ethyl lauroyl arginate, paprika extract, phospholipase C expressed in Pichia pastoris, phytosterols, phytostanols and their esters, polydimethylsiloxane, steviol glycosides and sulfites [assessment of dietary exposure]) and 10 groups of related flavouring agents (aliphatic branched-chain saturated and unsaturated alcohols, aldehydes, acids and related esters; aliphatic linear alpha,beta-unsaturated aldehydes, acids and related alcohols, acetals and esters; aliphatic secondary alcohols, ketones and related esters; alkoxy-substituted allylbenzenes present in foods and essential oils and used as flavouring agents; esters of aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids; furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers; miscellaneous nitrogen-containing substances; monocyclic and bicyclic secondary alcohols, ketones and related esters; hydroxy- and alkoxy-substituted benzyl derivatives; and substances structurally related to menthol). Specifications for the following food additives were revised: canthaxanthin; carob bean gum and carob bean gum (clarified); chlorophyllin copper complexes, sodium and potassium salts; Fast Green FCF; guar gum and guar gum (clarified

  5. Catalyst-free reductive amination of aromatic aldehydes with ammonium formate and Hantzsch ester.

    PubMed

    Zhao, Pan-Pan; Zhou, Xin-Feng; Dai, Jian-Jun; Xu, Hua-Jian

    2014-12-07

    The protocol of the reductive amination of aromatic aldehydes using ammonium formate and Hantzsch ester is described. It is a mild, convenient, acid- and catalyst-free system applied for the synthesis of both symmetric and asymmetric aromatic secondary amines.

  6. Synthesis of 2-acyl-1,4-diketones via the diacylation of {alpha},{beta}-unsaturated ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, N.S.; Yu, S.; Kabalka, G.W.

    1998-08-17

    The first example of a diacylation of the carbon-carbon double bond in {alpha},{beta}-unsaturated ketones is described. The reaction of acylcyanocuprate reagents with {alpha},{beta}-unsaturated ketones, followed by C-acylation, produces 2-acyl-1,4-diketones in good yields (50--89%). The 1,4-addition of organocuprate reagents to conjugated enones, followed by trapping of the enolate intermediates with various electrophiles, is one of the most useful synthetic reactions. However, to the best of the authors` knowledge, 1,4-acylation followed by trapping of the enolate intermediates with acid chloride has not been reported.

  7. Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in cheddar cheese.

    PubMed

    Broadbent, Jeffery R; Gummalla, Sanjay; Hughes, Joanne E; Johnson, Mark E; Rankin, Scott A; Drake, Mary Anne

    2004-08-01

    Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that alpha-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable alpha-keto acids to more-stable alpha-hydroxy acids via the action of alpha-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydrogenase. To further characterize the role of this enzyme in cheese flavor, the Lactobacillus casei d-hydroxyisocaproic acid dehydrogenase gene was cloned into the high-copy-number vector pTRKH2 and transformed into L. casei ATCC 334. Enzyme assays confirmed that alpha-keto acid dehydrogenase activity was significantly higher in pTRKH2:dhic transformants than in wild-type cells. Reduced-fat Cheddar cheeses were made with Lactococcus lactis starter only, starter plus L. casei ATCC 334, and starter plus L. casei ATCC 334 transformed with pTRKH2:dhic. After 3 months of aging, the cheese chemistry and flavor attributes were evaluated instrumentally by gas chromatography-mass spectrometry and by descriptive sensory analysis. The culture system used significantly affected the concentrations of various ketones, aldehydes, alcohols, and esters and one sulfur compound in cheese. Results further indicated that enhanced expression of d-hydroxyisocaproic acid dehydrogenase suppressed spontaneous degradation of alpha-keto acids, but sensory work indicated that this effect retarded cheese flavor development.

  8. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    PubMed

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.

  9. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  10. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  11. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  12. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  13. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  14. Synthesis of robalzotan, ebalzotan, and rotigotine precursors via the stereoselective multienzymatic cascade reduction of α,β-unsaturated aldehydes.

