Sample records for acids fas released

  1. Dietary unsaturated fatty acids differently affect catecholamine handling by adrenal chromaffin cells.

    PubMed

    Gomes, Andreia; Correia, Gustavo; Coelho, Marisa; Araújo, João Ricardo; Pinho, Maria João; Teixeira, Ana Luisa; Medeiros, Rui; Ribeiro, Laura

    2015-05-01

    Catecholamines (CA) play an important role in cardiovascular (CDV) disease risk. Namely, noradrenaline (NA) levels positively correlate whereas adrenaline (AD) levels negatively correlate with obesity and/or CDV disease. Western diets, which are tipically rich in Ω-6 fatty acids (FAs) and deficient in Ω-3 FAs, may contribute to the development of obesity, type 2 diabetes and/or coronary artery disease. Taking this into consideration and the fact that our group has already described that saturated FAs affect catecholamine handling by adrenal chromaffin cells, this work aimed to investigate the effect of unsaturated FAs upon catecholamine handling in the same model. Our results showed that chronic exposure to unsaturated FAs differently modulated CA cellular content and release, regardless of both FA series and number of carbon atoms. Namely, the Ω-6 arachidonic and linoleic acids, based on their effect on CA release and cellular content, seemed to impair NA and AD vesicular transport, whereas γ-linolenic acid selectively impaired AD synthesis and release. Within the Ω-9 FAs, oleic acid was devoid of effect, and elaidic acid behaved similarly to γ-linolenic acid. Eicosapentaenoic and docosahexaenoic acids (Ω-3 series) impaired the synthesis and release of both NA and AD. These results deserve attention and future development, namely, in what concerns the mechanisms involved and correlative effects in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Comparison of lipases for in vitro models of gastric digestion: lipolysis using two infant formulas as model substrates.

    PubMed

    Sassene, P J; Fanø, M; Mu, H; Rades, T; Aquistapace, S; Schmitt, B; Cruz-Hernandez, C; Wooster, T J; Müllertz, A

    2016-09-14

    The aim of this study was to find a lipase suitable as a surrogate for Human Gastric Lipase (HGL), since the development of predictive gastrointestinal lipolysis models are hampered by the lack of a lipase with similar digestive properties as HGL. Three potential surrogates for HGL; Rhizopus Oryzae Lipase (ROL), Rabbit Gastric Lipase (RGL) and recombinant HGL (rHGL), were used to catalyze the in vitro digestion of two infant formulas (a medium-chain triacylglyceride enriched formula (MC-IF) and a predominantly long-chain triacylglyceride formula (LC-IF)). Digesta were withdrawn after 0, 5, 15, 30, 60 min of gastric digestion and after 90 or 180 min of intestinal digestion with or without the presence of pancreatic enzymes, respectively. The digesta were analyzed by scanning electron microscopy and gas chromatography to quantify the release of fatty acids (FAs). Digestions of both formulas, catalyzed by ROL, showed that the extent of gastric digestion was higher than expected from previously published in vivo data. ROL was furthermore insensitive to FA chain length and all FAs were released at the same pace. RGL and rHGL favoured the release of MC-FAs in both formulas, but rHGL did also release some LC-FAs during digestion of MC-IF, whereas RGL only released MC-FAs. Digestion of a MC-IF by HGL in vivo showed that MC-FAs are preferentially released, but some LC-FAs are also released. Thus of the tested lipase rHGL replicated the digestive properties of HGL the best and is a suitable surrogate for HGL for use in in vitro gastrointestinal lipolysis models.

  3. Fatty acid synthase as a tumor marker: its extracellular expression in human breast cancer.

    PubMed

    Wang, Young Y; Kuhajda, Francis P; Li, Jinong; Finch, Teia T; Cheng, Paul; Koh, Clare; Li, Tianwei; Sokoll, Lori J; Chan, Daniel W

    2004-07-01

    Overexpression of fatty acid synthase (FAS EC 2.3.1.85) is associated with certain cancers and therefore is a putative tumor marker. The presence of FAS in patients with breast, prostate, colon, ovarian, and other cancers has been reported. The mechanism of FAS overexpression in malignancies remains unknown. Here, we show that FAS is released into the extracellular space in cancer cells. The extracellular FAS are present in various immunoreactive forms, and show different expression patterns in various cancer cells. In serum of breast cancer patients, the FAS is a small molecule similar to the form in breast cancer cell lysate but not conditioned medium of cultured cells. The extracellular expression of FAS in breast cancer cells is time dependent and may be hormone independent. These results indicate that the FAS are an ordered cellular response of a living cell and actively exclude excess intracellular FAS molecules from the cell. This phenomenon is up-regulated in breast and may be in other cancer cells as well. Significant elevation of FAS was detected in serum of breast cancer patients compared to healthy subjects. In comparison with CA27.29, no correlation between these two tumor markers was found. Thus, the extracellular FAS may serve as a potential diagnostic and prognostic marker.

  4. Lack of Effects of a Single High-Fat Meal Enriched with Vegetable n-3 or a Combination of Vegetable and Marine n-3 Fatty Acids on Intestinal Peptide Release and Adipokines in Healthy Female Subjects.

    PubMed

    Narverud, Ingunn; Myhrstad, Mari C W; Herzig, Karl-Heinz; Karhu, Toni; Dahl, Tuva B; Halvorsen, Bente; Ulven, Stine M; Holven, Kirsten B

    2016-01-01

    Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3) fatty acids (FAs) from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 FAs with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil, and a combination of linseed and cod liver oil. The test days were separated by 2 weeks. Fasting and postprandial blood samples at 3 and 6 h after intake were analyzed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin, which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 FAs from different origin stimulates intestinal peptide release without any difference between the different fat compositions.

  5. A fluorescence-based thiol quantification assay for ultra-high-throughput screening for inhibitors of coenzyme A production.

    PubMed

    Chung, Christine C; Ohwaki, Kenji; Schneeweis, Jonathan E; Stec, Erica; Varnerin, Jeffrey P; Goudreau, Paul N; Chang, Amy; Cassaday, Jason; Yang, Lihu; Yamakawa, Takeru; Kornienko, Oleg; Hodder, Peter; Inglese, James; Ferrer, Marc; Strulovici, Berta; Kusunoki, Jun; Tota, Michael R; Takagi, Toshimitsu

    2008-06-01

    Here we report the development and miniaturization of a cell-free enzyme assay for ultra-high-throughput screening (uHTS) for inhibitors of two potential drug targets for obesity and cancer: fatty acid synthase (FAS) and acetyl-coenzyme A (CoA) carboxylase (ACC) 2. This assay detects CoA, a product of the FAS-catalyzed condensation of malonyl-CoA and acetyl-CoA. The free thiol of CoA can react with 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM), a profluorescent coumarin maleimide derivative that becomes fluorescent upon reaction with thiols. FAS produces long-chain fatty acid and CoA from the condensation of malonyl-CoA and acetyl-CoA. In our FAS assay, CoA released in the FAS reaction forms a fluorescence adduct with CPM that emits at 530 nm when excited at 405 nm. Using this detection method for CoA, we measured the activity of sequential enzymes in the fatty acid synthesis pathway to develop an ACC2/FAS-coupled assay where ACC2 produces malonyl-CoA from acetyl-CoA. We miniaturized the FAS and ACC2/FAS assays to 3,456- and 1,536-well plate format, respectively, and completed uHTSs for small molecule inhibitors of this enzyme system. This report shows the results of assay development, miniaturization, and inhibitor screening for these potential drug targets.

  6. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress.

    PubMed

    Jarc, Eva; Kump, Ana; Malavašič, Petra; Eichmann, Thomas O; Zimmermann, Robert; Petan, Toni

    2018-03-01

    Cancer cells driven by the Ras oncogene scavenge unsaturated fatty acids (FAs) from their environment to counter nutrient stress. The human group X secreted phospholipase A 2 (hGX sPLA 2 ) releases FAs from membrane phospholipids, stimulates lipid droplet (LD) biogenesis in Ras-driven triple-negative breast cancer (TNBC) cells and enables their survival during starvation. Here we examined the role of LDs, induced by hGX sPLA 2 and unsaturated FAs, in protection of TNBC cells against nutrient stress. We found that hGX sPLA 2 releases a mixture of unsaturated FAs, including ω-3 and ω-6 polyunsaturated FAs (PUFAs), from TNBC cells. Starvation-induced breakdown of LDs induced by low micromolar concentrations of unsaturated FAs, including PUFAs, was associated with protection from cell death. Interestingly, adipose triglyceride lipase (ATGL) contributed to LD breakdown during starvation, but it was not required for the pro-survival effects of hGX sPLA 2 and unsaturated FAs. High micromolar concentrations of PUFAs, but not OA, induced oxidative stress-dependent cell death in TNBC cells. Inhibition of triacylglycerol (TAG) synthesis suppressed LD biogenesis and potentiated PUFA-induced cell damage. On the contrary, stimulation of LD biogenesis by hGX sPLA 2 and suppression of LD breakdown by ATGL depletion reduced PUFA-induced oxidative stress and cell death. Finally, lipidomic analyses revealed that sequestration of PUFAs in LDs by sPLA 2 -induced TAG remodelling and retention of PUFAs in LDs by inhibition of ATGL-mediated TAG lipolysis protect from PUFA lipotoxicity. LDs are thus antioxidant and pro-survival organelles that guard TNBC cells against nutrient and lipotoxic stress and emerge as attractive targets for novel therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Butyric Acid-Induced T-Cell Apoptosis Is Mediated by Caspase-8 and -9 Activation in a Fas-Independent Manner

    PubMed Central

    Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu; Fukushima, Kazuo

    2001-01-01

    Our previous study demonstrated that butyric acid, an extracellular metabolite of periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat cells. In this study, we examined whether CD95 ligand-receptor interaction is involved in butyric acid-induced T-cell apoptosis. Flow cytometry analysis indicated that expression of Fas in Jurkat and T cells from peripheral blood mononuclear cells was not affected by butyric acid treatment. Furthermore, the expression of Fas and FasL protein in Western blotting was not affected by butyric acid treatment. Coincubation with blocking anti-Fas antibodies prevented Fas-induced apoptosis but not butyric acid-induced apoptosis. Anti-FasL antibodies also did not prevent butyric acid-induced apoptosis at any dose examined. Although cytotoxic anti-Fas antibody affected butyric acid-induced apoptosis, a synergistic effect was not seen. Time-dependent activation of caspase-8 and -9 was recognized in butyric acid- as well as Fas-mediated apoptosis. IETD-CHO and LEHD-CHO, specific inhibitors of caspase-8 and -9, respectively, completely blocked Fas-mediated apoptosis and partially prevented butyric acid-induced apoptosis. These results suggest that the Fas-FasL interaction is not involved in butyric acid-induced apoptosis and that caspase-8 and -9-dependent apoptosis plays an important role in butyric acid-induced apoptosis, as well as Fas-induced apoptosis. PMID:11238216

  8. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.

    PubMed

    Ikeda, Masato; Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-10-01

    For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis , which use an individual nonaggregating type II fatty acid synthase (FAS-II) system. In this study, we reported genetic evidence demonstrating that the FAS-I system is the source of the biotin precursor in vivo in the engineered biotin-prototrophic C. glutamicum strain. This study also uncovered the important physiological role of FasB in lipoic acid biosynthesis. Here, we present an FAS-I enzyme that functions in supplying the lipoic acid precursor, although its biosynthesis has been believed to exclusively depend on FAS-II in organisms. The findings obtained here provide new insights into the metabolic engineering of this industrially important microorganism to produce these compounds effectively. Copyright © 2017 American Society for Microbiology.

  9. In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum

    PubMed Central

    Nagashima, Takashi; Nakamura, Eri; Kato, Ryosuke; Ohshita, Masakazu; Hayashi, Mikiro; Takeno, Seiki

    2017-01-01

    ABSTRACT For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI. Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA. These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicum. IMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis, which use an individual nonaggregating type II fatty acid synthase (FAS-II) system. In this study, we reported genetic evidence demonstrating that the FAS-I system is the source of the biotin precursor in vivo in the engineered biotin-prototrophic C. glutamicum strain. This study also uncovered the important physiological role of FasB in lipoic acid biosynthesis. Here, we present an FAS-I enzyme that functions in supplying the lipoic acid precursor, although its biosynthesis has been believed to exclusively depend on FAS-II in organisms. The findings obtained here provide new insights into the metabolic engineering of this industrially important microorganism to produce these compounds effectively. PMID:28754705

  10. Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids.

    PubMed

    Tran, Nhiem; Mulet, Xavier; Hawley, Adrian M; Fong, Celesta; Zhai, Jiali; Le, Tu C; Ratcliffe, Julian; Drummond, Calum J

    2018-02-27

    Mesophase structures of self-assembled lyotropic liquid crystalline nanoparticles are important factors that directly influence their ability to encapsulate and release drugs and their biological activities. However, it is difficult to predict and precisely control the mesophase behavior of these materials, especially in complex systems with several components. In this study, we report the controlled manipulation of mesophase structures of monoolein (MO) and phytantriol (PHYT) nanoparticles by adding unsaturated fatty acids (FAs). By using high throughput formulation and small-angle X-ray scattering characterization methods, the effects of FAs chain length, cis-trans isomerism, double bond location, and level of chain unsaturation on self-assembled systems are determined. Additionally, the influence of temperature on the phase behavior of these nanoparticles is analyzed. We found that in general, the addition of unsaturated FAs to MO and PHYT induces the formation of mesophases with higher Gaussian surface curvatures. As a result, a rich variety of lipid polymorphs are found to correspond with the increasing amounts of FAs. These phases include inverse bicontinuous cubic, inverse hexagonal, and discrete micellar cubic phases and microemulsion. However, there are substantial differences between the phase behavior of nanoparticles with trans FA, cis FAs with one double bond, and cis FAs with multiple double bonds. Therefore, the material library produced in this study will assist the selection and development of nanoparticle-based drug delivery systems with desired mesophase.

  11. FasL-triggered death of Jurkat cells requires caspase 8-induced, ATP-dependent cross-talk between Fas and the purinergic receptor P2X(7).

    PubMed

    Aguirre, Adam; Shoji, Kenji F; Sáez, Juan C; Henríquez, Mauricio; Quest, Andrew F G

    2013-02-01

    Fas ligation via the ligand FasL activates the caspase-8/caspase-3-dependent extrinsic death pathway. In so-called type II cells, an additional mechanism involving tBid-mediated caspase-9 activation is required to efficiently trigger cell death. Other pathways linking FasL-Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X(7) receptors (P2X(7)Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase-8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X(7)Rs participate in FasL-stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time- and caspase-8-dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL-induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL-induced death. Also, oxidized-ATP or Brilliant Blue G, two P2X(7)R blockers, reduced FasL-induced caspase-9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X(7)R connect functionally via caspase-8 and Panx1 HC-mediated ATP release to promote caspase-9/caspase-3-dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells. Copyright © 2012 Wiley Periodicals, Inc.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Chakravarty, Bornali; Zheng, Fei

    Human fatty acid synthase (hFAS) is a homodimeric multidomain enzyme that catalyzes a series of reactions leading to the de novo biosynthesis of long-chain fatty acids, mainly palmitate. The carboxy-terminal thioesterase (TE) domain determines the length of the fatty acyl chain and its ultimate release by hydrolysis. Because of the upregulation of hFAS in a variety of cancers, it is a target for antiproliferative agent development. Dietary long-chain polyunsaturated fatty acids (PUFAs) have been known to confer beneficial effects on many diseases and health conditions, including cancers, inflammations, diabetes, and heart diseases, but the precise molecular mechanisms involved have notmore » been elucidated. We report the crystal structure of the hFAS TE domain covalently modified and inactivated by methyl {gamma}-linolenylfluorophosphonate. Whereas the structure confirmed the phosphorylation by the phosphonate head group of the active site serine, it also unexpectedly revealed the binding of the 18-carbon polyunsaturated {gamma}-linolenyl tail in a long groove-tunnel site, which itself is formed mainly by the emergence of an {alpha} helix (the 'helix flap'). We then found inhibition of the TE domain activity by the PUFA dihomo-{gamma}-linolenic acid; {gamma}- and {alpha}-linolenic acids, two popular dietary PUFAs, were less effective. Dihomo-{gamma}-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and selective human breast cancer cell lines, including SKBR3 and MDAMB231. In addition to revealing a novel mechanism for the molecular recognition of a polyunsaturated fatty acyl chain, our results offer a new framework for developing potent FAS inhibitors as therapeutics against cancers and other diseases.« less

  13. Quality evaluation of extemporaneous delayed-release liquid formulations of lansoprazole.

    PubMed

    Melkoumov, Alexandre; Soukrati, Amina; Elkin, Igor; Forest, Jean-Marc; Hildgen, Patrice; Leclair, Grégoire

    2011-11-01

    The quality attributes of extemporaneous delayed-release liquid formulations of lansoprazole for oral administration were evaluated. A novel liquid formulation (3 mg/mL) of Prevacid FasTab in an Ora-Blend vehicle was prepared and compared with the Prevacid FasTab 30 mg and Prevacid-sodium bicarbonate 1 M formulation (3 mg/mL). The latter formulation was combined with hydrochloric acid 0.1 N, and the remaining lansoprazole content was assayed by high-performance liquid chromatography (HPLC). A batch of delayed-release liquid formulation was prepared to evaluate content uniformity. For content assay, three samples were prepared for each evaluated condition and each sample was analyzed in triplicate by HPLC. The lansoprazole in the sodium bicarbonate formulation was extensively degraded by quantities of hydrochloric acid 0.1 N in excess of 100 mL. Storage time and temperature had a significant effect on lansoprazole stability in the Ora-Blend formulation. The drug remained stable for seven days when the formulation was stored at 4.5-5.5 °C, but storage at 21-22 °C or the reduction of pH with citric acid accelerated lansoprazole degradation. The amount of lansoprazole released from the Ora-Blend formulation during the buffer stage of the dissolution test decreased with increases in formulation storage time, in formulation storage temperature, and in the amount of lansoprazole released and degraded during the acid stage of the test. An extemporaneous formulation consisting of lansoprazole microgranules in Ora-Blend maintained acceptable quality attributes when stored for three days at 4.5-5.5 °C.

  14. Influence of fenofibrate treatment on triacylglycerides, diacylglycerides and fatty acids in fructose fed rats.

    PubMed

    Kopf, Thomas; Schaefer, Hans-Ludwig; Troetzmueller, Martin; Koefeler, Harald; Broenstrup, Mark; Konovalova, Tatiana; Schmitz, Gerd

    2014-01-01

    Fenofibrate (FF) lowers plasma triglycerides via PPARα activation. Here, we analyzed lipidomic changes upon FF treatment of fructose fed rats. Three groups with 6 animals each were defined as control, fructose-fed and fructose-fed/FF treated. Male Wistar Unilever Rats were subjected to 10% fructose-feeding for 20 days. On day 14, fenofibrate treatment (100 mg/kg p.o.) was initiated and maintained for 7 days. Lipid species in serum were analyzed using mass spectrometry (ESI-MS/MS; LC-FT-MS, GC-MS) on days 0, 14 and 20 in all three groups. In addition, lipid levels in liver and intestine were determined. Short-chain TAGs increased in serum and liver upon fructose-feeding, while almost all TAG-species decreased under FF treatment. Long-chain unsaturated DAG-levels (36:1, 36:2, 36:4, 38:3, 38:4, 38:5) increased upon FF treatment in rat liver and decreased in rat serum. FAs, especially short-chain FAs (12:0, 14:0, 16:0) increased during fructose-challenge. VLDL secretion increased upon fructose-feeding and together with FA-levels decreased to control levels during FF treatment. Fructose challenge of de novo fatty acid synthesis through fatty acid synthase (FAS) may enhance the release of FAs ≤ 16:0 chain length, a process reversed by FF-mediated PPARα-activation.

  15. Temporal dynamics of amino and fatty acid composition in the razor clam Ensis siliqua (Mollusca: Bivalvia)

    NASA Astrophysics Data System (ADS)

    Baptista, Miguel; Repolho, Tiago; Maulvault, Ana Luísa; Lopes, Vanessa M.; Narciso, Luis; Marques, António; Bandarra, Narcisa; Rosa, Rui

    2014-12-01

    Few studies have been conducted on the temporal dynamics of both amino acid (AA) and fatty acid (FA) profiles in marine bivalves. We investigated the seasonal variation of these compounds in the pod razor clam Ensis siliqua in relation to food availability, salinity, water temperature and reproductive cycle. AA content varied between 46.94 and 54.67 % dry weight (DW), and the AAs found in greater quantity were glutamic acid, glycine and aspartic acid. FA content varied between 34.02 and 87.94 mg g-1 DW and the FAs found in greater quantity were 16:0 and 22:6 n-3. Seasonal trends were observed for AAs and FAs. FAs increased with gametogenesis and decreased with spawning while AA content increased throughout spawning. The effect of increasing temperature and high food availability during the spawning season masked the loss of AAs resulting from gamete release. Still, a comparatively greater increase in the contents of glutamic acid and leucine with spawning indicate their possible involvement in a post-spawning gonad recovery mechanism. A post-spawning decrease in 14:0, 16:0, 16:1 n-7, 18:1 n-7 and 18:1 n-9 is indicative of the importance of these FAs in bivalve eggs. An increase in 18:3 n-3, 18:4 n-3, 20:1 n-9 and 20:2 n-6 during gametogenesis suggests their involvement in oocyte maturation. The FA 22:4 n-6, while increasing with spawning, appears to play a role in post-spawning gonad recovery. Salinity did not have an effect on the AA composition. None of the environmental parameters measured had an effect on FA composition.

  16. Fatty acids in breast milk associated with asthma-like symptoms and atopy in infancy: a longitudinal study.

    PubMed

    Soto-Ramírez, Nelís; Karmaus, Wilfried; Zhang, Hongmei; Liu, Jihong; Billings, Deborah; Gangur, Venugopal; Amrol, David; da Costa, Kerry-Ann; Davis, Susan; Goetzl, Laura

    2012-11-01

    The relationship between fatty acids (FAs) in breast milk and the risk of childhood allergies is controversial. We prospectively investigated the relationship between FAs in colostrum and breast milk and asthma-like symptoms (AS) and atopy in infancy. Pregnant women were recruited in Columbia and Charleston, South Carolina. Colostrum and mature milk samples were collected. The concentrations of n-3 FAs (eicosapentaenoic acid, α-linolenic acid, docosapentaenoic acid, and docosahexaenoic acid) and n-6 FAs (linoleic acid, arachidonic acid, and eicosadienoic acid) were determined by gas chromatography. AS were ascertained at 6 and 12 months of age and atopy (skin prick test) at 12 months. FAs were dichotomized (high vs. median and low). Generalized estimating equations were used to determine the effect of FAs on repeated AS, compensating for intra-individual correlations and adjusting for confounders. Log-linear regression was used to analyze atopy. FAs were analyzed in 24 colostrum and 78 breast milk samples. High levels of total n-6 (lipid based) FAs in breast milk were associated with an increased risk of AS in infants (risk ratio (RR) = 2.91; 95% confidence interval (CI): 1.37, 6.18), even after controlling for total n-3 FAs (RR = 2.07, 95% CI: 1.12, 3.85). High levels of total n-3 FAs controlling for n-6 FAs decreased the risk of atopy at the age of 12 months. High levels of total n-6 polyunsaturated fatty acids (PUFAs) in breast milk are associated with an increased risk for AS, whereas high levels of total n-3 PUFAs decreased the risk of atopy. These data suggest that the effects of n-3 and n-6 PUFAs on allergic disorders should be further explored.

  17. Transcriptional regulation of fatty acid biosynthesis in mycobacteria

    PubMed Central

    Mondino, S.; Gago, G.; Gramajo, H.

    2013-01-01

    SUMMARY The main purpose of our study is to understand how mycobacteria exert control over the biosynthesis of their membrane lipids and find out the key components of the regulatory network that control fatty acid biosynthesis at the transcriptional level. In this paper we describe the identification and purification of FasR, a transcriptional regulator from Mycobacterium sp. that controls the expression of the fatty acid synthase (fas) and the 4-phosphopantetheinyl transferase (acpS) encoding genes, whose products are involved in the fatty acid and mycolic acid biosynthesis pathways. In vitro studies demonstrated that fas and acpS genes are part of the same transcriptional unit and that FasR specifically binds to three conserved operator sequences present in the fas-acpS promoter region (Pfas). The construction and further characterization of a fasR conditional mutant confirmed that FasR is a transcriptional activator of the fas-acpS operon and that this protein is essential for mycobacteria viability. Furthermore, the combined used of Pfas-lacZ fusions in different fasR backgrounds and electrophoretic mobility shift assays experiments, strongly suggested that long-chain acyl-CoAs are the effector molecules that modulate the affinity of FasR for its DNA binding sequences and therefore the expression of the essential fas-acpS operon. PMID:23721164

  18. Gallic Acid Induces Apoptosis in Human Gastric Adenocarcinoma Cells.

    PubMed

    Tsai, Chung-Lin; Chiu, Ying-Ming; Ho, Tin-Yun; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Wu, Yi-Ying

    2018-04-01

    Gastric cancer is one of the most common malignant cancers with a poor prognosis and high mortality rate worldwide. Current treatment of gastric cancer includes surgery and chemotherapy as the main modalities, but the potentially severe side-effects of chemotherapy present a considerable challenge. Gallic acid is a trihydroxybenzoic acid found to exert an anticancer effect against a variety of cancer cells. The purpose of this study was to determine the anti-cancer activity of Galla chinensis and its main component gallic acid on human gastric adenocarcinoma cells. MTT assay and cell death ELISA were used to determine the apoptotic effect of Gallic Chinensis and gallic acid on human gastric adenocarcinoma cells. To determine the pathway and relevant components by which gallic acid-induced apoptosis is mediated through, cells were transfected with siRNA (Fas, FasL, DR5, p53) using Lipofectamine 2000. Reults: Gallic Chinensis and gallic acid induced apoptosis of human gastric adenocarcinoma cells. Gallic acid induced up-regulation of Fas, FasL, and DR5 expression in AGS cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced gallic acid-induced cell death. In addition, p53 was shown to be involved in gallic acid-mediated Fas, FasL, and DR5 expression as well as cell apoptosis in AGS cells. These results suggest that gallic acid has a potential role in the treatment of gastric cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enderle, Mathias; Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried; McCarthy, Andrew

    Bacterial and fungal type I fatty-acid synthases (FAS I) are evolutionarily connected, as bacterial FAS I is considered to be the ancestor of fungal FAS I. In this work, the production, crystallization and X-ray diffraction data analysis of a bacterial FAS I are reported. While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungalmore » FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.« less

  20. The signaling pathways by which the Fas/FasL system accelerates oocyte aging.

    PubMed

    Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He

    2016-02-01

    In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis.

  1. Fatty acids linked to cardiovascular mortality are associated with risk factors

    PubMed Central

    Ebbesson, Sven O. E.; Voruganti, Venkata S.; Higgins, Paul B.; Fabsitz, Richard R.; Ebbesson, Lars O.; Laston, Sandra; Harris, William S.; Kennish, John; Umans, Benjamin D.; Wang, Hong; Devereux, Richard B.; Okin, Peter M.; Weissman, Neil J.; MacCluer, Jean W.; Umans, Jason G.; Howard, Barbara V.

    2015-01-01

    Background Although saturated fatty acids (FAs) have been linked to cardiovascular mortality, it is not clear whether this outcome is attributable solely to their effects on low-density lipoprotein cholesterol (LDL-C) or whether other risk factors are also associated with FAs. The Western Alaskan Native population, with its rapidly changing lifestyles, shift in diet from unsaturated to saturated fatty acids and dramatic increase in cardiovascular disease (CVD), presents an opportunity to elucidate any associations between specific FAs and known CVD risk factors. Objective We tested the hypothesis that the specific FAs previously identified as related to CVD mortality are also associated with individual CVD risk factors. Methods In this community-based, cross-sectional study, relative proportions of FAs in plasma and red blood cell membranes were compared with CVD risk factors in a sample of 758 men and women aged ≥35 years. Linear regression analyses were used to analyze relations between specific FAs and CVD risk factors (LDL-C, high-density lipoprotein cholesterol, triglycerides, C-reactive protein, systolic blood pressure, diastolic blood pressure, heart rate, body mass index, fasting glucose and fasting insulin, 2-hour glucose and 2-hour insulin). Results The specific saturated FAs previously identified as related to CVD mortality, the palmitic and myristic acids, were adversely associated with most CVD risk factors, whereas unsaturated linoleic acid (18:2n-6) and the marine n-3 FAs were not associated or were beneficially associated with CVD risk factors. Conclusions The results suggest that CVD risk factors are more extensively affected by individual FAs than hitherto recognized, and that risk for CVD, MI and stroke can be reduced by reducing the intake of palmitate, myristic acid and simple carbohydrates and improved by greater intake of linoleic acid and marine n-3 FAs. PMID:26274054

  2. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids.

    PubMed

    Leber, Christopher; Da Silva, Nancy A

    2014-02-01

    Carbon feedstocks from fossilized sources are being rapidly depleted due to rising demand for industrial and commercial applications. Many petroleum-derived chemicals can be directly or functionally substituted with chemicals derived from renewable feedstocks. Several short chain organic acids may fulfill this role using their functional groups as a target for chemical catalysis. Saccharomyces cerevisiae was engineered to produce short chain carboxylic acids (C6 to C10 ) from glucose using the heterologous Homo sapiens type I fatty acid synthase (hFAS). This synthase was activated by phosphopantetheine transfereases AcpS and Sfp from Escherichia coli and Bacillus subtilis, respectively, both in vitro and in vivo. hFAS was produced in the holo-form and produced carboxylic acids in vitro, confirmed by NADPH and ADIFAB assays. Overexpression of hFAS in a yeast FAS2 knockout strain, deficient in de novo fatty acid synthesis, demonstrated the full functional replacement of the native fungal FAS by hFAS. Two active heterologous short chain thioesterases (TEs) from Cuphea palustris (CpFatB1) and Rattus norvegicus (TEII) were evaluated for short chain fatty acid (SCFA) synthesis in vitro and in vivo. Three hFAS mutants were constructed: a mutant deficient in the native TE domain, a mutant with a linked CpFatB1 TE and a mutant with a linked TEII TE. Using the native yeast fatty acid synthase for growth, the overexpression of the hFAS mutants and the short-chain TEs (linked or plasmid-based) increased in vivo caprylic acid and total SCFA production up to 64-fold (63 mg/L) and 52-fold (68 mg/L), respectively, over the native yeast levels. Combined over-expression of the phosphopantetheine transferase with the hFAS mutant resulted in C8 titers of up to 82 mg/L and total SCFA titers of up to 111 mg/L. © 2013 Wiley Periodicals, Inc.

  3. Targeted metabolomics analysis reveals the association between maternal folic acid supplementation and fatty acids and amino acids profiles in rat pups.

    PubMed

    Liu, Zhipeng; Liu, Rui; Chou, Jing; Yu, Jiaying; Liu, Xiaowei; Sun, Changhao; Li, Ying; Liu, Liyan

    2018-07-15

    Maternal diet during pregnancy can influence offspring's health by affecting development and metabolism. This study aimed to analyze the influence of maternal folic acid (FA) supplementation on the metabolism of rat pups using targeted metabolomics. Twenty female rats were randomly assigned to a FA supplementation (FAS group, n = 10) or control group (n = 10), which were fed AIN93G diet with 2 or 10 mg/kg FA, respectively. We then measured amino acids and their derivatives, biogenic amines, and fatty acids in the female rats and their pups by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC/MS-MS) and gas chromatography-mass spectrometry (GC/MS-MS). In maternal rats, the significant changes of three metabolites (proline, γ-aminobutyric acid and esterified octadecatetraenoic acid, P < 0.05) were observed in FAS group. For the rat pups, FAS pups had significantly lower homocysteine and higher FA levels than control pups. The lower levels of amino acids (leucine, isoleucine, serine, proline) were obtained in FAS pups. Furthermore, there were the decreased esterified fatty acids (arachidonic acid, eicosapentaenoic acid, and docosatetraenoic acid) and free fatty acids (oleic acid, linoleic acid, γ-linolenic acid, octadecatetraenoic acid, arachidonic acid, eicosapentaenoic acid and selacholeic acid) in FAS pups. Metabolic changes in the FAS pups were characterized by changes in fatty acids and amino acids. These results suggested that FA supplementation during pregnancy influenced amino acids and fatty acids metabolism in rat pups. This study provides new insights into the regulation of amino acids and fatty acids metabolism during early life. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Absolute versus relative measures of plasma fatty acids and health outcomes: example of phospholipid omega-3 and omega-6 fatty acids and all-cause mortality in women.

    PubMed

    Miura, Kyoko; Hughes, Maria Celia B; Ungerer, Jacobus P J; Smith, David D; Green, Adèle C

    2018-03-01

    In a well-characterised community-based prospective study, we aimed to systematically assess the differences in associations of plasma omega-3 and omega-6 fatty acid (FA) status with all-cause mortality when plasma FA status is expressed in absolute concentrations versus relative levels. In a community sample of 564 women aged 25-75 years in Queensland, Australia, baseline plasma phospholipid FA levels were measured using gas chromatography. Specific FAs analysed were eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid, total long-chain omega-3 FAs, linoleic acid, arachidonic acid, and total omega-6 FAs. Levels of each FA were expressed in absolute amounts (µg/mL) and relative levels (% of total FAs) and divided into thirds. Deaths were monitored for 17 years and hazard ratios and 95% confidence intervals calculated to assess risk of death according to absolute versus relative plasma FA levels. In total 81 (14%) women died during follow-up. Agreement between absolute and relative measures of plasma FAs was higher in omega-3 than omega-6 FAs. The results of multivariate analyses for risk of all-cause mortality were generally similar with risk tending to inverse associations with plasma phospholipid omega-3 FAs and no association with omega-6 FAs. Sensitivity analyses examining effects of age and presence of serious medical conditions on risk of mortality did not alter findings. The directions and magnitude of associations with mortality of absolute versus relative FA levels were comparable. However, plasma FA expressed as absolute concentrations may be preferred for ease of comparison and since relative units can be deduced from absolute units.

  5. In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. I. Gastric digestion.

    PubMed

    Gallier, Sophie; Cui, Jack; Olson, Trent D; Rutherfurd, Shane M; Ye, Aiqian; Moughan, Paul J; Singh, Harjinder

    2013-12-01

    The aim was to study the in vivo gastric digestion of fat globules in bovine cream from raw, pasteurised or pasteurised and homogenised milk. Fasted rats were gavaged once and chyme samples were collected after 30, 120 and 180 min post-gavage. Proteins from raw (RC) and pasteurised (PC) creams appeared to be digested faster and to a greater extent. Free fatty acids (FAs) increased throughout the 3h postprandial period. Short and medium chain FAs were released more rapidly than long chain FAs which were hydrolysed to a greater degree from PC. The size of the fat globules of all creams increased in the stomach. Protein aggregates were observed in pasteurised and homogenised cream chyme. Protrusions, probably caused by the accumulation of insoluble lipolytic products, appeared at the surface of the globules in RC and PC chyme. Overall, PC proteins and lipids appeared to be digested to a greater extent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus

    PubMed Central

    Hirata, Akiko; Kishino, Shigenobu; Park, Si-Bum; Takeuchi, Michiki; Kitamura, Nahoko; Ogawa, Jun

    2015-01-01

    Hydroxy FAs, one of the gut microbial metabolites of PUFAs, have attracted much attention because of their various bioactivities. The purpose of this study was to identify lactic acid bacteria with the ability to convert linoleic acid (LA) to hydroxy FAs. A screening process revealed that a gut bacterium, Lactobacillus acidophilus NTV001, converts LA mainly into 13-hydroxy-cis-9-octadecenoic acid and resulted in the identification of the hydratase responsible, fatty acid hydratase 1 (FA-HY1). Recombinant FA-HY1 was purified, and its enzymatic characteristics were investigated. FA-HY1 could convert not only C18 PUFAs but also C20 and C22 PUFAs. C18 PUFAs with a cis carbon-carbon double bond at the Δ12 position were converted into the corresponding 13-hydroxy FAs. Arachidonic acid and DHA were converted into the corresponding 15-hydroxy FA and 14-hydroxy FA, respectively. To the best of our knowledge, this is the first report of a bacterial FA hydratase that can convert C20 and C22 PUFAs into the corresponding hydroxy FAs. These novel hydroxy FAs produced by using FA-HY1 should contribute to elucidating the bioactivities of hydroxy FAs. PMID:25966711

  7. Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function.

    PubMed

    Item, Flurin; Wueest, Stephan; Lemos, Vera; Stein, Sokrates; Lucchini, Fabrizio C; Denzler, Rémy; Fisser, Muriel C; Challa, Tenagne D; Pirinen, Eija; Kim, Youngsoo; Hemmi, Silvio; Gulbins, Erich; Gross, Atan; O'Reilly, Lorraine A; Stoffel, Markus; Auwerx, Johan; Konrad, Daniel

    2017-09-07

    Nonalcoholic fatty liver disease is one of the most prevalent metabolic disorders and it tightly associates with obesity, type 2 diabetes, and cardiovascular disease. Reduced mitochondrial lipid oxidation contributes to hepatic fatty acid accumulation. Here, we show that the Fas cell surface death receptor (Fas/CD95/Apo-1) regulates hepatic mitochondrial metabolism. Hepatic Fas overexpression in chow-fed mice compromises fatty acid oxidation, mitochondrial respiration, and the abundance of mitochondrial respiratory complexes promoting hepatic lipid accumulation and insulin resistance. In line, hepatocyte-specific ablation of Fas improves mitochondrial function and ameliorates high-fat-diet-induced hepatic steatosis, glucose tolerance, and insulin resistance. Mechanistically, Fas impairs fatty acid oxidation via the BH3 interacting-domain death agonist (BID). Mice with genetic or pharmacological inhibition of BID are protected from Fas-mediated impairment of mitochondrial oxidation and hepatic steatosis. We suggest Fas as a potential novel therapeutic target to treat obesity-associated fatty liver and insulin resistance.Hepatic steatosis is a common disease closely associated with metabolic syndrome and insulin resistance. Here Item et al. show that Fas, a member of the TNF receptor superfamily, contributes to mitochondrial dysfunction, steatosis development, and insulin resistance under high fat diet.

  8. Myeloperoxidase-derived 2-chlorofatty acids contribute to human sepsis mortality via acute respiratory distress syndrome.

    PubMed

    Meyer, Nuala J; Reilly, John P; Feng, Rui; Christie, Jason D; Hazen, Stanley L; Albert, Carolyn J; Franke, Jacob D; Hartman, Celine L; McHowat, Jane; Ford, David A

    2017-12-07

    Sepsis-associated acute respiratory distress syndrome (ARDS) is characterized by neutrophilic inflammation and poor survival. Since neutrophil myeloperoxidase (MPO) activity leads to increased plasma 2-chlorofatty acid (2-ClFA) levels, we hypothesized that plasma concentrations of 2-ClFAs would associate with ARDS and mortality in subjects with sepsis. In sequential consenting patients with sepsis, free 2-ClFA levels were significantly associated with ARDS, and with 30-day mortality, for each log increase in free 2-chlorostearic acid. Plasma MPO was not associated with either ARDS or 30-day mortality but was correlated with 2-ClFA levels. Addition of plasma 2-ClFA levels to the APACHE III score improved prediction for ARDS. Plasma 2-ClFA levels correlated with plasma levels of angiopoietin-2, E selectin, and soluble thrombomodulin. Endothelial cells treated with 2-ClFA responded with increased adhesion molecule surface expression, increased angiopoietin-2 release, and dose-dependent endothelial permeability. Our results suggest that 2-ClFAs derived from neutrophil MPO-catalyzed oxidation contribute to pulmonary endothelial injury and have prognostic utility in sepsis-associated ARDS.

  9. Fas/APO-1 protein is increased in spaceflown lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Cubano, L. A.; Lewis, M. L.

    2000-01-01

    Human lymphocytes flown on the Space Shuttle respond poorly to mitogen stimulation and populations of the lymphoblastoid T cell line, Jurkat, manifest growth arrest, increase in apoptosis and time- and microgravity-dependent increases in the soluble form of the cell death factor, Fas/APO-1 (sFas). The potential role of apoptosis in population dynamics of space-flown lymphocytes has not been investigated previously. We flew Jurkat cells on Space Transportation System (STS)-80 and STS-95 to determine whether apoptosis and the apparent microgravity-related release of sFas are characteristic of lymphocytes in microgravity. The effects of spaceflight and ground-based tests simulating spaceflight experimental conditions, including high cell density and low serum concentration, were assessed. Immunofluorescence microscopy showed increased cell associated Fas in flown cells. Results of STS-80 and STS-95 confirmed increase in apoptosis during spaceflight and the release of sFas as a repeatable, time-dependent and microgravity-related response. Ground-based tests showed that holding cells at 1.5 million/ml in medium containing 2% serum before launch did not increase sFas. Reports of increased Fas in cells of the elderly and the increases in spaceflown cells suggest possible similarities between aging and spaceflight effects on lymphocytes.

  10. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity.

    PubMed

    Yu, Keshun; Soares, Juliana Moreira; Mandal, Mihir Kumar; Wang, Caixia; Chanda, Bidisha; Gifford, Andrew N; Fowler, Joanna S; Navarre, Duroy; Kachroo, Aardra; Kachroo, Pradeep

    2013-04-25

    Systemic acquired resistance (SAR), a highly desirable form of plant defense, provides broad-spectrum immunity against diverse pathogens. The recent identification of seemingly unrelated chemical inducers of SAR warrants an investigation of their mutual interrelationships. We show that SAR induced by the dicarboxylic acid azelaic acid (AA) requires the phosphorylated sugar derivative glycerol-3-phosphate (G3P). Pathogen inoculation induced the release of free unsaturated fatty acids (FAs) and thereby triggered AA accumulation, because these FAs serve as precursors for AA. AA accumulation in turn increased the levels of G3P, which is required for AA-conferred SAR. The lipid transfer proteins DIR1 and AZI1, both of which are required for G3P- and AA-induced SAR, were essential for G3P accumulation. Conversely, reduced G3P resulted in decreased AZI1 and DIR1 transcription. Our results demonstrate that an intricate feedback regulatory loop among G3P, DIR1, and AZI1 regulates SAR and that AA functions upstream of G3P in this pathway. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    USGS Publications Warehouse

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  12. Analysis of fatty acid composition of sea cucumber Apostichopus japonicus using multivariate statistics

    NASA Astrophysics Data System (ADS)

    Xu, Qinzeng; Gao, Fei; Xu, Qiang; Yang, Hongsheng

    2014-11-01

    Fatty acids (FAs) provide energy and also can be used to trace trophic relationships among organisms. Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months. We examined fatty acid profiles in aestivated and non-aestivated A. japonicus using multivariate analyses (PERMANOVA, MDS, ANOSIM, and SIMPER). The results indicate that the fatty acid profiles of aestivated and non-aestivated sea cucumbers differed significantly. The FAs that were produced by bacteria and brown kelp contributed the most to the differences in the fatty acid composition of aestivated and nonaestivated sea cucumbers. Aestivated sea cucumbers may synthesize FAs from heterotrophic bacteria during early aestivation, and long chain FAs such as eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) that produced from intestinal degradation, are digested during deep aestivation. Specific changes in the fatty acid composition of A. japonicus during aestivation needs more detailed study in the future.

  13. Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology.

    PubMed

    Kastaniotis, Alexander J; Autio, Kaija J; Kerätär, Juha M; Monteuuis, Geoffray; Mäkelä, Anne M; Nair, Remya R; Pietikäinen, Laura P; Shvetsova, Antonina; Chen, Zhijun; Hiltunen, J Kalervo

    2017-01-01

    Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the "classic" cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Sterol regulatory element-binding protein-1 participates in the regulation of fatty acid synthase expression in colorectal neoplasia.

    PubMed

    Li, J N; Mahmoud, M A; Han, W F; Ripple, M; Pizer, E S

    2000-11-25

    Endogenous fatty acid synthesis has been observed in certain rapidly proliferating normal and neoplastic tissues. Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate the expression of lipogenic genes including fatty acid synthase (FAS), the major biosynthetic enzyme for fatty acid synthesis. We have previously shown that SREBP-1, FAS, and Ki-67, a proliferation marker, colocalized in the crypts of the fetal gastrointestinal tract epithelium. This study sought to determine whether SREBP-1 participates in the regulation of proliferation-associated fatty acid synthesis in colorectal neoplasia. An immunohistochemical analysis of SREBP-1, FAS, and Ki-67 expression in 25 primary human colorectal carcinoma specimens showed colocalization in 22 of these. To elucidate a functional linkage between SREBP-1 activation and proliferation-associated FA synthesis, SREBP-1 and FAS content were assayed during the adaptive response of cultured HCT116 colon carcinoma cells to pharmacological inhibition of FA synthesis. Cerulenin and TOFA each inhibited the endogenous synthesis of fatty acids in a dose-dependent manner and each induced increases in both precursor and mature forms of SREBP-1. Subsequently, both the transcriptional activity of the FAS promoter in a luciferase reporter gene construct and the FAS expression increased. These results demonstrate that tumor cells recognize and respond to a deficiency in endogenous fatty acid synthesis by upregulating both SREBP-1 and FAS expression and support the model that SREBP-1 participates in the transcriptional regulation of lipogenic genes in colorectal neoplasia. Copyright 2000 Academic Press.

  15. Defects in Mitochondrial Fatty Acid Synthesis Result in Failure of Multiple Aspects of Mitochondrial Biogenesis in Saccharomyces cerevisiae

    PubMed Central

    Kursu, V. A. Samuli; Pietikäinen, Laura P.; Fontanesi, Flavia; Aaltonen, Mari J.; Suomi, Fumi; Nair, Remya Raghavan; Schonauer, Melissa S.; Dieckmann, Carol L.; Barrientos, Antoni; Hiltunen, J. Kalervo; Kastaniotis, Alexander J.

    2014-01-01

    Summary Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild heme deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a coordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell. PMID:24102902

  16. Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae.

    PubMed

    Kursu, V A Samuli; Pietikäinen, Laura P; Fontanesi, Flavia; Aaltonen, Mari J; Suomi, Fumi; Raghavan Nair, Remya; Schonauer, Melissa S; Dieckmann, Carol L; Barrientos, Antoni; Hiltunen, J Kalervo; Kastaniotis, Alexander J

    2013-11-01

    Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild haem deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a co-ordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell. © 2013 John Wiley & Sons Ltd.

  17. Crystal structure of FabZ-ACP complex reveals a dynamic seesaw-like catalytic mechanism of dehydratase in fatty acid biosynthesis.

    PubMed

    Zhang, Lin; Xiao, Jianfeng; Xu, Jianrong; Fu, Tianran; Cao, Zhiwei; Zhu, Liang; Chen, Hong-Zhuan; Shen, Xu; Jiang, Hualiang; Zhang, Liang

    2016-12-01

    Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular metabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. However, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic modules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP 3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the β-sheet layer. These findings improve the general understanding of the dehydration process in the FAS system and will potentially facilitate drug and therapeutic design for diseases associated with abnormalities in FAS.

  18. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation.

    PubMed

    Yan, Yiqing; Jiang, Wei; Spinetti, Thibaud; Tardivel, Aubry; Castillo, Rosa; Bourquin, Carole; Guarda, Greta; Tian, Zhigang; Tschopp, Jurg; Zhou, Rongbin

    2013-06-27

    Omega-3 fatty acids (ω-3 FAs) have potential anti-inflammatory activity in a variety of inflammatory human diseases, but the mechanisms remain poorly understood. Here we show that stimulation of macrophages with ω-3 FAs, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and other family members, abolished NLRP3 inflammasome activation and inhibited subsequent caspase-1 activation and IL-1β secretion. In addition, G protein-coupled receptor 120 (GPR120) and GPR40 and their downstream scaffold protein β-arrestin-2 were shown to be involved in inflammasome inhibition induced by ω-3 FAs. Importantly, ω-3 FAs also prevented NLRP3 inflammasome-dependent inflammation and metabolic disorder in a high-fat-diet-induced type 2 diabetes model. Our results reveal a mechanism through which ω-3 FAs repress inflammation and prevent inflammation-driven diseases and suggest the potential clinical use of ω-3 FAs in gout, autoinflammatory syndromes, or other NLRP3 inflammasome-driven inflammatory diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae.

    PubMed

    Henritzi, Sandra; Fischer, Manuel; Grininger, Martin; Oreb, Mislav; Boles, Eckhard

    2018-01-01

    The ideal biofuel should not only be a regenerative fuel from renewable feedstocks, but should also be compatible with the existing fuel distribution infrastructure and with normal car engines. As the so-called drop-in biofuel, the fatty alcohol 1-octanol has been described as a valuable substitute for diesel and jet fuels and has already been produced fermentatively from sugars in small amounts with engineered bacteria via reduction of thioesterase-mediated premature release of octanoic acid from fatty acid synthase or via a reversal of the β-oxidation pathway. The previously engineered short-chain acyl-CoA producing yeast Fas1 R1834K /Fas2 fatty acid synthase variant was expressed together with carboxylic acid reductase from Mycobacterium marinum and phosphopantetheinyl transferase Sfp from Bacillus subtilis in a Saccharomyces cerevisiae Δfas1 Δfas2 Δfaa2 mutant strain. With the involvement of endogenous thioesterases, alcohol dehydrogenases, and aldehyde reductases, the synthesized octanoyl-CoA was converted to 1-octanol up to a titer of 26.0 mg L -1 in a 72-h fermentation. The additional accumulation of 90 mg L -1 octanoic acid in the medium indicated a bottleneck in 1-octanol production. When octanoic acid was supplied externally to the yeast cells, it could be efficiently converted to 1-octanol indicating that re-uptake of octanoic acid across the plasma membrane is not limiting. Additional overexpression of aldehyde reductase Ahr from Escherichia coli nearly completely prevented accumulation of octanoic acid and increased 1-octanol titers up to 49.5 mg L -1 . However, in growth tests concentrations even lower than 50.0 mg L -1 turned out to be inhibitory to yeast growth. In situ extraction in a two-phase fermentation with dodecane as second phase did not improve growth, indicating that 1-octanol acts inhibitive before secretion. Furthermore, 1-octanol production was even reduced, which results from extraction of the intermediate octanoic acid to the organic phase, preventing its re-uptake. By providing chain length control via an engineered octanoyl-CoA producing fatty acid synthase, we were able to specifically produce 1-octanol with S. cerevisiae . Before metabolic engineering can be used to further increase product titers and yields, strategies must be developed that cope with the toxic effects of 1-octanol on the yeast cells.

  20. Ascorbyl Stearate Promotes Apoptosis Through Intrinsic Mitochondrial Pathway in HeLa Cancer Cells.

    PubMed

    Mane, Shirish D; Thoh, Maikho; Sharma, Deepak; Sandur, Santosh K; Naidu, K Akhilender

    2016-12-01

    Ascorbic acid is proposed to have antitumor potential against certain cancer types but has the limitation of requiring high doses for treating cancer. Ascorbyl stearate (ASC-S) is a fatty acid ester derivative of ascorbic acid with comparable potent apoptotic activity. The present study was aimed at understanding the pathway involved in apoptotic activity of ASC-S in cervical cancer cells. The effect of ASC-S on reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) was studied in HeLa cells. Furthermore, the dose-dependent effect of ASC-S on release of cytochrome c, pro-caspase-9, caspase-3, BH3 interacting-domain death agonist (BID), truncated BH3 interacting-domain death agonist (t-BID), FAS ligand (FASL) and transcription factors nuclear factor-kappa B (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein-1 (AP1) were studied in HeLa cells. Treatment of HeLa cells with ASC-S significantly increased the MMP. The modulation of MMP resulted in cleavage of BID, expression of FAS, cleavage of pro-caspase-9 and release of cytochrome c into cytosol. In addition, ASC-S treatment resulted in deregulation of transcription factors NF-ĸB, NFAT and AP1, which play an important role in the development of inflammation and cancer. Our data, for the first time, suggest that ASC-S has an apoptotic effect against HeLa cells by inducing change in mitochondrial membrane permeability, cytochrome c release and subsequent activation of caspase-3 and NF-ĸB. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Reproductive corticotropin releasing hormone, implantation, and fetal immunotolerance.

    PubMed

    Kalantaridou, Sophia N; Zoumakis, Emmanouil; Weil, Stacie; Lavasidis, Lazaros G; Chrousos, George P; Makrigiannakis, Antonis

    2007-01-01

    The fundamental process of implantation involves a series of steps leading to effective cross-talk between invasive trophoblast cells and the maternal endometrium. The molecular interactions at the embryo-maternal interface during the time of blastocyst adhesion and subsequent invasion are not fully understood. Embryonic trophoblast and maternal decidual cells produce corticotropin-releasing hormone (CRH) and express Fas ligand (FasL), a proapoptotic cytokine. Fas and its ligand are pivotal in the regulation of immune tolerance. Trophoblast and decidual CRH play crucial roles in implantation, as well as in the anti-rejection process that protects the fetus from the maternal immune system, primarily by killing activated T cells through Fas-FasL interaction. The potential use of CRH antagonists is presently under intense investigation. CRH antagonists have been used experimentally to elucidate the role of CRH in blastocyst implantation and invasion, early fetal immunotolerance, and premature labor.

  2. 7 CFR 1493.20 - Definition of terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Secretary of Agriculture. (c) Contacts P/R. A notice issued by FAS/USDA by public press release which contains specific names, addresses, and telephone and facsimile numbers of contacts within FAS/USDA and CCC... appropriate FOB, FAS, CFR or CIF basis. Discounts and allowances include, but are not limited to, the...

  3. 7 CFR 1493.410 - Definition of terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Secretary of Agriculture. (c) Contacts P/R. A notice issued by FAS/USDA by public press release which contains specific names, addresses, and telephone and facsimile numbers of contacts within FAS/USDA and CCC... agricultural commodity, above and beyond the commodity's value, stated on the appropriate FOB, FAS, CFR or CIF...

  4. 7 CFR 1493.410 - Definition of terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Secretary of Agriculture. (c) Contacts P/R. A notice issued by FAS/USDA by public press release which contains specific names, addresses, and telephone and facsimile numbers of contacts within FAS/USDA and CCC... agricultural commodity, above and beyond the commodity's value, stated on the appropriate FOB, FAS, CFR or CIF...

  5. 7 CFR 1493.410 - Definition of terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Secretary of Agriculture. (c) Contacts P/R. A notice issued by FAS/USDA by public press release which contains specific names, addresses, and telephone and facsimile numbers of contacts within FAS/USDA and CCC... agricultural commodity, above and beyond the commodity's value, stated on the appropriate FOB, FAS, CFR or CIF...

  6. 7 CFR 1493.20 - Definition of terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Secretary of Agriculture. (c) Contacts P/R. A notice issued by FAS/USDA by public press release which contains specific names, addresses, and telephone and facsimile numbers of contacts within FAS/USDA and CCC... appropriate FOB, FAS, CFR or CIF basis. Discounts and allowances include, but are not limited to, the...

  7. 7 CFR 1493.20 - Definition of terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Secretary of Agriculture. (c) Contacts P/R. A notice issued by FAS/USDA by public press release which contains specific names, addresses, and telephone and facsimile numbers of contacts within FAS/USDA and CCC... appropriate FOB, FAS, CFR or CIF basis. Discounts and allowances include, but are not limited to, the...

  8. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic - Part 1: Comparison of hydrolysable components with plant wax lipids and lignin phenols

    NASA Astrophysics Data System (ADS)

    Feng, X.; Gustafsson, Ö.; Holmes, R. M.; Vonk, J. E.; van Dongen, B. E.; Semiletov, I. P.; Dudarev, O. V.; Yunker, M. B.; Macdonald, R. W.; Montluçon, D. B.; Eglinton, T. I.

    2015-03-01

    Hydrolysable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in the arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with changing climate. Here, we examine the molecular composition and source of hydrolysable compounds isolated from surface sediments derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α, ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolysable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same arctic river sediments and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolysable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in the arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land-ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in the arctic river sediments.

  9. Multi-molecular tracers of terrestrial carbon transfer across the pan-Arctic: comparison of hydrolyzable components with plant wax lipids and lignin phenols

    NASA Astrophysics Data System (ADS)

    Feng, X.; Gustafsson, Ö.; Holmes, R. M.; Vonk, J. E.; van Dongen, B. E.; Semiletov, I. P.; Dudarev, O. V.; Yunker, M. B.; Macdonald, R. W.; Montluçon, D. B.; Eglinton, T. I.

    2015-08-01

    Hydrolyzable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in Arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with a changing climate. Here, we examine the molecular composition and source of hydrolyzable compounds isolated from sedimentary particles derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α,ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolyzable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same Arctic river sedimentary particles and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American Arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolyzable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in Arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land-ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in Arctic river sediments.

  10. Adipose Fatty Acid Binding Protein Promotes Saturated Fatty Acid-induced Macrophage Cell Death through Enhancing Ceramide Production

    PubMed Central

    Zhang, Yuwen; Rao, Enyu; Zeng, Jun; Hao, Jiaqing; Sun, Yanwen; Liu, Shujun; Sauter, Edward R.; Bernlohr, David A.; Cleary, Margot P.; Suttles, Jill; Li, Bing

    2016-01-01

    Macrophages play a critical role in obesity-associated chronic inflammation and disorders. However, the molecular mechanisms underlying the response of macrophages to elevated fatty acids (FAs) and their contribution to metabolic inflammation in obesity remain to be fully elucidated. Here, we report a new mechanism by which dietary FAs, in particular saturated FAs, are able to directly trigger macrophage cell death. We demonstrated that excess saturated FAs, but not unsaturated FAs, induced the production of cytotoxic ceramides in macrophage cell lines. Most importantly, expression of adipose fatty acid binding protein (A-FABP) in macrophages facilitated metabolism of excess saturated FAs for ceramide synthesis. Inhibition or deficiency of A-FABP in macrophage cell lines decreased saturated FA-induced ceramide production, thereby resulting in reduced cell death. Furthermore, we validated the role of A-FABP in promoting saturated FA-induced macrophage cell death with primary bone-marrow derived macrophages and high-fat diet-induced obese mice. Altogether, our data reveal that excess dietary saturated FAs may serve as direct triggers in induction of ceramide production and macrophage cell death through elevated expression of A-FABP, thus establishing A-FABP as a new molecular sensor in triggering macrophage-associated sterile inflammation in obesity. PMID:27920274

  11. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on the engineering of industrial FAs, specifically hydroxy fatty acids (HFA) and conjugated polyenoic fatty acids (a-eleostearic acid, ESA), using Arabidopsis (Arabidopsis thaliana) as a m...

  12. Differential Cationization of Fatty Acids with Monovalent Cations Studied by ESI-MS/MS and Computational Approach.

    PubMed

    Sudarshana Reddy, B; Pavankumar, P; Sridhar, L; Saha, Soumen; Narahari Sastry, G; Prabhakar, S

    2018-04-24

    The intercellular and intracellular transport of charged species (Na + /K + ) entail interaction of the ions with neutral organic molecules and formation of adduct ions. The rate of transport of the ions across the cell membrane(s) may depend on the stability of the adduct ions, which in turn rely on structural aspects of the organic molecules that interact with the ions. Positive ion ESI mass spectra were recorded for the solutions containing fatty acids (FAs) and monovalent cations (X=Li + , Na + , K + , Rb + and Cs + ). Product ion spectra of the [FA+X] + ions were recorded at different collision energies. Theoretical studies were exploited under both gas phase and solvent phase to investigate the structural effects of the fatty acids during cationization. Stability of [FA+X] + adduct ions were further estimated by means of AIM topological analyses and interaction energy (IE) values. Positive ion ESI-MS analyses of the solution of FAs and X + ions showed preferential binding of the K + ions to FAs. The K + ion binding increased with the increase in number of double bonds of FAs, while decreased with increase in the number of carbons of FAs. Dissociation curves of [FA+X] + ions indicated the relative stability order of the [FA+X] + ions and it was in line with the observed trends in ESI-MS. The solvent phase computational studies divulged the mode of binding and the binding efficiencies of different FAs with monovalent cations. Among the studied monovalent cations, the cationization of FAs follow the order K + >Na + >Li + >Rb + >Cs + . The docosahexaenoic acid showed high efficiency in binding with K + ion. The K + ion binding efficiency of FAs depends on the number of double bonds in unsaturated FAs and the carbon chain length in saturated FAs. The cationization trends of FAs obtained from the ESI-MS, ESI-MS/MS analyses were in good agreement with solvent phase computational studies. This article is protected by copyright. All rights reserved.

  13. Fatty acids, mercury, and methylmercury bioaccessibility in salmon (Salmo salar) using an in vitro model: Effect of culinary treatment.

    PubMed

    Costa, Sara; Afonso, Cláudia; Cardoso, Carlos; Batista, Irineu; Chaveiro, Nádia; Nunes, Maria Leonor; Bandarra, Narcisa Maria

    2015-10-15

    The effect of culinary treatments on the fatty acid profile, mercury (Hg), and methylmercury (MeHg) levels of salmon was studied. The bioaccessibility of fatty acids, Hg, and MeHg in raw and grilled salmon was determined. The most intense thermal treatment (grilling) did not alter the relative fatty acid (FA) profile. There were bioaccessibility differences between FAs. To the authors' knowledge, for the first time, higher bioaccessibility of the long-chain FAs than the short- and medium-chain FAs was measured. Chemical interaction phenomena seemed to play a role. On the other hand, higher levels of unsaturation decreased bioaccessibility. Two main alternative hypotheses were put forward, either lower polarity led to higher incorporation of FAs with longer hydrophobic aliphatic chain and lower number of double bonds in the emulsion present in the bioaccessible fraction or enzymatic selectivity preferentially hydrolyzed some FAs on the basis of their structure or position in the triacylglycerol molecule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: effects of omega-3 polyunsaturated fatty acid supplementation.

    PubMed

    Signorini, Cinzia; De Felice, Claudio; Leoncini, Silvia; Durand, Thierry; Galano, Jean-Marie; Cortelazzo, Alessio; Zollo, Gloria; Guerranti, Roberto; Gonnelli, Stefano; Caffarelli, Carla; Rossi, Marcello; Pecorelli, Alessandra; Valacchi, Giuseppe; Ciccoli, Lucia; Hayek, Joussef

    2014-11-01

    This study mainly aims at examining the erythrocyte membrane fatty acid (FAs) profile in Rett syndrome (RTT), a genetically determined neurodevelopmental disease. Early reports suggest a beneficial effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on disease severity in RTT. A total of 24 RTT patients were assigned to ω-3 PUFAs-containing fish oil for 12 months in a randomized controlled study (average DHA and EPA doses of 72.9, and 117.1mg/kgb.w./day, respectively). A distinctly altered FAs profile was detectable in RTT, with deficient ω-6 PUFAs, increased saturated FAs and reduced trans 20:4 FAs. FAs changes were found to be related to redox imbalance, subclinical inflammation, and decreased bone density. Supplementation with ω-3 PUFAs led to improved ω-6/ω-3 ratio and serum plasma lipid profile, decreased PUFAs peroxidation end-products, normalization of biochemical markers of inflammation, and reduction of bone hypodensity as compared to the untreated RTT group. Our data indicate that a significant FAs abnormality is detectable in the RTT erythrocyte membranes and is partially rescued by ω-3 PUFAs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Different Fatty Acids Compete with Arachidonic Acid for Binding to the Allosteric or Catalytic Subunits of Cyclooxygenases to Regulate Prostanoid Synthesis*

    PubMed Central

    Dong, Liang; Zou, Hechang; Yuan, Chong; Hong, Yu H.; Kuklev, Dmitry V.; Smith, William L.

    2016-01-01

    Prostaglandin endoperoxide H synthases (PGHSs), also called cyclooxygenases (COXs), convert arachidonic acid (AA) to PGH2. PGHS-1 and PGHS-2 are conformational heterodimers, each composed of an (Eallo) and a catalytic (Ecat) monomer. Previous studies suggested that the binding to Eallo of saturated or monounsaturated fatty acids (FAs) that are not COX substrates differentially regulate PGHS-1 versus PGHS-2. Here, we substantiate and expand this concept to include polyunsaturated FAs known to modulate COX activities. Non-substrate FAs like palmitic acid bind Eallo of PGHSs stimulating human (hu) PGHS-2 but inhibiting huPGHS-1. We find the maximal effects of non-substrate FAs on both huPGHSs occurring at the same physiologically relevant FA/AA ratio of ∼20. This inverse allosteric regulation likely underlies the ability of PGHS-2 to operate at low AA concentrations, when PGHS-1 is effectively latent. Unlike FAs tested previously, we observe that C-22 FAs, including ω-3 fish oil FAs, have higher affinities for Ecat than Eallo subunits of PGHSs. Curiously, C-20 ω-3 eicosapentaenoate preferentially binds Ecat of huPGHS-1 but Eallo of huPGHS-2. PGE2 production decreases 50% when fish oil consumption produces tissue EPA/AA ratios of ≥0.2. However, 50% inhibition of huPGHS-1 itself is only seen with ω-3 FA/AA ratios of ≥5.0. This suggests that fish oil-enriched diets disfavor AA oxygenation by altering the composition of the FA pool in which PGHS-1 functions. The distinctive binding specificities of PGHS subunits permit different combinations of non-esterified FAs, which can be manipulated dietarily, to regulate AA binding to Eallo and/or Ecat thereby controlling COX activities. PMID:26703471

  16. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site.

    PubMed

    Hardwicke, Mary Ann; Rendina, Alan R; Williams, Shawn P; Moore, Michael L; Wang, Liping; Krueger, Julie A; Plant, Ramona N; Totoritis, Rachel D; Zhang, Guofeng; Briand, Jacques; Burkhart, William A; Brown, Kristin K; Parrish, Cynthia A

    2014-09-01

    Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.

  17. Mesangial cell Fas ligand: upregulation in human lupus nephritis and NF-kappaB-mediated expression in cultured human mesangial cells.

    PubMed

    Tsukinoki, Tomoko; Sugiyama, Hitoshi; Sunami, Reiko; Kobayashi, Mizuho; Onoda, Tetsuya; Maeshima, Yohei; Yamasaki, Yasushi; Makino, Hirofumi

    2004-09-01

    Fas ligand (FasL) is a well-known death factor; however, the role of FasL in the regulation of human glomerulonephritis remains unclear. We investigated the renal expression and localization of FasL in various forms of human glomerulonephritis by immunohistochemistry, utilizing confocal laser scanning microscopy. We further evaluated cytokine-induced FasL expression via nuclear factor (NF)kappaB in cultured human mesangial cells (HMC). The level of soluble FasL was measured by a specific enzyme-linked immunosorbent assay (ELISA). The frequency of glomerular FasL-positive cases was higher in lupus nephritis (37.9%) as compared with other forms of glomerulonephritis (8.7%). The glomerular FasL score in proliferative lupus nephritis was significantly higher than that in nonproliferative forms. Patients with a high apoptosis score, severe microhematuria, proteinuria, or decreased renal function had a high FasL score. Double immunolabelling demonstrated that the most prevalent phenotypes of FasL-positive cells were mesangial cells. In cultured HMC, interleukin (IL)1beta, lipopolysaccharide (LPS), or gamma interferon (IFN) upregulated membrane-bound FasL. IL1beta significantly, and LPS or gammaIFN weakly activated NFkappaB, but none of these agents activated NFkappaB/Rel-related nuclear factor of activated T cells (NFATc) or IFN regulatory factor-1. IL1beta-mediated NFkappaB was completely inhibited in the presence of lactacystin, a potent inhibitor of NFkappaB. Lactacystin-mediated inhibition of NFkappaB reduced FasL protein levels. Matrix metalloproteinase (MMP)-7, but not other MMPs (1, 2, 3, 8, or 9), significantly sensitized HMC to release soluble FasL after IL1beta stimulation. The results suggest that: (1) upregulation of mesangial FasL may contribute to the glomerular inflammation in proliferative lupus nephritis in vivo; (2) proinflammatory cytokines, in particular IL1beta, produced in nephritis can upregulate FasL via the transcription factor NFkappaB in HMC; and (3) MMP-7-mediated release of soluble FasL could control the mesangial inflammation.

  18. Hydroxy fatty acids in remote marine aerosols as microbial tracers: Long term study on β-hydroxy fatty acids from the remote marine Island, Chichi-Jima

    NASA Astrophysics Data System (ADS)

    Tyagi, P.

    2014-12-01

    To better understand the long-range atmospheric transport of microbial aerosols from Southeast Asia to the western North Pacific, marine aerosols were collected at a remote Island, Chichi-Jima on a biweekly basis during 1990-1993. These samples were investigated for the atmospheric abundances of hydroxy fatty acids (OH FAs). β-OH FAs are the major structural components of endotoxins in the outer membrane of Gram-negative bacteria (GNB) whereas w-OH FAs are present in cell walls of higher plants. Thus, we tested the applicability of the β-OH FAs (C10-C18) and ω-OH FAs (C16-C26) to assess the Gram-negative bacteria (GNB) and contribution of terrestrial higher plants, respectively. The average concentrations of β- and ω-OH FAs show pronounced seasonal variability with spring maximum (~301 ng/m-3 and ~ 272 ng/m-3, respectively). The concentrations of total OH FAs increased in winter/spring and decreased in summer/autumn, except for 1992-93. This seasonal trend can be interpreted by the atmospheric transport of microbial soil dust and higher plant metabolites from the Asian continent during winter/spring, when westerly winds dominate over the western North Pacific. The even carbon predominance of β- and ω-OH FAs (80 and 74 % of total) in marine aerosols could be explained by their significant contribution from GNB and terrestrial higher plants. These results have implications towards assessing the bacterial transport in the continental outflows. This study also confirms that β-OH FAs can be used as bacterial tracers in ambient aerosol samples.Keywords: β- and ω-hydroxy fatty acids, terrestrial biomarkers, marine aerosols, GC-MS

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, Andrew S.; Yokoyama, Takeshi; Choi, Kyoung-Jae

    Fatty acid biosynthesis is crucial for all living cells. In contrast to higher organisms, bacteria use a type II fatty acid synthase (FAS II) composed of a series of individual proteins, making FAS II enzymes excellent targets for antibiotics discovery. The {beta}-hydroxyacyl-ACP dehydratase (FabZ) catalyzes an essential step in the FAS II pathway. Here, we report the structure of Campylobacter jejuni FabZ (CjFabZ), showing a hexamer both in crystals and solution, with each protomer adopting the characteristic hot dog fold. Together with biochemical analysis of CjFabZ, we define the first functional FAS II enzyme from this pathogen, and provide amore » framework for investigation on roles of FAS II in C. jejuni virulence« less

  20. The effect of a low essential fatty acid diet on hibernation in marmots.

    PubMed

    Florant, G L; Hester, L; Ameenuddin, S; Rintoul, D A

    1993-04-01

    We investigated the effect of an essential fatty acid (EFA)-deficient diet on hibernation patterns in yellow-bellied marmots (Marmota flaviventris). Fatty acid (FA) analysis of white adipose tissue (WAT) from animals maintained for 2 mo on the EFA-deficient diet suggested that little or no EFAs were present in the gonadal or omental fat depots. Hibernation about lengths of the EFA-deficient animals were significantly shorter (P < 0.01) than control animals. Stated another way, these animals aroused twice as frequently compared with control animals and used more energy to survive winter. Analysis of WAT composition and blood samples revealed that animals were highly lipolytic during winter. Furthermore, the release of FAs was not random: linoleate (cis-9,cis-12-octadecadienoic acid; 18:2, a diene EFA) was significantly (P < 0.05) under-represented in venous outflow from the gonadal WAT pad based on the percentage of this species in WAT. The concentration of saturated FAs was higher than that predicted from the WAT-FA composition. We conclude that linoleate is preferentially retained within WAT and that concentrations of this EFA may influence hibernation behavior. Thus EFAs may have a thermoregulatory role in hibernation in addition to their role as essential precursors for physiologically important lipids after hibernation is over.

  1. Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids.

    PubMed

    Abdel-Maksoud, Sahar M; Hassanein, Sally I; Gohar, Neveen A; Attia, Saad M M; Gad, Mohamed Z

    2017-10-01

    The aim of this study was investigating the effect of omega-3 fatty acids (ω-3 FAs) on brain-derived neurotrophic factor (BDNF) gene expression, using in vivo and in vitro models, to unravel the potential mechanisms of polyunsaturated fatty acids use in obesity. Twenty-nine Sprague-Dawley rats were divided into three groups; lean controls fed normal chow diet for 14 weeks, obese controls fed 60% of their diet as saturated fats for 14 weeks, and ω-3 FAs-treated rats fed 60% saturated fat diet for 14 weeks with concomitant oral administration of 400 mg/kg/day ω-3 FAs, mainly docosahexaenoic acid and EPA, from week 12 to week 14. For the in vitro experiment, hypothalamic cells from six obese rats were cultured in the presence of different concentrations of ω-3 FAs to determine its direct effect on BDNF expression. In vivo results showed that obesity has negative effect on BDNF gene expression in rat hypothalamus that was reversed by administration of ω-3 FAs. Obese rats showed hypercholesterolemia, hypertriglyceridemia, normoinsulinemia, hyperglycemia and hyperleptinemia. Treatment with ω-3 FAs showed significant decrease in serum total cholesterol and TAG. Also serum glucose level and HOMA index were decreased significantly. In vitro results demonstrated the increase in BDNF expression by ω-3 FAs in a dose-dependent manner. Obesity causes down-regulation of BDNF gene expression that can be reversed by ω-3 FAs treatment, making them an interesting treatment approach for obesity and metabolic disease.

  2. Impact of US Brown Swiss genetics on milk quality from low-input herds in Switzerland: interactions with grazing intake and pasture type.

    PubMed

    Stergiadis, S; Bieber, A; Franceschin, E; Isensee, A; Eyre, M D; Maurer, V; Chatzidimitriou, E; Cozzi, G; Bapst, B; Stewart, G; Gordon, A; Butler, G

    2015-05-15

    This study investigated the effect of, and interactions between, contrasting crossbreed genetics (US Brown Swiss [BS] × Improved Braunvieh [BV] × Original Braunvieh [OB]) and feeding regimes (especially grazing intake and pasture type) on milk fatty acid (FA) profiles. Concentrations of total polyunsaturated FAs, total omega-3 FAs and trans palmitoleic, vaccenic, α-linolenic, eicosapentaenoic and docosapentaenoic acids were higher in cows with a low proportion of BS genetics. Highest concentrations of the nutritionally desirable FAs, trans palmitoleic, vaccenic and eicosapentaenoic acids were found for cows with a low proportion of BS genetics (0-24% and/or 25-49%) on high grazing intake (75-100% of dry matter intake) diets. Multivariate analysis indicated that the proportion of OB genetics is a positive driver for nutritionally desirable monounsaturated and polyunsaturated FAs while BS genetics proportion was positive driver for total and undesirable individual saturated FAs. Significant genetics × feeding regime interactions were also detected for a range of FAs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alistair K.; Sridharan, Sudharsan; Kremer, Laurent

    Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These {alpha}-alkyl, {beta}-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C{sub 24}-C{sub 26} fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The {beta}-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH wasmore » assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg{sup 46} revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg{sup 161} {yields} Ala substitution. Our structural studies suggested that His{sup 258}, previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys{sup 122}.« less

  4. The role of acyl carrier protein isoforms from Cuphea lanceolata seeds in the de-novo biosynthesis of medium-chain fatty acids.

    PubMed

    Schütt, B S; Brummel, M; Schuch, R; Spener, F

    1998-06-01

    To investigate the role of acyl carrier protein (ACP) in determining the fate of the acyl moieties linked to it in the course of de-novo fatty acid biosynthesis in higher plants, we carried out in vitro experiments to reconstitute the fatty acid synthase (FAS) reaction in extracts of spinach (Spinacia oleracea L.) leaves, rape (Brassica napus L.) seeds and Cuphea lanceolata Ait. seeds. The action of two major C. lanceolata ACP isoforms (ACP 1 and ACP 2) compared to ACP from Escherichia coli was monitored by saponification of the corresponding FAS products with subsequent analysis of the liberated fatty acids by high-performance liquid chromatography. In a second approach the preference of the medium-chain acyl-ACP-specific thioesterase (EC 3.1.2.14) of C. lanceolata seeds for the hydrolysis of acyl-ACPs prepared from the three ACP types was investigated. Both ACP isoforms from C. lanceolata seeds supported the synthesis of medium-chain fatty acids in a reconstituted FAS reaction of spinach leaf extracts. Compared to the isoform ACP 1, ACP 2 was more effective in supporting the synthesis of such fatty acids in the FAS reaction of rape seed extracts and caused a higher accumulation of FAS products in all experiments. No preference of the medium-chain thioesterase for one specific ACP isoform was observed. The results indicate that the presence of ACP 2 is essential for the synthesis of decanoic acid in C. lanceolata seeds, and its expression in the phase of accumulation of high levels of this fatty acid provides an additional and highly efficient cofactor for stimulating the FAS reaction.

  5. An update on potato crisps contents of moisture, fat, salt and fatty acids (including trans-fatty acids) with special emphasis on new oils/fats used for frying.

    PubMed

    Gonçalves Albuquerque, Tânia; Sanches-Silva, Ana; Santos, Lèlita; Costa, Helena S

    2012-09-01

    Eighteen brands of potato crisps, frequently consumed, were analyzed to establish their nutritional value in relation to salt, fat and fatty acid (FA) composition. The purpose of the present study was to determine moisture, total fat, salt contents and FA profiles (including trans-FAs), and to identify the oil/fat used for frying of the 18 brands of potato crisps. Our results show that salt content ranged from 0.127 to 2.77 g/100 g and total fat content of potato crisps varied between 20.0 and 42.8 g/100 g. With respect to FAs analysis, palmitic acid (C16:0), oleic acid (C18:1) and linoleic acid (C18:2) were the major FAs found in the analyzed potato crisps. It is clear from our work that nowadays most potato crisps are currently produced using oils with high contents in unsaturated FAs, which can be considered as healthier from a nutritional point of view. Nevertheless, some brands of potato crisps still use palm oil or a blend of palm oil and other fats/oils, which are very rich in saturated FAs.

  6. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity.

    PubMed

    Thupari, J N; Pinn, M L; Kuhajda, F P

    2001-07-13

    Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy. Copyright 2001 Academic Press.

  7. Optimization of odd chain fatty acid production by Yarrowia lipolytica.

    PubMed

    Park, Young-Kyoung; Dulermo, Thierry; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2018-01-01

    Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h -1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica . A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.

  8. [Gene expression of H-FABP and FAS and its clinicopathological significance in breast infiltrating ductal carcinoma].

    PubMed

    Li, Hua; Lü, Qing; Xue, Hui; Dong, Li-hua; Yang, Hui-jun

    2008-07-01

    To detect the expression of Heart or Muscle Fatty acid binding protein (H-FABP) and fatty acid synthase (FAS) in human breast cancer cells. The expression levels of FAS and H-FABP in 81 ductal infiltrating carcinoma (DIC) were detected by RT-PCR, immunohistochemistry and Western blot analysis. The possible associations of the expression of the two proteins with major clinicopathological factors were analyzed. The expression of both H-FABP and FAS increased in DIC cells than in adjacent normal cells. But less H-FABP and FAS were found in grade III DIC than in grade I and grade II DIC (P < 0.05). There was a positive correlation between the expression of H-FABP and FAS. No correlations between the expressions of two genes with other clinicopathological factors were found. The higher expression of H-FABP in grade I and II DIC suggests an early increased response to the over-expression of FAS. The parallel increase of H-FABP and FAS expressions marks increased breast cancer risk.

  9. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells

    PubMed Central

    Ježek, Jan; Dlasková, Andrea; Zelenka, Jaroslav; Jabůrek, Martin

    2015-01-01

    Abstract Aims: Pancreatic β-cell chronic lipotoxicity evolves from acute free fatty acid (FA)–mediated oxidative stress, unprotected by antioxidant mechanisms. Since mitochondrial uncoupling protein-2 (UCP2) plays antioxidant and insulin-regulating roles in pancreatic β-cells, we tested our hypothesis, that UCP2-mediated uncoupling attenuating mitochondrial superoxide production is initiated by FA release due to a direct H2O2-induced activation of mitochondrial phospholipase iPLA2γ. Results: Pro-oxidant tert-butylhydroperoxide increased respiration, decreased membrane potential and mitochondrial matrix superoxide release rates of control but not UCP2- or iPLA2γ-silenced INS-1E cells. iPLA2γ/UCP2-mediated uncoupling was alternatively activated by an H2O2 burst, resulting from palmitic acid (PA) β-oxidation, and it was prevented by antioxidants or catalase overexpression. Exclusively, nascent FAs that cleaved off phospholipids by iPLA2γ were capable of activating UCP2, indicating that the previously reported direct redox UCP2 activation is actually indirect. Glucose-stimulated insulin release was not affected by UCP2 or iPLA2γ silencing, unless pro-oxidant activation had taken place. PA augmented insulin secretion via G-protein–coupled receptor 40 (GPR40), stimulated by iPLA2γ-cleaved FAs (absent after GPR40 silencing). Innovation and Conclusion: The iPLA2γ/UCP2 synergy provides a feedback antioxidant mechanism preventing oxidative stress by physiological FA intake in pancreatic β-cells, regulating glucose-, FA-, and redox-stimulated insulin secretion. iPLA2γ is regulated by exogenous FA via β-oxidation causing H2O2 signaling, while FAs are cleaved off phospholipids, subsequently acting as amplifying messengers for GPR40. Hence, iPLA2γ acts in eminent physiological redox signaling, the impairment of which results in the lack of antilipotoxic defense and contributes to chronic lipotoxicity. Antioxid. Redox Signal. 23, 958–972. PMID:25925080

  10. FAS-antisense 1 lncRNA and production of soluble versus membrane Fas in B-cell lymphoma

    PubMed Central

    Sehgal, Lalit; Mathur, Rohit; Braun, Frank K.; Wise, Jillian F.; Berkova, Zuzana; Neelapu, Sattva; Kwak, Larry W.; Samaniego, Felipe

    2018-01-01

    Impaired Fas-mediated apoptosis is associated with poor clinical outcomes and cancer chemoresistance. Soluble Fas receptor (sFas), produced by skipping of exon 6, inhibits apoptosis by sequestering Fas ligand. Serum sFas is associated with poor prognosis of non-Hodgkin's lymphomas. We found that the alternative splicing of Fas in lymphomas is tightly regulated by a lncRNA corresponding to an antisense transcript of Fas (FAS-AS1). Levels of FAS-AS1 correlate inversely with production of sFas and FAS-AS1 binding to the RBM5 inhibits RBM5-mediated exon 6 skipping. EZH2, often mutated or overexpressed in lymphomas, hyper-methylates the FAS-AS1 promoter and represses the FAS-AS1 expression. EZH2-mediated repression of FAS-AS1 promoter can be released by DZNeP or overcome by ectopic expression of FAS-AS1, both of which increase levels of FAS-AS1 and correspondingly decrease expression of sFas. Treatment with Bruton’s tyrosine kinase (BTK) inhibitor or EZH2 knockdown decreases the levels of EZH2, RBM5 and sFas thereby enhances Fas-mediated apoptosis. This is the first report showing functional regulation of Fas repression by its antisense RNA. Our results reveal new therapeutic targets in lymphomas and provide a rationale for the use of EZH2 inhibitors or ibrutinib in combination with chemotherapeutic agents that recruit Fas for effective cell killing. PMID:24811343

  11. [Plasma fatty acids profile and lipids in Tunisian male elite athletes].

    PubMed

    Omar, Souheil; Sethom, Mohamed M; Feki-Mhiri, Sondes; Hadj-Taeib, Sameh; Ben Ayed, Ikram; Feki, Moncef; Kaabachi, Naziha

    2010-05-01

    Growing interest is accorded to polyunsaturated fatty acids (PUFAs) omega3, which are considered beneficial for health. to investigate the effect of sports on plasma lipids and fatty acids (FAs), especially omega6 and omega3 PUFAs and the omega6/omega3 ratio. The study included 75 Tunisian male elite athletes, practicing team sport and 70 sedentary healthy men as controls. Plasma FAs profile was analyzed by gas chromatography. Comparison between groups was performed using a univariate GLM analysis, with adjustment on age, body mass and energy intake. Athletes showed lower triglycerides and saturated FAs (27.64% +/- 2.17% vs. 30.41% +/- 4.35%) and increased HDL cholesterol and monounsaturated FAs (21.19% +/- 2 44% vs. 19.12% +/- 3.03%). However, there was no significant difference in total PUFAs, omega6 and omega3 families and omega6/omega3 ratio (10.15% +/- 3.24% vs. 10.20% +/- 3.37%) between athletes and sedentary. Sport favorably modifies the profile of plasma FAs by increasing monounsaturated FAs at the expense of saturated FAs, but has no effect on total PUFAs, and omega6 and omega3 families. A diet rich in omega3 PUFAs would lower the omega6/omega3 ratio, in order to improve the health and probably the performance of athletes.

  12. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Song, Mengya; Liu, Ming; Jiang, Chunyu; Li, Zhongpei

    2016-09-01

    In the background of rapid expansion of plastic greenhouse vegetable production in China, many environmental risks have emerged in recent years. In this study, the soils with a chronosequence in greenhouse vegetable fields were collected and the soil humic acids (HAs) and fluvic acids (FAs) were extracted and purified. The soil HAs and FAs were found to show inhibition activities against phytopathogenic fungi for the first time. Fourier transform infrared spectroscopy was performed to investigate the chemical structures of HAs and FAs. The variation of relative peak areas indicated the chemical structure of HAs become more complex and stable under continuous cultivation. The PCA analysis showed HAs and FAs could be distinctly separated from each other and cultivation years mainly determined the variation. Mantel test and RDA analysis indicated the active components (aliphatic peaks for HAs and COOH, OH peaks for FAs) had positive correlation with the inhibition rates of HAs and FAs against phytopathogenic fungi. According to our research, the active fungicidal components in soil HAs and FAs decreased along with the extension of cultivation years, which made the soil suffer more risk to phytopathogenic fugi. So we believe continuous cultivation too many years in PGVP systems is inadvisable.