    PubMed

    Brenna, Elisabetta; Gatti, Francesco G; Malpezzi, Luciana; Monti, Daniela; Parmeggiani, Fabio; Sacchetti, Alessandro

    2013-05-17

    A stereoselective synthesis of bicyclic primary or secondary amines, based on tetralin or chroman structural moieties, is reported. These amines are precursors of important active pharmaceutical ingredients such as rotigotine (Neupro), robalzotan, and ebalzotan. The key step is based on a multienzymatic reduction of an α,β-unsaturated aldehyde or ketone to give the saturated primary or secondary alcohol, in a high yield and with a high ee. The catalytic system consists of the combination of an ene-reductase (ER; i.e., OYE2 or OYE3 belonging to the Old Yellow Enzyme family) with an alcohol dehydrogenase (ADH), applying the in situ substrate feeding product removal technology. By this system the formation of the allylic alcohol side product and the racemization of the chirally unstable α-substituted aldehyde intermediate are minimized. The primary alcohols were elaborated via a Curtius rearrangement. The combination of OYE2 with a Prelog or an anti-Prelog ADH allowed the preparation of the secondary alcohols with ee > 99% and de > 87%. The absolute configuration of the primary amines was unambiguously assigned by comparison with authentic samples. The stereochemistry of secondary alcohols was assigned by X-ray crystal structure and NMR analysis of Mosher esters.

  15. Results of Sediment Sampling and Elutriate Testing at the Proposed Glovers Point Shallow Water Habitat Project Site

    DTIC Science & Technology

    2013-04-01

    Aroclor1248 0.3 1.0 Endrin 0.003 0.1 PCB - Aroclor1268 0.3 1.0 Endrin Aldehyde 0.011 0.1 PCB - Aroclor1232 0.2 1.0 Endrin Ketone 0.006 0.1 PCB... aldehyde n.d. 0.0008 9.9 n.d. 0.009 50 Endrin ketone n.d. 0.003 9.9 n.d. NA 50 Heptachlor n.d. 0.002 5.1 n.d. NA 50 Heptachlor epoxide n.d. 0.0008...Endosulfan sulfate n.d. 0.002 n.d. 0.01 0.50 Endrin n.d. 0.004 n.d. 0.004 0.50 Endrin aldehyde n.d. 0.004 n.d. 0.08 1.00 Endrin ketone n.d. 0.006 n.d

  16. Amino Acid Profile and Volatile Flavour Compounds of Raw and Steamed Patin Catfish (Pangasius hypophthalmus) and Narrow-barred Spanish Mackerel (Scomberomorus commerson)

    NASA Astrophysics Data System (ADS)

    Pratama, Rusky I.; Rostini, I.; Rochima, E.

    2018-02-01

    Fish species and processing methods could affect the volatile flavour composition and amino acid profile of fishery commodity. The objectives of this study were to identify volatile components and amino acid profile of two considered predominant fish species in Indonesia which are freshwater Patin catfish (Pangasius hypophthalmus) and marine water fish, Spanish mackerel (Scomberomorus commerson). The methods used in this study were to detect volatile compounds using Gas Chromatography/Mass Spectrometry (GC/MS) on fresh and steamed of both species samples (100°C for 30 minutes) and amino acid profile were also analyzed using High Performance Liquid Chromatography (HPLC). The volatile components analysis successfully detects as much as 29 and 59 volatiles compounds in fresh and steamed Patin catfish respectively, while 37 and 102 compounds were detected in fresh and steamed Spanish mackerel samples. Most of detected components derives from hydrocarbons, aldehydes, alcohols and ketone groups which could affected by their chemical composition and resulted from various thermal involved reaction. The amino acids profile identification results showed that glutamic acid was found higher compared to other amino acids standards in both samples. Glutamic acid is non-essential amino acid which is important in umami taste substances.

  17. Determination of linear aliphatic aldehydes in heavy metal containing waters by high-performance liquid chromatography using 2,4-dinitrophenylhydrazine derivatization.

    PubMed

    Lin, Yi-Liang; Wang, Po-Yen; Hsieh, Ling-Ling; Ku, Kuan-Hsuan; Yeh, Yun-Tai; Wu, Chien-Hou

    2009-09-04

    A simple and sensitive method is described for the determination of picomolar amounts of C(1)-C(9) linear aliphatic aldehydes in waters containing heavy metal ions. In this method, aldehydes were first derivatized with 2,4-dinitrophenylhydrazine (DNPH) at optimized pH 1.8 for 30 min and analyzed by HPLC with UV detector at 365 nm. Factors affecting the derivatization reaction of aldehydes and DNPH were investigated. Cupric ion, an example of heavy metals, is a common oxidative reagent, which may oxidize DNPH and greatly interfere with the determination of aldehydes. EDTA was used to effectively mask the interferences by heavy metal ions. The method detection limits for direct injection of derivatized most aldehydes except formaldehyde were of the order of 7-28 nM. The detection limit can be further lowered by using off-line C(18) adsorption cartridge enrichment. The recoveries of C(1)-C(9) aldehydes were 93-115% with a relative standard deviation of 3.6-8.1% at the 0.1 microM level for aldehydes. The HPLC-DNPH method has been applied for determining aldehyde photoproducts from Cu(II)-amino acid complex systems.

  18. A rational approach to predict and modulate stereolability of chiral alpha substituted ketones.

    PubMed

    Cirilli, Roberto; Costi, Roberta; Di Santo, Roberto; Gasparrini, Francesco; La Torre, Francesco; Pierini, Marco; Siani, Gabriella

    2009-01-01

    An effective strategy to assess and modulate the stereolability of chiral alpha substituted ketones (C alpha SKs) is presented. The tendency of C alpha SKs to retain or change their configuration in water is analyzed as a function of thermodynamic proton-release attitude of alpha asymmetric atoms inside the structures by linear Brønsted correlations. A molecular modeling procedure was developed to analyze and suggest chemical modifications of C alpha SKs in view to obtain the desired grade of stereochemical stability. The approach was employed to predict the tendency to enantiomerize in water of two ketones (1 and 2) endowed with inhibitory activity against monoamine oxidases (MAOs) and the results were confirmed by experimental kinetics measurements performed in organic medium. As a demonstration of practical potentialities of the approach, four new structures, conceived as simple chemical modifications of 1 and 2, were designed to improve/reduce the stereostability grade of the starting anti-MAO ketones. The possibility to extend easily the procedure to other classes of C-H acids appears of interest.

  19. Reaction of azides and enolisable aldehydes under the catalysis of organic bases and Cinchona based quaternary ammonium salts.

    PubMed

    Destro, Dario; Sanchez, Sandra; Cortigiani, Mauro; Adamo, Mauro F A

    2017-06-21

    Herein we report a two-step sequence for the preparation of amides starting from azides and enolisable aldehydes. The reaction proceeded via the formation of triazoline intermediates that were converted into amides via Lewis acid catalysis. Preliminary studies on the preparation of triazolines under chiral phase transfer catalysis are also presented, demonstrating that enantioenriched amides could be prepared from achiral aldehydes in moderate to low enantioselectivity.

  20. O-nitroso aldol synthesis: Catalytic enantioselective route to α-aminooxy carbonyl compounds via enamine intermediate

    PubMed Central

    Momiyama, Norie; Torii, Hiromi; Saito, Susumu; Yamamoto, Hisashi

    2004-01-01

    The approach using pyrrolidine enamine as substrate has been studied for this synthesis, and an important catalyst structural feature has been developed. After survey of pyrrolidine-based Brønsted acid catalyst, tetrazole catalyst (3f) was found to be optimal in synthesis of aminooxy carbonyl compounds in high yields, with complete enantioselectivity not only for aldehydes but also for ketones. PMID:15067138

  1. Ketone bodies and two-compartment tumor metabolism

    PubMed Central

    Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Whitaker-Menezes, Diana; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2012-01-01

    We have previously suggested that ketone body metabolism is critical for tumor progression and metastasis. Here, using a co-culture system employing human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts, we provide new evidence to directly support this hypothesis. More specifically, we show that the enzymes required for ketone body production are highly upregulated within cancer-associated fibroblasts. This appears to be mechanistically controlled by the stromal expression of caveolin-1 (Cav-1) and/or serum starvation. In addition, treatment with ketone bodies (such as 3-hydroxy-butyrate, and/or butanediol) is sufficient to drive mitochondrial biogenesis in human breast cancer cells. This observation was also validated by unbiased proteomic analysis. Interestingly, an MCT1 inhibitor was sufficient to block the onset of mitochondrial biogenesis in human breast cancer cells, suggesting a possible avenue for anticancer therapy. Finally, using human breast cancer tumor samples, we directly confirmed that the enzymes associated with ketone body production (HMGCS2, HMGCL and BDH1) were preferentially expressed in the tumor stroma. Conversely, enzymes associated with ketone re-utilization (ACAT1) and mitochondrial biogenesis (HSP60) were selectively associated with the epithelial tumor cell compartment. Our current findings are consistent with the “two-compartment tumor metabolism” model. Furthermore, they suggest that we should target ketone body metabolism as a new area for drug discovery, for the prevention and treatment of human cancers. PMID:23082721