  13. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence

    PubMed Central

    Wu, Meng; Song, Mengya; Liu, Ming; Jiang, Chunyu; Li, Zhongpei

    2016-01-01

    In the background of rapid expansion of plastic greenhouse vegetable production in China, many environmental risks have emerged in recent years. In this study, the soils with a chronosequence in greenhouse vegetable fields were collected and the soil humic acids (HAs) and fluvic acids (FAs) were extracted and purified. The soil HAs and FAs were found to show inhibition activities against phytopathogenic fungi for the first time. Fourier transform infrared spectroscopy was performed to investigate the chemical structures of HAs and FAs. The variation of relative peak areas indicated the chemical structure of HAs become more complex and stable under continuous cultivation. The PCA analysis showed HAs and FAs could be distinctly separated from each other and cultivation years mainly determined the variation. Mantel test and RDA analysis indicated the active components (aliphatic peaks for HAs and COOH, OH peaks for FAs) had positive correlation with the inhibition rates of HAs and FAs against phytopathogenic fungi. According to our research, the active fungicidal components in soil HAs and FAs decreased along with the extension of cultivation years, which made the soil suffer more risk to phytopathogenic fugi. So we believe continuous cultivation too many years in PGVP systems is inadvisable. PMID:27597259

  14. Saturated fatty acid determination method using paired ion electrospray ionization mass spectrometry coupled with capillary electrophoresis.

    PubMed

    Lee, Ji-Hyun; Kim, Su-Jin; Lee, Sul; Rhee, Jin-Kyu; Lee, Soo Young; Na, Yun-Cheol

    2017-09-01

    A sensitive and selective capillary electrophoresis-mass spectrometry (CE-MS) method for determination of saturated fatty acids (FAs) was developed by using dicationic ion-pairing reagents forming singly charged complexes with anionic FAs. For negative ESI detection, 21 anionic FAs at pH 10 were separated using ammonium formate buffer containing 40% acetonitrile modifier in normal polarity mode in CE by optimizing various parameters. This method showed good separation efficiency, but the sensitivity of the method to short-chain fatty acids was quite low, causing acetic and propionic acids to be undetectable even at 100 mgL -1 in negative ESI-MS detection. Out of the four dicationic ion-pairing reagents tested, N,N'-dibutyl 1,1'-pentylenedipyrrolidium infused through a sheath-liquid ion source during CE separation was the best reagent regarding improved sensitivity and favorably complexed with anionic FAs for detection in positive ion ESI-MS. The monovalent complex showed improved ionization efficiency, providing the limits of detection (LODs) for 15 FAs ranging from 0.13 to 2.88 μg/mL and good linearity (R 2  > 0.99) up to 150 μg/mL. Compared to the negative detection results, the effect was remarkable for the detection of short- and medium-chain fatty acids. The optimized CE-paired ion electrospray (PIESI)-MS method was utilized for the determination of FAs in cheese and coffee with simple pretreatment. This method may be extended for sensitive analysis of unsaturated fatty acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Synthetic Triterpenoid CDDO-Im Inhibits Fatty Acid Synthase Expression and Has Antiproliferative and Proapoptotic Effects in Human Liposarcoma Cells

    PubMed Central

    Hughes, David T.; Martel, Peter M.; Kinlaw, William B.; Eisenberg, Burton L.

    2013-01-01

    Liposarcomas constitute a rare group of tumors of mesenchymal origin that are often poorly responsive to therapy. This study characterizes a novel human liposarcoma cell line (LiSa-2) and defines the mechanism of its response to a synthetic triterpenoid. Fatty acid synthase (FAS) is a key enzyme of de-novo fatty acid synthesis and is highly expressed in both human liposarcoma tissue specimens and LiSa-2 cells. Treatment of the LiSa-2 cell line with the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic imidazolide (CDDO-Im) markedly inhibited FAS mRNA expression, FAS protein production and FAS gene promoter activity. As expected, fatty acid synthesis was down regulated, but there was no effect on cellular fatty acid uptake or glycerol-3-phosphate synthesis suggesting a selective inhibition of endogenous fatty acid synthesis. Importantly, CDDO-Im produced a dose-dependent apoptotic effect in the LiSa-2 cell line, and simultaneous treatment with CDDO-Im and the fatty acid synthase inhibitor Cerulenin produced a synergistic cytotoxic effect. Thus, CDDO-Im and Cerulenin act at different loci to inhibit long chain fatty acid synthesis in liposarcoma cells. This study’s demonstration of CDDO-Im inhibition of FAS and Spot 14 (S14) expression is the first report of triterpenoid compounds affecting the fatty acid synthesis pathway. The observed dependence of liposarcomas on lipogenesis to support their growth and survival provides a novel approach to the treatment of liposarcomas with agents that target fatty acid production. PMID:18259941

  16. Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells.

    PubMed

    Zhou, Weibo; Han, Wan Fang; Landree, Leslie E; Thupari, Jagan N; Pinn, Michael L; Bililign, Tsion; Kim, Eun Kyoung; Vadlamudi, Aravinda; Medghalchi, Susan M; El Meskini, Rajaa; Ronnett, Gabriele V; Townsend, Craig A; Kuhajda, Francis P

    2007-04-01

    Fatty acid synthase (FAS), the enzyme responsible for the de novo synthesis of fatty acids, is highly expressed in ovarian cancers and most common human carcinomas. Inhibition of FAS and activation of AMP-activated protein kinase (AMPK) have been shown to be cytotoxic to human cancer cells in vitro and in vivo. In this report, we explore the cytotoxic mechanism of action of FAS inhibition and show that C93, a synthetic FAS inhibitor, increases the AMP/ATP ratio, activating AMPK in SKOV3 human ovarian cancer cells, which leads to cytotoxicity. As a physiologic consequence of AMPK activation, acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid synthesis, was phosphorylated and inhibited whereas glucose oxidation was increased. Despite these attempts to conserve energy, the AMP/ATP ratio increased with worsening cellular redox status. Pretreatment of SKOV3 cells with compound C, an AMPK inhibitor, substantially rescued the cells from C93 cytotoxicity, indicating its dependence on AMPK activation. 5-(Tetradecyloxy)-2-furoic acid, an ACC inhibitor, did not activate AMPK despite inhibiting fatty acid synthesis pathway activity and was not significantly cytotoxic to SKOV3 cells. This indicates that substrate accumulation from FAS inhibition triggering AMPK activation, not end-product depletion of fatty acids, is likely responsible for AMPK activation. C93 also exhibited significant antitumor activity and apoptosis against SKOV3 xenografts in athymic mice without significant weight loss or cytotoxicity to proliferating cellular compartments such as bone marrow, gastrointestinal tract, or skin. Thus, pharmacologic FAS inhibition selectively activates AMPK in ovarian cancer cells, inducing cytotoxicity while sparing most normal human tissues from the pleiotropic effects of AMPK activation.

  17. Serum concentrations of fatty acids and colorectal adenoma risk: a case-control study in Japan.

    PubMed

    Ghadimi, Reza; Kuriki, Kiyonori; Tsuge, Shinji; Takeda, Emiru; Imaeda, Nahomi; Suzuki, Sadao; Sawai, Asuka; Takekuma, Kiyoshi; Hosono, Akihiro; Tokudome, Yuko; Goto, Chiho; Esfandiary, Imaneh; Nomura, Hisashi; Tokudome, Shinkan

    2008-01-01

    Epidemiologic studies of n-3 fatty acids (FAs) and risk of colorectal cancer have generated inconsistent results, and relations with precursor colorectal adenomas (CRA) have not been evaluated in detail. We here focused on possible associations of serum FAs with CRA in the Japanese population. We conducted a case-control study of 203 asymptomatic CRA cases (148 men, 55 women) and 179 healthy controls (67 men, 112 women) during 1997-2003 in Nagoya, Japan. Baseline information was obtained using a lifestyle questionnaire and serum FA levels were measured by gas chromatography. A non-significant inverse association with CRA was observed for eicosapentaenoic acid (EPA) among women. Moreover, the concentrations of docosahexaenoeic acid (DHA), a major component of n-3 highly-unsaturated FAs (HUFAs), were significantly lower in cases in both sexes. In addition, serum concentrations of total FAs, saturated FAs (SFAs) and mono-unsaturated FAs (MUFAs) had strong positive links with CRA risk. In contrast, arachidonic acid (AA) and DHA were inversely related, with 66% and 59% risk reduction, respectively. Ratios of SFAs/n-3 PUFAs and SFAs/n-3 HUFAs exhibited significant positive relations with CRA risk but there was no clear link with n-6 PUFAs/n-3 PUFAs. Our findings suggest a promoting influence of SFAs and MUFAs along with a protective effect of DHA on CRA risk. However, further research is needed to investigate the observed discrepancy with the generally accepted roles of the AA cascade in carcinogenesis.

  18. Fetal Alcohol Syndrome, Chemo-Biology and OMICS: Ethanol Effects on Vitamin Metabolism During Neurodevelopment as Measured by Systems Biology Analysis

    PubMed Central

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães

    2014-01-01

    Abstract Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment. PMID:24816220

  19. Fetal alcohol syndrome, chemo-biology and OMICS: ethanol effects on vitamin metabolism during neurodevelopment as measured by systems biology analysis.

    PubMed

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães; Bonatto, Diego

    2014-06-01

    Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment.

  20. Overexpression of soluble Fas ligand following AAV gene therapy prevents retinal ganglion cell death in chronic and acute murine models of glaucoma

    PubMed Central

    Krishnan, Anitha; Fei, Fei; Jones, Alexander; Busto, Patricia; Marshak-Rothstein, Ann; Ksander, Bruce R.; Gregory-Ksander, Meredith

    2016-01-01

    Glaucoma is a multifactorial disease resulting in the death of retinal ganglion cells (RGCs) and irreversible blindness. Glaucoma-associated RGC cell death depends on the pro-apoptotic and proinflammatory activity of membrane-bound FasL (mFasL). In contrast to mFasL, the natural soluble FasL cleavage product (sFasL) inhibits mFasL-mediated apoptosis and inflammation and is therefore a mFasL antagonist. DBA/2J (D2) mice spontaneously develop glaucoma and predictably RGC destruction is exacerbated by expression of a mutated membrane-only FasL (mFasL) gene that lacks the extracellular cleavage site. Remarkably, one time intraocular adeno-associated virus-mediated gene delivery of sFasL (AAV2.sFasL) provides complete and sustained neuroprotection in both the chronic D2 and acute microbead-induced models of glaucoma, even in the presence of elevated intraocular pressure (IOP). This protection correlated with inhibition of glial activation, reduced production of TNFα, and decreased apoptosis of RGCs and loss of axons. These data indicate that cleavage of FasL under homeostatic conditions, and the ensuing release of sFasL, normally limits the neurodestructive activity of FasL. The data further support the notion that sFasL, and not mFasL, contributes to the immune privileged status of the eye. PMID:27849168

  1. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.

    PubMed

    Masek, Pavel; Keene, Alex C

    2013-01-01

    Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs) signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC) signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.

  2. TRIGLYCERIDES, ATHEROSCLEROSIS, AND CARDIOVASCULAR OUTCOME STUDIES: FOCUS ON OMEGA-3 FATTY ACIDS.

    PubMed

    Handelsman, Yehuda; Shapiro, Michael D

    2017-01-01

    To provide an overview of the roles of triglycerides and triglyceride-lowering agents in atherosclerosis in the context of cardiovascular outcomes studies. We reviewed the published literature as well as ClinicalTrials.gov entries for ongoing studies. Despite improved atherosclerotic cardiovascular disease (ASCVD) outcomes with statin therapy, residual risk remains. Epidemiologic data and recent genetic insights provide compelling evidence that triglycerides are in the causal pathway for the development of atherosclerosis, thereby renewing interest in targeting triglycerides to improve ASCVD outcomes. Fibrates, niacin, and omega-3 fatty acids (OM3FAs) are three classes of triglyceride-lowering drugs. Outcome studies with triglyceride-lowering agents have been inconsistent. With regard to OM3FAs, the JELIS study showed that eicosapentaenoic acid (EPA) significantly reduced major coronary events in statin-treated hypercholesterolemic patients. Regarding other agents, extended-release niacin and fenofibrate are no longer recommended as statin add-on therapy (by some guidelines, though not all) because of the lack of convincing evidence from outcome studies. Notably, subgroup analyses from the outcome studies have generated the hypothesis that triglyceride lowering may provide benefit in statin-treated patients with persistent hypertriglyceridemia. Two ongoing OM3FA outcome studies (REDUCE-IT and STRENGTH) are testing this hypothesis in high-risk, statin-treated patients with triglyceride levels of 200 to 500 mg/dL. There is consistent evidence that triglycerides are in the causal pathway of atherosclerosis but inconsistent evidence from cardiovascular outcomes studies as to whether triglyceride-lowering agents reduce cardiovascular risk. Ongoing outcomes studies will determine the role of triglyceride lowering in statin-treated patients with high-dose prescription OM3FAs in terms of improved ASCVD outcomes. AACE = American Association of Clinical Endocrinologists ACCORD = Action to Control Cardiovascular Risk in Diabetes AIM-HIGH = Atherothrombosis Intervention in Metabolic Syndrome with Low HDL/High Triglycerides: Impact on Global Health Outcomes apo = apolipoprotein ASCEND = A Study of Cardiovascular Events in Diabetes ASCVD = atherosclerotic cardiovascular disease BIP = Bezafibrate Infarction Prevention CHD = coronary heart disease CI = confidence interval CV = cardiovascular CVD = cardiovascular disease DHA = docosahexaenoic acid DO-IT = Diet and Omega-3 Intervention Trial EPA = eicosapentaenoic acid FIELD = Fenofibrate Intervention and Event Lowering in Diabetes GISSI-HF = GISSI-Heart Failure HDL-C = high-density-lipoprotein cholesterol HPS2-THRIVE = Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events HR = hazard ratio JELIS = Japan Eicosapentaenoic Acid Lipid Intervention Study LDL = low-density lipoprotein LDL-C = low-density-lipoprotein cholesterol MI = myocardial infarction OM3FAs = omega-3 fatty acids VITAL = Vitamin D and Omega-3 Trial.

  3. Compositional similarities of non-solvent extractable fatty acids from recent marine sediments deposited in differing environments

    NASA Astrophysics Data System (ADS)

    Nishimura, Mitsugu; Baker, Earl W.

    1987-06-01

    Five recent sediment samples from a variety of North American continental shelves were analyzed for fatty acids (FAs) in the solvent-extractable (SOLEX) lipids as well as four types of non-solvent extractable (NONEX) lipids. The NONEX lipids were operationally defined by the succession of extraction procedure required to recover them. The complete procedure included (i) very mild acid treatment, (ii) HF digestion and (iii) saponification of the sediment residue following exhaustive solvent extraction. The distribution pattern and various compositional parameters of SOLEX FAs in the five sediments were divided into three different groups, indicating the difference of biological sources and also diagenetic factors and processes among the three groups of samples. Nevertheless, the compositions of the corresponding NONEX FAs after acid treatment were surprisingly very similar. This was also true for the remaining NONEX FA groups in the five sediment samples. The findings implied that most of the NONEX FAs reported here are derived directly from living organisms. It is also concluded that a large part of NONEX FAs are much more resistant to biodegradation than we have thought, so that they can form the large percentage of total lipids with increasing depth of water and sediments.

  4. Polyunsaturated fatty acid levels in blood during pregnancy, at birth and at 7 years: their associations with two common FADS2 polymorphisms.

    PubMed

    Steer, Colin D; Hibbeln, Joseph R; Golding, Jean; Davey Smith, George

    2012-04-01

    Minor alleles of polymorphisms in the fatty acid desaturase (FADS) gene cluster have been associated with reduced desaturation of the precursor polyunsaturated fatty acids (FAs) in small studies. The effects of these polymorphisms during progressive developmental stages have not previously been reported. Data from blood samples for 4342 pregnant women, 3343 umbilical cords reflecting the newborn's blood supply and 5240 children aged 7 years were analysed to investigate the associations of polyunsaturated FAs with rs1535 and rs174575-two polymorphisms in the FADS2 gene. Strong positive associations were observed between the minor G allele for these two markers, especially rs1535, and the substrates linoleic (18:2n-6) and α-linolenic (18:3n-3) acid. Negative associations were observed for the more highly unsaturated FAs such as arachidonic acid (20:4n-6), timnodonic acid (EPA, 20:5n-3) and cervonic acid (DHA, 22:6n-3). Bivariable genetic associations using the mother and child genotypes suggested that the newborn metabolism had a greater capacity to synthesize the more highly unsaturated omega-6 FAs than the more highly unsaturated omega-3 FAs. Nevertheless, despite the immaturity of the neonate, there was evidence that synthesis of DHA was occurring. However, by 7 years, no associations were observed with the maternal genotype. This suggested that the children's FA levels were related only to their own metabolism with no apparent lasting influences of the in utero environment.

  5. Ocean acidification increases fatty acids levels of larval fish.

    PubMed

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, M.-S.; Ho, C.-T.; Ho, Y.-S.

    Fatty acid synthase (FAS) is a major lipogenic enzyme catalyzing the synthesis of long-chain saturated fatty acids. Most breast cancers require lipogenesis for growth. Here, we demonstrated the effects of theanaphthoquinone (TNQ), a member of the thearubigins generated by the oxidation of theaflavin (TF-1), on the expression of FAS in human breast cancer cells. TNQ was found to suppress the EGF-induced expression of FAS mRNA and FAS protein in MDA-MB-231 cells. Expression of FAS has previously been shown to be regulated by the SREBP family of transcription factors. In this study, we demonstrated that the EGF-induced nuclear translocation of SREBP-1more » was blocked by TNQ. Moreover, TNQ also modulated EGF-induced ERK1/2 and Akt phosphorylation. Treatment of MDA-MB-231 cells with PI 3-kinase inhibitors, LY294002 and Wortmannin, inhibited the EGF-induced expression of FAS and nuclear translocation of SREBP-1. Treatment with TNQ inhibited EGF-induced EGFR/ErbB-2 phosphorylation and dimerization. Furthermore, treatment with kinase inhibitors of EGFR and ErbB-2 suggested that EGFR/ErbB-2 activation was involved in EGF-induced FAS expression. In constitutive FAS expression, TNQ inhibited FAS expression and Akt autophosphorylation in BT-474 cells. The PI 3-kinase inhibitors and tyrosine kinase inhibitors of EGFR and ErbB-2 also reduced constitutive FAS expression. In addition, pharmacological blockade of FAS by TNQ decreased cell viability and induced cell death in BT-474 cells. In summary, our findings suggest that TNQ modulates FAS expression by the regulation of EGFR/ErbB-2 pathways and induces cell death in breast cancer cells.« less

  7. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing.

    PubMed

    Kou, Xiaoxing; Xu, Xingtian; Chen, Chider; Sanmillan, Maria Laura; Cai, Tao; Zhou, Yanheng; Giraudo, Claudio; Le, Anh; Shi, Songtao

    2018-03-14

    Mesenchymal stem cells (MSCs) are capable of secreting exosomes, extracellular vesicles, and cytokines to regulate cell and tissue homeostasis. However, it is unknown whether MSCs use a specific exocytotic fusion mechanism to secrete exosomes and cytokines. We show that Fas binds with Fas-associated phosphatase-1 (Fap-1) and caveolin-1 (Cav-1) to activate a common soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated membrane fusion mechanism to release small extracellular vesicles (sEVs) in MSCs. Moreover, we reveal that MSCs produce and secrete interleukin-1 receptor antagonist (IL-1RA) associated with sEVs to maintain rapid wound healing in the gingiva via the Fas/Fap-1/Cav-1 cascade. Tumor necrosis factor-α (TNF-α) serves as an activator to up-regulate Fas and Fap-1 expression via the nuclear factor κB pathway to promote IL-1RA release. This study identifies a previously unknown Fas/Fap-1/Cav-1 axis that regulates SNARE-mediated sEV and IL-1RA secretion in stem cells, which contributes to accelerated wound healing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial

    DTIC Science & Technology

    2008-03-01

    green tea catechin, epigallocatechin -3- gallate ( EGCG ), is the fatty acid synthase (FAS) pathway. FAS, a lipogenic multienzyme that catalyzes the final...severity. Both EGCG and ω-3 FA have been shown in vitro and in vivo to inhibit this overexpression of FAS. Plan: The primary objective or our...proposal is to elucidate in men at high risk for prostate cancer, a potential biologic mechanism whereby EGCG , alone or in combination with ω-3 FA

  9. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast

    PubMed Central

    Dagorn, Flore; Couzinet-Mossion, Aurélie; Kendel, Melha; Beninger, Peter G.; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2016-01-01

    Economic exploitation is one means to offset the cost of controlling invasive species, such as the introduced Pacific oyster (Crassostrea gigas Thunberg) on the French Atlantic coast. Total lipid and phospholipid (PL) fatty acids (FAs) and sterols were examined in an invasive population of C. gigas in Bourgneuf Bay, France, over four successive seasons, with a view to identify possible sources of exploitable substances. The total lipid level (% dry weight) varied from 7.1% (winter) to 8.6% (spring). Of this, PLs accounted for 28.1% (spring) to 50.4% (winter). Phosphatidylcholine was the dominant PL throughout the year (up to 74% of total PLs in winter). Plasmalogens were identified throughout the year as a series of eleven dimethylacetals (DMAs) with chain lengths between C16 and C20 (up to 14.5% of PL FAs + DMAs in winter). Thirty-seven FAs were identified in the PL FAs. Eicosapentaenoic acid (20:5n-3 EPA/7.53% to 14.5%) and docosahexaenoic acid (22:6n-3 DHA/5.51% to 9.5%) were the dominant polyunsaturated FAs in all seasons. Two non-methylene-interrupted dienoic (NMID) FAs were identified in all seasons: 7,13-docosadienoic and 7,15-docosadienoic acids, the latter being present at relatively high levels (up to 9.6% in winter). Twenty free sterols were identified, including cholesterol at 29.9% of the sterol mixture and about 33% of phytosterols. C. gigas tissues thus contained exploitable lipids for health benefits or as a potential source of high-quality commercial lecithin. PMID:27231919

  10. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    PubMed

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS.

  11. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics.

    PubMed

    Rambold, Angelika S; Cohen, Sarah; Lippincott-Schwartz, Jennifer

    2015-03-23

    Fatty acids (FAs) provide cellular energy under starvation, yet how they mobilize and move into mitochondria in starved cells, driving oxidative respiration, is unclear. Here, we clarify this process by visualizing FA trafficking with a fluorescent FA probe. The labeled FA accumulated in lipid droplets (LDs) in well-fed cells but moved from LDs into mitochondria when cells were starved. Autophagy in starved cells replenished LDs with FAs, increasing LD number over time. Cytoplasmic lipases removed FAs from LDs, enabling their transfer into mitochondria. This required mitochondria to be highly fused and localized near LDs. When mitochondrial fusion was prevented in starved cells, FAs neither homogeneously distributed within mitochondria nor became efficiently metabolized. Instead, FAs reassociated with LDs and fluxed into neighboring cells. Thus, FAs engage in complex trafficking itineraries regulated by cytoplasmic lipases, autophagy, and mitochondrial fusion dynamics, ensuring maximum oxidative metabolism and avoidance of FA toxicity in starved cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Imaging Prostatic Lipids to Distinguish Aggressive Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    this application, we propose to build upon our current work to determine the association between fatty acid synthase ( FAS ) overexpression and...cancer (as determined by Gleason scoring) we propose to: 1) Determine the correlation between FAS expression in prostatectomy samples and the amount... FAS expression and FAS activity in prostatectomy samples, intraprostatic lipid as measured by MRSI and prostate tumor aggressiveness. 3) To quantify

  13. Abdominal adipose tissue: early metabolic dysfunction associated to insulin resistance and oxidative stress induced by an unbalanced diet.

    PubMed

    Rebolledo, O R; Marra, C A; Raschia, A; Rodriguez, S; Gagliardino, J J

    2008-11-01

    The possible contribution of early changes in lipid composition, function, and antioxidant status of abdominal adipose tissue (AAT) induced by a fructose-rich diet (FRD) to the development of insulin resistance (IR) and oxidative stress (OS) was studied. Wistar rats were fed with a commercial diet with (FRD) or without 10% fructose in the drinking water for 3 weeks. The glucose (G), triglyceride (TG), and insulin (I) plasma levels, and the activity of antioxidant enzymes, lyposoluble antioxidants, total glutathione (GSH), lipid peroxidation as TBARS, fatty acid (FA) composition of AAT-TG as well as their release by incubated pieces of AAT were measured. Rats fed with a FRD have significantly higher plasma levels of G, TG, and I. Their AAT showed a marked increase in content and ratios of saturated to monounsaturated and polyunsaturated FAs, TBARS, and catalase, GSH-transferase and GSH-reductase, together with a decrease in superoxide dismutase and GSH-peroxidase activity, and total GSH, alpha-tocopherol, beta-carotene and lycopene content. Incubated AAT from FRD released in vitro higher amount of free fatty acids (FFAs) with higher ratios of saturated to monounsaturated and polyunsaturated FAs. Our data suggest that FRD induced an early prooxidative state and metabolic dysfunction in AAT that would favor the overall development of IR and OS and further development of pancreatic beta-cell failure; therefore, its early control would represent an appropriate strategy to prevent alterations such as the development of type 2 diabetes.

  14. Acid-base properties of humic and fulvic acids formed during composting.

    PubMed

    Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro

    2005-09-15

    The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.

  15. Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.

    PubMed

    Li, Xing-Cong; Joshi, Alpana S; ElSohly, Hala N; Khan, Shabana I; Jacob, Melissa R; Zhang, Zhizheng; Khan, Ikhlas A; Ferreira, Daneel; Walker, Larry A; Broedel, Sheldon E; Raulli, Robert E; Cihlar, Ronald L

    2002-12-01

    Fatty acid synthase (FAS) has been identified as a potential antifungal target. FAS prepared from Saccharomyces cerevisiae was employed for bioactivity-guided fractionation of Chlorophora tinctoria,Paspalum conjugatum, Symphonia globulifera, Buchenavia parviflora, and Miconia pilgeriana. Thirteen compounds (1-13), including three new natural products (1, 4, 12), were isolated and their structures identified by spectroscopic interpretation. They represented five chemotypes, namely, isoflavones, flavones, biflavonoids, hydrolyzable tannin-related derivatives, and triterpenoids. 3'-Formylgenistein (1) and ellagic acid 4-O-alpha-l-rhamnopyranoside (9) were the most potent compounds against FAS, with IC(50) values of 2.3 and 7.5 microg/mL, respectively. Furthermore, 43 (14-56) analogues of the five chemotypes from our natural product repository and commercial sources were tested for their FAS inhibitory activity. Structure-activity relationships for some chemotypes were investigated. All these compounds were further evaluated for antifungal activity against Candida albicans and Cryptococcus neoformans. Although there were several antifungal compounds in the set, correlation between the FAS inhibitory activity and antifungal activity could not be defined.

  16. Effects of soil type and organic fertilizers on fatty acids and vitamin E in Korean ginseng (Panax ginseng Meyer).

    PubMed

    Chung, Ill-Min; Kim, Jae-Kwang; Yang, Jin-Hee; Lee, Ji-Hee; Park, Sung-Kyu; Son, Na-Young; Kim, Seung-Hyun

    2017-12-01

    This study examined the effects of soil type and fertilizer regimes on variations in fatty acids (FAs) and vitamin E (Vit-E) in 6-year-old ginseng roots. We observed significant variation in both FA and Vit-E contents owing to the type and quantity of organic fertilizer used in each soil type during cultivation. Unsaturated FAs were approximately 2.7-fold higher in ginseng than in saturated FAs. Linoleic, palmitic, and oleic acids were the most abundant FAs detected in ginseng roots. Additionally, α-tocopherol was the major Vit-E detected. In particular, the increased application of rice straw compost or food waste fertilizer elevated the quantity of nutritionally desirable FAs and bioactive Vit-E in ginseng root. Partial least square-discriminant analysis (PLS-DA) score plots showed that soil type might be the main cause of differences in FA and Vit-E levels in ginseng. Specifically, the PLS-DA model indicated that palmitic acid is a suitable FA marker in determining whether ginseng plants were grown in a paddy-converted field or an upland field. Moreover, linoleic acid levels were highly correlated with α-linolenic acid (r=0.8374; p<0.0001) according to Pearson's correlations and hierarchical clustering analysis. Hence, these preliminary results should prove useful for the reliable production of ginseng containing high phytonutrient quantities according to cultivation conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Inhibitory effects of sea buckthorn procyanidins on fatty acid synthase and MDA-MB-231 cells.

    PubMed

    Wang, Yi; Nie, Fangyuan; Ouyang, Jian; Wang, Xiaoyan; Ma, Xiaofeng

    2014-10-01

    Fatty acid synthase (FAS) is overexpressed in many human cancers including breast cancer and is considered to be a promising target for therapy. Sea buckthorn has long been used to treat a variety of maladies. Here, we investigated the inhibitory effect of sea buckthorn procyanidins (SBPs) isolated from the seeds of sea buckthorn on FAS and FAS overexpressed human breast cancer MDA-MB-231 cells. The FAS activity and FAS inhibition were measured by a spectrophotometer at 340 nm of nicotinamide adenine dinucleotide phosphate (NADPH) absorption. We found that SBP potently inhibited the activity of FAS with a half-inhibitory concentration (IC50) value of 0.087 μg/ml. 3-4,5-Dimethylthiazol-2-yl-2,3-diphenyl tetrazolium bromide (MTT) assay was used to test the cell viability. SBP reduced MDA-MB-231 cell viability with an IC50 value of 37.5 μg/ml. Hoechst 33258/propidium iodide dual staining and flow cytometric analysis showed that SBP induced MDA-MB-231 cell apoptosis. SBP inhibited intracellular FAS activity with a dose-dependent manner. In addition, sodium palmitate could rescue the cell apoptosis induced by SBP. These results showed that SBP was a promising FAS inhibitor which could induce the apoptosis of MDA-MB-231 cells via inhibiting FAS. These findings suggested that SBP might be useful for preventing or treating breast cancer.

  18. Enzymatic preparation of structured oils containing short-chain fatty acids.

    PubMed

    Kanda, Ayato; Namiki, Fusako; Hara, Setsuko

    2010-01-01

    Structured oils prepared by enzymatic transacylation with triacylglycerols (TAGs) and various fatty acids (FAs) were characterized. Transacylation with trilaurin and saturated FAs (C4:0-C16:0) was performed using Lipozyme RM-IM under standard reaction conditions. The structured oils thus produced had transacylation ratios of 25-37%, as medium-chain FAs > long-chain FAs > short-chain FAs. This result confirmed that short-chain FAs have little reactivity in enzymatic transacylation. All prepared oils shared the same composition of TAG molecular species, as demonstrated by HPLC analysis, and contained a mixture of mono-substituted, di-substituted, and non-substituted TAGs. The reaction conditions for transacylation with TAGs and short-chain FAs were optimized to improve transacylation ratios. The introduction ratios of C4:0, C5:0, and C6:0 into trilaurin were increased to 52.4, 42.5, and 34.1%, respectively, by extending the reaction time. Transacylation between TAGs and short-chain FAs was further examined by using Lipase PL. C4:0 was introduced at 51.1%, the same ratio as for Lipozyme RM-IM. When C5:0 and C6:0 were used as the FA substrate, the transacylation ratios obtained were 47.7 and 43.4%, respectively, higher than those for Lipase RM-IM. Lipase PL is therefore useful for introducing short-chain FAs into TAGs.

  19. Mycobacterium avium subsp. paratuberculosis (Map) Fatty Acids Profile Is Strain-Dependent and Changes Upon Host Macrophages Infection

    PubMed Central

    Alonso-Hearn, Marta; Abendaño, Naiara; Ruvira, Maria A.; Aznar, Rosa; Landin, Mariana; Juste, Ramon A.

    2017-01-01

    Johne's disease is a chronic granulomatous enteritis of ruminants caused by the intracellular bacterium Mycobacterium avium subsp. paratuberculosis (Map). We previously demonstrated that Map isolates from sheep persisted within host macrophages in lower CFUs than cattle isolates after 7 days of infection. In the current study, we hypothesize that these phenotypic differences between Map isolates may be driven be the fatty acids (FAs) present on the phosphadidyl-1-myo-inositol mannosides of the Map cell wall that mediate recognition by the mannose receptors of host macrophages. FAs modifications may influence Map's envelope fluidity ultimately affecting pathogenicity. To test this hypothesis, we investigated the responses of two Map isolates from cattle (K10 isolate) and sheep (2349/06-1) to the bovine and ovine macrophage environment by measuring the FAs content of extracellular and intracellular bacteria. For this purpose, macrophages cell lines of bovine (BOMAC) and ovine (MOCL-4) origin were infected with the two isolates of Map for 4 days at 37°C. The relative FAs composition of the two isolates recovered from infected BOMAC and MOCL-4 cells was determined by gas chromatography and compared with that of extracellular bacteria and that of bacteria grown in Middlebrook 7H9 medium. Using this approach, we demonstrated that the FAs composition of extracellular and 7H9-grown bacteria was highly conserved within each Map isolate, and statistically different from that of intracellular bacteria. Analysis of FAs composition from extracellular bacteria enabled the distinction of the two Map strains based on the presence of the tuberculostearic acid (18:0 10Me) exclusively in the K10 strain of Map. In addition, significant differences in the content of Palmitic acid and cis-7 Palmitoleic acid between both isolates harvested from the extracellular environment were observed. Once the infection established itself in BOMAC and MOCL-4 cells, the FAs profiles of both Map isolates appeared conserved. Our results suggest that the FAs composition of Map might influence its recognition by macrophages and influence the survival of the bacillus within host macrophages. PMID:28377904

  20. Composition of fatty acids in virgin olive oils from cross breeding segregating populations by gas chromatography separation with flame ionization detection.

    PubMed

    Sánchez de Medina, Verónica; El Riachy, Milad; Priego-Capote, Feliciano; Luque de Castro, María Dolores

    2015-11-01

    Recent technological advances to improve the quality of virgin olive oil (VOO) have been focused on olive breeding programs by selecting outstanding cultivars and target progenies. Fatty acid (FA) composition, with special emphasis on oleic acid (C18:1) and palmitic acid (C16:0), is one of the most critical quality factors to be evaluated in VOO. For this reason, the profile of FAs is frequently used as a decision tool in olive breeding programs. A method based on gas chromatography with flame ionization detection (GC-FID) was used to study the influence of genotype on the concentration of ten of the most important FAs in VOOs from target crosses Arbequina × Arbosana, Picual × Koroneiki and Sikitita × Arbosana and their corresponding genitors Arbequina, Arbosana, Koroneiki, Picual and Sikitita. For this purpose, a targeted approach was selected for determination of esterified FAs (EFAs) and non-esterified FAs (NEFAs) in a dual analysis by the same chromatographic method. A Pearson analysis revealed correlations between pairs of FAs, which allowed detecting metabolic connections through desaturation and elongation enzymes. An ANOVA test (with P < 0.01) led to identification of C16:0 EFA, C16:1 EFA and C18:1 EFA and also C16:1 NEFA and C18:0 NEFA as the FAs more influenced by cross breeding. Statistical analysis was carried out by unsupervised analysis using principal component analysis (PCA) and cluster analysis (CA) to look for variability sources. Crosses with a common genitor (Arbequina × Arbosana and Sikitita × Arbosana) were partially overlapped in the PCAs using the profile of FAs. The CA results revealed clear differences between Sikitita × Arbosana and Picual × Koroneiki crosses in the composition of the most significant FAs, while Arbequina × Arbosana was not properly discriminated from the other crosses. © 2014 Society of Chemical Industry.

  1. Determinants of folic acid supplement use outside national recommendations for pregnant women: results from the Growing Up in New Zealand cohort study.

    PubMed

    Teixeira, Juliana A; Castro, Teresa G; Wall, Clare R; Marchioni, Dirce Maria; Berry, Sarah; Morton, Susan Mb; Grant, Cameron C

    2018-04-30

    To evaluate the sociodemographic and lifestyle factors associated with insufficient and excessive use of folic acid supplements (FAS) among pregnant women. A pregnancy cohort to which multinomial logistic regression models were applied to identify factors associated with duration and dose of FAS use. The Growing Up in New Zealand child study, which enrolled pregnant women whose children were born in 2009-2010. Pregnant women (n 6822) enrolled into a nationally generalizable cohort. Ninety-two per cent of pregnant women were not taking FAS according to the national recommendation (4 weeks before until 12 weeks after conception), with 69 % taking insufficient FAS and 57 % extending FAS use past 13 weeks' gestation. The factors associated with extended use differed from those associated with insufficient use. Consistent with published literature, the relative risks of insufficient use were increased for younger women, those with less education, of non-European ethnicities, unemployed, who smoked cigarettes, whose pregnancy was unplanned or who had older children, or were living in more deprived households. In contrast, the relative risks of extended use were increased for women of higher socio-economic status or for whom this was their first pregnancy and decreased for women of Pacific v. European ethnicity. In New Zealand, current use of FAS during pregnancy potentially exposes pregnant women and their unborn children to too little or too much folic acid. Further policy development is necessary to reduce current socio-economic inequities in the use of FAS.

  2. Associations between variants of FADS genes and omega-3 and omega-6 milk fatty acids of Canadian Holstein cows

    PubMed Central

    2014-01-01

    Background Fatty acid desaturase 1 (FADS1) and 2 (FADS2) genes code respectively for the enzymes delta-5 and delta-6 desaturases which are rate limiting enzymes in the synthesis of polyunsaturated omega-3 and omega-6 fatty acids (FAs). Omega-3 and-6 FAs as well as conjugated linoleic acid (CLA) are present in bovine milk and have demonstrated positive health effects in humans. Studies in humans have shown significant relationships between genetic variants in FADS1 and 2 genes with plasma and tissue concentrations of omega-3 and-6 FAs. The aim of this study was to evaluate the extent of sequence variations within these two genes in Canadian Holstein cows as well as the association between sequence variants and health promoting FAs in milk. Results Thirty three SNPs were detected within the studied regions of genes including a synonymous mutation (FADS1-07, rs42187261, 306Tyr > Tyr) in exon 8 of FADS1, a non-synonymous mutation (FADS2-14, rs211580559, 294Ala > Val) within FADS2 exon 7, a splice site SNP (FADS2-05, rs211263660), a 3′UTR SNP (FADS2-23, rs109772589), and another 3′UTR SNP with an effect on a microRNA binding site within FADS2 gene (FADS2-19, rs210169303). Association analyses showed significant relations between three out of seven tested SNPs and several FAs. Significant associations (FDR P < 0.05) were recorded between FADS2-23 (rs109772589) and two omega-6 FAs (dihomogamma linolenic acid [C20:3n6] and arachidonic acid [C20:4n6]), FADS1-07 (rs42187261) and one omega-3 FA (eicosapentaenoic acid, C20:5n3) and tricosanoic acid (C23:0), and one intronic SNP, FADS1-01 (rs136261927) and C20:3n6. Conclusion Our study has demonstrated positive associations between three SNPs within FADS1 and FADS2 genes (a SNP within the 3’UTR, a synonymous SNP and an intronic SNP), with three milk PUFAs of Canadian Holstein cows thus suggesting possible involvement of synonymous and non-coding region variants in FA synthesis. These SNPs may serve as potential genetic markers in breeding programs to increase milk FAs that are of benefit to human health. PMID:24533445

  3. Associations between variants of FADS genes and omega-3 and omega-6 milk fatty acids of Canadian Holstein cows.

    PubMed

    Ibeagha-Awemu, Eveline M; Akwanji, Kingsley A; Beaudoin, Frédéric; Zhao, Xin

    2014-02-17

    Fatty acid desaturase 1 (FADS1) and 2 (FADS2) genes code respectively for the enzymes delta-5 and delta-6 desaturases which are rate limiting enzymes in the synthesis of polyunsaturated omega-3 and omega-6 fatty acids (FAs). Omega-3 and-6 FAs as well as conjugated linoleic acid (CLA) are present in bovine milk and have demonstrated positive health effects in humans. Studies in humans have shown significant relationships between genetic variants in FADS1 and 2 genes with plasma and tissue concentrations of omega-3 and-6 FAs. The aim of this study was to evaluate the extent of sequence variations within these two genes in Canadian Holstein cows as well as the association between sequence variants and health promoting FAs in milk. Thirty three SNPs were detected within the studied regions of genes including a synonymous mutation (FADS1-07, rs42187261, 306Tyr > Tyr) in exon 8 of FADS1, a non-synonymous mutation (FADS2-14, rs211580559, 294Ala > Val) within FADS2 exon 7, a splice site SNP (FADS2-05, rs211263660), a 3'UTR SNP (FADS2-23, rs109772589), and another 3'UTR SNP with an effect on a microRNA binding site within FADS2 gene (FADS2-19, rs210169303). Association analyses showed significant relations between three out of seven tested SNPs and several FAs. Significant associations (FDR P < 0.05) were recorded between FADS2-23 (rs109772589) and two omega-6 FAs (dihomogamma linolenic acid [C20:3n6] and arachidonic acid [C20:4n6]), FADS1-07 (rs42187261) and one omega-3 FA (eicosapentaenoic acid, C20:5n3) and tricosanoic acid (C23:0), and one intronic SNP, FADS1-01 (rs136261927) and C20:3n6. Our study has demonstrated positive associations between three SNPs within FADS1 and FADS2 genes (a SNP within the 3'UTR, a synonymous SNP and an intronic SNP), with three milk PUFAs of Canadian Holstein cows thus suggesting possible involvement of synonymous and non-coding region variants in FA synthesis. These SNPs may serve as potential genetic markers in breeding programs to increase milk FAs that are of benefit to human health.

  4. Enzymatic production of ferulic acid from defatted rice bran by using a combination of bacterial enzymes.

    PubMed

    Uraji, Misugi; Kimura, Masayo; Inoue, Yosikazu; Kawakami, Kayoko; Kumagai, Yuya; Harazono, Koichi; Hatanaka, Tadashi

    2013-11-01

    Ferulic acid (FA), which is present in the cell walls of some plants, is best known for its antioxidant property. By combining a commercial enzyme that shows FA esterase activity with several Streptomyces carbohydrate-hydrolyzing enzymes, we succeeded in enhancing the enzymatic production of FA from defatted rice bran. In particular, the combination of three xylanases, an α-L-arabinofuranosidase, and an acetyl xylan esterase from Streptomyces spp. produced the highest increase in the amount of released FAs among all the enzymes in the Streptomyces enzymes library. This enzyme combination also had an effect on FA production from other biomasses, such as raw rice bran, wheat bran, and corncob.

  5. Inorganic arsenic exposure increased expression of Fas and Bax gene in vivo and vitro.

    PubMed

    He, Yuefeng; Zhang, Ruobing; Xiaoxiao, Song; Li, Shang; Xinan, Wu; Huang, Dahai

    2018-06-01

    Accumulating evidences have shown that apoptosis plays an important role in mediating the therapeutic effects and toxicity of arsenic. Fas and Bax genes are critical regulatory genes for apoptosis. In this study, we investigated the association between levels of Fas and Bax expression and the three arsenic species (inorganic arsenic (iAs), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in vivo and vitro. Three arsenic species in urine were measured and levels of Fas and Bax expression were examined by the quantitative real-time PCR (qPCR) for all subjects. We found that Fas and Bax mRNA expression in the exposed group were significantly higher than that in the control group. The levels of gene expression were positively correlated with the concentrations of urinary iAs, MMA and DMA in all subjects. Sodium arsenite induced Fas and Bax mRNA expression, then MMA and DMA did not induce mRNA expression in MDA-MB-231 and XWLC-05 cells. The findings of the present study indicated that iAs, MMA, and DMA had different effects on expression of Bax and Fas gene. Copyright © 2017. Published by Elsevier B.V.

  6. Association of Total Marine Fatty Acids, Eicosapentaenoic and Docosahexaenoic Acids, With Aortic Stiffness in Koreans, Whites, and Japanese Americans

    PubMed Central

    2013-01-01

    BACKGROUND Few previous studies have reported the association of aortic stiffness with marine n-3 fatty acids (Fas) in the general population. The aim of this study was to determine the combined and independent associations of 2 major marine n-3 FAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with aortic stiffness evaluated using carotid–femoral pulse wave velocity (cfPWV) in Korean, white, and Japanese American men. METHODS A population-based sample of 851 middle-aged men (299 Koreans, 266 whites, and 286 Japanese Americans) was examined for cfPWV during 2002–2006. Serum FAs, including EPA and DHA, were measured as a percentage of total FAs using gas chromatography. Multiple regression analysis was used to examine the association of EPA and DHA with cfPWV after adjusting for blood pressure and other confounders. RESULTS Mean EPA and DHA levels were 1.9 (SD = 1.0) and 4.8 (SD = 1.4) for Koreans, 0.8 (SD = 0.6) and 2.4 (SD = 1.2) for whites, and 1.0 (SD = 1.0) and 3.2 (SD = 1.4) for Japanese Americans. Both EPA and DHA were significantly higher in Koreans than in the other 2 groups (P < 0.01). Multiple regression analyses in Koreans showed that cfPWV had a significant inverse association with total marine n-3 FAs and with EPA alone after adjusting for blood pressure and other potential confounders. In contrast, there was no significant association of cfPWV with DHA. Whites and Japanese Americans did not show any significant associations of cfPWV with total marine n-3 FAs, EPA, or DHA. CONCLUSIONS High levels of EPA observed in Koreans have an inverse association with aortic stiffness. PMID:23820020

  7. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste.

    PubMed

    Tauber, John M; Brown, Elizabeth B; Li, Yuanyuan; Yurgel, Maria E; Masek, Pavel; Keene, Alex C

    2017-11-01

    Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f) is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA) taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d) are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants.

  8. Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti.

    PubMed

    Alabaster, Amy; Isoe, Jun; Zhou, Guoli; Lee, Ada; Murphy, Ashleigh; Day, W Anthony; Miesfeld, Roger L

    2011-12-01

    To better understand the mechanism of de novo lipid biosynthesis in blood fed Aedes aegypti mosquitoes, we quantitated acetyl-CoA carboxylase (ACC) and fatty acid synthase 1 (FAS1) transcript levels in blood fed mosquitoes, and used RNAi methods to generate ACC and FAS1 deficient mosquitoes. Using the ketogenic amino acid (14)C-leucine as a metabolic precursor of (14)C-acetyl-CoA, we found that (14)C-triacylglycerol and (14)C-phospholipid levels were significantly reduced in both ACC and FAS1 deficient mosquitoes, confirming that ACC and FAS1 are required for de novo lipid biosynthesis after blood feeding. Surprisingly however, we also found that ACC deficient mosquitoes, but not FAS1 deficient mosquitoes, produced defective oocytes, which lacked an intact eggshell and gave rise to inviable eggs. This severe phenotype was restricted to the 1st gonotrophic cycle, suggesting that the eggshell defect was due to ACC deficiencies in the follicular epithelial cells, which are replaced after each gonotrophic cycle. Consistent with lower amounts of de novo lipid biosynthesis, both ACC and FAS1 deficient mosquitoes produced significantly fewer eggs than control mosquitoes in both the 1st and 2nd gonotrophic cycles. Lastly, FAS1 deficient mosquitoes, but not ACC deficient mosquitoes, showed delayed blood meal digestion, suggesting that a feedback control mechanism may coordinate rates of fat body lipid biosynthesis and midgut digestion during feeding. We propose that decreased ACC and FAS1 enzyme levels lead to reduced lipid biosynthesis and lower fecundity, whereas altered levels of the regulatory metabolites acetyl-CoA and malonyl-CoA account for the observed defects in eggshell formation and blood meal digestion, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Deficiencies in acetyl-CoA carboxylase and fatty acid synthase 1 differentially affect eggshell formation and blood meal digestion in Aedes aegypti

    PubMed Central

    Alabaster, Amy; Isoe, Jun; Zhou, Guoli; Lee, Ada; Murphy, Ashleigh; Day, W. Anthony; Miesfeld, Roger L.

    2011-01-01

    To better understand the mechanism of de novo lipid biosynthesis in blood fed Ae. aegypti mosquitoes, we quantitated acetyl-CoA carboxylase (ACC) and fatty acid synthase 1 (FAS1) transcript levels in blood fed mosquitoes, and used RNAi methods to generate ACC and FAS1 deficient mosquitoes. Using the ketogenic amino acid 14C-leucine as a metabolic precursor of 14C-acetyl-CoA, we found that 14C-triacylglycerol and 14C-phospholipid levels were significantly reduced in both ACC and FAS1 deficient mosquitoes, confirming that ACC and FAS1 are required for de novo lipid biosynthesis after blood feeding. Surprisingly however, we also found that ACC deficient mosquitoes, but not FAS1 deficient mosquitoes, produced defective oocytes, which lacked an intact eggshell and gave rise to inviable eggs. This severe phenotype was restricted to the 1st gonotrophic cycle, suggesting that the eggshell defect was due to ACC deficiencies in the follicular epithelial cells, which are replaced after each gonotrophic cycle. Consistent with lower amounts of de novo lipid biosynthesis, both ACC and FAS1 deficient mosquitoes produced significantly fewer eggs than control mosquitoes in both the 1st and 2nd gonotrophic cycles. Lastly, FAS1 deficient mosquitoes, but not ACC deficient mosquitoes, showed delayed blood meal digestion, suggesting that a feedback control mechanism may coordinate rates of fat body lipid biosynthesis and midgut digestion during feeding. We propose that decreased ACC and FAS1 enzyme levels lead to reduced lipid biosynthesis and lower fecundity, whereas altered levels of the regulatory metabolites acetyl-CoA and malonyl-CoA account for the observed defects in eggshell formation and blood meal digestion, respectively. PMID:21971482

  10. Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expressi...

  11. Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA.

    PubMed

    López, Miguel; Lelliott, Christopher J; Tovar, Sulay; Kimber, Wendy; Gallego, Rosalía; Virtue, Sam; Blount, Margaret; Vázquez, Maria J; Finer, Nick; Powles, Trevor J; O'Rahilly, Stephen; Saha, Asish K; Diéguez, Carlos; Vidal-Puig, Antonio J

    2006-05-01

    Fatty acid metabolism in the hypothalamus has recently been shown to regulate feeding. The selective estrogen receptor modulator tamoxifen (TMX) exerts a potent anorectic effect. Here, we show that the anorectic effect of TMX is associated with the accumulation of malonyl-CoA in the hypothalamus and inhibition of fatty acid synthase (FAS) expression specifically in the ventromedial nucleus of the hypothalamus (VMN). Furthermore, we demonstrate that FAS mRNA expression is physiologically regulated by fasting and refeeding in the VMN but not in other hypothalamic nuclei. Thus, the VMN appears to be the hypothalamic site where regulation of FAS and feeding converge. Supporting the potential clinical relevance of these observations, reanalysis of a primary breast cancer prevention study showed that obese women treated with TMX gained significantly less body weight over a 6-year period than obese women given placebo. The finding that TMX can modulate appetite through alterations in FAS expression and malonyl-CoA levels suggests a link between hypothalamic sex steroid receptors, fatty acid metabolism, and feeding behavior.

  12. 1-11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer.

    PubMed

    Vāvere, Amy L; Kridel, Steven J; Wheeler, Frances B; Lewis, Jason S

    2008-02-01

    Although it is accepted that the metabolic fate of 1-(11)C-acetate is different in tumors than in myocardial tissue because of different clearance patterns, the exact pathway has not been fully elucidated. For decades, fatty acid synthesis has been quantified in vitro by the incubation of cells with (14)C-acetate. Fatty acid synthase (FAS) has been found to be overexpressed in prostate carcinomas, as well as other cancers, and it is possible that imaging with 1-(11)C-acetate could be a marker for its expression. In vitro and in vivo uptake experiments in prostate tumor models with 1-(11)C-acetate were performed both with and without blocking of fatty acid synthesis with either C75, an inhibitor of FAS, or 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase (ACC). FAS levels were measured by Western blot and immunohistochemical techniques for comparison. In vitro studies in 3 different prostate tumor models (PC-3, LNCaP, and 22Rv1) demonstrated blocking of 1-(11)C-acetate accumulation after treatment with both C75 and TOFA. This was further shown in vivo in PC-3 and LNCaP tumor-bearing mice after a single treatment with C75. A positive correlation between 1-(11)C-acetate uptake into the solid tumors and FAS expression levels was found. Extensive involvement of the fatty acid synthesis pathway in 1-(11)C-acetate uptake in prostate tumors was confirmed, leading to a possible marker for FAS expression in vivo by noninvasive PET.

  13. Sensory quality and chemical composition of meat from lambs fed diets enriched with fish and rapeseed oils, carnosic acid and seleno-compounds.

    PubMed

    Jaworska, Danuta; Czauderna, Marian; Przybylski, Wiesław; Rozbicka-Wieczorek, Agnieszka J

    2016-09-01

    The aim of the study was to evaluate longissimus muscle quality in lambs fed diets including fish oil (FO), rapeseed oil (RO), carnosic acid (CA) and seleno-compounds. Lambs were fed one of diets: Group I - the basal diet (BD) with 3% RO; Group II - BD with 2% RO and 1% FO; Group III - BD with 2% RO, 1% FO and 0.1% CA; Group IV - BD with 2% RO, 1% FO, 0.1% CA and 0.35ppm Se as selenized-yeast; Group V - BD with 2% RO, 1% FO, 0.1% CA and 0.35ppm Se as selenate. The addition of FO and FO, CA and selenium in the inorganic form was characterized by lowest tenderness and juiciness (P<0.05). The lowest concentration of fatty acids (ΣFAs), atherogenic-FAs (A(SFA)) and thrombogenic-FAs (T(SFA)) in the muscle was found for Group V (P<0.05). Experimental diets decreased indexes of A(SFA) and T(SFA) in muscle. The lowest ratio (P<0.05) of n-6polyunsaturated-FAs to n-3polyunsaturated-FAs was obtained for Group III. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. PMLRARα binds to Fas and suppresses Fas-mediated apoptosis through recruiting c-FLIP in vivo

    PubMed Central

    Tao, Rong-Hua; Berkova, Zuzana; Wise, Jillian F.; Rezaeian, Abdol-Hossein; Daniluk, Urszula; Ao, Xue; Hawke, David H.; Karp, Judith E.; Lin, Hui-Kuan; Molldrem, Jeffrey J.

    2011-01-01

    Defective Fas signaling leads to resistance to various anticancer therapies. Presence of potential inhibitors of Fas which could block Fas signaling can explain cancer cells resistance to apoptosis. We identified promyelocytic leukemia protein (PML) as a Fas-interacting protein using mass spectrometry analysis. The function of PML is blocked by its dominant-negative form PML–retinoic acid receptor α (PMLRARα). We found PMLRARα interaction with Fas in acute promyelocytic leukemia (APL)–derived cells and APL primary cells, and PML-Fas complexes in normal tissues. Binding of PMLRARα to Fas was mapped to the B-box domain of PML moiety and death domain of Fas. PMLRARα blockage of Fas apoptosis was demonstrated in U937/PR9 cells, human APL cells and transgenic mouse APL cells, in which PMLRARα recruited c-FLIPL/S and excluded procaspase 8 from Fas death signaling complex. PMLRARα expression in mice protected the mice against a lethal dose of agonistic anti-Fas antibody (P < .001) and the protected tissues contained Fas-PMLRARα-cFLIP complexes. Taken together, PMLRARα binds to Fas and blocks Fas-mediated apoptosis in APL by forming an apoptotic inhibitory complex with c-FLIP. The presence of PML-Fas complexes across different tissues implicates that PML functions in apoptosis regulation and tumor suppression are mediated by direct interaction with Fas. PMID:21803845

  15. Sex Differences in Omega-3 and -6 Fatty Acids and Health Status Among Young Adults With Acute Myocardial Infarction: Results From the VIRGO Study.

    PubMed

    Lu, Yuan; Ding, Qinglan; Xu, Xiao; Spatz, Erica S; Dreyer, Rachel P; D'Onofrio, Gail; Caulfield, Michael; Nasir, Khurram; Spertus, John A; Krumholz, Harlan M

    2018-05-30

    Young women (aged ≤55 years) with acute myocardial infarction (AMI) have poorer health status outcomes than similarly aged men. Low omega-3 fatty acids (FAs) have been implicated as risk factors for cardiovascular outcomes in AMI patients, but it is not clear whether young women have similar or different post-AMI omega-3 FA profiles compared with young men. We assessed the sex differences in post-AMI omega-3 FAs and the associations of these biomarkers with patient-reported outcomes (symptom, functioning status, and quality of life) at 12-month follow-up, using data from 2985 US adults with AMI aged 18 to 55 years enrolled in the VIRGO (Variation in Recovery: Role of Gender on Outcomes of Young Acute Myocardial Infarction Patients) study. Biomarkers including eicosapentaenoic acid, docosahexaenoic acid, arachidonic acid (AA), eicosapentaenoic acid/AA ratio, omega-3/omega-6 ratio, and omega-3 index were measured 1 month after AMI. Overall, the omega-3 FAs and AA were similar in young men and women with AMI. In both unadjusted and adjusted analysis (controlling for age, sex, race, smoking, hypertension, diabetes mellitus, body mass index, and health status score at 1 month), omega-3 FAs and AA were not significantly associated with 12-month health status scores using the Bonferroni corrected statistical threshold. We found no evidence of sex differences in omega-3 FAs and AA in young men and women 1 month after AMI. Omega-3 FAs and AA at 1-month after AMI were generally not associated with 12-month patient-reported health status after adjusting for patient demographic, clinical characteristics, and the corresponding 1-month health status score. © 2018 The Authors and Quest Diagnostics Inc. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits.

    PubMed

    Mason, R Preston; Sherratt, Samuel C R

    2017-01-29

    Widely available fish oil dietary supplements (DS) may contain fats and oxidized lipids in addition to the beneficial omega-3 fatty acids (OM3FAs) for which they are purchased. Little is known about the potential biological effects of these oxidized lipids. The objective of this study was to assess the fatty acid content, oxidation products, and biological effects of leading fish oil DS available in the United States. Three top-selling fish oil DS in the US were included in this analysis. Fatty acid composition was measured using gas chromatography. Lipid oxidation (primary and secondary products) was measured by spectroscopy in both DS and a prescription OM3FA product. OM3FAs were also isolated and concentrated from DS and were tested for the ability to inhibit copper-induced oxidation of human small dense low-density lipoprotein particles (sdLDL) in vitro. Fish oil DS were found to contain more than 30 different fatty acids, including 10 to 14 different saturated species comprising up to 36% of the total fatty acid content. Levels of OM3FAs also varied widely among DS (33%-79%). Primary (peroxide), secondary (anisidine), and total oxidation products exceeded maximum levels established by international standards of quality in the DS but not the prescription OM3FA product. Oxidation of sdLDL was inhibited by >95% (P < 0.001) with non-oxidized forms of OM3FA but not with OM3FAs isolated from DS, which were a mixture of oxidized and non-oxidized OM3FAs. These data indicate that levels of saturated fat and oxidized OM3FAs found in common DS may interfere with their intended/potential biological benefits. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS. © 2015 Wiley Periodicals, Inc.

  18. Effects of Chain Length and Degree of Unsaturation of Fatty Acids on Structure and in Vitro Digestibility of Starch-Protein-Fatty Acid Complexes.

    PubMed

    Zheng, Mengge; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-02-28

    The effects of chain length and degree of unsaturation of fatty acids (FAs) on structure and in vitro digestibility of starch-protein-FA complexes were investigated in model systems. Studies with the rapid visco analyzer (RVA) showed that the formation of ternary complex resulted in higher viscosities than those of binary complex during the cooling and holding stages. The results of differential scanning calorimetry (DSC), Raman, and X-ray diffraction (XRD) showed that the structural differences for ternary complexes were much less than those for binary complexes. Starch-protein-FA complexes presented lower in vitro enzymatic digestibility compared with starch-FAs complexes. We conclude that shorter chain and lower unsaturation FAs favor the formation of ternary complexes but decrease the thermal stability of these complexes. FAs had a smaller effect on the ordered structures of ternary complexes than on those of binary complexes and little effect on enzymatic digestibility of both binary and ternary complexes.

  19. Natural (Mineral, Vegetable, Coconut, Essential) Oils and Contact Dermatitis.

    PubMed

    Verallo-Rowell, Vermén M; Katalbas, Stephanie S; Pangasinan, Julia P

    2016-07-01

    Natural oils include mineral oil with emollient, occlusive, and humectant properties and the plant-derived essential, coconut, and other vegetable oils, composed of triglycerides that microbiota lipases hydrolyze into glycerin, a potent humectant, and fatty acids (FAs) with varying physico-chemical properties. Unsaturated FAs have high linoleic acid used for synthesis of ceramide-I linoleate, a barrier lipid, but more pro-inflammatory omega-6:-3 ratios above 10:1, and their double bonds form less occlusive palisades. VCO FAs have a low linoleic acid content but shorter and saturated FAs that form a more compact palisade, more anti-inflammatory omega-6:-3 ratio of 2:1, close to 7:1 of olive oil, which disrupts the skin barrier, otherwise useful as a penetration enhancer. Updates on the stratum corneum illustrate how this review on the contrasting actions of NOs provide information on which to avoid and which to select for barrier repair and to lower inflammation in contact dermatitis genesis.

  20. Molecular environment of stable iodine and radioiodine (129I) in natural organic matter: Evidence inferred from NMR and binding experiments at environmentally relevant concentrations

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zhong, Junyan; Hatcher, Patrick G.; Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Schwehr, Kathleen A.; Kaplan, Daniel I.; Roberts, Kimberly A.; Brinkmeyer, Robin; Yeager, Chris M.; Santschi, Peter H.

    2012-11-01

    129I is a major by-product of nuclear fission and had become one of the major radiation risk drivers at Department of Energy (DOE) sites. 129I is present at elevated levels in the surface soils of the Savannah River Site (SRS) F-Area and was found to be bound predominantly to soil organic matter (SOM). Naturally bound 127I and 129I to sequentially extracted humic acids (HAs), fulvic acids (FAs) and a water extractable colloid (WEC) were measured in a 129I-contaminated wetland surface soil located on the SRS. WEC is a predominantly colloidal organic fraction obtained from soil re-suspension experiments to mimic the fraction that may be released during groundwater exfiltration, storm water or surface runoff events. For the first time, NMR techniques were applied to infer the molecular environment of naturally occurring stable iodine and radioiodine binding to SOM. Iodine uptake partitioning coefficients (Kd) by these SOM samples at ambient iodine concentrations were also measured and related to quantitative structural analyses by 13C DPMAS NMR and solution state 1H NMR on the eight humic acid fractions. By assessing the molecular environment of iodine, it was found that it was closely associated with the aromatic regions containing esterified products of phenolic and formic acids or other aliphatic carboxylic acids, amide functionalities, quinone-like structures activated by electron-donating groups (e.g., NH2), or a hemicellulose-lignin-like complex with phenyl-glycosidic linkages. However, FAs and WEC contained much greater concentrations of 127I or 129I than HAs. The contrasting radioiodine contents among the three different types of SOM (HAs, FAs and WEC) suggest that the iodine binding environment cannot be explained solely by the difference in the amount of their reactive binding sites. Instead, indirect evidence indicates that the macro-molecular conformation, such as the hydrophobic aliphatic periphery hindering the active aromatic cores and the hydrophilic polysaccharides favoring the access by hydrophilic iodine species, also influences iodine-SOM interactions.

  1. Unique response of lung acetyl-CoA carboxylase to inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, C.E.; Davis, K.S.; Rhoades, R.A.

    1986-05-01

    Fatty acid synthesis (FAS) in lung is not inhibited by c-AMP analogs or aminophylline although these agents inhibit FAS in other lipogenic tissues. To further characterize FAS in lung, the authors examined the response of cultured fetal lung explants to known inhibitors of FAS in liver: t-butyl benzoic acid (tBB-which binds CoA and inhibits acetyl-CoA carboxylase) and palmitate (an allosteric effector of acetyl-CoA carboxylase). Explants derived from d18 fetuses (term=22d) were cultured 2d in F12k media containing 10mM lactate, 2mM glucose, and 10mM Hepes. At 48h, FAS was determined by incubation with /sup 3/H/sub 2/O (control = 3892 +/- 755more » nmoles C2 units/g/h) and surfactant lipid production estimated by incorporation of /sup 14/C-choline into DSPC (control = 35.8 +/- 9.0 nmoles/g/h). Addition of tBB (50uM) did not significantly alter FAS or choline incorporation. Addition of palmitate (0.15mM) in either ethanol (1% final conc.) or albumin (3% final conc.) did not result in diminished FAS. Palmitate did increase DSPC labeling 20%, indicating that in these cultures the rate of surfactant synthesis is partially dependent upon palmitate availability. These data show that lung is unique in its unresponsiveness to various inhibitors of FAS which act at the level acetyl-CoA carboxylase and suggest that FAS is maintained in order to insure a de novo palmitate supply for surfactant lipid synthesis.« less

  2. Comparison of whole-cell fatty acid (MIDI) or phospholipid fatty acid (PLFA) extractants as biomarkers to profile soil microbial communities.

    PubMed

    Fernandes, Marcelo F; Saxena, Jyotisna; Dick, Richard P

    2013-07-01

    The whole-cell lipid extraction to profile microbial communities on soils using fatty acid (FA) biomarkers is commonly done with the two extractants associated with the phospholipid fatty acid (PLFA) or Microbial IDentification Inc. (MIDI) methods. These extractants have very different chemistry and lipid separation procedures, but often shown a similar ability to discriminate soils from various management and vegetation systems. However, the mechanism and the chemistry of the exact suite of FAs extracted by these two methods are poorly understood. Therefore, the objective was to qualitatively and quantitatively compare the MIDI and PLFA microbial profiling methods for detecting microbial community shifts due to soil type or management. Twenty-nine soil samples were collected from a wide range of soil types across Oregon and extracted FAs by each method were analyzed by gas chromatography (GC) and GC-mass spectrometry. Unlike PLFA profiles, which were highly related to microbial FAs, the overall MIDI-FA profiles were highly related to the plant-derived FAs. Plant-associated compounds were quantitatively related to particulate organic matter (POM) and qualitatively related to the standing vegetation at sampling. These FAs were negatively correlated to respiration rate normalized to POM (RespPOM), which increased in systems under more intensive management. A strong negative correlation was found between MIDI-FA to PLFA ratios and total organic carbon (TOC). When the reagents used in MIDI procedure were tested for the limited recovery of MIDI-FAs from soil with high organic matter, the recovery of MIDI-FA microbial signatures sharply decreased with increasing ratios of soil to extractant. Hence, the MIDI method should be used with great caution for interpreting changes in FA profiles due to shifts in microbial communities.

  3. Enantioselectivity of anteiso-fatty acids in hitherto uninspected sample matrices.

    PubMed

    Eibler, Dorothee; Seyfried, Carolin; Vetter, Walter

    2017-09-01

    Anteiso-fatty acids (aFAs) are chiral molecules due to a methyl substituent on the antepenultimate carbon of the otherwise straight acyl chain. 12-Methyltetradecanoic acid (a15:0) and 14-methylhexadecanoic acid (a17:0) are the predominant aFAs in nature but their individual contributions e.g. to food lipids are usually low. Enantioselective data has been collected in fish, bovine milk/cheese, and Brussels sprouts. In this study, we determined the enantioselectivity of a15:0 and a17:0 in shea butter, moose and camel milk, two soil samples and mold (collected from contaminated cheese). For this purpose, sample lipids were extracted and containing fatty acids were converted into methyl esters. Methyl esters of aFAs were selectively enriched by hydrogenation, urea complexation and/or RP-HPLC-fractionation. Enantioselective gas chromatography with mass spectrometry operated in the selected ion monitoring mode using a chiral stationary phase consisting of 66% tert.-butyldimethylsilylated β-cyclodextrin in OV-1701. While a15:0 and a17:0 in moose milk were (S)-enantiopure, all other determined samples contained up to 10% (R)-aFAs. The highest proportions of (R)-enantiomers were detected in the soil samples (ee=80%). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Automatic identification approach for high-performance liquid chromatography-multiple reaction monitoring fatty acid global profiling.

    PubMed

    Tie, Cai; Hu, Ting; Jia, Zhi-Xin; Zhang, Jin-Lan

    2015-08-18

    Fatty acids (FAs) are a group of lipid molecules that are essential to organisms. As potential biomarkers for different diseases, FAs have attracted increasing attention from both biological researchers and the pharmaceutical industry. A sensitive and accurate method for globally profiling and identifying FAs is required for biomarker discovery. The high selectivity and sensitivity of high-performance liquid chromatography-multiple reaction monitoring (HPLC-MRM) gives it great potential to fulfill the need to identify FAs from complicated matrices. This paper developed a new approach for global FA profiling and identification for HPLC-MRM FA data mining. Mathematical models for identifying FAs were simulated using the isotope-induced retention time (RT) shift (IRS) and peak area ratios between parallel isotope peaks for a series of FA standards. The FA structures were predicated using another model based on the RT and molecular weight. Fully automated FA identification software was coded using the Qt platform based on these mathematical models. Different samples were used to verify the software. A high identification efficiency (greater than 75%) was observed when 96 FA species were identified in plasma. This FAs identification strategy promises to accelerate FA research and applications.

  5. Fatty-acid profiles of white muscle and liver in stream-maturing steelhead trout Oncorhynchus mykiss from early migration to kelt emigration

    USGS Publications Warehouse

    Penney, Zachary L.; Moffitt, Christine M.

    2015-01-01

    The profiles of specific fatty acids (FA) in white muscle and liver of fasting steelhead troutOncorhynchus mykiss were evaluated at three periods during their prespawning migration and at kelt emigration in the Snake–Columbia River of Washington, Oregon and Idaho, to improve the understanding of energy change. Twenty-seven FAs were identified; depletion of 10 of these was positively correlated in liver and white muscle of prespawning O. mykiss. To observe relative changes in FA content more accurately over sampling intervals, the lipid fraction of tissues was used to normalize the quantity of individual FA to an equivalent tissue wet mass. Saturated and monounsaturated FAs were depleted between upstream migration in September and kelt emigration in June, whereas polyunsaturated FAs were more conserved. Liver was depleted of FAs more rapidly than muscle. Three FAs were detected across all sampling intervals: 16:0, 18:1 and 22:6n3, which are probably structurally important to membranes. When structurally important FAs of O. mykiss are depleted to provide energy, physiological performance and survival may be affected.

  6. Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts.

    PubMed

    Pizer, E S; Thupari, J; Han, W F; Pinn, M L; Chrest, F J; Frehywot, G L; Townsend, C A; Kuhajda, F P

    2000-01-15

    A biologically aggressive subset of human breast cancers and other malignancies is characterized by elevated fatty-acid synthase (FAS) enzyme expression, elevated fatty acid (FA) synthesis, and selective sensitivity to pharmacological inhibition of FAS activity by cerulenin or the novel compound C75. In this study, inhibition of FA synthesis at the physiologically regulated step of carboxylation of acetyl-CoA to malonyl-CoA by 5-(tetradecyloxy)-2-furoic acid (TOFA) was not cytotoxic to breast cancer cells in clonogenic assays. FAS inhibitors induced a rapid increase in intracellular malonyl-CoA to several fold above control levels, whereas TOFA reduced intracellular malonyl-CoA by 60%. Simultaneous exposure of breast cancer cells to TOFA and an FAS inhibitor resulted in significantly reduced cytotoxicity and apoptosis. Subcutaneous xenografts of MCF7 breast cancer cells in nude mice treated with C75 showed FA synthesis inhibition, apoptosis, and inhibition of tumor growth to less than 1/8 of control volumes, without comparable toxicity in normal tissues. The data suggest that differences in intermediary metabolism render tumor cells susceptible to toxic fluxes in malonyl-CoA, both in vitro and in vivo.

  7. Association of total marine fatty acids, eicosapentaenoic and docosahexaenoic acids, with aortic stiffness in Koreans, whites, and Japanese Americans.

    PubMed

    Sekikawa, Akira; Shin, Chol; Masaki, Kamal H; Barinas-Mitchell, Emma J M; Hirooka, Nobutaka; Willcox, Bradley J; Choo, Jina; White, Jessica; Evans, Rhobert W; Fujiyoshi, Akira; Okamura, Tomonori; Miura, Katsuyuki; Muldoon, Matthew F; Ueshima, Hirotsugu; Kuller, Lewis H; Sutton-Tyrrell, Kim

    2013-11-01

    Few previous studies have reported the association of aortic stiffness with marine n-3 fatty acids (Fas) in the general population. The aim of this study was to determine the combined and independent associations of 2 major marine n-3 FAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with aortic stiffness evaluated using carotid-femoral pulse wave velocity (cfPWV) in Korean, white, and Japanese American men. A population-based sample of 851 middle-aged men (299 Koreans, 266 whites, and 286 Japanese Americans) was examined for cfPWV during 2002-2006. Serum FAs, including EPA and DHA, were measured as a percentage of total FAs using gas chromatography. Multiple regression analysis was used to examine the association of EPA and DHA with cfPWV after adjusting for blood pressure and other confounders. Mean EPA and DHA levels were 1.9 (SD = 1.0) and 4.8 (SD = 1.4) for Koreans, 0.8 (SD = 0.6) and 2.4 (SD = 1.2) for whites, and 1.0 (SD = 1.0) and 3.2 (SD = 1.4) for Japanese Americans. Both EPA and DHA were significantly higher in Koreans than in the other 2 groups (P < 0.01). Multiple regression analyses in Koreans showed that cfPWV had a significant inverse association with total marine n-3 FAs and with EPA alone after adjusting for blood pressure and other potential confounders. In contrast, there was no significant association of cfPWV with DHA. Whites and Japanese Americans did not show any significant associations of cfPWV with total marine n-3 FAs, EPA, or DHA. High levels of EPA observed in Koreans have an inverse association with aortic stiffness. © American Journal of Hypertension, Ltd 2013. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Safety and tolerability of prescription omega-3 fatty acids: A systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Chang, Cheng-Ho; Tseng, Ping-Tao; Chen, Nai-Yu; Lin, Pei-Chin; Lin, Pao-Yen; Chang, Jane Pei-Chen; Kuo, Feng-Yu; Lin, Jenshinn; Wu, Ming-Chang; Su, Kuan-Pin

    2018-02-01

    Omega-3 fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] are widely recommended for health promotion. Over the last decade, prescription omega-3 fatty acid products (RxOME3FAs) have been approved for medical indications. Nonetheless, there is no comprehensive analysis of safety and tolerability of RxOME3FAs so far. A systematic review of randomized controlled trials (RCTs) was carried out based on searches in six electronic databases. The studies involving marketed RxOME3FA products were included, and adverse-effect data were extracted for meta-analysis. Subgroup analysis and meta-regression were conducted to explore the sources of potential heterogeneity. Among the 21 included RCTs (total 24,460 participants; 12,750 from RxOME3FA treatment cohort and 11,710 from control cohort), there was no definite evidence of any RxOME3FA-emerging serious adverse event. Compared with the control group, RxOME3FAs were associated with more treatment-related dysgeusia (fishy taste; p = 0.011) and skin abnormalities (eruption, itching, exanthema, or eczema; p < 0.001). Besides, RxOME3FAs had mild adverse effects upon some non-lipid laboratory measurements [elevated fasting blood sugar (p = 0.005); elevated alanine transaminase (p = 0.022); elevated blood urea nitrogen (p = 0.047); decreased hemoglobin (p = 0.002); decreased hematocrit (p = 0.009)]. Subgroup analysis revealed that EPA/DHA combination products were associated with more treatment-related gastrointestinal adverse events [eructation (belching; p = 0.010); nausea (p = 0.044)] and low-density lipoprotein cholesterol elevation (p = 0.009; difference in means = 4.106mg/dL). RxOME3FAs are generally safe and well tolerated but not free of adverse effects. Post-marketing surveillance and observational studies are still necessary to identify long-term adverse effects and to confirm the safety and tolerability profiles of RxOME3FAs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas.

    PubMed

    van Ginneken, Vincent J T; Helsper, Johannes P F G; de Visser, Willem; van Keulen, Herman; Brandenburg, Willem A

    2011-06-22

    In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was detected.

  10. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    PubMed Central

    2011-01-01

    Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Results Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Conclusion Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was detected. PMID:21696609

  11. Anti-Fas antibody-induced apoptosis and its signal transduction in human gastric carcinoma cell lines.

    PubMed

    Adachi, Keiko; Osaki, Mitsuhiko; Kase, Satoru; Takeda, Ami; Ito, Hisao

    2003-09-01

    The Fas-Fas ligand system is one of the factors involved in cell death signaling. Aberrations in the signaling pathways leading to Fas-mediated apoptosis in tumor cells have been reported in a variety of human malignant tumors. However, the Fas-mediated apoptotic pathway has not been sufficiently elucidated in human gastric carcinomas. We examined the apoptotic pathway induced by anti-Fas antibody using seven human gastric carcinoma cell lines. Apoptosis was induced in a delayed fashion and the apoptotic indices (AI) after 48 h were approximately 30-40% in MKN-45 and KATO-III cells, which both showed cleavage of the Bid protein and release of Cytochrome c from the mitochondria. Our data also demonstrated no significant relationship between the expressions of various apoptosis-related proteins and the sensitivity or resistance to anti-Fas antibody-induced apoptosis, as far as we examined. Furthermore, the apoptosis signal was inhibited by treatment with Caspase-9 and -3 inhibitors in MKN-45 and KATO-III. These findings suggest that anti-Fas antibody induced apoptosis through the type II signaling pathway in the human gastric carcinoma cell lines, MKN-45 and KATO-III.

  12. Switch from type II to I Fas/CD95 death signaling on in vitro culturing of primary hepatocytes.

    PubMed

    Walter, Dorothée; Schmich, Kathrin; Vogel, Sandra; Pick, Robert; Kaufmann, Thomas; Hochmuth, Florian Christoph; Haber, Angelika; Neubert, Karin; McNelly, Sabine; von Weizsäcker, Fritz; Merfort, Irmgard; Maurer, Ulrich; Strasser, Andreas; Borner, Christoph

    2008-12-01

    Fas/CD95-induced apoptosis of hepatocytes in vivo proceeds through the so-called type II pathway, requiring the proapoptotic BH3-only Bcl-2 family member Bid for mitochondrial death signaling. Consequently, Bid-deficient mice are protected from anti-Fas antibody injection induced fatal hepatitis. We report the unexpected finding that freshly isolated mouse hepatocytes, cultured on collagen or Matrigel, become independent of Bid for Fas-induced apoptosis, thereby switching death signaling from type II to type I. In such in vitro cultures, Fas ligand (FasL) activates caspase-3 without Bid cleavage, Bax/Bak activation or cytochrome c release, and neither Bid ablation nor Bcl-2 overexpression is protective. The type II to type I switch depends on extracellular matrix adhesion, as primary hepatocytes in suspension die in a Bid-dependent manner. Moreover, the switch is specific for FasL-induced apoptosis as collagen-plated Bid-deficient hepatocytes are protected from tumor necrosis factor alpha/actinomycin D (TNFalpha/ActD)-induced apoptosis. Our data suggest a selective crosstalk between extracellular matrix and Fas-mediated signaling that favors mitochondria-independent type I apoptosis induction.

  13. Circulating levels of FAS/APO-1 in patients with the systemic inflammatory response syndrome.

    PubMed

    Torre, Donato; Tambini, Roberto; Manfredi, Mariangela; Mangani, Valerio; Livi, Paola; Maldifassi, Viviana; Campi, Paolo; Speranza, Filippo

    2003-04-01

    Resolution of inflammation/infection involves removal of neutrophils and other inflammatory cells by the induction of apoptosis. Fas/Apo-1 is a widely occurring apoptotic signal receptor molecule expressed by almost any type of cell, which is also released in a soluble circulating form. In this study we investigated the role of circulating Fas/Apo-1 in patients with systemic inflammatory response syndrome (SIRS). We evaluated 57 critically ill patients, 34 with infectious SIRS (sepsis and septic shock), and 23 patients with noninfectious SIRS. Circulating Fas/Apo-1 was determined by a commercially available immunoassay. Our results clearly show that levels of Fas/Apo-1 were significantly elevated in patients with infectious and noninfectious SIRS (10.4 +/- 8.1 pg/mL, controls: 5.0 +/- 0.7 pg/mL; p < 0.0001). In addition, Fas/Apo-1 levels were not able in predicting in predicting poor outcome of patients with SIRS. In conclusion, these results show that increased levels of Fas/Apo-1 from patients with SIRS is a mechanism which contribute to inflammatory response through accumulation of neutrophils at sites of inflammation/infection.

  14. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste

    PubMed Central

    Tauber, John M.; Li, Yuanyuan; Yurgel, Maria E.; Masek, Pavel

    2017-01-01

    Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f) is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA) taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d) are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants. PMID:29121639

  15. Is fatty acid composition of human bone marrow significant to bone health?

    PubMed

    Pino, Ana María; Rodríguez, J Pablo

    2017-12-16

    The bone marrow adipose tissue (BMAT) is a conserved component of the marrow microenvironment, providing storage and release of energy and stabilizing the marrow extent. Also, it is recognized both the amount and quality of BMAT are relevant to preserve the functional relationships between BMAT, bone, and blood cell production. In this article we ponder the information supporting the tenet that the quality of BMAT is relevant to bone health. In the human adult the distribution of BMAT is heterogeneous over the entire skeleton, and both BMAT accumulation and bone loss come about with aging in healthy populations. But some pathological conditions which increase BMAT formation lead to bone impairment and fragility. Analysis in vivo of the relative content of saturated and unsaturated fatty acids (FA) in BMAT indicates site-related bone marrow fat composition and an association between increased unsaturation index (UI) and bone health. With aging some impairment ensues in the regulation of bone marrow cells and systemic signals leading to local chronic inflammation. Most of the bone loss diseases which evolve altered BMAT composition have as common factors aging and/or chronic inflammation. Both saturated and unsaturated FAs originate lipid species which are active mediators in the inflammation process. Increased free saturated FAs may lead to lipotoxicity of bone marrow cells. The pro-inflammatory, anti-inflammatory or resolving actions of compounds derived from long chain poly unsaturated FAs (PUFA) on bone cells is varied, and depending on the metabolism of the parent n:3 or n:6 PUFAs series. Taking together the evidence substantiate that marrow adipocyte function is fundamental for an efficient link between systemic and marrow fatty acids to accomplish specific energy or regulatory needs of skeletal and marrow cells. Further, they reveal marrow requirements of PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Alterations in fatty acid metabolism in response to obesity surgery combined with dietary counseling

    PubMed Central

    Walle, P; Takkunen, M; Männistö, V; Vaittinen, M; Käkelä, P; Ågren, J; Schwab, U; Lindström, J; Tuomilehto, J; Uusitupa, M; Pihlajamäki, J

    2017-01-01

    Background: The effects of obesity surgery on serum and adipose tissue fatty acid (FA) profile and FA metabolism may modify the risk of obesity-related diseases. Methods: We measured serum (n=122) and adipose tissue (n=24) FA composition and adipose tissue mRNA expression of genes regulating FA metabolism (n=100) in participants of the Kuopio Obesity Surgery Study (KOBS, age 47.2±8.7 years, BMI 44.6±6.0, 40 men, 82 women) before and one year after obesity surgery. As part of the surgery protocol, all the subjects were instructed to add sources of unsaturated fatty acids, such as rapeseed oil and fatty fish, into their diet. The results were compared with changes in serum FA composition in 122 subjects from the Finnish Diabetes Prevention study (DPS) (age 54.3±7.1 years, BMI 32.2±4.6, 28 men, 94 women). Results: The proportion of saturated FAs decreased and the proportion of n-3 and n-6 FAs increased in serum triglycerides after obesity surgery (all P<0.002). Weight loss predicted changes in quantitative amounts of saturated FAs, monounsaturated FAs, n-3 and n-6 FAs in triglycerides (P<0.002 for all). Moreover, the changes in adipose tissue FAs reflected the changes in serum FAs, and some of the changes were associated with mRNA expression of elongases and desaturases in adipose tissue (all P<0.05). In line with this the estimated activity of elongase (18:1 n-7/16:1 n-7) increased significantly after obesity surgery in all lipid fractions (all P<4 × 10−7) and the increase in the estimated activity of D5D in triglycerides was associated with higher weight loss (r=0.415, P<2 × 10−6). Changes in serum FA profile were similar after obesity surgery and lifestyle intervention, except for the change in the absolute amounts of n-3 FAs between the two studies (P=0.044). Conclusions: Beneficial changes in serum and adipose tissue FAs after obesity surgery could be associated with changes in endogenous metabolism and diet. PMID:28869586

  17. Alterations in fatty acid metabolism in response to obesity surgery combined with dietary counseling.

    PubMed

    Walle, P; Takkunen, M; Männistö, V; Vaittinen, M; Käkelä, P; Ågren, J; Schwab, U; Lindström, J; Tuomilehto, J; Uusitupa, M; Pihlajamäki, J

    2017-09-04

    The effects of obesity surgery on serum and adipose tissue fatty acid (FA) profile and FA metabolism may modify the risk of obesity-related diseases. We measured serum (n=122) and adipose tissue (n=24) FA composition and adipose tissue mRNA expression of genes regulating FA metabolism (n=100) in participants of the Kuopio Obesity Surgery Study (KOBS, age 47.2±8.7 years, BMI 44.6±6.0, 40 men, 82 women) before and one year after obesity surgery. As part of the surgery protocol, all the subjects were instructed to add sources of unsaturated fatty acids, such as rapeseed oil and fatty fish, into their diet. The results were compared with changes in serum FA composition in 122 subjects from the Finnish Diabetes Prevention study (DPS) (age 54.3±7.1 years, BMI 32.2±4.6, 28 men, 94 women). The proportion of saturated FAs decreased and the proportion of n-3 and n-6 FAs increased in serum triglycerides after obesity surgery (all P<0.002). Weight loss predicted changes in quantitative amounts of saturated FAs, monounsaturated FAs, n-3 and n-6 FAs in triglycerides (P<0.002 for all). Moreover, the changes in adipose tissue FAs reflected the changes in serum FAs, and some of the changes were associated with mRNA expression of elongases and desaturases in adipose tissue (all P<0.05). In line with this the estimated activity of elongase (18:1 n-7/16:1 n-7) increased significantly after obesity surgery in all lipid fractions (all P<4 × 10 -7 ) and the increase in the estimated activity of D5D in triglycerides was associated with higher weight loss (r=0.415, P<2 × 10 -6 ). Changes in serum FA profile were similar after obesity surgery and lifestyle intervention, except for the change in the absolute amounts of n-3 FAs between the two studies (P=0.044). Beneficial changes in serum and adipose tissue FAs after obesity surgery could be associated with changes in endogenous metabolism and diet.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pemble,C.; Johnson, L.; Kridel, S.

    Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-{angstrom}-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibitionmore » and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.« less

  19. Triacylglycerol regioisomers in human milk resolved with an algorithmic novel electrospray ionization tandem mass spectrometry method.

    PubMed

    Kallio, Heikki; Nylund, Matts; Boström, Pontus; Yang, Baoru

    2017-10-15

    A highly sensitive mass spectrometric (MS) method was developed and validated to analyze ratios of regioisomeric triacylglycerols (TAGs) in fats and oils. UPLC resolution of lithiated TAGs followed by daughter scan MS/MS of positive ions revealed several indicative ions for quantitative analysis. Reference TAGs containing C14-C20 fatty acids (FAs) showed good linear response. Analysis of Finnish and Chinese pooled human milk samples revealed hundreds of regioisomeric TAGs. At least 64mol% of the TAGs were quantified with relative standard deviation <17%. When present in the same TAG molecule together with C18 FAs, palmitic acid was typically in the sn-2 position. When together with FAs 10:0, 12:0, 14:0, 20:1 and 20:2, the sn-2 preference of 16:0 was less clear. Oleic acid occupied typically the sn-1/sn-3 positions but when together with FAs 20:1, 20:2, 18:2, 14:1, 12:0 or 10:0 the positioning of 18:1 did not follow these rules. Copyright © 2017. Published by Elsevier Ltd.

  20. Long-Term Fertilization Modifies the Structures of Soil Fulvic Acids and Their Binding Capability with Al

    PubMed Central

    Wu, Jun; Wu, Minjie; Li, Chunping; Yu, Guanghui

    2014-01-01

    The binding characteristics of organic ligands and minerals in fulvic acids (FAs) with Al are essential for understanding soil C sequestration, remain poorly understood. In this study, Fourier transform infrared (FTIR) spectroscopy combined with two-dimensional correlation spectroscopy (2DCOS) analysis was applied for the first time to explore the binding of Al with organic ligands and minerals in soil FAs. For these analyses, two contrasting treatments were selected from a long-term (i.e., 22-year) fertilization experiment: chemical (NPK) fertilization and swine manure (SM) fertilization. The results showed that the long-term application of organic and inorganic fertilizers to soils had little effect on the compositions of the fluorescent substances and organic ligands in the soil FAs. However, long-term SM fertilization increased the weathered Al and Si concentrations in the soil FAs compared with long-term chemical fertilization. Furthermore, organic ligands in the soil FAs were mainly bound with Al in the NPK treatment, whereas both organic ligands and minerals (Al-O-Si, Si-O) were bound with Al under the M fertilization conditions. Both transmission electron microscopy (TEM) images and X-ray diffraction spectra demonstrated that amorphous and short-range-ordered nanominerals were abundant in the soil FAs from the SM plot in contrast to the soil FAs from the NPK plot. This result illustrates the role nanominerals play in the preservation of soil FAs by during long-term organic fertilization. In summary, the combination of FTIR and 2D correlation spectroscopy is a promising approach for the characterization of the binding capability between soil FAs and Al, and a better understanding FA-Al binding capability will greatly contribute to global C cycling. PMID:25137372

  1. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    PubMed

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals.

    PubMed

    Iozzo, Patricia; Bucci, Marco; Roivainen, Anne; Någren, Kjell; Järvisalo, Mikko J; Kiss, Jan; Guiducci, Letizia; Fielding, Barbara; Naum, Alexandru G; Borra, Ronald; Virtanen, Kirsi; Savunen, Timo; Salvadori, Piero A; Ferrannini, Ele; Knuuti, Juhani; Nuutila, Pirjo

    2010-09-01

    Hepatic lipotoxicity results from and contributes to obesity-related disorders. It is a challenge to study human metabolism of fatty acids (FAs) in the liver. We combined (11)C-palmitate imaging by positron emission tomography (PET) with compartmental modeling to determine rates of hepatic FA uptake, oxidation, and storage, as well as triglyceride release in pigs and human beings. Anesthetized pigs underwent (11)C-palmitate PET imaging during fasting (n = 3) or euglycemic hyperinsulinemia (n = 3). Metabolic products of FAs were measured in arterial, portal, and hepatic venous blood. The imaging methodology then was tested in 15 human subjects (8 obese subjects); plasma (11)C-palmitate kinetic analyses were used to quantify systemic and visceral lipolysis. In pigs, PET-derived and corresponding measured FA fluxes (FA uptake, esterification, and triglyceride FA release) did not differ and were correlated with each other. In human beings, obese subjects had increased hepatic FA oxidation compared with controls (mean +/- standard error of the mean, 0.16 +/- 0.01 vs 0.08 +/- 0.01 micromol/min/mL; P = .0007); FA uptake and esterification rates did not differ between obese subjects and controls. Liver FA oxidation correlated with plasma insulin levels (r = 0.61, P = .016), adipose tissue (r = 0.58, P = .024), and systemic insulin resistance (r = 0.62, P = .015). Hepatic FA esterification correlated with the systemic release of FA into plasma (r = 0.71, P = .003). PET imaging can be used to measure FA metabolism in the liver. By using this technology, we found that obese individuals have increased hepatic oxidation of FA, in the context of adipose tissue insulin resistance, and increased FA flux from visceral fat. FA flux from visceral fat is proportional with the mass of the corresponding depot. Copyright © 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Alpha-lipoic acid improves subclinical left ventricular dysfunction in asymptomatic patients with type 1 diabetes.

    PubMed

    Hegazy, Sahar K; Tolba, Osama A; Mostafa, Tarek M; Eid, Manal A; El-Afify, Dalia R

    2013-01-01

    Oxidative stress plays an important role in the development of diabetic cardiomyopathy. Alpha-lipoic acid (ALA) is a powerful antioxidant that may have a protective role in diabetic cardiac dysfunction. We investigated the possible beneficial effect of alpha-lipoic acid on diabetic left ventricular (LV) dysfunction in children and adolescents with asymptomatic type 1 diabetes (T1D). Thirty T1D patients (aged 10-14) were randomized to receive insulin treatment (n = 15) or insulin plus alpha-lipoic acid 300 mg twice daily (n = 15) for four months. Age and sex matched healthy controls (n = 15) were also included. Patients were evaluated with conventional 2-dimensional echocardiographic examination (2D), pulsed tissue Doppler (PTD), and 2-dimensional longitudinal strain echocardiography (2DS) before and after therapy. Glutathione, malondialdhyde (MDA), nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), Fas ligand (Fas-L), matrix metalloproteinase 2 (MMP-2), and troponin-I were determined and correlated to echocardiographic parameters. Diabetic patients had significantly lower levels of glutathione and significantly higher MDA, NO, TNF-alpha, Fas-L, MMP-2, and troponin-I levels than control subjects. The expression of transforming growth factor beta (TGF-beta) mRNA in peripheral blood mononuclear cells was also increased in diabetic patients. Significant correlations of mitral e'/a' ratio and left ventricular global peak systolic strain with glutathione, MDA, NO, TNF-alpha, and Fas-L were observed in diabetic patients. Alpha-lipoic acid significantly increased glutathione level and significantly decreased MDA, NO, TNF-alpha, Fas-L, MMP-2, troponin-I levels, and TGF-beta gene expression. Moreover, alpha-lipoic acid significantly increased mitral e'/a' ratio and left ventricular global peak systolic strain in diabetic patients. These findings suggest that alpha-lipoic acid may have a role in preventing the development of diabetic cardiomyopathy in type 1 diabetes.

  4. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  5. Using a gradient in food quality to infer drivers of fatty acid content in two filter-feeding aquatic consumers

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Vallazza, Jon; Bartsch, Lynn; Bartsch, Michelle

    2017-01-01

    Inferences about ecological structure and function are often made using elemental or macromolecular tracers of food web structure. For example, inferences about food chain length are often made using stable isotope ratios of top predators and consumer food sources are often inferred from both stable isotopes and fatty acid (FA) content in consumer tissues. The use of FAs as tracers implies some degree of macromolecular conservation across trophic interactions, but many FAs are subject to physiological alteration and animals may produce those FAs from precursors in response to food deficiencies. We measured 41 individual FAs and several aggregate FA metrics in two filter-feeding taxa to (1) assess ecological variation in food availability and (2) identify potential drivers of among-site variation in FA content. These taxa were filter feeding caddisflies (Family Hydropyschidae) and dreissenid mussels (Genus Dreissena), which both consume seston. Stable isotopic composition (C and N) in these taxa co-varied across 13 sites in the Great Lakes region of North America, indicating they fed on very similar food resources. However, co-variation in FA content was very limited, with only one common FA co-varying across this gradient (α-linolenic acid; ALA), suggesting these taxa accumulate FAs very differently even when exposed to the same foods. Based on these results, among-site variation in ALA content in both consumers does appear to be driven by food resources, along with several other FAs in dreissenid mussels. We conclude that single-taxa measurements of FA content cannot be used to infer FA availability in food resources.

  6. Use of high doses of folic acid supplements in pregnant women in Spain: an INMA cohort study.

    PubMed

    Navarrete-Muñoz, Eva María; Valera-Gran, Desirée; García de la Hera, Manoli; Gimenez-Monzo, Daniel; Morales, Eva; Julvez, Jordi; Riaño, Isolina; Tardón, Adonina; Ibarluzea, Jesus; Santa-Marina, Loreto; Murcia, Mario; Rebagliato, Marisa; Vioque, Jesus

    2015-11-24

    We examined the use of low (<400 μg/day, including no use) and high folic acid supplement (FAS) dosages (≥1000 μg/day) among pregnant women in Spain, and explored factors associated with the use of these non-recommended dosages. Population-based cohort study. Spain. We analysed data from 2332 pregnant women of the INMA study, a prospective mother-child cohort study in Spain. We assessed usual dietary folate and the use of FAS from preconception to the 3rd month (first period) and from the 4th to the 7th month (second period), using a validated food frequency questionnaire. We used multinomial logistic regression to estimate relative risk ratios (RRRs). Over a half of the women used low dosages of FAS in the first and second period while 29% and 17% took high dosages of FAS, respectively. In the first period, tobacco smoking (RRR=1.63), alcohol intake (RRR=1.40), multiparous (RRR=1.44), unplanned pregnancy (RRR=4.20) and previous spontaneous abortion (RRR=0.58, lower use of high FAS dosages among those with previous abortions) were significantly associated with low FAS dosages. Alcohol consumption (RRR=1.42), unplanned pregnancy (RRR=2.66) and previous spontaneous abortion (RRR=0.68) were associated with high dosage use. In the second period, only tobacco smoking was significantly associated with high FAS dosage use (RRR=0.67). A high proportion of pregnant women did not reach the recommended dosages of FAS in periconception and a considerable proportion also used FAS dosages ≥1000 μg/day. Action should be planned by the Health Care System and health professionals to improve the appropriate periconceptional use of FAS, taking into consideration the associated factors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Use of high doses of folic acid supplements in pregnant women in Spain: an INMA cohort study

    PubMed Central

    Navarrete-Muñoz, Eva María; Valera-Gran, Desirée; García de la Hera, Manoli; Gimenez-Monzo, Daniel; Morales, Eva; Julvez, Jordi; Riaño, Isolina; Tardón, Adonina; Ibarluzea, Jesus; Santa-Marina, Loreto; Murcia, Mario; Rebagliato, Marisa; Vioque, Jesus

    2015-01-01

    Objectives We examined the use of low (<400 μg/day, including no use) and high folic acid supplement (FAS) dosages (≥1000 μg/day) among pregnant women in Spain, and explored factors associated with the use of these non-recommended dosages. Design Population-based cohort study. Setting Spain. Participants We analysed data from 2332 pregnant women of the INMA study, a prospective mother-child cohort study in Spain. Main outcome measures We assessed usual dietary folate and the use of FAS from preconception to the 3rd month (first period) and from the 4th to the 7th month (second period), using a validated food frequency questionnaire. We used multinomial logistic regression to estimate relative risk ratios (RRRs). Results Over a half of the women used low dosages of FAS in the first and second period while 29% and 17% took high dosages of FAS, respectively. In the first period, tobacco smoking (RRR=1.63), alcohol intake (RRR=1.40), multiparous (RRR=1.44), unplanned pregnancy (RRR=4.20) and previous spontaneous abortion (RRR=0.58, lower use of high FAS dosages among those with previous abortions) were significantly associated with low FAS dosages. Alcohol consumption (RRR=1.42), unplanned pregnancy (RRR=2.66) and previous spontaneous abortion (RRR=0.68) were associated with high dosage use. In the second period, only tobacco smoking was significantly associated with high FAS dosage use (RRR=0.67). Conclusions A high proportion of pregnant women did not reach the recommended dosages of FAS in periconception and a considerable proportion also used FAS dosages ≥1000 μg/day. Action should be planned by the Health Care System and health professionals to improve the appropriate periconceptional use of FAS, taking into consideration the associated factors. PMID:26603248

  8. Fatty acids of erythrocyte membrane in acute pancreatitis patients.

    PubMed

    Kuliaviene, Irma; Gulbinas, Antanas; Cremers, Johannes; Pundzius, Juozas; Kupcinskas, Limas; Dambrauskas, Zilvinas; Jansen, Eugene

    2013-09-14

    To evaluate changes in the fatty acid composition of erythrocyte membrane phospholipids during severe and mild acute pancreatitis (AP) of alcoholic and nonalcoholic etiology. All consecutive patients with a diagnosis of AP and onset of the disease within the last 72 h admitted to the Hospital of Lithuanian University of Health Sciences between June and December 2007 were included. According to the Acute Physiology and Chronic Health Evaluation (APACHE II) scale, the patients were subdivided into the mild (APACHE II score < 7, n = 22) and severe (APACHE II score ≥ 7, n = 17) AP groups. Healthy individuals (n = 26) were enrolled as controls. Blood samples were collected from patients on admission to the hospital. Fatty acids (FAs) were extracted from erythrocyte phospholipids and expressed as percentages of the total FAs present in the chromatogram. The concentrations of superoxide dismutase and glutathione peroxidase were measured in erythrocytes. We found an increase in the percentages of saturated and monounsaturated FAs, a decrease in the percentages of total polyunsaturated FAs (PUFAs) and n-3 PUFAs in erythrocyte membrane phospholipids of AP patients compared with healthy controls. Palmitic (C16:0), palmitoleic (C16:1n7cis), arachidonic (C20:4n6), docosahexaenoic (DHA, C22:6n3), and docosapentaenoic (DPA, C22:5n3) acids were the major contributing factors. A decrease in the peroxidation and unsaturation indexes in AP patients as well as the severe and mild AP groups as compared with controls was observed. The concentrations of antioxidant enzymes in the mild AP group were lower than in the control group. In severe AP of nonalcoholic etiology, the percentages of arachidic (C20:0) and arachidonic (C20:4n6) acids were decreased as compared with the control group. The patients with mild AP of nonalcoholic etiology had the increased percentages of total saturated FAs and gama linoleic acid (C18:3n6) and the decreased percentages of elaidic (C18:1n9t), eicosapentaenoic acid (EPA, C20:5n3), DPA (C22:5n3), DHA (C22:6n3) as well as total and n-3 PUFAs in erythrocyte membrane phospholipids. The composition of FAs in erythrocyte membranes is altered during AP. These changes are likely to be associated with alcohol consumption, inflammatory processes, and oxidative stress.

  9. Fatty acids of erythrocyte membrane in acute pancreatitis patients

    PubMed Central

    Kuliaviene, Irma; Gulbinas, Antanas; Cremers, Johannes; Pundzius, Juozas; Kupcinskas, Limas; Dambrauskas, Zilvinas; Jansen, Eugene

    2013-01-01

    AIM: To evaluate changes in the fatty acid composition of erythrocyte membrane phospholipids during severe and mild acute pancreatitis (AP) of alcoholic and nonalcoholic etiology. METHODS: All consecutive patients with a diagnosis of AP and onset of the disease within the last 72 h admitted to the Hospital of Lithuanian University of Health Sciences between June and December 2007 were included. According to the Acute Physiology and Chronic Health Evaluation (APACHE II) scale, the patients were subdivided into the mild (APACHE II score < 7, n = 22) and severe (APACHE II score ≥ 7, n = 17) AP groups. Healthy individuals (n = 26) were enrolled as controls. Blood samples were collected from patients on admission to the hospital. Fatty acids (FAs) were extracted from erythrocyte phospholipids and expressed as percentages of the total FAs present in the chromatogram. The concentrations of superoxide dismutase and glutathione peroxidase were measured in erythrocytes. RESULTS: We found an increase in the percentages of saturated and monounsaturated FAs, a decrease in the percentages of total polyunsaturated FAs (PUFAs) and n-3 PUFAs in erythrocyte membrane phospholipids of AP patients compared with healthy controls. Palmitic (C16:0), palmitoleic (C16:1n7cis), arachidonic (C20:4n6), docosahexaenoic (DHA, C22:6n3), and docosapentaenoic (DPA, C22:5n3) acids were the major contributing factors. A decrease in the peroxidation and unsaturation indexes in AP patients as well as the severe and mild AP groups as compared with controls was observed. The concentrations of antioxidant enzymes in the mild AP group were lower than in the control group. In severe AP of nonalcoholic etiology, the percentages of arachidic (C20:0) and arachidonic (C20:4n6) acids were decreased as compared with the control group. The patients with mild AP of nonalcoholic etiology had the increased percentages of total saturated FAs and gama linoleic acid (C18:3n6) and the decreased percentages of elaidic (C18:1n9t), eicosapentaenoic acid (EPA, C20:5n3), DPA (C22:5n3), DHA (C22:6n3) as well as total and n-3 PUFAs in erythrocyte membrane phospholipids. CONCLUSION: The composition of FAs in erythrocyte membranes is altered during AP. These changes are likely to be associated with alcohol consumption, inflammatory processes, and oxidative stress. PMID:24039361

  10. Exploration of the perceived and actual benefits of omega-3 fatty acids and the impact of FADS1 and FADS2 genetic information on dietary intake and blood levels of EPA and DHA.

    PubMed

    Roke, Kaitlin

    2017-03-01

    From a global health perspective, increased intake of omega-3 fatty acids (FAs), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for human health. However, the consumption of EPA- and DHA-rich foods such as fatty fish is low in the Western diet. Therefore, finding new ways to motivate people to increase their consumption of omega-3 FAs is essential. To find effective ways to motivate individuals, understanding people's awareness of omega-3 FAs and how they obtain their knowledge about nutrition and health is critical. Consequently, we developed an online survey to assess awareness and self-reported intake of omega-3 FAs and supplements in young adults. EPA and DHA are also produced endogenously to a limited extent through a pathway regulated by fatty acid desaturase 1 and 2 (FADS1 and FADS2) genes. Of relevance, single nucleotide polymorphisms (SNPs) in the FADS genes influence levels of omega-3 FAs, where minor allele carriers have lower levels compared with major allele carriers. Accordingly, we conducted a clinical trial to investigate FA levels in response to dietary EPA and DHA supplementation in young adults stratified by SNPs in FADS1 and FADS2. The level of reported awareness of omega-3 terminology varied depending on an individual's field of study and thus providing all participants with the same set of nutrition information could be an effective tool to increase knowledge and motivate behaviour change. Additionally, the variation in FA levels in accordance to SNPs in FADS1 and FADS2 could be used to create tailored nutritional recommendations which may improve lifestyle habits. The results discovered in the first 2 studies regarding awareness of omega-3 FAs and genetic variation were subsequently used to design a nutrigenetics intervention in young adults. Individuals who received their FADS1 genetic information were more aware of different omega-3 FAs and reported fewer barriers to their consumption by the end of the study, compared with those who did not receive their personal genetic information. All participants increased their intake of EPA and DHA, which was reflected in the analyses of red blood cells. Overall, this thesis demonstrates the power of combining nutritional and genetic information as motivators to increase omega-3 consumption.

  11. Profiling of Fatty Acids Composition in Suet Oil Based on GC–EI-qMS and Chemometrics Analysis

    PubMed Central

    Jiang, Jun; Jia, Xiaobin

    2015-01-01

    Fatty acid (FA) composition of suet oil (SO) was measured by precolumn methylesterification (PME) optimized using a Box–Behnken design (BBD) and gas chromatography/electron ionization-quadrupole mass spectrometry (GC–EI-qMS). A spectral library (NIST 08) and standard compounds were used to identify FAs in SO representing 90.89% of the total peak area. The ten most abundant FAs were derivatized into FA methyl esters (FAMEs) and quantified by GC–EI-qMS; the correlation coefficient of each FAME was 0.999 and the lowest concentration quantified was 0.01 μg/mL. The range of recovery of the FAMEs was 82.1%–98.7% (relative standard deviation 2.2%–6.8%). The limits of quantification (LOQ) were 1.25–5.95 μg/L. The number of carbon atoms in the FAs identified ranged from 12 to 20; hexadecanoic and octadecanoic acids were the most abundant. Eighteen samples of SO purchased from Qinghai, Anhui and Jiangsu provinces of China were categorized into three groups by principal component analysis (PCA) according to the contents of the most abundant FAs. The results showed SOs samples were rich in FAs with significantly different profiles from different origins. The method described here can be used for quality control and SO differentiation on the basis of the FA profile. PMID:25636032

  12. Associations of Fatty Acids in Cerebrospinal Fluid with Peripheral Glucose Concentrations and Energy Metabolism

    PubMed Central

    Jumpertz, Reiner; Guijarro, Ana; Pratley, Richard E.; Mason, Clinton C.; Piomelli, Daniele; Krakoff, Jonathan

    2012-01-01

    Rodent experiments have emphasized a role of central fatty acid (FA) species, such as oleic acid, in regulating peripheral glucose and energy metabolism. Thus, we hypothesized that central FAs are related to peripheral glucose regulation and energy expenditure in humans. To test this we measured FA species profiles in cerebrospinal fluid (CSF) and plasma of 32 individuals who stayed in our clinical inpatient unit for 6 days. Body composition was measured by dual energy X-ray absorptiometry and glucose regulation by an oral glucose test (OGTT) followed by measurements of 24 hour (24EE) and sleep energy expenditure (SLEEP) as well as respiratory quotient (RQ) in a respiratory chamber. CSF was obtained via lumbar punctures; FA concentrations were measured by liquid chromatography/mass spectrometry. As expected, FA concentrations were higher in plasma compared to CSF. Individuals with high concentrations of CSF very-long-chain saturated FAs had lower rates of SLEEP. In the plasma moderate associations of these FAs with higher 24EE were observed. Moreover, CSF monounsaturated long-chain FA (palmitoleic and oleic acid) concentrations were associated with lower RQs and lower glucose area under the curve during the OGTT. Thus, FAs in the CSF strongly correlated with peripheral metabolic traits. These physiological parameters were most specific to long-chain monounsaturated (C16∶1, C18∶1) and very-long-chain saturated (C24∶0, C26∶0) FAs. Conclusions: Together with previous animal experiments these initial cross-sectional human data indicate that central FA species are linked to peripheral glucose and energy homeostasis. PMID:22911803

  13. Use of Lentiviral Particles As a Cell Membrane-Based mFasL Delivery System for In Vivo Treatment of Inflammatory Arthritis.

    PubMed

    Rodríguez-Frade, José M; Guedán, Anabel; Lucas, Pilar; Martínez-Muñoz, Laura; Villares, Ricardo; Criado, Gabriel; Balomenos, Dimitri; Reyburn, Hugh T; Mellado, Mario

    2017-01-01

    During budding, lentiviral particles (LVP) incorporate cell membrane proteins in the viral envelope. We explored the possibility of harnessing this process to generate LVP-expressing membrane proteins of therapeutic interest and studied the potential of these tools to treat different pathologies. Fas-mediated apoptosis is central to the maintenance of T cell homeostasis and prevention of autoimmune processes. We prepared LVP that express murine FasL on their surface. Our data indicate that mFasL-bearing LVP induce caspase 3 and 9 processing, cytochrome C release, and significantly more cell death than control LVP in vitro . This cytotoxicity is blocked by the caspase inhibitor Z-VAD. Analysis of the application of these reagents for the treatment of inflammatory arthritis in vivo suggests that FasL-expressing LVP could be useful for therapy in autoimmune diseases such as rheumatoid arthritis, where there is an excess of Fas-expressing activated T cells in the joint. LVP could be a vehicle not only for mFasL but also for other membrane-bound proteins that maintain their native conformation and might mediate biological activities.

  14. Switch from type II to I Fas/CD95 death signaling upon in vitro culturing of primary hepatocytes

    PubMed Central

    Walter, Dorothée; Schmich, Kathrin; Vogel, Sandra; Pick, Robert; Kaufmann, Thomas; Hochmuth, Florian Christoph; Haber, Angelika; Neubert, Karin; McNelly, Sabine; von Weizsäcker, Fritz; Merfort, Irmgard; Maurer, Ulrich; Strasser, Andreas; Borner, Christoph

    2010-01-01

    Fas/CD95-induced apoptosis of hepatocytes in vivo proceeds through the so-called type II pathway, requiring the pro-apoptotic BH3-only Bcl-2 family member Bid for mitochondrial death signaling. Consequently, Bid-deficient mice are protected from anti-Fas antibody injection induced fatal hepatitis. Here we report the unexpected finding that freshly isolated mouse hepatocytes, cultured on collagen or Matrigel™, become independent of Bid for Fas-induced apoptosis, thereby switching death signaling from type II to type I. In such in vitro cultures, FasL activates caspase-3 without Bid cleavage, Bax/Bak activation or cytochrome c release, and neither Bid ablation nor Bcl-2 overexpression is protective. The type II to type I switch depends on extracellular matrix adhesion, as primary hepatocytes in suspension die in a Bid-dependent manner. Moreover, the switch is specific for FasL-induced apoptosis as collagen-plated Bid-deficient hepatocytes are protected from TNFα/ActD-induced apoptosis. Conclusion Our data suggest a selective crosstalk between extracellular matrix and Fas-mediated signaling which favours mitochondria-independent type I apoptosis induction. PMID:19003879

  15. Sunlight triggers cutaneous lupus through a CSF-1-dependent mechanism in MRL-Fas(lpr) mice.

    PubMed

    Menke, Julia; Hsu, Mei-Yu; Byrne, Katelyn T; Lucas, Julie A; Rabacal, Whitney A; Croker, Byron P; Zong, Xiao-Hua; Stanley, E Richard; Kelley, Vicki R

    2008-11-15

    Sunlight (UVB) triggers cutaneous lupus erythematosus (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (Mø)-mediated mechanism in MRL-Fas(lpr) mice. By constructing mutant MRL-Fas(lpr) strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex vivo gene transfer to deliver CSF-1 intradermally, we determined that CSF-1 induces CLE in lupus-susceptible MRL-Fas(lpr) mice, but not in lupus-resistant BALB/c mice. UVB incites an increase in Møs, apoptosis in the skin, and CLE in MRL-Fas(lpr), but not in CSF-1-deficient MRL-Fas(lpr) mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of Møs that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, Mø-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Fas(lpr) but not lupus-resistant BALB/c mice. Taken together, CSF-1 is envisioned as the match and lupus susceptibility as the tinder leading to CLE.

  16. A comparative molecular and isotopic investigation of seep carbonates from mussel and tubeworm environments of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Feng, D.; Guan, H.; Wu, N.; Chen, D.

    2017-12-01

    At deep-sea hydrocarbon seeps, macrofauna such as mussels and tubeworms and authigenic carbonate outcrops are common. It has been suggested that the distinct metabolic process of the macrofauna could modify the sedimentary geochemistry of their ambient environments. To better understand if the differences in the geochemical environments of mussels and tubeworms can be archived in the associated carbonates, lipid biomarker inventory and compound-specific isotopes of the carbonates from mussel and tubeworm environments from two seep sites were analyzed. The large δ13C offset (-32‰) of SRB-derived fatty acids (FAs) between tubeworm and mussel carbonates were partially attributed to the distinct effects on isotope fraction by specific metabolic process of the macrofauna. In such processes, the isotope fraction of chemosynthetic symbionts and physical action of mussel activities could result in local 13C enrichment, whereas the sufficient sulfate released through the tubeworm roots resulting in a persistent production of methane-derived bicarbonate and the enrichment of lighter carbon at subsurface sediments. Compared to mussel carbonates, the significantly higher concentrations of DAGEs and FAs as well as the smaller δ13C offset (Δδ13CDAGEs-FAs) than that of the mussel carbonates, suggest that the DAGEs and at least part of FAs found in tubeworm carbonates biosynthesized by SRB species other than DSS cluster. This DAGE-producing SRB is most likely involved in the hydrogen-driven SR instead of methane-fueled SR because a variety of SRB other than members of DSS cluster on hydrogen was isolated in presence of ANME-1 assemblage. The substantial amounts of DAGEs with strong 13C-depletions in tubeworm ecosystem may provide an important clue for their sources and role in the AOM process.

  17. Effect of precipitation, geographical location and biosynthesis on New Zealand milk powder bulk and fatty acids D/H ratios

    NASA Astrophysics Data System (ADS)

    Frew, R.; Emad Ehtesham, R.; Van Hale, R.; Hayman, A.; Baisden, T.

    2012-04-01

    D/H ratio measurements provide useful information for the investigation of biogeochemical influences on natural and agricultural produce, particularly with application to food traceability and authentication. Numerous studies have shown that variation of a product's D/H ratio is influenced by both environmental factors and biological processes. This study investigates the D/H ratio of New Zealand milk powder and individual fatty acids, and causal determinants of isotopic variation. One of the key environmental factors is precipitation, and the D/H ratio "isoscaping" of NZ has been undertaken. New Zealand provides a unique geography for these kinds of study in terms of proximity to the ocean and natural geographical variability from sea level to elevations as high as 3700 m. Milk powder samples were collected from different geographical regions from milk processing units, which were supplied by producers in the immediate region. H/D ratios of bulk milk powder and of individual fatty acids were determined. Initial comparison of the precipitation and milk powder bulk D/H data show a very good differentiation from north to southernmost parts of New Zealand and a relation between rain and milk bulk D/H abundance ratio. Almost 98% of milk FAs are in the form of triglycerides that have been extracted and hydrolysed to free FAs. Free FAs were esterified and analyzed with GC-IRMS. Individual FAs show variation in D/H ratio, and all values are depleted relative to the precipitation data. The difference in D/H ratio amongst individual FAs reflects the geographical environment and biological processes i.e. micro-organisms activity in the rumen of the cow. Short chain FAs (less than 8 carbons), particularly C4 (Butyric acid), appear to be key determinants. The variation in the data can be rationalized using statistical multivariate analysis.

  18. Fatty Acid Proportions in Plasma Cholesterol Esters and Phospholipids Are Positively Correlated in Various Swedish Populations.

    PubMed

    Marklund, Matti; Pingel, Ronnie; Rosqvist, Fredrik; Lindroos, Anna Karin; Eriksson, Jan W; Vessby, Bengt; Oscarsson, Jan; Lind, Lars; Risérus, Ulf

    2017-11-01

    Background: Fatty acid (FA) proportions in cholesterol esters (CEs) and plasma phospholipids are widely used as dietary biomarkers. Information on how proportions in these fractions correlate could have implications for interpretation and use of FA biomarkers in observational and interventional studies. Objective: We investigated correlations between FA proportions in CEs and phospholipids in free-living individuals and assessed how diet-induced alterations of FA proportions correlate between fractions. Methods: Spearman's rank correlation coefficients ( r s ) between FA proportions (percentage of total FAs) in circulating CEs and phospholipids were calculated separately in 8 individual study populations including Swedish females and males ( N = 2052; age range: 11-84 y), and pooled by inverse-variance weighted meta-analysis. In addition, study populations were stratified by age, sex, body mass index (BMI; in kg/m 2 ), and diabetes status, and strata-specific r s were pooled by meta-analysis. In 2 randomized trials ( N = 79) in which dietary saturated FAs were isocalorically replaced with unsaturated FAs, treatment-wise calculations of r s were conducted between FA changes in CEs and phospholipids. Results: Overall, FA proportions in CEs and phospholipids correlated well and especially strongly for polyunsaturated FAs (PUFAs), with pooled r s (95% CIs) ranging from 0.74 (0.72, 0.76) for α-linolenic acid to 0.92 (0.91, 0.93) for eicosapentaenoic acid. Weak correlations (pooled r s < 0.4) were observed only for palmitic acid and stearic acid, with pooled r s (95% CIs): 0.29 (0.24, 0.33) and 0.30 (0.25, 0.34), respectively. Overall, correlations were not affected by age, sex, BMI, or diabetes status. Strong correlations ( r s ≥ 0.6) between diet-induced FA changes in CEs and phospholipids were observed for most PUFAs. Conclusions: Proportions of most FAs in CEs and phospholipids ranked individuals similarly, suggesting that FA proportions in these fractions can be used interchangeably in populations of diverse age, sex, body composition, and diabetes status. Caution is advised, however, when comparing results from studies assessing palmitic acid or stearic acid in different lipid fractions. © 2017 American Society for Nutrition.

  19. Interactive effects of elevated CO2 and nitrogen deposition on fatty acid molecular and isotope composition of above- and belowground tree biomass and forest soil fractions.

    PubMed

    Griepentrog, Marco; Eglinton, Timothy I; Hagedorn, Frank; Schmidt, Michael W I; Wiesenberg, Guido L B

    2015-01-01

    Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant- and microbial-derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C-depleted) CO2 and N deposition in forest ecosystems established in open-top chambers on composition and turnover of fatty acids (FAs) in plants and soils. FAs served as biomarkers for plant- and microbial-derived OM in soil density fractions. We analyzed above- and belowground plant biomass of beech and spruce trees as well as soil density fractions for the total organic C and FA molecular and isotope (δ13C) composition. FAs did not accumulate relative to total organic C in fine mineral fractions, showing that FAs are not effectively stabilized by association with soil minerals. The δ13C values of FAs in plant biomass increased under high N deposition. However, the N effect was only apparent under elevated CO2 suggesting a N limitation of the system. In soil fractions, only isotope compositions of short-chain FAs (C16+18) were affected. Fractions of 'new' (experimental-derived) FAs were calculated using isotope depletion in elevated CO2 plots and decreased from free light to fine mineral fractions. 'New' FAs were higher in short-chain compared to long-chain FAs (C20-30), indicating a faster turnover of short-chain compared to long-chain FAs. Increased N deposition did not significantly affect the quantity of 'new' FAs in soil fractions, but showed a tendency of increased amounts of 'old' (pre-experimental) C suggesting that decomposition of 'old' C is retarded by high N inputs. © 2014 John Wiley & Sons Ltd.

  20. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma

    PubMed Central

    Bhatt, Aadra P.; Jacobs, Sarah R.; Freemerman, Alex J.; Makowski, Liza; Rathmell, Jeffrey C.; Dittmer, Dirk P.; Damania, Blossom

    2012-01-01

    The metabolic differences between B-NHL and primary human B cells are poorly understood. Among human B-cell non-Hodgkin lymphomas (B-NHL), primary effusion lymphoma (PEL) is a unique subset that is linked to infection with Kaposi's sarcoma-associated herpesvirus (KSHV). We report that the metabolic profiles of primary B cells are significantly different from that of PEL. Compared with primary B cells, both aerobic glycolysis and fatty acid synthesis (FAS) are up-regulated in PEL and other types of nonviral B-NHL. We found that aerobic glycolysis and FAS occur in a PI3K-dependent manner and appear to be interdependent. PEL overexpress the fatty acid synthesizing enzyme, FASN, and both PEL and other B-NHL were much more sensitive to the FAS inhibitor, C75, than primary B cells. Our findings suggest that FASN may be a unique candidate for molecular targeted therapy against PEL and other B-NHL. PMID:22752304

  1. Formation of trans fatty acids during the frying of chicken fillet in corn oil.

    PubMed

    Yang, Meiyan; Yang, Ying; Nie, Shaoping; Xie, Mingyong; Chen, Feng; Luo, Pengju George

    2014-05-01

    To assess effects of heated edible oils on intake of trans fatty acids (TFAs); the formation of TFAs in cooking conditions was investigated by a frying system model, in which chicken fillet was fried in a commercial corn oil at 170 °C, for 12 frying cycles. The main TFAs detected in chicken fillet were trans C18:2 fatty acids (FAs) and trans C18:3 FAs, which exhibited no significant differences among the frying cycles. Besides, the content of trans C18:1 FAs were very low in all samples on different frying cycles. The intake of TFAs was estimated to be 0.06 g/100 g when chicken fillet fried in this process was consumed. These results suggest that an ordinary frying process upon a commercial corn oil has little impact on the daily TFAs intake.

  2. Conformational Flexibility of Metazoan Fatty Acid Synthase Enables Catalysis

    PubMed Central

    Brignole, Edward J.; Smith, Stuart; Asturias, Francisco J.

    2008-01-01

    The metazoan cytosolic fatty acid synthase (FAS) contains all of the enzymes required for de novo fatty acid biosynthesis covalently linked around two reaction chambers. While the 3D architecture of FAS has been mostly defined, it is unclear how reaction intermediates can transfer between distant catalytic domains. Using single-particle electron microscopy we have identified a near continuum of conformations consistent with remarkable flexibility of FAS. The distribution of conformations was influenced by the presence of substrates and altered by different catalytic mutations suggesting a direct correlation between conformation and specific enzymatic activities. 3D reconstructions were interpreted by docking high-resolution structures of individual domains and illustrate that the substrate loading and condensation domains dramatically swing and swivel to access substrates within either reaction chamber. Concomitant rearrangement of the β-carbon processing domains synchronizes acyl-chain reduction in one chamber with acyl-chain elongation in the other. PMID:19151726

  3. In silico investigation of lavandulyl flavonoids for the development of potent fatty acid synthase-inhibitory prototypes.

    PubMed

    Oh, Joonseok; Liu, Haining; Park, Hyun Bong; Ferreira, Daneel; Jeong, Gil-Saeng; Hamann, Mark T; Doerksen, Robert J; Na, MinKyun

    2017-01-01

    Inhibition of fatty acid synthase (FAS) is regarded as a sensible therapeutic strategy for the development of optimal anti-cancer agents. Flavonoids exhibit potent anti-neoplastic properties. The MeOH extract of Sophora flavescens was subjected to chromatographic analyses such as VLC and HPLC for the purification of active flavonoids. The DP4 chemical-shift analysis protocol was employed to investigate the elusive chirality of the lavandulyl moiety of the purified polyphenols. Induced Fit docking protocols and per-residue analyses were utilized to scrutinize structural prerequisites for hampering FAS activity. The FAS-inhibitory activity of the purified flavonoids was assessed via the incorporation of [ 3 H] acetyl-CoA into palmitate. Six flavonoids, including lavandulyl flavanones, were purified and evaluated for FAS inhibition. The lavandulyl flavanone sophoraflavanone G (2) exhibited the highest potency (IC 50 of 6.7±0.2μM), which was more potent than the positive controls. Extensive molecular docking studies revealed the structural requirements for blocking FAS. Per-residue interaction analysis demonstrated that the lavandulyl functional group in the active flavonoids (1-3 and 5) significantly contributed to increasing their binding affinity towards the target enzyme. This research suggests a basis for the in silico design of a lavandulyl flavonoid-based architecture showing anti-cancer effects via enhancement of the binding potential to FAS. FAS inhibition by flavonoids and their derivatives may offer significant potential as an approach to lower the risk of various cancer diseases and related fatalities. In silico technologies with available FAS crystal structures may be of significant use in optimizing preliminary leads. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. In silico investigation of lavandulyl flavonoids for the development of potent fatty acid synthase-inhibitory prototypes

    PubMed Central

    Oh, Joonseok; Liu, Haining; Park, Hyun Bong; Ferreira, Daneel; Jeong, Gil-Saeng; Hamann, Mark T.; Doerksen, Robert J.; Na, MinKyun

    2016-01-01

    Background Inhibition of fatty acid synthase (FAS) is regarded as a sensible therapeutic strategy for the development of optimal anti-cancer agents. Flavonoids exhibit potent anti-neoplastic properties. Methods The MeOH extract of Sophora flavescens was subjected to chromatographic analyses such as VLC and HPLC for the purification of active flavonoids. The DP4 chemical-shift analysis protocol was employed to investigate the elusive chirality of the lavandulyl moiety of the purified polyphenols. Induced Fit docking protocols and per-residue analyses were utilized to scrutinize structural prerequisites for hampering FAS activity. The FAS-inhibitory activity of the purified flavonoids was assessed via the incorporation of [3H] acetyl-CoA into palmitate. Results Six flavonoids, including lavandulyl flavanones, were purified and evaluated for FAS inhibition. The lavandulyl flavanone sophoraflavanone G (2) exhibited the highest potency (IC50 of 6.7 ± 0.2 μM), which was more potent than the positive controls. Extensive molecular docking studies revealed the structural requirements for blocking FAS. Per-residue interaction analysis demonstrated that the lavandulyl functional group in the active flavonoids (1–3 and 5) significantly contributed to increasing their binding affinity towards the target enzyme. Conclusion This research suggests a basis for the in silico design of a lavandulyl flavonoid-based architecture showing anti-cancer effects via enhancement of the binding potential to FAS. General significance FAS inhibition by flavonoids and their derivatives may offer significant potential as an approach to lower the risk of various cancer diseases and related fatalities. In silico technologies with available FAS crystal structures may be of significant use in optimizing preliminary leads. PMID:27531709

  5. A new influence on iron dissolution in Bangladesh aquifers: electron shuttling by groundwater fulvic acids

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Kulkarni, H. V.; McKnight, D. M.; Zheng, Y.; Kirk, M. F.

    2016-12-01

    It was demonstrated more than two decades ago that the electron shuttling ability of fulvic acids (FA) accelerates iron (Fe) reduction. However, the environmental relevance of this mechanism for arsenic-laden groundwater environments has thus far only been hypothesized. Here we show that FAs isolated from high and low arsenic groundwater aquifers in the Bengal Basin can act to shuttle electrons between bacteria and Fe(III). Bangladesh groundwater FAs were reduced by Geobacter metallireducens and were subsequently capable of abiotically reducing Fe(III) to Fe(II). Moreover, all four Bangladesh groundwater FAs investigated in the study had higher Fe(III) to Fe(II) conversion rates compared to anthraquinone disulfonate, an oxidized quinone, and Suwannee River Fulvic Acid, a commercially-available FA isolated from a terrestrially-dominated surface water source. Until now, microbially-mediated reductive dissolution of Fe (oxy)hydroxides, driven by the availability of labile organic matter, was widely accepted as the main control on arsenic mobilization in reducing aquifers. Our evidence for the electron shuttling ability of Bangladesh FAs implicates electron shuttling as another important control on elevated As concentrations in groundwater of the Bengal Basin.

  6. Discovery and Characterization of the 3-Hydroxyacyl-ACP Dehydratase Component of the Plant Mitochondrial Fatty Acid Synthase System1[OPEN

    PubMed Central

    Okazaki, Yozo; Lithio, Andrew; Jin, Huanan

    2017-01-01

    We report the characterization of the Arabidopsis (Arabidopsis thaliana) 3-hydroxyacyl-acyl carrier protein dehydratase (mtHD) component of the mitochondrial fatty acid synthase (mtFAS) system, encoded by AT5G60335. The mitochondrial localization and catalytic capability of mtHD were demonstrated with a green fluorescent protein transgenesis experiment and by in vivo complementation and in vitro enzymatic assays. RNA interference (RNAi) knockdown lines with reduced mtHD expression exhibit traits typically associated with mtFAS mutants, namely a miniaturized morphological appearance, reduced lipoylation of lipoylated proteins, and altered metabolomes consistent with the reduced catalytic activity of lipoylated enzymes. These alterations are reversed when mthd-rnai mutant plants are grown in a 1% CO2 atmosphere, indicating the link between mtFAS and photorespiratory deficiency due to the reduced lipoylation of glycine decarboxylase. In vivo biochemical feeding experiments illustrate that sucrose and glycolate are the metabolic modulators that mediate the alterations in morphology and lipid accumulation. In addition, both mthd-rnai and mtkas mutants exhibit reduced accumulation of 3-hydroxytetradecanoic acid (i.e. a hallmark of lipid A-like molecules) and abnormal chloroplastic starch granules; these changes are not reversible by the 1% CO2 atmosphere, demonstrating two novel mtFAS functions that are independent of photorespiration. Finally, RNA sequencing analysis revealed that mthd-rnai and mtkas mutants are nearly equivalent to each other in altering the transcriptome, and these analyses further identified genes whose expression is affected by a functional mtFAS system but independent of photorespiratory deficiency. These data demonstrate the nonredundant nature of the mtFAS system, which contributes unique lipid components needed to support plant cell structure and metabolism. PMID:28202596

  7. Potent Inhibitory Effect of Chinese Dietary Spices on Fatty Acid Synthase.

    PubMed

    Jiang, Bing; Liang, Yan; Sun, Xuebing; Liu, Xiaoxin; Tian, Weixi; Ma, Xiaofeng

    2015-09-01

    Dietary spices have been adopted in cooking since ancient times to enhance flavor and also as food preservatives and disease remedies. In China, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their functions. Fatty acid synthase (FAS) has been recognized as a remedy target, and its inhibitors might be applied in disease treatment. The present work was designed to assess the inhibitory activities on FAS of spices extracts in Chinese menu. The in vitro inhibitory activities on FAS of 22 extracts of spices were assessed by spectrophotometrically monitoring oxidation of NADPH at 340 nm. Results showed that 20 spices extracts (90.9 %) exhibited inhibitory activities on FAS, with half inhibition concentration (IC(50)) values ranging from 1.72 to 810.7 μg/ml. Among them, seven spices showed strong inhibitory effect with IC(50) values lower than 10 μg/ml. These findings suggest that a large proportion of the dietary spices studied possess promising inhibitory activities on FAS, and subsequently might be applied in the treatment of obesity and obesity-related human diseases.

  8. Comparison of Two Derivatization Methods for the Analysis of Fatty Acids and Trans Fatty Acids in Bakery Products Using Gas Chromatography

    PubMed Central

    Salimon, Jumat; Omar, Talal A.; Salih, Nadia

    2014-01-01

    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS–DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples. PMID:24719581

  9. Comparison of two derivatization methods for the analysis of fatty acids and trans fatty acids in bakery products using gas chromatography.

    PubMed

    Salimon, Jumat; Omar, Talal A; Salih, Nadia

    2014-01-01

    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS-DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, Hitomi; Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyoku, Kyoto 606-8501; Nio, Yasunori, E-mail: yasunori.nio@takeda.com

    Hepatitis B virus (HBV) proliferates in hepatocytes after infection, but the host factors that contribute to the HBV lifecycle are poorly understood at the molecular level. We investigated whether fatty acid biosynthesis (FABS), which was recently reported to contribute to the genomic replication of hepatitis C virus, plays a role in HBV proliferation. We examined the effects of inhibitors of the enzymes in the FABS pathway on the HBV lifecycle by using recombinant HBV-producing cultured cells and found that the extracellular HBV DNA level, reflecting HBV particle production, was decreased by treatment with inhibitors suppressed the synthesis of long-chain saturatedmore » fatty acids with little cytotoxicity. The reduced HBV DNA level was reversed when palmitic acid, which is the product of fatty acid synthase (FAS) during FABS, was used simultaneously with the inhibitor. We also observed that the amount of intracellular HBV DNA in the cells was increased by FAS inhibitor treatment, suggesting that FABS is associated with HBV particle production but not its genome replication. This suggests that FABS might be a potent target for anti-HBV drug with a mode of action different from current HBV therapy. -- Highlights: •Inhibitors of ACC1 and FAS but not SCD1 decreased production of extracellular HBV DNA. •Products of FABS, long chain fatty acids, increased production of extracellular HBV DNA. •FAS inhibitor increased intracellular levels of HBV DNA and HBcAg. •FABS was suggested to contribute to HBV particle production without significant relation with secretory pathway of the cells.« less

  11. Biosynthesis of Polyunsaturated Fatty Acids in Octopus vulgaris: Molecular Cloning and Functional Characterisation of a Stearoyl-CoA Desaturase and an Elongation of Very Long-Chain Fatty Acid 4 Protein

    PubMed Central

    Monroig, Óscar; de Llanos, Rosa; Varó, Inmaculada; Hontoria, Francisco; Tocher, Douglas R.; Puig, Sergi; Navarro, Juan C.

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C18 chain lengths. Scd was unable to desaturate 20:1n-15 (∆520:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1n-9 (∆1120:1) to ∆5,1120:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5n-3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C24) PUFAs. PMID:28335553

  12. Validation of the omega-3 fatty acid intake measured by a web-based food frequency questionnaire against omega-3 fatty acids in red blood cells in men with prostate cancer.

    PubMed

    Allaire, J; Moreel, X; Labonté, M-È; Léger, C; Caron, A; Julien, P; Lamarche, B; Fradet, V

    2015-09-01

    The objective of this study was to evaluate the ability of a web-based self-administered food frequency questionnaire (web-FFQ) to assess the omega-3 (ω-3) fatty acids (FAs) intake of men affected with prostate cancer (PCa) against a biomarker. The study presented herein is a sub-study from a phase II clinical trial. Enrolled patients afflicted with PCa were included in the sub-study analysis if the FA profiles from the red blood cell (RBC) membranes and FA intakes at baseline were both determined at the time of the data analysis (n=60). Spearman's correlation coefficients were calculated to estimate the correlations between FA intakes and their proportions in the RBC membranes. Intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were highly correlated with their respective proportions in the RBC membranes (both rs=0.593, P<0.0001). Correlation between alpha-linolenic acid (ALA) intake and its proportion in RBC was not significant (rs=0.130, P=0.332). Correlations were observed between fatty fish intake and total ω-3 FAs (rs=0.304, P=0.02), total long-chain ω-3 FAs (rs=0.290, P=0.03) and DHA (rs=0.328, P=0.01) in RBC membranes. This study has shown that the web-FFQ is an accurate tool to assess total long-chain ω-3 FAs, EPA and DHA but not ALA intake in clinical trials and epidemiological studies carried out in men with PCa.

  13. Biosynthesis of Polyunsaturated Fatty Acids in Octopus vulgaris: Molecular Cloning and Functional Characterisation of a Stearoyl-CoA Desaturase and an Elongation of Very Long-Chain Fatty Acid 4 Protein.

    PubMed

    Monroig, Óscar; de Llanos, Rosa; Varó, Inmaculada; Hontoria, Francisco; Tocher, Douglas R; Puig, Sergi; Navarro, Juan C

    2017-03-21

    Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C 18 chain lengths. Scd was unable to desaturate 20:1 n- 15 ( ∆5 20:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1 n- 9 ( ∆11 20:1) to ∆5,11 20:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5 n- 3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C 24 ) PUFAs.

  14. 2-Hexadecynoic acid inhibits plasmodial FAS-II enzymes and arrests erythrocytic and liver stage Plasmodium infections.

    PubMed

    Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H; Brun, Reto; Carballeira, Néstor M

    2010-11-01

    Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of Plasmodium yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC(50) value 6.6 μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC(50) value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescence analysis (IC(50) 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory activity against the PfFAS-II enzymes PfFabI and PfFabZ with IC(50) values of 0.38 and 0.58 μg/ml (IC(50) control drugs 14 and 30 ng/ml), respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC(50) values 3.7-31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC(50) 20.2 μg/ml), and Leishmania donovani (IC(50) values 4.1-13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature, and calculated pharmacokinetic properties suggests that 2-HDA could be a useful compound to study the interaction of fatty acids with these key P. falciparum enzymes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. 2-Hexadecynoic Acid Inhibits Plasmodial FAS-II Enzymes and Arrest Erythrocytic and Liver Stage Plasmodium Infections

    PubMed Central

    Tasdemir, Deniz; Sanabria, David; Lauinger, Ina L.; Tarun, Alice; Herman, Rob; Perozzo, Remo; Zloh, Mire; Kappe, Stefan H.; Brun, Reto; Carballeira, Néstor M.

    2010-01-01

    Acetylenic fatty acids are known to display several biological activities, but their antimalarial activity has remained unexplored. In this study, we synthesized the 2-, 5-, 6-, and 9-hexadecynoic acids (HDAs) and evaluated their in vitro activity against erythrocytic (blood) stages of Plasmodium falciparum and liver stages of P. yoelii infections. Since the type II fatty acid biosynthesis pathway (PfFAS-II) has recently been shown to be indispensable for liver stage malaria parasites, the inhibitory potential of the HDAs against multiple P. falciparum FAS-II (PfFAS-II) elongation enzymes was also evaluated. The highest antiplasmodial activity against blood stages of P. falciparum was displayed by 5-HDA (IC50 value 6.6. μg/ml), whereas the 2-HDA was the only acid arresting the growth of liver stage P. yoelii infection, in both flow cytometric assay (IC50 value 2-HDA 15.3 μg/ml, control drug atovaquone 2.5 ng/ml) and immunofluorescense analysis (IC50 2-HDA 4.88 μg/ml, control drug atovaquone 0.37 ng/ml). 2-HDA showed the best inhibitory against the PfFAS-II enzymes PfFabI and PfFabZ with IC50 values of 0.38 and 0.58 μg/ml (IC50 control drugs 14 and 30 ng/ml) respectively. Enzyme kinetics and molecular modeling studies revealed valuable insights into the binding mechanism of 2-HDA on the target enzymes. All HDAs showed in vitro activity against Trypanosoma brucei rhodesiense (IC50 values 3.7–31.7 μg/ml), Trypanosoma cruzi (only 2-HDA, IC50 20.2 μg/ml), and Leishmania donovani (IC50 values 4.1–13.4 μg/ml) with generally low or no significant toxicity on mammalian cells. This is the first study to indicate therapeutic potential of HDAs against various parasitic protozoa. It also points out that the malarial liver stage growth inhibitory effect of the 2-HDA may be promoted via PfFAS-II enzymes. The lack of cytotoxicity, lipophilic nature and calculated pharmacokinetic properties suggest that 2-HDA could be a useful compound to study the interaction of fatty acids with these key P. falciparum enzymes. PMID:20855214

  16. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus.

    PubMed

    Stenqvist, Ann-Christin; Nagaeva, Olga; Baranov, Vladimir; Mincheva-Nilsson, Lucia

    2013-12-01

    Apoptosis is crucially important in mediating immune privilege of the fetus during pregnancy. We investigated the expression and in vitro apoptotic activity of two physiologically relevant death messengers, the TNF family members Fas ligand (FasL) and TRAIL in human early and term placentas. Both molecules were intracellularly expressed, confined to the late endosomal compartment of the syncytiotrophoblast, and tightly associated to the generation and secretion of placental exosomes. Using immunoelectron microscopy, we show that FasL and TRAIL are expressed on the limiting membrane of multivesicular bodies where, by membrane invagination, intraluminal microvesicles carrying membranal bioactive FasL and TRAIL are formed and released in the extracellular space as exosomes. Analyzing exosomes secreted from placental explant cultures, to our knowledge, we demonstrate for the first time that FasL and TRAIL are clustered on the exosomal membrane as oligomerized aggregates ready to form death-inducing signaling complex. Consistently, placental FasL- and TRAIL-carrying exosomes triggered apoptosis in Jurkat T cells and activated PBMC in a dose-dependent manner. Limiting the expression of functional FasL and TRAIL to exosomes comprise a dual benefit: 1) storage of exosomal FasL and TRAIL in multivesicular bodies is protected from proteolytic cleavage and 2) upon secretion, delivery of preformed membranal death molecules by exosomes rapidly triggers apoptosis. Our results suggest that bioactive FasL- and TRAIL-carrying exosomes, able to convey apoptosis, are secreted by the placenta and tie up the immunomodulatory and protective role of human placenta to its exosome-secreting ability.

  17. Apoptosis gene expression and death receptor signaling in mitomycin-C-treated human tenon capsule fibroblasts.

    PubMed

    Crowston, Jonathan G; Chang, Lydia H; Constable, Peter H; Daniels, Julie T; Akbar, Arne N; Khaw, Peng T

    2002-03-01

    To examine the effect of mitomycin-C on the expression of apoptosis genes in human Tenon capsule fibroblasts and to evaluate whether death receptor signaling modulates mitomycin-C cytotoxicity. Bcl-2, Bax, Bcl-x, Fas (CD95) and tumor necrosis factor (TNF) receptor expression was determined by flow cytometry in control and mitomycin-C-treated Tenon fibroblasts. Fibroblast death was quantified using a lactate dehydrogenase release assay. The effect of Fas and TNF-receptor signaling was evaluated using Fas-specific antibodies and soluble TNF-alpha. Tenon fibroblasts constitutively express Bcl-2, Bax, and Bcl-x in culture. Mitomycin-C (0.4 mg/mL) induced a small but consistent increase in the expression of all three proteins. Tenon fibroblasts express low levels of Fas but are resistant to the effects of Fas-receptor ligation. Mitomycin-C (0.01-1.0 mg/mL) led to a significant increase in Fas expression at all concentrations tested (P < 0.01). Pretreatment with mitomycin-C (0.4 mg/mL) rendered fibroblasts susceptible to agonistic anti-Fas monoclonal IgM antibodies (50-500 ng/mL) and led to a further 50% reduction in viable fibroblasts at 48 hours, compared with mitomycin-C alone (P < 0.05). Antibodies that block the Fas receptor did not inhibit mitomycin-C-induced apoptosis. Mitomycin-C alters apoptosis gene expression and primes fibroblasts to the effects of Fas receptor ligation. Factors other than the level of Fas receptor expression modulate the response to Fas receptor signaling. Determining the signals that regulate fibroblast apoptosis may help to refine therapeutic strategies for switching off the subconjunctival healing response and maintaining intraocular pressure control.

  18. Circulating odd-chain saturated fatty acids were associated with arteriosclerosis among patients with diabetes, dyslipidemia, or hypertension in Sri Lanka but not Japan.

    PubMed

    Kurotani, Kayo; Karunapema, Palitha; Jayaratne, Kapila; Sato, Masao; Hayashi, Takuya; Kajio, Hiroshi; Fukuda, Shoji; Hara, Hisao; Okazaki, Osamu; Jayatilleke, Achala Upendra; Nonaka, Daisuke; Noda, Mitsuhiko; Mizoue, Tetsuya

    2018-02-01

    The differences in the morbidity and mortality of cardiovascular diseases between Sri Lankan and Japanese populations might be explained by the differences in their diet, especially fat. To test the hypothesis that the fatty acid (FA) compositions differ between Sri Lankan and Japanese populations and that high concentrations of n-3 polyunsaturated FAs and linoleic acid are associated with a low level of arteriosclerosis, the authors compared the circulating FA compositions between Sri Lankan and Japanese populations and examined the association of the circulating FA composition with arterial stiffness in each population. The study participants were patients with diabetes, dyslipidemia, or hypertension in Sri Lanka (n = 100) or Japan (n = 236). Serum FA compositions were measured by gas chromatography. Arterial stiffness was measured using the cardio-ankle vascular index (CAVI). Analysis of covariance was used to compare the FA compositions between the populations. Multiple regression was used to assess the association between each FA and CAVI levels. The concentrations of myristic, γ-linolenic, dihomo-γ-linolenic, and arachidonic acids were higher in the Sri Lankan patients than in the Japanese patients. In contrast, the concentrations of linoleic, α-linolenic, and eicosapentaenoic acids were higher in the Japanese patients than in the Sri Lankan patients. Although no associations of n-3 polyunsaturated FAs and linoleic acid with CAVI were observed in both patient populations, odd-chain saturated FAs (pentadecanoic and heptadecanoic acids) were significantly inversely associated with CAVI levels in the Sri Lankan (P for trend = .03) but not the Japanese patients. The odd-chain saturated FAs might be inversely associated with atherosclerosis in this Sri Lankan population. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer's disease: the OmegAD study.

    PubMed

    Freund Levi, Y; Vedin, I; Cederholm, T; Basun, H; Faxén Irving, G; Eriksdotter, M; Hjorth, E; Schultzberg, M; Vessby, B; Wahlund, L-O; Salem, N; Palmblad, J

    2014-04-01

    Little is known about the transfer of essential fatty acids (FAs) across the human blood-brain barrier (BBB) in adulthood. In this study, we investigated whether oral supplementation with omega-3 (n-3) FAs would change the FA profile of the cerebrospinal fluid (CSF). A total of 33 patients (18 receiving the n-3 FA supplement and 15 receiving placebo) were included in the study. These patients were participants in the double-blind, placebo-controlled randomized OmegAD study in which 204 patients with mild Alzheimer's disease (AD) received 2.3 g n-3 FA [high in docosahexaenoic acid (DHA)] or placebo daily for 6 months. CSF FA levels were related to changes in plasma FA and to CSF biomarkers of AD and inflammation. At 6 months, the n-3 FA supplement group displayed significant increases in CSF (and plasma) eicosapentaenoic acid (EPA), DHA and total n-3 FA levels (P < 0.01), whereas no changes were observed in the placebo group. Changes in CSF and plasma levels of EPA and n-3 docosapentaenoic acid were strongly correlated, in contrast to those of DHA. Changes in DHA levels in CSF were inversely correlated with CSF levels of total and phosphorylated tau, and directly correlated with soluble interleukin-1 receptor type II. Thus, the more DHA increased in CSF, the greater the change in CSF AD/inflammatory biomarkers. Oral supplementation with n-3 FAs conferred changes in the n-3 FA profile in CSF, suggesting transfer of these FAs across the BBB in adults. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  20. Reducing Isozyme Competition Increases Target Fatty Acid Accumulation in Seed Triacylglycerols of Transgenic Arabidopsis1[OPEN

    PubMed Central

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D.; Browse, John

    2015-01-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies. PMID:25739701

  1. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2 -deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  2. Free fatty acid receptors: emerging targets for treatment of diabetes and its complications

    PubMed Central

    Vangaveti, Venkat; Shashidhar, Venkatesh; Jarrod, Ghassan; Baune, Bernhard T.; Kennedy, R. Lee

    2010-01-01

    Fatty acids (FAs) are important as metabolic substrates and as structural components of biological membranes. However, they also function as signalling molecules. Recently, a series of G protein-coupled receptors (GPRs) for FAs has been described and characterized. These receptors have differing specificities for FAs of differing chain length and degree of saturation, for FA derivatives such as oleoylethanolamide, and for oxidized FAs. They are a critical component of the body's nutrient sensing apparatus, and small molecule agonists and antagonists of these receptors show considerable promise in the management of diabetes and its complications. Agonists of the long-chain free fatty acid receptors FFAR1 and GPR119 act as insulin secretagogues, both directly and by increasing incretins. Although, drugs acting at short-chain FFA receptors (FFAR2 and FFAR3) have not yet been developed, they are attractive targets as they regulate nutrient balance through effects in the intestine and adipose tissue. These include regulation of the secretion of cholecystokinin, peptide YY and leptin. Finally, GPR132 is a receptor for oxidized FAs, which may be a sensor of lipid overload and oxidative stress, and which is involved in atherosclerosis. Regulation of its signalling pathways with drugs may decrease the macrovascular risk experienced by diabetic patients. In summary, FA receptors are emerging drug targets that are involved in the regulation of nutrient status and carbohydrate tolerance, and modulators of these receptors may well figure prominently in the next generation of antidiabetic drugs. PMID:23148161

  3. Genetic variability of milk fatty acids.

    PubMed

    Arnould, V M-R; Soyeurt, H

    2009-01-01

    The milk fatty acid (FA) profile is far from the optimal fat composition in regards to human health. The natural sources of variation, such as feeding or genetics, could be used to increase the concentrations of unsaturated fatty acids. The impact of feeding is well described. However, genetic effects on the milk FA composition begin to be extensively studied. This paper summarizes the available information about the genetic variability of FAs. The greatest breed differences in FA composition are observed between Holstein and Jersey milk. Milk fat of the latter breed contains higher concentrations of saturated FAs, especially short-chain FAs. The variation of the delta-9 desaturase activity estimated from specific FA ratios could explain partly these breed differences. The choice of a specific breed seems to be a possibility to improve the nutritional quality of milk fat. Generally, the proportions of FAs in milk are more heritable than the proportions of these same FAs in fat. Heritability estimates range from 0.00 to 0.54. The presence of some single nucleotide polymorphisms could explain partly the observed individual genetic variability. The polymorphisms detected on SCD1 and DGAT1 genes influence the milk FA composition. The SCD1 V allele increases the unsaturation of C16 and C18. The DGAT1 A allele is related to the unsaturation of C18. So, a combination of the molecular and quantitative approaches should be used to develop tools helping farmers in the selection of their animals to improve the nutritional quality of the produced milk fat.

  4. Fatty acid composition in native bees: Associations with thermal and feeding ecology.

    PubMed

    Giri, Susma; Rule, Daniel C; Dillon, Michael E

    2018-04-01

    Fatty acid (FA) composition of lipids plays a crucial role in the functioning of lipid-containing structures in organisms and may be affected by the temperature an organism experiences, as well as its diet. We compared FA composition among four bee genera: Andrena, Bombus, Megachile, and Osmia which differ in their thermal ecology and diet. Fatty acid methyl esters (FAME) were prepared by direct transesterification with KOH and analyzed using gas-liquid chromatography with a flame ionization detector. Sixteen total FAs ranging in chain length from eight to 22 carbon atoms were identified. Linear discriminant analysis separated the bees based on their FA composition. Andrena was characterized by relatively high concentrations of polyunsaturated FAs, Bombus by high monounsaturated FAs and Megachilids (Megachile and Osmia) by relatively high amounts of saturated FAs. These differences in FA composition may in part be explained by variation in the diets of these bees. Because tongue (proboscis) length may be used as a proxy for the types of flowers bees may visit for nectar and pollen, we compared FA composition among Bombus that differed in proboscis length (but have similar thermal ecology). A clear separation in FA composition within Bombus with varying proboscis lengths was found using linear discriminant analysis. Further, comparing the relationship between each genus by cluster analysis revealed aggregations by genus that were not completely separated, suggesting potential overlap in dietary acquisition of FAs. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Regulation of Connexin-Based Channels by Fatty Acids

    PubMed Central

    Puebla, Carlos; Retamal, Mauricio A.; Acuña, Rodrigo; Sáez, Juan C.

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood. PMID:28174541

  6. Anti-Fas conjugated hyaluronic acid microsphere gels for neural stem cell delivery.

    PubMed

    Shendi, Dalia; Albrecht, Dirk R; Jain, Anjana

    2017-02-01

    Central nervous system (CNS) injuries and diseases result in neuronal damage and loss of function. Transplantation of neural stem cells (NSCs) has been shown to improve locomotor function after transplantation. However, due to the immune and inflammatory response at the injury site, the survival rate of the engrafted cells is low. Engrafted cell viability has been shown to increase when transplanted within a hydrogel. Hyaluronic acid (HA) hydrogels have natural anti-inflammatory properties and the backbone can be modified to introduce bioactive agents, such as anti-Fas, which we have previously shown to promote NSC survival while suppressing immune cell activity in bulk hydrogels in vitro. Although bulk HA hydrogels have shown to promote stem cell survival, microsphere gels for NSC encapsulation and delivery may have additional advantages. In this study, a flow-focusing microfluidic device was used to fabricate either vinyl sulfone-modified HA (VS-HA) or anti-Fas-conjugated HA (anti-Fas HA) microsphere gels encapsulated with NSCs. The majority of encapsulated NSCs remained viable for at least 24 h in the VS-HA and anti-Fas HA microsphere gels. Moreover, T-cells cultured in suspension with the anti-Fas HA microsphere gels had reduced viability after contact with the microsphere gels compared to the media control and soluble anti-Fas conditions. This approach can be adapted to encapsulate various cell types for therapeutic strategies in other physiological systems in order to increase survival by reducing the immune response. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 608-618, 2017. © 2016 Wiley Periodicals, Inc.

  7. FasL Mediates T-Cell Eradication of Tumor Cells Presenting Low Levels of Antigens | Center for Cancer Research

    Cancer.gov

    One approach to cancer immunotherapy, as opposed to therapeutic vaccination, is the transfusion of large numbers of tumor-specific killer T cells (cytotoxic T cells or CTLs) into patients. The body’s own defense killer T cells are a subgroup of T lymphocytes (a type of white blood cells) that are capable of inducing death in tumor cells. CTLs can cause the death of target cells either by releasing granules containing toxic molecules including perforin, or by producing a membrane protein called Fas ligand (FasL) which on interaction with the tumor cell results in cell death.

  8. Molecular mechanisms of apoptosis induction by 2-dodecylcyclobutanone, a radiolytic product of palmitic acid, in human lymphoma U937 cells.

    PubMed

    Yu, Da-Yong; Zhao, Qing-Li; Furuta, Masakazu; Todoriki, Setsuko; Izumi, Keisuke; Yamakage, Kohji; Matsumoto, Kozo; Nomura, Takaharu; Kondo, Takashi

    2012-06-01

    The irradiation of fat-containing food forms 2-dodecylcyclobutanone (2-DCB) from palmitic acid (PA). In this study, we investigated whether 2-DCB and PA induce apoptosis in human lymphoma U937 cells. We found that cell viability decreased by 2-DCB and apoptosis was induced by 2-DCB and PA. 2-DCB and PA significantly enhanced the formation of intracellular reactive oxygen species (ROS). Apoptosis induced by 2-DCB and PA was strongly prevented by an antioxidant, N-acetyl-L: -cysteine. The treatment with 2-DCB and PA resulted in the loss of mitochondrial membrane potential, and Fas, caspase-8 and caspase-3 activation. Pretreatment with a pan-caspase inhibitor (z-VAD) significantly inhibited apoptosis induced by 2-DCB and PA. Moreover, 2-DCB and PA also induced Bax up-regulation, the reduction in Bcl-2 expression level, Bid cleavage and the release of cytochrome c from the mitochondria to the cytosol. In addition, an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) was observed after the treatment with 2-DCB and PA. Our results indicated that intracellular ROS generation, the modulation of the Fas-mitochondrion-caspase-dependent pathway and the increase in [Ca(2+)](i) involved in apoptosis are induced by 2-DCB and PA in U937 cells.

  9. Abnormal octadeca-carbon fatty acids distribution in erythrocyte membrane phospholipids of patients with gastrointestinal tumor.

    PubMed

    Lin, Shaohui; Li, Tianyu; Liu, Xifang; Wei, Shihu; Liu, Zequn; Hu, Shimin; Liu, Yali; Tan, Hongzhuan

    2017-06-01

    Fatty acid (FA) composition is closely associated with tumorigenesis and neoplasm metastasis. This study was designed to investigate the differences of phospholipid FA (PLFA) composition in erythrocyte and platelet cell membranes in both gastrointestinal (GI) tumor patients and healthy controls.In this prospective study, 50 GI tumor patients and 33 healthy volunteers were recruited between the years 2013 and 2015. Blood samples were collected from healthy volunteers and patients, and FA composition was assessed using gas chromatography-mass spectrometer (GC-MS), and data were analyzed by multifactor regression analysis.Compared with healthy controls, the percentages of C18:0 (stearic acid, SA), C22:6 (docosahexaenoic acid, DHA), and n-3 polyunsaturated FAs (n-3 PUFA) were significantly increased, while C18:1 (oleic acid, OA), C18:2 (linoleic acid, LA), and monounsaturated FAs (MUFA) decreased in erythrocyte membranes of GI tumor patients. Also, patient's platelets revealed higher levels of C20:4 (arachidonic acid, AA) and DHA, and lower levels of OA and MUFA.Our study displayed a remarkable change in the FA composition of erythrocyte and platelet membranes in GI tumor patients as compared with healthy controls. The octadeca-carbon FAs (SA, OA, and LA) in erythrocyte membranes could serve as a potential indicator for GI tumor detection.

  10. Short-chain fatty acid sensing in rat duodenum

    PubMed Central

    Akiba, Yasutada; Inoue, Takuya; Kaji, Izumi; Higashiyama, Masaaki; Narimatsu, Kazuyuki; Iwamoto, Ken-ichi; Watanabe, Masahiko; Guth, Paul H; Engel, Eli; Kuwahara, Atsukazu; Kaunitz, Jonathan D

    2015-01-01

    Intraduodenal fatty acids (FA) and bacterial overgrowth, which generate short-chain FAs (SCFAs), have been implicated in the generation of functional dyspepsia symptoms. We studied the mechanisms by which luminal SCFA perfusion affects duodenal HCO3− secretion (DBS), a measure of mucosal neurohumoral activation. Free fatty acid receptor (FFAR) 1 (FFA1), which binds long-chain FA (LCFA), and SCFA receptors FFA2 and FFA3 were immunolocalised to duodenal enteroendocrine cells. FFA3 colocalised with glucagon-like peptide (GLP)-1, whereas FFA2 colocalised with 5-HT. Luminal perfusion of the SCFA acetate or propionate increased DBS, enhanced by dipeptidyl peptidase-IV (DPPIV) inhibition, at the same time as increasing GLP-2 portal blood concentrations. Acetate-induced DBS was partially inhibited by monocarboxylate/HCO3− exchanger inhibition without affecting GLP-2 release, implicating acetate absorption in the partial mediation of DBS. A selective FFA2 agonist dose-dependently increased DBS, unaffected by DPPIV inhibition or by cholecystokinin or 5-HT3 receptor antagonists, but was inhibited by atropine and a 5-HT4 antagonist. By contrast, a selective FFA1 agonist increased DBS accompanied by GLP-2 release, enhanced by DPPIV inhibition and inhibited by a GLP-2 receptor antagonist. Activation of FFA1 by LCFA and presumably FFA3 by SCFA increased DBS via GLP-2 release, whereas FFA2 activation stimulated DBS via muscarinic and 5-HT4 receptor activation. SCFA/HCO3− exchange also appears to be present in the duodenum. The presence of duodenal fatty acid sensing receptors that signal hormone release and possibly signal neural activation may be implicated in the pathogenesis of functional dyspepsia. PMID:25433076

  11. Nutrient-dependent phosphorylation channels lipid synthesis to regulate PPARα

    PubMed Central

    Jensen-Urstad, Anne P. L.; Song, Haowei; Lodhi, Irfan J.; Funai, Katsuhiko; Yin, Li; Coleman, Trey; Semenkovich, Clay F.

    2013-01-01

    Peroxisome proliferator-activated receptor (PPAR)α is a nuclear receptor that coordinates liver metabolism during fasting. Fatty acid synthase (FAS) is an enzyme that stores excess calories as fat during feeding, but it also activates hepatic PPARα by promoting synthesis of an endogenous ligand. Here we show that the mechanism underlying this paradoxical relationship involves the differential regulation of FAS in at least two distinct subcellular pools: cytoplasmic and membrane-associated. In mouse liver and cultured hepatoma cells, the ratio of cytoplasmic to membrane FAS-specific activity was increased with fasting, indicating higher cytoplasmic FAS activity under conditions associated with PPARα activation. This effect was due to a nutrient-dependent and compartment-selective covalent modification of FAS. Cytoplasmic FAS was preferentially phosphorylated during feeding or insulin treatment at Thr-1029 and Thr-1033, which flank a dehydratase domain catalytic residue. Mutating these sites to alanines promoted PPARα target gene expression. Rapamycin-induced inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1), a mediator of the feeding/insulin signal to induce lipogenesis, reduced FAS phosphorylation, increased cytoplasmic FAS enzyme activity, and increased PPARα target gene expression. Rapamycin-mediated induction of the same gene was abrogated with FAS knockdown. These findings suggest that hepatic FAS channels lipid synthesis through specific subcellular compartments that allow differential gene expression based on nutritional status. PMID:23585690

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onopiuk, Marta; Wierzbicka, Katarzyna; Brutkowski, Wojciech

    Activation of T-cells triggers store-operated Ca{sup 2+} entry, which begins a signaling cascade leading to induction of appropriate gene expression and eventually lymphocyte proliferation and differentiation. The simultaneous enhancement of Fas ligand gene expression in activated cells allows the immune response to be limited by committing the activated cells to apoptosis. In apoptotic cells the store-operated calcium entry is significantly inhibited. It has been documented that moderate activation of Fas receptor may cause reversible inhibition of store-operated channels by ceramide released from hydrolyzed sphingomyelin. Here we show that activation of Fas receptor in T-cells results in caspase-dependent decrease of cellularmore » STIM1 and Orai1 protein content. This effect may be responsible for the substantial inhibition of Ca{sup 2+} entry into Jurkat cells undergoing apoptosis. In turn, this inhibition might prevent overloading of cells with calcium and protect them against necrosis. -- Research highlights: {yields} Fas activation reduces STIM1 and Orai1 protein content in caspase dependent manner. {yields} Fas activation partially reduces mitochondrial potential in caspase dependent manner. {yields} Fas stimulation inhibits of store-operated Ca{sup 2+} entry in caspase dependent manner. {yields} Inhibition of Ca{sup 2+} entry in apoptotic cells may protect them from secondary necrosis.« less

  13. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation.

    PubMed

    Kajimoto, Masaki; Ledee, Dolena R; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G; Portman, Michael A

    2014-01-01

    Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. METHODS AND RESULTS: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon ((13)C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by(13)C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  14. Composition of fatty acids in the Varroa destructor mites and their hosts, Apis mellifera drone-prepupae.

    PubMed

    Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna

    2015-01-01

    The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones.

  15. Determination of fatty acids in bio-samples based on the pre-column fluorescence derivatization with 1,3,5,7-tetramethyl-8-butyrethylenediamine-difluoroboradiaza-s-indacene by high performance liquid chromatography.

    PubMed

    Wang, Fei-Hua; Xiong, Xu-Jie; Guo, Xiao-Feng; Wang, Hong; Zhang, Hua-Shan

    2013-05-24

    1,3,5,7-Tetramethyl-8-butyrethylenediamine-difluoroboradiaza-s-indacene (TMBB-EDAN) has been designed and synthesized as a highly fluorescent labeling reagent for carboxylic acids. By using TMBB-EDAN, a sensitive and rapid method based on high performance liquid chromatography-fluorescence detection for the determination of twelve fatty acids (FAs) in bio-samples has been developed. Under optimized conditions, these FAs were tagged with TMBB-EDAN in the presence of 1-ethyl-3-(3-dimethyla-minopropyl) carbodiamide at 20°C for 30min and then the baseline separation was achieved on a C18 column with a linear gradient elution in 26min. With fluorescence detection at λex/λem=490nm/510nm, the linear ranges of FAs were from 3.0 to 300nM and the detection limits with a signal-to-noise ratio of 3 were in the 0.2-0.4nM range. The proposed method offers advantages of milder derivatization condition and much better sensitivity for the determination of FAs, when compared to the reported fluorescence derivatization-based methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Seon-Hee; Lim, Sung-Chul

    2006-05-01

    Although reactive oxygen species (ROS) have been implicated in cadmium (Cd)-induced hepatotoxicity, the role of ROS in this pathway remains unclear. Therefore, we attempted to determine the molecular mechanisms relevant to Cd-induced cell death in HepG2 cells. Cd was found to induce apoptosis in the HepG2 cells in a time- and dose-dependent fashion, as confirmed by DNA fragmentation analysis and TUNEL staining. In the early stages, both rapid and transient ROS generation triggered apoptosis via Fas activation and subsequent caspase-8-dependent Bid cleavage, as well as by calpain-mediated mitochondrial Bax cleavage. The timing of Bid activation was coincided with the timingmore » at which the mitochondrial transmembrane potential (MMP) collapsed as well as the cytochrome c (Cyt c) released into the cytosol. Furthermore, mitochondrial permeability transition (MPT) pore inhibitors, such as cyclosporin A (CsA) and bongkrekic acid (BA), did not block Cd-induced ROS generation, MMP collapse and Cyt c release. N-acetylcysteine (NAC) pretreatment resulted in the complete inhibition of the Cd-induced apoptosis via catalase upregulation and subsequent Fas downregulation. NAC treatment also completely blocked the Cd-induced intracellular ROS generation, MMP collapse and Cyt c release, indicating that Cd-induced mitochondrial dysfunction may be regulated indirectly by ROS-mediated signaling pathway. Taken together, a rapid and transient ROS generation by Cd triggers apoptosis via caspase-dependent pathway and subsequent mitochondrial pathway. NAC inhibits Cd-induced apoptosis through the blocking of ROS generation as well as the catalase upregulation.« less

  17. Spatio-temporal variations in the composition of organic matter in surface sediments of a mangrove receiving shrimp farm effluents (New Caledonia).

    PubMed

    Aschenbroich, Adélaïde; Marchand, Cyril; Molnar, Nathalie; Deborde, Jonathan; Hubas, Cédric; Rybarczyk, Hervé; Meziane, Tarik

    2015-04-15

    In order to investigate spatio-temporal variations in the composition and origin of the benthic organic matter (OM) at the sediment surface in mangrove receiving shrimp farm effluents, fatty acid (FA) biomarkers, natural stable isotopes (δ(13)C and δ(15)N), C:N ratios and chlorophyll-a (chl-a) concentrations were determined during the active and the non-active period of the farm. Fatty acid compositions in surface sediments within the mangrove forest indicated that organic matter inputs varied along the year as a result of farm activity. Effluents were the source of fresh particulate organic matter for the mangrove, as evidenced by the unsaturated fatty acid (UFA) distribution. The anthropogenic MUFA 18:1ω9 was not only accumulated at the sediment surface in some parts of the mangrove, but was also exported to the seafront. Direct release of bacteria and enhanced in situ production of fungi, as revealed by specific FAs, stimulated mangrove litter decomposition under effluent runoff condition. Also, microalgae released from ponds contributed to maintain high benthic chl-a concentrations in mangrove sediments in winter and to a shift in microphytobenthic community assemblage. Primary production was high whether the farm released effluent or not which questioned the temporary effect of shrimp farm effluent on benthic microalgae dynamic. This study outlined that mangrove benthic organic matter was qualitatively and quantitatively affected by shrimp farm effluent release and that responses to environmental condition changes likely depended on mangrove stand characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Fatty Acid and Proximate Composition of Bee Bread.

    PubMed

    Kaplan, Muammer; Karaoglu, Öznur; Eroglu, Nazife; Silici, Sibel

    2016-12-01

    Palynological spectrum, proximate and fatty acid (FA) composition of eight bee bread samples of different botanical origins were examined and significant variations were observed. The samples were all identified as monofloral, namely Castanea sativa (94.4%), Trifolium spp. (85.6%), Gossypium hirsutum (66.2%), Citrus spp. (61.4%) and Helianthus annuus (45.4%). Each had moisture content between 11.4 and 15.9%, ash between 1.9 and 2.54%, fat between 5.9 and 11.5%, and protein between 14.8 and 24.3%. A total of 37 FAs were determined with most abundant being (9Z,12Z,15Z)-octadeca-9,12,15-trienoic, (9Z,12Z)- -octadeca-9,12-dienoic, hexadecanoic, (Z)-octadec-9-enoic, (Z)-icos-11-enoic and octadecanoic acids. Among all, cotton bee bread contained the highest level of ω-3 FAs, i.e. 41.3%. Unsaturated to saturated FA ratio ranged between 1.38 and 2.39, indicating that the bee bread can be a good source of unsaturated FAs.

  19. Fatty Acid and Proximate Composition of Bee Bread

    PubMed Central

    Kaplan, Muammer; Karaoglu, Öznur; Eroglu, Nazife

    2016-01-01

    Summary Palynological spectrum, proximate and fatty acid (FA) composition of eight bee bread samples of different botanical origins were examined and significant variations were observed. The samples were all identified as monofloral, namely Castanea sativa (94.4%), Trifolium spp. (85.6%), Gossypium hirsutum (66.2%), Citrus spp. (61.4%) and Helianthus annuus (45.4%). Each had moisture content between 11.4 and 15.9%, ash between 1.9 and 2.54%, fat between 5.9 and 11.5%, and protein between 14.8 and 24.3%. A total of 37 FAs were determined with most abundant being (9Z,12Z,15Z)-octadeca-9,12,15-trienoic, (9Z,12Z)- -octadeca-9,12-dienoic, hexadecanoic, (Z)-octadec-9-enoic, (Z)-icos-11-enoic and octadecanoic acids. Among all, cotton bee bread contained the highest level of ω-3 FAs, i.e. 41.3%. Unsaturated to saturated FA ratio ranged between 1.38 and 2.39, indicating that the bee bread can be a good source of unsaturated FAs. PMID:28115909

  20. A novel missense substitution (Val1483Ile) in the fatty acid synthase gene (FAS) is associated with percentage of body fat and substrate oxidation rates in nondiabetic Pima Indians.