  2. ALDEHYDE DEHYDROGENASES EXPRESSION DURING POSTNATAL DEVELOPMENT: LIVER VS. LUNG

    EPA Science Inventory

    Aldehydes are highly reactive molecules present in the environment, and can be produced during biotransformation of xenobiotics. Although the lung can be a major target for aldehyde toxicity, development of aldehyde dehydrogenases (ALDHs), which detoxify aldehydes, in lung has be...

  3. Selective aerobic oxidation of primary alcohols to aldehydes over Nb2O5 photocatalyst with visible light.

    PubMed

    Furukawa, Shinya; Shishido, Tetsuya; Teramura, Kentaro; Tanaka, Tsunehiro

    2014-09-15

    Primary alcohols are selectively converted into aldehydes by using a Nb(2)O(5) photocatalyst under visible-light irradiation. A strong interaction between the alcohol and Nb(2)O(5) generates a donor level within the forbidden band of Nb(2)O(5), which provides a visible-light-harvesting ability. Over oxidation of aldehydes into carboxylic acids does not proceed under visible-light irradiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics

    PubMed Central

    Brocker, Chad; Vasiliou, Melpomene; Carpenter, Sarah; Carpenter, Christopher; Zhang, Yucheng; Wang, Xiping; Kotchoni, Simeon O.; Wood, Andrew J.; Kirch, Hans-Hubert; Kopečný, David; Nebert, Daniel W.

    2012-01-01

    In recent years, there has been a significant increase in the number of completely sequenced plant genomes. The comparison of fully sequenced genomes allows for identification of new gene family members, as well as comprehensive analysis of gene family evolution. The aldehyde dehydrogenase (ALDH) gene superfamily comprises a group of enzymes involved in the NAD+- or NADP+-dependent conversion of various aldehydes to their corresponding carboxylic acids. ALDH enzymes are involved in processing many aldehydes that serve as biogenic intermediates in a wide range of metabolic pathways. In addition, many of these enzymes function as ‘aldehyde scavengers’ by removing reactive aldehydes generated during the oxidative degradation of lipid membranes, also known as lipid peroxidation. Plants and animals share many ALDH families, and many genes are highly conserved between these two evolutionarily distinct groups. Conversely, both plants and animals also contain unique ALDH genes and families. Herein we carried outgenome-wide identification of ALDH genes in a number of plant species—including Arabidopsis thaliana (thale crest), Chlamydomonas reinhardtii (unicellular algae), Oryza sativa (rice), Physcomitrella patens (moss), Vitis vinifera (grapevine) and Zea mays (maize). These data were then combined with previous analysis of Populus trichocarpa (poplar tree), Selaginella moellindorffii (gemmiferous spikemoss), Sorghum bicolor (sorghum) and Volvox carteri (colonial algae) for a comprehensive evolutionary comparison of the plant ALDH superfamily. As a result, newly identified genes can be more easily analyzed and gene names can be assigned according to current nomenclature guidelines; our goal is to clarify previously confusing and conflicting names and classifications that might confound results and prevent accurate comparisons between studies. PMID:23007552

  5. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes.

    PubMed

    Blázquez, C; Woods, A; de Ceballos, M L; Carling, D; Guzmán, M

    1999-10-01

    The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism.

  6. γ-Sultam-cored N,N-ligands in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of aryl ketones.

    PubMed

    Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara

    2016-02-14

    The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.

  7. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes.

    PubMed

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-02-16

    The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix

  8. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes

    PubMed Central

    Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi

    2017-01-01

    The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix

  9. Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bio-Oil by Esterification over Silica Sulfonic Acids.