    PubMed

    Kovacs, Peter; Harper, Inge; Hanson, Robert L; Infante, Aniello M; Bogardus, Clifton; Tataranni, P Antonio; Baier, Leslie J

    2004-07-01

    Inhibition of fatty acid synthase (FAS) induces a rapid decline in fat stores in mice, suggesting a role for this enzyme in energy homeostasis. The human FAS gene (FAS) maps to chromosome 17q25, a region previously shown to have suggestive linkage to adiposity in a genome-wide linkage scan for genetic determinants of obesity in Pima Indians. To investigate the potential role of FAS in the pathophysiology of human obesity, the FAS gene was sequenced and 13 single nucleotide polymorphisms (SNPs) were identified. Five representative SNPs were genotyped in 216 full-blooded, nondiabetic Pima Indians for association analyses. A Val1483Ile polymorphism (GTC to ATC; allele frequency of A = 0.10) was associated with percentage of body fat and 24-h substrate oxidation rates measured in a respiratory chamber. Compared with homozygotes for the Val variant, subjects with Ile/x had a lower mean percentage of body fat (30 +/- 1 vs. 33 +/- 1%, P = 0.002; adjusted for age, sex, and family membership) and a lower mean carbohydrate oxidation rate (983 +/- 41 vs. 1,094 +/- 19 kcal/day, P = 0.03), which resulted in a lower mean 24-h respiratory quotient (0.845 +/- 0.01 vs. 0.850 +/- 0.01 kcal/day, P = 0.04; both adjusted for age, sex, family membership, percentage of body fat, and energy balance). Our findings indicate that the Val1483Ile substitution in FAS is protective against obesity in Pima Indians, an effect possibly explained by the role of this gene in the regulation of substrate oxidation.

  1. The effect of dietary carbohydrate on genes for fatty acid synthase and inflammatory cytokines in adipose tissues from lean and obese subjects.

    PubMed

    Hudgins, Lisa C; Baday, Aline; Hellerstein, Marc K; Parker, Thomas S; Levine, Daniel M; Seidman, Cynthia E; Neese, Richard A; Tremaroli, Jolanta D; Hirsch, Jules

    2008-04-01

    Hepatic de novo lipogenesis (DNL) is markedly stimulated in humans by low-fat diets enriched in simple sugars. However, the dietary responsiveness of the key enzyme controlling DNL in human adipose tissue, fatty acid synthase (FAS), is uncertain. Adipose tissue mRNA for FAS is increased in lean and obese subjects when hepatic DNL is elevated by a eucaloric, low-fat, high-sugar diet. Twelve lean and seven obese volunteers were given two eucaloric diets (10% vs. 30% fat; 75% vs. 55% carbohydrate; sugar/starch 60/40) each for 2 weeks by a random-order cross-over design. FAS mRNA in abdominal and gluteal adipose tissues was compared to hepatic DNL measured in serum by isotopic and nonisotopic methods. Adipose tissue mRNA for tumor necrosis factor-alpha and IL-6, which are inflammatory cytokines that modulate DNL, was also assayed. The low-fat high-sugar diet induced a 4-fold increase in maximum hepatic DNL (P<.001) but only a 1.3-fold increase in adipose tissue FAS mRNA (P=.029) and no change in cytokine mRNA. There was a borderline significant positive correlation between changes in FAS mRNA and hepatic DNL (P=.039). Compared to lean subjects, obese subjects had lower levels of FAS mRNA and higher levels of cytokine mRNA (P<.001). The results suggest that key elements of human adipose tissue DNL are less responsive to dietary carbohydrate than is hepatic DNL and may be regulated by diet-independent factors. Irrespective of diet, there is reduced expression of the FAS gene and increased expression of cytokine genes in adipose tissues of obese subjects.

  2. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    PubMed

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  3. Serum fatty acid profile in psoriasis and its comorbidity.

    PubMed

    Myśliwiec, Hanna; Baran, Anna; Harasim-Symbor, Ewa; Myśliwiec, Piotr; Milewska, Anna Justyna; Chabowski, Adrian; Flisiak, Iwona

    2017-07-01

    Psoriasis is a chronic inflammatory skin disease that is accompanied by metabolic disturbances and cardio-metabolic disorders. Fatty acids (FAs) might be a link between psoriasis and its comorbidity. The aim of the study was to evaluate serum concentrations of FAs and to investigate their association with the disease activity, markers of inflammation and possible involvement in psoriatic comorbidity: obesity, type 2 diabetes and hypertension. We measured 14 total serum fatty acids content and composition by gas-liquid chromatography and flame-ionization detector after direct in situ transesterification in 85 patients with exacerbated plaque psoriasis and in 32 healthy controls. FAs were grouped according to their biologic properties to saturated FA (SFA), unsaturated FA (UFA), monounsaturated FA (MUFA), n-3 polyunsaturated FA (n-3 PUFA) and n-6 PUFA. Generally, patients characteristic included: Psoriasis Area and Severity Index (PASI), Body Mass Index, inflammatory and biochemical markers, lipid profile and presence of psoriatic comorbidity. We have observed highly abnormal FAs pattern in psoriatic patients both with and without obesity compared to the control group. We have demonstrated association of PASI with low levels of circulating DHA, n-3 PUFA (p = 0.044 and p = 0.048, respectively) and high percent of MUFA (p = 0.024) in the non-obese psoriatic group. The SFA/UFA ratio increased with the duration of the disease (p = 0.03) in all psoriatic patients. These findings indicate abnormal FAs profile in psoriasis which may reflect metabolic disturbances and might play a role in the psoriatic comorbidity.

  4. n-3 Fatty Acids Attenuate the Risk of Diabetes Associated With Elevated Serum Nonesterified Fatty Acids: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Steffen, Brian T.; Steffen, Lyn M.; Zhou, Xia; Ouyang, Pamela; Weir, Natalie L.

    2015-01-01

    OBJECTIVE Chronically high nonesterified fatty acids (NEFAs) are a marker of metabolic dysfunction and likely increase risk of type 2 diabetes. By comparison, n-3 fatty acids (FAs) have been shown to have various health benefits and may protect against disease development. In 5,697 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we examined whether serum levels of NEFAs relate to risk of incident type 2 diabetes and further tested whether plasma n-3 FA levels may interact with this relation. RESEARCH DESIGN AND METHODS NEFAs were measured in fasting serum using an enzymatic colorimetric assay and phospholipid n-3 FAs eicosapentaenoic and docosahexaenoic acids were determined in plasma through gas chromatography-flame ionization detection in 5,697 MESA participants. Cox proportional hazards regression evaluated the association between NEFA levels and incident type 2 diabetes and whether plasma n-3 FAs modified this association adjusting for age, sex, race, education, field center, smoking, and alcohol use. RESULTS Over a mean 11.4 years of the study period, higher diabetes incidence was found across successive NEFA quartiles (Q) (hazard ratio [95% CI]): Q1, 1.0; Q2, 1.35 (1.07, 1.71); Q3, 1.58 (1.24, 2.00); and Q4, 1.86 (1.45, 2.38) (Ptrend < 0.001). A significant interaction of n-3 FAs on the relation between NEFAs and type 2 diabetes was also observed (Pinteraction = 0.03). For individuals with lower n-3 levels (<75th percentile), a higher risk of type 2 diabetes was observed across quartiles of NEFAs: Q1, 1.0; Q2, 1.41 (1.07, 1.84); Q3, 1.77 (1.35, 2.31); and Q4, 2.18 (1.65, 2.88) (Ptrend < 0.001). No significant associations were observed in those with n-3 FAs ≥75th percentile (Ptrend = 0.54). CONCLUSIONS NEFAs are a marker of type 2 diabetes and may have clinical utility for detecting risk of its development. The modifying influence of n-3 FAs suggests a protective effect against disease and/or metabolic dysfunction related to NEFAs and requires further study. PMID:25573885

  5. n-3 Fatty acids attenuate the risk of diabetes associated with elevated serum nonesterified fatty acids: the multi-ethnic study of atherosclerosis.

    PubMed

    Steffen, Brian T; Steffen, Lyn M; Zhou, Xia; Ouyang, Pamela; Weir, Natalie L; Tsai, Michael Y

    2015-04-01

    Chronically high nonesterified fatty acids (NEFAs) are a marker of metabolic dysfunction and likely increase risk of type 2 diabetes. By comparison, n-3 fatty acids (FAs) have been shown to have various health benefits and may protect against disease development. In 5,697 participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we examined whether serum levels of NEFAs relate to risk of incident type 2 diabetes and further tested whether plasma n-3 FA levels may interact with this relation. NEFAs were measured in fasting serum using an enzymatic colorimetric assay and phospholipid n-3 FAs eicosapentaenoic and docosahexaenoic acids were determined in plasma through gas chromatography-flame ionization detection in 5,697 MESA participants. Cox proportional hazards regression evaluated the association between NEFA levels and incident type 2 diabetes and whether plasma n-3 FAs modified this association adjusting for age, sex, race, education, field center, smoking, and alcohol use. Over a mean 11.4 years of the study period, higher diabetes incidence was found across successive NEFA quartiles (Q) (hazard ratio [95% CI]): Q1, 1.0; Q2, 1.35 (1.07, 1.71); Q3, 1.58 (1.24, 2.00); and Q4, 1.86 (1.45, 2.38) (P(trend) < 0.001). A significant interaction of n-3 FAs on the relation between NEFAs and type 2 diabetes was also observed (P(interaction) = 0.03). For individuals with lower n-3 levels (<75th percentile), a higher risk of type 2 diabetes was observed across quartiles of NEFAs: Q1, 1.0; Q2, 1.41 (1.07, 1.84); Q3, 1.77 (1.35, 2.31); and Q4, 2.18 (1.65, 2.88) (P(trend) < 0.001). No significant associations were observed in those with n-3 FAs ≥ 75th percentile (P(trend) = 0.54). NEFAs are a marker of type 2 diabetes and may have clinical utility for detecting risk of its development. The modifying influence of n-3 FAs suggests a protective effect against disease and/or metabolic dysfunction related to NEFAs and requires further study. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Hydroxy fatty acids in fresh snow samples from northern Japan: long-range atmospheric transport of Gram-negative bacteria by Asian winter monsoon

    NASA Astrophysics Data System (ADS)

    Tyagi, P.; Yamamoto, S.; Kawamura, K.

    2015-08-01

    Hydroxy fatty acids (FAs) in fresh snow from Sapporo, one of the heaviest snowfall regions in the world, have been studied to ascertain the airborne bacterial endotoxin concentrations and their biomass. The presence of β-hydroxy FAs (C9-C28), constituents of Gram-negative bacteria (GNB), suggests long-range transport of soil microbes. Likewise, the occurrence of α- and ω-hydroxy FAs (C9-C30 and C9-C28, respectively) in snow reveals their contribution from epicuticular waxes and soil microorganisms. Estimated endotoxin and GNB mass can aid in assessing their possible impacts on the diversity and functioning of aquatic and terrestrial ecosystems, as well as lethal effects on pedestrians through dispersal of microbes. Air mass back trajectories together with hydroxy FAs unveil their sources from Siberia, Russian Far East and North China by the Asian monsoon. This study highlights the role of fresh snow that reduces the human health risk of GNB and endotoxin by scavenging from the air.

  7. Hydroxy fatty acids in fresh snow samples from northern Japan: long-range atmospheric transport of Gram-negative bacteria by Asian winter monsoon

    NASA Astrophysics Data System (ADS)

    Tyagi, P.; Yamamoto, S.; Kawamura, K.

    2015-12-01

    Hydroxy fatty acids (FAs) in fresh snow from Sapporo, one of the heaviest snowfall regions in the world, have been studied to ascertain the airborne bacterial endotoxin concentrations and their biomass. The presence of β-hydroxy FAs (C9-C28), constituents of the Gram-negative bacterium (GNB), suggests long-range transport of soil microbes. Likewise, the occurrence of α- and ω-hydroxy FAs (C9-C30 and C9-C28, respectively) in snow reveals their contribution from epicuticular waxes and soil microorganisms. Estimated endotoxin and GNB mass can aid in assessing their possible impacts on the diversity and functioning of aquatic and terrestrial ecosystems, as well as lethal effects on pedestrians through dispersal of microbes. Air mass back trajectories together with hydroxy FAs reveal their sources from Siberia, the Russian Far East and northern China by the Asian monsoon. This study highlights the role of fresh snow that reduces the human health risk of GNB and endotoxin by the scavenging from air.

  8. Phase composition of lipoprotein SM/cholesterol/PtdCho affects FA specificity of sPLA2s.

    PubMed

    Kuksis, Arnis; Pruzanski, Waldemar

    2008-10-01

    We have previously reported preferential release of polyunsaturated FAs during hydrolysis of lipoprotein phosphatidylcholine (PtdCho) by group X secretory phospholipase A2 (sPLA2) and preferential release of oligounsaturated FAs during hydrolysis of lipoprotein PtdCho by group V sPLA2, but the mechanism of this selectivity has remained unknown. We now show that the rate and specificity of hydrolysis are affected by relative increases in endogenous SM and free cholesterol (FC) during the lipase digestion. The highest preference for arachidonate release from LDL and HDL by group X sPLA2 was observed for residual SM/PtdCho molar ratio of 1.2 and 0.4, compared with the respective starting ratios of 0.4 and 0.2, as measured by liquid chromatography/electrospray ionization-mass spectrometry. Group V sPLA2 showed preferential release of linoleate from LDL and HDL at SM/PtdCho ratio 1.5 and 0.6, respectively. We have attributed the change in FA specificity to segregation of molecular species of PtdCho and of sPLA2s between disordered and ordered SM/FC/PtdCho lipid phases. The increases in SM and FC during digestion with group IIA sPLA2 were more limited, and a preferential hydrolysis of any FAs was not observed. The significance of SM and FC SM and FC accumulation during sPLA2 hydrolysis of lipoprotein PtdCho has been previously overlooked.

  9. Usefulness of ω-3 fatty acid supplementation in addition to mesalazine in maintaining remission in pediatric Crohn's disease: A double-blind, randomized, placebo-controlled study

    PubMed Central

    Romano, C; Cucchiara, S; Barabino, A; Annese, V; Sferlazzas, C; Diseases, SIGENP Italian Study Group of Pediatric Inflammatory Bowel

    2005-01-01

    AIM: To assess the value of long-chain ω-3 fatty acids (FAs) supplementation in addition to amino-salicylic-acid (5-ASA) in pediatric patients with Crohn's disease (CD). METHODS: Thirty-eight patients (20 males and 18 females, mean age 10.13 years, range 5-16 years) with CD in remission were randomized into two groups and treated for 12 mo. Group I (18 patients) received 5-ASA (50 mg/kg/d)+ω-3 FAs as triglycerides in gastro-resistant capsules, 3 g/d (eicosapentanoic acid, EPA, 400 mg/g, docosahexaenoic acid, DHA, 200 mg/g). Group II (20 patients) received 5-ASA (50 mg/kg/d)+olive oil placebo capsules. Patients were evaluated for fatty acid incorporation in red blood cell membranes by gas chromatography at baseline 6 and 12 mo after the treatment. RESULTS: The number of patients who relapsed at 1 year was significantly lower in group I than in group II (P<0.001). Patients in group I had a significant increase in the incorporation of EPA and DHA (P<0.001) and a decrease in the presence of arachidonic acids. CONCLUSION: Enteric-coated ω-3 FAs in addition to treatment with 5-ASA are effective in maintaining remission of pediatric CD. PMID:16437657

  10. Vitamin A, folate, and choline as a possible preventive intervention to fetal alcohol syndrome.

    PubMed

    Ballard, Mark S; Sun, Muxin; Ko, Jenny

    2012-04-01

    It is recognized that alcohol consumption during pregnancy is associated with fetal alcohol syndrome (FAS). Alcohol can trigger a pattern of neurodegeneration in rat brains similar to other known gamma-aminobutyric acid (GABA) specific agonists. However this does not seem to explain FAS entirely, as impoverished care-giving environments have been shown to increase the risk of FAS. Individuals living under the poverty level are at risk for micronutrient deficiencies due to insufficient intake. In particular, three nutrients commonly found to be deficient are folate, choline and vitamin A. There is evidence to suggest that ethanol alone may not explain the entire spectrum of anomalies seen in individuals with FAS. It is hypothesized that FAS may be caused more by the nutritional deficiencies that are exacerbated by alcohol than by direct alcoholic neurotoxicity. It is known that ethanol inhibits folate, choline, and vitamin A/retinoic acid metabolism at multiple steps. Additionally, mice exposed to ethanol demonstrated epigenetic changes, or variations in the methylation of DNA to control gene expression. Folate is important in the production of methyl groups, which are subsequently used to create and methylate DNA. Choline (which is metabolized to acetylcholine) is important in neurotransmission and neurodevelopment. It is also involved in an alternative pathway in the production of methyl groups. In fact a study by Thomas et al. in 2009 found that nutritional supplementation with choline in rats exposed to ethanol in utero almost completely mitigated the degenerative effects of ethanol on development and behaviour. Lastly, vitamin A and retinoic acid metabolism is associated with the regulation of one sixth of the entire proteome. Thus supplementation of folate, choline and vitamin A to mothers may mitigate the effects of the alcohol and reduce the severity or prevalence of FAS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Potential of fly ash for neutralisation of acid mine drainage.

    PubMed

    Qureshi, Asif; Jia, Yu; Maurice, Christian; Öhlander, Björn

    2016-09-01

    Lignite (PK), bituminous (FI) and biomass (SE) fly ashes (FAs) were mineralogically and geochemically characterised, and their element leachability was studied with batch leaching tests. The potential for acid neutralisation (ANP) was quantified by their buffering capacity, reflecting their potential for neutralisation of acid mine drainage. Quartz was the common mineral in FAs detected by XRD with iron oxide, anhydrite, and magnesioferrite in PK, mullite and lime in FI, and calcite and anorthite in SE. All the FAs had high contents of major elements such as Fe, Si, Al and Ca. The Ca content in SE was six and eight times higher compared to PK and FI, respectively. Sulphur content in PK and SE was one magnitude higher than FI. Iron concentrations were higher in PK. The trace element concentrations varied between the FAs. SE had the highest ANP (corresponding to 275 kg CaCO3 tonne(-1)) which was 15 and 10 times higher than PK and FI, respectively. The concentrations of Ca(2+), SO4 (2-), Na(+) and Cl(-) in the leachates were much higher compared to other elements from all FA samples. Iron, Cu and Hg were not detected in any of the FA leachates because of their mild to strong alkaline nature with pH ranging from 9 to 13. Potassium leached in much higher quantity from SE than from the other ashes. Arsenic, Mn and Ni leached from PK only, while Co and Pb from SE only. The concentrations of Zn were higher in the leachates from SE. The FAs used in this study have strong potential for the neutralisation of AMD due to their alkaline nature. However, on the other hand, FAs must be further investigated, with scaled-up experiments before full-scale application, because they might leach pronounced concentrations of elements of concern with decreasing pH while neutralising AMD.

  12. CRHR2/Ucn2 signaling is a novel regulator of miR-7/YY1/Fas circuitry contributing to reversal of colorectal cancer cell resistance to Fas-mediated apoptosis.

    PubMed

    Pothoulakis, Charalabos; Torre-Rojas, Monica; Duran-Padilla, Marco A; Gevorkian, Jonathan; Zoras, Odysseas; Chrysos, Emmanuel; Chalkiadakis, George; Baritaki, Stavroula

    2018-01-15

    Colorectal cancer (CRC) responds poorly to immuno-mediated cytotoxicity. Underexpression of corticotropin-releasing-hormone-receptor-2 (CRHR2) in CRC, promotes tumor survival, growth and Epithelial to Mesenchymal Transition (EMT), in vitro and in vivo. We explored the role of CRHR2 downregulation in CRC cell resistance to Fas/FasL-mediated apoptosis and the underlying molecular mechanism. CRC cell sensitivity to CH11-induced apoptosis was compared between Urocortin-2 (Ucn2)-stimulated parental and CRHR2-overexpressing CRC cell lines and targets of CRHR2/Ucn2 signaling were identified through in vitro and ex vivo analyses. Induced CRHR2/Ucn2 signaling in SW620 and DLD1 cells increased specifically their sensitivity to CH11-mediated apoptosis, via Fas mRNA and protein upregulation. CRC compared to control tissues had reduced Fas expression that was associated with lost CRHR2 mRNA, poor tumor differentiation and high risk for distant metastasis. YY1 silencing increased Fas promoter activity in SW620 and re-sensitized them to CH11-apoptosis, thus suggesting YY1 as a putative transcriptional repressor of Fas in CRC. An inverse correlation between Fas and YY1 expression was confirmed in CRC tissue arrays, while elevated YY1 mRNA was clinically relevant with advanced CRC grade and higher risk for distant metastasis. CRHR2/Ucn2 signaling downregulated specifically YY1 expression through miR-7 elevation, while miR-7 modulation in miR-7 high SW620-CRHR2+ and miR-7 low HCT116 cells, had opposite effects on YY1 and Fas expressions and cell sensitivity to CH11-killing. CRHR2/Ucn2 signaling is a negative regulator of CRC cell resistance to Fas/FasL-apoptosis via targeting the miR-7/YY1/Fas circuitry. CRHR2 restoration might prove effective in managing CRC response to immune-mediated apoptotic stimuli. © 2017 UICC.

  13. De Novo Lipogenesis Maintains Vascular Homeostasis through Endothelial Nitric-oxide Synthase (eNOS) Palmitoylation*♦

    PubMed Central

    Wei, Xiaochao; Schneider, Jochen G.; Shenouda, Sherene M.; Lee, Ada; Towler, Dwight A.; Chakravarthy, Manu V.; Vita, Joseph A.; Semenkovich, Clay F.

    2011-01-01

    Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease. PMID:21098489

  14. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husain, Zaheed; Department of Pathology, Harvard Medical School, Boston, MA; Almeciga, Ingrid

    Clozapine has been associated with a 1% incidence of agranulocytosis. The formation of an oxidized intermediate clozapine metabolite has been implicated in direct polymorphonuclear (PMN) toxicity. We utilized two separate systems to analyze the role of oxidized clozapine in inducing apoptosis in treated cells. Human PMN cells incubated with clozapine (0-10 {mu}M) in the presence of 0.1 mM H{sub 2}O{sub 2} demonstrated a progressive decrease of surface CD16 expression along with increased apoptosis. RT-PCR analysis showed decreased CD16 but increased FasL gene expression in clozapine-treated PMN cells. No change in constitutive Fas expression was observed in treated cells. In HL-60more » cells induced to differentiate with retinoic acid (RA), a similar increase in FasL expression, but no associated changes in CD16 gene expression, was observed following clozapine treatments. Our results demonstrate increased FasL gene expression in oxidized clozapine-induced apoptotic neutrophils suggesting that apoptosis in granulocytes treated with clozapine involves Fas/FasL interaction that initiates a cascade of events leading to clozapine-induced agranulocytosis.« less

  15. Intratracheal Administration of Small Interfering RNA Targeting Fas Reduces Lung Ischemia-Reperfusion Injury.

    PubMed

    Del Sorbo, Lorenzo; Costamagna, Andrea; Muraca, Giuseppe; Rotondo, Giuseppe; Civiletti, Federica; Vizio, Barbara; Bosco, Ornella; Martin Conte, Erica L; Frati, Giacomo; Delsedime, Luisa; Lupia, Enrico; Fanelli, Vito; Ranieri, V Marco

    2016-08-01

    Lung ischemia-reperfusion injury is the main cause of primary graft dysfunction after lung transplantation and results in increased morbidity and mortality. Fas-mediated apoptosis is one of the pathologic mechanisms involved in the development of ischemia-reperfusion injury. We hypothesized that the inhibition of Fas gene expression in lungs by intratracheal administration of small interfering RNA could reduce lung ischemia-reperfusion injury in an ex vivo model reproducing the procedural sequence of lung transplantation. Prospective, randomized, controlled experimental study. University research laboratory. C57/BL6 mice weighing 28-30 g. Ischemia-reperfusion injury was induced in lungs isolated from mice, 48 hours after treatment with intratracheal small interfering RNA targeting Fas, control small interfering RNA, or vehicle. Isolated lungs were exposed to 6 hours of cold ischemia (4°C), followed by 2 hours of warm (37°C) reperfusion with a solution containing 10% of fresh whole blood and mechanical ventilation with constant low driving pressure. Fas gene expression was significantly silenced at the level of messenger RNA and protein after ischemia-reperfusion in lungs treated with small interfering RNA targeting Fas compared with lungs treated with control small interfering RNA or vehicle. Silencing of Fas gene expression resulted in reduced edema formation (bronchoalveolar lavage protein concentration and lung histology) and improvement in lung compliance. These effects were associated with a significant reduction of pulmonary cell apoptosis of lungs treated with small interfering RNA targeting Fas, which did not affect cytokine release and neutrophil infiltration. Fas expression silencing in the lung by small interfering RNA is effective against ischemia-reperfusion injury. This approach represents a potential innovative strategy of organ preservation before lung transplantation.

  16. Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes

    PubMed Central

    Backman, Ludvig J; Danielson, Patrik

    2013-01-01

    Substance P (SP) and its receptor, the neurokinin-1 receptor (NK-1 R), are expressed by human tenocytes, and they are both up-regulated in cases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt, which has anti-apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti-Fas treatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti-Fas-induced apoptosis, and by which mechanisms SP mediates an anti-apoptotic response. Anti-Fas treatment resulted in a time- and dose-dependent release of lactate dehydrogenase (LDH), i.e. induction of cell death, and SP dose-dependently reduced the Anti-Fas-induced cell death through a NK-1 R specific pathway. The same trend was seen for the TUNEL assay, i.e. SP reduced Anti-Fas-induced apoptosis via NK-1 R. In addition, it was shown that SP reduces Anti-Fas-induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti-Fas induces cleavage/activation of caspase-3 and cleavage of PARP; both of which were inhibited by SP via NK-1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti-apoptotic effect of SP was, at least partly, induced through the Akt-dependent pathway. In conclusion, we show that SP reduces Anti-Fas-induced apoptosis in human tenocytes and that this anti-apoptotic effect of SP is mediated through NK-1 R and Akt-specific pathways. PMID:23577779

  17. Development of fatty acid biomarkers for the identification of wild and aquacultured sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Zadorozhnyj, P. A.; Pivnenko, T. N.; Kovalev, N. N.

    2016-02-01

    In this study, the fatty acids (FAs) of the organs and tissues of sea cucumber ( Apostichopus japonicus) were profiled in order to compare the FA composition of sea cucumber collected from natural habitat (wild) and cages (cultured). The differences in FA contents in dermomuscular tube, peripharyngeal annulus, gonad and intestine (with or without content) between the wild and the cultured were determined. The main fatty acids in all organs and tissues were 20:5n-3, 16:1n-7, 20:4n-6, 22:6n-3, 18:0, and 18:1n-7. The basically different FAs of body wall and digestive tube were 16:1n-7, 18:1n-9 and 20:1n-11. The ratio of saturated to mono- and polyunsaturated FAs in digestive tube was independent on inside content while there was a redistribution of the total amount of n-3 and n-6 fatty acids. The comparison of FA composition of the wild and the cultured sea cucumber showed that 20:5n-3, 16:1n-7 and 18:1n-7 predominated the wild while 20:4n-6 predominated the cultured. The content of branched-chain fatty acids in the wild was 3%-4% and about 9% in the cultured. The possible FAs for identifying the wild and the cultured sea cucumbers were selected. It was suggested that the indexes such as the ratio of either (n-3:n-6) to (n-7:n-6) or (n-3) + (n-7) to (n-6) may serve as the biomarkers distinguishing the wild and the cultured sea cucumber.

  18. Fas- and Mitochondria-Mediated Signaling Pathway Involved in Osteoblast Apoptosis Induced by AlCl3.

    PubMed

    Xu, Feibo; Ren, Limin; Song, Miao; Shao, Bing; Han, Yanfei; Cao, Zheng; Li, Yanfei

    2018-07-01

    Aluminum (Al) is known to induce apoptosis of osteoblasts (OBs). However, the mechanism is not yet established. To investigate the apoptotic mechanism of OBs induced by aluminum trichloride (AlCl 3 ), the primary OBs from the craniums of fetal Wistar rats were exposed to 0 mg/mL (control group, CG), 0.06 mg/mL (low-dose group, LG), 0.12 mg/mL (mid-dose group, MG), and 0.24 mg/mL (high-dose group, HG) AlCl 3 for 24 h, respectively. We observed that AlCl 3 induced OB apoptosis with the appearance of apoptotic morphology and increase of apoptosis rate. Additionally, AlCl 3 treatment activated mitochondrial-mediated signaling pathway, accompanied by mitochondrial membrane potential (ΔΨm) depolarization, release of cytochrome c from the mitochondria to the cytoplasm, as well as survival signal-related factor caspase-9 and caspase-3 activation. AlCl 3 exposure also activated Fas/Fas ligand signaling pathway, presented as Fas, Fas ligand, and Fas-associated death domain expression enhancement and caspase-8 activation, as well as the hydrolysis of Bid to truncated Bid, suggesting that the Fas-mediated signaling pathway might aggravate mitochondria-mediated OB apoptosis through hydrolyzing Bid. Furthermore, AlCl 3 exposure inhibited Bcl-2 protein expression and increased the expressions of Bax, Bak, and Bim in varying degrees. These results indicated that AlCl 3 exposure induced OB apoptosis through activating Fas- and mitochondria-mediated signaling pathway and disrupted B-cell lymphoma-2 family proteins.

  19. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum.

    PubMed

    Oh, Myoung Jin; Cho, Young Hoon; Cha, So Yoon; Lee, Eun Ok; Kim, Jin Wook; Kim, Sun Ki; Park, Chang Seo

    2017-01-01

    Ceramides in the human stratum corneum (SC) are a mixture of diverse N -acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N -acylated FAs and compare them with C18-ceramide N -stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer.

  20. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase.

    PubMed

    Cheng, Yu-Rong; Sun, Zhi-Jie; Cui, Gu-Zhen; Song, Xiaojin; Cui, Qiu

    2016-11-01

    Developing a strain with high docosahexaenoic acid (DHA) yield and stable fermenting-performance is an imperative way to improve DHA production using Aurantiochytrium sp., a microorganism with two fatty acid synthesis pathways: polyketide synthase (PKS) pathway and Type I fatty acid synthase (FAS) pathway. This study investigated the growth and metabolism response of Aurantiochytrium sp. CGMCC 6208 to two inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan), and proposed a method of screening high DHA yield Aurantiochytrium sp. strains with heavy ion mutagenesis and pre-selection by synergistic usage of cold stress (4°C) and FAS inhibitors (triclosan and isoniazid). Results showed that (1) isoniazid and triclosan have positive effects on improving DHA level of cells; (2) mutants from irradiation dosage of 120Gy yielded more DHA compared with cells from 40Gy, 80Gy treatment and wild type; (3) DHA contents of mutants pre-selected by inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan)at 4°C, were significantly higher than that of wild type; (4) compared to the wild type, the DHA productivity and yield of a mutant (T-99) obtained from Aurantiochytrium sp. CGMCC 6208 by the proposed method increased by 50% from 0.18 to 0.27g/Lh and 30% from 21 to 27g/L, respectively. In conclusion, this study developed a feasible method to screen Aurantiochytrium sp. with high DHA yield by a combination of heavy-ion mutagenesis and mutant-preselection by FAS inhibitors and cold stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Hydroxy fatty acids in marine aerosols as microbial tracers: 4-year study on β- and ω-hydroxy fatty acids from remote Chichijima Island in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Tyagi, Poonam; Ishimura, Yutaka; Kawamura, Kimitaka

    2015-08-01

    To better understand the long-range atmospheric transport of microbial aerosols from Asia to the western North Pacific, marine aerosols were collected from Chichijima Island (27°04‧N; 142°13‧E) on a biweekly basis during 1990-1993. These samples were investigated for β- and ω-hydroxy fatty acids (FAs) as terrestrial biomarkers of Gram-negative bacteria (GNB) and higher plants, respectively. The average concentrations of β-hydroxy (C8-C31) and ω-hydroxy (C11-C28) FAs show pronounced seasonal variability with maxima in spring (300 ± 70 pg m-3) and winter (650 ± 330 pg m-3), respectively. Airmass back trajectories clearly indicate the continental outflow from Asia during winter to spring, whereas maritime airmasses dominate in summer to autumn over Chichijima. It is noteworthy that atmospheric abundances of β-hydroxy FAs and, thus, the estimated mass concentration of GNB have not been significantly varied between polluted (continental) and pristine (oceanic) airmasses during the study period. However, the relative source strength observed from cluster analysis of β-hydroxy FAs in the polluted continental airmassess vary significantly among seasons (winter: 98%, spring: 63%, summer; 11%, autumn: 26%). In addition, there were distinguishable differences between polluted continental and pristine maritime airmasses with regard to C-number predominance. The even C-number predominance of β- and ω-hydroxy FAs (∼80 and 98% of total mass concentration, respectively) in marine aerosols could be due to their significant contribution from GNB, terrestrial plants and soil microorganisms. These results have implications towards assessing the atmospheric transport of bacterial and plant lipids in the continental outflow over the open ocean.

  2. 18α-Glycyrrhetinic Acid Induces Apoptosis of HL-60 Human Leukemia Cells through Caspases- and Mitochondria-Dependent Signaling Pathways.

    PubMed

    Huang, Yi-Chang; Kuo, Chao-Lin; Lu, Kung-Wen; Lin, Jen-Jyh; Yang, Jiun-Long; Wu, Rick Sai-Chuen; Wu, Ping-Ping; Chung, Jing-Gung

    2016-07-01

    In this study we investigate the molecular mechanisms of caspases and mitochondria in the extrinsic and intrinsic signal apoptosis pathways in human leukemia HL-60 cells after in vitro exposure to 18α-glycyrrhetinic acid (18α-GA). Cells were exposed to 18α-GA at various concentrations for various time periods and were harvested for flow cytometry total viable cell and apoptotic cell death measurements. Cells treated with 18α-GA significantly inhibited cell proliferation and induced cell apoptosis in a dose-dependent manner, with an IC50 value of 100 μM at 48 h. The cell growth inhibition resulted in induction of apoptosis and decreased the mitochondria membrane potential (ΔΨm) and increased caspase-8, -9 and -3 activities. Furthermore, cytochrome c and AIF were released from mitochondria, as shown by western blotting and confirmed by confocal laser microscopy. Western blotting showed that 18α-GA increased the levels of pro-apoptotic proteins such as Bax and Bid and decreased the anti-apoptotic proteins such as Bcl-2 and Bcl-xl, furthermore, results also showed that 18α-GA increased Fas and Fas-L which are associated with surface death receptor in HL-60 cells. Based on those observations, the present study supports the hypothesis that 18α-GA-induced apoptosis in HL-60 cells involves the activation of the both extrinsic and intrinsic apoptotic pathways.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citricmore » acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.« less

  4. Fatty acid profiles, antioxidant compounds and antiradical properties of Pinus halepensis Mill. cones and seeds.

    PubMed

    Dhibi, Madiha; Mechri, Beligh; Brahmi, Faten; Skhiri, Fathia; Alsaif, Mohammed A; Hammami, Mohamed

    2012-06-01

    Pinus halepensis (Aleppo pine) is a widespread tree that can be found in both natural and urban environments. A discrimination study based on the antioxidant compounds, antioxidant capacity and fatty acid (FA) profile of P. halepensis cones (PHC) and seeds (PHS) was performed. The total amount of phenols was about 72-fold higher in PHC extract than in PHS extract (P < 0.001). Anthocyanin and carotenoid contents were 10- and 12-fold higher respectively in PHC extract. PHC and PHS extracts at a concentration of 1 mg mL(-1) differed significantly in free radical-scavenging activity on 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)) (86.65 vs 16.97%). PHC had higher antioxidant ability on 2,2'-azino-bis(3-ethylbenzothialozine-6-sulfonic acid) radical cation (ABTS(•+)) than PHS (EC(50) 0.368 vs 2.345 mg mL(-1)). The FA profile of PHC oil revealed its richness in saturated FAs (41.5%) and high levels of trans FA isomers, with a predominance of trans,trans-linoleic acid (4.74%). However, polyunsaturated FAs in PHS oil represented more than 64% of total FAs. PHC showed important antioxidant activities as well as high levels of bioactive compounds. Thus PHC is a potential source of natural antioxidants that may afford several health benefits. However, the lipid extract of PHS seems to have more nutritional value as a polyunsaturated oil than that of PHC, which is high in saturated and trans FAs. Copyright © 2011 Society of Chemical Industry.

  5. Omega-3 Fatty Acids and FFAR4.

    PubMed

    Oh, Da Young; Walenta, Evelyn

    2014-01-01

    The beneficial roles of omega-3 fatty acids (ω3-FAs) on obesity, type 2 diabetes, and other metabolic diseases are well known. Most of these effects can be explained by their anti-inflammatory effects triggered through their receptor, free fatty acid receptor 4 (FFAR4) activation. Although the whole mechanism of action is not fully described yet, it has been shown that stimulation of ω3-FA to FFAR4 is followed by receptor phosphorylation. This makes FFAR4 to be capable of interacting with β-arrestin-2, which in turn, results in association of β-arrestin-2 with TAB1. This stealing of an important partaker of the inflammatory cascade leads to interruption of the pathway, resulting in reduced inflammation. Besides this regulation of the anti-inflammatory response, FFAR4 signaling also has been shown to regulate glucose homeostasis, adiposity, gastrointestinal peptide secretion, and taste preference. In this review, we summarize the current knowledge about the interaction of ω3-FAs with FFAR4 and the consequent opportunities for the application of ω3-FAs and possible FFAR4 targets.

  6. Triiodothyronine Activates Lactate Oxidation Without Impairing Fatty Acid Oxidation and Improves Weaning From Extracorporeal Membrane Oxygenation

    PubMed Central

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2017-01-01

    Background Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. It has previously been shown that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods and Results Nineteen immature piglets (9.1–15.3 kg) were separated into 3 groups with ECMO (6.5 h) and wean: normal circulation (Group-C); transient coronary occlusion (10 min) for ischemia-reperfusion (IR) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon (13C)-labeled lactate, medium-chain and long-chain FAs, was infused as oxidative substrates. Substrate fractional contribution (FC) to the citric acid cycle was analyzed by 13C-nuclear magnetic resonance. ECMO depressed circulating T3 levels to 40% of the baseline at 4 h and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [adenosine triphosphate]/[adenosine diphosphate] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions T3 releases inhibition of lactate oxidation following IR injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning. PMID:25421230

  7. Effects of cytarabine on activation of human T cells - cytarabine has concentration-dependent effects that are modulated both by valproic acid and all-trans retinoic acid.

    PubMed

    Ersvaer, Elisabeth; Brenner, Annette K; Vetås, Kristin; Reikvam, Håkon; Bruserud, Øystein

    2015-05-02

    Cytarabine is used in the treatment of acute myeloid leukemia (AML). Low-dose cytarabine can be combined with valproic acid and all-trans retinoic acid (ATRA) as AML-stabilizing treatment. We have investigated the possible risk of immunotoxicity by this combination. We examined the effects of cytarabine combined with valproic acid and ATRA on in vitro activated human T cells, and we tested cytarabine at concentrations reached during in vivo treatment with high doses, conventional doses and low doses. T cells derived from blood donors were activated in vitro in cell culture medium alone or supplemented with ATRA (1 μM), valproic acid (500 or 1000 μM) or cytarabine (0.01-44 μM). Cell characteristics were assessed by flow cytometry. Supernatants were analyzed for cytokines by ELISA or Luminex. Effects on primary human AML cell viability and proliferation of low-dose cytarabine (0.01-0.5 μM) were also assessed. Statistical tests include ANOVA and Cluster analyses. Only cytarabine 44 μM had both antiproliferative and proapoptotic effects. Additionally, this concentration increased the CD4:CD8 T cell ratio, prolonged the expression of the CD69 activation marker, inhibited CD95L and heat shock protein (HSP) 90 release, and decreased the release of several cytokines. In contrast, the lowest concentrations (0.35 and 0.01 μM) did not have or showed minor antiproliferative or cytotoxic effects, did not alter activation marker expression (CD38, CD69) or the release of CD95L and HSP90, but inhibited the release of certain T cell cytokines. Even when these lower cytarabine concentrations were combined with ATRA and/or valproic acid there was still no or minor effects on T cell viability. However, these combinations had strong antiproliferative effects, the expression of both CD38 and CD69 was altered and there was a stronger inhibition of the release of FasL, HSP90 as well as several cytokines. Cytarabine (0.01-0.05 μM) showed a dose-dependent antiproliferative effect on AML cells, and in contrast to the T cells this effect reached statistical significance even at 0.01 μM. Even low levels of cytarabine, and especially when combined with ATRA and valproic acid, can decrease T cell viability, alter activation-induced membrane-molecule expression and decrease the cytokine release.

  8. Hydroxy fatty acids in snow pit samples from Mount Tateyama in central Japan: Implications for atmospheric transport of microorganisms and plant waxes associated with Asian dust

    NASA Astrophysics Data System (ADS)

    Tyagi, Poonam; Kawamura, Kimitaka; Bikkina, Srinivas; Mochizuki, Tomoki; Aoki, Kazuma

    2016-11-01

    We report here the source apportionment of atmospheric soil microorganisms and higher plant metabolites based on chemical markers (hydroxy fatty acids: FAs) in the snowpack samples collected from Mount Tateyama in central Japan during spring 2009 (N = 6) and 2011 (N = 7). A homologous series of β-hydroxy FAs (C9-C20), constituents of Gram-negative bacteria (GNB), in snowpacks clearly suggest a long-range atmospheric transport of dust-associated bacteria followed by scavenging by snowflakes. Similarly, higher atmospheric abundances of α-(C16-C32) and ω-(C9-C30)-hydroxy FAs in the snow layers containing Asian dust revealed contributions from soil microbes and higher plant epicuticular waxes. Moreover, covariation between the concentrations of hydroxy FAs and water-soluble Ca2+ (dust tracer), together with calculated air mass backward trajectories, demonstrated their source regions such as the Taklamakan Desert, Gobi Desert, and Loess Plateau. A close match of molecular distributions of hydroxy FAs (with the predominance of ω- and β-isomers) is noteworthy between snowpack (present study) and springtime aerosols from Chichijima Island in the western North Pacific (WNP). This observation suggests a "below-cloud scavenging" of transported dust particles and associated soil microbes in the East Asian outflow by snowflakes. These distributions are, however, contrary to those observed in the fresh snow samples from Sapporo, northern Japan (predominance of α-hydroxy FAs), which could be explained by "in-cloud" microbial oxidation processes. This comparison, therefore, provides additional insights regarding the aeolian transport of soil microbes in the East Asian outflow to the WNP, which has not been available.

  9. Glycerolipid Characterization and Nutrient Deprivation-Associated Changes in the Green Picoalga Ostreococcus tauri1

    PubMed Central

    Degraeve-Guilbault, Charlotte; Bréhélin, Claire; Haslam, Richard; Jouhet, Juliette

    2017-01-01

    The picoalga Ostreococcus tauri is a minimal photosynthetic eukaryote that has been used as a model system. O. tauri is known to efficiently produce docosahexaenoic acid (DHA). We provide a comprehensive study of the glycerolipidome of O. tauri and validate this species as model for related picoeukaryotes. O. tauri lipids displayed unique features that combined traits from the green and the chromalveolate lineages. The betaine lipid diacylglyceryl-hydroxymethyl-trimethyl-β-alanine and phosphatidyldimethylpropanethiol, both hallmarks of chromalveolates, were identified as presumed extraplastidial lipids. DHA was confined to these lipids, while plastidial lipids of prokaryotic type were characterized by the overwhelming presence of ω-3 C18 polyunsaturated fatty acids (FAs), 18:5 being restricted to galactolipids. C16:4, an FA typical of green microalgae galactolipids, also was a major component of O. tauri extraplastidial lipids, while the 16:4-coenzyme A (CoA) species was not detected. Triacylglycerols (TAGs) displayed the complete panel of FAs, and many species exhibited combinations of FAs diagnostic for plastidial and extraplastidial lipids. Importantly, under nutrient deprivation, 16:4 and ω-3 C18 polyunsaturated FAs accumulated into de novo synthesized TAGs while DHA-TAG species remained rather stable, indicating an increased contribution of FAs of plastidial origin to TAG synthesis. Nutrient deprivation further severely down-regulated the conversion of 18:3 to 18:4, resulting in obvious inversion of the 18:3/18:4 ratio in plastidial lipids, TAGs, as well as acyl-CoAs. The fine-tuned and dynamic regulation of the 18:3/18:4 ratio suggested an important physiological role of these FAs in photosynthetic membranes. Acyl position in structural and storage lipids together with acyl-CoA analysis further help to determine mechanisms possibly involved in glycerolipid synthesis. PMID:28235892

  10. Characterization of long-chain acyl-CoA synthetases which stimulate secretion of fatty acids in green algae Chlamydomonas reinhardtii.

    PubMed

    Jia, Bin; Song, Yanzi; Wu, Min; Lin, Baicheng; Xiao, Kang; Hu, Zhangli; Huang, Ying

    2016-01-01

    Microalgae biofuel has become the most promising renewable energy over the past few years. But limitations still exist because of its high cost. Although, efforts have been made in enhancement of lipid productivity, the major cost problem in harvesting and oil extraction is still intractable. Thus, the idea of fatty acids (FAs) secretion which can massively facilitate algae harvesting and oil extraction was investigated here. The cDNAs of two long-chain acyl-CoA synthetases (LACSs) genes were cloned from Chlamydomonas reinhardtii and named as cracs1 and cracs2. They showed different substrate adaptation in the yeast complementation experiments. Cracs2 could utilize FAs C12:0, C14:0, C16:0, C18:0, C16:1 and C18:1, while crac1 could only utilize substrate C14:0, C16:1 and C18:1. Knockdown of cracs1 and cracs2 in C. reinhardtii resulted in accumulation of intracellular lipids. The total intracellular lipids contents of transgenic algae q-15 (knockdown of cracs1) and p-13 (knockdown of cracs2) were 45 and 55 %, respectively higher than that of cc849. Furthermore, FAs secretion was discovered in both transgenic algae. Secreted FAs can reach 8.19 and 9.66 mg/10(9) cells in q-15 and p-13, respectively. These results demonstrated the possibility of FAs secretion by microalgae and may give a new strategy of low-cost oil extraction. According to our findings, we proposed that FAs secretion may also be achieved in other species besides Chlamydomonas reinhardtii by knocking-down cracs genes, which may promote the future industrial application of microalgae biofuels.

  11. Involvement of the CasK/R two-component system in optimal unsaturation of the Bacillus cereus fatty acids during low-temperature growth.

    PubMed

    Diomandé, Sara Esther; Nguyen-the, Christophe; Abee, Tjakko; Tempelaars, Marcel H; Broussolle, Véronique; Brillard, Julien

    2015-11-20

    Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C. Several genes involved in fatty acid (FA) metabolism were downregulated in the mutant, including desA and desB encoding FA acyl-lipid desaturases that catalyze the formation of a double-bond on the FA chain in positions ∆5 and ∆10, respectively. A lower proportion of FAs presumably unsaturated by DesA was observed in the ΔcasK/R strain compared to the parental strain while no difference was found for FAs presumably unsaturated by DesB. Addition of phospholipids from egg yolk lecithin rich in unsaturated FAs, to growth medium, abolished the cold-growth impairment of ΔcasK/R suggesting that exogenous unsaturated FAs can support membrane-level modifications and thus compensate for the decreased production of these FAs in the B. cereus ∆casK/R mutant during growth at low temperature. Our findings indicate that CasK/R is involved in the regulation of FA metabolism, and is necessary for cold adaptation of B. cereus unless an exogenous source of unsaturated FAs is available. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Cell Membrane Fatty Acid Composition of Chryseobacterium frigidisoli PB4T, Isolated from Antarctic Glacier Forefield Soils, in Response to Changing Temperature and pH Conditions

    PubMed Central

    Bajerski, Felizitas; Wagner, Dirk; Mangelsdorf, Kai

    2017-01-01

    Microorganisms in Antarctic glacier forefields are directly exposed to the hostile environment of their habitat characterized by extremely low temperatures and changing geochemical conditions. To survive under those stress conditions microorganisms adapt, among others, their cell membrane fatty acid inventory. However, only little is known about the adaptation potential of microorganisms from Antarctic soil environments. In this study, we examined the adaptation of the cell membrane polar lipid fatty acid inventory of Chryseobacterium frigidisoli PB4T in response to changing temperature (0°C to 20°C) and pH (5.5 to 8.5) regimes, because this new strain isolated from an Antarctic glacier forefield showed specific adaptation mechanisms during its detailed physiological characterization. Flavobacteriaceae including Chryseobacterium species occur frequently in extreme habitats such as ice-free oases in Antarctica. C. frigidisoli shows a complex restructuring of membrane derived fatty acids in response to different stress levels. Thus, from 20°C to 10°C a change from less iso-C15:0 to more iso-C17:1ω7 is observed. Below 10°C temperature adaptation is regulated by a constant increase of anteiso-FAs and decrease of iso-FAs. An anteiso- and bis-unsaturated fatty acid, anteiso-heptadeca-9,13-dienoic acid, shows a continuous increase with decreasing cultivation temperatures underlining the particular importance of this fatty acid for temperature adaptation in C. frigidisoli. Concerning adaptation to changing pH conditions, most of the dominant fatty acids reveal constant relative proportions around neutral pH (pH 6–8). Strong variations are mainly observed at the pH extremes (pH 5.5 and 8.5). At high pH short chain saturated iso- and anteiso-FAs increase while longer chain unsaturated iso- and anteiso-FAs decrease. At low pH the opposite trend is observed. The study shows a complex interplay of different membrane components and provides, therefore, deep insights into adaptation strategies of microorganisms from extreme habitats to changing environmental conditions. PMID:28469614

  13. Interferon-alpha and interferon-gamma sensitize human tenon fibroblasts to mitomycin-C.

    PubMed

    Wang, Xiao Yang; Crowston, Jonathan G; Zoellner, Hans; Healey, Paul R

    2007-08-01

    To investigate the effect of interferon (IFN)-alpha and IFN-gamma pretreatment on mitomycin C (MMC)-induced cell death in human Tenon fibroblasts (HTFs) and the mechanisms by which IFN-alpha and IFN-gamma modulate the susceptibility of HTFs to MMC. HTFs were pretreated with IFN-alpha and IFN-gamma for 48 hours before 5-minute application of 0.4 mg/mL MMC. Cell death after 48 hours was determined by Annexin V/propidium iodide (PI) staining and lactate dehydrogenase (LDH) release assay. Fas, Fas-ligand, and Bcl-2 expression were determined by flow cytometry. Fas associated death domain (FADD), Bax, cytochrome c, and caspase expression were determined by Western blot analysis and immunofluorescence staining. MMC treatment increased cell death and upregulated Fas and FADD expression, but had no effect on Fas-Ligand, Bax, Bcl-2, or cytochrome c. Neither IFN-alpha nor IFN-gamma alone induced HTF death, but each increased cell death 2 days after MMC treatment in a dose-dependent fashion. Combination IFN-alpha and IFN-gamma had a synergistic effect. IFN-alpha and IFN-gamma pretreatment increased Fas expression. Fas upregulation was associated with increased sensitivity to MMC. IFN pretreatment increased procaspase-8, procaspase-9, and procaspase-3 expression, and caspase-3 activation. Caspase-8, caspase-3, and broad caspase inhibitors, but not caspase-9 inhibitor, inhibited MMC-induced cell death in nonpretreated and IFN-pretreated cells. IFN-alpha and IFN-gamma enhance the susceptibility of HTFs to MMC-induced cell death through a Fas-mediated and a caspase-3-dependent pathway. Pretreatment with IFN primed HTFs to MMC, providing a potential means for initially slowing the healing response with IFN and subsequently terminating fibroblast activity through MMC-induced cell death.

  14. Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes.

    PubMed

    Robciuc, Marius R; Skrobuk, Paulina; Anisimov, Andrey; Olkkonen, Vesa M; Alitalo, Kari; Eckel, Robert H; Koistinen, Heikki A; Jauhiainen, Matti; Ehnholm, Christian

    2012-01-01

    Peroxisome proliferator-activated receptor (PPAR) delta is an important regulator of fatty acid (FA) metabolism. Angiopoietin-like 4 (Angptl4), a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL) activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR), PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4.

  15. Angiopoietin-Like 4 Mediates PPAR Delta Effect on Lipoprotein Lipase-Dependent Fatty Acid Uptake but Not on Beta-Oxidation in Myotubes

    PubMed Central

    Robciuc, Marius R.; Skrobuk, Paulina; Anisimov, Andrey; Olkkonen, Vesa M.; Alitalo, Kari; Eckel, Robert H.; Koistinen, Heikki A.; Jauhiainen, Matti; Ehnholm, Christian

    2012-01-01

    Peroxisome proliferator-activated receptor (PPAR) delta is an important regulator of fatty acid (FA) metabolism. Angiopoietin-like 4 (Angptl4), a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL) activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR), PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4. PMID:23056264

  16. Novel phytoceramides containing fatty acids of diverse chain lengths are better than a single C18-ceramide N-stearoyl phytosphingosine to improve the physiological properties of human stratum corneum

    PubMed Central

    Oh, Myoung Jin; Cho, Young Hoon; Cha, So Yoon; Lee, Eun Ok; Kim, Jin Wook; Kim, Sun Ki; Park, Chang Seo

    2017-01-01

    Ceramides in the human stratum corneum (SC) are a mixture of diverse N-acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N-acylated FAs and compare them with C18-ceramide N-stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer. PMID:28979153

  17. Genome-Wide Interaction Study of Omega-3 PUFAs and Other Fatty Acids on Inflammatory Biomarkers of Cardiovascular Health in the Framingham Heart Study.

    PubMed

    Veenstra, Jenna; Kalsbeek, Anya; Westra, Jason; Disselkoen, Craig; Smith, Caren; Tintle, Nathan

    2017-08-18

    Numerous genetic loci have been identified as being associated with circulating fatty acid (FA) levels and/or inflammatory biomarkers of cardiovascular health (e.g., C-reactive protein). Recently, using red blood cell (RBC) FA data from the Framingham Offspring Study, we conducted a genome-wide association study of over 2.5 million single nucleotide polymorphisms (SNPs) and 22 RBC FAs (and associated ratios), including the four Omega-3 FAs (ALA, DHA, DPA, and EPA). Our analyses identified numerous causal loci. In this manuscript, we investigate the extent to which polyunsaturated fatty acid (PUFA) levels moderate the relationship of genetics to cardiovascular health biomarkers using a genome-wide interaction study approach. In particular, we test for possible gene-FA interactions on 9 inflammatory biomarkers, with 2.5 million SNPs and 12 FAs, including all Omega-3 PUFAs. We identified eighteen novel loci, including loci which demonstrate strong evidence of modifying the impact of heritable genetics on biomarker levels, and subsequently cardiovascular health. The identified genes provide increased clarity on the biological functioning and role of Omega-3 PUFAs, as well as other common fatty acids, in cardiovascular health, and suggest numerous candidate loci for future replication and biological characterization.

  18. Acid-base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA-Donnan model.

    PubMed

    Fernández, José M; Plaza, César; Senesi, Nicola; Polo, Alfredo

    2007-09-01

    The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.

  19. Activation of the Rb/E2F1 pathway by the nonproliferative p38 MAPK during Fas (APO1/CD95)-mediated neuronal apoptosis.

    PubMed

    Hou, Sheng T; Xie, Xiaoqi; Baggley, Anne; Park, David S; Chen, Gao; Walker, Teena

    2002-12-13

    Aberrant activation of the Rb/E2F1 pathway in cycling cells, in response to mitogenic or nonmitogenic stress signals, leads to apoptosis through hyperphosphorylation of Rb. To test whether in postmitotic neurons the Rb/E2F1 pathway can be activated by the nonmitogenic stress signaling, we examined the role of the p38 stress-activated protein kinase (SAPK) in regulating Rb phosphorylation in response to Fas (CD95/APO1)-mediated apoptosis of cultured cerebellar granule neurons (CGNs). Anti-Fas antibody induced a dramatic and early activation of p38. Activated p38 was correlated with the induction of hyperphosphorylation of both endogenous and exogenous Rb. The p38-selective inhibitor, SB203580, attenuated such an increase in pRb phosphorylation and significantly protected CGNs from Fas-induced apoptosis. The cyclin-dependent kinase-mediated Rb phosphorylation played a lesser role in this neuronal death paradigm, since cyclin-dependent kinase inhibitors, such as olomoucine, roscovitine, and flavopiridol, did not significantly prevent anti-Fas antibody-evoked neuronal apoptosis. Hyperphosphorylation of Rb by p38 SAPK resulted in the release of Rb-bound E2F1. Increased E2F1 modulated neuronal apoptosis, since E2F1-/- CGNs were significantly less susceptible to Fas-mediated apoptosis in comparison with the wild-type CGNs. Taken together, these studies demonstrate that neuronal Rb/E2F1 is modulated by the nonproliferative p38 SAPK in Fas-mediated neuronal apoptosis.

  20. Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes.

    PubMed

    Backman, Ludvig J; Danielson, Patrik

    2013-06-01

    Substance P (SP) and its receptor, the neurokinin-1 receptor (NK-1 R), are expressed by human tenocytes, and they are both up-regulated in cases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt, which has anti-apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti-Fas treatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti-Fas-induced apoptosis, and by which mechanisms SP mediates an anti-apoptotic response. Anti-Fas treatment resulted in a time- and dose-dependent release of lactate dehydrogenase (LDH), i.e. induction of cell death, and SP dose-dependently reduced the Anti-Fas-induced cell death through a NK-1 R specific pathway. The same trend was seen for the TUNEL assay, i.e. SP reduced Anti-Fas-induced apoptosis via NK-1 R. In addition, it was shown that SP reduces Anti-Fas-induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti-Fas induces cleavage/activation of caspase-3 and cleavage of PARP; both of which were inhibited by SP via NK-1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti-apoptotic effect of SP was, at least partly, induced through the Akt-dependent pathway. In conclusion, we show that SP reduces Anti-Fas-induced apoptosis in human tenocytes and that this anti-apoptotic effect of SP is mediated through NK-1 R and Akt-specific pathways. © 2013 The Authors Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  1. Silybin Against Liver Ischemia-Reperfusion Injury: Something Old, Something New….

    PubMed

    Oltean, Mihai

    2017-09-13

    Ischemia reperfusion injury (IRI) is a life threatening condition that may develop after elective liver surgery or liver transplantation. Numerous surgical and pharmacological approaches have shown varying degrees of protection against liver IRI. A group of protective compounds are the flavonoids but their intestinal absorbtion and bioavailability are low and impredictible. In this issue Tsaroucha et al. reports significantly decreased hepatocellular injury, Fas/FasL expression and inhibited HMGB1 release in rats receiving a hydrosoluble, lyophilized complex of SLB and hydroxypropyl-β-cyclodextrin (SLB-HP-β-CD) intravenously.

  2. Influence of Maternal Obesity and Gestational Weight Gain on Maternal and Foetal Lipid Profile.

    PubMed

    Cinelli, Giulia; Fabrizi, Marta; Ravà, Lucilla; Ciofi Degli Atti, Marta; Vernocchi, Pamela; Vallone, Cristina; Pietrantoni, Emanuela; Lanciotti, Rosalba; Signore, Fabrizio; Manco, Melania

    2016-06-15

    Fatty acids (FAs) are fundamental for a foetus's growth, serving as an energy source, structural constituents of cellular membranes and precursors of bioactive molecules, as well as being essential for cell signalling. Long-chain polyunsaturated FAs (LC-PUFAs) are pivotal in brain and visual development. It is of interest to investigate whether and how specific pregnancy conditions, which alter fatty acid metabolism (excessive pre-pregnancy body mass index (BMI) or gestational weight gain (GWG)), affect lipid supply to the foetus. For this purpose, we evaluated the erythrocyte FAs of mothers and offspring (cord-blood) at birth, in relation to pre-pregnancy BMI and GWG. A total of 435 mothers and their offspring (237 males, 51%) were included in the study. Distribution of linoleic acid (LA) and α-linolenic acid (ALA), and their metabolites, arachidonic acid, dihomogamma linoleic (DGLA) and ecosapentanoic acid, was significantly different in maternal and foetal erythrocytes. Pre-pregnancy BMI was significantly associated with maternal percentage of MUFAs (Coeff: -0.112; p = 0.021), LA (Coeff: -0.033; p = 0.044) and DHA (Coeff. = 0.055; p = 0.0016); inadequate GWG with DPA (Coeff: 0.637; p = 0.001); excessive GWG with docosaexahenoic acid (DHA) (Coeff. = -0.714; p = 0.004). Moreover, pre-pregnancy BMI was associated with foetus percentage of PUFAs (Coeff: -0.172; p = 0.009), omega 6 (Coeff: -0.098; p = 0.015) and DHA (Coeff: -0.0285; p = 0.036), even after adjusting for maternal lipids. Our findings show that maternal GWG affects maternal but not foetal lipid profile, differently from pre-pregnancy BMI, which influences both.

  3. Association of cytosolic sialidase Neu2 with plasma membrane enhances Fas-mediated apoptosis by impairing PI3K-Akt/mTOR-mediated pathway in pancreatic cancer cells.

    PubMed

    Nath, Shalini; Mandal, Chhabinath; Chatterjee, Uttara; Mandal, Chitra

    2018-02-12

    Modulation of sialylation by sialyltransferases and sialidases plays essential role in carcinogenesis. There are few reports on sialyltransferase, however, the contribution of cytosolic sialidase (Neu2) remains unexplored in pancreatic ductal adenocarcinoma (PDAC). We observed lower expression of Neu2 in different PDAC cells, patient tissues, and a significant strong association with clinicopathological characteristics. Neu2 overexpression guided drug-resistant MIAPaCa2 and AsPC1 cells toward apoptosis as evidenced by decreased Bcl2/Bax ratio, activation of caspase-3/caspase-6/caspase-8, PARP reduction, reduced CDK2/CDK4/CDK6, and cyclin-B1/cyclin-E with unaffected caspase-9. Neu2-overexpressed cells exhibited higher expression of Fas/CD95-death receptor, FasL, FADD, and Bid cleavage confirming extrinsic pathway-mediated apoptosis. α2,6-linked sialylation of Fas helps cancer cells to survive, which is a substrate for Neu2. Therefore, their removal should enhance Fas-mediated apoptosis. Neu2-overexpressed cells indeed showed increased enzyme activity even on membrane. Interestingly, this membrane-bound Neu2 exhibited enhanced association with Fas causing its desialylation and activation as corroborated by decreased association of Fas with α2,6-sialic acid-binding lectin. Additionally, enhanced cytosolic Neu2 inhibited the expression of several growth factor-mediated signaling molecules involved in PI3K/Akt-mTOR pathway probably through desialylation which in turn also causes Fas activation. Furthermore, Neu2-overexpressed cells exhibited reduced cell migration, invasion with decreased VEGF, VEGFR, and MMP9 levels. To the best of our knowledge, this is the first report of cytosolic Neu2 on membrane, its association with Fas, enhanced desialylation, activation, and Fas-mediated apoptosis. Taken together, our study ascertains a novel concept by which the function of Fas/CD95 could be modulated indicating a critical role of upstream Neu2 as a promising target for inducing apoptosis in pancreatic cancer.

  4. Comparison of free fatty acid content of human milk from Taiwanese mothers and infant formula.

    PubMed

    Chuang, Chih-Kuang; Yeung, Chun-Yan; Jim, Wai-Tim; Lin, Shuan-Pei; Wang, Tuen-Jen; Huang, Sung-Fa; Liu, Hsuan-Liang

    2013-12-01

    Few studies on the free fatty acid (FFA) content of milk from non-Caucasian mothers have been published. We compared the FFA concentrations in human milk (HM) from Taiwanese mothers of preterm (PTHM) and full-term infants (FTHM) and in infant formula (IF). Thirty-eight HM samples were collected from 23 healthy lactating mothers and 15 mothers who gave birth prematurely (range 29-35 weeks, mean 33 weeks). The regular formula and preterm infant formula (PTIF) for three brands of powdered IF were also evaluated. Milk samples were extracted and methylated for analysis by gas chromatography/mass spectrometry (GC/MS). Reference values for individual FFAs in breast milk from Taiwanese mothers were determined. The mean total FFAs were significantly higher in IF (21,554 μmol/L) and PTIF (19,836 μmol/L) than in FTHM (8,540 μmol/L) and PTHM (9,259 μmol/L) (p < 0.05). Saturated FAs were predominant in all types of milk (43.1% for FTHM, 42.8% for PTHM, 45.5% for IF and 45.3% for PTIF). Monounsaturated FAs were significantly higher in IF and PTIF (42.6% and 43.9%) than in FTHM and PTHM (37.7% and 39.5%), and polyunsaturated FAs in FTHM and PTHM (20% and 18.2%) were higher than in IF and PTIF (11.9% and 10.9%). HM had a more desirable linoleic acid/α-linolenic acid ratio than IF. No significant differences in individual FFAs in FTHM were observed among three lactating periods. FFA levels in HM from Taiwanese mothers are in agreement with results for different geographically distinct populations. Nevertheless, the FFA content in IF did not meet well with HM, particularly, the excess additives of saturated and monounsaturated FAs, and the shortage of polyunsaturated FAs. The effect of variations in FFA content in IF on future unfavorable outcomes such as obesity, atopic syndrome, and less optimal infant neurodevelopment should be further investigated. Copyright © 2013. Published by Elsevier B.V.

  5. Recent advances in rapid and nondestructive determination of fat content and fatty acids composition of muscle foods.

    PubMed

    Tao, Feifei; Ngadi, Michael

    2018-06-13

    Conventional methods for determining fat content and fatty acids (FAs) composition are generally based on the solvent extraction and gas chromatography techniques, respectively, which are time consuming, laborious, destructive to samples and require use of hazard solvents. These disadvantages make them impossible for large-scale detection or being applied to the production line of meat factories. In this context, the great necessity of developing rapid and nondestructive techniques for fat and FAs analyses has been highlighted. Measurement techniques based on near-infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance and hyperspectral imaging have provided interesting and promising results for fat and FAs prediction in varieties of foods. Thus, the goal of this article is to give an overview of the current research progress in application of the four important techniques for fat and FAs analyses of muscle foods, which consist of pork, beef, lamb, chicken meat, fish and fish oil. The measurement techniques are described in terms of their working principles, features, and application advantages. Research advances for these techniques for specific food are summarized in detail and the factors influencing their modeling results are discussed. Perspectives on the current situation, future trends and challenges associated with the measurement techniques are also discussed.

  6. Fatty Acids Dietary Supplements Exert Anti-Inflammatory Action and Limit Ganglion Cell Degeneration in the Retina of the EAE Mouse Model of Multiple Sclerosis

    PubMed Central

    Locri, Filippo; Amato, Rosario; Marsili, Stefania; Rusciano, Dario; Bagnoli, Paola

    2018-01-01

    Optic neuritis is an acute inflammatory demyelinating disorder of the optic nerve (ON) and is an initial symptom of multiple sclerosis (MS). Optic neuritis is characterized by ON degeneration and retinal ganglion cell (RGC) loss that contributes to permanent visual disability and lacks a reliable treatment. Here, we used the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, a well-established model also for optic neuritis. In this model, C57BL6 mice, intraperitoneally injected with a fragment of the myelin oligodendrocyte glycoprotein (MOG), were found to develop inflammation, Müller cell gliosis, and infiltration of macrophages with increased production of oncomodulin (OCM), a calcium binding protein that acts as an atypical trophic factor for neurons enabling RGC axon regeneration. Immunolabeling of retinal whole mounts with a Brn3a antibody demonstrated drastic RGC loss. Dietary supplementation with Neuro-FAG (nFAG®), a balanced mixture of fatty acids (FAs), counteracted inflammatory and gliotic processes in the retina. In contrast, infiltration of macrophages and their production of OCM remained at elevated levels thus eventually preserving OCM trophic activity. In addition, the diet supplement with nFAG exerted a neuroprotective effect preventing MOG-induced RGC death. In conclusion, these data suggest that the balanced mixture of FAs may represent a useful form of diet supplementation to limit inflammatory events and death of RGCs associated to optic neuritis. This would occur without affecting macrophage infiltration and the release of OCM thus favoring the maintenance of OCM neuroprotective role. PMID:29517994

  7. Dietary α-linolenic acid from flaxseed oil or eicosapentaenoic and docosahexaenoic acids from fish oil differentially alter fatty acid composition and characteristics of fresh and frozen-thawed bull semen.

    PubMed

    Moallem, Uzi; Neta, Noam; Zeron, Yoel; Zachut, Maya; Roth, Zvi

    2015-04-15

    Incorporation rates of dietary omega-3 (n-3) fatty acids (FAs) from different sources into bull plasma and sperm and the effects on physiological characteristics of fresh and frozen-thawed semen were determined. Fifteen fertile bulls were assigned to three treatment groups and supplemented for 13 weeks with encapsulated fat: (1) SFA-360 g/d per bull saturated FA; (2) FLX-450 g/d per bull providing 84.2 g/d C18:3n-3 (α-linolenic acid) from flaxseed oil; and (3) FO-450 g/d per bull providing 8.7 g/d C20:5n-3 (eicosapentaenoic acid) and 6.5 g/d C22:6n-3 (docosahexaenoic acid, DHA) from fish oil. Blood samples were taken every 2 weeks and semen was collected weekly. With respect to the FA supplements, the proportion of α-linolenic acid in plasma increased in the FLX bulls, whereas that of DHA was increased in the FO bulls, within 2 weeks. However, changes in the sperm FA fraction were first expressed in the sixth week of supplementation: in the FO and FLX bulls the DHA proportion increased (P < 0.001), whereas that of C22:5n-6 FAs (docosapentaenoic acid [DPA] n-6) decreased (P < 0.001). Sperm motility and progressive motility in fresh semen were higher (P < 0.05), and the fading rate tended to be lower in the FLX than in FO bulls (P < 0.06). Furthermore, sperm motility, progressive motility, and velocity in frozen-thawed semen were higher in FLX than in the other groups (P < 0.008). These findings indicate that the proportion of DHA in sperm can be increased at the expense of DPAn-6 by either FO or FLX supplementation, indicating de novo elongation and desaturation of short- into longer-chain n-3 FAs in testes. Furthermore, the moderate exchange of DHA and DPAn-6 in the FLX group's sperm was associated with changes in the characteristics of both fresh and frozen-thawed semen, suggesting the importance of the ratio between these two FAs for sperm structure and function. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. S-allyl cysteine in combination with clotrimazole downregulates Fas induced apoptotic events in erythrocytes of mice exposed to lead.

    PubMed

    Mandal, Samir; Mukherjee, Sudip; Chowdhury, Kaustav Dutta; Sarkar, Avik; Basu, Kankana; Paul, Soumosish; Karmakar, Debasish; Chatterjee, Mahasweta; Biswas, Tuli; Sadhukhan, Gobinda Chandra; Sen, Gargi

    2012-01-01

    Chronic lead (Pb(2+)) exposure leads to the reduced lifespan of erythrocytes. Oxidative stress and K(+) loss accelerate Fas translocation into lipid raft microdomains inducing Fas mediated death signaling in these erythrocytes. Pathophysiological-based therapeutic strategies to combat against erythrocyte death were evaluated using garlic-derived organosulfur compounds like diallyl disulfide (DADS), S allyl cysteine (SAC) and imidazole based Gardos channel inhibitor clotrimazole (CLT). Morphological alterations in erythrocytes were evaluated using scanning electron microscopy. Events associated with erythrocyte death were evaluated using radio labeled probes, flow cytometry and activity gel assay. Mass spectrometry was used for detection of GSH-4-hydroxy-trans-2-nonenal (HNE) adducts. Fas redistribution into the lipid rafts was studied using immunoblotting technique and confocal microscopy. Combination of SAC and CLT was better than DADS and CLT combination and monotherapy with these agents in prolonging the survival of erythrocytes during chronic Pb(2+) exposure. Combination therapy with SAC and CLT prevented redistribution of Fas into the lipid rafts of the plasma membrane and downregulated Fas-dependent death events in erythrocytes of mice exposed to Pb(2+). Ceramide generation was a critical component of Fas receptor-induced apoptosis, since inhibition of acid sphingomyelinase (aSMase) interfered with Fas-induced apoptosis during Pb(2+) exposure. Combination therapy with SAC and CLT downregulated apoptotic events in erythrocytes by antagonizing oxidative stress and Gardos channel that led to suppression of ceramide-initiated Fas aggregation in lipid rafts. Hence, combination therapy with SAC and CLT may be a potential therapeutic option for enhancing the lifespan of erythrocytes during Pb(2+) toxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Mitomycin-C induces the apoptosis of human Tenon's capsule fibroblast by activation of c-Jun N-terminal kinase 1 and caspase-3 protease.

    PubMed

    Seong, Gong Je; Park, Channy; Kim, Chan Yoon; Hong, Young Jae; So, Hong-Seob; Kim, Sang-Duck; Park, Raekil

    2005-10-01

    To investigate whether mitochondrial dysfunction and mitogen-activated protein kinase family proteins are implicated in apoptotic signaling of human Tenon's capsule fibroblasts (HTCFs) by mitomycin-C. Apoptosis was determined by Hoechst nuclei staining, agarose gel electrophoresis, and flow cytometry in HTCFs treated with 0.4 mg/mL mitomycin-C for 5 minutes. Enzymatic digestion of florigenic biosubstrate assessed the catalytic activity of caspase proteases, including caspase-3, caspase-8, and caspase-9. Phosphotransferase activity of c-Jun N-terminal kinase (JNK) 1 was measured by in vitro immune complex kinase assay using c-Jun(1-79) protein as a substrate. Mitochondrial membrane potential transition (MPT) was measured by flow cytometric analysis of JC-1 staining. Mitomycin-C (0.4 mg/mL) induced the apoptosis of HTCFs, which was characterized as nucleic acid and genomic DNA fragmentation, chromatin condensation, and sub-G(0)/G(1) fraction of cell cycle increase. The catalytic activity of caspase-3 and caspase-9 was significantly increased and was accompanied by cytosolic release of cytochrome c and MPT in response to mitomycin-C. Treatment with mitomycin-C resulted in the increased expression of Fas, FasL, Bad, and phosphorylated p53 and a decreased level of phosphorylated AKT. Treatment with mitomycin-C also increased the phosphotransferase activity and tyrosine phosphorylation of JNK1, whose inhibitor significantly suppressed the cytotoxicity of mitomycin-C. Mitomycin-C induced the apoptosis of HTCFs through the activation of intrinsic and extrinsic caspase cascades with mitochondrial dysfunction. It also activated Fas-mediated apoptotic signaling of fibroblasts. Furthermore, the activation of JNK1 played a major role in the cytotoxicity of mitomycin-C.

  10. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance - A review.

    PubMed

    Saini, Ramesh Kumar; Keum, Young-Soo

    2018-06-15

    Linoleic acid (LA) (n-6) and α-linolenic acid (ALA) (n-3) are essential fatty acids (EFAs) as they cannot be synthesized by humans or other higher animals. In the human body, these fatty acids (FAs) give rise to arachidonic acid (ARA, n-6), eicosapentaenoic acid (EPA, n-3), and docosahexaenoic acid (DHA, n-3) that play key roles in regulating body homeostasis. Locally acting bioactive signaling lipids called eicosanoids derived from these FAs also regulate diverse homeostatic processes. In general, ARA gives rise to pro-inflammatory eicosanoids whereas EPA and DHA give rise to anti-inflammatory eicosanoids. Thus, a proportionally higher consumption of n-3 PUFAs can protect us against inflammatory diseases, cancer, cardiovascular diseases, and other chronic diseases. The present review summarizes major sources, intake, and global consumption of n-3 and n-6 PUFAs. Their metabolism to biosynthesize long-chain PUFAs and eicosanoids and their roles in brain metabolism, cardiovascular disease, obesity, cancer, and bone health are also discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis.

    PubMed Central

    Slayden, R A; Lee, R E; Armour, J W; Cooper, A M; Orme, I M; Brennan, P J; Besra, G S

    1996-01-01

    Thiolactomycin (TLM) possesses in vivo antimycobacterial activity against the saprophytic strain Mycobacterium smegmatis mc2155 and the virulent strain M. tuberculosis Erdman, resulting in complete inhibition of growth on solid media at 75 and 25 micrograms/ml, respectively. Use of an in vitro murine macrophage model also demonstrated the killing of viable intracellular M. tuberculosis in a dose-dependent manner. Through the use of in vivo [1,2-14C]acetate labeling of M. smegmatis, TLM was shown to inhibit the synthesis of both fatty acids and mycolic acids. However, synthesis of the shorter-chain alpha'-mycolates of M. smegmatis was not inhibited by TLM, whereas synthesis of the characteristic longer-chain alpha-mycolates and epoxymycolates was almost completely inhibited at 75 micrograms/ml. The use of M. smegmatis cell extracts demonstrated that TLM specifically inhibited the mycobacterial acyl carrier protein-dependent type II fatty acid synthase (FAS-II) but not the multifunctional type I fatty acid synthase (FAS-I). In addition, selective inhibition of long-chain mycolate synthesis by TLM was demonstrated in a dose-response manner in purified, cell wall-containing extracts of M. smegmatis cells. The in vivo and in vitro data and knowledge of the mechanism of TLM resistance in Escherichia coli suggest that two distinct TLM targets exist in mycobacteria, the beta-ketoacyl-acyl carrier protein synthases involved in FAS-II and the elongation steps leading to the synthesis of the alpha-mycolates and oxygenated mycolates. The efficacy of TLM against M. smegmatis and M. tuberculosis provides the prospects of identifying fatty acid and mycolic acid biosynthetic genes and revealing a novel range of chemotherapeutic agents directed against M. tuberculosis. PMID:9124847

  12. Triclosan Antagonizes Fluconazole Activity against Candida albicans

    PubMed Central

    Higgins, J.; Pinjon, E.; Oltean, H.N.; White, T.C.; Kelly, S.L.; Martel, C.M.; Sullivan, D.J.; Coleman, D.C.; Moran, G.P.

    2012-01-01

    Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg/L. However, at subinhibitory concentrations (0.5-2 mg/L), triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1Δ and cdr2Δ strains. Triclosan did not affect fluconazole uptake or alter total membrane sterol content, but did induce the expression of FAS1 and FAS2, indicating that its mode of action may involve inhibition of fatty acid synthesis, as it does in prokaryotes. However, FAS2 mutants did not exhibit increased susceptibility to triclosan, and overexpression of both FAS1 and FAS2 alleles did not alter triclosan susceptibility. Unexpectedly, the antagonistic effect was specific for C. albicans under hypha-inducing conditions and was absent in the non-filamentous efg1Δ strain. This antagonism may be due to the membranotropic activity of triclosan and the unique composition of hyphal membranes. PMID:21972257

  13. Sildenafil reduces signs of oxidative stress in pulmonary arterial hypertension: Evaluation by fatty acid composition, level of hydroxynonenal and heart rate variability

    PubMed Central

    Semen, Khrystyna; Yelisyeyeva, Olha; Jarocka-Karpowicz, Iwona; Kaminskyy, Danylo; Solovey, Lyubomyr; Skrzydlewska, Elzbieta; Yavorskyi, Ostap

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a rare multifactorial disease with an unfavorable prognosis. Sildenafil therapy can improve functional capacity and pulmonary hemodynamics in PAH patients. Nowadays, it is increasingly recognized that the effects of sildenafil are pleiotropic and may also involve changes of the pro-/antioxidant balance, lipid peroxidation and autonomic control. In present study we aimed to assess the effects of sildenafil on the fatty acids (FAs) status, level of hydroxynonenal (HNE) and heart rate variability (HRV) in PAH patients. Patients with PAH were characterized by an increase in HNE and changes in the FAs composition with elevation of linoleic, oleic, docosahexanoic acids in phospholipids as well as reduced HRV with sympathetic predominance. Sildenafil therapy improved exercise capacity and pulmonary hemodynamics and reduced NT-proBNP level in PAH. Antioxidant and anti-inflammatory effects of sildenafil were noted from the significant lowering of HNE level and reduction of the phopholipid derived oleic, linoleic, docosahexanoic, docosapentanoic FAs. That was also associated with some improvement of HRV on account of the activation of the neurohumoral regulatory component. Incomplete recovery of the functional metabolic disorders in PAH patients may be assumed from the persistent increase in free FAs, reduced HRV with the sympathetic predominance in the spectral structure after treatment comparing to control group. The possibilities to improve PAH treatment efficacy through mild stimulation of free radical reactions and formation of hormetic reaction in the context of improved NO signaling are discussed. PMID:26654977

  14. Marine Omega-3 Phospholipids: Metabolism and Biological Activities

    PubMed Central

    Burri, Lena; Hoem, Nils; Banni, Sebastiano; Berge, Kjetil

    2012-01-01

    The biological activities of omega-3 fatty acids (n-3 FAs) have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs) versus ethyl esters or phospholipids (PLs). New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs. PMID:23203133

  15. Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria.

    PubMed

    Sakurama, Haruko; Kishino, Shigenobu; Mihara, Kousuke; Ando, Akinori; Kita, Keiko; Takahashi, Satomi; Shimizu, Sakayu; Ogawa, Jun

    2014-09-01

    The PUFAs include many bioactive lipids. The microbial metabolism of C18 PUFAs is known to produce their bioactive isomers, such as conjugated FAs and hydroxy FAs, but there is little information on that of C20 PUFAs. In this study, we aimed to obtain anaerobic bacteria with the ability to produce novel PUFAs from C20 PUFAs. Through the screening of ∼100 strains of anaerobic bacteria, Clostridium bifermentans JCM 1386 was selected as a strain with the ability to saturate PUFAs during anaerobic cultivation. This strain converted arachidonic acid (cis-5,cis-8,cis-11,cis-14-eicosatetraenoic acid) and EPA (cis-5,cis-8,cis-11,cis-14,cis-17-EPA) into cis-5,cis-8,trans-13-eicosatrienoic acid and cis-5,cis-8,trans-13,cis-17-eicosatetraenoic acid, giving yields of 57% and 67% against the added PUFAs, respectively. This is the first report of the isolation of a bacterium transforming C20 PUFAs into corresponding non-methylene-interrupted FAs. We further investigated the substrate specificity of the biohydrogenation by this strain and revealed that it can convert two cis double bonds at the ω6 and ω9 positions in various C18 and C20 PUFAs into a trans double bond at the ω7 position. This study should serve to open up the development of novel potentially bioactive PUFAs. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. Lansoprazole protects and heals gastric mucosa from non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy by inhibiting mitochondrial as well as Fas-mediated death pathways with concurrent induction of mucosal cell renewal.

    PubMed

    Maity, Pallab; Bindu, Samik; Choubey, Vinay; Alam, Athar; Mitra, Kalyan; Goyal, Manish; Dey, Sumanta; Guha, Mithu; Pal, Chinmay; Bandyopadhyay, Uday

    2008-05-23

    We have investigated the mechanism of antiapoptotic and cell renewal effects of lansoprazole, a proton pump inhibitor, to protect and heal gastric mucosal injury in vivo induced by indomethacin, a non-steroidal anti-inflammatory drug (NSAID). Lansoprazole prevents indomethacin-induced gastric damage by blocking activation of mitochondrial and Fas pathways of apoptosis. Lansoprazole prevents indomethacin-induced up-regulation of proapoptotic Bax and Bak and down-regulation of antiapoptotic Bcl-2 and Bcl(xL) to maintain the normal proapoptotic/antiapoptotic ratio and thereby arrests indomethacin-induced mitochondrial translocation of Bax and collapse of mitochondrial membrane potential followed by cytochrome c release and caspase-9 activation. Lansoprazole also inhibits indomethacin-induced Fas-mediated mucosal cell death by down-regulating Fas or FasL expression and inhibiting caspase-8 activation. Lansoprazole favors mucosal cell renewal simultaneously by stimulating gene expression of prosurvival proliferating cell nuclear antigen, survivin, epidermal growth factor, and basic fibroblast growth factor. The up-regulation of Flt-1 further indicates that lansoprazole activates vascular epidermal growth factor-mediated controlled angiogenesis to repair gastric mucosa. Lansoprazole also stimulates the healing of already formed ulcers induced by indomethacin. Time course study of healing indicates that it switches off the mitochondrial death pathway completely but not the Fas pathway. However, lansoprazole heals mucosal lesions almost completely after overcoming the persisting Fas pathway, probably by favoring the prosurvival genes expression. This study thus provides the detailed mechanism of antiapoptotic and prosurvival effects of lansoprazole for offering gastroprotection against indomethacin-induced gastropathy.

  17. Pentoxifylline attenuates cytokine stress and Fas system in syngeneic liver proteins induced experimental autoimmune hepatitis.

    PubMed

    Hendawy, Nevien

    2017-08-01

    Apoptosis is a hallmark in the pathogenesis of autoimmune hepatitis (AIH). Cytokine stresses and extrinsic apoptotic pathway have been implicated in this type of hepatic injury. Pentoxifylline plays an important role in controlling inflammation and apoptosis in different autoimmune diseases. To assess the protective effect of pentoxifylline for 30days against pro-inflammatory cytokines as tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ) and mediators of extrinsic apoptotic pathway involving TNF receptor 1 (TNFR1) and its ligand TNF-α and Fas receptor and its ligand (FasL) in experimental autoimmune hepatitis (EAH) model. EAH was induced by intraperitoneal injection of syngeneic liver antigen emulsified in complete Freund's adjuvant (CFA) in male C57BL/6 mice. Five groups of mice were used: two control groups; Control PBS group and Control CFA group, EAH group and two EAH+pentoxifylline treated groups in doses (100 or 200mg/kg/d, given by oral gavage). Serum transaminase, pro-inflammatory cytokines (TNF-α and interferon-γ) and hepatic caspase-8 and 3 activities were evaluated. Signs of autoimmune hepatitis were confirmed by liver histology. In addition, hepatic TNFR1, Fas and FasL mRNA expression were assayed. Serum transaminase levels and signs of AIH observed in EAH mice were significantly reduced by pentoxifylline. Upregulated serum TNF-α, IFN-γ, hepatic caspase-8 and 3 activities and TNFR1, Fas and FasL mRNA expression in liver tissues in EAH group were significantly downregulated by pentoxifylline. Pentoxifylline protects against syngeneic liver antigen induced hepatitis and associating apoptosis through attenuating the exaggerated cytokine release and extrinsic apoptotic pathway. Thus, this may represent a new therapeutic strategy for hepatitis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Inhibition of Fatty Acid Synthase in Prostate Cancer by Olristat, a Novel Therapeutic

    DTIC Science & Technology

    2006-11-01

    previous crystallography studies by solving the crystal structure of FAS bound to a cleaved orlistat . These data will provide valuable insight into...timeline of XBP-1 15 processing following orlistat treatment (Figure 3A). Previous studies have demonstrated that inhibition of protein translation with...future drug discovery and design within the FAS pathway. In total, we have made great strides toward understanding the anti-tumor effects of orlistat

  19. Amino and fatty acid dynamics of octopus (Octopus vulgaris) early life stages under ocean warming.

    PubMed

    Lopes, Vanessa M; Faleiro, Filipa; Baptista, Miguel; Pimentel, Marta S; Paula, José R; Couto, Ana; Bandarra, Narcisa; Anacleto, Patrícia; Marques, António; Rosa, Rui

    2016-01-01

    The oceans are becoming warmer, and the higher temperatures are expected to have a major impact on marine life at different levels of biological organization, especially at the most vulnerable early life stages. Thus, we hypothesize that the future warmer scenarios (here +3 °C) will affect the biochemical composition (amino acid - AA, and fatty acid-FA) of octopod (Octopus vulgaris) embryos and recently-hatched pelagic paralarvae. The main essential amino acids found in octopus embryos were arginine, leucine and lysine; while aspartic and glutamic acids, and taurine were the main non-essential amino acids. Palmitic, eicosapentaenoic and docosahexaenoic acids were the main FAs found in octopus tissues. Relevant ontogenetic changes were observed, namely a steep decrease in the content of many AAs, and a selective retention of FAs, thus evidencing the protein-based metabolism of these cephalopods. Temperature per si did not elicit significant changes in the overall FA composition, but was responsible for a significant decrease in the content of several AAs, indicating increased embryonic consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Particulate Organic Matter Distribution along the Lower Amazon River: Addressing Aquatic Ecology Concepts Using Fatty Acids

    PubMed Central

    Mortillaro, Jean-Michel; Rigal, François; Rybarczyk, Hervé; Bernardes, Marcelo; Abril, Gwenaël; Meziane, Tarik

    2012-01-01

    One of the greatest challenges in understanding the Amazon basin functioning is to ascertain the role played by floodplains in the organic matter (OM) cycle, crucial for a large spectrum of ecological mechanisms. Fatty acids (FAs) were combined with environmental descriptors and analyzed through multivariate and spatial tools (asymmetric eigenvector maps, AEM and principal coordinates of neighbor matrices, PCNM). This challenge allowed investigating the distribution of suspended particulate organic matter (SPOM), in order to trace its seasonal origin and quality, along a 800 km section of the Amazon river-floodplain system. Statistical analysis confirmed that large amounts of saturated FAs (15:0, 18:0, 24:0, 25:0 and 26:0), an indication of refractory OM, were concomitantly recorded with high pCO2 in rivers, during the high water season (HW). Contrastingly, FAs marker which may be attributed in this ecosystem to aquatic plants (18:2ω6 and 18:3ω3) and cyanobacteria (16:1ω7), were correlated with higher O2, chlorophyll a and pheopigments in floodplains, due to a high primary production during low waters (LW). Decreasing concentrations of unsaturated FAs, that characterize labile OM, were recorded during HW, from upstream to downstream. Furthermore, using PCNM and AEM spatial methods, FAs compositions of SPOM displayed an upstream-downstream gradient during HW, which was attributed to OM retention and the extent of flooded forest in floodplains. Discrimination of OM quality between the Amazon River and floodplains corroborate higher autotrophic production in the latter and transfer of OM to rivers at LW season. Together, these gradients demonstrate the validity of FAs as predictors of spatial and temporal changes in OM quality. These spatial and temporal trends are explained by 1) downstream change in landscape morphology as predicted by the River Continuum Concept; 2) enhanced primary production during LW when the water level decreased and its residence time increased as predicted by the Flood Pulse Concept. PMID:23029412

  1. Effects of olive and fish oil Ca soaps in ewe diets on milk fat and muscle and subcutaneous tissue fatty-acid profiles of suckling lambs.

    PubMed

    Gallardo, B; Gómez-Cortés, P; Mantecón, A R; Juárez, M; Manso, T; de la Fuente, M A

    2014-07-01

    Enhancing healthy fatty acids (FAs) in ewe milk fat and suckling lamb tissues is an important objective in terms of improving the nutritional value of these foods for the consumer. The present study examined the effects of feeding-protected lipid supplements rich in unsaturated FAs on the lipid composition of ewe milk, and subsequently in the muscle and subcutaneous adipose tissues of lambs suckling such milk. Thirty-six pregnant Churra ewes with their new-born lambs were assigned to one of three experimental diets (forage/concentrate ratio 50 : 50), each supplemented with either 3% Ca soap FAs of palm (Control), olive (OLI) or fish (FO) oil. The lambs were nourished exclusively by suckling for the whole experimental period. When the lambs reached 11 kg BW, they were slaughtered and samples were taken from the Longissimus dorsi and subcutaneous fat depots. Although milk production was not affected by lipid supplementation, the FO diet decreased fat content (P0.05) and other trans-FAs between Control and FO treatments would indicate that FO treatment does not alter rumen biohydrogenation pathways under the assayed conditions. Changes in dam milk FA composition induced differences in the FA profiles of meat and fat depots of lambs, preferentially incorporated polyunsaturated FAs into the muscle rather than storing them in the adipose tissue. In the intramuscular fat of the FO treatment, all the n-3 FAs reached their highest concentrations: 0.97 (18:3 n-3), 2.72 (20:5 n-3), 2.21 (22:5 n-3) and 1.53% (22:6 n-3). In addition, not only did FO intramuscular fat have the most cis-9, trans-11 18:2 (1.66%) and trans-11 18:1 (3.75%), but also the lowest n-6/n-3 ratio (1.80) and saturated FA content were not affected. Therefore, FO exhibited the best FA profile from a nutritional point of view.

  2. ω-3 Fatty Acids Prevent Hepatic Steatosis, Independent of PPAR-α Activity, in a Murine Model of Parenteral Nutrition–Associated Liver Disease

    PubMed Central

    Prince, Esther; Lazare, Farrah B.; Treem, William R.; Xu, Jiliu; Iqbal, Jahangir; Pan, Xiaoyue; Josekutty, Joby; Walsh, Meghan; Anderson, Virginia; Hussain, M. Mahmood; Schwarz, Steven M.

    2015-01-01

    Objectives ω-3 Fatty acids (FAs), natural ligands for the peroxisome proliferator-activated receptor–α (PPAR-α), attenuate parenteral nutrition–associated liver disease (PNALD). However, the mechanisms underlying the protective role of ω-3 FAs are still unknown. The aim of this study was to determine the effects of ω-3 FAs on hepatic triglyceride (TG) accumulation in a murine model of PNALD and to investigate the role of PPAR-α and microsomal triglyceride transfer protein (MTP) in this experimental setting. Methods 129S1/SvImJ wild-type or 129S4/SvJaePparatm/Gonz/J PPAR-α knockout mice were fed chow and water (controls); oral, fat-free PN solution only (PN-O); PN-O plus intraperitoneal (IP) ω-6 FA-predominant supplements (PN–ω-6); or PN-O plus IP ω-3 FA (PN–ω-3). Control and PN-O groups received sham IP injections of 0.9% NaCl. Hepatic histology, TG and cholesterol, MTP activity, and PPAR-α messenger RNA were assessed after 19 days. Results In all experimental groups, PN feeding increased hepatic TG and MTP activity compared with controls. Both PN-O and PN–ω-6 groups accumulated significantly greater amounts of TG when compared with PN–ω-3 mice. Studies in PPAR-α null animals showed that PN feeding increases hepatic TG as in wild-type mice. PPAR-α null mice in the PN-O and PN–ω-6 groups demonstrated variable degrees of hepatic steatosis, whereas no evidence of hepatic fat accumulation was found after 19 days of oral PN plus IP ω-3 FAs. Conclusions PN induces TG accumulation (steatosis) in wild-type and PPAR-α null mice. In PN-fed wild-type and PPAR-α null mice given IP ω-3 FAs, reduced hepatic TG accumulation and absent steatosis are found. Prevention of steatosis by ω-3 FAs results from PPAR-α–independent pathways. PMID:23757305

  3. Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication.

    PubMed

    Sanchez, Erica L; Pulliam, Thomas H; Dimaio, Terri A; Thalhofer, Angel B; Delgado, Tracie; Lagunoff, Michael

    2017-05-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation. Our previous findings showed that latently infected cells are sensitive to inhibitors of cellular metabolic pathways, including glycolysis, glutaminolysis, and fatty acid synthesis. Here we found that these same inhibitors block the production of infectious virus from lytically infected cells, each at a different stage of viral replication. Therefore, inhibition of specific cellular metabolic pathways can both eliminate latently infected cells and block lytic replication, thereby inhibiting infection of new cells. Inhibition of metabolic pathways provides novel therapeutic approaches for KS tumors. Copyright © 2017 American Society for Microbiology.

  4. Glycolysis, Glutaminolysis, and Fatty Acid Synthesis Are Required for Distinct Stages of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication

    PubMed Central

    Sanchez, Erica L.; Pulliam, Thomas H.; Dimaio, Terri A.; Thalhofer, Angel B.; Delgado, Tracie

    2017-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors. IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation. Our previous findings showed that latently infected cells are sensitive to inhibitors of cellular metabolic pathways, including glycolysis, glutaminolysis, and fatty acid synthesis. Here we found that these same inhibitors block the production of infectious virus from lytically infected cells, each at a different stage of viral replication. Therefore, inhibition of specific cellular metabolic pathways can both eliminate latently infected cells and block lytic replication, thereby inhibiting infection of new cells. Inhibition of metabolic pathways provides novel therapeutic approaches for KS tumors. PMID:28275189

  5. Crude palm oil from interspecific hybrid Elaeis oleifera×Elaeis guineensis: fatty acid regiodistribution and molecular species of glycerides.

    PubMed

    Mozzon, Massimo; Pacetti, Deborah; Lucci, Paolo; Balzano, Michele; Frega, Natale Giuseppe

    2013-11-01

    The composition and structure of triacylglycerols (TAGs) and partial glycerides of crude palm oil obtained from interspecific hybrid Elaeis oleifera×Elaeis guineensis, grown in Colombia, were fully characterised and compared to data obtained by analysing crude African palm oil. Hybridisation appears to substantially modify the biosynthesis of fatty acids (FAs) rather than their assembly in TAGs. In fact, total FAs analysis showed significant differences between these two types of oil, with hybrid palm oil having a higher percentage of oleic acid (54.6 ± 1.0 vs 41.4 ± 0.3), together with a lower saturated fatty acid content (33.5 ± 0.5 vs 47.3 ± 0.1), while the percentage of essential fatty acid, linoleic acid, does not undergo significant changes. Furthermore, 34 TAG types were identified, with no qualitative differences between African and E. guineensis×E. oleifera hybrid palm oil samples. Short and medium chain FAs (8:0, 10:0, 12:0, 14:0) were utilised, together, to build a restricted number of TAG molecular species. Oil samples from the E. guineensis×E. oleifera hybrid showed higher contents of monosaturated TAGs (47.5-51.0% vs 36.7-37.1%) and triunsaturated TAGs (15.5-15.6% vs 5.2-5.4%). The sn-2 position of TAGs in hybrid palm oil was shown to be predominantly esterified with oleic acid (64.7-66.0 mol% vs 55.1-58.2 mol% in African palm oil) with only 10-15% of total palmitic acid and 6-20% of stearic acid acylated in the secondary position. The total amount of diacylglycerols (DAGs) was in agreement with the values of free acidity; DAG types found were in agreement with the representativeness of different TAG species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Short-chain fatty acid sensing in rat duodenum.

    PubMed

    Akiba, Yasutada; Inoue, Takuya; Kaji, Izumi; Higashiyama, Masaaki; Narimatsu, Kazuyuki; Iwamoto, Ken-ichi; Watanabe, Masahiko; Guth, Paul H; Engel, Eli; Kuwahara, Atsukazu; Kaunitz, Jonathan D

    2015-02-01

    Luminal lipid in the duodenum modulates gastroduodenal functions via the release of gut hormones and mediators such as cholecystokinin and 5-HT. The effects of luminal short-chain fatty acids (SCFAs) in the foregut are unknown. Free fatty acid receptors (FFARs) for long-chain fatty acids (LCFAs) and SCFAs are expressed in enteroendocrine cells. SCFA receptors, termed FFA2 and FFA3, are expressed in duodenal enterochromaffin cells and L cells, respectively. Activation of LCFA receptor (FFA1) and presumed FFA3 stimulates duodenal HCO3(-) secretion via a glucagon-like peptide (GLP)-2 pathway, whereas FFA2 activation induces HCO3(-) secretion via muscarinic and 5-HT4 receptor activation. The presence of SCFA sensing in the duodenum with GLP-2 and 5-HT signals further supports the hypothesis that luminal SCFA in the foregut may contribute towards the generation of functional symptoms. Intraduodenal fatty acids (FA) and bacterial overgrowth, which generate short-chain FAs (SCFAs), have been implicated in the generation of functional dyspepsia symptoms. We studied the mechanisms by which luminal SCFA perfusion affects duodenal HCO3(-) secretion (DBS), a measure of mucosal neurohumoral activation. Free fatty acid receptor (FFAR) 1 (FFA1), which binds long-chain FA (LCFA), and SCFA receptors FFA2 and FFA3 were immunolocalised to duodenal enteroendocrine cells. FFA3 colocalised with glucagon-like peptide (GLP)-1, whereas FFA2 colocalised with 5-HT. Luminal perfusion of the SCFA acetate or propionate increased DBS, enhanced by dipeptidyl peptidase-IV (DPPIV) inhibition, at the same time as increasing GLP-2 portal blood concentrations. Acetate-induced DBS was partially inhibited by monocarboxylate/HCO3(-) exchanger inhibition without affecting GLP-2 release, implicating acetate absorption in the partial mediation of DBS. A selective FFA2 agonist dose-dependently increased DBS, unaffected by DPPIV inhibition or by cholecystokinin or 5-HT3 receptor antagonists, but was inhibited by atropine and a 5-HT4 antagonist. By contrast, a selective FFA1 agonist increased DBS accompanied by GLP-2 release, enhanced by DPPIV inhibition and inhibited by a GLP-2 receptor antagonist. Activation of FFA1 by LCFA and presumably FFA3 by SCFA increased DBS via GLP-2 release, whereas FFA2 activation stimulated DBS via muscarinic and 5-HT4 receptor activation. SCFA/HCO3(-) exchange also appears to be present in the duodenum. The presence of duodenal fatty acid sensing receptors that signal hormone release and possibly signal neural activation may be implicated in the pathogenesis of functional dyspepsia. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  7. Plasma and white adipose tissue lipid composition in marmots.

    PubMed

    Florant, G L; Nuttle, L C; Mullinex, D E; Rintoul, D A

    1990-05-01

    White adipose tissue biopsies and plasma samples were obtained from hibernating yellow-bellied marmots (Marmota flaviventris) maintained in the laboratory. In addition, biopsies and plasma samples were obtained from normothermic animals in the field and laboratory. Measurement of plasma free fatty acid (FA) levels indicated that winter laboratory animals exhibited increased lipolysis. Additionally, analysis of white adipose tissue triacylglycerol revealed that the FA composition of the storage fat in animals maintained on the standard laboratory diet is remarkably simple and uniform between different adipose depots in the same animal. Three FAs (palmitic, oleic, and linoleic acids) made up greater than 95% of the total. Triene (alpha-linolenate) was found in newly captured animals, but the percentage of this FA decreased rapidly when the animals were maintained on the standard laboratory diet. Throughout the hibernation season (October to April), white adipose tissue-saturated FA percentage decreased, monoene percentage remained constant, and diene percentage increased. Analysis of plasma FA composition suggested that these animals tended to metabolize saturated FAs from stored lipid during hibernation and that dienes were mobilized briefly after the last arousal from hibernation in spring. From these observations, we hypothesize that marmots preferentially metabolize saturated fats during the hibernation period and that essential FAs of the omega 6 series tend to be metabolized more slowly than other FAs. These characteristics suggest that marmots are a valuable animal model in which to study lipid metabolism.

  8. Feedback regulation of mitochondria by caspase-9 in the B cell receptor-mediated apoptosis.

    PubMed

    Eeva, J; Nuutinen, U; Ropponen, A; Mättö, M; Eray, M; Pellinen, R; Wahlfors, J; Pelkonen, J

    2009-12-01

    During the germinal centre reaction (GC), B cells with non-functional or self-reactive antigen receptors are negatively selected by apoptosis to generate B cell repertoire with appropriate antigen specificities. We studied the molecular mechanism of Fas/CD95- and B cell receptor (BCR)-induced apoptosis to shed light on the signalling events involved in the negative selection of GC B cells. As an experimental model, we used human follicular lymphoma (FL) cell line HF1A3, which originates from a GC B cell, and transfected HF1A3 cell lines overexpressing Bcl-x(L), c-FLIP(long) or dominant negative (DN) caspase-9. Fas-induced apoptosis was dependent on the caspase-8 activation, since the overexpression of c-FLIP(long), a natural inhibitor of caspase-8 activation, blocked apoptosis induced by Fas. In contrast, caspase-9 activation was not involved in Fas-induced apoptosis. BCR-induced apoptosis showed the typical characteristics of mitochondria-dependent (intrinsic) apoptosis. Firstly, the activation of caspase-9 was involved in BCR-induced DNA fragmentation, while caspase-8 showed only marginal role. Secondly, overexpression of Bcl-x(L) could block all apoptotic changes induced by BCR. As a novel finding, we demonstrate that caspase-9 can enhance the cytochrome-c release and collapse of mitochondrial membrane potential (DeltaPsi(m)) during BCR-induced apoptosis. The requirement of different signalling pathways in apoptosis induced by BCR and Fas may be relevant, since Fas- and BCR-induced apoptosis can thus be regulated independently, and targeted to different subsets of GC B cells.

  9. Diversity of fatty acid composition of symbiotic dinoflagellates in corals: evidence for the transfer of host PUFAs to the symbionts.

    PubMed

    Imbs, Andrey B; Yakovleva, Irina M; Dautova, Tatiana N; Bui, Long H; Jones, Paul

    2014-05-01

    High diversity of fatty acid (FA) composition of endosymbiotic dinoflagellates of the Symbiodinium group (zooxanthellae) isolated from different cnidarian groups has been found. To explain this diversity, FA composition of the total lipids of pure symbiont fractions (SF) and host cell tissue fractions (HF) isolated from one hydrocoral, two soft coral, and seven hard coral species inhabiting the shallow waters of the South China Sea (Vietnam) were compared. Symbiodinium phylogenetic clade designation for each SF was also determined, however, the relationship between the clade designation and FA composition of Symbiodinium was not found. The profiles of marker polyunsaturated FAs (PUFAs) of symbionts (18:4n-3, 18:5n-3, 20:5n-3) did not depend on taxonomic designation of the host and reflected only a specimen-specific diversity of the SF lipids. Several FAs such as 20:0, C24 PUFAs, 22:5n-6, and 18:2n-7 concentrated in HF lipids but were also found in SF lipids. For ten cnidarian species studied, the principal components analysis of total FAs (27 variables) of the symbiotic fractions was performed. The clear division of the symbiotic dinoflagellates according to the host systematic identity was found on a subclass level. This division was mainly caused by the FAs specific for the host lipids of each cnidarian subclasses such as hard corals, soft corals, and hydrocorals. Thus, the coral hosts affect the FA profile of their symbionts and cause the diversity of FA composition of Symbiodinium. The transfer of FAs from the coral host to their symbiotic dinoflagellates and modulation of PUFA biosynthesis in symbionts by the host are considered as possible reasons of the diversity studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Engineered Respiro-Fermentative Metabolism for the Production of Biofuels and Biochemicals from Fatty Acid-Rich Feedstocks▿ †

    PubMed Central

    Dellomonaco, Clementina; Rivera, Carlos; Campbell, Paul; Gonzalez, Ramon

    2010-01-01

    Although lignocellulosic sugars have been proposed as the primary feedstock for the biological production of renewable fuels and chemicals, the availability of fatty acid (FA)-rich feedstocks and recent progress in the development of oil-accumulating organisms make FAs an attractive alternative. In addition to their abundance, the metabolism of FAs is very efficient and could support product yields significantly higher than those obtained from lignocellulosic sugars. However, FAs are metabolized only under respiratory conditions, a metabolic mode that does not support the synthesis of fermentation products. In the work reported here we engineered several native and heterologous fermentative pathways to function in Escherichia coli under aerobic conditions, thus creating a respiro-fermentative metabolic mode that enables the efficient synthesis of fuels and chemicals from FAs. Representative biofuels (ethanol and butanol) and biochemicals (acetate, acetone, isopropanol, succinate, and propionate) were chosen as target products to illustrate the feasibility of the proposed platform. The yields of ethanol, acetate, and acetone in the engineered strains exceeded those reported in the literature for their production from sugars, and in the cases of ethanol and acetate they also surpassed the maximum theoretical values that can be achieved from lignocellulosic sugars. Butanol was produced at yields and titers that were between 2- and 3-fold higher than those reported for its production from sugars in previously engineered microorganisms. Moreover, our work demonstrates production of propionate, a compound previously thought to be synthesized only by propionibacteria, in E. coli. Finally, the synthesis of isopropanol and succinate was also demonstrated. The work reported here represents the first effort toward engineering microorganisms for the conversion of FAs to the aforementioned products. PMID:20525863

  11. Biodiesel production by combined fatty acids separation and subsequently enzymatic esterification to improve the low temperature properties.

    PubMed

    Wang, Meng; Nie, Kaili; Cao, Hao; Deng, Li; Wang, Fang; Tan, Tianwei

    2014-12-01

    The poor low-temperature properties of biodiesel, which provokes easy crystallization at low temperature, can cause fuel line plugging and limits its blending amount with petro-diesel. This work aimed to study the production of biodiesel with a new process of improving the low temperature performance of biodiesel. Waste cooking oil was first hydrolyzed into fatty acids (FAs) by 60g immobilized lipase and 240g RO water in 15h. Then, urea complexation was used to divide the FAs into saturated and unsaturated components. The conditions for complexation were: FA-to-urea ratio 1:2 (w/w), methanol to FA ratio 5:1 (v/v), duration 2h. The saturated and unsaturated FAs were then converted to iso-propyl and methyl esters by lipase, respectively. Finally, the esters were mixed together. The CFPP of this mixture was decreased from 5°C to -3°C. Hydrolysis, urea complexation and enzymic catalyzed esterification processes are discussed in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. MECR Mutations Cause Childhood-Onset Dystonia and Optic Atrophy, a Mitochondrial Fatty Acid Synthesis Disorder.

    PubMed

    Heimer, Gali; Kerätär, Juha M; Riley, Lisa G; Balasubramaniam, Shanti; Eyal, Eran; Pietikäinen, Laura P; Hiltunen, J Kalervo; Marek-Yagel, Dina; Hamada, Jeffrey; Gregory, Allison; Rogers, Caleb; Hogarth, Penelope; Nance, Martha A; Shalva, Nechama; Veber, Alvit; Tzadok, Michal; Nissenkorn, Andreea; Tonduti, Davide; Renaldo, Florence; Kraoua, Ichraf; Panteghini, Celeste; Valletta, Lorella; Garavaglia, Barbara; Cowley, Mark J; Gayevskiy, Velimir; Roscioli, Tony; Silberstein, Jonathon M; Hoffmann, Chen; Raas-Rothschild, Annick; Tiranti, Valeria; Anikster, Yair; Christodoulou, John; Kastaniotis, Alexander J; Ben-Zeev, Bruria; Hayflick, Susan J

    2016-12-01

    Mitochondrial fatty acid synthesis (mtFAS) is an evolutionarily conserved pathway essential for the function of the respiratory chain and several mitochondrial enzyme complexes. We report here a unique neurometabolic human disorder caused by defective mtFAS. Seven individuals from five unrelated families presented with childhood-onset dystonia, optic atrophy, and basal ganglia signal abnormalities on MRI. All affected individuals were found to harbor recessive mutations in MECR encoding the mitochondrial trans-2-enoyl-coenzyme A-reductase involved in human mtFAS. All six mutations are extremely rare in the general population, segregate with the disease in the families, and are predicted to be deleterious. The nonsense c.855T>G (p.Tyr285 ∗ ), c.247_250del (p.Asn83Hisfs ∗ 4), and splice site c.830+2_830+3insT mutations lead to C-terminal truncation variants of MECR. The missense c.695G>A (p.Gly232Glu), c.854A>G (p.Tyr285Cys), and c.772C>T (p.Arg258Trp) mutations involve conserved amino acid residues, are located within the cofactor binding domain, and are predicted by structural analysis to have a destabilizing effect. Yeast modeling and complementation studies validated the pathogenicity of the MECR mutations. Fibroblast cell lines from affected individuals displayed reduced levels of both MECR and lipoylated proteins as well as defective respiration. These results suggest that mutations in MECR cause a distinct human disorder of the mtFAS pathway. The observation of decreased lipoylation raises the possibility of a potential therapeutic strategy. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Synthesis, chemical characterization, and economical feasibility of poly-phenolic-branched-chain fatty acids: Synthesis of poly-phenolic-branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    New poly-phenolic branched-chain fatty acid (poly-PBC-FA) products were synthesized from a combination of soybean fatty acids and phenolic materials through a highly efficient zeolite catalyzed arylation method. These poly-PBC-FAs are liquid at room temperature and do not have the unpleasant odor li...

  14. Low n-6:n-3 fatty acid ratio, with fish- or flaxseed oil, in a high fat diet improves plasma lipids and beneficially alters tissue fatty acid composition in mice.

    PubMed

    Riediger, Natalie D; Othman, Rgia; Fitz, Evelyn; Pierce, Grant N; Suh, Miyoung; Moghadasian, Mohammed H

    2008-04-01

    Health benefits from low n-6:n-3 fatty acid (FA) ratio on cardiovascular risk have been shown. However, the impact of the source of n-3 FAs has not been fully investigated. Our purpose was to investigate cardiovascular benefits of oils with a low ratio of n-6:n-3 FAs, but different sources of n-3 FAs in C57BL/6 mice. Twenty-one mice were divided into 3 groups (n=7) and fed a diet supplemented with either a fish or flaxseed oil-based 'designer oils' with an approximate n-6:n-3 FA ratio of 2/1 or with a safflower-oil-based diet with a ratio of 25/1, for 16 weeks. Plasma lipids and fatty acid profile of the liver tissue were characterized. Compared to baseline, plasma triacylglycerol levels declined (>50%) in all groups by week 4. Plasma cholesterol levels were reduced in both fish and flax groups by 27% and 36%, respectively, as compared to controls at endpoint. The levels of EPA and DHA in liver phospholipids were significantly increased in both fish and flax groups as compared to the control group, with more profound increases in the fish group. Arachidonic acid levels were similarly decreased in the liver tissues from both fish and flax groups as compared to controls. Our data suggest that health benefits may be achieved by lowering dietary n-6:n-3 FA even in a high fat diet medium.

  15. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis.

    PubMed

    Marí, Montserrat; Caballero, Francisco; Colell, Anna; Morales, Albert; Caballeria, Juan; Fernandez, Anna; Enrich, Carlos; Fernandez-Checa, José C; García-Ruiz, Carmen

    2006-09-01

    The etiology of progression from steatosis to steatohepatitis (SH) remains unknown. Using nutritional and genetic models of hepatic steatosis, we show that free cholesterol (FC) loading, but not free fatty acids or triglycerides, sensitizes to TNF- and Fas-induced SH. FC distribution in endoplasmic reticulum (ER) and plasma membrane did not cause ER stress or alter TNF signaling. Rather, mitochondrial FC loading accounted for the hepatocellular sensitivity to TNF due to mitochondrial glutathione (mGSH) depletion. Selective mGSH depletion in primary hepatocytes recapitulated the susceptibility to TNF and Fas seen in FC-loaded hepatocytes; its repletion rescued FC-loaded livers from TNF-mediated SH. Moreover, hepatocytes from mice lacking NPC1, a late endosomal cholesterol trafficking protein, or from obese ob/ob mice, exhibited mitochondrial FC accumulation, mGSH depletion, and susceptibility to TNF. Thus, we propose a critical role for mitochondrial FC loading in precipitating SH, by sensitizing hepatocytes to TNF and Fas through mGSH depletion.

  16. Fat in the heart: The enzymatic machinery regulating cardiac triacylglycerol metabolism.

    PubMed

    Heier, Christoph; Haemmerle, Guenter

    2016-10-01

    The heart predominantly utilizes fatty acids (FAs) as energy substrate. FAs that enter cardiomyocytes can be activated and directly oxidized within mitochondria (and peroxisomes) or they can be esterified and intracellularly deposited as triacylglycerol (TAG) often simply referred to as fat. An increase in cardiac TAG can be a signature of the diseased heart and may implicate a minor role of TAG synthesis and breakdown in normal cardiac energy metabolism. Often overlooked, the heart has an extremely high TAG turnover and the transient deposition of FAs within the cardiac TAG pool critically determines the availability of FAs as energy substrate and signaling molecules. We herein review the recent literature regarding the enzymes and co-regulators involved in cardiomyocyte TAG synthesis and catabolism and discuss the interconnection of these metabolic pathways in the normal and diseased heart. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Antioxidant treatment prevents the development of fructose-induced abdominal adipose tissue dysfunction.

    PubMed

    Fariña, Juan Pablo; García, María Elisa; Alzamendi, Ana; Giovambattista, Andrés; Marra, Carlos Alberto; Spinedi, Eduardo; Gagliardino, Juan José

    2013-07-01

    In the present study, we tested the effect of OS (oxidative stress) inhibition in rats fed on an FRD [fructose-rich diet; 10% (w/v) in drinking water] for 3 weeks. Normal adult male rats received a standard CD (commercial diet) or an FRD without or with an inhibitor of NADPH oxidase, APO (apocynin; 5 mM in drinking water; CD-APO and FRD-APO). We thereafter measured plasma OS and metabolic-endocrine markers, AAT (abdominal adipose tissue) mass and cell size, FA (fatty acid) composition (content and release), OS status, LEP (leptin) and IRS (insulin receptor substrate)-1/IRS-2 mRNAs, ROS (reactive oxygen species) production, NADPH oxidase activity and LEP release by isolated AAT adipocytes. FRD-fed rats had larger AAT mass without changes in body weight, and higher plasma levels of TAG (triacylglycerol), FAs, TBARS (thiobarbituric acid-reactive substance) and LEP. Although no significant changes in glucose and insulin plasma levels were observed in these animals, their HOMA-IR (homoeostasis model assessment of insulin resistance) values were significantly higher than those of CD. The AAT from FRD-fed rats had larger adipocytes, higher saturated FA content, higher NADPH oxidase activity, greater ROS production, a distorted FA content/release pattern, lower insulin sensitivity together with higher and lower mRNA content of LEP and IRS-1-/2 respectively, and released a larger amount of LEP. The development of all the clinical, OS, metabolic, endocrine and molecular changes induced by the FRD were significantly prevented by APO co-administration. The fact that APO treatment prevented both changes in NADPH oxidase activity and the development of all the FRD-induced AAT dysfunctions in normal rats strongly suggests that OS plays an important role in the FRD-induced MS (metabolic syndrome) phenotype.

  18. Impact of water temperature on the growth and fatty acid profiles of juvenile sea cucumber Apostichopus japonicus (Selenka).

    PubMed

    Yu, Haibo; Zhang, Cheng; Gao, Qinfeng; Dong, Shuanglin; Ye, Zhi; Tian, Xiangli

    2016-08-01

    The present study determined the changes in the fatty acid (FA) profiles of juvenile sea cucumber Apostichopus japonicus in response to the varied water temperature. Sea cucumbers with similar size (4.02±0.11g) were cultured for 8 weeks at 14°C, 18°C, 22°C and 26°C, respectively. At the end of the experiment, the specific growth rate (SGR) and the profiles of FAs in neutral lipids and phospholipids of the juvenile sea cucumbers cultured at different temperatures were determined. The SGRs of the sea cucumbers cultured at 26°C significantly decreased 46.3% compared to thos cultured at 18°C. Regression analysis showed that the SGR-temperature (T) relationship can be expressed as SGR=-0.0073T(2)+0.255T -1.0231 (R(2)=0.9936) and the highest SGR was predicted at 17.5°C. For the neutral lipids, the sum of saturated FAs (SFAs), monounsaturated FAs (MUFAs) or polyunsaturated FAs (PUFAs) of the sea cucumbers that were cultured at the water temperature from 18°C-26°C did not change significantly, indicating the insensitivity of FA profiles for the neutral lipids of sea cucumbers in response to increasing water temperature. For phospholipids, the sum of PUFAs in the sea cucumbers dramatically decreased with the gradually increased water temperature. The sum of SFAs and MUFAs of sea cucumbers, however, increased with the gradually elevated water temperature. In particular, the contents of highly unsaturated fatty acids (HUFAs), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA), in the phospholipids of the sea cucumbers decreased 37.2% and 26.1%, respectively, when the water temperature increased from 14°C to 26°C. In summary, the sea cucumbers A. japonicus can regulate the FA compositions, especially the contents of EPA and DHA, in the phospholipids so as to adapt to varied water temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Inhibition of Fatty Acid Synthase in Prostate Cancer by Orlistat, a Novel Therapeutic

    DTIC Science & Technology

    2007-11-01

    up large amount of proteins and lipids through their daily diet . Therefore, the levels of FAS in most tissues are low. In human tissue, FAS is...in the type and level of fats in diet and inhibition of de novo lipogenesis may hold a great promise in the prevention and treatment of cancers. Lipids...synthesis, and multiple signaling pathways. Some lipids are obtained exclusively from diet , whereas others can also be synthesized de novo. A large

  20. Inhibition of Isolated Mycobacterium tuberculosis Fatty Acid Synthase I by Pyrazinamide Analogs▿

    PubMed Central

    Ngo, Silvana C.; Zimhony, Oren; Chung, Woo Jin; Sayahi, Halimah; Jacobs, William R.; Welch, John T.

    2007-01-01

    An analog of pyrazinamide (PZA), 5-chloropyrazinamide (5-Cl-PZA), has previously been shown to inhibit mycobacterial fatty acid synthase I (FASI). FASI has been purified from a recombinant strain of M. smegmatis (M. smegmatis Δfas1 attB::M. tuberculosis fas1). Following purification, FASI activity and inhibition were assessed spectrophotometrically by monitoring NADPH oxidation. The observed inhibition was both concentration and structure dependent, being affected by both substitution at the 5 position of the pyrazine nucleus and the nature of the ester or N-alkyl group. Under the conditions studied, both 5-Cl-PZA and PZA exhibited concentration and substrate dependence consistent with competitive inhibition of FASI with Kis of 55 to 59 μM and 2,567 to 2,627 μM, respectively. The results were validated utilizing a radiolabeled fatty acid synthesis assay. This assay showed that FASI was inhibited by PZA and pyrazinoic acid as well as by a series of PZA analogs. PMID:17485499

  1. Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney

    NASA Astrophysics Data System (ADS)

    Li, Jiwei; Zhou, Huaiyang; Peng, Xiaotong; Fu, Meiyan; Chen, Zhiqiang; Yao, Huiqiang

    2011-04-01

    Abundance and distribution of total fatty acids (TFAs) were examined along the physicochemical gradient within an active hydrothermal chimney collected from the Main Endeavour segment of Juan de Fuca Ridge. Approximately 27 fatty acids are identified with a chain-length ranging from C12 to C22. From the exterior to the interior of the chimney walls, the total concentrations of TFAs (∑ TFAs) show a trend of evident decrease. The observed compositions of TFAs are rich in bacterial biomarkers especially monounsaturated fatty acids (MUFAs) and minor branched and cyclopropyl FAs. On the basis of the species-specific FAs and bacterial 16SrRNA gene analysis (Li et al., unpublished data), sulfur-based metabolism appears to be the essential metabolic process in the chimney. Furthermore, the sulfur oxidizing bacteria (SOB) are identified as a basic component of microbial communities at the exterior of the hydrothermal chimney, and its proportion shows an inward decrease while the sulfate reducing bacteria (SRB) have an inverse distribution.

  2. Targeting the Fatty Acid Biosynthesis Enzyme, β-Ketoacyl–Acyl Carrier Protein Synthase III (PfKASIII), in the Identification of Novel Antimalarial Agents

    PubMed Central

    Lee, Patricia J.; Bhonsle, Jayendra B.; Gaona, Heather W.; Huddler, Donald P.; Heady, Tiffany N.; Kreishman-Deitrick, Mara; Bhattacharjee, Apurba; McCalmont, William F.; Gerena, Lucia; Lopez-Sanchez, Miriam; Roncal, Norma E.; Hudson, Thomas H.; Johnson, Jacob D.; Prigge, Sean T.; Waters, Norman C.

    2009-01-01

    The importance of fatty acids to the human malaria parasite, Plasmodium falciparum, and differences due to a type I fatty acid synthesis (FAS) pathway in the parasite, make it an attractive drug target. In the present study, we developed and a utilized a pharmacophore to select compounds for testing against PfKASIII, the initiating enzyme of FAS. This effort identified several PfKASIII inhibitors that grouped into various chemical classes of sulfides, sulfonamides, and sulfonyls. Approximately 60% of the submicromolar inhibitors of PfKASIII inhibited in vitro growth of the malaria parasite. These compounds inhibited both drug sensitive and resistant parasites and testing against a mammalian cell line revealed an encouraging in vitro therapeutic index for the most active compounds. Docking studies into the active site of PfKASIII suggest a potential binding mode that exploits amino acid residues at the mouth of the substrate tunnel. PMID:19191586

  3. Pinolenic Acid in Structured Triacylglycerols Exhibits Superior Intestinal Lymphatic Absorption As Compared to Pinolenic Acid in Natural Pine Nut Oil.

    PubMed

    Chung, Min-Yu; Woo, Hyunjoon; Kim, Juyeon; Kong, Daecheol; Choi, Hee-Don; Choi, In-Wook; Kim, In-Hwan; Noh, Sang K; Kim, Byung Hee

    2017-03-01

    The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO. Lymphatic absorption of PLA from PNO and from SPT was compared in a rat model of lymphatic cannulation. Significantly (P < 0.05) greater amounts of PLA were detected in lymph collected for 8 h from an emulsion containing SPT (28.5 ± 0.7% dose) than from an emulsion containing PNO (26.2 ± 0.6% dose), thereby indicating that PLA present in SPT has a greater capacity for lymphatic absorption than PLA from PNO.

  4. Fine-mapping and cross-validation of QTLs linked to fatty acid composition in multiple independent interspecific crosses of oil palm.

    PubMed

    Ting, Ngoot-Chin; Yaakub, Zulkifli; Kamaruddin, Katialisa; Mayes, Sean; Massawe, Festo; Sambanthamurthi, Ravigadevi; Jansen, Johannes; Low, Leslie Eng Ti; Ithnin, Maizura; Kushairi, Ahmad; Arulandoo, Xaviar; Rosli, Rozana; Chan, Kuang-Lim; Amiruddin, Nadzirah; Sritharan, Kandha; Lim, Chin Ching; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Singh, Rajinder

    2016-04-14

    The commercial oil palm (Elaeis guineensis Jacq.) produces a mesocarp oil (commonly called 'palm oil') with approximately equal proportions of saturated and unsaturated fatty acids (FAs). An increase in unsaturated FAs content or iodine value (IV) as a measure of the degree of unsaturation would help to open up new markets for the oil. One way to manipulate the fatty acid composition (FAC) in palm oil is through introgression of favourable alleles from the American oil palm, E. oleifera, which has a more unsaturated oil. In this study, a segregating E. oleifera x E. guineensis (OxG) hybrid population for FAC is used to identify quantitative trait loci (QTLs) linked to IV and various FAs. QTL analysis revealed 10 major and two putative QTLs for IV and six FAs, C14:0, C16:0, C16:1, C18:0, C18:1 and C18:2 distributed across six linkage groups (LGs), OT1, T2, T3, OT4, OT6 and T9. The major QTLs for IV and C16:0 on LGOT1 explained 60.0 - 69.0 % of the phenotypic trait variation and were validated in two independent BC2 populations. The genomic interval contains several key structural genes in the FA and oil biosynthesis pathways such as PATE/FATB, HIBCH, BASS2, LACS4 and DGAT1 and also a relevant transcription factor (TF), WRI1. The literature suggests that some of these genes can exhibit pleiotropic effects in the regulatory networks of these traits. Using the whole genome sequence data, markers tightly linked to the candidate genes were also developed. Clustering trait values according to the allelic forms of these candidate markers revealed significant differences in the IV and FAs of the palms in the mapping and validation crosses. The candidate gene approach described and exploited here is useful to identify the potential causal genes linked to FAC and can be adopted for marker-assisted selection (MAS) in oil palm.

  5. Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs.

    PubMed

    Ortega, Francisco J; Cardona-Alvarado, Mónica I; Mercader, Josep M; Moreno-Navarrete, José M; Moreno, María; Sabater, Mònica; Fuentes-Batllevell, Núria; Ramírez-Chávez, Enrique; Ricart, Wifredo; Molina-Torres, Jorge; Pérez-Luque, Elva L; Fernández-Real, José M

    2015-10-01

    Consumption of long-chain polyunsaturated fatty acids (PUFAs), which are abundant in seafood and nuts, ameliorates components of the metabolic syndrome. Circulating microRNAs (miRNAs) have demonstrated to be valuable biomarkers of metabolic diseases. Here, we investigated whether a sustained nuts-enriched diet can lead to changes in circulating miRNAs, in parallel to the dietary modification of fatty acids (FAs). The profile of 192 common miRNAs was assessed (TaqMan low-density arrays) in plasma from 10 healthy women before and after an 8-week trial with a normocaloric diet enriched with PUFAs (30 g/day of almonds and walnuts). The most relevant miRNAs were validated in an extended sample of 30 participants (8 men and 22 women). Adiponectin was measured by immunoassay and FAs by gas liquid chromatography coupled to mass spectrometry. The percentage of both ω-3 (P=.01) and ω-6 (P=.029) PUFAs of dietary origin (as inferred from plasma FA concentrations) increased, whereas saturated FAs decreased (P=.0008). Concomitantly with changes in circulating FAs, several miRNAs were modified by treatment, including decreased miR-328, miR-330-3p, miR-221 and miR-125a-5p, and increased miR-192, miR-486-5p, miR-19b, miR-106a, miR-769-5p, miR-130b and miR-18a. Interestingly, miR-106a variations in plasma correlated with changes in PUFAs, while miR-130b (r=0.58, P=.003) and miR-221 (r=0.46, P=.03) reflected changes in C-reactive protein. The dietary modulation of miR-125a-5p mirrored changes in fasting triglycerides (r=-0.44, P=.019) and increased adiponectin (r=0.43, P=.026). Dietary FAs (as inferred from plasma FA concentration) are linked to changes in circulating miRNAs, which may be modified by a PUFAs-enriched diet. Copyright © 2015. Published by Elsevier Inc.

  6. Maternal fatty acids in pregnancy, FADS polymorphisms, and child intelligence quotient at 8 y of age.

    PubMed

    Steer, Colin D; Lattka, Eva; Koletzko, Berthold; Golding, Jean; Hibbeln, Joseph R

    2013-12-01

    Brain tissue is selectively enriched with highly unsaturated fatty acids (FAs). Altering the maternal FA status in pregnancy may improve fetal neural development with lasting consequences for child development. We explored whether maternal FAs in erythrocytes, either measured directly or indirectly by maternal FADS genetic variants, are associated with child intelligence quotient (IQ). Linear regression analyses, adjusted for 18 confounders, were used to investigate the associations in 2839 mother-child pairs from the population-based Avon Longitudinal Study of Parents and Children cohort. Low levels of arachidonic acid (20:4n-6) were associated with lower performance IQ (-2.0 points; 95% CI: -3.5, -0.6 points; P = 0.007, increased R² = 0.27%), high levels of osbond acid (22:5n-6) were associated with verbal IQ (-1.8 points; 95% CI: -3.2, -0.4 points; P = 0.014, R² = 0.20%), and high levels of adrenic acid (22:4n-6) were associated with verbal IQ (-1.7 points; 95% CI:-3.1, -0.3 points; P = 0.016, R² = 0.19%). There was some evidence to support a negative association of low docosahexaenoic acid (DHA; 22:6n-3) with full-scale IQ (R² = 0.15%). Novel weak associations were also observed for low levels of osbond acid (R² ≤ 0.29%) and FADS variants with opposite effects for intron variants and variants in the promoter region such as rs3834458 (R² ≤ 0.38%). These results support the positive role of maternal arachidonic acid and DHA on fetal neural development, although the effects on child IQ by 8 y of age were small (0.1 SD), with other factors contributing more substantially. The endogenous synthesis of these FAs by FADS genes, especially FADS2, may also be important. The replication of these results is recommended.

  7. Biosynthesis of Polyunsaturated Fatty Acids in the Razor Clam Sinonovacula constricta: Characterization of Δ5 and Δ6 Fatty Acid Desaturases.

    PubMed

    Ran, Zhaoshou; Xu, Jilin; Liao, Kai; Li, Shuang; Chen, Shubing; Yan, Xiaojun

    2018-05-09

    To investigate the endogenous long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic ability in Sinonovacula constricta, fatty acid desaturases (Fads) of this bivalve, namely, Scfad5a, Scfad5b, and Scfad6, were cloned and characterized in the current study. Meanwhile, the tissue distributions of S. constricta Fads and fatty acids (FAs) were examined. Heterologous expression in yeasts confirmed that Scfad5a and Scfad5b were both Δ5 Fads, while Scfad6 was a Δ6 Fad. However, compared with Fads in other organisms, the desaturation activities of S. constricta Fads were relatively low (especially for Scfad6), indicating an adaptation to living conditions. S. constricta Fads were expressed in all tissues examined, and particularly high expressions were found in intestine and gonad. Moreover, FAs were differently distributed among tissues, which might be correlated with their corresponding physiological roles. Taken together, the results provided an insight into LC-PUFA biosynthesis in S. constricta. Notably, Scfad6 was the first functionally characterized Δ6 Fad in marine molluscs to date.

  8. Effects of Plant Oil Interesterified Triacylglycerols on Lipemia and Human Health

    PubMed Central

    Alfieri, Andreina; Vitucci, Daniela; Orrù, Stefania; Buono, Pasqualina; Mancini, Annamaria

    2017-01-01

    The position of the fatty acids (sn-1, sn-2 and sn-3) (stereospecific numbering (sn)) in triacylglycerol (TAG) molecules produces a characteristic stereospecificity that defines the physical properties of the fats and influences their absorption, metabolism and uptake into tissues. Fat interesterification is a process that implies a positional distribution of fatty acids (FAs) within the TAG molecules, generating new TAG species, without affecting the FA cis-trans natural balance. The interesterified (IE) fats, frequently used in the food industry comprise fats that are rich in long-chain saturated FAs, such as palmitic acid (16:0) and stearic acid (18:0). Within the interesterified fats, a critical role is played by FA occupying the sn-2 position; in fact, the presence of an unsaturated FA in this specific position influences early metabolic processing and postprandial clearance that in turn could induce atherogenesis and thrombogenesis events. Here, we provide an overview on the role of TAG structures and interesterified palmitic and stearic acid-rich fats on fasting and postprandial lipemia, focusing our attention on their physical properties and their effects on human health. PMID:29301208

  9. Improved synthesis and characterization of saturated branched-chain fatty acid isomers

    USDA-ARS?s Scientific Manuscript database

    The development of viable technologies for producing green products from renewable fats and oils is highly desirable since such materials can serve as replacements for non-renewable and poorly biodegradable petroleum-based products. Mixtures of saturated branched-chain fatty acid isomers (sbc-FAs),...

  10. Divergent Effects of Neutrophils on Fas-Induced Pulmonary Inflammation, Apoptosis, and Lung Damage.

    PubMed

    Bruns, Bastian; Hönle, Theresia; Kellermann, Philipp; Ayala, Alfred; Perl, Mario

    2017-02-01

    Pulmonary Fas activation is essential in the pathogenesis of the acute respiratory distress syndrome. It remains unclear whether Fas-induced lung injury is dependent on neutrophils or mainly triggered by epithelial cell apoptosis. The contribution of lung epithelial cells (LEC) and alveolar macrophages (AM) remains elusive.Mice were neutrophil reduced prior to intratracheal instillation of Fas-activating (Jo2) or isotype antibody for 6 or 18 h. LEC and AM were incubated with Jo2 and in the presence of nuclear factor kappa B, p-38 mitogen activated protein kinase (p38MAPK), or extracellular signal regulating kinase 1/2 (ERK1/2) inhibitors. Cytokines were assessed by cytometric bead array or ELISA. Apoptosis was quantified via active caspase-3 Western blotting and Terminal Deoxynucleotide Transferase dUTP Nick End Labeling (TUNEL). Lung injury was assessed by bronchoalveolar lavage fluid (BALF) protein concentration and lung histology.KC, IL-6, and MCP-1 were markedly increased in lung, plasma, and BALF 18 h after Jo2 in the presence of neutrophils; in neutrophil-reduced mice lungs, MCP-1, but not KC or IL-6, was even further enhanced. Six hours after Jo2, BALF protein was markedly increased only in the presence of neutrophils. Apoptosis remained unaffected by neutrophil reduction. AM released MCP-1 and underwent apoptosis at lower concentrations of Jo2 than LEC. Inhibition of p38MAPK significantly increased, while inhibition of ERK1/2 reduced AM and LEC apoptosis.In conclusion, neutrophils are a necessary component of Fas-induced lung damage, while not affecting lung apoptosis directly per se. LEC display higher resistance to Fas-triggered inflammation and apoptosis than AM.

  11. CD205-TLR9-IL-12 axis contributes to CpG-induced oversensitive liver injury in HBsAg transgenic mice by promoting the interaction of NKT cells with Kupffer cells.

    PubMed

    Hou, Xin; Hao, Xiaolei; Zheng, Meijuan; Xu, Congfei; Wang, Jun; Zhou, Rongbin; Tian, Zhigang

    2017-08-01

    Gut-derived bacterial products contribute to liver inflammation and injury during chronic hepatitis B virus infection; however, the underlying mechanisms remain obscure. In this study, hepatitis B surface antigen transgenic (HBs-Tg) mice and their wild-type (WT) control C57BL/6 mice were injected with CpG-oligodeoxynucleotides (ODNs) to mimic the translocation of gut microbial products into the systemic circulation. We found that, compared with the WT mice, the HBs-Tg mice were oversensitive to CpG-ODN-induced liver injury, which was dependent on natural killer T (NKT) cells. CpG-ODN injection enhanced the expression of Fas ligand (FasL) on NKT cells. In addition, hepatocytes from the HBs-Tg mice expressed higher levels of Fas than did those from the WT mice, which was further augmented by CpG-ODN. Interaction of Fas and FasL was involved in the cytotoxicity of NKT cells against hepatocytes in the HBs-Tg mice. Moreover, Kupffer cells in the HBs-Tg mice expressed higher levels of CD205 and produced greater amounts of interleukin (IL)-12 than did those in the WT mice. Finally, the depletion of Kupffer cells, neutralization of IL-12 or specific silencing of CD205 on Kupffer cells significantly inhibited CpG-ODN-induced liver injury and NKT activation in the HBs-Tg mice. Our data suggest that CD205-expressing Kupffer cells respond to CpG-ODNs and subsequently release IL-12 to promote NKT cell activation. Activated NKT cells induce liver damage through the Fas signaling pathway in HBs-Tg mice.

  12. CD205-TLR9-IL-12 axis contributes to CpG-induced oversensitive liver injury in HBsAg transgenic mice by promoting the interaction of NKT cells with Kupffer cells

    PubMed Central

    Hou, Xin; Hao, Xiaolei; Zheng, Meijuan; Xu, Congfei; Wang, Jun; Zhou, Rongbin; Tian, Zhigang

    2017-01-01

    Gut-derived bacterial products contribute to liver inflammation and injury during chronic hepatitis B virus infection; however, the underlying mechanisms remain obscure. In this study, hepatitis B surface antigen transgenic (HBs-Tg) mice and their wild-type (WT) control C57BL/6 mice were injected with CpG-oligodeoxynucleotides (ODNs) to mimic the translocation of gut microbial products into the systemic circulation. We found that, compared with the WT mice, the HBs-Tg mice were oversensitive to CpG-ODN-induced liver injury, which was dependent on natural killer T (NKT) cells. CpG-ODN injection enhanced the expression of Fas ligand (FasL) on NKT cells. In addition, hepatocytes from the HBs-Tg mice expressed higher levels of Fas than did those from the WT mice, which was further augmented by CpG-ODN. Interaction of Fas and FasL was involved in the cytotoxicity of NKT cells against hepatocytes in the HBs-Tg mice. Moreover, Kupffer cells in the HBs-Tg mice expressed higher levels of CD205 and produced greater amounts of interleukin (IL)-12 than did those in the WT mice. Finally, the depletion of Kupffer cells, neutralization of IL-12 or specific silencing of CD205 on Kupffer cells significantly inhibited CpG-ODN-induced liver injury and NKT activation in the HBs-Tg mice. Our data suggest that CD205-expressing Kupffer cells respond to CpG-ODNs and subsequently release IL-12 to promote NKT cell activation. Activated NKT cells induce liver damage through the Fas signaling pathway in HBs-Tg mice. PMID:27041637

  13. HPLC-MRM relative quantification analysis of fatty acids based on a novel derivatization strategy.

    PubMed

    Cai, Tie; Ting, Hu; Xin-Xiang, Zhang; Jiang, Zhou; Jin-Lan, Zhang

    2014-12-07

    Fatty acids (FAs) are associated with a series of diseases including tumors, diabetes, and heart diseases. As potential biomarkers, FAs have attracted increasing attention from both biological researchers and the pharmaceutical industry. However, poor ionization efficiency, extreme diversity, strict dependence on internal standards and complicated multiple reaction monitoring (MRM) optimization protocols have challenged efforts to quantify FAs. In this work, a novel derivatization strategy based on 2,4-bis(diethylamino)-6-hydrazino-1,3,5-triazine was developed to enable quantification of FAs. The sensitivity of FA detection was significantly enhanced as a result of the derivatization procedure. FA quantities as low as 10 fg could be detected by high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry. General MRM conditions were developed for any FA, which facilitated the quantification and extended the application of the method. The FA quantification strategy based on HPLC-MRM was carried out using deuterated derivatization reagents. "Heavy" derivatization reagents were used as internal standards (ISs) to minimize matrix effects. Prior to statistical analysis, amounts of each FA species were normalized by their corresponding IS, which guaranteed the accuracy and reliability of the method. FA changes in plasma induced by ageing were studied using this strategy. Several FA species were identified as potential ageing biomarkers. The sensitivity, accuracy, reliability, and full coverage of the method ensure that this strategy has strong potential for both biomarker discovery and lipidomic research.

  14. Tracing atmospheric transport of soil microorganisms and higher plant waxes in the East Asian outflow to the North Pacific Rim by using hydroxy fatty acids: Year-round observations at Gosan, Jeju Island

    NASA Astrophysics Data System (ADS)

    Tyagi, Poonam; Kawamura, Kimitaka; Kariya, Tadashi; Bikkina, Srinivas; Fu, Pingqing; Lee, Meehye

    2017-04-01

    Atmospheric transport of soil microorganisms and higher plant waxes in East Asia significantly influences the aerosol composition over the North Pacific. This study investigates the year-round atmospheric abundances of hydroxy fatty acids (FAs), tracers of soil microorganisms (β-isomers), and plant waxes (α- and ω-isomers), in total suspended particles collected at Gosan, Jeju Island, during April 2001 to March 2002. These hydroxy FAs showed a pronounced seasonality, higher concentrations in winter/spring and lower concentrations in summer/autumn, which are consistent with other tracers of soil microbes (trehalose), resuspended dust (nss-Ca2+), and stable carbon isotopic composition (δ13C) of total carbon. The molecular distributions of β-hydroxy FAs (predominance of C12 and C16 in winter/spring and summer/autumn, respectively) are consistent with those from a remote island (Chichijima) in the North Pacific and Asian dust standards (CJ-1 and CJ-2). This observation together with back trajectories over Gosan reveal that desert sources in China during winter and arid regions of Mongolia and Russian Far East during spring are the major contributors of soil microbes over the North Pacific. Predominance of ω-isomers (83%) over β-hydroxy FAs (16%) revealed a major contribution of terrestrial lipids from higher plant waxes over soil microbes in the East Asian outflow.

  15. Effects of omega-3 fatty acid supplementation on neurocognitive functioning and mood in deployed U.S. soldiers: a pilot study.

    PubMed

    Dretsch, Michael N; Johnston, Daniel; Bradley, Ryan S; MacRae, Holden; Deuster, Patricia A; Harris, William S

    2014-04-01

    Omega-3 fatty acids (FAs) may have neuroprotective properties for psychological health and cognition. The objective of this study was to evaluate the effectiveness of omega-3 FAs (eicosapentaenoic + docosahexaenoic; Harris-Schacky [HS]-Omega-3 Index) on neuropsychological functioning among U.S. Soldiers deployed to Iraq. This randomized, double-blind, placebo-controlled trial included Soldiers between the ages of 18 and 55 years who were randomly assigned to either the active treatment group (n = 44) or placebo group (n = 34). Active treatment was 2.5 g per day of eicosapentaenoic + docosahexaenoic (Lovaza; GlaxoSmithKline, Research Triangle Park, North Carolina). The placebo was corn oil ethyl esters. HS-Omega-3 Index, a neurocognitive battery (Central Nervous System-Vital Signs, Morrisville, North Carolina), and psychological health scales were assessed at baseline and after 60 days of treatment. Although the results revealed that omega-3 FAs significantly increased the HS-Omega-3 Index (p = 0.001), there were no significant effects on indices psychological health and neurocognitive functioning by treatment group. Nevertheless, there was a significant inverse correlation between the changes in the HS-Omega-3 Index and daytime sleepiness (r = 0.30, p = 0.009). Short-term treatment with 2.5 g of omega-3 FAs did not alter measures of neurocognition or psychological health, but there was evidence of a relationship between omega-3 levels and daytime sleepiness. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  16. Corticotrophin-releasing hormone and corticosterone impair development of preimplantation embryos by inducing oviductal cell apoptosis via activating the Fas system: an in vitro study.

    PubMed

    Tan, Xiu-Wen; Ji, Chang-Li; Zheng, Liang-Liang; Zhang, Jie; Yuan, Hong-Jie; Gong, Shuai; Zhu, Jiang; Tan, Jing-He

    2017-08-01

    What are the mechanisms by which corticotrophin-releasing hormone (CRH) and corticosterone impair the development of preimplantation embryos in the oviduct. CRH and corticosterone do not affect preimplantation embryos directly, but impair their development indirectly by triggering apoptosis of oviductal epithelial cells (OECs) through activation of the Fas system. Studies report that stress impairs embryo development with facilitated secretion of CRH and glucocorticoids. Although an in vivo study demonstrated that preimplantation stress impaired embryo development in conjunction with oviductal apoptosis and activation of the Fas system, whether CRH or glucocorticoids damage embryos directly or indirectly by way of oviductal cells remains to be clarified. Mice of Kunming strain, the generalized lymphoproliferative disorder (gld) mice with a germline mutation F273L in Fas ligand in a C57BL/6J genomic background and the wild-type C57BL/6J mice were used. Female mice were used 8-10 weeks after birth. While some female mice were killed 48 h after being injected with equine CG to collect oviducts and prepare OECs, others were killed to recover zygotes after mating with males following superovulation with eCG and hCG. The zygotes obtained were cultured with or without CRH or corticosterone (CRH/Cort) either in Chatot-Ziomek-Bavister (CZB) medium with or without OECs or in conditioned medium (CM) conditioned with OECs pretreated or not with CRH/Cort. Preimplantation development, levels of redox potential and apoptosis, and expression of CRH receptor 1 (CRHR1), glucocorticoid receptor (GR), Fas and 11β-hydroxysteroid dehydrogenase (HSD) were observed in embryos recovered at different times of in vitro culture. After culture of OECs with or without CRH/Cort, levels of redox potential and apoptosis, mRNA and protein expression of growth factors, and protein expression of CRHR1, GR and Fas were examined in OECs and the level of FasL was measured in CM. The gld mice were used to confirm a role for the Fas system in triggering apoptosis of embryos and oviducts. This study showed that blastocyst development was unaffected when mouse zygotes were cultured in CZB medium containing various concentrations of CRH/Cort but was impaired when embryos were cultured with CRH/Cort plus OECs or in CM conditioned with OECs pretreated with CRH/Cort (treatment CM). Culture in treatment-CM induced oxidative stress and apoptosis in embryos. Preimplantation embryos expressed GR and Fas at all stages and CRHR1 at the blastocyst stage only. Mouse 4-cell embryos and blastocysts expressed HSD2 but not HSD1. Culture of OECs with CRH/Cort increased their oxidative stress, apoptosis, CRHR1, Fas and FasL while decreasing their GR and growth factors. Blastocyst development in treatment-CM conditioned with OECs from gld mice harboring FasL mutations was superior to treatment-CM conditioned with wild-type mouse OECs. The results suggest that CRH/Cort impairs embryo development indirectly by inducing oviductal apoptosis via activating the Fas system. The insensitivity of preimplantation embryos to CRH and corticosterone is due to, respectively, a lack of CRHR and the exclusive expression of HSD2 that inactivate corticosterone. Not applicable. Although significant, the conclusions were drawn from limited results obtained using mice and thus they need further verification in other species. For example, bovine embryos express both HSD1 and HSD2 at all the preimplantation stages whereas mouse preimplantation embryos express HSD2 exclusively without HSD1. The data are important for our understanding of the mechanisms by which stress affects female reproduction in both human and animals, as early stages of pregnancy are considered more vulnerable to stress than the late stages. This study was supported by grants from the National Basic Research Program of China (Nos. 2014CB138503 and 2012CB944403), the China National Natural Science Foundation (Nos. 31272444 and 30972096) and the Animal breeding improvement program of Shandong Province. All authors declare that their participation in the study did not involve factual or potential conflicts of interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. Ω-3 fatty acids prevent hepatic steatosis, independent of PPAR-α activity, in a murine model of parenteral nutrition-associated liver disease.

    PubMed

    Prince, Esther; Lazare, Farrah B; Treem, William R; Xu, Jiliu; Iqbal, Jahangir; Pan, Xiaoyue; Josekutty, Joby; Walsh, Meghan; Anderson, Virginia; Hussain, M Mahmood; Schwarz, Steven M

    2014-07-01

    ω-3 Fatty acids (FAs), natural ligands for the peroxisome proliferator-activated receptor-α (PPAR-α), attenuate parenteral nutrition-associated liver disease (PNALD). However, the mechanisms underlying the protective role of ω-3 FAs are still unknown. The aim of this study was to determine the effects of ω-3 FAs on hepatic triglyceride (TG) accumulation in a murine model of PNALD and to investigate the role of PPAR-α and microsomal triglyceride transfer protein (MTP) in this experimental setting. 129S1/SvImJ wild-type or 129S4/SvJaePparatm/Gonz/J PPAR-α knockout mice were fed chow and water (controls); oral, fat-free PN solution only (PN-O); PN-O plus intraperitoneal (IP) ω-6 FA-predominant supplements (PN-ω-6); or PN-O plus IP ω-3 FA (PN-ω-3). Control and PN-O groups received sham IP injections of 0.9% NaCl. Hepatic histology, TG and cholesterol, MTP activity, and PPAR-α messenger RNA were assessed after 19 days. In all experimental groups, PN feeding increased hepatic TG and MTP activity compared with controls. Both PN-O and PN-ω-6 groups accumulated significantly greater amounts of TG when compared with PN-ω-3 mice. Studies in PPAR-α null animals showed that PN feeding increases hepatic TG as in wild-type mice. PPAR-α null mice in the PN-O and PN-ω-6 groups demonstrated variable degrees of hepatic steatosis, whereas no evidence of hepatic fat accumulation was found after 19 days of oral PN plus IP ω-3 FAs. PN induces TG accumulation (steatosis) in wild-type and PPAR-α null mice. In PN-fed wild-type and PPAR-α null mice given IP ω-3 FAs, reduced hepatic TG accumulation and absent steatosis are found. Prevention of steatosis by ω-3 FAs results from PPAR-α-independent pathways. © 2013 American Society for Parenteral and Enteral Nutrition.

  18. [Fatty acid composition in breast milk of women from Gdansk and the surrounding district in the course of lactation].

    PubMed

    Martysiak-Żurowska, Dorota; Zóralska, Kinga; Zagierski, Maciej; Szlagtys-Sidorkiewicz, Agnieszka

    2011-01-01

    Breastfeeding is the optimal way of feeding infants and young children. For the human infant, very important ingredients of milk are fatty acids (FA), including long-chain polyunsaturated fatty acids LC-PUFA, which are necessary for the development of human nervous system. The aim of this study was to determine the content and composition of FA in the fat of human milk in the course of lactation, taking into account the composition of FA in mothers' diet. Milk samples were obtained from 80 puerperal women hospitalized in the Obstetrics Department in Gdansk, on the 2nd, 14th, 30th and 90th day of lactation. The mothers were questionnaired about the health state and diet. Based on food frequency questionnaires the content of individual groups of FA in the daily food portions were estimated. The composition and content of FA were determined by HR-GC technique. In the studied human milk fat about 60 different FA were found. Main FA detected were: oleic, palmitic, linoleic, stearic, myristic and lauric acids. PUFA accounted on average for 13.2% of total FAs. The mean levels of trans FA in the human milk fat was 2.45% of total FAs. Percentage of each group of FA in the diet of the studied population of women averaged to 43.67, 41.74 and 14.59%, for saturated, monounsaturated and polyunsaturated FA, respectively. 1. Studies have shown that the biggest differences in fatty acid content in the human milk were observed between 2 and 14 day of lactation. 2. A positive correlation and statistically significant eff ect was observed between the composition of particular groups of FAs in human milk and the breastfeeding women's diet.

  19. Rosiglitazone increases fatty acid Δ9-desaturation and decreases elongase activity index in human skeletal muscle in vivo.

    PubMed

    Mai, Knut; Andres, Janin; Bobbert, Thomas; Assmann, Anke; Biedasek, Katrin; Diederich, Sven; Graham, Ian; Larson, Tony R; Pfeiffer, Andreas F H; Spranger, Joachim

    2012-01-01

    The ratio of unsaturated to saturated long-chain fatty acids (LC-FAs) in skeletal muscle has been associated with insulin resistance. Some animal data suggest a modulatory effect of peroxisome proliferator receptor γ (PPARγ) stimulation on stearoyl-CoA desaturase 1 (SCD1) and LC-FA composition in skeletal muscle, but human data are rare. We here investigate whether treatment with a PPARγ agonist affects myocellular SCD1 expression and modulates the intramyocellular fatty acid profile in individuals with impaired glucose tolerance. Muscle biopsies and hyperinsulinemic-euglycemic clamps were performed in 7 men before and after 8 weeks of rosiglitazone treatment. Intramyocellular saturated, monounsaturated, and polyunsaturated intramuscular fatty acid profiles were measured by gas chromatography. Effects on SCD1 messenger RNA expression were analyzed in C2C12 cells and in human biopsies before and after rosiglitazone treatment. As expected, treatment with the PPARγ activator rosiglitazone improved insulin sensitivity in humans. Myocellular SCD1 messenger RNA expression was increased in human biopsies and C2C12 cells. Although the total content of myocellular LC-FA was unchanged, a relative shift from saturated LC-FAs to unsaturated LC-FAs was observed in human biopsies. Particularly, the amount of stearate was reduced, whereas the amounts of palmitoleate as well as oleate and vaccenate were increased, after rosiglitazone therapy. These changes resulted in an increased fatty acid Δ9-desaturation index (16:1/16:0 and 18:1/18:0) in skeletal muscle and a decreased elongase activity index (18:0/16:0). The PPARγ associated phenotypes may be partially explained by an increased Δ9-desaturation and a decreased elongase activity of skeletal muscle. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Nitro-Fatty Acid Detection in Plants by High-Pressure Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry.

    PubMed

    Mata-Pérez, Capilla; Padilla, María N; Sánchez-Calvo, Beatriz; Begara-Morales, Juan C; Valderrama, Raquel; Corpas, Francisco J; Barroso, Juan B

    2018-01-01

    In the last few years, the role of nitric oxide (NO) and NO-related molecules has attracted attention in the field of plant systems. In this sense, the ability of NO to mediate several posttranslational modifications (NO-PTM) in different biomolecules, such as protein tyrosine nitration or S-nitrosylation, has shown the involvement of these reactive nitrogen species in a wide range of functions in plant physiology such as the antioxidant response or the involvement in processes such as germination, growth, development, or senescence. However, growing interest has focused on the interaction of these NO-derived molecules with unsaturated fatty acids, yielding nitro-fatty acids (NO 2 -FAs). It has recently been shown that these molecules are involved in key signaling pathways in animal systems through the implementation of antioxidant and anti-inflammatory responses. Nevertheless, this interaction has been poorly studied in plant systems. Very recently, the endogenous presence of NO 2 -FAs in the model plant Arabidopsis thaliana has been demonstrated as well as the significant involvement of nitro-linolenic acid (NO 2 -Ln) in the defence response against several abiotic and oxidative stress conditions. In this respect, the detection of NO 2 -FAs in plant systems can be a useful tool to determine the importance of these molecules in the regulation of different biochemical pathways. Using high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry (LC-MS/MS), the methods described in this chapter enable the determination of the NO 2 -FA content in a pM range as well as the characterization of these nitrated derivatives of unsaturated fatty acids in plant tissues.

  1. C60 fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue.

    PubMed

    Prylutskyy, Yurij I; Vereshchaka, Inna V; Maznychenko, Andriy V; Bulgakova, Nataliya V; Gonchar, Olga O; Kyzyma, Olena A; Ritter, Uwe; Scharff, Peter; Tomiak, Tomasz; Nozdrenko, Dmytro M; Mishchenko, Iryna V; Kostyukov, Alexander I

    2017-01-13

    Bioactive soluble carbon nanostructures, such as the C 60 fullerene can bond with up to six electrons, thus serving by a powerful scavenger of reactive oxygen species similarly to many natural antioxidants, widely used to decrease the muscle fatigue effects. The aim of the study is to define action of the pristine C 60 fullerene aqueous colloid solution (C 60 FAS), on the post-fatigue recovering of m. triceps surae in anaesthetized rats. During fatigue development, we observed decrease in the muscle effort level before C 60 FAS administration. After the application of C 60 FAS, a slower effort decrease, followed by the prolonged retention of a certain level, was recorded. An analysis of the metabolic process changes accompanying muscle fatigue showed an increase in the oxidative stress markers H 2 O 2 (hydrogen peroxide) and TBARS (thiobarbituric acid reactive substances) in relation to the intact muscles. After C 60 FAS administration, the TBARS content and H 2 O 2 level were decreased. The endogenous antioxidant system demonstrated a similar effect because the GSH (reduced glutathione) in the muscles and the CAT (catalase) enzyme activity were increased during fatigue. C 60 FAS leads to reduction in the recovery time of the muscle contraction force and to increase in the time of active muscle functioning before appearance of steady fatigue effects. Therefore, it is possible that C 60 FAS affects the prooxidant-antioxidant muscle tissue homeostasis, subsequently increasing muscle endurance.

  2. Evaluation of Fatty Acid Composition and Antioxidant Activity of Wild-Growing Mushrooms from Southwest China.

    PubMed

    Luo, Yu; Huang, Yi; Yuan, Xiaohong; Zhang, Lei; Zhang, Xinyi; Gao, Ping

    2017-01-01

    To better understand the medicinal and nutritional value of mushrooms, we studied the fatty acid (FA) compositions and DPPH scavenging abilities of 11 mushrooms from Southwest China. The crude fat (CF) contents were examined initially, then 3 methods of FA methyl esterification were compared to identify which acid treatment was the most appropriate method. Then methyl esterification methods for 12 CFs were performed with acid treatment and the FA compositions were analyzed with gas chromatography-mass spectrometry. The results showed that tetradecanoic acid (14:0), hexadecenoic acid (16:1), hexadecanoic acid (16:0), heptadecanoic acid (17:0), octadecadienoic acid (18:2), octadecenoic acid (18:1), octadecanoic acid (18:0), docosanoic acid (22:0), and tetracosanoic acid (24:0) were detected in all the samples, with large amounts of hexadecanoic acid (16:0), octadecadienoic acid (18:2), octadecenoic acid (18:1), and octadecanoic acid (18:0). Daldinia eschscholtzii and Sarcodon imbricatus had the highest ratio value of unsaturated FAs to saturated FAs (4.33 and 3.03, respectively). The DPPH scavenging ability of 12 CFs was also tested. The free radical scavenging rates of the CFs were almost < 10% at a concentration of 0.10 mg/mL, except that of S. imbricatus, which reached 81.25%, with a half-maximal inhibitory concentration of 0.054 mg/mL. This strong DPPH free radical scavenging ability of S. imbricatus may be related to α-hydroxy FA.

  3. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids

    PubMed Central

    Orsavova, Jana; Misurcova, Ladislava; Vavra Ambrozova, Jarmila; Vicha, Robert; Mlcek, Jiri

    2015-01-01

    Characterizations of fatty acids composition in % of total methylester of fatty acids (FAMEs) of fourteen vegetable oils—safflower, grape, silybum marianum, hemp, sunflower, wheat germ, pumpkin seed, sesame, rice bran, almond, rapeseed, peanut, olive, and coconut oil—were obtained by using gas chromatography (GC). Saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA), palmitic acid (C16:0; 4.6%–20.0%), oleic acid (C18:1; 6.2%–71.1%) and linoleic acid (C18:2; 1.6%–79%), respectively, were found predominant. The nutritional aspect of analyzed oils was evaluated by determination of the energy contribution of SFAs (19.4%–695.7% ERDI), PUFAs (10.6%–786.8% ERDI), n-3 FAs (4.4%–117.1% ERDI) and n-6 FAs (1.8%–959.2% ERDI), expressed in % ERDI of 1 g oil to energy recommended dietary intakes (ERDI) for total fat (ERDI—37.7 kJ/g). The significant relationship between the reported data of total fat, SFAs, MUFAs and PUFAs intakes (% ERDI) for adults and mortality caused by coronary heart diseases (CHD) and cardiovascular diseases (CVD) in twelve countries has not been confirmed by Spearman’s correlations. PMID:26057750

  4. A multicentre, double-masked, randomized, controlled trial assessing the effect of oral supplementation of omega-3 and omega-6 fatty acids on a conjunctival inflammatory marker in dry eye patients.

    PubMed

    Brignole-Baudouin, Françoise; Baudouin, Christophe; Aragona, Pasquale; Rolando, Maurizio; Labetoulle, Marc; Pisella, Pierre Jean; Barabino, Stefano; Siou-Mermet, Raphaele; Creuzot-Garcher, Catherine

    2011-11-01

    To determine whether oral supplementation with omega-3 and omega-6 fatty acids can reduce conjunctival epithelium expression of the inflammatory marker human leucocyte antigen-DR (HLA-DR) in patients with dry eye syndrome (DES). This 3-month, double-masked, parallel-group, controlled study was conducted in nine centres, in France and Italy. Eligible adult patients with mild to moderate DES were randomized to receive a placebo containing medium-chain triglycerides or treatment supplement containing omega-3 and omega-6 fatty acids, vitamins and zinc. Treatment regimen was three capsules daily. Impression cytology (IC) was performed at baseline and at month 3 to assess the percentage of cells expressing HLA-DR and to evaluate fluorescence intensity, an alternate measure of HLA-DR. Dry eye symptoms and objective signs were also evaluated. Analyses were performed on the full analysis set (FAS) and per-protocol set (PPS). In total, 138 patients were randomized; 121 patients with available IC were included in the FAS, and of these, 106 patients had no major protocol deviations (PPS). In the PPS, there was a significant reduction in the percentage of HLA-DR-positive cells in the fatty acids group (p = 0.021). Expression of HLA-DR as measured by fluorescence intensity quantification was also significantly reduced in the fatty acids group [FAS (p = 0.041); PPS (p = 0.017)]. No significant difference was found for the signs and symptoms, but there was a tendency for improvement in patients receiving the fatty acids treatment. This study demonstrates that supplementation with omega-3 and omega-6 fatty acids can reduce expression of HLA-DR conjunctival inflammatory marker and may help improve DES symptoms. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  5. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia.

    PubMed

    Backes, James; Anzalone, Deborah; Hilleman, Daniel; Catini, Julia

    2016-07-22

    Hypertriglyceridemia (triglycerides > 150 mg/dL) affects ~25 % of the United States (US) population and is associated with increased cardiovascular risk. Severe hypertriglyceridemia (≥ 500 mg/dL) is also a risk factor for pancreatitis. Three omega-3 fatty acid (OM3FA) prescription formulations are approved in the US for the treatment of adults with severe hypertriglyceridemia: (1) OM3FA ethyl esters (OM3EE), a mixture of OM3FA ethyl esters, primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Lovaza®, Omtryg™, and generics); (2) icosapent ethyl (IPE), EPA ethyl esters (Vascepa®); and (3) omega-3 carboxylic acids (OM3CA), a mixture of OM3FAs in free fatty acid form, primarily EPA, DHA, and docosapentaenoic acid (Epanova®). At approved doses, all formulations substantially reduce triglyceride and very-low-density lipoprotein levels. DHA-containing formulations may also increase low-density lipoprotein cholesterol. However, this is not accompanied by increased non-high-density lipoprotein cholesterol, which is thought to provide a better indication of cardiovascular risk in this patient population. Proposed mechanisms of action of OM3FAs include inhibition of diacylglycerol acyltransferase, increased plasma lipoprotein lipase activity, decreased hepatic lipogenesis, and increased hepatic β-oxidation. OM3CA bioavailability (area under the plasma concentration-time curve from zero to the last measurable concentration) is up to 4-fold greater than that of OM3FA ethyl esters, and unlike ethyl esters, the absorption of OM3CA is not dependent on pancreatic lipase hydrolysis. All three formulations are well tolerated (the most common adverse events are gastrointestinal) and demonstrate a lack of drug-drug interactions with other lipid-lowering drugs, such as statins and fibrates. OM3FAs appear to be an effective treatment option for patients with severe hypertriglyceridemia.

  6. Cross-sectional relationships between dietary fat intake and serum cholesterol fatty acids in a Swedish cohort of 60-year-old men and women.

    PubMed

    Laguzzi, F; Alsharari, Z; Risérus, U; Vikström, M; Sjögren, P; Gigante, B; Hellénius, M-L; Cederholm, T; Bottai, M; de Faire, U; Leander, K

    2016-06-01

    The present study aimed to describe the relationship between self-reported dietary intake and serum cholesterol fatty acids (FAs) in a Swedish population of 60-year-old men and women. Cross-sectional data collected in 1997-1998 from 4232 individuals residing in Stockholm County were used. Five diet scores were created to reflect the intake of saturated fats in general, as well as fats from dairy, fish, processed meat and vegetable oils and margarines. Gas chromatography was used to assess 13 FAs in serum cholesterol esters. The association between each diet score and specific FAs was assessed by percentile differences (PD) with 95% confidence intervals (CI) at the 10th, 25th, 50th, 75th and 90th percentile of each FA across levels of diet scores using quantile regression. Fish intake was associated with high proportions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). For each point increase in fish score, the 50th PD in EPA and DHA was 32.78% (95% CI = 29.22% to 36.35%) and 10.63% (95% CI = 9.52% to 11.74%), respectively. Vegetable fat intake was associated with a high proportion of linoleic acid and total polyunsaturated fatty acids (PUFA) and a low proportion of total saturated fatty acids (SFA). The intake of saturated fats in general and dairy fat was slightly associated with specific SFA, although the intake of fat from meat was not. In the present study population, using a rather simple dietary assessment method, the intake of fish and vegetable fats was clearly associated with serum PUFA, whereas foods rich in saturated fats in general showed a weak relationship with serum SFA. Our results may contribute to increased knowledge about underlying biology in diet-cardiovascular disease associations. © 2015 The British Dietetic Association Ltd.

  7. Modulation of C-reactive protein and plasma omega-6 fatty acid levels by phospholipase A2 gene polymorphisms following a 6-week supplementation with fish oil.

    PubMed

    Tremblay, B L; Rudkowska, I; Couture, P; Lemieux, S; Julien, P; Vohl, M C

    2015-12-01

    This clinical trial investigated the impact of a six-week supplementation with fish oil and single nucleotide polymorphisms (SNPs) in PLA2G4A and PLA2G6 genes on total omega-6 fatty acid (n-6 FA) levels in plasma phospholipids (PL) and plasma C-reactive protein (CRP) levels in 191 subjects. Interaction effects between SNPs and supplementation modulated total n-6 FAs and CRP levels in both men and women. Associations between SNPs and total n-6 FA levels and between SNPs and CRP levels were identified in men, independently of supplementation. Supplementation decreased total n-6 FAs without affecting plasma CRP levels. Changes in CRP levels correlated positively with changes in total n-6 FAs in men (r=0.25 p=0.01), but not in women. In conclusion, total n-6 FA levels in plasma PL and plasma CRP levels are modulated by SNPs within PLA2G4A and PLA2G6 genes alone or in combination with fish oil supplementation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The response of an expert panel to Nutritional armor for the warfighter: can omega-3 fatty acids enhance stress resilience, wellness, and military performance?

    PubMed

    Coulter, Ian D

    2014-11-01

    Recommendations of an Expert Panel on 5 central questions addressed during the workshop. The Panel reviewed available scientific literature, workshop presentations, and comments from workshop guests. The Panel unanimously agreed that a military Daily Recommended Intake for long-chain omega-3 fatty acids (FAs) should be established within the context of lowering current intakes of omega-6 FAs. The Panelists also felt that there was sufficient evidence to support increasing omega-3 intake to receive cardiovascular, immunological, and surgical benefits. In addition, research indicates that preloading with omega-3 FAs before combat exposure may be beneficial. Evidence for reduction of depressive symptoms and suicide prevention was felt to be strong. Insufficient data were available to evaluate post-traumatic stress disorder and impulsive aggression. Benefits for traumatic brain injury were promising. Adverse side effects were deemed negligible. The Panel concluded that based on studies analyzing omega-3 and omega-6 FA balance, it would be unethical to not attempt elevating the omega-3 status among U.S. military personnel. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  9. Clearing the skies over modular polyketide synthases.

    PubMed

    Sherman, David H; Smith, Janet L

    2006-09-19

    Modular polyketide synthases (PKSs) are large multifunctional proteins that synthesize complex polyketide metabolites in microbial cells. A series of recent studies confirm the close protein structural relationship between catalytic domains in the type I mammalian fatty acid synthase (FAS) and the basic synthase unit of the modular PKS. They also establish a remarkable similarity in the overall organization of the type I FAS and the PKS module. This information provides important new conclusions about catalytic domain architecture, function, and molecular recognition that are essential for future efforts to engineer useful polyketide metabolites with valuable biological activities.

  10. Characterization of the lipid fraction of wild sea urchin from the Sardinian Sea (western Mediterranean).

    PubMed

    Angioni, Alberto; Addis, Pierantonio

    2014-02-01

    The fatty acid (FA) composition of Spatangus purpureus, Echinus melo, Sphaerechinus granularis, and Paracentrotus lividus, sea urchins, has been studied. Sea urchins were collected at different depth along Sardinia coast in the Mediterranean sea, and their gonad was measured, separated, and analyzed for FA composition by gas chromatography-mass spectrometry. A total of 53 FAs were detected, 16 saturated (SFA), 10 monounsaturated (MUFA), 9 polyunsaturated (PUFA), and 13 highly unsaturated (HUFA). Moreover, 5 furan FAs (FFAs) were revealed for the first time in sea urchin. The HUFA and PUFA classes were the most represented accounting for almost 80% of total FAs. Among these compounds, C20:4 n6 (19.64, 20.52, 23.37, and 8.48 mg/g, respectively) and C22:6 n3 (19.68, 20.05, 3.83, and 1.78 mg/g, respectively) were the most abundant. The results of principal component analysis indicated that the sea urchin samples could be clearly discriminated with respect to their FAs composition. © 2014 Institute of Food Technologists®

  11. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    NASA Astrophysics Data System (ADS)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  12. Surfactant protein D delays Fas- and TRAIL-mediated extrinsic pathway of apoptosis in T cells.

    PubMed

    Djiadeu, Pascal; Kotra, Lakshmi P; Sweezey, Neil; Palaniyar, Nades

    2017-05-01

    Only a few extracellular soluble proteins are known to modulate apoptosis. We considered that surfactant-associated protein D (SP-D), an innate immune collectin present on many mucosal surfaces, could regulate apoptosis. Although SP-D is known to be important for immune cell homeostasis, whether SP-D affects apoptosis is unknown. In this study we aimed to determine the effects of SP-D on Jurkat T cells and human T cells dying by apoptosis. Here we show that SP-D binds to Jurkat T cells and delays the progression of Fas (CD95)-Fas ligand and TRAIL-TRAIL receptor induced, but not TNF-TNF receptor-mediated apoptosis. SP-D exerts its effects by reducing the activation of initiator caspase-8 and executioner caspase-3. SP-D also delays the surface exposure of phosphatidylserine. The effect of SP-D was ablated by the presence of caspase-8 inhibitor, but not by intrinsic pathway inhibitors. The binding ability of SP-D to dying cells decreases during the early stages of apoptosis, suggesting the release of apoptotic cell surface targets during apoptosis. SP-D also delays FasL-induced death of primary human T cells. SP-D delaying the progression of the extrinsic pathway of apoptosis could have important implications in regulating immune cell homeostasis at mucosal surfaces.