    PubMed

    Manayil, Jinesh C; Osatiashtiani, Amin; Mendoza, Alvaro; Parlett, Christopher M A; Isaacs, Mark A; Durndell, Lee J; Michailof, Chrysoula; Heracleous, Eleni; Lappas, Angelos; Lee, Adam F; Wilson, Karen

    2017-09-11

    Fast pyrolysis bio-oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom- and energy-efficient route to upgrade pyrolysis bio-oils. Propyl sulfonic acid (PrSO 3 H) silicas are active for carboxylic acid esterification but suffer mass-transport limitations for bulky substrates. The incorporation of macropores (200 nm) enhances the activity of mesoporous SBA-15 architectures (post-functionalized by hydrothermal saline-promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of the turnover frequency (TOF) enhancement increasing with carboxylic acid chain length from 5 % (C 3 ) to 110 % (C 12 ). Macroporous-mesoporous PrSO 3 H/SBA-15 also provides a two-fold TOF enhancement over its mesoporous analogue for the esterification of a real, thermal fast-pyrolysis bio-oil derived from woodchips. The total acid number was reduced by 57 %, as determined by GC×GC-time-of-flight mass spectrometry (GC×GC-ToFMS), which indicated ester and ether formation accompanying the loss of acid, phenolic, aldehyde, and ketone components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Novel Small Molecules Disabling the IL-6/IL-6R/GP130 Heterohexamer Complex

    DTIC Science & Technology

    2013-10-01

    formylated at the C4 position using Vilsmeier-Haack conditions. At this stage, Wittig olefination of the aldehyde and hydrogenation of the resulting olefin...butyllithium and acetaldehyde. The resulting alcohol was subsequently oxidized to the methyl ketone with PDC. Bromination of the ketone could then be...protection of 2,4-dihydroxybenzaldehyde as the methoxymethyl (MOM) ether derivative. Conversion of the aldehyde to the styrene derivative via Wittig

  11. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...

  12. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...

  13. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...

  14. 27 CFR 24.183 - Use of distillates containing aldehydes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... containing aldehydes. 24.183 Section 24.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... distillates containing aldehydes. Distillates containing aldehydes may be received on wine premises for use in... fermentation of wine made from a different kind of fruit. Distillates containing aldehydes which are received...

  15. Development of volatile compounds during the manufacture of dry-cured "lacón," a Spanish traditional meat product.

    PubMed

    Purriños, Laura; Bermúdez, Roberto; Franco, Daniel; Carballo, Javier; Lorenzo, José M

    2011-01-01

    Volatile compounds were determined throughout the manufacture of dry-cured "lacón," a traditional dry-salted, and ripened meat product made in the north-west of Spain from the foreleg of the pig following a similar process to that of dry-cured ham. Volatiles were extracted by a purge-and-trap method and analyzed by gas chromatographic/mass spectrometry. One hundred and two volatile compounds were identified. In raw material, only 34 volatile compounds were found and at very low levels. The number of volatile compounds increased during processing. The substances identified belonged to several chemical classes: aldehydes (23), alcohols (9), ketones (15), hydrocarbons (37), esters (4), acids (3), furans (4), sulphur compounds (1), chloride compounds (1), and other compounds (4). Results indicated that the most abundant chemical family in flavor at the end of the manufacturing process was aldehydes, followed by hydrocarbons and ketones. Lipids were the most important precursor of flavor compounds of dry-cured "lacón."

  16. Sirtuin 3 mediates neuroprotection of ketones against ischemic stroke

    PubMed Central

    Yin, Junxiang; Han, Pengcheng; Tang, Zhiwei; Liu, Qingwei; Shi, Jiong

    2015-01-01

    Stroke is one of the leading causes of death. Growing evidence indicates that ketone bodies have beneficial effects in treating stroke, but their underlying mechanism remains unclear. Our previous study showed ketone bodies reduced reactive oxygen species by using NADH as an electron donor, thus increasing the NAD+/NADH ratio. In this study, we investigated whether mitochondrial NAD+-dependent Sirtuin 3 (SIRT3) could mediate the neuroprotective effects of ketone bodies after ischemic stroke. We injected mice with either normal saline or ketones (beta-hydroxybutyrate and acetoacetate) at 30 minutes after ischemia induced by transient middle cerebral artery (MCA) occlusion. We found that ketone treatment enhanced mitochondria function, reduced oxidative stress, and therefore reduced infarct volume. This led to improved neurologic function after ischemia, including the neurologic score and the performance in Rotarod and open field tests. We further showed that ketones' effects were achieved by upregulating NAD+-dependent SIRT3 and its downstream substrates forkhead box O3a (FoxO3a) and superoxide dismutase 2 (SOD2) in the penumbra region since knocking down SIRT3 in vitro diminished ketones' beneficial effects. These results provide us a foundation to develop novel therapeutics targeting this SIRT3-FoxO3a-SOD2 pathway. PMID:26058697

  17. The Productive Merger of Iodonium Salts and Organocatalysis. A Non-Photolytic Approach to the Enantioselective α-Trifluoromethylation of Aldehydes

    PubMed Central

    Allen, Anna E.; MacMillan, David W. C.

    2010-01-01

    An enantioselective organocatalytic α-trifluoromethylation of aldehydes has been accomplished using a commercially available, electrophilic trifluoromethyl source. The merging of Lewis acid and organocatalysis provides a new strategy for the enantioselective construction of trifluoromethyl stereogenicity, an important chiral synthon for pharmaceutical, material, and agrochemical applications. This mild and operationally simple protocol allows rapid access to enantioenriched α-trifluoromethylated aldehydes through a non-photolytic pathway. PMID:20297822

  18. Improved Schmidt Conversion of Aldehydes to Nitriles Using Azidotrimethylsilane in 1,1,1,3,3,3-Hexafluoro-2-propanol.

    PubMed

    Motiwala, Hashim F; Yin, Qin; Aubé, Jeffrey

    2015-12-29

    The Schmidt reaction of aromatic aldehydes using a substoichiometric amount (40 mol %) of triflic acid is described. Low catalyst loading was enabled by a strong hydrogen-bond-donating solvent hexafluoro-2-propanol (HFIP). This improved protocol tolerates a broad scope of aldehydes with diverse functional groups and the corresponding nitriles were obtained in good to high yields without the need for aqueous work up.

  19. Aldehyde-containing urea-absorbing polysaccharides

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A novel aldehyde containing polymer (ACP) is prepared by reaction of a polysaccharide with periodate to introduce aldehyde groups onto the C2 - C3 carbon atoms. By introduction of ether and ester groups onto the pendant primary hydroxyl solubility characteristics are modified. The ACP is utilized to absorb nitrogen bases such as urea in vitro or in vivo.

  20. The defensive secretion of Carabus lefebvrei Dejean 1826 pupa (Coleoptera, Carabidae): gland ultrastructure and chemical identification.

    PubMed

    Giglio, Anita; Brandmayr, Pietro; Dalpozzo, Renato; Sindona, Giovanni; Tagarelli, Antonio; Talarico, Federica; Brandmayr, Tullia Zetto; Ferrero, Enrico A

    2009-05-01

    This study documents the defensive function of flavored humor secreted by the abdominal glands of Carabus lefebvrei pupae. The morphology and the ultrastructure of these glands were described and the volatile compounds of glands secretion were identified by gas chromatography/mass spectrometry. The ultrastructure analysis shows an acinose complex formed by about 50 clusters. Each cluster has 20 glandular units and the unit-composed of one secretory and one canal cell lying along a duct-belongs to the class 3 cell type of Quennedey (1998). In the cytoplasm, the secretory cell contains abundant rough endoplasmatic reticula, glycogen granules, numerous mitochondria, and many well-developed Golgi complexes producing electron-dense secretory granules. Mitochondria are large, elongated, and often adjoining electronlucent vesicles. The kind and the origin of secretory granules varying in size and density were discussed. The chemical analysis of the gland secretion revealed the presence of a mixture of low molecular weight terpenes, ketones, aldehydes, alcohols, esters, and carboxylic acids. Monoterpenes, especially linalool, were the major products. We supposed that ketones, aldehydes, alcohols, esters, and carboxylic acids have a deterrent function against the predators and monoterpenes provide a prophylaxis function against pathogens. (c) 2008 Wiley-Liss, Inc.