  13. CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis

    PubMed Central

    LaRocca, T J; Stivison, E A; Mal-Sarkar, T; Hooven, T A; Hod, E A; Spitalnik, S L; Ratner, A J

    2015-01-01

    Mature erythrocytes (red blood cells (RBCs)) undergo the programmed cell death (PCD) pathway of necroptosis in response to bacterial pore-forming toxins (PFTs) that target human CD59 (hCD59) but not hCD59-independent PFTs. Here, we investigate the biochemical mechanism of RBC necroptosis with a focus on the mechanism of induction and the minimal requirements for such RBC death. Binding or crosslinking of the hCD59 receptor led to Syk-dependent induction of vesiculated morphology (echinocytes) that was associated with phosphorylation of Band 3 and was required for Fas ligand (FasL) release. FasL-dependent phosphorylation of receptor-interacting protein kinase 1 (RIP1) in combination with plasma membrane pore formation was required for execution of RBC necroptosis. RIP1 phosphorylation led to the phosphorylation of RIP3, which was also critical for RBC necroptosis. Notably, RBC necroptosis was mediated by FasL and not by other candidate inducers, including tumor necrosis factor alpha (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL). Other types of RBC damage, such as eryptotic damage, failed to induce necroptosis when combined with hCD59 crosslinking. This work sheds light on the requirements for this recently discovered PCD in RBCs and provides a clear picture of the biochemical mechanism of induction of RBC necroptosis. PMID:26018734

  14. CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis.

    PubMed

    LaRocca, T J; Stivison, E A; Mal-Sarkar, T; Hooven, T A; Hod, E A; Spitalnik, S L; Ratner, A J

    2015-05-28

    Mature erythrocytes (red blood cells (RBCs)) undergo the programmed cell death (PCD) pathway of necroptosis in response to bacterial pore-forming toxins (PFTs) that target human CD59 (hCD59) but not hCD59-independent PFTs. Here, we investigate the biochemical mechanism of RBC necroptosis with a focus on the mechanism of induction and the minimal requirements for such RBC death. Binding or crosslinking of the hCD59 receptor led to Syk-dependent induction of vesiculated morphology (echinocytes) that was associated with phosphorylation of Band 3 and was required for Fas ligand (FasL) release. FasL-dependent phosphorylation of receptor-interacting protein kinase 1 (RIP1) in combination with plasma membrane pore formation was required for execution of RBC necroptosis. RIP1 phosphorylation led to the phosphorylation of RIP3, which was also critical for RBC necroptosis. Notably, RBC necroptosis was mediated by FasL and not by other candidate inducers, including tumor necrosis factor alpha (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL). Other types of RBC damage, such as eryptotic damage, failed to induce necroptosis when combined with hCD59 crosslinking. This work sheds light on the requirements for this recently discovered PCD in RBCs and provides a clear picture of the biochemical mechanism of induction of RBC necroptosis.

  15. Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion.

    PubMed

    Zirpoli, Hylde; Abdillahi, Mariane; Quadri, Nosirudeen; Ananthakrishnan, Radha; Wang, Lingjie; Rosario, Rosa; Zhu, Zhengbin; Deckelbaum, Richard J; Ramasamy, Ravichandran

    2015-01-01

    Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5 g/kg body weight), immediately after ischemia and 1 h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05). In the LT model, administration of n-3 TG emulsion (300 mg TG/100 ml) during reperfusion significantly improved functional recovery (p<0.05). In both models, lactate dehydrogenase (LDH) levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05). Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05). Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05). Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction.

  16. Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example.

    PubMed

    Wang, Shu Pei; Yang, Hao; Wu, Jiang Wei; Gauthier, Nicolas; Fukao, Toshiyuki; Mitchell, Grant A

    2014-12-01

    Genes and the environment both influence the metabolic processes that determine fitness. To illustrate the importance of metabolism for human brain evolution and health, we use the example of lipid energy metabolism, i.e. the use of fat (lipid) to produce energy and the advantages that this metabolic pathway provides for the brain during environmental energy shortage. We briefly describe some features of metabolism in ancestral organisms, which provided a molecular toolkit for later development. In modern humans, lipid energy metabolism is a regulated multi-organ pathway that links triglycerides in fat tissue to the mitochondria of many tissues including the brain. Three important control points are each suppressed by insulin. (1) Lipid reserves in adipose tissue are released by lipolysis during fasting and stress, producing fatty acids (FAs) which circulate in the blood and are taken up by cells. (2) FA oxidation. Mitochondrial entry is controlled by carnitine palmitoyl transferase 1 (CPT1). Inside the mitochondria, FAs undergo beta oxidation and energy production in the Krebs cycle and respiratory chain. (3) In liver mitochondria, the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) pathway produces ketone bodies for the brain and other organs. Unlike most tissues, the brain does not capture and metabolize circulating FAs for energy production. However, the brain can use ketone bodies for energy. We discuss two examples of genetic metabolic traits that may be advantageous under most conditions but deleterious in others. (1) A CPT1A variant prevalent in Inuit people may allow increased FA oxidation under nonfasting conditions but also predispose to hypoglycemic episodes. (2) The thrifty genotype theory, which holds that energy expenditure is efficient so as to maximize energy stores, predicts that these adaptations may enhance survival in periods of famine but predispose to obesity in modern dietary environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Acute Administration of n-3 Rich Triglyceride Emulsions Provides Cardioprotection in Murine Models after Ischemia-Reperfusion

    PubMed Central

    Zirpoli, Hylde; Abdillahi, Mariane; Quadri, Nosirudeen; Ananthakrishnan, Radha; Wang, Lingjie; Rosario, Rosa; Zhu, Zhengbin; Deckelbaum, Richard J.; Ramasamy, Ravichandran

    2015-01-01

    Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5g/kg body weight), immediately after ischemia and 1h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05). In the LT model, administration of n-3 TG emulsion (300mgTG/100ml) during reperfusion significantly improved functional recovery (p<0.05). In both models, lactate dehydrogenase (LDH) levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05). Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05). Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05). Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction. PMID:25559887

  18. Decoding the genetic and functional diversity of the DSF quorum-sensing system in Stenotrophomonas maltophilia

    PubMed Central

    Huedo, Pol; Yero, Daniel; Martinez-Servat, Sònia; Ruyra, Àngels; Roher, Nerea; Daura, Xavier; Gibert, Isidre

    2015-01-01

    Stenotrophomonas maltophilia uses the Diffusible Signal Factor (DSF) quorum sensing (QS) system to mediate intra- and inter-specific signaling and regulate virulence-related processes. The components of this system are encoded by the rpf cluster, with genes rpfF and rpfC encoding for the DSF synthase RpfF and sensor RpfC, respectively. Recently, we have shown that there exist two variants of the rpf cluster (rpf-1 and rpf-2), distinguishing two groups of S. maltophilia strains. Surprisingly, only rpf-1 strains produce detectable DSF, correlating with their ability to control biofilm formation, swarming motility and virulence. The evolutive advantage of acquiring two different rpf clusters, the phylogenetic time point and mechanism of this acquisition and the conditions that activate DSF production in rpf-2 strains, are however not known. Examination of this cluster in various species suggests that its variability originated most probably by genetic exchange between rhizosphere bacteria. We propose that rpf-2 variant strains make use of a strategy recently termed as “social cheating.” Analysis of cellular and extracellular fatty acids (FAs) of strains E77 (rpf-1) and M30 (rpf-2) suggests that their RpfFs have also a thioesterase activity that facilitates the release of unspecific FAs to the medium in addition to DSF. Production of DSF in rpf-1 strains appears in fact to be modulated by some of these extracellular FAs in addition to other factors such as temperature and nutrients, while in rpf-2 strains DSF biosynthesis is derepressed only upon detection of DSF itself, suggesting that they require cohabitation with DSF-producer bacteria to activate their DSF regulatory machinery. Finally, we show that the mixed rpf-1/rpf-2 population presents synergism in DSF production and virulence capacity in an in vivo infection model. Recovery and quantification of DSF from co-infected animals correlates with the observed mortality rate. PMID:26284046

  19. Plasma fatty acids, oxylipins, and risk of myocardial infarction: the Singapore Chinese health study

    USDA-ARS?s Scientific Manuscript database

    Objective: We aimed to examine the prospective association between plasma fatty acids (FAs), oxylipins and risk of acute myocardial infarction (AMI) in a Singapore Chinese population. Methods: A nested case-control study with 744 incident AMI cases and 744 matched controls aged 47-83 years was condu...

  20. Lipid fatty acid profile analyses in liver and serum in rats with nonalcoholic steatohepatitis using improved gas chromatography-mass spectrometry methodology

    USDA-ARS?s Scientific Manuscript database

    Fatty acids (FA) are essential components of lipids and exhibit important biological functions. The analyses of FAs are routinely carried out by gas chromatography-mass spectrometry, after multi-step sample preparation. In this study, several key experimental factors were carefully examined, validat...

  1. The distribution and stratification of persistent organic pollutants and fatty acids in bottlenose dolphin (Tursiops truncatus) blubber.

    PubMed

    Ellisor, Debra; McLellan, William; Koopman, Heather; Schwacke, Lori; McFee, Wayne; Kucklick, John

    2013-10-01

    Blubber has been used for decades to monitor exposure of marine mammals to persistent organic pollutants (POPs). However, little is known about POP variability as a function of blubber depth and across the body of the animal. Remote blubber biopsy sampling (e.g, projectile biopsy) is the most common technique used to acquire samples from free-swimming animals, yet such techniques may result in variable sampling. It is important to understand whether blubber stratification or body location affects POP concentration or the concentration of other important blubber constituents such as fatty acids (FA). To investigate the influence of sampling depth and location on POP concentration, full depth blubber samples were taken from one stranded bottlenose dolphin (Tursiops truncatus) at six different body sites to assess variation in FA distribution and contaminant storage with body location. Three of the samples from different body locations were separated into histologically distinct layers to examine the effect of blubber depth and body location on POPs and FAs. In this individual, both POPs and FAs were heterogeneous with blubber depth and body location. POP concentrations were significantly greater in ventral (average ΣPBDEs 1350 ng/g lipid) and anterior (average ΣPCBs 28,700 ng/g lipid) body locations and greater in the superficial blubber layer (average ΣPCBs 35,500 ng/g lipid) when compared to the deep (8390 ng/g lipid) and middle (23,700 ng/g lipid) layers. Proportionally more dietary FAs were found in dorsal blubber and in middle and deep layers relative to other locations while the reverse was true for biosynthesized FAs. Stratification was further examined in blubber from the same body location in five additional stranded bottlenose dolphins. Although FAs were stratified with blubber depth, lipid-normalized POPs were not significantly different with depth, indicating that POP concentrations can vary in an individual with blubber depth though the direction of POP stratification is not consistent among individuals. Published by Elsevier B.V.

  2. Prenatal alcohol-induced neuroapoptosis in rat brain cerebral cortex: protective effect of folic acid and betaine.

    PubMed

    Sogut, Ibrahim; Uysal, Onur; Oglakci, Aysegul; Yucel, Ferruh; Kartkaya, Kazim; Kanbak, Gungor

    2017-03-01

    Alcohol consumption in pregnancy may cause fetal alcohol syndrome (FAS) in the infant. This study aims to investigate prenatal alcohol exposure related neuroapoptosis on the cerebral cortex tissues of newborn rats and possible neuroprotective effects of betaine, folic acid, and combined therapy. Pregnant rats were divided into five experimental groups: control, ethanol, ethanol + betaine, ethanol + folic acid, and ethanol + betaine + folic acid combined therapy groups. We measured cytochrome c release, caspase-3, calpain and cathepsin B and L. enzyme activities. In order to observe apoptotic cells in the early stages, TUNEL method was chosen together with histologic methods such as assessing the diameters of the apoptotic cells, their distribution in unit volume and volume proportion of cortical intact neuron nuclei. Calpain, caspase-3 activities, and cytochrome c levels were significantly increased in alcohol group while cathepsin B and L. activities were also found to be elevated albeit not statistically significant. These increases were significantly reversed by folic acid and betaine + folic acid treatments. While ethanol increased the number of apoptotic cells, this increase was prevented in ethanol + betaine and ethanol + betaine + folic acid groups. Morphometric examination showed that the mean diameter of apoptotic cells was increased with ethanol administration while this increase was reduced by betaine and betaine + folic acid treatments. We observed that ethanol is capable of triggering apoptotic cell death in the newborn rat brains. Furthermore, folic acid, betaine, and combined therapy of these supplements may reduce neuroapoptosis related to prenatal alcohol consumption, and might be effective on preventing fetal alcohol syndrome in infants.

  3. Characterisation of Blighia sapida (Sapindaceae) seed oil and defatted cake from Benin.

    PubMed

    Djenontin, Sebastien Tindo; Wotto, Valentin D; Lozano, Paul; Pioch, Daniel; Sohounhloue, Dominique K C

    2009-01-01

    A sample of Blighia sapida seeds collected in Benin has been analysed and the results are compared to the scarcely available literature data. The chemical analysis of seed oil shows a saponification value of 145 and an iodine value of 66, consistent with the high mono-unsaturated fatty acids (FAs) content (63.8 wt%). The most interesting feature is the prominent concentration of eicosenoic acid (48.4 wt%). Arachidic acid being the main component within the saturated group, the C20 FAs fraction accounts for 68.4 wt%, thus making the peculiar composition of this oil. Among the unsaponifiable fraction (2.4 wt%), the major sterol is stigmasterol (54.6 wt%), surprisingly over passing beta-sitosterol. Tocols (338 ppm) contains mainly alpha- and gamma-tocopherol. Regarding the defatted cake, results show the prominent position of starch and a noticeable amount of proteins and fibers (44.2, 22.4, 15.6 wt%, respectively). Seventeen amino acids were identified together with valuable minerals (total ashes 3.5 wt%). Possible uses of oil and defatted cake are discussed.

  4. Protective effects of Houttuynia cordata aqueous extract in mice consuming a high saturated fat diet.

    PubMed

    Lin, Ming-cheng; Hsu, Pei-chun; Yin, Mei-chin

    2013-02-01

    The protective effects of Houttuynia cordata aqueous extract (HCAE) in mice consuming a high saturated fat diet (HFD) were examined. HCAE, at 0.5, 1, or 2%, was supplied in drinking water for 8 weeks. HCAE was rich in phenolic acids and flavonoids. HCAE intake at 1 and 2% decreased body weight, epididymal fat, insulin resistance, triglyceride and total cholesterol contents in plasma and liver from HFD-treated mice (p < 0.05). HFD enhanced hepatic activity of malic enzyme, fatty acid synthase (FAS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase; and augmented the hepatic level of saturated fatty acids (p < 0.05). HCAE intake at 2% reduced malic enzyme and FAS activities, and lowered saturated fatty acids content in liver (p < 0.05). HCAE suppressed HFD induced oxidative and inflammatory stress in the heart and liver via reducing the malondialdehyde level, retaining glutathione content and glutathione peroxidase activity, decreasing tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-6 production (p < 0.05). These results support that Houttuynia cordata is a potent food against HFD induced obesity, and oxidative and inflammatory injury.

  5. Lipids and fatty acids in Calanus sinicus during oversummering in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Li, Chaolun; Liu, Mengtan; Jin, Xin

    2017-07-01

    Over-summering is a crucial period for Calanus sinicus in the southern Yellow Sea, where it is a key member of the zooplankton community. Lipids play an important role in copepod diapause, which is part of their over-summering strategy. We investigated how different fatty acids and lipid classes, including wax esters, changed during over-summering of C. sinicus during three cruises in June and August 2011 and November 2010, corresponding to the pre-, during and post-diapause periods, respectively. Large amounts of lipids were accumulated, mainly wax esters as previously found in C. finmarchicus during its diapause, and most of the storage lipids were used during over-summering. Wax ester polyunsaturated fatty acids (PUFAs) showed the most variation of the fatty acids (FAs), while the percentage composition of FAs in polar lipids was relatively stable. Selective use of wax ester PUFAs has already been shown to play important roles in the winter diapause of Calanus species in other regions, and our FA results show that this is the case for the Yellow Sea Cold Bottom Water (YSCBW) population that diapauses in summer.

  6. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. Copyright © 2015. Published by Elsevier B.V.

  7. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil.

    PubMed

    Salimon, Jumat; Abdullah, Bashar Mudhaffar; Salih, Nadia

    2011-11-01

    Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis Jatropha curcas seed oil. The parameters effect of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA%) were investigated using D-Optimal Design. Characterization of the product has been studied using Fourier transforms infrared spectroscopy (FTIR), gas chromatography (GC) and high performance liquid chromatography (HPLC). The optimum conditions for maximum FFA% were achieved at 1.75M of ethanolic KOH concentration, 65°C of reaction temperature and 2.0 h of reaction time. This study showed that ethanolic KOH concentration was significant variable for J. curcas seed oil hydrolysis. In a 18-point experimental design, FFA% of hydrolyzed J. curcas seed oil can be raised from 1.89% to 102.2%, which proved by FTIR and HPLC.

  8. Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: effects on performance, carcass characteristics and tissue fatty acid profile

    PubMed Central

    2018-01-01

    Objective The aim of this experiment was to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA) on pig performance, carcass traits, and the fatty acid composition of pork Longissimus lumborum (LL) and backfat. Methods A total of 144 Pig Improvement Company (PIC)×Goland finishing pigs (72 females and 72 castrated males) of mean weight 117.1 (±13.1) kg were blocked by sex and body weight and provided with 0% or 1% AURA in isonutritive and isocaloric diets. A total of 24 pens provided 12 replicates per treatment. Animals were weighed on day 0 and 28 with feed and water intake recorded per pen. After 31 days supplementation (28 days of study and 3 days until the slaughtering date) three animals per pen (n = 72) were slaughtered and the LL and backfat thickness, lean meat content and dressing percentage were recorded for the carcasses. The fatty acid (FA) profile of the LL and backfat was established by direct FA methyl ester synthesis. Results No differences were observed for any performance parameters or carcass traits. Supplementation with AURA resulted in significant changes to the FA profiles of both the LL and backfat with male and female pigs responding differently to supplementation in terms of particular FAs. Overall, pork LL samples had significantly higher eicosapentaenoic acid (p<0.001) and DHA concentrations (p<0.001), and higher omega-3 (n-3) FAs (p<0.001), as well as an increased omega3:omega6 (n-3:n-6) ratio (p = 0.001). For backfat, supplementation resulted in significantly higher amounts of DHA (p<0.001) and n-3 FAs (p<0.001). Conclusion These results indicate that dietary supplementation with 1% AURA over a 31 day period can increase the FA composition of pork LL and backfat, specifically the DHA, with no major impact on growth performance and carcass traits. PMID:29381901

  9. Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: effects on performance, carcass characteristics and tissue fatty acid profile.

    PubMed

    Moran, Colm A; Morlacchini, Mauro; Keegan, Jason D; Fusconi, Giorgio

    2018-05-01

    The aim of this experiment was to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA) on pig performance, carcass traits, and the fatty acid composition of pork Longissimus lumborum (LL) and backfat. A total of 144 Pig Improvement Company (PIC)×Goland finishing pigs (72 females and 72 castrated males) of mean weight 117.1 (±13.1) kg were blocked by sex and body weight and provided with 0% or 1% AURA in isonutritive and isocaloric diets. A total of 24 pens provided 12 replicates per treatment. Animals were weighed on day 0 and 28 with feed and water intake recorded per pen. After 31 days supplementation (28 days of study and 3 days until the slaughtering date) three animals per pen (n = 72) were slaughtered and the LL and backfat thickness, lean meat content and dressing percentage were recorded for the carcasses. The fatty acid (FA) profile of the LL and backfat was established by direct FA methyl ester synthesis. No differences were observed for any performance parameters or carcass traits. Supplementation with AURA resulted in significant changes to the FA profiles of both the LL and backfat with male and female pigs responding differently to supplementation in terms of particular FAs. Overall, pork LL samples had significantly higher eicosapentaenoic acid (p<0.001) and DHA concentrations (p<0.001), and higher omega-3 (n-3) FAs (p<0.001), as well as an increased omega3:omega6 (n-3:n-6) ratio (p = 0.001). For backfat, supplementation resulted in significantly higher amounts of DHA (p<0.001) and n-3 FAs (p<0.001). These results indicate that dietary supplementation with 1% AURA over a 31 day period can increase the FA composition of pork LL and backfat, specifically the DHA, with no major impact on growth performance and carcass traits.

  10. Intake of specific fatty acids and fat alters growth, health, and titers following vaccination in dairy calves.

    PubMed

    Esselburn, K M; O'Diam, K M; Hill, T M; Bateman, H G; Aldrich, J M; Schlotterbeck, R L; Daniels, K M

    2013-09-01

    Typical fatty acid profiles of milk and milk replacer (MR) differ. Calf MR in the United States are made from animal fat, which are low in short- and medium-chain fatty acids and linolenic acid. Two 56-d trials compared a control MR containing 27% crude protein and formulated with 3 fat and fatty acid compositions. The 3 MR treatments were (1) only animal fat totaling 17% fat (CON), (2) animal fat supplemented with butyrate, medium-chain fatty acids, and linolenic acid using a commercial product (1.25% NeoTec4 MR; Provimi North America, Brookville, OH) totaling 17% fat (fatty acid-supplemented; FA-S), and (3) milk fat totaling 33% fat (MF). The MR were fed at 660 g of dry matter from d 0 to 42 and weaned. Starter (20% crude protein) and water were fed ad libitum for 56 d. Trial 1 utilized Holstein calves (24 female, 24 male) during summer months and trial 2 utilized Holstein calves (48 male) during fall months. Calves (41±1 kg of initial body weight; 2 to 3d of age) were sourced from a single farm and housed in a naturally ventilated nursery without added heat. Calves were in individual pens with straw bedding. Calf was the experimental unit. Data for each trial were analyzed as a completely randomized design with a 3 (MR treatment) × 2 (sex) factorial arrangement of treatments in trial 1 with repeated measures and as a completely randomized design with 3 MR treatments in trial 2 with repeated measures. Preplanned contrast statements of treatments CON versus FA-S and CON versus MF were used to separate means. We found no interactions of MR treatment by sex. Calf average daily gain, hip width change, and feed efficiency differed (CONFA-S). Titers to bovine respiratory parainfluenza-3 and bovine virus diarrhea type 1 (vaccinations to these pathogens were on d 7 and 28) in serum samples taken on d 49 and 56 differed (CONFA-S; CONFA-S; CON>MF). Calves fed FA-S and MF had improved growth and feed efficiency compared with calves fed CON, whereas calves fed FA-S also had improved measurements related to health and immunity. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism.

    PubMed

    Landree, Leslie E; Hanlon, Andrea L; Strong, David W; Rumbaugh, Gavin; Miller, Ian M; Thupari, Jagan N; Connolly, Erin C; Huganir, Richard L; Richardson, Christine; Witters, Lee A; Kuhajda, Francis P; Ronnett, Gabriele V

    2004-01-30

    C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.

  12. Transcriptional Activation of Two Delta-9 Palmitoyl-ACP Desaturase Genes by MYB115 and MYB118 Is Critical for Biosynthesis of Omega-7 Monounsaturated Fatty Acids in the Endosperm of Arabidopsis Seeds

    PubMed Central

    Troncoso-Ponce, Manuel Adrián; Barthole, Guillaume; Tremblais, Geoffrey

    2016-01-01

    In angiosperms, double fertilization of the embryo sac initiates the development of the embryo and the endosperm. In Arabidopsis thaliana, an exalbuminous species, the endosperm is reduced to one cell layer during seed maturation and reserves such as oil are massively deposited in the enlarging embryo. Here, we consider the strikingly different fatty acid (FA) compositions of the oils stored in the two zygotic tissues. Endosperm oil is enriched in ω-7 monounsaturated FAs, that represent more than 20 mol% of total FAs, whereas these molecular species are 10-fold less abundant in the embryo. Two closely related transcription factors, MYB118 and MYB115, are transcriptionally induced at the onset of the maturation phase in the endosperm and share a set of transcriptional targets. Interestingly, the endosperm oil of myb115 myb118 double mutants lacks ω-7 FAs. The identification of two Δ9 palmitoyl-ACP desaturases responsible for ω-7 FA biosynthesis, which are activated by MYB115 and MYB118 in the endosperm, allows us to propose a model for the transcriptional control of oil FA composition in this tissue. In addition, an initial characterization of the structure-function relationship for these desaturases reveals that their particular substrate specificity is conferred by amino acid residues lining their substrate pocket that distinguish them from the archetype Δ9 stearoyl-ACP desaturase. PMID:27681170

  13. Expansion, retention and loss in the Acyl-CoA synthetase "Bubblegum" (Acsbg) gene family in vertebrate history.

    PubMed

    Lopes-Marques, Mónica; Machado, André M; Ruivo, Raquel; Fonseca, Elza; Carvalho, Estela; Castro, L Filipe C

    2018-07-20

    Fatty acids (FAs) constitute a considerable fraction of all lipid molecules with a fundamental role in numerous physiological processes. In animals, the majority of complex lipid molecules are derived from the transformation of FAs through several biochemical pathways. Yet, for FAs to enroll in these pathways they require an activation step. FA activation is catalyzed by the rate limiting action of Acyl-CoA synthases. Several Acyl-CoA enzyme families have been previously described and classified according to the chain length of FAs they process. Here, we address the evolutionary history of the ACSBG gene family which activates, FAs with >16 carbons. Currently, two different ACSBG gene families, ACSBG1 and ACSBG2, are recognized in vertebrates. We provide evidence that a wider and unequal ACSBG gene repertoire is present in vertebrate lineages. We identify a novel ACSBG-like gene lineage which occurs specifically in amphibians, ray finned fishes, coelacanths and cartilaginous fishes named ACSBG3. Also, we show that the ACSBG2 gene lineage duplicated in the Theria ancestor. Our findings, thus offer a far richer understanding on FA activation in vertebrates and provide key insights into the relevance of comparative and functional analysis to perceive physiological differences, namely those related with lipid metabolic pathways. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Rumen microbiota and dietary fat: a mutual shaping.

    PubMed

    Enjalbert, F; Combes, S; Zened, A; Meynadier, A

    2017-10-01

    Although fat content in usual ruminant diets is very low, fat supplements can be given to farm ruminants to modulate rumen activity or the fatty acid (FA) profile of meat and milk. Unsaturated FAs, which are dominant in common fat sources for ruminants, have negative effects on microbial growth, especially protozoa and fibrolytic bacteria. In turn, the rumen microbiota detoxifies unsaturated FAs (UFAs) through a biohydrogenation (BH) process, transforming dietary UFAs with cis geometrical double-bonds into mainly trans UFAs and, finally, into saturated FAs. Culture studies have provided a large amount of data regarding bacterial species and strains that are affected by UFAs or involved in lipolysis or BH, with a major focus on the Butyrivibrio genus. More recent data using molecular approaches to rumen microbiota extend and challenge these data, but further research will be necessary to improve our understanding of fat and rumen microbiota interactions. © 2017 The Society for Applied Microbiology.

  15. Early Treatment in Shock

    DTIC Science & Technology

    2010-06-17

    the present study was that pre-feeding experimental animals with 8 fish oil rich in • -3 fatty acids (FAs), specifically eicosapentaenoic acid (EPA...Précis of presentation to be given at ESPEN 2010, 24-28 August, 2010 2. Manuscript on use of omega-3 fatty acids in shock, accepted for publication...use of DHEA, but studies in our laboratories have failed to show a useful effect (6). Studies with omega-3 fatty acids have shown promise, but are

  16. Identify and validate a quantitative trait locus underlying stearic acid on chromosome 14 in a soybean landrace using recombinant inbred lines and resident heterozygous lines

    USDA-ARS?s Scientific Manuscript database

    Stearic acid (ST) is one of the saturated fatty acids (FAs) in soybean oil and great efforts have been made to elevate ST content through plant breeding. Improving ST content will be helpful to reduce the health risk of coronary heart diseases and breast, colon and prostate cancer. In this study, re...

  17. Cadmium Alters the Concentration of Fatty Acids in THP-1 Macrophages.

    PubMed

    Olszowski, Tomasz; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Łukomska, Agnieszka; Drozd, Arleta; Chlubek, Dariusz

    2018-03-01

    Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl 2 ) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl 2 . Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5-200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.

  18. Oral nutritional supplements containing n-3 polyunsaturated fatty acids affect quality of life and functional status in lung cancer patients during multimodality treatment: an RCT

    PubMed Central

    van der Meij, B S; Langius, J A E; Spreeuwenberg, M D; Slootmaker, S M; Paul, M A; Smit, E F; van Leeuwen, P A M

    2012-01-01

    Background/Objectives: Our objective was to investigate effects of an oral nutritional supplement containing n-3 polyunsaturated fatty acids (FAs) on quality of life, performance status, handgrip strength and physical activity in patients with non-small cell lung cancer (NSCLC) undergoing multimodality treatment. Subjects/Methods: In a double-blind experiment, 40 patients with stage III NSCLC were randomised to receive 2 cans/day of a protein- and energy-dense oral nutritional supplement containing n-3 polyunsaturated FAs (2.02 g eicosapentaenoic acid+0.92 g docosahexaenoic acid/day) or an isocaloric control supplement, during multimodality treatment. Quality of life, Karnofsky Performance Status, handgrip strength and physical activity (by wearing an accelerometer) were assessed. Effects of intervention were analysed by generalised estimating equations. P-values <0.05 were regarded as statistically significant. Results: The intervention group reported significantly higher on the quality of life parameters, physical and cognitive function (B=11.6 and B=20.7, P<0.01), global health status (B=12.2, P=0.04) and social function (B=22.1, P=0.04) than the control group after 5 weeks. The intervention group showed a higher Karnofsky Performance Status (B=5.3, P=0.04) than the control group after 3 weeks. Handgrip strength did not significantly differ between groups over time. The intervention group tended to have a higher physical activity than the control group after 3 and 5 weeks (B=6.6, P=0.04 and B=2.5, P=0.05). Conclusion: n-3 Polyunsaturated FAs may beneficially affect quality of life, performance status and physical activity in patients with NSCLC undergoing multimodality treatment. PMID:22234041

  19. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs12

    PubMed Central

    Gabbs, Melissa; Leng, Shan; Devassy, Jessay G; Monirujjaman, Md; Aukema, Harold M

    2015-01-01

    Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase, lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs), epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n–3 (ω-3) PUFAs. Oxylipins have essential roles in normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n–3 PUFAs, oxylipins from n–6 PUFAs generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and α-linolenic acids, because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites. PMID:26374175

  20. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway.

    PubMed

    Larrosa, Mar; Tomás-Barberán, Francisco A; Espín, Juan Carlos

    2006-09-01

    Polyphenol-rich dietary foodstuffs have attracted attention due to their cancer chemopreventive and chemotherapeutic properties. Ellagitannins (ETs) belong to the so-called hydrolysable tannins found in strawberries, raspberries, walnuts, pomegranate, oak-aged red wine, etc. Both ETs and their hydrolysis product, ellagic acid (EA), have been reported to induce apoptosis in tumour cells. Ellagitannins are not absorbed in vivo but reach the colon and release EA that is metabolised by the human microflora. Our aim was to investigate the effect of a dietary ET [pomegranate punicalagin (PUNI)] and EA on human colon cancer Caco-2 and colon normal CCD-112CoN cells. Both PUNI and EA provoked the same effects on Caco-2 cells: down-regulation of cyclins A and B1 and upregulation of cyclin E, cell-cycle arrest in S phase, induction of apoptosis via intrinsic pathway (FAS-independent, caspase 8-independent) through bcl-XL down-regulation with mitochondrial release of cytochrome c into the cytosol, activation of initiator caspase 9 and effector caspase 3. Neither EA nor PUNI induced apoptosis in normal colon CCD-112CoN cells (no chromatin condensation and no activation of caspases 3 and 9 were detected). In the case of Caco-2 cells, no specific effect can be attributed to PUNI since it was hydrolysed in the medium to yield EA, which entered into the cells and was metabolised to produce dimethyl-EA derivatives. Our study suggests that the anticarcinogenic effect of dietary ETs could be mainly due to their hydrolysis product, EA, which induced apoptosis via mitochondrial pathway in colon cancer Caco-2 cells but not in normal colon cells.

  1. COPPER RESPONSE REGULATOR1–Dependent and –Independent Responses of the Chlamydomonas reinhardtii Transcriptome to Dark Anoxia[W

    PubMed Central

    Hemschemeier, Anja; Casero, David; Liu, Bensheng; Benning, Christoph; Pellegrini, Matteo; Happe, Thomas; Merchant, Sabeeha S.

    2013-01-01

    Anaerobiosis is a stress condition for aerobic organisms and requires extensive acclimation responses. We used RNA-Seq for a whole-genome view of the acclimation of Chlamydomonas reinhardtii to anoxic conditions imposed simultaneously with transfer to the dark. Nearly 1.4 × 103 genes were affected by hypoxia. Comparing transcript profiles from early (hypoxic) with those from late (anoxic) time points indicated that cells activate oxidative energy generation pathways before employing fermentation. Probable substrates include amino acids and fatty acids (FAs). Lipid profiling of the C. reinhardtii cells revealed that they degraded FAs but also accumulated triacylglycerols (TAGs). In contrast with N-deprived cells, the TAGs in hypoxic cells were enriched in desaturated FAs, suggesting a distinct pathway for TAG accumulation. To distinguish transcriptional responses dependent on COPPER RESPONSE REGULATOR1 (CRR1), which is also involved in hypoxic gene regulation, we compared the transcriptomes of crr1 mutants and complemented strains. In crr1 mutants, ∼40 genes were aberrantly regulated, reaffirming the importance of CRR1 for the hypoxic response, but indicating also the contribution of additional signaling strategies to account for the remaining differentially regulated transcripts. Based on transcript patterns and previous results, we conclude that nitric oxide–dependent signaling cascades operate in anoxic C. reinhardtii cells. PMID:24014546

  2. Identification of a new binding site in E. coli FabH using Molecular dynamics simulations: validation by computational alanine mutagenesis and docking studies.

    PubMed

    Ramamoorthy, Divya; Turos, Edward; Guida, Wayne C

    2013-05-24

    FabH (Fatty acid biosynthesis, enzyme H, also referred to as β-ketoacyl-ACP-synthase III) is a key condensing enzyme in the type II fatty acid synthesis (FAS) system. The FAS pathway in bacteria is essential for growth and survival and vastly differs from the human FAS pathway. Enzymes involved in this pathway have arisen as promising biomolecular targets for discovery of new antibacterial drugs. However, currently there are no clinical drugs that selectively target FabH, and known inhibitors of FabH all act within the active site. FabH exerts its catalytic function as a dimer, which could potentially be exploited in developing new strategies for inhibitor design. The aim of this study was to elucidate structural details of the dimer interface region by means of computational modeling, including molecular dynamics (MD) simulations, in order to derive information for the structure-based design of new FabH inhibitors. The dimer interface region was analyzed by MD simulations, trajectory snapshots were collected for further analyses, and docking studies were performed with potential small molecule disruptors. Alanine mutation and docking studies strongly suggest that the dimer interface could be a potential target for anti-infection drug discovery.

  3. Overexpression of MYB115, AAD2, or AAD3 in Arabidopsis thaliana seeds yields contrasting omega-7 contents

    PubMed Central

    To, Alexandra; Barthole, Guillaume; Lepiniec, Loïc

    2018-01-01

    Omega-7 monoenoic fatty acids (ω-7 FAs) are increasingly exploited both for their positive effects on health and for their industrial potential. Some plant species produce fruits or seeds with high amounts of ω-7 FAs. However, the low yields and poor agronomic properties of these plants preclude their commercial use. As an alternative, the metabolic engineering of oilseed crops for sustainable ω-7 FA production has been proposed. Two palmitoyl-ACP desaturases (PADs) catalyzing ω-7 FA biosynthesis were recently identified and characterized in Arabidopsis thaliana, together with MYB115 and MYB118, two transcription factors that positively control the expression of the corresponding PAD genes. In the present research, we examine the biotechnological potential of these new actors of ω-7 metabolism for the metabolic engineering of plant-based production of ω-7 FAs. We placed the PAD and MYB115 coding sequences under the control of a promoter strongly induced in seeds and evaluated these different constructs in A. thaliana. Seeds were obtained that exhibit ω-7 FA contents ranging from 10 to >50% of the total FAs, and these major compositional changes have no detrimental effect on seed germination. PMID:29381741

  4. Hepatic ATGL mediates PPAR-α signaling and fatty acid channeling through an L-FABP independent mechanism

    PubMed Central

    Ong, Kuok Teong; Mashek, Mara T.; Davidson, Nicholas O.; Mashek, Douglas G.

    2014-01-01

    Adipose TG lipase (ATGL) catalyzes the rate-limiting step in TG hydrolysis in most tissues. We have shown that hepatic ATGL preferentially channels hydrolyzed FAs to β-oxidation and induces PPAR-α signaling. Previous studies have suggested that liver FA binding protein (L-FABP) transports FAs from lipid droplets to the nucleus for ligand delivery and to the mitochondria for β-oxidation. To determine if L-FABP is involved in ATGL-mediated FA channeling, we used adenovirus-mediated suppression or overexpression of hepatic ATGL in either WT or L-FABP KO mice. Hepatic ATGL knockdown increased liver weight and TG content of overnight fasted mice regardless of genotype. L-FABP deletion did not impair the effects of ATGL overexpression on the oxidation of hydrolyzed FAs in primary hepatocyte cultures or on serum β-hydroxybutyrate concentrations in vivo. Moreover, L-FABP deletion did not influence the effects of ATGL knockdown or overexpression on PPAR-α target gene expression. Taken together, we conclude that L-FABP is not required to channel ATGL-hydrolyzed FAs to mitochondria for β-oxidation or the nucleus for PPAR-α regulation. PMID:24610891

  5. Possible Deficiencies in Predicting Transonic Aerodynamics on the X-43A

    NASA Technical Reports Server (NTRS)

    Labbe, Steven G.; Gilbert, Michael G.; Kehoe, Michael W.

    2009-01-01

    The initial X-43A flight test, June 2, 2001, resulted in a mishap and loss of the vehicle. A mishap investigation board (MIB) report and findings, including the established root cause, were publicly released on July, 23, 2003. The X-43A Flight 1 Hyper-X Launch Vehicle (HXLV) failed because the vehicle control system design was deficient for the trajectory flown due to inaccurate analytical models (Pegasus heritage and HXLV specific), which overestimated the (control) system margin ? X-43A Mishap Investigation Report, Vol. I. ? included as Reference 1. Several specific errors were noted, 1) HXLV aerodynamics ? failure to model changes to wing, fin and rudder airfoil shapes due to addition of thermal protection system (TPS); 2) Fin actuation system (FAS) modeling ? under prediction of the control surface hinge moments and FAS compliance; and 3) Parametric uncertainties ? insufficient variation in the aerodynamic, FAS and control system models. In response to the MIB findings, the X-43A program has been working RTF through an approved Corrective Action Plan (CAP) over the last two years.

  6. Mechanism of Arctigenin-Induced Specific Cytotoxicity against Human Hepatocellular Carcinoma Cell Lines: Hep G2 and SMMC7721

    PubMed Central

    Lu, Zheng; Cao, Shengbo; Zhou, Hongbo; Hua, Ling; Zhang, Shishuo; Cao, Jiyue

    2015-01-01

    Arctigenin (ARG) has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC) was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose) polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment. PMID:25933104

  7. Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora.

    PubMed

    Summons, R E; Bird, L R; Gillespie, A L; Pruss, S B; Roberts, M; Sessions, A L

    2013-09-01

    Ooids are one of the common constituents of ancient carbonate rocks, yet the role that microbial communities may or may not play in their formation remains unresolved. To search for evidence of microbial activity in modern and Holocene ooids, samples collected from intertidal waters, beaches and outcrops in the Bahamas and in Shark Bay in Western Australia were examined for their contents of lipid biomarkers. Modern samples from Cat and Andros islands in the Bahamas and from Carbla Beach in Hamelin Pool, Western Australia, showed abundant and notably similar distributions of hydrocarbons, fatty acids (FAs) and alcohols. A large fraction of these lipids were bound into the carbonate matrix and only released on acid dissolution, which suggests that these lipids were being incorporated continuously during ooid growth. The distributions of hydrocarbons, and their disparate carbon isotopic signatures, were consistent with mixed input from cyanobacteria together with small and variable amounts of vascular plant leaf wax [C27 -C35 ; δ(13) C -25 to -32‰Vienna Pee Dee Belemnite (VPDB)]. The FAs comprised a complex mixture of C12 -C18 normal and branched short-chain compounds with the predominant straight-chain components attributable to bacteria and/or cyanobacteria. Branched FA, especially 10-MeC16 and 10-MeC17 , together with the prevalence of elemental sulfur in the extracts, indicate an origin from sulfate-reducing bacteria. The iso- and anteiso-FA were quite variable in their (13) C contents suggesting that they come from organisms with diverse physiologies. Hydrogen isotopic compositions provide further insight into this issue. FAs in each sample show disparate δD values consistent with inputs from autotrophs and heterotrophs. The most enigmatic lipid assemblage is an homologous series of long-chain (C24 -C32 ) FA with pronounced even carbon number preference. Typically, such long-chain FA are thought to come from land plant leaf wax, but in this case, their (13) C-enriched isotopic signatures compared to co-occurring n-alkanes (e.g., Hamelin Pool TLE FA C24 -C32 ; δ(13) C -20 to -24.2‰ VPDB; TLE n-alkanes δ(13) C -24.1 to -26.2 -‰VPDB) indicate a microbial origin, possibly sulfate-reducing bacteria. Lastly, we identified homohopanoic acid and bishomohopanol as the primary degradation products of bacterial hopanoids. The distributions of lipids isolated from Holocene oolites from the Rice Bay Formation of Cat Island, Bahamas were very similar to the beach ooids described above and, in total, these modern and fossil biomarker data lead us to hypothesize that ooids are colonized by a defined microbial community and that these microbes possibly mediate calcification. © 2013 John Wiley & Sons Ltd.

  8. Dietary Cholesterol Increases the Risk whereas PUFAs Reduce the Risk of Active Tuberculosis in Singapore Chinese12

    PubMed Central

    Soh, Avril Z; Chee, Cynthia BE; Wang, Yee-Tang; Yuan, Jian-Min; Koh, Woon-Puay

    2016-01-01

    Background: Experimental studies suggest that cholesterol enhances the intracellular survival of Mycobacterium tuberculosis, whereas marine ω-3 (n–3) and ω-6 (n–6) fatty acids (FAs) may modulate responses to M. tuberculosis in macrophage and animal models. However, there are no epidemiologic data from prospective studies of the relation between dietary cholesterol and FAs and the risk of developing active tuberculosis. Objective: We aimed to investigate the relation between dietary intake of cholesterol and FAs and the risk of active tuberculosis in a prospective cohort in Singapore. Methods: We analyzed data from the Singapore Chinese Health Study, a cohort of 63,257 Chinese men and women aged 45–74 y recruited between 1993 and 1998. Dietary intake of cholesterol and FAs was determined with the use of a validated food-frequency questionnaire. Incident cases of active tuberculosis were identified via linkage with the nationwide tuberculosis registry. Analysis was performed with the use of Cox proportional hazards models. Results: As of 31 December 2013, 1136 incident cases of active tuberculosis were identified. Dietary cholesterol was positively associated with an increased risk of active tuberculosis in a dose-dependent manner. Compared with the lowest intake quartile, the HR was 1.22 (95% CI: 1.00, 1.47) for the highest quartile (P-trend = 0.04). Conversely, dietary marine n–3 and n–6 FAs were associated with a reduced risk of active tuberculosis in a dose-dependent manner. Compared with the lowest quartile, the HR for the highest intake quartile was 0.77 (95% CI: 0.62, 0.95) for marine n–3 FAs (P-trend = 0.01) and 0.82 (95% CI: 0.68, 0.98) for n–6 FAs (P-trend = 0.03). There was no association with saturated, monounsaturated, or plant-based n–3 FA intake. Conclusion: Dietary intake of cholesterol may increase the risk of active tuberculosis, whereas marine n–3 and n–6 FAs may reduce the risk of active tuberculosis in the Chinese population. PMID:27075903

  9. Large-scale Patterns of 14C Age of Bulk Organic Carbon and Various Molecular Components in Grassland Soils

    NASA Astrophysics Data System (ADS)

    Jia, J.; Liu, Z.; Cao, Z.; Chen, L.; He, J. S.; Haghipour, N.; Wacker, L.; Eglinton, T. I.; Feng, X.

    2017-12-01

    Unraveling the fate of organic carbon (OC) in soils is essential to understanding the impact of global changes on the global carbon cycle. Previous studies have shown that while various soil OC components have different decomposability, chemically labile OC can have old 14C ages. However, few studies have compared the 14C age of various soil OC components on a large scale, which may provide important information on the link between the age or turnover of soil OC components to their sources, molecular structures as well as environmental variables. In this project, a suite of soil profiles were sampled along a large-scale transect of temperate and alpine grasslands across the Tibetan and Mongolian Plateaus in China with contrasting climatic, vegetation and soil properties. Bulk OC and source-specific compounds (including fatty acids (FAs), diacids (DAs) and lignin phenols) were radiocarbon-dated to investigate the age and turnover dynamics of different OC pools and the mechanisms controlling their stability. Our results show that lignin phenols displayed a large 14C variability. Short-chain (C16, 18) FAs sourced from vascular plants as well as microorganisms were younger than plant-derived long-chain FAs and DAs, indicating that short-chain FAs were easier to be decomposed or newly synthesized. In the temperate grasslands, long-chain DAs were younger than FAs, while the opposite trend was observed in the alpine grasslands. Preliminary correlation analysis suggests that the age of short-chain FAs were mainly influenced by clay contents and climate, while reactive minerals, clay or silt particles were important factors in the stabilization of long-chain FAs, DAs and lignin phenols. Overall, our study provided a unique 14 C dataset of soil OC components in grasslands, which will provide important constraints on soil carbon turnover in future investigations.

  10. Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry.

    PubMed

    Kopf, Thomas; Schmitz, Gerd

    2013-11-01

    The determination of the fatty acid (FA) profile of lipid classes is essential for lipidomic analysis. We recently developed a GC/MS-method for the analysis of the FA profile of total FAs, i.e. the totality of bound and unbound FAs, in any given biological sample (TOFAs). Here, we present a method for the analysis of non-esterified fatty acids (NEFAs) in biological samples, i.e. the fraction that is present as extractable free fatty acids. Lipid extraction is performed according to Dole using 80/20 2-propanol/n-hexane (v/v), with 0.1% H2SO4. The fatty acid-species composition of this NEFA-fraction is determined as FAME after derivatization with our GC/MS-method on a BPX column (Shimadzu). Validation of the NEFA-method presented was performed in human plasma samples. The validated method has been used with human plasma, cells and tissues, as well as mammalian body fluids and tissue samples. The newly developed solid-phase-extraction (SPE)-GC-MS method allows the rapid separation of the NEFA-fraction from a neutral lipid extract of plasma samples. As a major advantage compared to G-FID-methods, GC-MS allows the use of stable isotope labeled fatty acid precursors to monitor fatty acid metabolism. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

    PubMed

    Runguphan, Weerawat; Keasling, Jay D

    2014-01-01

    As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fatty acid-derived biofuels and chemicals from simple sugars. Specifically, we overexpressed all three fatty acid biosynthesis genes, namely acetyl-CoA carboxylase (ACC1), fatty acid synthase 1 (FAS1) and fatty acid synthase 2 (FAS2), in S. cerevisiae. When coupled to triacylglycerol (TAG) production, the engineered strain accumulated lipid to more than 17% of its dry cell weight, a four-fold improvement over the control strain. Understanding that TAG cannot be used directly as fuels, we also engineered S. cerevisiae to produce drop-in fuels and chemicals. Altering the terminal "converting enzyme" in the engineered strain led to the production of free fatty acids at a titer of approximately 400 mg/L, fatty alcohols at approximately 100mg/L and fatty acid ethyl esters (biodiesel) at approximately 5 mg/L directly from simple sugars. We envision that our approach will provide a scalable, controllable and economic route to this important class of chemicals. Copyright © 2013 International Metabolic Engineering Society. All rights reserved.

  12. Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells.

    PubMed

    Zhou, Weibo; Simpson, P Jeanette; McFadden, Jill M; Townsend, Craig A; Medghalchi, Susan M; Vadlamudi, Aravinda; Pinn, Michael L; Ronnett, Gabriele V; Kuhajda, Francis P

    2003-11-01

    C75, an inhibitor of fatty acid synthase (FAS), induces apoptosis in cultured human cancer cells. Its proposed mechanism of action linked high levels of malonyl-CoA after FAS inhibition to potential downstream effects including inhibition of carnitine palmitoyltransferase-1 (CPT-1) with resultant inhibition of fatty acid oxidation. Recent data has shown that C75 directly stimulates CPT-1 increasing fatty acid oxidation in MCF-7 human breast cancer cells despite inhibitory concentrations of malonyl-CoA. In light of these findings, we have studied fatty acid metabolism in MCF7 human breast cancer cells to elucidate the mechanism of action of C75. We now report that: (a) in the setting of increased fatty acid oxidation, C75 inhibits fatty acid synthesis; (b) C273, a reduced form of C75, is unable to inhibit fatty acid synthesis and is nontoxic to MCF7 cells; (c) C75 and 5-(tetradecyloxy)-2-furoic acid (TOFA), an inhibitor of acetyl-CoA carboxylase, both cause a significant reduction of fatty acid incorporation into phosphatidylcholine, the major membrane phospholipid, within 2 h; (d) pulse chase studies with [(14)C]acetate labeling of membrane lipids show that both C75 and TOFA accelerate the decay of (14)C-labeled lipid from membranes within 2 h; (e) C75 also promotes a 2-3-fold increase in oxidation of membrane lipids within 2 h; and (f) because interference with phospholipid synthesis during S phase is known to trigger apoptosis in cycling cells, we performed double-labeled terminal deoxynucleotidyltransferase-mediated nick end labeling and BrdUrd analysis with both TOFA and C75. C75 triggered apoptosis during S phase, whereas TOFA did not. Moreover, application of TOFA 2 h before C75 blocked the C75 induced apoptosis, whereas etomoxir did not. Taken together these data indicate that FAS inhibition and its downstream inhibition of phospholipid production is a necessary part of the mechanism of action of C75. CPT-1 stimulation does not likely play a role in the cytotoxic response. The continued ability of TOFA to rescue cancer cells from C75 cytotoxicity implies a proapoptotic role for malonyl-CoA independent of CPT-1 that selectively targets cancer cells as they progress into S phase.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einsiedl,F.; Schafer, T.; Northrup, P.

    Chemical and isotope analyses on groundwater sulfate, atmospheric deposition sulfate and fulvic acids (FAs) associated sulfur were used to determine the S cycling in a karstic catchment area of the Franconian Alb, Southern Germany. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy provided information on the oxidation state and the mechanism of the incorporation of sulfur in FAs. During base flow {delta}{sup 34}S values of groundwater sulfate were slightly depleted to those of recent atmospheric sulfate deposition with mean amount-weighted {delta}{sup 34}S values of around + 3{per_thousand}. The {delta}{sup 18}O values of groundwater sulfate shifted to lower values comparedmore » to those of atmospheric deposition and indicated steadiness from base flow to peak flow. The reduced sulfur species (S{sub -1}/thiol; S{sub 0}/thiophene, disulfide, S{sub +2}2/sulfoxide) of soil FAs averaged around 49% of the total sulfur and {delta}{sup 34}S value in FAs was found to be 0.5{per_thousand}. The formation of polysulfides and thiols in FAs in concert with a decreasing isotope value of {delta}{sup 34}S in FAs with respect to those of atmospheric deposition sulfate suggests oxidation of H{sub 2}S, enriched in the {sup 32}S isotope, with organic material. The depletion of {delta}{sup 18}O-SO{sub 4}{sup 2-} by several per mil in groundwater sulfate with respect to those of atmospheric deposition is, therefore, consistent with the hypothesis that SO{sub 4}{sup 2-} has been cycled through the organic S pool as well as that groundwater sulfate is formed by oxidation of H{sub 2}S with organic matter in the mineral soil of the catchment area.« less

  14. Ursodeoxycholyl Lysophosphatidylethanolamide Protects Against CD95/FAS-Induced Fulminant Hepatitis.

    PubMed

    Utaipan, Tanyarath; Otto, Ann-Christin; Gan-Schreier, Hongying; Chunglok, Warangkana; Pathil, Anita; Stremmel, Wolfgang; Chamulitrat, Walee

    2017-08-01

    Increased activation of CD95/Fas by Fas ligand in viral hepatitis and autoimmunity is involved in pathogenesis of fulminant hepatitis and liver failure. We designed a bile-acid phospholipid conjugate ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE with LPE containing oleate at the sn-1) as a hepatoprotectant that was shown to protect against fulminant hepatitis induced by endotoxin. We herein further assessed the ability of UDCA-LPE to prevent death receptor CD95/Fas-induced fulminant hepatitis. C57BL/6 mice were intravenously administered with CD95/Fas agonistic monoclonal antibody (Jo-2) with or without 1 h pretreatment with 50 mg/kg UDCA-LPE. Jo-2 administration caused massive hepatocyte damage as seen by histology, and this was associated with a significant decrease in hepatic phosphatidylcholine (PC), lysoPC, and lysophosphatidylethanolamine levels. By histology, UDCA-LPE pretreatment improved hepatocyte damage and restored the loss of these phospholipids in part by a mechanism involving an inhibition of cytosolic phospholipaseA2 expression. Accordingly, Jo-2 treatment increased hepatic expression of cleaved caspase 8, caspase 3, and poly (ADP-Ribose) polymerase-1, and on the other hand decreased that of anti-apoptotic cellular FLICE-inhibitory protein. UDCA-LPE pretreatment was able to reverse all these changes. Moreover, UDCA-LPE attenuated inflammatory response by lowering the levels of Jo-2-induced proinflammatory cytokines TNF-α, IL-6, and IL-1β in liver and serum. UDCA-LPE was also able to decrease the levels of stimulated Th1/Th17 cytokines in Jo-2-primed isolated splenocytes. Taken together, UDCA-LPE exhibited potent anti-inflammatory effects against CD95/Fas-induced fulminant hepatitis.

  15. Non-T cell activation linker (NTAL) proteolytic cleavage as a terminator of activatory intracellular signals.

    PubMed

    Arbulo-Echevarria, Mikel M; Muñoz-Miranda, Juan Pedro; Caballero-García, Andrés; Poveda-Díaz, José L; Fernández-Ponce, Cecilia; Durán-Ruiz, M Carmen; Miazek, Arkadiusz; García-Cózar, Francisco; Aguado, Enrique

    2016-08-01

    Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors. © Society for Leukocyte Biology.

  16. Impact of biomass burning on soil microorganisms and plant metabolites: A view from molecular distributions of atmospheric hydroxy fatty acids over Mount Tai

    NASA Astrophysics Data System (ADS)

    Tyagi, Poonam; Kawamura, Kimitaka; Fu, Pingqing; Bikkina, Srinivas; Kanaya, Yugo; Wang, Zifa

    2016-10-01

    Biomass burning events (BBEs) in the North China Plain is one of the principal sources of airborne pollutants in China and also for the neighboring countries. To examine the impact of BBEs on soil bacteria and other higher plant metabolites, their tracer compounds, hydroxy fatty acids (FAs), were measured in the bulk particulate matter (total suspended particles (TSP)) over Mount Tai during the period of wheat residue burning in June 2006. Higher inputs of epicuticular waxes and soil microorganisms during high BBEs (H; 6-14 and 27 June) relative to low BBEs (L; 15-26 and 28 June) were characterized by increased concentrations of homologous series of α-(C9-C32), β-(C9-C32), and ω-(C12-C28) hydroxy FAs in TSP samples. However, their relative abundances were not significantly different between H-BBEs and L-BBEs, suggesting their common source/transport pathways. We also found higher concentrations of trehalose and mannitol (tracers of soil microbes), and levoglucosan (tracer of biomass combustion) during H-BBEs than L-BBEs. These results are consistent with hydroxy FAs, suggesting that they are associated with biomass combustion processes of agricultural wastes as well as re-suspension of mineral dust and plant pathogens. In addition, enhanced concentrations of endotoxin and mass loading of Gram-negative bacteria during H-BBEs (117 endotoxin units (EU) m-3 and 390 ng m-3, respectively) were noteworthy as compared to those in L-BBEs (22.5 EU m-3 and 75 ng m-3, respectively). Back trajectory analysis and fire spots together with temporal variations of hydroxy FAs revealed an impact of biomass burning on emissions and atmospheric transport of bacteria and plant metabolites.

  17. Organic matter compounds as source indicators and tracers for marine pollution in a western Mediterranean coastal zone.

    PubMed

    Amorri, Jalila; Geffroy-Rodier, Claude; Boufahja, Fehmi; Mahmoudi, Ezzeddine; Aïssa, Patricia; Ksibi, Mohamed; Amblès, André

    2011-11-01

    Complex organic compounds found in oil and sediments linked with a particular source (such as algae, bacteria or vascular plants) are defined as biomarkers and are useful dating indicators in organic geochemistry. This paper presents the composition of the organic matter (OM) on marine surface sediments from a degraded Tunisian coast analysed by pyrolysis and gas chromatography-mass spectrometry (GC-MS). High total OM contents (0.3-4.2%) were detected with high levels of saturated linear hydrocarbons. The aliphatic lipids had contributed with up to 11.7% of the total OM, and their distribution had consisted of resolved compounds (n-alkanes and fatty acid (FAs)) and an unresolved complex mixture. Hydrocarbons, primarily n-alkanes, were ranged from 368 to 3,886 μg g(-1). The FAs (674-2,568 μg g(-1)) were dominated by derived primary production, and the short chain FAs (C16 and C18) were the most abundant throughout. The ubiquitous presence of petroleum contamination, mainly from offshore oil exploration, discharge of pollutants from rivers, shipping activities and atmospheric deposition was found in all samples. The Gabès littoral seems to be quite to very polluted near the industrial zone of Ghannouch. The C/H ratio (generally around 5.9), the thermal analysis and GC-MS of n-alkanes and FAs showed that the OM in the studied area was composed of anthropogenic/petrogenic, marine and continental sources. Our study represents an innovative approach to assessing environmental pollution. The evaluation of organic matter by examination of sterols, alkanes and fatty acids allows the identification of source, both anthropogenic and natural.

  18. The effect of dietary fat content on phospholipid fatty acid profile is muscle fiber type dependent.

    PubMed

    Janovská, Alena; Hatzinikolas, George; Mano, Mark; Wittert, Gary A

    2010-04-01

    A high-saturated-fat diet (HFD) induces obesity and insulin resistance (IR). IR has been linked to alterations and increased saturation in the phospholipid composition of skeletal muscles. We aimed to determine whether HFD feeding affects fatty acid (FA) membrane profile in a muscle fiber type-specific manner. We measured phospholipid FAs and expression of FA synthesis genes in oxidative soleus (SOL) and glycolytic extensor digitorum longus (EDL) muscles from rats fed either standard chow (standard laboratory diet, SLD) or a HFD. The HFD increased fat mass, plasma insulin, and leptin levels. Compared with EDL, SOL muscles preferentially accumulated C18 over C16 FAs and n-6 over n-3 polyunsaturated FAs (PUFAs) on either diet. With the HFD, SOL muscles contained more n-9 monounsaturated FAs (MUFAs) and n-6 PUFAs and less n-7 MUFAs and n-3 PUFAs than EDL muscles and had lower unsaturation index, a pattern known to be associated with IR. Stearoyl-CoA desaturase-1 expression was approximately 13-fold greater in EDL than in SOL muscles but did not change with the HFD in either muscle. The expression of Elongase-5 was higher, and that of Elongase-6 (Elovl6) was lower in EDL compared with SOL muscles with both diets. In EDL muscles, the expression of Elovl6 was lower in the HFD than in the SLD. The pattern of FA uptake, expression, and diet-induced changes in FA desaturating and elongating enzymes maintained higher FA unsaturation in EDL muscles. Accordingly, the fiber type composition of skeletal muscles and their distribution may be important in the development and progression of obesity and IR.

  19. Trimethylsulfonium hydroxide as derivatization reagent for the chemical investigation of drying oils in works of art by gas chromatography.

    PubMed

    Dron, Julien; Linke, Robert; Rosenberg, Erwin; Schreiner, Manfred

    2004-08-20

    A procedure for the determination of fatty acids (FA) and glycerol in oils has been developed. The method includes a derivatization step of the FAs into their methyl esters or a transesterification of the triacylglycerols with trimethylsulfonium hydroxide (TMSH), respectively. The analysis is carried out by gas chromatography with parallel flame ionization and mass spectrometric detection. The parameters involved in the transesterification reaction were optimized. Only the stoichiometric ratio of TMSH:total FA amount showed a significant influence on the reaction yield. Relative standard deviations for 10 replicates were below 3% for all FAs studied and their linearity range was 0.5-50 mmol/L, when using heptadecanoic acid as an internal standard. The final procedure was rapid and required little sample handling. It was then tested on fresh oil samples and presented satisfying results, in agreement with previous works.

  20. Dietary fat intake and red blood cell fatty acid composition of children and women from three different geographical areas in South Africa.

    PubMed

    Ford, Rosalyn; Faber, Mieke; Kunneke, Ernesta; Smuts, Cornelius M

    2016-06-01

    Dietary fat intake, particularly the type of fat, is reflected in the red blood cell (RBC) fatty acid (FA) profile and is vital in growth, development and health maintenance. The FA profile (%wt/wt) of RBC membrane phospholipids (as determined by gas chromatography) and dietary intake (as determined by 24h recall) was assessed in 2-6y old South African children and their caregivers randomly selected from three communities, i.e. an urban Northern Cape community (urban-NC; n=104), an urban coastal Western Cape community (urban-WC; n=93) and a rural Limpopo Province community (rural-LP; n=102). Mean RBC FA values across groups were compared using ANOVA and Bonferroni post-hoc test while controlling for age and gender (children); median dietary intake values were compared using a Kruskal-Wallis test. Dietary intakes for total fat, saturated FAs and polyunsaturated FAs were higher in the two urban areas compared to the rural area. Total fat intake in rural-LP, and omega-3 FA dietary intake in all three areas were lower than the South African adopted guidelines. Dietary SFA intake in both urban areas was higher than recommended by South African guidelines; this was reflected in the RBC membrane FA profile. Rural-LP children had the lowest intake of omega-3 and omega-6 FAs yet presented with the highest RBC docosahexaenoic acid (DHA) profile and highest arachidonic acid percentage. Although differences observed in dietary fat intake between the two urban and the rural area were reflected in the RBC membrane total phospholipid FA profile, the lowest total fat and α-linolenic acid (ALA) intake by rural children that presented with the highest RBC DHA profile warrants further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Lipoic Acid Metabolism of Plasmodium - A Suitable Drug Target

    PubMed Central

    Storm, Janet; Müller, Sylke

    2012-01-01

    α-Lipoic acid (6,8-thioctic acid; LA) is a vital co-factor of α-ketoacid dehydrogenase complexes and the glycine cleavage system. In recent years it was shown that biosynthesis and salvage of LA in Plasmodium are necessary for the parasites to complete their complex life cycle. LA salvage requires two lipoic acid protein ligases (LplA1 and LplA2). LplA1 is confined to the mitochondrion while LplA2 is located in both the mitochondrion and the apicoplast. LplA1 exclusively uses salvaged LA and lipoylates α-ketoglutarate dehydrogenase, branched chain α-ketoacid dehydrogenase and the H-protein of the glycine cleavage system. LplA2 cannot compensate for the loss of LplA1 function during blood stage development suggesting a specific function for LplA2 that has yet to be elucidated. LA salvage is essential for the intra-erythrocytic and liver stage development of Plasmodium and thus offers great potential for future drug or vaccine development. LA biosynthesis, comprising octanoyl-acyl carrier protein (ACP) : protein N-octanoyltransferase (LipB) and lipoate synthase (LipA), is exclusively found in the apicoplast of Plasmodium where it generates LA de novo from octanoyl-ACP, provided by the type II fatty acid biosynthesis (FAS II) pathway also present in the organelle. LA is the co-factor of the acetyltransferase subunit of the apicoplast located pyruvate dehydrogenase (PDH), which generates acetyl-CoA, feeding into FAS II. LA biosynthesis is not vital for intra-erythrocytic development of Plasmodium, but the deletion of several genes encoding components of FAS II or PDH was detrimental for liver stage development of the parasites indirectly suggesting that the same applies to LA biosynthesis. These data provide strong evidence that LA salvage and biosynthesis are vital for different stages of Plasmodium development and offer potential for drug and vaccine design against malaria. PMID:22607141

  2. Death of adrenocortical cells during murine acute T. cruzi infection is not associated with TNF-R1 signaling but mostly with the type II pathway of Fas-mediated apoptosis.

    PubMed

    Pérez, Ana R; Lambertucci, Flavia; González, Florencia B; Roggero, Eduardo A; Bottasso, Oscar A; de Meis, Juliana; Ronco, Maria T; Villar, Silvina R

    2017-10-01

    Earlier studies from our laboratory demonstrated that acute experimental Trypanosoma cruzi infection promotes an intense inflammation along with a sepsis-like dysregulated adrenal response characterized by normal levels of ACTH with raised glucocorticoid secretion. Inflammation was also known to result in adrenal cell apoptosis, which in turn may influence HPA axis uncoupling. To explore factors and pathways which may be involved in the apoptosis of adrenal cells, together with its impact on the functionality of the gland, we carried out a series of studies in mice lacking death receptors, such as TNF-R1 (C57BL/6- Tnfrsf1a tm1Imx or TNF-R1 -/- ) or Fas ligand (C57BL/6 Fas-deficient lpr mice), undergoing acute T. cruzi infection. Here we demonstrate that the late hypercorticosterolism seen in C57BL/6 mice during acute T. cruzi infection coexists with and hyperplasia and hypertrophy of zona fasciculata, paralleled by increased number of apoptotic cells. Apoptosis seems to be mediated mainly by the type II pathway of Fas-mediated apoptosis, which engages the mitochondrial pathway of apoptosis triggering the cytochrome c release to increase caspase-3 activation. Fas-induced apoptosis of adrenocortical cells is also related with an exacerbated production of intra-adrenal cytokines that probably maintain the late supply of adrenal hormones during host response. Present results shed light on the molecular mechanisms dealing with these phenomena which are crucial not only for the development of interventions attempting to avoid adrenal dysfunction, but also for its wide occurrence in other infectious-based critical illnesses. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. In Vitro Investigation of Crosstalk between Fatty Acid and Polyketide Synthases in the Andrimid Biosynthetic Assembly Line.

    PubMed

    Ishikawa, Fumihiro; Sugimoto, Hiroyasu; Kakeya, Hideaki

    2016-11-17

    Andrimid (Adm) synthase, which belongs to the type II system of enzymes, produces Adm in Pantoea agglomerans. The adm biosynthetic gene cluster lacks canonical acyltransferases (ATs) to load the malonyl group to acyl carrier proteins (ACPs), thus suggesting that a malonyl-CoA ACP transacylase (MCAT) from the fatty acid synthase (FAS) complex provides the essential AT activity in Adm biosynthesis. Here we report that an MCAT is essential for catalysis of the transacylation of malonate from malonyl-CoA to AdmA polyketide synthase (PKS) ACP in vitro. Catalytic self-malonylation of AdmA (PKS ACP) was not observed in reactions without MCAT, although many type II PKS ACPs are capable of catalyzing self-acylation. This lack of self-malonylation was explained by amino acid sequence analysis of the AdmA PKS ACP and the type II PKS ACPs. The results show that MCAT from the organism's FAS complex can provide the missing AT activity in trans, thus suggesting a protein-protein interaction between the fatty acid and polyketide synthases in the Adm assembly line. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization of seed oils from fresh Bokbunja (Rubus coreanus Miq.) and wine processing waste.

    PubMed

    Ku, C S; Mun, S P

    2008-05-01

    The physicochemical characteristics, fatty acid (FA) profile, and triacylglyceride (TAG) composition of seed oils from fresh Bokbunja (Rubus coreanus Miq.) fruits and traditional Bokbunja wine processing waste were determined in this study. Oil contents of the fresh seeds and the seeds from wine processing waste were similar, accounting for about 18% of dry weight. The free fatty acid (FFA) content between the two seed oils was significantly different (0.50% for fresh seed oil and 73.14% for wine seed oil). Iodine, conjugated diene, saponification values, and unsaponifiable matter were very similar in the oil samples, but the specific extinction coefficients at 232 and 270 nm of wine seed oil were higher than those of fresh seed oil. Linoleic (C18:2, 50.45-53.18%, L) and linolenic (C18:3, 29.36-33.25%, Ln) acids were the dominant FAs in the two seed oils, whereas oleic (C18:1, 7.32-8.04%, O), palmitic (C16:0, 1.55-1.65%, P), and stearic (C18:0, 0.65-0.68%, S) acids were the minor FAs. LLL, OLL, LLLn, OOL, LLnLn, and OOO were the abundant TAGs, representing >90% of the oils.

  5. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages.

    PubMed

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-04-25

    Background: An appropriate intake of omega-3 ( n -3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n -3 FAs on gene expression levels are also dose-dependent.

  6. SNARE-mediated rapid lysosome fusion in membrane raft clustering and dysfunction of bovine coronary arterial endothelium

    PubMed Central

    Han, Wei-Qing; Xia, Min; Zhang, Chun; Zhang, Fan; Xu, Ming; Li, Ning-Jun

    2011-01-01

    The present study attempted to evaluate whether soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate lysosome fusion in response to death receptor activation and contribute to membrane raft (MR) clustering and consequent endothelial dysfunction in coronary arterial endothelial cells. By immunohistochemical analysis, vesicle-associated membrane proteins 2 (VAMP-2, vesicle-SNAREs) were found to be abundantly expressed in the endothelium of bovine coronary arteries. Direct lysosome fusion monitoring by N-(3-triethylammoniumpropyl)-4-[4-(dibutylamino)styryl]pyridinium dibromide (FM1-43) quenching demonstrated that the inhibition of VAMP-2 with tetanus toxin or specific small interfering ribonucleic acid (siRNA) almost completely blocked lysosome fusion to plasma membrane induced by Fas ligand (FasL), a well-known MR clustering stimulator. The involvement of SNAREs was further confirmed by an increased interaction of VAMP-2 with a target-SNARE protein syntaxin-4 after FasL stimulation in coimmunoprecipitation analysis. Also, the inhibition of VAMP-2 with tetanus toxin or VAMP-2 siRNA abolished FasL-induced MR clustering, its colocalization with a NADPH oxidase unit gp91phox, and increased superoxide production. Finally, FasL-induced impairment of endothelium-dependent vasodilation was reversed by the treatment of bovine coronary arteries with tetanus toxin or VAMP-2 siRNA. VAMP-2 is critical to lysosome fusion in MR clustering, and this VAMP-2-mediated lysosome-MR signalosomes contribute to redox regulation of coronary endothelial function. PMID:21926345

  7. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size – implication for FasR-associated apoptosis

    PubMed Central

    Gilbert, Stéphane; Loranger, Anne; Omary, M. Bishr

    2016-01-01

    ABSTRACT Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases. PMID:27422101

  8. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions.

    PubMed

    Beld, Joris; Blatti, Jillian L; Behnke, Craig; Mendez, Michael; Burkart, Michael D

    2014-08-01

    The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes.

  9. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions

    PubMed Central

    Beld, Joris; Blatti, Jillian L.; Behnke, Craig; Mendez, Michael; Burkart, Michael D.

    2014-01-01

    The fatty acid synthase (FAS) is a conserved primary metabolic enzyme complex capable of tolerating cross-species engineering of domains for the development of modified and overproduced fatty acids. In eukaryotes, acyl-acyl carrier protein thioesterases (TEs) off-load mature cargo from the acyl carrier protein (ACP), and plants have developed TEs for short/medium-chain fatty acids. We showed that engineering plant TEs into the green microalga Chlamydomonas reinhardtii does not result in the predicted shift in fatty acid profile. Since fatty acid biosynthesis relies on substrate recognition and protein-protein interactions between the ACP and its partner enzymes, we hypothesized that plant TEs and algal ACP do not functionally interact. Phylogenetic analysis revealed major evolutionary differences between FAS enzymes, including TEs and ketoacyl synthases (KSs), in which the former is present only in some species, whereas the latter is present in all, and has a common ancestor. In line with these results, TEs appeared to be selective towards their ACP partners whereas KSs showed promiscuous behavior across bacterial, plant and algal species. Based on phylogenetic analyses, in silico docking, in vitro mechanistic crosslinking and in vivo algal engineering, we propose that phylogeny can predict effective interactions between ACPs and partner enzymes. PMID:25110394

  10. Fatty Acid Synthesis and Oxidation in Cumulus Cells Support Oocyte Maturation in Bovine

    PubMed Central

    Sanchez-Lazo, Laura; Brisard, Daphné; Elis, Sébastien; Maillard, Virginie; Uzbekov, Rustem; Labas, Valérie; Desmarchais, Alice; Papillier, Pascal; Monget, Philippe

    2014-01-01

    Oocyte meiotic maturation requires energy from various substrates including glucose, amino acids, and lipids. Mitochondrial fatty acid (FA) β-oxidation (FAO) in the oocyte is required for meiotic maturation, which is accompanied by differential expression of numerous genes involved in FAs metabolism in surrounding cumulus cells (CCs) in vivo. The objective was to elucidate components involved in FAs metabolism in CCs during oocyte maturation. Twenty-seven genes related to lipogenesis, lipolysis, FA transport, and FAO were chosen from comparative transcriptome analysis of bovine CCs before and after maturation in vivo. Using real-time PCR, 22 were significantly upregulated at different times of in vitro maturation (IVM) in relation to oocyte meiosis progression from germinal vesicle breakdown to metaphase-II. Proteins FA synthase, acetyl-coenzyme-A carboxylase, carnitine palmitoyltransferase, perilipin 2, and FA binding protein 3 were detected by Western blot and immunolocalized to CCs and oocyte cytoplasm, with FA binding protein 3 concentrated around oocyte chromatin. By mass spectrometry, CCs lipid profiling was shown to be different before and after IVM. FAO inhibitors etomoxir and mildronate dose-dependently decreased the oocyte maturation rate in vitro. In terms of viability, cumulus enclosed oocytes were more sensitive to etomoxir than denuded oocytes. In CCs, etomoxir (150μM) led to downregulation of lipogenesis genes and upregulated lipolysis and FAO genes. Moreover, the number of lipid droplets decreased, whereas several lipid species were more abundant compared with nontreated CCs after IVM. In conclusion, FAs metabolism in CCs is important to maintain metabolic homeostasis and may influence meiosis progression and survival of enclosed oocytes. PMID:25058602

  11. Associations of food and nutrient intakes with serum IGF-I, IGF-II, IGFBP-3, TGF-b1, total SOD activity and sFas levels among middle-aged Japanese: the Japan Collaborative Cohort study.

    PubMed

    Maruyama, Koutatsu; Iso, Hiroyasu; Ito, Yoshinori; Watanabe, Yoshiyuki; Inaba, Yutaka; Tajima, Kazuo; Nakachi, Kei; Tamakoshi, Akiko

    2009-12-01

    No observational study has examined whether cancer-related biomarkers are associated with diet in Japanese. We therefore assessed sex-specific food and nutrient intakes according to serum IGF-I, IGF-II, IGFBP-3, TGF-b1, total SOD activity and sFas levels, under a cross-sectional study of 10,350 control subjects who answered the food frequency questionnaire in the first-wave nested case-control study within the Japan Collaborative Cohort Study. For both men and women, IGF-I levels were associated with higher intakes of milk, fruits, green tea, calcium and vitamin C. IGF-II levels were associated with higher intakes of milk, yogurt, fruits and miso soup, and lower intakes of rice, coffee and carbohydrate. IGFBP-3 levels were associated with higher intakes of milk, yogurt, fruits and vitamin C, and lower intakes of rice, energy, protein, carbohydrate, sodium and polyunsaturated fatty acids. TGF-b1 levels were associated with lower intakes of coffee intakes, and higher intakes of miso soup and sodium. Total SOD activity levels were associated with lower intakes of most nutrients other than energy, carbohydrate, iron, copper, manganese, retinol equivalents, vitamin A, B2, B12, niacin, folic acid, vitamin C and fish fat. sFas levels were associated with higher intakes of manganese and folic acids. The results of the present study should help to account for findings on those biomarkers regarding risks of cancer and other lifestyle-related diseases in terms of dietary confounding as causality.

  12. Changes in fatty acid metabolism induced by varied micro-supplementation with zinc in snails Helix pomatia (Gastropoda Pulmonata).

    PubMed

    Kowalczyk-Pecka, Danuta; Pecka, Stanisław; Kowalczuk-Vasilev, Edyta

    2017-04-01

    We analyzed the changes in the profile of fatty acids (FA) in the foot tissues and hepatopancreas (HP) of snails Helix pomatia exposed to five microdoses of zinc (0.1, 0.25, 0.5, 0.75, or 1mg/l) administered in the form of a pure salt solution and in the form of EDTA and lysine chelates. Selection from a pool of 56 fatty acids analyzed in snail tissues yielded a set of 12 biomarker acids undergoing significant changes in contact with toxic substances. The selection criteria included the greatest percentage among the FA profile and their significant role in physiological processes. The proposed palette of acids of the biomarker FAs comprised C16:0; C18:0; C23:0; C18:1 n-9; C20:1 n-9; C18:2 n-6; C18:3 n-3; C20:2; C20:4 n-6; C20:5 n-3; C22:4 n-6; and C22:5 n-3, and saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs), determined separately in the foot tissues and hepatopancreas. The significant (p=0.01) influence of the dose as well as the source of the zinc on its' concentration in the tissues and on changes in the fatty acid profiles. Among the three zinc forms administered to the snails, the highest bioaccumulation of zinc in both tissues was noted in the group receiving the Zn-EDTA chelate. The content of PUFAs increased as the supplementation with zinc increased up to 0.75mg/l, but at 1mg/l, the share of these FAs began to decrease. This trend was observed in both analyzed tissue types - foot and hepatopancreas. The dose of 1mg Zn/l might be considered as a threshold dose above which the saturation of FAs increases. The results proved that determination of FA profile in snails can be used in ecotoxicological research as a reliable test of the effect of trace doses of stressors. The micro-supplementation of the mollusks diet with zinc is an example of a non-routine approach to issues connected with both diet and toxicology. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Associations of Erythrocyte Fatty Acids in the De Novo Lipogenesis Pathway with Proxies of Liver Fat Accumulation in the EPIC-Potsdam Study

    PubMed Central

    Jacobs, Simone; Jäger, Susanne; Jansen, Eugene; Peter, Andreas; Stefan, Norbert; Boeing, Heiner; Schulze, Matthias B.; Kröger, Janine

    2015-01-01

    Background Biomarker fatty acids (FAs) reflecting de novo lipogenesis (DNL) are strongly linked to the risk of cardiometabolic diseases. Liver fat accumulation could mediate this relation. There is very limited data from human population-based studies that have examined this relation. Objective The aim of this study was to investigate the relation between specific FAs in the DNL pathway and liver fat accumulation in a large population-based study. Methods We conducted a cross-sectional analysis of a subsample (n = 1,562) of the EPIC-Potsdam study, which involves 27,548 middle-aged men and women. Baseline blood samples have been analyzed for proportions of 32 FAs in erythrocyte membranes (determined by gas chromatography) and biomarker concentrations in plasma. As indicators for DNL, the DNL-index (16:0 / 18:2n-6) and proportions of individual blood FAs in the DNL pathway were used. Plasma parameters associated with liver fat content (fetuin-A, ALT, and GGT) and the algorithm-based fatty liver index (FLI) were used to reflect liver fat accumulation. Results The DNL-index tended to be positively associated with the FLI and was positively associated with GGT activity in men (p for trend: 0.12 and 0.003). Proportions of 14:0 and 16:0 in erythrocytes were positively associated with fetuin-A, whereas 16:1n-7 were positively associated with the FLI and GGT activity (all p for trends in both sexes at least 0.004). Furthermore, the proportion of 16:1n-7 was positively related to fetuin-A in women and ALT activity in men (all p for trend at least 0.03). The proportion of 16:1n-9 showed positive associations with the FLI and GGT activity in men and fetuin-A in both sexes, whereas 18:1n-7 was positively associated with GGT activity in men (all p for trend at least 0.048). Conclusion Findings from this large epidemiological study suggest that liver fat accumulation could link erythrocyte FAs in the DNL pathway to the risk of cardiometabolic diseases. PMID:25984792

  14. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Noelle; Department of Obstetrics and Gynecology, The University of Western Ontario; The Lawson Health Research Institute, The University of Western Ontario

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal daymore » 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced acetylation of histone H3 [K9,14]. • This provides a mechanism for developmental origins of health and disease (DOHaD)« less

  15. Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus.

    PubMed

    Ericson, Megan E; Subramanian, Chitra; Frank, Matthew W; Rock, Charles O

    2017-08-01

    The SaeRS two-component system is a master activator of virulence factor transcription in Staphylococcus aureus , but the cellular factors that control its activity are unknown. Fatty acid (FA) kinase is a two-component enzyme system required for extracellular FA uptake and SaeRS activity. Here, we demonstrate the existence of an intracellular nonesterified FA pool in S. aureus that is elevated in strains lacking FA kinase activity. SaeRS-mediated transcription is restored in FA kinase-negative strains when the intracellular FA pool is reduced either by growth with FA-depleted bovine serum albumin to extract the FA into the medium or by the heterologous expression of Neisseria gonorrhoeae acyl-acyl carrier protein synthetase to activate FA for phospholipid synthesis. These data show that FAs act as negative regulators of SaeRS signaling, and FA kinase activates SaeRS-dependent virulence factor production by lowering inhibitory FA levels. Thus, FA kinase plays a role in cellular lipid homeostasis by activating FA for incorporation into phospholipid, and it indirectly regulates SaeRS signaling by maintaining a low intracellular FA pool. IMPORTANCE The SaeRS two-component system is a master transcriptional activator of virulence factor production in response to the host environment in S. aureus , and strains lacking FA kinase have severely attenuated SaeRS-dependent virulence factor transcription. FA kinase is required for the activation of exogenous FAs, and it plays a role in cellular lipid homeostasis by recycling cellular FAs into the phospholipid biosynthetic pathway. Activation of the sensor kinase, SaeS, is mediated by its membrane anchor domain, and the FAs which accumulate in FA kinase knockout strains are potent inhibitors of SaeS-dependent signaling. This work identifies FAs as physiological effectors for the SaeRS system and reveals a connection between cellular lipid homeostasis and the regulation of virulence factor transcription. FA kinase is widely distributed in Gram-positive bacteria, suggesting similar roles for FA kinase in these organisms. Copyright © 2017 Ericson et al.

  16. Malonyl-CoA Decarboxylase (MCD) as a Potential Therapeutic Target for Breast Cancer

    DTIC Science & Technology

    2010-05-01

    Kreb cycle and electron transport activity. Clinical and biochemical studies of MCD deficiency, a rare inborn error of metabolism, provide another... mitochondria and is the rate limiting enzymatic step of mitochondrial fatty acid oxidation (Figure 1) (McGarry and Brown, 1997). Indeed, the 10-fold...1 activity and fatty acid oxidation, thereby preventing a futile cycle of fatty acid synthesis and oxidation. As FAS could consume malonyl-CoA, it was

  17. Protolichesterinic acid enhances doxorubicin-induced apoptosis in HeLa cells in vitro.

    PubMed

    Brisdelli, Fabrizia; Perilli, Mariagrazia; Sellitri, Doriana; Bellio, Pierangelo; Bozzi, Argante; Amicosante, Gianfranco; Nicoletti, Marcello; Piovano, Marisa; Celenza, Giuseppe

    2016-08-01

    The aim of this study was to investigate the effect of protolichesterinic acid, a lichen secondary metabolite, on anti-proliferative activity of doxorubicin in three human cancer cell lines, HeLa, SH-SY5Y and K562 cells. The data obtained from MTT assays, performed on cells treated with protolichesterinic acid and doxorubicin alone and in combination, were analysed by the median-effect method as proposed by Chou and Talalay and the Bliss independence model. Apoptosis rate was evaluated by fluorescence microscopy, caspase-3, 8 and 9 activities were detected by spectrofluorimetric analysis and protein expression of Bim, Bid, Bax and Mcl-2 was analysed by Western blotting. The interaction of protolichesterinic acid with thioesterase domain of human fatty acid synthase (hFAS) was investigated by a molecular docking study. The in vitro activity of doxorubicin against HeLa cancer cell line, but not against SH-SY5Y and K562 cells, was synergically increased by protolichesterinic acid. The increased cytotoxicity caused by protolichesterinic acid in HeLa cells was due to a pro-apoptotic effect and was associated to caspase-3, 8 and 9 activation. The simultaneous treatment for 24h with protolichesterinic acid plus doxorubicin caused an increase of Bim protein expression and the appearance of cleaved form of Bid protein. The molecular modelling analysis showed that protolichesterinic acid seemed to behave as a competitive inhibitor of hFAS. These results suggest that protolichesterinic acid could be envisaged as an useful tool against certain types of tumor cells in combination with anticancer drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Combination of Garcinia cambogia Extract and Pear Pomace Extract Additively Suppresses Adipogenesis and Enhances Lipolysis in 3T3-L1 Cells.

    PubMed

    Sharma, Kushal; Kang, Siwon; Gong, Dalseong; Oh, Sung-Hwa; Park, Eun-Young; Oak, Min-Ho; Yi, Eunyoung

    2018-01-01

    Inhibition of adipogenesis has been a therapeutic target for reducing obesity and obesity-related disorders such as diabetes, hypertension, atherosclerosis, and cancer. For decades, anti-adipogenic potential of many herbal extracts has been investigated. One example is Garcinia cambogia extract (GE) containing (-)-hydroxycitric acid as an active ingredient. GE is currently marketed as a weight loss supplement, used alone or with other ingredients. Pear pomace extract (PE), another natural product, has been also shown to have anti-adipogenic activity in a recent report. It was tested if the mixture of PE and GE (MIX) would produce more effective anti-adipogenic activity than PE or GE alone. Differentiation of 3T3-L1 preadipocyte was induced by adding insulin, dexamethasone, and isobutylmethylxanthine and lipid accumulation was measured by Oil Red O staining. Cellular markers for adipogenesis and lipolysis such as CCAAT/enhancer binding protein (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), fatty acid synthase (FAS), and hormone-sensitive lipase (HSL) was measured using immunocytochemistry. MIX, compared to PE or GE alone, showed greater inhibition of lipid accumulation. Furthermore, MIX reduced the expression of adipogenesis-related factors C/EBP-α, PPAR-γ, and FAS more than PE or GE alone did. In contrast, the expression of HSL the enzyme required for lipolysis was further enhanced in MIX-treated adipocytes compared to the PE or GE alone treated groups. Anti-adipogenic effect of PE and GE appears synergistic, and the MIX may be a useful therapeutic combination for the treatment of obesity and obesity-related diseases. PE and GE efficiently inhibited adipocyte differentiation by suppressing the expression of adipogenic transcription factor CEBP-α and PPAR-γ.PE and GE significantly decreased the expression of adipogenic enzyme FAS.PE and GE increased the expression of lipid degrading enzyme HSL.Mixture of PE and GE exhibited additive or moderately synergistic effect on adipocyte differentiation and lipid accumulation. Abbreviations used: CEBP-a: CCAT/enhancer binding protein alpha, CI: Combination Index, FAS: Fatty acid synthase, GE: Garcinia cambogia extract, HSL: Hormone sensitive lipase, PE: Pear pomace extract, PPAR-γ: Peroxisome proliferator-activated receptor gamma.

  19. Can ipids in lake sediments help to reconstruct changes in methane availability and methane fluxes in boreal and temperate lakes?

    NASA Astrophysics Data System (ADS)

    Stoetter, T.; van Hardenbroek, M.; Rinta, P.; Schilder, J.; Schubert, C. J.; Heiri, O.

    2013-12-01

    Methane (CH4) is a major greenhouse gas and lakes are an important but poorly studied source of CH4 to the atmosphere. Lipid analysis was used before to identify and quantify CH4 oxidizing bacteria (MOB), giving insight into CH4 oxidation and production in lakes. However, few studies are available that examine how closely the distribution and the carbon isotopic signature (δ13C) of lipids are related to CH4 concentrations and fluxes in different lake ecosystems. In a multi-lake survey we quantified the relationship between lipids, mainly fatty acids (FAs), and CH4 concentrations or fluxes, with the aim of assessing whether FA analysis of lake sediment samples can provide information on past CH4 abundance and production in lakes. The study sites include small lakes in Sweden, Finland, the Netherlands, and Switzerland. Surface sediments collected in the deepest point of the lakes were examined using gas chromatography with flame ionization for determining FA concentrations, gas chromatography mass spectrometry (GC-MS) for identification of individual FAs, and isotope ratio mass spectrometry (IRMS) for determining compound specific δ13C values. Since CH4 is significantly more depleted in 13C than other carbon sources, δ13C is a good tracer for CH4 related processes. The analysis of the acid fraction in the sediments showed that mainly three FAs, identified as C16:1ω7, C16:1ω5 and C18:1ω7, were more depleted in 13C than the others, suggesting that they may originate from MOB. Comparison with literature sources indicated that these FAs are produced by MOB, however, not exclusively. The relative abundance of these depleted FAs showed clear relations to CH4 parameters. For example, increasing abundances were observed with increasing CH4 concentrations in the sediment or with increasing CH4 flux measured at the lake surface. An explanation for these relations would be an increase in MOB biomass with increasing CH4 availability, as they use CH4 as energy and carbon source, which would lead to increasing abundances of MOB produced FAs in the sediment. The presence or absence of oxygen above the sediments seems to have a strong effect on these relationships. In lakes with oxic bottom water, the abundance of depleted FAs shows a stronger rise with increasing CH4 concentrations than in lakes with anoxic bottom waters, suggesting that aerobic CH4 oxidizers are an important source of these depleted FAs. With increasing CH4 concentrations, for example just above the sediment, we find more depleted values in C16:1ω7 and C18:1ω7. This correlation is only strong if we exclude lakes with a strong terrestrial influence. Our preliminary analysis of FAs in surface sediment samples showed clear relations to CH4 parameters measured in the examined lake ecosystems suggesting that it may be possible to use FA analysis of lake sediment records as a proxy for CH4 availability in lakes. However, our results also show that oxygen conditions at the sediment-water interface and organic matter imported from the lake catchment can have a strong effect.

  20. Lipid transfer from plants to arbuscular mycorrhiza fungi

    PubMed Central

    Keymer, Andreas; Pimprikar, Priya; Wewer, Vera; Huber, Claudia; Brands, Mathias; Bucerius, Simone L; Delaux, Pierre-Marc; Klingl, Verena; von Röpenack-Lahaye, Edda; Wang, Trevor L; Eisenreich, Wolfgang; Dörmann, Peter; Parniske, Martin; Gutjahr, Caroline

    2017-01-01

    Arbuscular mycorrhiza (AM) symbioses contribute to global carbon cycles as plant hosts divert up to 20% of photosynthate to the obligate biotrophic fungi. Previous studies suggested carbohydrates as the only form of carbon transferred to the fungi. However, de novo fatty acid (FA) synthesis has not been observed in AM fungi in absence of the plant. In a forward genetic approach, we identified two Lotus japonicus mutants defective in AM-specific paralogs of lipid biosynthesis genes (KASI and GPAT6). These mutants perturb fungal development and accumulation of emblematic fungal 16:1ω5 FAs. Using isotopolog profiling we demonstrate that 13C patterns of fungal FAs recapitulate those of wild-type hosts, indicating cross-kingdom lipid transfer from plants to fungi. This transfer of labelled FAs was not observed for the AM-specific lipid biosynthesis mutants. Thus, growth and development of beneficial AM fungi is not only fueled by sugars but depends on lipid transfer from plant hosts. DOI: http://dx.doi.org/10.7554/eLife.29107.001 PMID:28726631

  1. Multiple beneficial lipids including lecithin detected in the edible invasive mollusk Crepidula fornicata from the French Northeastern Atlantic coast.

    PubMed

    Dagorn, Flore; Buzin, Florence; Couzinet-Mossion, Aurélie; Decottignies, Priscilla; Viau, Michèle; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2014-12-22

    The invasive mollusk Crepidula fornicata, occurring in large amounts in bays along the French Northeastern Atlantic coasts, may have huge environmental effects in highly productive ecosystems where shellfish are exploited. The present study aims at determining the potential economic value of this marine species in terms of exploitable substances with high added value. Lipid content and phospholipid (PL) composition of this mollusk collected on the Bourgneuf Bay were studied through four seasons. Winter specimens contained the highest lipid levels (5.3% dry weight), including 69% of PLs. Phosphatidylcholine (PC) was the major PL class all year, accounting for 63.9% to 88.9% of total PLs. Consequently, the winter specimens were then investigated for PL fatty acids (FAs), and free sterols. Dimethylacetals (DMAs) were present (10.7% of PL FA + DMA mixture) revealing the occurrence of plasmalogens. More than forty FAs were identified, including 20:5n-3 (9.4%) and 22:6n-3 (7.3%) acids. Fourteen free sterols were present, including cholesterol at 31.3% of the sterol mixture and about 40% of phytosterols. These data on lipids of C. fornicata demonstrate their positive attributes for human nutrition and health. The PL mixture, rich in PC and polyunsaturated FAs, offers an interesting alternative source of high value-added marine lecithin.

  2. Fatty acid modulated human serum albumin binding of the β-carboline alkaloids norharmane and harmane.

    PubMed

    Domonkos, Celesztina; Fitos, Ilona; Visy, Júlia; Zsila, Ferenc

    2013-12-02

    Harmane and norharmane are representative members of the large group of natural β-carboline alkaloids featured with diverse pharmacological activities. In blood, these agents are transported by human serum albumin (HSA) which has a profound impact on the pharmacokinetic and pharmacodynamic properties of many therapeutic drugs and xenobiotics. By combination of various spectroscopic methods, the present contribution is aimed to elucidate how nonesterified fatty acids (FAs), the primary endogenous ligands of HSA, affect the binding properties of harmane and norharmane. Analysis of induced circular dichroism (CD) and fluorescence spectroscopic data indicates the inclusion of the neutral form of both molecules into the binding pocket of subdomain IIIA, which hosts two FA binding sites, too. The induced CD and UV absorption spectra of harmane and norharmane exhibit peculiar changes upon addition of FAs, suggesting the formation of ternary complexes in which the lipid ligands significantly alter the binding mode of the alkaloids via cooperative allosteric mechanism. To our knowledge, it is the first instance of the demonstration of drug-FA cobinding at site IIIA. In line with these results, molecular docking calculations showed two distinct binding positions of norharmane within subdomain IIIA. The profound increase in the affinity constants of β-carbolines estimated in the presence of FAs predicts that the unbound, pharmacologically active serum fraction of these compounds strongly depends on the actual lipid binding profile of HSA.

  3. Comparison of headspace-oxylipin-volatilomes of some Eastern Himalayan mosses extracted by sample enrichment probe and analysed by gas chromatography-mass spectrometry.

    PubMed

    Mitra, Souvik; Burger, Barend V; Poddar-Sarkar, Mousumi

    2017-03-01

    Mosses have an inherent adaptability against different biotic and abiotic stresses. Oxylipins, the volatile metabolites derived from polyunsaturated fatty acids (PUFAs), play a key role in the chemical defence strategy of mosses. In the present study, a comparative survey of these compounds, including an investigation into their precursor fatty acids (FAs), was carried out for the first time on the mosses Brachymenium capitulatum (Mitt.) Paris, Hydrogonium consanguineum (Thwaites & Mitt.) Hilp., Barbula hastata Mitt., and Octoblepharum albidum Hedw. collected from the Eastern Himalayan Biodiversity hotspot. Their headspace volatiles were sampled using a high-efficiency sample enrichment probe (SEP) and were characterized by gas chromatography-mass spectrometric analysis. FAs from neutral lipid (NL) and phospholipid (PL) fractions were also evaluated. Analysis of the oxylipin volatilome revealed the generation of diverse metabolites from C 5 to C 18 , dominated by alkanes, alkenes, saturated and unsaturated alcohols, aldehydes, ketones and cyclic compounds, with pronounced structural variations. The C 6 and C 8 compounds dominated the total volatilome of all the samples. Analyses of FAs from membrane PL and storage NL highlighted the involvement of C 18 and C 20 PUFAs in oxylipin generation. The volatilome of each moss is characterized by a 'signature oxylipin mixture'. Quantitative differences in the C 6 and C 8 metabolites indicate their phylogenetic significance.

  4. Multiple Beneficial Lipids Including Lecithin Detected in the Edible Invasive Mollusk Crepidula fornicata from the French Northeastern Atlantic Coast

    PubMed Central

    Dagorn, Flore; Buzin, Florence; Couzinet-Mossion, Aurélie; Decottignies, Priscilla; Viau, Michèle; Rabesaotra, Vony; Barnathan, Gilles; Wielgosz-Collin, Gaëtane

    2014-01-01

    The invasive mollusk Crepidula fornicata, occurring in large amounts in bays along the French Northeastern Atlantic coasts, may have huge environmental effects in highly productive ecosystems where shellfish are exploited. The present study aims at determining the potential economic value of this marine species in terms of exploitable substances with high added value. Lipid content and phospholipid (PL) composition of this mollusk collected on the Bourgneuf Bay were studied through four seasons. Winter specimens contained the highest lipid levels (5.3% dry weight), including 69% of PLs. Phosphatidylcholine (PC) was the major PL class all year, accounting for 63.9% to 88.9% of total PLs. Consequently, the winter specimens were then investigated for PL fatty acids (FAs), and free sterols. Dimethylacetals (DMAs) were present (10.7% of PL FA + DMA mixture) revealing the occurrence of plasmalogens. More than forty FAs were identified, including 20:5n-3 (9.4%) and 22:6n-3 (7.3%) acids. Fourteen free sterols were present, including cholesterol at 31.3% of the sterol mixture and about 40% of phytosterols. These data on lipids of C. fornicata demonstrate their positive attributes for human nutrition and health. The PL mixture, rich in PC and polyunsaturated FAs, offers an interesting alternative source of high value-added marine lecithin. PMID:25532566

  5. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance.

    PubMed

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL.

  6. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance

    PubMed Central

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL. PMID:28424702

  7. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-03-18

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs.

  8. Bioassay-guided Isolation of Neuroprotective Fatty Acids from Nigella sativa against 1-methyl-4-phenylpyridinium-induced Neurotoxicity

    PubMed Central

    Hosseinzadeh, Leila; Monaghash, Hoda; Ahmadi, Farahnaz; Ghiasvand, Nastaran; Shokoohinia, Yalda

    2017-01-01

    Objective: Parkinson's disease, a slowly progressive neurological disease, is associated with degeneration of the basal ganglia of the brain and a deficiency of the neurotransmitter dopamine. The main aspects of researches are the protection of normal neurons against degeneration. Fatty acids (FAs), the key structural elements of dietary lipids, are carboxylic straight chains and notable parameters in nutritional and industrial usefulness of a plant. Materials and Methods: Black cumin, a popular anti-inflammatory and antioxidant food seasoning, contains nonpolar constituents such as FAs which were extracted using hexane. Different fractions and subfractions were apt to cytoprotection against apoptosis and inflammation induced by 1-methyl-4-phenylpyridinium (MPP+) in rat pheochromocytoma cell line (PC12) as a neural cell death model. The experiment consisted of examination of cell viability assessment, mitochondrial membrane potential (MMP), caspase-3 and -9 activity, and measurement of cyclooxygenase (COX) activity. Results: MPP+ induced neurotoxicity in PC12 cells. Pretreatment with subfractions containing FA mixtures attenuated MPP+-mediated apoptosis partially dependent on the inhibition of caspase-3 and -9 activity and increasing the MMP. A mixture of linoleic acid, oleic acid, and palmitic acid also decreased the COX activity induced by MPP+ in PC12 cells. Conclusion: Our observation indicated that subtoxic concentration of FA from Nigella sativa may exert cytoprotective effects through their anti-apoptotic and anti-inflammation actions and could be regarded as a dietary supplement. SUMMARY MPP+ induced neurotoxicity in PC12 cellsNigella sativa contains bioactive fatty acidsPretreatment with fatty acids attenuated MPP+ mediated apoptosis through inhibition of caspase 3 and 9 activityA mixture of linoleic acid, oleic acid, and palmitic acid decreased the COX activity induced by MPP+ in PC12 cellsDue to cytoprotective, anti apoptotic and anti inflammation actions of N. sativa, it could be regarded as a dietary supplement. Abbreviations used: ANOVA: Analysis of variance; Ca: Calcium; CDCl3: Chloroform; COX: Cyclooxygenase; DMSO: Dimethyl sulfoxide; EA: Elidic acid; EDTA: Ethylene diamine tetraacetic acid; ELISA: Enzyme Linked Immunosorbent Assay; ESI-MS: Electron spray mass spectroscopy; FAs: Fatty acids; FBS: Fetal bovine serum; GC: Gas chromatography; 1HNMR: Hydrogen nuclear magnetic resonance; LA: Linoleic acid; MPP+: 1-Methyl-4-phenylpyridinium; MPTP: 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine; MTT: 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide; N. sativa: Nigella sativa; OA: Oleic acid; PA: Palmitic acid; PBS: Phosphate buffer saline; PC12: Rat pheochromocytoma cell line; PD: Parkinson's disease; PDA: Photo diode array detector; PGE2: Prostaglandin E2; TLC: Thin layer chromatography; TMPD: N,N,N’,N’-tetramethyl-p-phenylenediamine; USA: United states of America. PMID:29200724

  9. Lack of FasL-mediated killing leads to in vivo tumor promotion in mouse Lewis lung cancer.

    PubMed

    Lee, J-K; Sayers, T J; Back, T C; Wigginton, J M; Wiltrout, R H

    2003-03-01

    Lewis lung carcinoma (3LL) cells were constitutively resistant to Fas-mediated apoptosis, but overexpression of Fas on 3LL cells allowed Fas-mediated apoptosis after crosslinking with agonist anti-Fas antibody (Jo2) in vitro. Surprisingly, Fas-overexpressing 3LL cells showed enhanced in vivo tumor progression, whereas no promotion of in vivo tumor growth was observed for dominant negative (DN) Fas-overexpressing 3LL transfectants in which the cytoplasmic death domain was deleted. In addition, the promotion of in vivo tumor growth by Fas-overexpression was reduced in gld (FasL-mutation) mice compared to normal mice. These data indicate that intact Fas/FasL cell signaling is required for the promotion of in vivo tumor growth by Fas overexpression in 3LL cells. In contrast to the efficient Fas-mediated killing induced in vitro by crosslinking with anti-Fas antibody, Fas-overexpressing 3LL cells were resistant in vitro to Fas-mediated apoptosis by activated T cells or transient FasL transfection. These data suggest that agonist anti-Fas antibody and natural FasL can transmit qualitatively different signals, and crosslinking of Fas with natural FasL on 3LL cells does not deliver the expected death signal. Thus, our results demonstrate that in some cases overexpression of Fas can result in a survival advantage for tumor cells in vivo.

  10. Influence of virgin coconut oil-enriched diet on the transcriptional regulation of fatty acid synthesis and oxidation in rats - a comparative study.

    PubMed

    Arunima, Sakunthala; Rajamohan, Thankappan

    2014-05-28

    The present study was carried out to evaluate the effects of virgin coconut oil (VCO) compared with copra oil, olive oil and sunflower-seed oil on the synthesis and oxidation of fatty acids and the molecular regulation of fatty acid metabolism in normal rats. Male Sprague-Dawley rats were fed the test oils at 8 % for 45 d along with a synthetic diet. Dietary supplementation of VCO decreased tissue lipid levels and reduced the activity of the enzymes involved in lipogenesis, namely acyl CoA carboxylase and fatty acid synthase (FAS) (P< 0·05). Moreover, VCO significantly (P< 0·05) reduced the de novo synthesis of fatty acids by down-regulating the mRNA expression of FAS and its transcription factor, sterol regulatory element-binding protein-1c, compared with the other oils. VCO significantly (P< 0·05) increased the mitochondrial and peroxisomal β-oxidation of fatty acids, which was evident from the increased activities of carnitine palmitoyl transferase I, acyl CoA oxidase and the enzymes involved in mitochondrial β-oxidation; this was accomplished by up-regulating the mRNA expression of PPARα and its target genes involved in fatty acid oxidation. In conclusion, the present results confirmed that supplementation of VCO has beneficial effects on lipid parameters by reducing lipogenesis and enhancing the rate of fatty acid catabolism; this effect was mediated at least in part via PPARα-dependent pathways. Thus, dietary VCO reduces the risk for CHD by beneficially modulating the synthesis and degradation of fatty acids.

  11. Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex.

    PubMed

    Wise, Jillian F; Berkova, Zuzana; Mathur, Rohit; Zhu, Haifeng; Braun, Frank K; Tao, Rong-Hua; Sabichi, Anita L; Ao, Xue; Maeng, Hoyoung; Samaniego, Felipe

    2013-06-06

    Resistance to Fas-mediated apoptosis is associated with poor cancer outcomes and chemoresistance. To elucidate potential mechanisms of defective Fas signaling, we screened primary lymphoma cell extracts for Fas-associated proteins that would have the potential to regulate Fas signaling. An activation-resistant Fas complex selectively included nucleolin. We confirmed the presence of nucleolin-Fas complexes in B-cell lymphoma cells and primary tissues, and the absence of such complexes in B-lymphocytes from healthy donors. RNA-binding domain 4 and the glycine/arginine-rich domain of nucleolin were essential for its association with Fas. Nucleolin colocalized with Fas on the surface of B-cell lymphoma cells. Nucleolin knockdown sensitized BJAB cells to Fas ligand (FasL)-induced and Fas agonistic antibody-induced apoptosis through enhanced binding, suggesting that nucleolin blocks the FasL-Fas interaction. Mice transfected with nucleolin were protected from the lethal effects of agonistic anti-mouse Fas antibody (Jo2) and had lower rates of hepatocyte apoptosis, compared with vector and a non-Fas-binding mutant of nucleolin. Our results show that cell surface nucleolin binds Fas, inhibits ligand binding, and thus prevents induction of Fas-mediated apoptosis in B-cell lymphomas and may serve as a new therapeutic target.

  12. Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex

    PubMed Central

    Wise, Jillian F.; Berkova, Zuzana; Mathur, Rohit; Zhu, Haifeng; Braun, Frank K.; Tao, Rong-Hua; Sabichi, Anita L.; Ao, Xue; Maeng, Hoyoung

    2013-01-01

    Resistance to Fas-mediated apoptosis is associated with poor cancer outcomes and chemoresistance. To elucidate potential mechanisms of defective Fas signaling, we screened primary lymphoma cell extracts for Fas-associated proteins that would have the potential to regulate Fas signaling. An activation-resistant Fas complex selectively included nucleolin. We confirmed the presence of nucleolin-Fas complexes in B-cell lymphoma cells and primary tissues, and the absence of such complexes in B-lymphocytes from healthy donors. RNA-binding domain 4 and the glycine/arginine-rich domain of nucleolin were essential for its association with Fas. Nucleolin colocalized with Fas on the surface of B-cell lymphoma cells. Nucleolin knockdown sensitized BJAB cells to Fas ligand (FasL)-induced and Fas agonistic antibody-induced apoptosis through enhanced binding, suggesting that nucleolin blocks the FasL–Fas interaction. Mice transfected with nucleolin were protected from the lethal effects of agonistic anti-mouse Fas antibody (Jo2) and had lower rates of hepatocyte apoptosis, compared with vector and a non-Fas-binding mutant of nucleolin. Our results show that cell surface nucleolin binds Fas, inhibits ligand binding, and thus prevents induction of Fas-mediated apoptosis in B-cell lymphomas and may serve as a new therapeutic target. PMID:23599269

  13. Abundance and δ13C values of fatty acids in lacustrine surface sediments: Relationships with in-lake methane concentrations

    NASA Astrophysics Data System (ADS)

    Stötter, Tabea; Bastviken, David; Bodelier, Paul L. E.; van Hardenbroek, Maarten; Rinta, Päivi; Schilder, Jos; Schubert, Carsten J.; Heiri, Oliver

    2018-07-01

    Proxy-indicators in lake sediments provide the only approach by which the dynamics of in-lake methane cycling can be examined on multi-decadal to centennial time scales. This information is necessary to constrain how lacustrine methane production, oxidation and emissions are expected to respond to global change drivers. Several of the available proxies for reconstructing methane cycle changes of lakes rely on interpreting past changes in the abundance or relevance of methane oxidizing bacteria (MOB), either directly (e.g. via analysis of bacterial lipids) or indirectly (e.g. via reconstructions of the past relevance of MOB in invertebrate diet). However, only limited information is available about the extent to which, at the ecosystem scale, variations in abundance and availability of MOB reflect past changes in in-lake methane concentrations. We present a study examining the abundances of fatty acids (FAs), particularly of 13C-depleted FAs known to be produced by MOB, relative to methane concentrations in 29 small European lakes. 39 surface sediment samples were obtained from these lakes and FA abundances were compared with methane concentrations measured at the lake surface, 10 cm above the sediments and 10 cm within the sediments. Three of the FAs in the surface sediment samples, C16:1ω7c, C16:1ω5c/t, and C18:1ω7c were characterized by lower δ13C values than the remaining FAs. We show that abundances of these FAs, relative to other short-chain FAs produced in lake ecosystems, are related with sedimentary MOB concentrations assessed by quantitative polymerase chain reaction (qPCR). We observed positive relationships between methane concentrations and relative abundances of C16:1ω7c, C16:1ω5c/t, and C18:1ω7c and the sum of these FAs. For the full dataset these relationships were relatively weak (Spearman's rank correlation (rs) of 0.34-0.43) and not significant if corrected for multiple testing. However, noticeably stronger and statistically significant relationships were observed when sediments from near-shore and deep-water oxic environments (rs = 0.57 to 0.62) and those from anoxic deep-water environment (rs = 0.55 to 0.65) were examined separately. Our results confirm that robust relationships exist between in-lake CH4 concentrations and 13C-depleted groups of FAs in the examined sediments, agreeing with earlier suggestions that the availability of MOB-derived, 13C-depleted organic matter for aquatic invertebrates increases with increasing methane concentrations. However, we also show that these relationships are complex, with different relationships observed for oxic and anoxic sediments and highest values measured in sediments deposited in oxic environments overlain with relatively methane-rich water. Furthermore, although all three 13C-depleted FA groups identified in our survey are known to be produced by MOB, they also receive contributions by other organism groups, and this will have influenced their distribution in our dataset.

  14. Efficient reporting of the estimated glomerular filtration rate without height in pediatric patients with cancer.

    PubMed

    Jeong, Tae-Dong; Cho, Eun-Jung; Lee, Woochang; Chun, Sail; Hong, Ki-Sook; Min, Won-Ki

    2017-10-26

    The updated bedside Schwartz equation requires constant, serum creatinine concentration and height measurements to calculate the estimated glomerular filtration rate (eGFR) in pediatric patients. Unlike the serum creatinine levels, obtaining height information from the laboratory information system (LIS) is not always possible in a clinical laboratory. Recently, the height-independent eGFR equation, the full age spectrum (FAS) equation, has been introduced. We evaluated the performance of height-independent eGFR equation in Korean children with cancer. A total of 250 children who underwent chromium-51-ethylenediamine tetra acetic-acid (51Cr-EDTA)-based glomerular filtration rate (GFR) measurements were enrolled. The 51Cr-EDTA GFR was used as the reference GFR. The bias (eGFR - measured GFR), precision (root mean square error [RMSE]) and accuracy (P30) of the FAS equations were compared to those of the updated Schwartz equation. P30 was defined as the percentage of patients whose eGFR was within ±30% of the measured GFR. The FAS equation showed significantly lower bias (mL/min/1.73 m2) than the updated Schwartz equation (4.2 vs. 8.7, p<0.001). The RMSE and P30 were: updated Schwartz of 43.8 and 64.4%, respectively, and FAS of 42.7 and 66.8%, respectively. The height-independent eGFR-FAS equation was less biased and as accurate as the updated Schwartz equation in Korean children. The use of the height-independent eGFR equation will allow for efficient reporting of eGFR through the LIS in clinical laboratories.

  15. Impact of Environment and Ontogeny on Relative Fecundity and Egg Quality of Female Oysters (Crassostrea virginica) from Four Sites in Northern Chesapeake Bay.

    PubMed

    Glandon, Hillary Lane; Michaelis, Adriane K; Politano, Vincent A; Alexander, Stephanie T; Vlahovich, Emily A; Reece, Kimberly S; Koopman, Heather N; Meritt, Donald W; Paynter, Kennedy T

    2016-12-01

    Resource allocation to reproduction is a primary physiological concern for individuals, and can vary with age, environment, or a combination of both factors. In this study we quantified the impact of environment and individual age on the reproductive output of female oysters Crassostrea virginica. We determined the relative fecundity, egg total lipid content, and overall and omega-3/omega-6 (ω3/ω6) fatty acid signatures (FAS) of eggs spawned by female oysters over a 2-year period (n = 32 and n = 64). Variation was quantified spatially and ontogenetically by sampling young and old oyster populations from two rivers in Chesapeake Bay, totaling four collection sites. During Year 1, when oysters underwent oogenesis in different locations, overall and ω3/ω6 egg FAS varied significantly by river, with no significant differences observed in the FAS of oysters by age in Year 1. In Year 2, when oysters from different sites underwent oogenesis in a single location, no significant differences in the overall egg FAS or ω3/ω6 egg FAS by river or age were observed. These findings suggest that oysters integrate environment into their reproductive output, but that time spent growing at a specific location (in this case, represented by oyster age) plays a relatively minor role in the biochemical composition of oyster eggs. These results have consequences for our understanding of how resources are allocated from the female oyster to eggs and, more generally, the impact of environment and ontogeny on reproductive physiology.

  16. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size - implication for FasR-associated apoptosis.

    PubMed

    Gilbert, Stéphane; Loranger, Anne; Omary, M Bishr; Marceau, Normand

    2016-09-01

    Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases. © 2016. Published by The Company of Biologists Ltd.

  17. Response of Fatty Acid Synthesis Genes to the Binding of Human Salivary Amylase by Streptococcus gordonii

    PubMed Central

    Nikitkova, Anna E.; Haase, Elaine M.; Vickerman, M. Margaret; Gill, Steven R.

    2012-01-01

    Streptococcus gordonii, an important primary colonizer of dental plaque biofilm, specifically binds to salivary amylase via the surface-associated amylase-binding protein A (AbpA). We hypothesized that a function of amylase binding to S. gordonii may be to modulate the expression of chromosomal genes, which could influence bacterial survival and persistence in the oral cavity. Gene expression profiling by microarray analysis was performed to detect genes in S. gordonii strain CH1 that were differentially expressed in response to the binding of purified human salivary amylase versus exposure to purified heat-denatured amylase. Selected genes found to be differentially expressed were validated by quantitative reverse transcription-PCR (qRT-PCR). Five genes from the fatty acid synthesis (FAS) cluster were highly (10- to 35-fold) upregulated in S. gordonii CH1 cells treated with native amylase relative to those treated with denatured amylase. An abpA-deficient strain of S. gordonii exposed to amylase failed to show a response in FAS gene expression similar to that observed in the parental strain. Predicted phenotypic effects of amylase binding to S. gordonii strain CH1 (associated with increased expression of FAS genes, leading to changes in fatty acid synthesis) were noted; these included increased bacterial growth, survival at low pH, and resistance to triclosan. These changes were not observed in the amylase-exposed abpA-deficient strain, suggesting a role for AbpA in the amylase-induced phenotype. These results provide evidence that the binding of salivary amylase elicits a differential gene response in S. gordonii, resulting in a phenotypic adjustment that is potentially advantageous for bacterial survival in the oral environment. PMID:22247133

  18. Knockout of the regulatory site of 3-ketoacyl-ACP synthase III enhances short- and medium-chain acyl-ACP synthesis.

    PubMed

    Abbadi, A; Brummel, M; Spener, F

    2000-10-01

    3-ketoacyl-acyl carrier protein synthase (KAS) III catalyses the first condensing step of the fatty acid synthase (FAS) type II reaction in plants and bacteria, using acetyl CoA and malonyl-acyl carrier protein (ACP) as substrates. Enzymatic characterization of recombinant KAS III from Cuphea wrightii embryo shows that this enzyme is strongly inhibited by medium-chain acyl-ACP end products of the FAS reaction, i.e. inhibition by lauroyl-ACP was uncompetitive towards acetyl CoA and non-competitive with regard to malonyl-ACP. This indicated a distinct attachment site for regulatory acyl-ACPs. Based on alignment of primary structures of various KAS IIIs and 3-ketoacyl CoA synthases, we suspected the motif G290NTSAAS296 to be responsible for binding of regulatory acyl-ACPs. Deletion of the tetrapeptide G290NTS293 led to a change of secondary structure and complete loss of KAS III condensing activity. Exchange of asparagine291 to aspartate, alanine294 to serine and alanine295 to proline, however, produced mutant enzymes with slightly reduced condensing activity, yet with insensitivity towards acyl-ACPs. To assess the potential of unregulated KAS III as tool in oil production, we designed in vitro experiments employing FAS preparations from medium-chain fatty acid-producing Cuphea lanceolata seeds and long-chain fatty acid-producing rape seeds, each supplemented with a fivefold excess of the N291D KAS III mutant. High amounts of short-chain acyl-ACPs in the case of C. lanceolata, and of medium-chain acyl-ACPs in the case of rape seed preparations, were obtained. This approach targets regulation and offers new possibilities to derive transgenic or non-transgenic plants for production of seed oils with new qualities.

  19. Pregnancy Induces Resistance to the Anorectic Effect of Hypothalamic Malonyl-CoA and the Thermogenic Effect of Hypothalamic AMPK Inhibition in Female Rats

    PubMed Central

    Martínez de Morentin, Pablo B.; Lage, Ricardo; González-García, Ismael; Ruíz-Pino, Francisco; Martins, Luís; Fernández-Mallo, Diana; Gallego, Rosalía; Fernø, Johan; Señarís, Rosa; Saha, Asish K.; Tovar, Sulay; Diéguez, Carlos; Nogueiras, Rubén; Tena-Sempere, Manuel

    2015-01-01

    During gestation, hyperphagia is necessary to cope with the metabolic demands of embryonic development. There were three main aims of this study: Firstly, to investigate the effect of pregnancy on hypothalamic fatty acid metabolism, a key pathway for the regulation of energy balance; secondly, to study whether pregnancy induces resistance to the anorectic effect of fatty acid synthase (FAS) inhibition and accumulation of malonyl-coenzyme A (CoA) in the hypothalamus; and, thirdly, to study whether changes in hypothalamic AMPK signaling are associated with brown adipose tissue (BAT) thermogenesis during pregnancy. Our data suggest that in pregnant rats, the hypothalamic fatty acid pathway shows an overall state that should lead to anorexia and elevated BAT thermogenesis: decreased activities of AMP-activated protein kinase (AMPK), FAS, and carnitine palmitoyltransferase 1, coupled with increased acetyl-CoA carboxylase function with subsequent elevation of malonyl-CoA levels. This profile seems dependent of estradiol levels but not prolactin or progesterone. Despite the apparent anorexic and thermogenic signaling in the hypothalamus, pregnant rats remain hyperphagic and display reduced temperature and BAT function. Actually, pregnant rats develop resistance to the anorectic effects of central FAS inhibition, which is associated with a reduction of proopiomelanocortin (POMC) expression and its transcription factors phospho-signal transducer and activator of transcription 3, and phospho-forkhead box O1. This evidence demonstrates that pregnancy induces a state of resistance to the anorectic and thermogenic actions of hypothalamic cellular signals of energy surplus, which, in parallel to the already known refractoriness to leptin effects, likely contributes to gestational hyperphagia and adiposity. PMID:25535827

  20. Long noncoding RNA Saf and splicing factor 45 increase soluble Fas and resistance to apoptosis

    PubMed Central

    Riberdy, Janice M.; Persons, Derek A.; Wilber, Andrew

    2016-01-01

    In multicellular organisms, cell growth and differentiation is controlled in part by programmed cell death or apoptosis. One major apoptotic pathway is triggered by Fas receptor (Fas)-Fas ligand (FasL) interaction. Neoplastic cells are frequently resistant to Fas-mediated apoptosis, evade Fas signals through down regulation of Fas and produce soluble Fas proteins that bind FasL thereby blocking apoptosis. Soluble Fas (sFas) is an alternative splice product of Fas pre-mRNA, commonly created by exclusion of transmembrane spanning sequences encoded within exon 6 (FasΔEx6). Long non-coding RNAs (lncRNAs) interact with other RNAs, DNA, and proteins to regulate gene expression. One lncRNA, Fas-antisense or Saf, was shown to participate in alternative splicing of Fas pre-mRNA through unknown mechanisms. We show that Saf is localized in the nucleus where it interacts with Fas receptor pre-mRNA and human splicing factor 45 (SPF45) to facilitate alternative splicing and exclusion of exon 6. The product is a soluble Fas protein that protects cells against FasL-induced apoptosis. Collectively, these studies reveal a novel mechanism to modulate this critical cell death program by an lncRNA and its protein partner. PMID:26885613

  1. A Lipidomic Approach to Understanding Free Fatty Acid Lipogenesis Derived from Dissolved Inorganic Carbon within Cnidarian-Dinoflagellate Symbiosis

    PubMed Central

    Dunn, Simon R.; Thomas, Michael C.; Nette, Geoffrey W.; Dove, Sophie G.

    2012-01-01

    The cnidarian-dinoflagellate symbiosis is arguably one of the most important within the marine environment in that it is integral to the formation of coral reefs. However, the regulatory processes that perpetuate this symbiosis remain unresolved. It is essential to understand these processes, if we are to elucidate the mechanisms that support growth and resource accumulation by coral host, and conversely, recently observed reduction and/or mortality of corals in response to rapid environmental change. This study specifically focused on one area of metabolic activity within the symbiosis, that of free fatty acid synthesis within both the dinoflagellate symbionts and cnidarian host. The main model system used was Aiptasia pulchella and Symbiodinium sp. in combination with aposymbiotic A. pulchella, the symbiotic coral Acropora millepora system and dinoflagellate culture. Fatty acids (FAs) were selected because of their multiple essential roles inclusive of energy storage (resource accumulation), membrane structure fluidity and cell signaling. The study addressed free FA lipogenesis by using a new method of enriched stable isotopic (13C) incorporation from dissolved inorganic carbon (DI13C) combined with HPLC-MS. FAs derived from DI13C aligned with a mixture of known lipogenesis pathways with the addition of some unusual FAs. After 120 hr, 13C-enriched FA synthesis rates were attributed to only a complex integration of both n–3 and n–6 lipogenesis pathways within the dinoflagellate symbionts. Furthermore, there was no detectible evidence of symbiont derived enriched isotope fatty acids, catabolized 13C derivatives or DI13C being directly utilized, in host late n–6 pathway long-chain FA lipogenesis. These findings do not align with a popular mutualistic translocation model with respect to the use of translocated symbiont photoassimilates in host long-chain FA lipogenesis, which has important connotations for linking nutrient sources with metabolite production and the dynamic regulation of this symbiosis. PMID:23115631

  2. Simultaneous shifts in elemental stoichiometry and fatty acids of Emiliania huxleyi in response to environmental changes

    NASA Astrophysics Data System (ADS)

    Bi, Rong; Ismar, Stefanie M. H.; Sommer, Ulrich; Zhao, Meixun

    2018-02-01

    Climate-driven changes in environmental conditions have significant and complex effects on marine ecosystems. Variability in phytoplankton elements and biochemicals can be important for global ocean biogeochemistry and ecological functions, while there is currently limited understanding on how elements and biochemicals respond to the changing environments in key coccolithophore species such as Emiliania huxleyi. We investigated responses of elemental stoichiometry and fatty acids (FAs) in a strain of E. huxleyi under three temperatures (12, 18 and 24 °C), three N : P supply ratios (molar ratios 10:1, 24:1 and 63:1) and two pCO2 levels (560 and 2400 µatm). Overall, C : N : P stoichiometry showed the most pronounced response to N : P supply ratios, with high ratios of particulate organic carbon vs. particulate organic nitrogen (POC : PON) and low ratios of PON vs. particulate organic phosphorus (PON : POP) in low-N media, and high POC : POP and PON : POP in low-P media. The ratio of particulate inorganic carbon vs. POC (PIC : POC) and polyunsaturated fatty acid proportions strongly responded to temperature and pCO2, both being lower under high pCO2 and higher with warming. We observed synergistic interactions between warming and nutrient deficiency (and high pCO2) on elemental cellular contents and docosahexaenoic acid (DHA) proportion in most cases, indicating the enhanced effect of warming under nutrient deficiency (and high pCO2). Our results suggest differential sensitivity of elements and FAs to the changes in temperature, nutrient availability and pCO2 in E. huxleyi, which is to some extent unique compared to non-calcifying algal classes. Thus, simultaneous changes of elements and FAs should be considered when predicting future roles of E. huxleyi in the biotic-mediated connection between biogeochemical cycles, ecological functions and climate change.

  3. Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis

    NASA Astrophysics Data System (ADS)

    Tolosa, I.; Treignier, C.; Grover, R.; Ferrier-Pagès, C.

    2011-09-01

    This study assesses the combined effect of feeding and short-term thermal stress on various physiological parameters and on the fatty acid, sterol, and alcohol composition of the scleractinian coral Turbinaria reniformis. The compound-specific carbon isotope composition of the lipids was also measured. Under control conditions (26°C), feeding with Artemia salina significantly increased the symbiont density and chlorophyll content and the growth rates of the corals. It also doubled the concentrations of almost all fatty acid (FA) compounds and increased the n-alcohol and sterol contents. δ13C results showed that the feeding enhancement of FA concentrations occurred either via a direct pathway, for one of the major polyunsaturated fatty acid (PUFA) compounds of the food (18:3n-3 FA), or via an enhancement of photosynthate transfer (indirect pathway), for the other coral FAs. Cholesterol (C27Δ5) was also directly acquired from the food. Thermal stress (31°C) affected corals, but differently according to their feeding status. Chlorophyll, protein content, and maximal photosynthetic efficiency of photosystem II (PSII) decreased to a greater extent in starved corals. In such corals, FA concentrations were reduced by 33%, (especially C16, C18 FAs, and n-3 PUFA) and the sterol content by 27% (especially the C28∆5,22 and C28∆5). The enrichment in the δ13C signature of the storage and structural FAs suggests that they were the main compounds respired during the stress to maintain the coral metabolism. Thermal stress had less effect on the lipid concentrations of fed corals, as only FA levels were reduced by 13%, with no major changes in their isotope carbon signatures. In conclusion, feeding plays an essential role in sustaining T. reniformis metabolism during the thermal stress.

  4. The roles of carbohydrates, proteins and lipids in the process of aggregation of natural marine organic matter investigated by means of 2D correlation spectroscopy applied to infrared spectra.

    PubMed

    Mecozzi, Mauro; Pietrantonio, Eva; Pietroletti, Marco

    2009-01-01

    In this paper the marine organic matter soluble in an alkaline medium called extractable humic substance (EHS), was extracted from three sediment samples of Tyrrhenian Sea and separated by precipitation at pH 2 in the two fractions of fulvic acids (FAs) and humic acids (HAs). FAs were further fractionated in seven sub-samples of different molecular weight (mw) by means of seven different ultrafiltration membranes operating in the range between mw<1 kDa and mw>100 kDa. Then the qualitative composition of each sample of fractionated FAs and HAs was studied by means of one-dimensional Fourier transform infrared spectroscopy in reflectance mode (FTIR-DRIFT) and by two-dimensional (2D) correlation spectroscopy both in wavelength-wavelength (WW) and in sample-sample (SS) mode. The application of 2D correlation WW spectroscopy allows to elucidate the different roles played by carbohydrates and proteins with respect to some lipid compounds such as fatty acids and ester fatty acids during the process of aggregate formations from mw approximately 1 kDa to higher size aggregates. In addition, 2D correlation WW spectroscopy allows to observe some peculiar interactions between carbohydrates and proteins in the formation of EHS aggregates, interactions which vary from a sample to another sample. The results of 2D correlation SS spectroscopy confirm the general evidences obtained by 2D WW spectroscopy and moreover, they also describe the formation of EHS aggregates as a complex process where evolutionary links and connectivity between aggregates of neighbour molecular size ranges are not evident. Two-dimensional correlation spectroscopy applied to FTIR spectroscopy shows to be a powerful tool for the investigation of the mechanisms involved in EHS aggregation because it supports the acquisition of structural information which sometimes can be hardly obtained by one-dimensional FTIR spectroscopy.

  5. A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within cnidarian-dinoflagellate symbiosis.

    PubMed

    Dunn, Simon R; Thomas, Michael C; Nette, Geoffrey W; Dove, Sophie G

    2012-01-01

    The cnidarian-dinoflagellate symbiosis is arguably one of the most important within the marine environment in that it is integral to the formation of coral reefs. However, the regulatory processes that perpetuate this symbiosis remain unresolved. It is essential to understand these processes, if we are to elucidate the mechanisms that support growth and resource accumulation by coral host, and conversely, recently observed reduction and/or mortality of corals in response to rapid environmental change. This study specifically focused on one area of metabolic activity within the symbiosis, that of free fatty acid synthesis within both the dinoflagellate symbionts and cnidarian host. The main model system used was Aiptasia pulchella and Symbiodinium sp. in combination with aposymbiotic A. pulchella, the symbiotic coral Acropora millepora system and dinoflagellate culture. Fatty acids (FAs) were selected because of their multiple essential roles inclusive of energy storage (resource accumulation), membrane structure fluidity and cell signaling. The study addressed free FA lipogenesis by using a new method of enriched stable isotopic ((13)C) incorporation from dissolved inorganic carbon (DI(13)C) combined with HPLC-MS. FAs derived from DI(13)C aligned with a mixture of known lipogenesis pathways with the addition of some unusual FAs. After 120 hr, (13)C-enriched FA synthesis rates were attributed to only a complex integration of both n-3 and n-6 lipogenesis pathways within the dinoflagellate symbionts. Furthermore, there was no detectible evidence of symbiont derived enriched isotope fatty acids, catabolized (13)C derivatives or DI(13)C being directly utilized, in host late n-6 pathway long-chain FA lipogenesis. These findings do not align with a popular mutualistic translocation model with respect to the use of translocated symbiont photoassimilates in host long-chain FA lipogenesis, which has important connotations for linking nutrient sources with metabolite production and the dynamic regulation of this symbiosis.

  6. Regional contamination versus regional dietary differences: Understanding geographic variation in brominated and chlorinated contaminant levels in polar bears

    USGS Publications Warehouse

    McKinney, M.A.; Letcher, R.J.; Aars, Jon; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Gabrielsen, G.W.; Muir, D.C.G.; Peacock, E.; Sonne, C.

    2011-01-01

    The relative contribution of regional contamination versus dietary differences to geographic variation in polar bear (Ursus maritimus) contaminant levels is unknown. Dietary variation between Alaska Canada, East Greenland, and Svalbard subpopulations was assessed by muscle nitrogen and carbon stable isotope (?? 15N, ?? 13C) and adipose fatty acid (FA) signatures relative to their main prey (ringed seals). Western and southern Hudson Bay signatures were characterized by depleted ?? 15N and ??13C, lower proportions of C20 and C22 monounsaturated FAs and higher proportions of C18 and longer chain polyunsaturated FAs. East Greenland and Svalbard signatures were reversed relative to Hudson Bay. Alaskan ?? 2011 American Chemical Society.

  7. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages

    PubMed Central

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-01-01

    Background: An appropriate intake of omega-3 (n-3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n-3 FAs on gene expression levels are also dose-dependent. PMID:28441337

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, JP; Thapaliya, N; Kelly, MJ

    Fatty acids (FAs) derived via thermal hydrolysis of food-grade lard and canola oil were deoxygenated in the liquid phase using a commercially available 5 wt % Pd/C catalyst. Online quadrupole mass spectrometry and gas chromatography were used to monitor the effluent gases from the semi-batch stirred autoclave reactors. Stearic, oleic, and palmitic acids were employed as model compounds. A catalyst lifetime exceeding 2200 turnovers for oleic acid deoxygenation was demonstrated at 300 degrees C and 15 atm under 10% H-2. The initial decarboxylation rate of palmitic acid under 5% H-2 decreases sharply with increasing initial concentration; in contrast, the initialmore » decarbonylation rate increases linearly, indicative of first-order kinetics. Scale-up of diesel-range hydrocarbon production was investigated by increasing the reactor vessel size, initial FA concentration, and FA/catalyst mass ratio. Lower CO2 selectivity and batch productivity were observed at the larger scales (600 and 5000 mL), primarily because of the higher initial FA concentration (67 wt %) employed. Because unsaturated FAs must be hydrogenated before deoxygenation can proceed at an appreciable rate, the additional batch time required for FA hydrogenation reduces the batch productivity for unsaturated feedstocks. Low-temperature hydrogenation of unsaturated feedstocks (using Pd/C or another less-expensive catalyst) prior to deoxygenation is recommended.« less

  9. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome

    PubMed Central

    SOGUT, IBRAHIM; OGLAKCI, AYSEGUL; KARTKAYA, KAZIM; OL, KEVSER KUSAT; SOGUT, MELIS SAVASAN; KANBAK, GUNGOR; INAL, MINE ERDEN

    2015-01-01

    To the best of our knowledge, this is the first study concerning the effect of boric acid (BA) administration on fetal alcohol syndrome (FAS). In this study, the aim was to investigate prenatal alcohol-induced oxidative stress on the cerebral cortex of newborn rat pups and assess the protective and beneficial effects of BA supplementation on rats with FAS. Pregnant rats were divided into three groups, namely the control, alcohol and alcohol + boric acid groups. As markers of alcohol-induced oxidative stress in the cerebral cortex of the newborn pups, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels were measured. Although the MDA levels in the alcohol group were significantly increased compared with those in the control group (P<0.05), the MDA level in the alcohol + boric acid group was shown to be significantly decreased compared with that in the alcohol group (P<0.01). The CAT activity of the alcohol + boric acid group was significantly higher than that in the alcohol group (P<0.05). The GPx activity in the alcohol group was decreased compared with that in the control group (P<0.05). These results demonstrate that alcohol is capable of triggering damage to membranes of the cerebral cortex of rat pups and BA could be influential in antioxidant mechanisms against oxidative stress resulting from prenatal alcohol exposure. PMID:25667671

  10. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome.

    PubMed

    Sogut, Ibrahim; Oglakci, Aysegul; Kartkaya, Kazim; Ol, Kevser Kusat; Sogut, Melis Savasan; Kanbak, Gungor; Inal, Mine Erden

    2015-03-01

    To the best of our knowledge, this is the first study concerning the effect of boric acid (BA) administration on fetal alcohol syndrome (FAS). In this study, the aim was to investigate prenatal alcohol-induced oxidative stress on the cerebral cortex of newborn rat pups and assess the protective and beneficial effects of BA supplementation on rats with FAS. Pregnant rats were divided into three groups, namely the control, alcohol and alcohol + boric acid groups. As markers of alcohol-induced oxidative stress in the cerebral cortex of the newborn pups, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels were measured. Although the MDA levels in the alcohol group were significantly increased compared with those in the control group (P<0.05), the MDA level in the alcohol + boric acid group was shown to be significantly decreased compared with that in the alcohol group (P<0.01). The CAT activity of the alcohol + boric acid group was significantly higher than that in the alcohol group (P<0.05). The GPx activity in the alcohol group was decreased compared with that in the control group (P<0.05). These results demonstrate that alcohol is capable of triggering damage to membranes of the cerebral cortex of rat pups and BA could be influential in antioxidant mechanisms against oxidative stress resulting from prenatal alcohol exposure.

  11. Electrophilic nitro-fatty acids suppress allergic contact dermatitis in mice.

    PubMed

    Mathers, A R; Carey, C D; Killeen, M E; Diaz-Perez, J A; Salvatore, S R; Schopfer, F J; Freeman, B A; Falo, L D

    2017-04-01

    Reactions between nitric oxide (NO), nitrite (NO2-), and unsaturated fatty acids give rise to electrophilic nitro-fatty acids (NO 2 -FAs), such as nitro oleic acid (OA-NO 2 ) and nitro linoleic acid (LNO 2 ). Endogenous electrophilic fatty acids (EFAs) mediate anti-inflammatory responses by modulating metabolic and inflammatory signal transduction reactions. Hence, there is considerable interest in employing NO 2 -FAs and other EFAs for the prevention and treatment of inflammatory disorders. Thus, we sought to determine whether OA-NO 2 , an exemplary nitro-fatty acid, has the capacity to inhibit cutaneous inflammation. We evaluated the effect of OA-NO 2 on allergic contact dermatitis (ACD) using an established model of contact hypersensitivity in C57Bl/6 mice utilizing 2,4-dinitrofluorobenzene as the hapten. We found that subcutaneous (SC) OA-NO 2 injections administered 18 h prior to sensitization and elicitation suppresses ACD in both preventative and therapeutic models. In vivo SC OA-NO 2 significantly inhibits pathways that lead to inflammatory cell infiltration and the production of inflammatory cytokines in the skin. Moreover, OA-NO 2 is capable of enhancing regulatory T-cell activity. Thus, OA-NO 2 treatment results in anti-inflammatory effects capable of inhibiting ACD by inducing immunosuppressive responses. Overall, these results support the development of OA-NO 2 as a promising therapeutic for ACD and provides new insights into the role of electrophilic fatty acids in the control of cutaneous immune responses potentially relevant to a broad range of allergic and inflammatory skin diseases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Characterization of Calmodulin–Fas Death Domain Interaction: An Integrated Experimental and Computational Study

    PubMed Central

    2015-01-01

    The Fas death receptor-activated death-inducing signaling complex (DISC) regulates apoptosis in many normal and cancer cells. Qualitative biochemical experiments demonstrate that calmodulin (CaM) binds to the death domain of Fas. The interaction between CaM and Fas regulates Fas-mediated DISC formation. A quantitative understanding of the interaction between CaM and Fas is important for the optimal design of antagonists for CaM or Fas to regulate the CaM–Fas interaction, thus modulating Fas-mediated DISC formation and apoptosis. The V254N mutation of the Fas death domain (Fas DD) is analogous to an identified mutant allele of Fas in lpr-cg mice that have a deficiency in Fas-mediated apoptosis. In this study, the interactions of CaM with the Fas DD wild type (Fas DD WT) and with the Fas DD V254N mutant were characterized using isothermal titration calorimetry (ITC), circular dichroism spectroscopy (CD), and molecular dynamics (MD) simulations. ITC results reveal an endothermic binding characteristic and an entropy-driven interaction of CaM with Fas DD WT or with Fas DD V254N. The Fas DD V254N mutation decreased the association constant (Ka) for CaM–Fas DD binding from (1.79 ± 0.20) × 106 to (0.88 ± 0.14) × 106 M–1 and slightly increased a standard state Gibbs free energy (ΔG°) for CaM–Fas DD binding from −8.87 ± 0.07 to −8.43 ± 0.10 kcal/mol. CD secondary structure analysis and MD simulation results did not show significant secondary structural changes of the Fas DD caused by the V254N mutation. The conformational and dynamical motion analyses, the analyses of hydrogen bond formation within the CaM binding region, the contact numbers of each residue, and the electrostatic potential for the CaM binding region based on MD simulations demonstrated changes caused by the Fas DD V254N mutation. These changes caused by the Fas DD V254N mutation could affect the van der Waals interactions and electrostatic interactions between CaM and Fas DD, thereby affecting CaM–Fas DD interactions. Results from this study characterize CaM–Fas DD interactions in a quantitative way, providing structural and thermodynamic evidence of the role of the Fas DD V254N mutation in the CaM–Fas DD interaction. Furthermore, the results could help to identify novel strategies for regulating CaM–Fas DD interactions and Fas DD conformation and thus to modulate Fas-mediated DISC formation and thus Fas-mediated apoptosis. PMID:24702583

  13. Fetal Alcohol Exposure

    MedlinePlus

    ... categories: 4 » Fetal Alcohol Syndrome (FAS) » Partial FAS (pFAS) » Alcohol-Related Neurodevelopmental Disorder (ARND) » Alcohol-Related Birth ... either prenatally, after birth, or both Partial FAS (pFAS) Partial FAS (pFAS) involves prenatal alcohol exposure, and ...

  14. D4F alleviates macrophage-derived foam cell apoptosis by inhibiting the NF-κB-dependent Fas/FasL pathway.

    PubMed

    Tian, Hua; Yao, Shu-Tong; Yang, Na-Na; Ren, Jie; Jiao, Peng; Zhang, Xiangjian; Li, Dong-Xuan; Zhang, Gong-An; Xia, Zhen-Fang; Qin, Shu-Cun

    2017-08-04

    This study was designed to explore the protective effect of D4F, an apolipoprotein A-I mimetic peptide, on nuclear factor-κB (NF-κB)-dependent Fas/Fas ligand (FasL) pathway-mediated apoptosis in macrophages induced by oxidized low-density lipoprotein (ox-LDL). Our results showed that ox-LDL induced apoptosis, NF-κB P65 nuclear translocation and the upregulation of Fas/FasL pathway-related proteins, including Fas, FasL, Fas-associated death domain proteins (FADD), caspase-8 and caspase-3 in RAW264.7 macrophages, whereas silencing of Fas blocked ox-LDL-induced macrophage apoptosis. Furthermore, silencing of P65 attenuated macrophage apoptosis and the upregulation of Fas caused by ox-LDL, whereas P65 expression was not significantly affected by treatment with Fas siRNA. D4F attenuated the reduction of cell viability and the increase in lactate dehydrogenase leakage and apoptosis. Additionally, D4F inhibited ox-LDL-induced P65 nuclear translocation and upregulation of Fas/FasL pathway-related proteins in RAW264.7 cells and in atherosclerotic lesions of apoE -/- mice. However, Jo2, a Fas-activating monoclonal antibody, reversed the inhibitory effect of D4F on ox-LDL-induced cell apoptosis and upregulation of Fas, FasL and FADD. These data indicate that NF-κB mediates Fas/FasL pathway activation and apoptosis in macrophages induced by ox-LDL and that D4F protects macrophages from ox-LDL-induced apoptosis by suppressing the activation of NF-κB and the Fas/FasL pathway.

  15. miR-212-5p suppresses lipid accumulation by targeting FAS and SCD1.

    PubMed

    Guo, Yajie; Yu, Junjie; Wang, Chunxia; Li, Kai; Liu, Bin; Du, Ying; Xiao, Fei; Chen, Shanghai; Guo, Feifan

    2017-10-01

    MicroRNAs, a class of small noncoding RNAs, are implicated in controlling a variety of biological processes. We have shown that leucine deprivation suppresses lipogenesis by inhibiting fatty acid synthase (FAS) expression in the liver previously; the aim of our current study is to investigate which kind of microRNA is involved in the regulation of FAS expression in response to leucine deprivation. Here, we indicated that microRNA-212-5p specifically binds to mouse FAS 3'UTR and inhibits its activity. Leucine deficiency significantly increased the mRNA levels of miR-212-5p in the livers of mice. Further studies proved that miR-212-5p also directly binds to the 3'UTR of stearoyl-CoA desaturase-1 (SCD1) to inhibit its activity. Overexpression of miR-212-5p decreases the protein levels of FAS and SCD1 in vitro and in vivo , and silencing of miR-212-5p has the opposite effects in mouse primary hepatocytes. Moreover, overexpression of miR-212-5p significantly decreases triglyceride (TG) accumulation in primary hepatocytes and in the livers of mice injected with adenovirus-mediated overexpressing of miR-212-5p (Ad-miR-212). Interestingly, inhibition of miR-212-5p reverses the suppressive effects of leucine deficiency on FAS and SCD1 expression, as well as TG accumulation in mouse primary hepatocytes. Finally, we demonstrate that leucine deficiency induces the expression of miR-212-5p in a GCN2/ATF4-dependent manner. Taken together, our results demonstrate a novel function of hepatic miR-212-5p in the regulation of lipid metabolism which represents a potential therapeutic target for the treatment of non-alcohol fatty liver diseases (NAFLD). © 2017 Society for Endocrinology.

  16. Matrix metalloproteinases and soluble Fas/FasL system as novel regulators of apoptosis in children and young adults on chronic dialysis.

    PubMed

    Musiał, Kinga; Zwolińska, Danuta

    2011-07-01

    The system of membrane receptor Fas and its ligand FasL compose one of the main pathways triggering apoptosis. However, the role of their soluble forms has not been clarified yet. Although sFasL can be converted from the membrane-bound form by matrix metalloproteinases (MMPs), there are no data on relations between sFas/sFasL, MMPs and their tissue inhibitors (TIMPs) in patients on chronic dialysis--neither children nor adults. The aim of our study was to evaluate serum concentrations of sFas, sFasL, and their potential regulators (MMP-2, MMP-7, MMP-9, TIMP-1, TIMP-2), in children and young adults chronically dialyzed. Twenty-two children on automated peritoneal dialysis (APD), 19 patients on hemodialysis (HD) and 30 controls were examined. Serum concentrations of sFas, sFasL, MMPs and TIMPs were assessed by ELISA. Median values of sFas, sFasL, sFas/sFasL ratio, MMP-2, MMP-7, MMP-9, TIMP-1 and TIMP-2 were significantly elevated in all dialyzed patients vs. controls, the highest values being observed in subjects on HD. A single HD session caused the decrease in values of all parameters to the levels below those seen in children on APD. Regression analysis revealed that MMP-7 and TIMP-1 were the best predictors of sFas and sFasL concentrations. Children and young adults on chronic dialysis are prone to sFas/sFasL system dysfunction, more pronounced in patients on hemodialysis. The correlations between sFas/sFasL and examined enzymes suggest that MMPs and TIMPs take part in the regulation of cell death in the pediatric population on chronic dialysis, triggering both anti- (sFas) and pro-apoptotic (sFasL) mechanisms.

  17. Expression of ADAM10, Fas, FasL and Soluble FasL in Patients with Oral Squamous Cell Carcinoma (OSCC) and their Association with Clinical-Pathological Parameters.

    PubMed

    Zepeda-Nuño, José Sergio; Guerrero-Velázquez, Celia; Del Toro-Arreola, Susana; Vega-Magaña, Natali; Ángeles-Sánchez, Julián; Haramati, Jesse; Pereira-Suárez, Ana L; Bueno-Topete, Miriam R

    2017-04-01

    ADAM10 has been implicated in the progression of various solid tumors. ADAM10 regulates the cleavage of the FasL ectodomain from the plasma membrane of different cell types, generating the soluble FasL fragment (sFasL). Currently, there are few studies in oral squamous cell carcinoma (OSCC) that correlate levels of ADAM10 and FasL in the tumor microenvironment with clinical parameters of the disease. To determine the expression of ADAM10, Fas, FasL and sFasL in patients with OSCC and its association with TNM stage. Twenty-five patients with OSCC and 25 healthy controls were included. Biopsies of tumor tissue from patients with OSCC and buccal mucosa in controls were obtained. ADAM10, Fas, and FasL were analyzed by Western blotting. sFasL was quantified by ELISA. ADAM10 and Fas decreased significantly in OSCC compared with controls. Relatedly, within the OSCC group, Fas and ADAM10 decreased in accordance with tumor disease stage; in stages I/II, as well as in tumors of smaller diameter (T1-T2), ADAM10 showed higher levels when compared to patients with T3-T4 tumors and in stage III-IV. FasL in the tumor microenvironment and serum FasL showed no significant differences between both groups. Levels of complete FasL and cleaved FasL were positively correlated in controls; this correlation is preserved in patients with tumors in early stages (I-II), but is lost in later stage (III-IV). The dysregulation of ADAM10, Fas and FasL could be useful indicators of the progression and severity of OSCC.

  18. Fatty Acid Composition of Lamb Liver, Muscle, And Adipose Tissues in Response to Rumen-Protected Conjugated Linoleic Acid (CLA) Supplementation Is Tissue Dependent.

    PubMed

    Schiavon, Stefano; Bergamaschi, Matteo; Pellattiero, Erika; Simonetto, Alberto; Tagliapietra, Franco

    2017-12-06

    The tissue-specific response to rumen-protected conjugated linoleic acid supply (rpCLA) of liver, two muscles, and three adipose tissues of heavy lambs was studied. Twenty-four lambs, 8 months old, divided into 4 groups of 6, were fed at libitum on a ration supplemented without or with a mixture of rpCLA. Silica and hydrogenated soybean oil was the rpCLA coating matrix. The lambs were slaughtered at 11 months of age. Tissues were collected and analyzed for their FA profiles. The dietary rpCLA supplement had no influence on carcass fatness nor on the fat content of the liver and tissues and had little influence on the FA profiles of these tissues. In the adipose tissues, rpCLA increased the proportions of saturated FAs, 18:0 and 18:2t10c12, and decreased the proportions of monounsaturated FAs in the adipose tissues. In muscles, the effects were the opposite. The results suggest that Δ9 desaturase activity is inhibited by the rpCLA mixture in adipose tissues to a greater extent than in the other tissues.

  19. Effects of food resources on the fatty acid composition, growth and survival of freshwater mussels

    USGS Publications Warehouse

    Bartsch, Michelle; Bartsch, Lynn; Richardson, William B.; Vallazza, Jon; Moraska Lafrancois, Brenda

    2017-01-01

    Increased nutrient and sediment loading in rivers have caused observable changes in algal community composition, and thereby, altered the quality and quantity of food resources available to native freshwater mussels. Our objective was to characterize the relationship between nutrient conditions and mussel food quality and examine the effects on fatty acid composition, growth and survival of juvenile mussels. Juvenile Lampsilis cardium and L. siliquoidea were deployed in cages for 28 d at four riverine and four lacustrine sites in the lower St. Croix River, Minnesota/Wisconsin, USA. Mussel foot tissue and food resources (four seston fractions and surficial sediment) were analyzed for quantitative fatty acid (FA) composition. Green algae were abundant in riverine sites, whereas cyanobacteria were most abundant in the lacustrine sites. Mussel survival was high (95%) for both species. Lampsilis cardium exhibited lower growth relative to L. siliquoidea (p <0.0001), but growth of L. cardium was not significantly different across sites (p = 0.13). In contrast, growth of L. siliquoidea was significantly greater at the most upstream riverine site compared to the lower three lacustrine sites (p = 0.002). In situ growth of Lampsilis siliquoidea was positively related to volatile solids (10 – 32 μm fraction), total phosphorus (<10 and 10 – 32 μm fractions), and select FA in the seston (docosapentaeonic acid, DPA, 22:5n3; 4,7,10,13,16-docosapentaenoic, 22:5n6; arachidonic acid, ARA, 20:4n6; and 24:0 in the <10 and 10 – 32 μm fractions). Our laboratory feeding experiment also indicated high accumulation ratios for 22:5n3, 22:5n6, and 20:4n6 in mussel tissue relative to supplied algal diet. In contrast, growth of L. siliquiodea was negatively related to nearly all FAs in the largest size fraction (i.e., >63 μm) of seston, including the bacterial FAs, and several of the FAs associated with sediments. Reduced mussel growth was observed in L. siliquoidea when the abundance of cyanobacteria exceeded 9% of the total phytoplankton biovolume. Areas dominated by cyanobacteria may not provide sufficient food quality to promote or sustain mussel growth.

  20. Influence of humic substances and iron and aluminum ions on the sorption of acetamiprid to an arable soil.

    PubMed

    Murano, Hirotatsu; Suzuki, Katsuhiro; Kayada, Saori; Saito, Mitsuhiko; Yuge, Naoya; Arishiro, Takuji; Watanabe, Akira; Isoi, Toshiyuki

    2018-02-15

    Humic substances (HS) in soil and sediments, and surface water influence the behavior of organic xenobiotics in the environment. However, our knowledge of the effects of specific HS fractions, i.e., humic acids (HAs), fulvic acids (FAs), and humin (HM), on the sorption of organic xenobiotics is limited. The neonicotinoid insecticide acetamiprid is thought to contribute to the collapse of honeybee colonies. To understand the role that soil organic matter plays in the fate of acetamiprid, interactions between acetamiprid and the above HS fractions were examined. Batch experiments were conducted using various combinations of a field soil sample and the above 3 HS fractions prepared from the same soil, and differences in isotherm values for acetamiprid sorption were investigated based on the structural differences among the HS fractions. The sorption of acetamiprid to soil minerals associated with HM (MHM) (Freundlich isotherm constant, K f : 6.100) was reduced when HAs or FAs were added (K f : 4.179 and 4.756, respectively). This can be attributed to hydrophobic interactions between HM and HAs or FAs in which their dissociated carboxyl and phenolic groups become oriented to face the soil solution. The amount of acetamiprid that was adsorbed to (MHM+HA) or (MHM+FA) increased when aluminum ions were added (K f : 6.933 and 10.48, respectively), or iron ions were added (K f : 7.303 and 11.29, respectively). Since acetamiprid has no affinity for inorganic components in soil, the formation of HS-metal complexes by cation bridging may have oriented the hydrophobic moieties in the HAs or FAs to face the soil solution and may also have resulted in the formation of dense structures, resulting in an increase in the amount of acetamiprid that becomes adsorbed to these structures. These results highlight the importance of interactions among soil components in the pedospheric diffusion of acetamiprid. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. VITAL-Bone Health: rationale and design of two ancillary studies evaluating the effects of vitamin D and/or omega-3 fatty acid supplements on incident fractures and bone health outcomes in the VITamin D and OmegA-3 TriaL (VITAL).

    PubMed

    LeBoff, Meryl S; Yue, Amy Y; Copeland, Trisha; Cook, Nancy R; Buring, Julie E; Manson, JoAnn E

    2015-03-01

    Although vitamin D is widely used to promote skeletal health, definitive data on benefits and risks of supplemental vitamin D alone on bone are lacking. Results from large, randomized controlled trials in the general population are sparse. Data on the effects of supplemental omega-3 fatty acids (FAs) on bone are also limited. The VITamin D and OmegA-3 TriaL (VITAL) is a double-blind, placebo-controlled trial assessing the role of vitamin D3 (2000 IU/d) and omega-3 FA (1g/d) supplements in reducing risks of cancer and cardiovascular disease among U.S. men aged ≥50 and women aged ≥55. To comprehensively test effects of supplemental vitamin D and/or omega-3 FAs on skeletal health, the VITAL: Effects on Fractures ancillary study is determining the effects of these supplements on incident fractures among 25,875 participants enrolled in the parent trial. Study investigators adjudicate fractures through a detailed review of medical records and radiological images (hip and femur). In a complementary ancillary, VITAL: Effects on Structure and Architecture is determining the effects of supplemental vitamin D and/or omega-3 FAs on bone with detailed phenotyping during in-person visits. Comprehensive assessments of bone density, turnover, structure/architecture, body composition, and physical performance are being performed at baseline and 2 years post-randomization. Results from these studies will clarify the relationship between supplemental vitamin D and/or omega-3 FAs on bone health outcomes, and inform clinical care and public health guidelines on the use of supplemental vitamin D for the primary prevention of fractures in women and men. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. VITAL-Bone Health: rationale and design of two ancillary studies evaluating the effects of vitamin D and/or omega-3 fatty acid supplements on incident fractures and bone health outcomes in the VITamin D and OmegA-3 TriaL (VITAL)

    PubMed Central

    LeBoff, Meryl S.; Yue, Amy Y.; Copeland, Trisha; Cook, Nancy R.; Buring, Julie E.; Manson, JoAnn E.

    2015-01-01

    Rationale Although vitamin D is widely used to promote skeletal health, definitive data on benefits and risks of supplemental vitamin D alone on bone are lacking. Results from large, randomized controlled trials in the general population are sparse. Data on the effects of supplemental omega-3 fatty acids (FAs) on bone are also limited. Design The VITamin D and OmegA-3 TriaL (VITAL) is a double-blind, placebo-controlled trial assessing the role of vitamin D3 (2000 IU/d) and omega-3 FA (1 g/d) supplements in reducing risks of cancer and cardiovascular disease among U.S. men aged ≥50 and women aged ≥55. To comprehensively test effects of supplemental vitamin D and/or omega-3 FAs on skeletal health, the VITAL: Effects on Fractures ancillary study is determining the effects of these supplements on incident fractures among 25,875 participants enrolled in the parent trial. Study investigators adjudicate fractures through detailed review of medical records and radiological images (hip and femur). In a complementary ancillary, VITAL: Effects on Structure and Architecture is determining the effects of supplemental vitamin D and/or omega-3 FAs on bone with detailed phenotyping during in-person visits. Comprehensive assessments of bone density, turnover, structure/architecture, body composition, and physical performance are being performed at baseline and 2 years post-randomization. Conclusion Results from these studies will clarify the relationship between supplemental vitamin D and/or omega-3 FAs on bone health outcomes, and inform clinical care and public health guidelines on the use of supplemental vitamin D for the primary prevention of fractures in women and men. PMID:25623291

  3. Characterization and Functional Analysis of a Type 2 Diacylglycerol Acyltransferase (DGAT2) Gene from Oil Palm (Elaeis guineensis Jacq.) Mesocarp in Saccharomyces cerevisiae and Transgenic Arabidopsis thaliana.

    PubMed

    Jin, Yuanhang; Yuan, Yijun; Gao, Lingchao; Sun, Ruhao; Chen, Lizhi; Li, Dongdong; Zheng, Yusheng

    2017-01-01

    Oil palm ( Elaeis guineensis Jacq.) is the highest oil-yielding plant in the world, storing 90 and 60% (dry weight) oil in its mesocarp and kernel, respectively. To gain insights into the oil accumulation mechanism, one of the key enzymes involved in triacylglycerol (TAG) biosynthesis, a Type 2 diacylglycerol acyltransferase (DGAT2) from oil palm, was characterized for its in vivo activity. EgDGAT2 is highly expressed in mesocarp during the last two developmental stages while large amounts of oil are accumulated at the highest rate during ripening. Heterologous expression of EgDGAT2 in mutant yeast H1246 restored TAG biosynthesis with substrate preference toward unsaturated fatty acids (FAs) (16:1 and 18:1). Furthermore, seed-specific overexpression of EgDGAT2 in Arabidopsis thaliana enhanced the content of polyunsaturated FAs 18:2 and 18:3 (each by 6 mol%) in seed TAGs, when compared to that from wild-type Arabidopsis. In turn, the proportion of 18:0 and 20:0 FAs in seed TAGs from EgDGAT2 transgenic lines decreased accordingly. These results provide new insights into understanding the in vivo activity of EgDGAT2 from oil palm mesocarp, which will be of importance for metabolic enhancement of unsaturated FAs production.

  4. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs)

    PubMed Central

    Recuero-Checa, Maria A.; Sharma, Manu; Lau, Constance; Watkins, Paul A.; Gaydos, Charlotte A.; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3–6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  5. [Effect of grain-bean package, grain-bean package dietary fiber and single whole grain dietary fiber on dyslipidemia rats].

    PubMed

    Liu, Yang; Zhai, Chengkai; Sun, Guiju; Zhang, Hong; Jiang, Mingxia; Zhang, Haifeng; Guo, Junling; Lan, Xi

    2014-05-01

    To observe and compare the effects of grain-bean package, dietary fiber (DF) extracted from grain-bean package, and DF from grain corn on the blood lipids and fatty acid synthase (FAS) activity in high-fat, high-cholesterol feeding induced dyslipidemia rats, and observe its effects on regulation of sterol regulatory element protein-1c (SREBP-1c) mRNA expression in rat liver. Consolidation 50 SD rats of clean grade feeding adaptation for one week, randomly assigned into normal control group, hyperlipidemia model group, grain-bean package group, grain-bean package DF group and grain corn group. Feed with corresponding diets for 8 weeks, and measure the total cholesterol (TC), triglyceridaemia (TG), high density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), FAS, SREBP-1c mRNA of all groups. Compared with control group, TC, TG, FBG levels of hyperlipidemia model group were significantly increased (P < 0.05). Compared with model group, TC, TG, FBG levels of grain-bean package group, grain-bean package DF group were significantly decreased, HDL-C levels significantly increased, and activity of FAS, regulation of SREBP-1c were significantly decreased (P < 0.05). The Grain-bean package dietary fiber can improve blood lipids levels of dyslipidemia rats, and decrease FAS activity and SREBP-1c mRNA expression.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martel, Peter M.; Norris Cotton Cancer Center, Dartmouth Medical School; Bingham, Chad M.

    Most breast cancers exhibit brisk lipogenesis, and require it for growth. S14 is a lipogenesis-related nuclear protein that is overexpressed in most breast cancers. Sterol response element-binding protein-1c (SREBP-1c) is required for induction of lipogenesis-related genes, including S14 and fatty acid synthase (FAS), in hepatocytes, and correlation of SREBP-1c and FAS expression suggested that SREBP-1c drives lipogenesis in tumors as well. We directly tested the hypothesis that SREBP-1c drives S14 expression and mediates lipogenic effects of progestin in T47D breast cancer cells. Dominant-negative SREBP-1c inhibited induction of S14 and FAS mRNAs by progestin, while active SREBP-1c induced without hormone andmore » superinduced in its presence. Changes in S14 mRNA were reflected in protein levels. A lag time and lack of progestin response elements indicated that S14 and FAS gene activation by progestin is indirect. Knockdown of S14 reduced, whereas overexpression stimulated, T47D cell growth, while nonlipogenic MCF10a mammary epithelial cells were not growth-inhibited. These data directly demonstrate that SREBP-1c drives S14 gene expression in breast cancer cells, and progestin magnifies that effect via an indirect mechanism. This supports the prediction, based on S14 gene amplification and overexpression in breast tumors, that S14 augments breast cancer cell growth and survival.« less

  7. Role of Modular Polyketide Synthases in the Production of Polyether Ladder Compounds in Ciguatoxin-Producing Gambierdiscus polynesiensis and G. excentricus (Dinophyceae).

    PubMed

    Kohli, Gurjeet S; Campbell, Katrina; John, Uwe; Smith, Kirsty F; Fraga, Santiago; Rhodes, Lesley L; Murray, Shauna A

    2017-09-01

    Gambierdiscus, a benthic dinoflagellate, produces ciguatoxins that cause the human illness Ciguatera. Ciguatoxins are polyether ladder compounds that have a polyketide origin, indicating that polyketide synthases (PKS) are involved in their production. We sequenced transcriptomes of Gambierdiscus excentricus and Gambierdiscus polynesiensis and found 264 contigs encoding single domain ketoacyl synthases (KS; G. excentricus: 106, G. polynesiensis: 143) and ketoreductases (KR; G. excentricus: 7, G. polynesiensis: 8) with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 24 contigs (G. excentricus: 3, G. polynesiensis: 21) encoding multiple PKS domains (forming typical type I PKSs modules) were found. The proposed structure produced by one of these megasynthases resembles a partial carbon backbone of a polyether ladder compound. Seventeen contigs encoding single domain KS, KR, s-malonyltransacylase, dehydratase and enoyl reductase with sequence similarity to type II fatty acid synthases (FAS) in plants were found. Type I PKS and type II FAS genes were distinguished based on the arrangement of domains on the contigs and their sequence similarity and phylogenetic clustering with known PKS/FAS genes in other organisms. This differentiation of PKS and FAS pathways in Gambierdiscus is important, as it will facilitate approaches to investigating toxin biosynthesis pathways in dinoflagellates. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  8. Exocrine pancreas ER stress is differentially induced by different fatty acids.

    PubMed

    Danino, Hila; Ben-Dror, Karin; Birk, Ruth

    2015-12-10

    Exocrine pancreas acinar cells have a highly developed endoplasmic reticulum (ER), accommodating their high protein production rate. Overload of dietary fat (typical to obesity) is a recognized risk factor in pancreatitis and pancreatic cancer. Dietary fat, especially saturated fat, has been suggested by others and us to induce an acinar lipotoxic effect. The effect of different dietary fatty acids on the ER stress response is unknown. We studied the effect of acute (24h) challenge with different fatty acids (saturated, mono and poly-unsaturated) at different concentrations (between 200 and 500µM, typical to normal and obese states, respectively), testing fat accumulation, ER stress indicators, X-box binding protein 1 (Xbp1) splicing and nuclear translocation, as well as unfolded protein response (UPR) transcripts and protein levels using exocrine pancreas acinar AR42J and primary cells. Acute exposure of AR42J cells to different fatty acids caused increased accumulation of triglycerides, dependent on the type of fat. Different FAs had different effects on ER stress: most notably, saturated palmitic acid significantly affected the UPR response, as demonstrated by altered Xbp1 splicing, elevation in transcript levels of UPR (Xbp, CHOP, Bip) and immune factors (Tnfα, Tgfβ), and enhanced Xbp1 protein levels and Xbp1 time-dependent nuclear translocation. Poly-unsaturated FAs caused milder elevation of ER stress markers, while mono-unsaturated oleic acid attenuated the ER stress response. Thus, various fatty acids differentially affect acinar cell fat accumulation and, apart from oleic acid, induce ER stress. The differential effect of the various fatty acids could have potential nutritional and therapeutic implications. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Dysregulation of hepatic fatty acid metabolism in chronic kidney disease.

    PubMed

    Jin, Kyubok; Norris, Keith; Vaziri, Nosratola D

    2013-02-01

    Chronic kidney disease (CKD) results in hypertriglyceridemia which is largely due to impaired clearance of triglyceride-rich lipoproteins occasioned by downregulation of lipoprotein lipase and very low-density lipoprotein (LDL) receptor in the skeletal muscle and adipose tissue and of hepatic lipase and LDL receptor-related protein in the liver. However, data on the effect of CKD on fatty acid metabolism in the liver is limited and was investigated here. Male Sprague-Dawley rats were randomized to undergo 5/6 nephrectomy (CRF) or sham operation (control) and observed for 12 weeks. The animals were then euthanized and their liver tissue tested for nuclear translocation (activation) of carbohydrate-responsive element binding protein (ChREBP) and sterol-responsive element binding protein-1 (SREBP-1) which independently regulate the expression of key enzyme in fatty acid synthesis, i.e. fatty acid synthase (FAS) and acyl-CoA carboxylase (ACC) as well as nuclear Peroxisome proliferator-activated receptor alpha (PPARα) which regulates the expression of enzymes involved in fatty acid oxidation and transport, i.e. L-FABP and CPT1A. In addition, the expression of ATP synthase α, ATP synthase β, glycogen synthase and diglyceride acyltransferase 1 (DGAT1) and DGAT2 were determined. Compared with controls, the CKD rats exhibited hypertriglyceridemia, elevated plasma and liver tissue free fatty acids, increased nuclear ChREBP and reduced nuclear SREBP-1 and PPARα, upregulation of ACC and FAS and downregulation of L-FABP, CPT1A, ATP synthase α, glycogen synthase and DGAT in the liver tissue. Liver in animals with advanced CKD exhibits ChREBP-mediated upregulation of enzymes involved in fatty acid synthesis, downregulation of PPARα-regulated fatty acid oxidation system and reduction of DGAT resulting in reduced fatty acid incorporation in triglyceride.

  10. Omega-3 Fatty Acids Ameliorate Atherosclerosis by Favorably Altering Monocyte Subsets and Limiting Monocyte Recruitment to Aortic Lesions

    PubMed Central

    Brown, Amanda L.; Zhu, Xuewei; Rong, Shunxing; Shewale, Swapnil; Seo, Jeongmin; Boudyguina, Elena; Gebre, Abraham K.; Alexander-Miller, Martha A.; Parks, John S.

    2012-01-01

    Objective Fish oil (FO), containing n-3 fatty acids (FAs), attenuates atherosclerosis. We hypothesized that n-3 FA-enriched oils are atheroprotective through alteration of monocyte subsets and their trafficking into atherosclerotic lesions. Methods and Results Low density lipoprotein receptor knockout (LDLr−/−) and apolipoprotein E−/− (apoE) mice were fed diets containing 10% (calories) as palm oil (PO) and 0.2% cholesterol, supplemented with an additional 10% PO, echium oil (EO; containing 18:4 n-3) or FO. Compared to PO-fed LDLr−/− mice, EO and FO significantly reduced plasma cholesterol, splenic Ly6Chi monocytosis by ~50%, atherosclerosis by 40–70%, monocyte trafficking into the aortic root by ~50%, and atherosclerotic lesion macrophage content by 30–44%. In contrast, atherosclerosis and monocyte trafficking into the artery wall was not altered by n-3 FAs in apoE−/− mice; however, Ly6Chi splenic monocytes positively correlated with aortic root intimal area across all diet groups. In apoE−/− mice, FO reduced the percentage of blood Ly6Chi monocytes, despite an average two-fold higher plasma cholesterol relative to PO. Conclusions The presence of splenic Ly6Chi monocytes parallels the appearance of atherosclerotic disease in both LDLr−/− and apoE−/− mice. Furthermore, n-3 FAs favorably alter monocyte subsets independently from effects on plasma cholesterol, and reduce monocyte recruitment into atherosclerotic lesions. PMID:22814747

  11. A lack of Fas/FasL signalling leads to disturbances in the antiviral response during ectromelia virus infection.

    PubMed

    Bień, K; Sobańska, Z; Sokołowska, J; Bąska, P; Nowak, Z; Winnicka, A; Krzyzowska, M

    2016-04-01

    Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. Fas receptor-Fas ligand (FasL) signaling is involved in apoptosis of immune cells and virus-specific cytotoxicity. The Fas/FasL pathway also plays an important role in controlling the local inflammatory response during ECTV infection. Here, the immune response to the ECTV Moscow strain was examined in Fas (-) (lpr), FasL (-) (gld) and C57BL6 wild-type mice. During ECTV-MOS infection, Fas- and FasL mice showed increased viral titers, decreased total numbers of NK cells, CD4(+) and CD8(+) T cells followed by decreased percentages of IFN-γ expressing NK cells, CD4(+) and CD8(+) T cells in spleens and lymph nodes. At day 7 of ECTV-MOS infection, Fas- and FasL-deficient mice had the highest regulatory T cell (Treg) counts in spleen and lymph nodes in contrast to wild-type mice. Furthermore, at days 7 and 10 of the infection, we observed significantly higher numbers of PD-L1-expressing dendritic cells in Fas (-) and FasL (-) mice in comparison to wild-type mice. Experiments in co-cultures of CD4(+) T cells and bone-marrow-derived dendritic cells showed that the lack of bilateral Fas-FasL signalling led to expansion of Tregs. In conclusion, our results demonstrate that during ECTV infection, Fas/FasL can regulate development of tolerogenic DCs and Tregs, leading to an ineffective immune response.

  12. Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability

    PubMed Central

    Rossin, A; Durivault, J; Chakhtoura-Feghali, T; Lounnas, N; Gagnoux-Palacios, L; Hueber, A-O

    2015-01-01

    The death receptor Fas undergoes a variety of post-translational modifications including S-palmitoylation. This protein acylation has been reported essential for an optimal cell death signaling by allowing both a proper Fas localization in cholesterol and sphingolipid-enriched membrane nanodomains, as well as Fas high-molecular weight complexes. In human, S-palmitoylation is controlled by 23 members of the DHHC family through their palmitoyl acyltransferase activity. In order to better understand the role of this post-translational modification in the regulation of the Fas-mediated apoptosis pathway, we performed a screen that allowed the identification of DHHC7 as a Fas-palmitoylating enzyme. Indeed, modifying DHHC7 expression by specific silencing or overexpression, respectively, reduces or enhances Fas palmitoylation and DHHC7 co-immunoprecipitates with Fas. At a functional level, DHHC7-mediated palmitoylation of Fas allows a proper Fas expression level by preventing its degradation through the lysosomes. Indeed, the decrease of Fas expression obtained upon loss of Fas palmitoylation can be restored by inhibiting the lysosomal degradation pathway. We describe the modification of Fas by palmitoylation as a novel mechanism for the regulation of Fas expression through its ability to circumvent its degradation by lysosomal proteolysis. PMID:25301068

  13. Wildfire effects on lipid composition and hydrophobicity of bulk soil and soil size fractions under Quercus suber cover (SW-Spain).

    PubMed

    Jiménez-Morillo, Nicasio T; Spangenberg, Jorge E; Miller, Ana Z; Jordán, Antonio; Zavala, Lorena M; González-Vila, Francisco J; González-Pérez, José A

    2017-11-01

    Soil water repellency (hydrophobicity) prevents water from wetting or infiltrating soils, triggering changes in the ecosystems. Fire may develop, enhance or destroy hydrophobicity in previously wettable or water-repellent soils. Soil water repellency is mostly influenced by the quality and quantity of soil organic matter, particularly the lipid fraction. Here we report the results of a study on the effect of fire on the distribution of soil lipids and their role in the hydrophobicity grade of six particle size fractions (2-1, 1-0.5, 0.5-0.25, 0.25-0.1, 0.1-0.05 and <0.05mm) of an Arenosol under Quercus suber canopy at the Doñana National Park (SW-Spain). Hydrophobicity was determined using water drop penetration time test. Field emission scanning electron microscopy (FESEM) was used to assess the presence and morphology of the inorganic and organic soil components in the particle size fractions. Soil lipids were Soxhlet extracted with a dichloromethane-methanol mixture. Fatty acids (FAs) and neutral lipids were separated, derivatized, identified and quantified by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. The hydrophobicity values of soil samples and fractions were statistically different (P < 0.05), for both, the unburnt and burnt soils, and particle size fractions. All samples displayed a similar distribution of FAs, straight-chain saturated acids in the C 14 -C 32 range, and neutral lipids (n-alkan-1-ols, n-alkanes), only differing in their relative abundances. Among possible biogeochemical mechanisms responsible for the changes in soil lipids, the observed depletion of long chain FAs (C ≥24 ) in the coarse fraction is best explained by thermal cracking caused by the heat of the fire. The enrichment of long chain FAs observed in other fractions suggests possible exogenous additions of charred, lipid-rich, material, like cork suberin or other plant-derived macromolecules (cutins). Principal component analysis was used to study the relationships between hydrophobicity with soil organic matter and its different components. Extractable organic matter (EOM) and specifically long chain FAs content were positively correlated to soil hydrophobicity. Therefore, the latter could be used as biomarkers surrogated to hydrophobicity in sandy soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. NF-κB Directly Regulates Fas Transcription to Modulate Fas-mediated Apoptosis and Tumor Suppression*

    PubMed Central

    Liu, Feiyan; Bardhan, Kankana; Yang, Dafeng; Thangaraju, Muthusamy; Ganapathy, Vadivel; Waller, Jennifer L.; Liles, Georgia B.; Lee, Jeffrey R.; Liu, Kebin

    2012-01-01

    Fas is a member of the death receptor family. Stimulation of Fas leads to induction of apoptotic signals, such as caspase 8 activation, as well as “non-apoptotic” cellular responses, notably NF-κB activation. Convincing experimental data have identified NF-κB as a critical promoter of cancer development, creating a solid rationale for the development of antitumor therapy that suppresses NF-κB activity. On the other hand, compelling data have also shown that NF-κB activity enhances tumor cell sensitivity to apoptosis and senescence. Furthermore, although stimulation of Fas activates NF-κB, the function of NF-κB in the Fas-mediated apoptosis pathway remains largely undefined. In this study, we observed that deficiency of either Fas or FasL resulted in significantly increased incidence of 3-methylcholanthrene-induced spontaneous sarcoma development in mice. Furthermore, Fas-deficient mice also exhibited significantly greater incidence of azoxymethane and dextran sodium sulfate-induced colon carcinoma. In addition, human colorectal cancer patients with high Fas protein in their tumor cells had a longer time before recurrence occurred. Engagement of Fas with FasL triggered NF-κB activation. Interestingly, canonical NF-κB was found to directly bind to the FAS promoter. Blocking canonical NF-κB activation diminished Fas expression, whereas blocking alternate NF-κB increased Fas expression in human carcinoma cells. Moreover, although canonical NF-κB protected mouse embryo fibroblast (MEF) cells from TNFα-induced apoptosis, knocking out p65 diminished Fas expression in MEF cells, resulting in inhibition of FasL-induced caspase 8 activation and apoptosis. In contrast, knocking out p52 increased Fas expression in MEF cells. Our observations suggest that canonical NF-κB is a Fas transcription activator and alternate NF-κB is a Fas transcription repressor, and Fas functions as a suppressor of spontaneous sarcoma and colon carcinoma. PMID:22669972

  15. Expression of Fas and Fas-ligand in donor hematopoietic stem and progenitor cells is dissociated from the sensitivity to apoptosis.

    PubMed

    Pearl-Yafe, Michal; Yolcu, Esma S; Stein, Jerry; Kaplan, Ofer; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir

    2007-10-01

    The interaction between the Fas receptor and its cognate ligand (FasL) has been implicated in the mutual suppression of donor and host hematopoietic cells after transplantation. Following the observation of deficient early engraftment of Fas and FasL-defective donor cells and recipients, we determined the role of the Fas-FasL interaction. Donor cells were recovered after syngeneic (CD45.1-->CD45.2) transplants from various organs and assessed for expression of Fas/FasL in reference to lineage markers, carboxyfluorescein succinimidyl ester dilution, Sca-1 and c-kit expression. Naïve and bone marrow-homed cells were challenged for apoptosis ex vivo. The Fas receptor and ligand were markedly upregulated to 40% to 60% (p < 0.001 vs 5-10% in naïve cells) within 2 days after syngeneic transplantation, while residual host cells displayed modest and delayed upregulation of these molecules ( approximately 10%). All lin(-)Sca(+)c-kit(+) cells were Fas(+)FasL(+), including 95% of Sca-1(+) and 30% of c-kit(+) cells. Fas and FasL expression varied in donor cells that homed to bone marrow, spleen, liver and lung, and was induced by interaction with the stroma, irradiation, cell cycling, and differentiation. Bone marrow-homed donor cells challenged with supralethal doses of FasL were insensitive to apoptosis (3.2% +/- 1% vs 38% +/- 5% in naïve bone marrow cells), and engraftment was not affected by pretransplantation exposure of donor cells to an apoptotic challenge with FasL. There was no evidence of Fas-mediated suppression of donor and host cell activity after transplantation. Resistance to Fas-mediated apoptosis evolves as a functional characteristic of hematopoietic reconstituting stem and progenitor cells, providing them competitive engraftment advantage over committed progenitors.

  16. Alterations in carbohydrate metabolism and its regulation in PPARalpha null mouse hearts

    USDA-ARS?s Scientific Manuscript database

    Although a shift from fatty acids (FAs) to carbohydrates (CHOs) is considered beneficial for the diseased heart, it is unclear why subjects with FA beta-oxidation defects are prone to cardiac decompensation under stress conditions. The present study investigated potential alterations in the myocardi...

  17. Oxidative Processing of Latent Fas in the Endoplasmic Reticulum Controls the Strength of Apoptosis

    PubMed Central

    Anathy, Vikas; Roberson, Elle; Cunniff, Brian; Nolin, James D.; Hoffman, Sidra; Spiess, Page; Guala, Amy S.; Lahue, Karolyn G.; Goldman, Dylan; Flemer, Stevenson; van der Vliet, Albert; Heintz, Nicholas H.; Budd, Ralph C.; Tew, Kenneth D.

    2012-01-01

    We recently demonstrated that S-glutathionylation of the death receptor Fas (Fas-SSG) amplifies apoptosis (V. Anathy et al., J. Cell Biol. 184:241–252, 2009). In the present study, we demonstrate that distinct pools of Fas exist in cells. Upon ligation of surface Fas, a separate pool of latent Fas in the endoplasmic reticulum (ER) underwent rapid oxidative processing characterized by the loss of free sulfhydryl content (Fas-SH) and resultant increases in S-glutathionylation of Cys294, leading to increases of surface Fas. Stimulation with FasL rapidly induced associations of Fas with ERp57 and glutathione S-transferase π (GSTP), a protein disulfide isomerase and catalyst of S-glutathionylation, respectively, in the ER. Knockdown or inhibition of ERp57 and GSTP1 substantially decreased FasL-induced oxidative processing and S-glutathionylation of Fas, resulting in decreased death-inducing signaling complex formation and caspase activity and enhanced survival. Bleomycin-induced pulmonary fibrosis was accompanied by increased interactions between Fas-ERp57-GSTP1 and S-glutathionylation of Fas. Importantly, fibrosis was largely prevented following short interfering RNA-mediated ablation of ERp57 and GSTP. Collectively, these findings illuminate a regulatory switch, a ligand-initiated oxidative processing of latent Fas, that controls the strength of apoptosis. PMID:22751926

  18. Impairment of Fas-ligand-caveolin-1 interaction inhibits Fas-ligand translocation to rafts and Fas-ligand-induced cell death.

    PubMed

    Glukhova, Xenia A; Trizna, Julia A; Proussakova, Olga V; Gogvadze, Vladimir; Beletsky, Igor P

    2018-01-22

    Fas-ligand/CD178 belongs to the TNF family proteins and can induce apoptosis through death receptor Fas/CD95. The important requirement for Fas-ligand-dependent cell death induction is its localization to rafts, cholesterol- and sphingolipid-enriched micro-domains of membrane, involved in regulation of different signaling complexes. Here, we demonstrate that Fas-ligand physically associates with caveolin-1, the main protein component of rafts. Experiments with cells overexpressing Fas-ligand revealed a FasL N-terminal pre-prolin-rich region, which is essential for the association with caveolin-1. We found that the N-terminal domain of Fas-ligand bears two caveolin-binding sites. The first caveolin-binding site binds the N-terminal domain of caveolin-1, whereas the second one appears to interact with the C-terminal domain of caveolin-1. The deletion of both caveolin-binding sites in Fas-ligand impairs its distribution between cellular membranes, and attenuates a Fas-ligand-induced cytotoxicity. These results demonstrate that the interaction of Fas-ligand and caveolin-1 represents a molecular basis for Fas-ligand translocation to rafts, and the subsequent induction of Fas-ligand-dependent cell death. A possibility of a similar association between other TNF family members and caveolin-1 is discussed.

  19. Fas and FasL genetic polymorphisms in women with recurrent pregnancy loss: a case-control study.

    PubMed

    Han, Ae Ra; Choi, Young Min; Hong, Min A; Kim, Jin Ju; Lee, Sung Ki; Yang, Kwang Moon; Paik, Eun Chan; Jeong, Hyeon Jeong; Jun, Jong Kwan

    2018-05-20

    Aberrant apoptosis at the trophoblast-maternal interface and abnormal expression of Fas and Fas ligand (FasL) have been reported in complicated pregnancies with recurrent pregnancy losses (RPL) and preeclampsia. We assessed the prevalence of Fas and FasL genetic polymorphisms in Korean women with RPL and in fertile controls. In total, 306 women with RPL and 298 fertile controls were enrolled. Genotype distributions of Fas and FasL in RPL patients versus fertile controls were examined under the Hardy-Weinberg equilibrium. Fas -670 A/G genotype (AA versus AG versus GG, p = 0.340) and allele frequencies (A versus G, p = 0.412) were not different between the RPL and control groups. There was no difference in each Fas -1377 G/A and FasL -844 C/T genotype, and their allele frequencies. In addition, the unions of two zygosities of each genotype and their combined genotypes did not differ between two groups. No difference in the prevalence of Fas and FasL single-nucleotide polymorphisms (SNPs) was observed between women with RPL and fertile controls among Korean women. To determine the possibility of genetic polymorphisms in Fas and its ligand as risk factors for RPL, further studies in various races and a large study population are needed.

  20. Cortactin as a Target for FAK in the Regulation of Focal Adhesion Dynamics

    PubMed Central

    Ghassemian, Majid; Schlaepfer, David D.

    2012-01-01

    Background Efficient cell movement requires the dynamic regulation of focal adhesion (FA) formation and turnover. FAs are integrin-associated sites of cell attachment and establish linkages to the cellular actin cytoskeleton. Cells without focal adhesion kinase (FAK), an integrin-activated tyrosine kinase, exhibit defects in FA turnover and cell motility. Cortactin is an actin binding adaptor protein that can influence FA dynamics. FAK and cortactin interact, but the cellular role of this complex remains unclear. Principal Findings Using FAK-null fibroblasts stably reconstituted with green fluorescent protein (GFP) tagged FAK constructs, we find that FAK activity and FAK C-terminal proline-rich region 2 (PRR2) and PRR3 are required for FA turnover and cell motility. Cortactin binds directly to FAK PRR2 and PRR3 sites via its SH3 domain and cortactin expression is important in promoting FA turnover and GFP-FAK release from FAs. FAK-cortactin binding is negatively-regulated by FAK activity and associated with cortactin tyrosine phosphorylation. FAK directly phosphorylates cortactin at Y421 and Y466 and over-expression of cortactin Y421, Y466, and Y482 mutated to phenylalanine (3YF) prevented FAK-enhanced FA turnover and cell motility. However, phospho-mimetic cortactin mutated to glutamic acid (3YE) did not affect FA dynamics and did not rescue FA turnover defects in cells with inhibited FAK activity or with PRR2-mutated FAK that does not bind cortactin. Conclusions Our results support a model whereby FAK-mediated FA remodeling may occur through the formation of a FAK-cortactin signaling complex. This involves a cycle of cortactin binding to FAK, cortactin tyrosine phosphorylation, and subsequent cortactin-FAK dissociation accompanied by FA turnover and cell movement. PMID:22952866

  1. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojuan; Gustafsson, Örjan; Holmes, R. Max; Vonk, Jorien E.; van Dongen, Bart E.; Semiletov, Igor P.; Dudarev, Oleg V.; Yunker, Mark B.; Macdonald, Robie W.; Wacker, Lukas; Montluçon, Daniel B.; Eglinton, Timothy I.

    2015-11-01

    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these "old" terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.

  2. A comparative assessment of fatty acids in Antarctic organisms from the Ross Sea: Occurrence and distribution.

    PubMed

    Corsolini, Simonetta; Borghesi, Nicoletta

    2017-05-01

    Lipids are important energy source and structural component for cellular membranes and tissues, involved in the osmoregulation and immune response, and are very important in the bioaccumulation of lipophilic chemicals too. Among lipids, fatty acids (FAs) give information on diet of organisms, since FA of consumer lipids can be related to those of diet; plants and animals vary in their FA signature because of differences in the synthesis of lipids. In this study, lipid content and FA composition in tissues of Antarctic organisms from the Ross Sea (Odontaster validus, Sterechinus neumayeri, Chionodraco hamatus, Trematomus bernacchii, Pygoscelis adèliae) were assessed. Differences in lipid characterisation were found between both species and tissues. The lipid content was highest in C. hamatus liver (3.51%), and lowest in T. bernacchii muscle (0.16%). The polyunsaturated fatty acids (PUFAs) prevailed in the C. hamatus muscle, and among FAs, the docosahexaenoic acid (DHA; C22:6n3) was the most abundant (20.93%). The C22:6n3 accumulated more in fish and penguin tissues than in invertebrate species. The high contribution of unsaturated fatty acids (>74%) in fish tissues wats related to the low environmental temperature. The fatty acid profile and the essential fatty acids occurrence were also discussed in the light of physiological adaptations and feeding habits of organisms; the relationships with contaminant bioaccumulation were also assessed. To the best of our knowledge, this is the first report of fatty acid composition and fingerprint in a Ross Sea trophic web and their correlation with contaminant concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Relationship between Erythrocyte Fatty Acid Composition and Psychopathology in the Vienna Omega-3 Study

    PubMed Central

    Kim, Sung-Wan; Jhon, Min; Kim, Jae-Min; Smesny, Stefan; Rice, Simon; Berk, Michael; Klier, Claudia M.; McGorry, Patrick D.; Schäfer, Miriam R.; Amminger, G. Paul

    2016-01-01

    This study investigated the relationship between erythrocyte membrane fatty acid (FA) levels and the severity of symptoms of individuals at ultra-high risk (UHR) for psychosis. Subjects of the present study consisted of 80 neuroleptic-naïve UHR patients. Partial correlation coefficients were calculated between baseline erythrocyte membrane FA levels, measured by gas chromatography, and scores on the Positive and Negative Syndrome Scale (PANSS), Global Assessment of Functioning Scale, and Montgomery–Asberg Depression Rating Scale (MADRS) after controlling for age, sex, smoking and cannabis use. Subjects were divided into three groups according to the predominance of positive or negative symptoms based on PANSS subscale scores; membrane FA levels in the three groups were then compared. More severe negative symptoms measured by PANSS were negatively correlated with two saturated FAs (myristic and margaric acids), one ω-9 monounsaturated FA (MUFA; nervonic acid), and one ω-3 polyunsaturated FA (PUFA; docosapentaenoic acid), and were positively correlated with two ω-9 MUFAs (eicosenoic and erucic acids) and two ω-6 PUFAs (γ-linolenic and docosadienoic acids). More severe positive symptoms measured by PANSS were correlated only with nervonic acid. No associations were observed between FAs and MADRS scores. In subjects with predominant negative symptoms, the sum of the ω-9 MUFAs and the ω-6:ω-3 FA ratio were both significantly higher than in those with predominant positive symptoms, whereas the sum of ω-3 PUFAs was significantly lower. In conclusion, abnormalities in FA metabolism may contribute to the neurobiology of psychopathology in UHR individuals. In particular, membrane FA alterations may play a role in negative symptoms, which are primary psychopathological manifestations of schizophrenia-related disability. PMID:26963912

  4. Expression of FAS-L Differs from Primary to Relapsed Low-grade Gliomas and Predicts Progression-free Survival.

    PubMed

    Werner, Jan-Michael; Kuhl, Saskia; Stavrinou, Pantelis; Röhn, Gabriele; Krischek, Boris; Blau, Tobias; Goldbrunner, Roland; Timmer, Marco

    2017-12-01

    The tumor necrosis factor FAS is overexpressed in high-grade gliomas (HGG). Only little is known about FAS or FAS ligand (FAS-L) in low-grade gliomas (LGG). We explored FAS/FAS-L expression in LGG, focusing on differences in primary and relapsed LGG and on its prognostic value. A total of 133 glioma samples (73 LGG, 60 HGG) were collected. The LGG samples included 15 matched pairs of primary and relapsed tumors. RT-PCR was performed to measure FAS/FAS-L expression, using subunit A, flavoprotein variant (SDHA) as housekeeper. Clinical data included progression free- (PFS) and overall survival (OS). LGG showed significantly lower FAS but higher FAS-L expression than HGG. The FAS-L expression was higher in primary compared to relapsed LGG and had a positive prognostic value concerning PFS (median 45.20 vs. 31.37 months). FAS-L could act as a prognostic marker and potential target in primary LGG. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Structural and Biophysical Characterization of the Interactions between the Death Domain of Fas Receptor and Calmodulin*

    PubMed Central

    Fernandez, Timothy F.; Samal, Alexandra B.; Bedwell, Gregory J.; Chen, Yabing; Saad, Jamil S.

    2013-01-01

    The extrinsic apoptotic pathway is initiated by cell surface death receptors such as Fas. Engagement of Fas by Fas ligand triggers a conformational change that allows Fas to interact with adaptor protein Fas-associated death domain (FADD) via the death domain, which recruits downstream signaling proteins to form the death-inducing signaling complex (DISC). Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells, suggesting a novel role of CaM in Fas-mediated signaling. CaM antagonists induce apoptosis through a Fas-related mechanism in cholangiocarcinoma and other cancer cell lines possibly by inhibiting Fas-CaM interactions. The structural determinants of Fas-CaM interaction and the underlying molecular mechanisms of inhibition, however, are unknown. Here we employed NMR and biophysical techniques to elucidate these mechanisms. Our data show that CaM binds to the death domain of Fas (FasDD) with an apparent dissociation constant (Kd) of ∼2 μm and 2:1 CaM:FasDD stoichiometry. The interactions between FasDD and CaM are endothermic and entropically driven, suggesting that hydrophobic contacts are critical for binding. We also show that both the N- and C-terminal lobes of CaM are important for binding. NMR and surface plasmon resonance data show that three CaM antagonists (N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide, tamoxifen, and trifluoperazine) greatly inhibit Fas-CaM interactions by blocking the Fas-binding site on CaM. Our findings provide the first structural evidence for Fas-CaM interactions and mechanism of inhibition and provide new insight into the molecular basis for a novel role of CaM in regulating Fas-mediated apoptosis. PMID:23760276

  6. Dysregulation of the Fas/FasL system in an experimental animal model of HELLP syndrome.

    PubMed

    Gibbens, Jacob; Morris, Rachael; Bowles, Teylor; Spencer, Shauna-Kay; Wallace, Kedra

    2017-04-01

    Placental FasL is up-regulated in women with HELLP (hemolysis elevated liver enzyme and low platelet) syndrome and has been proposed to contribute to the liver damage seen in these patients. This study aimed to determine if an experimental rodent model of HELLP also had dysregulation of Fas/FasL compared to normal pregnant (NP) rats. We also set out to determine if blockade of the endothelin system regulated Fas/FasL expression in HELLP rats. On gestational day (GD) 12, sEng (7ug/kg) and sFlt-1 (4.7ug/kg) infusion began via mini-osmotic pump into NP rats. On GD19 plasma and tissue were collected and FasL and Fas were measured via enzyme linked immunosorbent assay and gene expression via real-time PCR. HELLP rats had significantly more circulating and placental FasL compared to NP rats, whereas hepatic FasL was decreased and placental Fas was increased compared to NP rats. Administration of an endothelin A receptor antagonist (ET A ) beginning on GD12 significantly decreased placental expression of Fas in HELLP rats. Liver mRNA transcript of Fas was significantly increased in HELLP rats compared to NP rats. These data suggest that rats in this experimental model of HELLP syndrome have abnormal expression of the Fas/FasL system. Future studies will examine the sources of Fas/FasL dysregulation in this model and if blockade could reduce some of the inflammation and hypertension associated with HELLP syndrome. Copyright © 2017 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  7. Corruption of the Fas Pathway Delays the Pulmonary Clearance of Murine Osteosarcoma Cells, Enhances Their Metastatic Potential, and Reduces the Effect of Aerosol Gemcitabine

    PubMed Central

    Gordon, Nancy; Koshkina, Nadezhda V.; Jia, Shu-Fang; Khanna, Chand; Mendoza, Arnulfo; Worth, Laura L.; Kleinerman, Eugenie S.

    2015-01-01

    Purpose Pulmonary metastases continue to be a significant problem in osteosarcoma. Apoptosis dysfunction is known to influence tumor development. Fas (CD95, APO-1)/FasL is one of the most extensively studied apoptotic pathways. Because FasL is constitutively expressed in the lung, cells that express Fas should be eliminated by lung endothelium. Cells with low or no cell surface Fas expression may be able to evade this innate defense mechanism. The purpose of these studies was to evaluate Fas expression in osteosarcoma lung metastases and the effect of gemcitabine on Fas expression and tumor growth. Experimental Design and Results Using the K7M2 murine osteosarcoma model, Fas expression was quantified using immunohistochemistry. High levels of Fas were present in primary tumors, but no Fas expression was present in actively growing lung metastases. Blocking the Fas pathway using Fas-associated death domain dominant-negative delayed tumor cell clearance from the lung and increased metastatic potential. Treatment of mice with aerosol gemcitabine resulted in increased Fas expression and subsequent tum or regression. Conclusions We conclude that corruption of the Fas pathway is critical to the ability of osteosarcoma cells to grow in the lung. Agents such as gemcitabine that up-regulate cell surface Fas expression may therefore be effective in treating osteosarcoma lung metastases. These data also suggest that an additional mechanism by which gemcitabine induces regression of osteosarcoma lung metastases is mediated by enhancing the sensitivity of the tumor cells to the constitutive FasL in the lung. PMID:17671136

  8. Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-{kappa}B in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Gong, E-mail: gong-feng@northwestern.edu; Anong Biotech Institute, Tianjin; Li Ying

    Nodularin is a natural toxin with multiple features, including inhibitor of protein phosphatases 1 and 2A as well as tumor initiator and promoter. One unique feature of nodularin is that this chemical is a hepatotoxin. It can accumulate into the liver after contact and lead to severe damage to hepatocyte, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling network triggering apoptosis. In current study, we investigated whether nodularin can induce Fas and FasL expression in HepG2 cell, a well used in vitro model for the study of human hepatocytes. Our data showed nodularinmore » induced Fas and FasL expression, at both mRNA and protein level, in a time- and dose-dependent manner. We also found nodularin induced apoptosis at the concentration and incubation time that Fas and FasL were significantly induced. Neutralizing antibody to FasL reduced nodularin-induced apoptosis. Further studies demonstrated that nodularin promoted nuclear translocation and activation of p65 subunit of NF-{kappa}B. By applying siRNA targeting p65, which knocked down p65 in HepG2 cells, we successfully impaired the activation of NF-{kappa}B by nodularin. In these p65 knockdown cells, we observed that Fas and FasL expression and apoptosis induced by nodularin were significantly reduced. These findings suggest the induction of Fas and FasL expression and thus cell apoptosis in HepG2 cells by nodularin is mediated through NF-{kappa}B pathway.« less

  9. Dual Role for Phospholipid:Diacylglycerol Acyltransferase: Enhancing Fatty Acid Synthesis and Diverting Fatty Acids from Membrane Lipids to Triacylglycerol in Arabidopsis Leaves[C][W

    PubMed Central

    Fan, Jilian; Yan, Chengshi; Zhang, Xuebin; Xu, Changcheng

    2013-01-01

    There is growing interest in engineering green biomass to expand the production of plant oils as feed and biofuels. Here, we show that PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is a critical enzyme involved in triacylglycerol (TAG) synthesis in leaves. Overexpression of PDAT1 increases leaf TAG accumulation, leading to oil droplet overexpansion through fusion. Ectopic expression of oleosin promotes the clustering of small oil droplets. Coexpression of PDAT1 with oleosin boosts leaf TAG content by up to 6.4% of the dry weight without affecting membrane lipid composition and plant growth. PDAT1 overexpression stimulates fatty acid synthesis (FAS) and increases fatty acid flux toward the prokaryotic glycerolipid pathway. In the trigalactosyldiacylglycerol1-1 mutant, which is defective in eukaryotic thylakoid lipid synthesis, the combined overexpression of PDAT1 with oleosin increases leaf TAG content to 8.6% of the dry weight and total leaf lipid by fourfold. In the plastidic glycerol-3-phosphate acyltransferase1 mutant, which is defective in the prokaryotic glycerolipid pathway, PDAT1 overexpression enhances TAG content at the expense of thylakoid membrane lipids, leading to defects in chloroplast division and thylakoid biogenesis. Collectively, these results reveal a dual role for PDAT1 in enhancing fatty acid and TAG synthesis in leaves and suggest that increasing FAS is the key to engineering high levels of TAG accumulation in green biomass. PMID:24076979

  10. Evaluating Changes in Omega-3 Fatty Acid Intake after Receiving Personal FADS1 Genetic Information: A Randomized Nutrigenetic Intervention.

    PubMed

    Roke, Kaitlin; Walton, Kathryn; Klingel, Shannon L; Harnett, Amber; Subedi, Sanjeena; Haines, Jess; Mutch, David M

    2017-03-06

    Nutrigenetics research is anticipated to lay the foundation for personalized dietary recommendations; however, it remains unclear if providing individuals with their personal genetic information changes dietary behaviors. Our objective was to evaluate if providing information for a common variant in the fatty acid desaturase 1 ( FADS1 ) gene changed omega-3 fatty acid (FA) intake and blood levels in young female adults (18-25 years). Participants were randomized into Genetic (intervention) and Non-Genetic (control) groups, with measurements taken at Baseline and Final (12 weeks). Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was assessed using an omega-3 food frequency questionnaire. Red blood cell (RBC) FA content was quantified by gas chromatography. Implications of participation in a nutrigenetics study and awareness of omega-3 FAs were assessed with online questionnaires. Upon completion of the study, EPA and DHA intake increased significantly ( p = 1.0 × 10 -4 ) in all participants. This change was reflected by small increases in RBC %EPA. Participants in the Genetic group showed increased awareness of omega-3 terminology by the end of the study, reported that the dietary recommendations were more useful, and rated cost as a barrier to omega-3 consumption less often than those in the Non-Genetic group. Providing participants FADS1 genetic information did not appear to influence omega-3 intake during the 12 weeks, but did change perceptions and behaviors related to omega-3 FAs in this timeframe.

  11. Evaluating Changes in Omega-3 Fatty Acid Intake after Receiving Personal FADS1 Genetic Information: A Randomized Nutrigenetic Intervention

    PubMed Central

    Roke, Kaitlin; Walton, Kathryn; Klingel, Shannon L.; Harnett, Amber; Subedi, Sanjeena; Haines, Jess; Mutch, David M.

    2017-01-01

    Nutrigenetics research is anticipated to lay the foundation for personalized dietary recommendations; however, it remains unclear if providing individuals with their personal genetic information changes dietary behaviors. Our objective was to evaluate if providing information for a common variant in the fatty acid desaturase 1 (FADS1) gene changed omega-3 fatty acid (FA) intake and blood levels in young female adults (18–25 years). Participants were randomized into Genetic (intervention) and Non-Genetic (control) groups, with measurements taken at Baseline and Final (12 weeks). Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was assessed using an omega-3 food frequency questionnaire. Red blood cell (RBC) FA content was quantified by gas chromatography. Implications of participation in a nutrigenetics study and awareness of omega-3 FAs were assessed with online questionnaires. Upon completion of the study, EPA and DHA intake increased significantly (p = 1.0 × 10−4) in all participants. This change was reflected by small increases in RBC %EPA. Participants in the Genetic group showed increased awareness of omega-3 terminology by the end of the study, reported that the dietary recommendations were more useful, and rated cost as a barrier to omega-3 consumption less often than those in the Non-Genetic group. Providing participants FADS1 genetic information did not appear to influence omega-3 intake during the 12 weeks, but did change perceptions and behaviors related to omega-3 FAs in this timeframe. PMID:28272299

  12. Identification of the Calmodulin-Binding Domains of Fas Death Receptor

    PubMed Central

    Chang, Bliss J.; Samal, Alexandra B.; Vlach, Jiri; Fernandez, Timothy F.; Brooke, Dewey; Prevelige, Peter E.; Saad, Jamil S.

    2016-01-01

    The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas–mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209–239 (Fas-Pep1) and 251–288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD–CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling pathway. PMID:26735300

  13. Involvement of Fas/FasL pathway in the murine model of atopic dermatitis.

    PubMed

    Bień, Karolina; Żmigrodzka, Magdalena; Orłowski, Piotr; Fruba, Aleksandra; Szymański, Łukasz; Stankiewicz, Wanda; Nowak, Zuzanna; Malewski, Tadeusz; Krzyżowska, Małgorzata

    2017-08-01

    The aim of this study was to elucidate the role of apoptosis mediated through Fas/FasL pathway using the mouse model of atopic dermatitis (AD). AD was induced by epicutaneous application of ovalbumin (OVA) in wild-type C57BL/6, B6. MRL-Faslpr/J (Fas-) and B6Smn.C3-Faslgld/J (FasL-) mouse strains. Skin samples were subjected to staining for Fas/FasL expression, M30 epitope and assessment of inflammatory response via immunohistochemical staining. Cytokine and chemokine production was assessed by real-time PCR. In comparison to wild-type mice, OVA sensitization of Fas- and FasL-deficient mice led to increased epidermal and dermal thickness, collagen deposition and local inflammation consisting of macrophages, neutrophils and CD4+ T cells. Fas- and FasL-deficient mice showed increased total counts of regulatory T cells (Tregs) and IgE levels in blood as well as increased expression of IL-1β, IL-4, IL-5, IL-13 and TGF-1β mRNA in comparison to wild-type mice. On the other hand, expression of CXCL9 and CXCL10, IL-17 mRNAs in the skin samples in Fas- and FasL-deficient mice was decreased. Our results show that lack of the Fas-induced apoptosis leads to exacerbation of AD characteristics such as Th2 inflammation and dermal thickening. Therefore, Fas receptor can play an important role in AD pathogenesis by controlling development of the local inflammation.

  14. Light Remodels Lipid Biosynthesis in Nannochloropsis gaditana by Modulating Carbon Partitioning between Organelles1[OPEN

    PubMed Central

    Vitulo, Nicola; Diretto, Gianfranco; Block, Maryse; Jouhet, Juliette; Meneghesso, Andrea; Valle, Giorgio; Giuliano, Giovanni; Maréchal, Eric

    2016-01-01

    The seawater microalga Nannochloropsis gaditana is capable of accumulating a large fraction of reduced carbon as lipids. To clarify the molecular bases of this metabolic feature, we investigated light-driven lipid biosynthesis in Nannochloropsis gaditana cultures combining the analysis of photosynthetic functionality with transcriptomic, lipidomic and metabolomic approaches. Light-dependent alterations are observed in amino acid, isoprenoid, nucleic acid, and vitamin biosynthesis, suggesting a deep remodeling in the microalgal metabolism triggered by photoadaptation. In particular, high light intensity is shown to affect lipid biosynthesis, inducing the accumulation of diacylglyceryl-N,N,N-trimethylhomo-Ser and triacylglycerols, together with the up-regulation of genes involved in their biosynthesis. Chloroplast polar lipids are instead decreased. This situation correlates with the induction of genes coding for a putative cytosolic fatty acid synthase of type 1 (FAS1) and polyketide synthase (PKS) and the down-regulation of the chloroplast fatty acid synthase of type 2 (FAS2). Lipid accumulation is accompanied by the regulation of triose phosphate/inorganic phosphate transport across the chloroplast membranes, tuning the carbon metabolic allocation between cell compartments, favoring the cytoplasm, mitochondrion, and endoplasmic reticulum at the expense of the chloroplast. These results highlight the high flexibility of lipid biosynthesis in N. gaditana and lay the foundations for a hypothetical mechanism of regulation of primary carbon partitioning by controlling metabolite allocation at the subcellular level. PMID:27325666

  15. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei[S

    PubMed Central

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J.

    2016-01-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC12 but not BODIPY-FLC5 to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC12 to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC12 was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. PMID:26658423

  16. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei.

    PubMed

    Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J

    2016-02-01

    Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Gonadal steroids modulate Fas-induced apoptosis of lactotropes and somatotropes.

    PubMed

    Jaita, Gabriela; Zárate, Sandra; Ferrari, Luciana; Radl, Daniela; Ferraris, Jimena; Eijo, Guadalupe; Zaldivar, Verónica; Pisera, Daniel; Seilicovich, Adriana

    2011-02-01

    We have previously reported that Fas activation induces apoptosis of anterior pituitary cells from rats at proestrus but not at diestrus and in an estrogen-dependent manner. In this study, we evaluated the effect of Fas activation on apoptosis of lactotropes and somatotropes during the estrous cycle and explored the action of gonadal steroids on Fas-induced apoptosis. Also, we studied whether changes in Fas expression are involved in the apoptotic response of anterior pituitary cells. Fas activation increased the percentage of TUNEL-positive lactotropes and somatotropes at proestrus but not at diestrus. FasL triggered apoptosis of somatotropes only when cells from ovariectomized rats were cultured in the presence of 17 β-estradiol (E2). Progesterone (P4) blocked the apoptotic action of the Fas/FasL system in lactotropes and somatotropes incubated with E2. Both E2 and P4 increased the percentage of cells expressing Fas at the cell membrane. Our results show that Fas activation induces apoptosis of lactotropes and somatotropes at proestrus but not at diestrus. Gonadal steroids may be involved in the apoptotic response of lactotropes and somatotropes, suggesting that Fas activation is implicated in the renewal of these pituitary subpopulations during the estrous cycle. The effect of gonadal steroids on Fas expression may be only partially involved in regulation of the Fas/FasL apoptotic pathway in the anterior pituitary gland.

  18. Prognostic significance of Fas and Fas ligand system-associated apoptosis in gastric cancer.

    PubMed

    Ohno, S; Tachibana, M; Shibakita, M; Dhar, D K; Yoshimura, H; Kinugasa, S; Kubota, H; Masunaga, R; Nagasue, N

    2000-12-01

    Previous studies indicate that gastric carcinomas express Fas ligand and down-regulate Fas to escape from the host immune attack; however, the prognostic importance of Fas/FasL expression in this tumor is yet to be evaluated. Specimens from 87 gastric carcinoma patients of different stages treated in a defined period with curative intent were evaluated for apoptosis, Fas, FasL, and CD8 expression using an immunohistochemical method. The percentage of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive apoptotic cells expressed as apoptotic index (AI) was higher in 43 patients when the cut-off value was set at the median value. There were no significant correlations between AI and clinicopathologic parameters. Thirty-nine patients showed a high number of CD8+ cells within cancer nests. Positive FasL and Fas expression was seen in 53 and 72 patients, respectively. CD8 and FasL expressions were related only to patients' age. Fas expression had significant correlations with tumor invasion and Lauren classification. There were significant direct correlations between AI and number of nest CD8+ cells and between AI and grade of Fas expression. Apoptotic index, pT stage, CD8 expression, and Fas expression were identified as independent prognostic factors. Spontaneous apoptosis in gastric carcinoma may be an independent prognosticator for survival and is significantly influenced by tumor Fas expression and number of nest CD8 + cells.

  19. Gemcitabine sensitizes lung cancer cells to Fas/FasL system-mediated killing

    PubMed Central

    Siena, Liboria; Pace, Elisabetta; Ferraro, Maria; Di Sano, Caterina; Melis, Mario; Profita, Mirella; Spatafora, Mario; Gjomarkaj, Mark

    2014-01-01

    Gemcitabine is a chemotherapy agent commonly used in the treatment of non-small cell lung cancer (NSCLC) that has been demonstrated to induce apoptosis in NSCLC cells by increasing functionally active Fas expression. The aim of this study was to evaluate the Fas/Fas ligand (FasL) system involvement in gemcitabine-induced lung cancer cell killing. NSCLC H292 cells were cultured in the presence or absence of gemcitabine. FasL mRNA and protein were evaluated by real-time PCR, and by Western blot and flow cytometry, respectively. Apoptosis of FasL-expressing cells was evaluated by flow cytometry, and caspase-8 and caspase-3 activation by Western blot and a colorimetric assay. Cytotoxicity of lymphokine-activated killer (LAK) cells and malignant pleural fluid lymphocytes against H292 cells was analysed in the presence or absence of the neutralizing anti-Fas ZB4 antibody, by flow cytometry. Gemcitabine increased FasL mRNA and total protein expression, the percentage of H292 cells bearing membrane-bound FasL (mFasL) and of mFasL-positive apoptotic H292 cells, as well as caspase-8 and caspase-3 cleavage. Moreover, gemcitabine increased CH11-induced caspase-8 and caspase-3 cleavage and proteolytic activity. Cytotoxicity of LAK cells and pleural fluid lymphocytes was increased against gemcitabine-treated H292 cells and was partially inhibited by ZB4 antibody. These results demonstrate that gemcitabine: (i) induces up-regulation of FasL in lung cancer cells triggering cell apoptosis via an autocrine/paracrine loop; (ii) induces a Fas-dependent apoptosis mediated by caspase-8 and caspase-3 activation; (iii) enhances the sensitivity of lung cancer cells to cytotoxic activity of LAK cells and malignant pleural fluid lymphocytes, partially via Fas/FasL pathway. Our data strongly suggest an active involvement of the Fas/FasL system in gemcitabine-induced lung cancer cell killing. PMID:24128051

  20. Prenatal exposure of mice to diethylstilbestrol disrupts T-cell differentiation by regulating Fas/Fas ligand expression through estrogen receptor element and nuclear factor-κB motifs.

    PubMed

    Singh, Narendra P; Singh, Udai P; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2012-11-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions.

  1. Prenatal Exposure of Mice to Diethylstilbestrol Disrupts T-Cell Differentiation by Regulating Fas/Fas Ligand Expression through Estrogen Receptor Element and Nuclear Factor-κB Motifs

    PubMed Central

    Singh, Narendra P.; Singh, Udai P.; Nagarkatti, Prakash S.

    2012-01-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effect of prenatal exposure to DES on thymocyte differentiation involving apoptotic pathways. Prenatal DES exposure caused thymic atrophy, apoptosis, and up-regulation of Fas and Fas ligand (FasL) expression in thymocytes. To examine the mechanism underlying DES-mediated regulation of Fas and FasL, we performed luciferase assays using T cells transfected with luciferase reporter constructs containing full-length Fas or FasL promoters. There was significant luciferase induction in the presence of Fas or FasL promoters after DES exposure. Further analysis demonstrated the presence of several cis-regulatory motifs on both Fas and FasL promoters. When DES-induced transcription factors were analyzed, estrogen receptor element (ERE), nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein-1 motifs on the Fas promoter, as well as ERE, NF-κB, and NF-AT motifs on the FasL promoter, showed binding affinity with the transcription factors. Electrophoretic mobility-shift assays were performed to verify the binding affinity of cis-regulatory motifs of Fas or FasL promoters with transcription factors. There was shift in mobility of probes (ERE or NF-κB2) of both Fas and FasL in the presence of nuclear proteins from DES-treated cells, and the shift was specific to DES because these probes failed to shift their mobility in the presence of nuclear proteins from vehicle-treated cells. Together, the current study demonstrates that prenatal exposure to DES triggers significant alterations in apoptotic molecules expressed on thymocytes, which may affect T-cell differentiation and cause long-term effects on the immune functions. PMID:22888145

  2. Modification of Erythrocyte Membrane Fatty Acid Contents After Kidney Transplantation: A Prospective Study.

    PubMed

    Son, Y K; Kwon, H; Lee, H W; Jeong, E G; Lee, S M; Kim, S E; Park, Y; An, W S

    2018-06-01

    Modifications of erythrocyte membrane fatty acid (FA) contents may affect cellular function or transmembrane receptors. One cross-sectional study has shown that kidney transplant (KTP) recipients have lower erythrocyte membrane oleic acid content than dialysis patients do. Therefore, we prospectively tested whether erythrocyte membrane contents of FA including oleic acid change after KTP. We recruited 23 KTP recipients (September 2011 through May 2014). Blood samples were obtained immediately before KTP and 6 months after. Erythrocyte membrane FA contents were measured by gas chromatography. Mean age of the enrolled KTP recipients was 45.3 ± 10.9 years, and men represented 66.7% of the cases. ABO-incompatible KTPs constituted 14.3% and cadaver donors 42.9% of the cases. Steroids, mycophenolate mofetil, and tacrolimus were used as immunosuppressive treatment. There was no significant difference in dietary consumption between time points before and 6 months after KTP. Total cholesterol and low-density lipoprotein cholesterol levels were significantly higher at 6 months after KTP as compared with baseline. Erythrocyte membrane contents of polyunsaturated FA, ω-3 FA, ω-6 FA, and the ω-3 index were significantly higher, but erythrocyte membrane contents of total saturated FAs, total monounsaturated FAs, including oleic acid, total trans-FA, palmitoleic acid, and the ω-6-to-ω-3 ratio were significantly lower at 6 months after KTP. Erythrocyte membrane FA contents significantly changed toward a more favorable cardiovascular profile after KTP. These changes in erythrocyte membrane FA contents may be related to improved renal function because of the absence of significant dietary changes. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Effect of α-linolenic acid and DHA intake on lipogenesis and gene expression involved in fatty acid metabolism in growing-finishing pigs.

    PubMed

    De Tonnac, A; Labussière, E; Vincent, A; Mourot, J

    2016-07-01

    The regulation of lipogenesis mechanisms related to consumption of n-3 PUFA is poorly understood. The aim of the present study was to find out whether α-linolenic acid (ALA) or DHA uptake can have an effect on activities and gene expressions of enzymes involved in lipid metabolism in the liver, subcutaneous adipose tissue and longissimus dorsi (LD) muscle of growing-finishing pigs. Six groups of ten pigs received one of six experimental diets supplemented with rapeseed oil in the control diet, extruded linseed, microalgae or a mixture of both to implement different levels of ALA and DHA with the same content in total n-3. Results were analysed for linear and quadratic effects of DHA intake. The results showed that activities of malic enzyme (ME) and fatty acid synthase (FAS) decreased linearly in the liver with dietary DHA. Although the expression of the genes of these enzymes and their activities were poorly correlated, ME and FAS expressions also decreased linearly with DHA intake. The intake of DHA down-regulates the expressions of other genes involved in fatty acid (FA) metabolism in some tissues of pigs, such as fatty acid desaturase 2 and sterol-regulatory element binding transcription factor 1 in the liver and 2,4-dienoyl CoA reductase 2 in the LD muscle. FA oxidation in the LD muscle and FA synthesis decreased in the liver with increasing amount of dietary DHA, whereas a retroconversion of DHA into EPA seems to be set up in this last tissue.

  4. Epoxy Fatty Acids and Inhibition of the Soluble Epoxide Hydrolase Selectively Modulate GABA Mediated Neurotransmission to Delay Onset of Seizures

    PubMed Central

    Inceoglu, Bora; Zolkowska, Dorota; Yoo, Hyun Ju; Wagner, Karen M.; Yang, Jun; Hackett, Edward; Hwang, Sung Hee; Lee, Kin Sing Stephen; Rogawski, Michael A.; Morisseau, Christophe; Hammock, Bruce D.

    2013-01-01

    In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA). ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs). The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH), the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders. PMID:24349022

  5. An Evolution-Guided Analysis Reveals a Multi-Signaling Regulation of Fas by Tyrosine Phosphorylation and its Implication in Human Cancers

    PubMed Central

    Chakrabandhu, Krittalak; Huault, Sébastien; Durivault, Jérôme; Lang, Kévin; Ta Ngoc, Ly; Bole, Angelique; Doma, Eszter; Dérijard, Benoit; Gérard, Jean-Pierre; Pierres, Michel; Hueber, Anne-Odile

    2016-01-01

    Demonstrations of both pro-apoptotic and pro-survival abilities of Fas (TNFRSF6/CD95/APO-1) have led to a shift from the exclusive “Fas apoptosis” to “Fas multisignals” paradigm and the acceptance that Fas-related therapies face a major challenge, as it remains unclear what determines the mode of Fas signaling. Through protein evolution analysis, which reveals unconventional substitutions of Fas tyrosine during divergent evolution, evolution-guided tyrosine-phosphorylated Fas proxy, and site-specific phosphorylation detection, we show that the Fas signaling outcome is determined by the tyrosine phosphorylation status of its death domain. The phosphorylation dominantly turns off the Fas-mediated apoptotic signal, while turning on the pro-survival signal. We show that while phosphorylations at Y232 and Y291 share some common functions, their contributions to Fas signaling differ at several levels. The findings that Fas tyrosine phosphorylation is regulated by Src family kinases (SFKs) and the phosphatase SHP-1 and that Y291 phosphorylation primes clathrin-dependent Fas endocytosis, which contributes to Fas pro-survival signaling, reveals for the first time the mechanistic link between SFK/SHP-1-dependent Fas tyrosine phosphorylation, internalization route, and signaling choice. We also demonstrate that levels of phosphorylated Y232 and Y291 differ among human cancer types and differentially respond to anticancer therapy, suggesting context-dependent involvement of Fas phosphorylation in cancer. This report provides a new insight into the control of TNF receptor multisignaling by receptor phosphorylation and its implication in cancer biology, which brings us a step closer to overcoming the challenge in handling Fas signaling in treatments of cancer as well as other pathologies such as autoimmune and degenerative diseases. PMID:26942442

  6. Expression of Fas ligand by human gastric adenocarcinomas: a potential mechanism of immune escape in stomach cancer.

    PubMed

    Bennett, M W; O'connell, J; O'sullivan, G C; Roche, D; Brady, C; Kelly, J; Collins, J K; Shanahan, F

    1999-02-01

    Despite being immunogenic, gastric cancers overcome antitumour immune responses by mechanisms that have yet to be fully elucidated. Fas ligand (FasL) is a molecule that induces Fas receptor mediated apoptosis of activated immunocytes, thereby mediating normal immune downregulatory roles including immune response termination, tolerance acquisition, and immune privilege. Colon cancer cell lines have previously been shown to express FasL and kill lymphoid cells by Fas mediated apoptosis in vitro. Many diverse tumours have since been found to express FasL suggesting that a "Fas counterattack" against antitumour immune effector cells may contribute to tumour immune escape. To ascertain if human gastric tumours express FasL in vivo, as a potential mediator of immune escape in stomach cancer. Thirty paraffin wax embedded human gastric adenocarcinomas. FasL protein was detected in gastric tumours using immunohistochemistry; FasL mRNA was detected in the tumours using in situ hybridisation. Cell death was detected in situ in tumour infiltrating lymphocytes using terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL). Prevalent expression of FasL was detected in all 30 resected gastric adenocarcinomas examined. In the tumours, FasL protein and mRNA were co-localised to neoplastic gastric epithelial cells, confirming expression by the tumour cells. FasL expression was independent of tumour stage, suggesting that it may be expressed throughout gastric cancer progression. TUNEL staining disclosed a high level of cell death among lymphocytes infiltrating FasL positive areas of tumour. Human gastric adenocarcinomas express the immune downregulatory molecule, FasL. The results suggest that FasL is a prevalent mediator of immune privilege in stomach cancer.

  7. miR-20a Regulates FAS Expression in Osteosarcoma Cells by Modulating FAS Promoter Activity and Can be Therapeutically Targeted to Inhibit Lung Metastases.

    PubMed

    Yang, Yuanzheng; Huang, Gangxiong; Zhou, Zhichao; Fewell, Jason G; Kleinerman, Eugenie S

    2018-01-01

    The metastatic potential of osteosarcoma cells is inversely correlated to cell surface FAS expression. Downregulation of FAS allows osteosarcoma cells to escape FAS ligand-mediated apoptosis when they enter a FAS ligand-positive microenvironment such as the lung. We have previously demonstrated that miR-20a, encoded by the miR-17-92 cluster, downregulates FAS expression in osteosarcoma. We further demonstrated an inverse correlation between FAS expression and miR-20a expression. However, the mechanism of FAS regulation by miR-20a was still unclear. The purpose of the current study was to evaluate the mechanism of FAS regulation by miR-20a in vitro and test the effect of targeting miR-20a in vivo We investigated whether miR-20a's downregulation of FAS was mediated by binding to the 3'-untranslated region (3'-UTR) of FAS mRNA with the consequent induction of mRNA degradation or translational suppression. We identified and mutated two miR-20a binding sites on the FAS mRNA 3'-UTR. Using luciferase reporter assays, we demonstrated that miR-20a did not bind to either the wild-type or mutated FAS 3'-UTR. In contrast, overexpression of miR-20a resulted in downregulation of FAS promoter activity. Similarly, the inhibition of miR-20a increased FAS promoter activity. The critical region identified on the FAS promoter was between -240 bp and -150 bp. Delivery of anti-miR-20a in vivo using nanoparticles in mice with established osteosarcoma lung metastases resulted in upregulation of FAS and tumor growth inhibition. Taken together, our data suggest that miR-20a regulates FAS expression through the modulation of the FAS promoter and that targeting miR-20a using anti-miR-20a has therapeutic potential. Mol Cancer Ther; 17(1); 130-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Postprandial Inflammatory Responses and Free Fatty Acids in Plasma of Adults Who Consumed a Moderately High-Fat Breakfast with and without Blueberry Powder in a Randomized Placebo-Controlled Trial.

    PubMed

    Ono-Moore, Kikumi D; Snodgrass, Ryan G; Huang, Shurong; Singh, Shamsher; Freytag, Tammy L; Burnett, Dustin J; Bonnel, Ellen L; Woodhouse, Leslie R; Zunino, Susan J; Peerson, Janet M; Lee, Joo Young; Rutledge, John C; Hwang, Daniel H

    2016-07-01

    Saturated fatty acids (FAs) released from triglyceride-rich lipoproteins (TGRLs) activate Toll-like receptor 2 (TLR-2) and induce the expression of proinflammatory cytokines in monocytes. Certain plant polyphenols inhibit TLR-mediated signaling pathways. We determined whether plasma free FAs (FFAs) after a moderately high-fat (MHF, 40% kcal from fat) breakfast modulate the inflammatory status of postprandial blood, and whether blueberry intake suppresses FFA-induced inflammatory responses in healthy humans. Twenty-three volunteers with a mean ± SEM age and body mass index (in kg/m(2)) of 30 ± 3 y and 21.9 ± 0.4, respectively, consumed an MHF breakfast with either a placebo powder or 2 or 4 servings of blueberry powder in a randomized crossover design. The placebo powder was provided on the first test day and the blueberry powder doses were randomized with a 2-wk washout period. Plasma concentrations of lipids, glucose, and cytokines were determined. To determine whether FFAs derived from TGRL stimulate monocyte activation, and whether this is inhibited by blueberry intake, whole blood was treated with lipoprotein lipase (LPL). The median concentrations of FFAs and cytokines [tumor necrosis factor-α, interleukin (IL)-6 and IL-8] in postprandial plasma (3.5 h) decreased compared with fasting plasma regardless of the blueberry intake (P < 0.001 for FFAs and P < 0.05 for cytokines). However, concentrations of FFAs and cytokines including IL-1β increased in LPL-treated whole blood compared with untreated blood samples from participants who consumed the placebo powder. Blueberry intake suppressed IL-1β and IL-6 production in LPL-treated postprandial blood compared with the placebo control when fasting changes were used as a covariate. The plasma FFA concentration may be an important determinant affecting inflammatory cytokine production in blood. Supplementation with blueberry powder did not affect plasma FFA and cytokine concentrations; however, it attenuated the cytokine production induced by ex vivo treatment of whole blood with LPL. This trial was registered at clinicaltrials.gov as NCT01594008. © 2016 American Society for Nutrition.

  9. FAS system deregulation in T-cell lymphoblastic lymphoma

    PubMed Central

    Villa-Morales, M; Cobos, M A; González-Gugel, E; Álvarez-Iglesias, V; Martínez, B; Piris, M A; Carracedo, A; Benítez, J; Fernández-Piqueras, J

    2014-01-01

    The acquisition of resistance towards FAS-mediated apoptosis may be required for tumor formation. Tumors from various histological origins exhibit FAS mutations, the most frequent being hematological malignancies. However, data regarding FAS mutations or FAS signaling alterations are still lacking in precursor T-cell lymphoblastic lymphomas (T-LBLs). The available data on acute lymphoblastic leukemia, of precursor origin as well, indicate a low frequency of FAS mutations but often report a serious reduction in FAS-mediated apoptosis as well as chemoresistance, thus suggesting the occurrence of mechanisms able to deregulate the FAS signaling pathway, different from FAS mutation. Our aim at this study was to determine whether FAS-mediated apoptotic signaling is compromised in human T-LBL samples and the mechanisms involved. This study on 26 T-LBL samples confirms that the FAS system is impaired to a wide extent in these tumors, with 57.7% of the cases presenting any alteration of the pathway. A variety of mechanisms seems to be involved in such alteration, in order of frequency the downregulation of FAS, the deregulation of other members of the pathway and the occurrence of mutations at FAS. Considering these results together, it seems plausible to think of a cumulative effect of several alterations in each T-LBL, which in turn may result in FAS/FASLG system deregulation. Since defective FAS signaling may render the T-LBL tumor cells resistant to apoptotic cell death, the correct prognosis, diagnosis and thus the success of anticancer therapy may require such an in-depth knowledge of the complete scenario of FAS-signaling alterations. PMID:24603338

  10. Pigment Epithelial-derived Factor (PEDF)-triggered Lung Cancer Cell Apoptosis Relies on p53 Protein-driven Fas Ligand (Fas-L) Up-regulation and Fas Protein Cell Surface Translocation*

    PubMed Central

    Li, Lei; Yao, Ya-Chao; Fang, Shu-Huan; Ma, Cai-Qi; Cen, Yi; Xu, Zu-Min; Dai, Zhi-Yu; Li, Cen; Li, Shuai; Zhang, Ting; Hong, Hong-Hai; Qi, Wei-Wei; Zhou, Ti; Li, Chao-Yang; Yang, Xia; Gao, Guo-Quan

    2014-01-01

    Pigment epithelium-derived factor (PEDF), a potent antiangiogenesis agent, has recently attracted attention for targeting tumor cells in several types of tumors. However, less is known about the apoptosis-inducing effect of PEDF on human lung cancer cells and the underlying molecular events. Here we report that PEDF has a growth-suppressive and proapoptotic effect on lung cancer xenografts. Accordingly, in vitro, PEDF apparently induced apoptosis in A549 and Calu-3 cells, predominantly via the Fas-L/Fas death signaling pathway. Interestingly, A549 and Calu-3 cells are insensitive to the Fas-L/Fas apoptosis pathway because of the low level of cell surface Fas. Our results revealed that, in addition to the enhancement of Fas-L expression, PEDF increased the sensitivity of A549 and Calu-3 cells to Fas-L-mediated apoptosis by triggering the translocation of Fas protein to the plasma membrane in a p53- and FAP-1-dependent manner. Similarly, the up-regulation of Fas-L by PEDF was also mediated by p53. Furthermore, peroxisome proliferator-activated receptor γ was determined to be the upstream regulator of p53. Together, these findings uncover a novel mechanism of tumor cell apoptosis induced by PEDF and provide a potential therapeutic strategy for tumors that are insensitive to Fas-L/Fas-dependent apoptosis because of a low level of cell surface Fas. PMID:25225287

  11. Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca

    PubMed Central

    Bruns, Hilke; Riclea, Ramona

    2011-01-01

    Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549

  12. Protective Efficacy of Vitamins C and E on p,p′-DDT-Induced Cytotoxicity via the ROS-Mediated Mitochondrial Pathway and NF-κB/FasL Pathway

    PubMed Central

    Jin, Xiaoting; Song, Li; Liu, Xiangyuan; Chen, Meilan; Li, Zhuoyu; Cheng, Long; Ren, Hua

    2014-01-01

    Dichlorodiphenoxytrichloroethane (DDT) is a known persistent organic pollutant and liver damage toxicant. However, there has been little emphasis on the mechanism underlying liver damage toxicity of DDT and the relevant effective inhibitors. Hence, the present study was conducted to explore the protective effects of vitamin C (VC) and vitamin E (VE) on the cytotoxicity of DDT in HL-7702 cells and elaborate the specific molecular mechanisms. The results demonstrated that p,p′-DDT exposure at over 10 µM depleted cell viability of HL-7702 cells and led to cell apoptotic. p,p′-DDT treatment elevated the level of reactive oxygen species (ROS) generation, induced mitochondrial membrane potential, and released cytochrome c into the cytosol, with subsequent elevations of Bax and p53, along with suppression of Bcl-2. In addition, the activations of caspase-3 and -8 were triggered. Furthermore, p,p′-DDT promoted the expressions of NF-κB and FasL. When the cells were exposed to the NF-κB inhibitor (PDTC), the up-regulated expression of FasL was attenuated. Strikingly, these alterations caused by DDT treatment were prevented or reversed by the addition of VC or VE, and the protective effects of co-treatment with VC and VE were higher than the single supplement with p,p′-DDT. Taken together, these findings provide novel experimental evidences supporting that VC or/and VE could reduce p,p′-DDT-induced cytotoxicity of HL-7702 cells via the ROS-mediated mitochondrial pathway and NF-κB/FasL pathway. PMID:25464339

  13. Altered saturated and monounsaturated plasma phospholipid fatty acid profiles in adult males with colon adenomas

    PubMed Central

    Pickens, C. Austin; Lane-Elliot, Ami; Comstock, Sarah S.; Fenton, Jenifer I.

    2016-01-01

    Background Altered lipid metabolism and plasma fatty acid (FA) levels are associated with colorectal cancer (CRC). Obesity and elevated waist circumference (WC) increase the likelihood of developing precancerous colon adenomas. Methods Venous blood was collected from 126 males, ages 48 to 65 years, who received routine colonoscopies. Plasma phospholipid (PPL) FAs were isolated, derivatized, and then analyzed using gas chromatography. Odds ratios (ORs) and 95% confidence intervals were determined using polytomous logistic regression after adjusting for confounding factors (i.e. age, smoking, WC, and BMI). Results PPL palmitic acid (PA) was inversely correlated with the presence of colon adenomas (p = 0.01). For each unit increase in palmitoleic acid (OR: 3.75, p = 0.04) or elaidic acid (OR: 2.92, p = 0.04) an individual was more likely to have adenomas relative to no colon polyps. Higher enzyme activity estimates (EAEs) of stearoyl-CoA desaturase-1 (SCD-1, p = 0.02) and elongation of very long chain-6 (Elovl-6, p = 0.03) were associated with an individual being approximately 1.5 times more likely to have an adenoma compared to no polyps. Conclusions PPL FAs and EAEs, which have previously been associated with CRC, are significantly different in those with adenomas when compared to those without polyps. PPL PA, elaidic acid, and SCD-1 and Elovl-6 EAEs are associated with adenomas independent of BMI and WC. Impact PPL PA, elaidic acid, and SCD-1 and Elovl-6 EAEs are associated with adenomas even after adjusting for obesity-related risk factors and may function as novel biomarkers of early CRC risk. PMID:26721667

  14. A Palmitic Acid Elongase Affects Eicosapentaenoic Acid and Plastidial Monogalactosyldiacylglycerol Levels in Nannochloropsis.

    PubMed

    Dolch, Lina-Juana; Rak, Camille; Perin, Giorgio; Tourcier, Guillaume; Broughton, Richard; Leterrier, Marina; Morosinotto, Tomas; Tellier, Frédérique; Faure, Jean-Denis; Falconet, Denis; Jouhet, Juliette; Sayanova, Olga; Beaudoin, Frédéric; Maréchal, Eric

    2017-01-01

    Nannochloropsis species are oleaginous eukaryotes containing a plastid limited by four membranes, deriving from a secondary endosymbiosis. In Nannochloropsis, thylakoid lipids, including monogalactosyldiacylglycerol (MGDG), are enriched in eicosapentaenoic acid (EPA). The need for EPA in MGDG is not understood. Fatty acids are de novo synthesized in the stroma, then converted into very-long-chain polyunsaturated fatty acids (FAs) at the endoplasmic reticulum (ER). The production of MGDG relies therefore on an EPA supply from the ER to the plastid, following an unknown process. We identified seven elongases and five desaturases possibly involved in EPA production in Nannochloropsis gaditana Among the six heterokont-specific saturated FA elongases possibly acting upstream in this pathway, we characterized the highly expressed isoform Δ0-ELO1 Heterologous expression in yeast (Saccharomyces cerevisiae) showed that NgΔ0-ELO1 could elongate palmitic acid. Nannochloropsis Δ0-elo1 mutants exhibited a reduced EPA level and a specific decrease in MGDG In NgΔ0-elo1 lines, the impairment of photosynthesis is consistent with a role of EPA-rich MGDG in nonphotochemical quenching control, possibly providing an appropriate MGDG platform for the xanthophyll cycle. Concomitantly with MGDG decrease, the level of triacylglycerol (TAG) containing medium chain FAs increased. In Nannochloropsis, part of EPA used for MGDG production is therefore biosynthesized by a channeled process initiated at the elongation step of palmitic acid by Δ0-ELO1, thus acting as a committing enzyme for galactolipid production. Based on the MGDG/TAG balance controlled by Δ0-ELO1, this study also provides novel prospects for the engineering of oleaginous microalgae for biotechnological applications. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. A Palmitic Acid Elongase Affects Eicosapentaenoic Acid and Plastidial Monogalactosyldiacylglycerol Levels in Nannochloropsis1

    PubMed Central

    Dolch, Lina-Juana; Rak, Camille; Broughton, Richard; Leterrier, Marina; Tellier, Frédérique; Faure, Jean-Denis; Falconet, Denis; Jouhet, Juliette

    2017-01-01

    Nannochloropsis species are oleaginous eukaryotes containing a plastid limited by four membranes, deriving from a secondary endosymbiosis. In Nannochloropsis, thylakoid lipids, including monogalactosyldiacylglycerol (MGDG), are enriched in eicosapentaenoic acid (EPA). The need for EPA in MGDG is not understood. Fatty acids are de novo synthesized in the stroma, then converted into very-long-chain polyunsaturated fatty acids (FAs) at the endoplasmic reticulum (ER). The production of MGDG relies therefore on an EPA supply from the ER to the plastid, following an unknown process. We identified seven elongases and five desaturases possibly involved in EPA production in Nannochloropsis gaditana. Among the six heterokont-specific saturated FA elongases possibly acting upstream in this pathway, we characterized the highly expressed isoform Δ0-ELO1. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that NgΔ0-ELO1 could elongate palmitic acid. Nannochloropsis Δ0-elo1 mutants exhibited a reduced EPA level and a specific decrease in MGDG. In NgΔ0-elo1 lines, the impairment of photosynthesis is consistent with a role of EPA-rich MGDG in nonphotochemical quenching control, possibly providing an appropriate MGDG platform for the xanthophyll cycle. Concomitantly with MGDG decrease, the level of triacylglycerol (TAG) containing medium chain FAs increased. In Nannochloropsis, part of EPA used for MGDG production is therefore biosynthesized by a channeled process initiated at the elongation step of palmitic acid by Δ0-ELO1, thus acting as a committing enzyme for galactolipid production. Based on the MGDG/TAG balance controlled by Δ0-ELO1, this study also provides novel prospects for the engineering of oleaginous microalgae for biotechnological applications. PMID:27895203

  16. Role of Inflammation and Insulin Resistance in Mouse Models of Breast Cancer

    DTIC Science & Technology

    2012-04-01

    understood. We have found that the anti-inflammatory and insulin sensitizing effects of omega-3 fatty acids (ω3 FAs) are mediated by a specific G...the test group receive standard diet supplemented with ω3 FA (EPA and DHA ) while preserving total calories from fat. BODY: Task 1: Treating mice

  17. Fatty acid profiles among the Inuit of Nunavik: current status and temporal change.

    PubMed

    Proust, Françoise; Lucas, Michel; Dewailly, Eric

    2014-05-01

    The Inuit undergo substantial changes in their lifestyle, but few data exist on how these changes occur in biomarkers, such as polyunsaturated fatty acids (PUFAs). Here, we report data from a cross-sectional survey conducted in 2004 among 861 representative Nunavik Inuit adults, in whom FAs were measured in red blood cells (RBCs). FAs were also measured in plasma phospholipids (n=452) to assess temporal trend by comparing plasma PUFAs measured in 1992. Food intakes were estimated using a validated food frequency questionnaire. In 2004, marine food intake was 84±4g/d (±SEM). Adjusted-mean of RBC omega-3 was significantly higher, and omega-6 lower, in older age groups (Ptrend<0.001). In 2004, plasma omega-3 was 25% lower, while omega-6 was 9% higher, compared to 1992. Our study revealed that Nunavik Inuit adults still have high RBC omega-3, but show signs of nutritional transition - as indicated by lower omega-3 and higher trans-fats in RBCs of young compared to older. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Commercial sheep flocks--fatty acid and fat-soluble antioxidant composition of milk and cheese related to changes in feeding management throughout lactation.

    PubMed

    Valdivielso, Izaskun; Bustamante, María Ángeles; Buccioni, Arianna; Franci, Oreste; Ruiz de Gordoa, Juan Carlos; de Renobales, Mertxe; Barron, Luis Javier R

    2015-08-01

    Fatty acids (FAs), tocopherols and retinoids were analysed in raw milk and cheese from six commercial sheep flocks monitored from early lactation in winter to late lactation in summer. In winter, animals received concentrate and forage indoors; in early spring, animals grazed part-time on cultivated or natural valley grasslands; and from mid spring on, animals were kept outdoors constantly on mountain natural pastures. Mountain grazing in late lactation significantly increased the amount of healthy desirable unsaturated FAs such as C18:1t11 (VA), C18:2c9t11 (RA), C18:2t11c13, C18:3c9c12c15 (ALA) and C20:5c5c8c11c14c17 (EPA), and those of α-tocopherol and α-tocotrienol of milk and cheese. Stepwise discriminant analysis was applied to classify cheese samples according to seasonal feeding management. The multivariate approach was able to discriminate beyond doubt mountain cheeses from those of indoor feeding and part-time valley grazing.

  19. TRPV1 recapitulates native capsaicin receptor in sensory neurons in association with Fas-associated factor 1.

    PubMed

    Kim, Sangsung; Kang, Changjoong; Shin, Chan Young; Hwang, Sun Wook; Yang, Young Duk; Shim, Won Sik; Park, Min-Young; Kim, Eunhee; Kim, Misook; Kim, Byung-Moon; Cho, Hawon; Shin, Youngki; Oh, Uhtaek

    2006-03-01

    TRPV1, a cloned capsaicin receptor, is a molecular sensor for detecting adverse stimuli and a key element for inflammatory nociception and represents biophysical properties of native channel. However, there seems to be a marked difference between TRPV1 and native capsaicin receptors in the pharmacological response profiles to vanilloids or acid. One plausible explanation for this overt discrepancy is the presence of regulatory proteins associated with TRPV1. Here, we identify Fas-associated factor 1 (FAF1) as a regulatory factor, which is coexpressed with and binds to TRPV1 in sensory neurons. When expressed heterologously, FAF1 reduces the responses of TRPV1 to capsaicin, acid, and heat, to the pharmacological level of native capsaicin receptor in sensory neurons. Furthermore, silencing FAF1 by RNA interference augments capsaicin-sensitive current in native sensory neurons. We therefore conclude that FAF1 forms an integral component of the vanilloid receptor complex and that it constitutively modulates the sensitivity of TRPV1 to various noxious stimuli in sensory neurons.

  20. Terbinafine Resistance Mediated by Salicylate 1-Monooxygenase in Aspergillus nidulans

    PubMed Central

    Graminha, Marcia A. S.; Rocha, Eleusa M. F.; Prade, Rolf A.; Martinez-Rossi, Nilce M.

    2004-01-01

    Resistance to antifungal agents is a recurring and growing problem among patients with systemic fungal infections. UV-induced Aspergillus nidulans mutants resistant to terbinafine have been identified, and we report here the characterization of one such gene. A sib-selected, 6.6-kb genomic DNA fragment encodes a salicylate 1-monooxygenase (salA), and a fatty acid synthase subunit (fasC) confers terbinafine resistance upon transformation of a sensitive strain. Subfragments carrying salA but not fasC confer terbinafine resistance. salA is present as a single-copy gene on chromosome VI and encodes a protein of 473 amino acids that is homologous to salicylate 1-monooxygenase, a well-characterized naphthalene-degrading enzyme in bacteria. salA transcript accumulation analysis showed terbinafine-dependent induction in the wild type and the UV-induced mutant Terb7, as well as overexpression in a strain containing the salA subgenomic DNA fragment, probably due to the multicopy effect caused by the transformation event. Additional naphthalene degradation enzyme-coding genes are present in fungal genomes, suggesting that resistance could follow degradation of the naphthalene ring contained in terbinafine. PMID:15328121

  1. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase.

    PubMed

    Pandey, Puspa R; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Liu, Wen; Kobayashi, Aya; Xing, Fei; Fukuda, Koji; Hirota, Shigeru; Sugai, Tamotsu; Wakabayashi, Go; Koeda, Keisuke; Kashiwaba, Masahiro; Suzuki, Kazuyuki; Chiba, Toshimi; Endo, Masaki; Fujioka, Tomoaki; Tanji, Susumu; Mo, Yin-Yuan; Cao, Deliang; Wilber, Andrew C; Watabe, Kounosuke

    2011-11-01

    Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24(-)/CD44(+)/ESA(+)) that were isolated from both ER+ and ER- breast cancer cell lines was examined. The authors found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, the results of this study indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol.

  2. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase

    PubMed Central

    Pandey, Puspa R.; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K.; Liu, Wen; Kobayashi, Aya; Xing, Fei; Fukuda, Koji; Hirota, Shigeru; Sugai, Tamotsu; Wakabayashi, Go; Koeda, Keisuke; Kashiwaba, Masahiro; Suzuki, Kazuyuki; Chiba, Toshimi; Endo, Masaki; Fujioka, Tomoaki; Tanji, Susumu; Mo, Yin-Yuan; Cao, Deliang; Wilber, Andrew C.; Watabe, Kounosuke

    2012-01-01

    Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, we examined the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24−/CD44+/ESA+) that were isolated from both ER+ and ER− breast cancer cell lines. We found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, our results indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol. PMID:21188630

  3. Intravenous ω-3 Fatty Acids Plus Gemcitabine.

    PubMed

    Arshad, Ali; Isherwood, John; Mann, Christopher; Cooke, Jill; Pollard, Cristina; Runau, Franscois; Morgan, Bruno; Steward, William; Metcalfe, Matthew; Dennison, Ashley

    2017-03-01

    Marine-derived ω-3 fatty acids (ω-3FAs) have proven antitumor activity in vivo and in vitro and improve quality of life (QOL) in clinical cancer studies. These changes may be mediated by reduction in circulating proangiogenic and proinflammatory factors. In this first study of intravenous ω-3FAs as a therapy in cancer patients, we aimed to assess if it could augment the antitumor activity of gemcitabine in patients with advanced pancreatic cancer and improve QOL. Patients were administered gemcitabine 1000 mg/m 3 weekly followed by up to 100 g (200 mg/mL) of ω-3 rich lipid emulsion for 3 weeks followed by a rest week. This was continued for up to 6 cycles, progression, unacceptable toxicity, patient request, or death. The primary outcome measure was objective response rate, with secondary outcome measures of overall and progression free survival, QOL scores, and adverse events. Fifty patients were recruited. Response rate was 14.3% and disease control rate was 85.7%. Overall and progression free survival were 5.9 and 4.8 months, respectively. Increase in global health of > 10% over baseline was seen in 47.2% of patients. More than 50% of patients had > 10% increase in QOL scores in generic symptom scores and both disease-specific domains. Grade 3/4 adverse events were thrombocytopenia (8%), neutropenia (12%), nausea or vomiting (4%), and chills (6%). Intravenous ω-3FAs in combination with gemcitabine shows evidence of improved activity and benefit to QOL in patients with advanced pancreas cancer and is worthy of investigation in a randomized phase III trial.

  4. Serum Phospholipid Fatty Acid Composition in Cystic Fibrosis Patients with and without Liver Cirrhosis.

    PubMed

    Drzymała-Czyż, Sławomira; Szczepanik, Mariusz; Krzyżanowska, Patrycja; Duś-Żuchowska, Monika; Pogorzelski, Andrzej; Sapiejka, Ewa; Juszczak, Paweł; Lisowska, Aleksandra; Koletzko, Berthold; Walkowiak, Jarosław

    2017-01-01

    Cystic fibrosis (CF) liver disease is the third most frequent cause of death in CF patients. Although it alters fatty acid (FA) metabolism, data concerning the profile of FA in CF patients with liver cirrhosis is lacking. This study aimed to assess the FA composition of serum phospholipids in CF patients with and without liver cirrhosis. The study comprised 25 CF patients with liver cirrhosis and 25 without it. We assessed Z-scores for body height and weight, lung function, exocrine pancreatic sufficiency and colonization with Pseudomonas aeruginosa. FAs' profile of serum glycerophospholipids was quantified by gas chromatography mass spectrometry. In CF patients with liver cirrhosis, the levels of C16:0 were higher and the amounts of C20:2n-6, C20:3n-6, C20:4n-6, and all the n-3 polyunsaturated FAs (PUFAs) (C18:3n-3, C20:5n-3, C22:5n-3, C22:6n-3) were lower than those in CF subjects without liver cirrhosis. The n-6/n-3, C20:4n-6/C18:2n-6, total n-6/C18:2n-6, C20:5n-3/C18:3n-3 and total n-3/C18:3n-3 ratios did not differ between the 2 groups. Liver cirrhosis may associate with profound abnormalities in the composition of serum glycerophospholipids FAs in CF patients. None of the analyzed clinical factors could explain the greater prevalence of low levels of PUFAs in this CF subgroup. © 2017 S. Karger AG, Basel.

  5. Trivalent Chromium Supplementation Ameliorates Oleic Acid-Induced Hepatic Steatosis in Mice.

    PubMed

    Wang, Song; Wang, Jian; Liu, Yajing; Li, Hui; Wang, Qiao; Huang, Zhiwei; Liu, Wenbin; Shi, Ping

    2018-05-24

    Trivalent chromium [Cr(III)] is recognized as an essential trace element for human health, whereas its effect on hepatic lipid metabolism has not yet been fully understood. This study aimed to investigate the beneficial effects and potential mechanisms of Cr(III) on hepatic steatosis in an oleic acid (OA) induced mice model. Mice were fed with high OA for 12 weeks to induce lipid accumulation, and co-administrated with Cr(III) supplementation. Indexes of liver lipid accumulation, associated lipid genes expression, fatty acids (FAs) profile and inflammatory cytokines were analyzed. The data showed that Cr(III) supplementation could attenuate disease progress of hepatic steatosis and protect liver from high OA. After Cr(III) supplementation, elevated body weight and liver injury in steatosis mice were reversed, excessive lipid accumulation and FAs were also reduced. The up-regulation of cluster of differentiation 36 (CD36) and diacylglycerol acyltransferase 2 (DGAT2) following steatosis induction were inhibited by Cr(III). Cr(III) reduced the content of pro-inflammatory cytokines (IL-1β and TNF-α, IL-12) and restored the level of anti-inflammatory cytokine (IL-10) to the control values. Our results suggest that Cr(III) supplementation is a novel strategy for alleviating OA-induced hepatic steatosis.

  6. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.

    PubMed

    Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin

    2009-05-28

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.

  7. Intensive lifestyle intervention provides rapid reduction of serum fatty acid levels in women with severe obesity without lowering omega-3 to unhealthy levels.

    PubMed

    Lin, C; Andersen, J R; Våge, V; Rajalahti, T; Mjøs, S A; Kvalheim, O M

    2016-08-01

    Serum fatty acid (FA) levels were monitored in women with severe obesity during intensive lifestyle intervention. At baseline, total FA levels and most individual FAs were elevated compared to a matching cohort of normal and overweight women (healthy controls). After 3 weeks of intensive lifestyle intervention, total level was only 11-12% higher than in the healthy controls and with almost all FAs being significantly lower than at baseline, but with levels of omega-3 being similar to the healthy controls. This is contrary to observations for patients subjected to bariatric surgery where omega-3 levels dropped to levels significantly lower than in the lifestyle patients and healthy controls. During the next 3 weeks of treatment, the FA levels in lifestyle patients were unchanged, while the weight loss continued at almost the same rate as in the first 3 weeks. Multivariate analysis revealed that weight loss and change of serum FA patterns were unrelated outcomes of the intervention for lifestyle patients. For bariatric patients, these processes were associated probably due to reduced dietary input and increased input from the patients' own fat deposits, causing a higher rate of weight loss and simultaneous reduction of the ratio of serum eicosapentaenoic to arachidonic acid. © 2016 World Obesity.

  8. Associations between omega-3 fatty acids and 25(OH)D and psychological distress among Inuit in Canada.

    PubMed

    Skogli, Hans-Ragnar; Geoffroy, Dominique; Weiler, Hope A; Tell, Grethe S; Kirmayer, Laurence J; Egeland, Grace M

    2017-01-01

    Inuit in Canada have experienced dietary changes over recent generations, but how this relates to psychological distress has not been investigated. To evaluate how nutritional biomarkers are related to psychological distress. A total of 36 communities in northern Canada participated in the International Polar Year Inuit Health Survey (2007-2008). Of 2796 households, 1901 (68%) participated; 1699 Inuit adults gave blood samples for biomarker analysis and answered the Kessler 6-item psychological distress questionnaire (K6). Biomarkers included n-3 fatty acids and 25-hydroxyvitamin D (25(OH)D). The K6 screens for psychological distress over the last 30 days with six items scored on a 4-point scale. A total score of 13 or more indicates serious psychological distress (SPD). Logistic regression models were used to investigate any associations between SPD and biomarkers while controlling for age, gender, marital status, days spent out on the land, feeling of being alone, income and smoking. The 30-day SPD prevalence was 11.2%, with women below 30 years having the highest and men 50 years and more having the lowest SPD prevalence at 16.1% and 2.6%, respectively. SPD was associated with being female, younger age, not being married or with a common-law partner, spending few days out on the land, feelings of being alone, smoking and low income. Low levels of both 25(OH)D and long-chain n-3 FAs were associated with higher odds for SPD in both unadjusted and adjusted logistic regression models. In this cross-sectional analysis, low levels of 25(OH)D and long-chain n-3 FAs were associated with higher odds ratios for SPD, which highlights the potential impact of traditional foods on mental health and wellbeing. Cultural practices are also important for mental health and it may be that the biomarkers serve as proxies for cultural activities related to food collection, sharing and consumption that increase both biomarker levels and psychological well-being. n-3 FAs: omega-3 fatty acids; PUFAs: polyunsaturated fatty acids; 25(OH)D: 25-hydroxyvitamin D; IPY: International Polar Year; IHS : Inuit Health Survey; RBC: red blood cell; OR: odds ratio; K6: Kessler 6-item screening scale; SPD: serious psychological distress; EPA: eicosapentaenoic acid (20:5 n-3); DHA: docosahexaenoic acid (22:6 n-3); DPA n-3: docosapentaenoic acid (22:5 n-3); n-3 LC-PUFAs: EPA (20:5 n-3) + DHA (22:6 n-3) + DPA (22:5 n-3); BMI: body mass index (kg m - 2 ).

  9. Structural and Binding Properties of Two Paralogous Fatty Acid Binding Proteins of Taenia solium Metacestode

    PubMed Central

    Yang, Hyun-Jong; Shin, Joo-Ho; Diaz-Camacho, Sylvia Paz; Nawa, Yukifumi; Kang, Insug; Kong, Yoon

    2012-01-01

    Background Fatty acid (FA) binding proteins (FABPs) of helminths are implicated in acquisition and utilization of host-derived hydrophobic substances, as well as in signaling and cellular interactions. We previously demonstrated that secretory hydrophobic ligand binding proteins (HLBPs) of Taenia solium metacestode (TsM), a causative agent of neurocysticercosis (NC), shuttle FAs in the surrounding host tissues and inwardly transport the FAs across the parasite syncytial membrane. However, the protein molecules responsible for the intracellular trafficking and assimilation of FAs have remained elusive. Methodology/Principal Findings We isolated two novel TsMFABP genes (TsMFABP1 and TsMFABP2), which encoded 133- and 136-amino acid polypeptides with predicted molecular masses of 14.3 and 14.8 kDa, respectively. They shared 45% sequence identity with each other and 15–95% with other related-members. Homology modeling demonstrated a characteristic β-barrel composed of 10 anti-parallel β-strands and two α-helices. TsMFABP2 harbored two additional loops between β-strands two and three, and β-strands six and seven, respectively. TsMFABP1 was secreted into cyst fluid and surrounding environments, whereas TsMFABP2 was intracellularly confined. Partially purified native proteins migrated to 15 kDa with different isoelectric points of 9.2 (TsMFABP1) and 8.4 (TsMFABP2). Both native and recombinant proteins bound to 11-([5-dimethylaminonaphthalene-1-sulfonyl]amino)undecannoic acid, dansyl-DL-α-amino-caprylic acid, cis-parinaric acid and retinol, which were competitively inhibited by oleic acid. TsMFABP1 exhibited high affinity toward FA analogs. TsMFABPs showed weak binding activity to retinol, but TsMFABP2 showed relatively high affinity. Isolation of two distinct genes from an individual genome strongly suggested their paralogous nature. Abundant expression of TsMFABP1 and TsMFABP2 in the canal region of worm matched well with the histological distributions of lipids and retinol. Conclusions/Significance The divergent biochemical properties, physiological roles and cellular distributions of the TsMFABPs might be one of the critical mechanisms compensating for inadequate de novo FA synthesis. These proteins might exert harmonized or independent roles on lipid assimilation and intracellular signaling. The specialized distribution of retinol in the canal region further implies that cells in this region might differentiate into diverse cell types during metamorphosis into an adult worm. Identification of bioactive systems pertinent to parasitic homeostasis may provide a valuable target for function-related drug design. PMID:23150743

  10. Development of the SoFAS (solid fats and added sugars) concept: the 2010 Dietary Guidelines for Americans.

    PubMed

    Nicklas, Theresa A; O'Neil, Carol E

    2015-05-01

    The diets of most US children and adults are poor, as reflected by low diet quality scores, when compared with the recommendations of the Dietary Guidelines for Americans (DGAs). Contributing to these low scores is that most Americans overconsume solid fats, which may contain saturated fatty acids and added sugars; although alcohol consumption was generally modest, it provided few nutrients. Thus, the 2005 DGAs generated a new recommendation: to reduce intakes of solid fats, alcohol, and added sugars (SoFAAS). What precipitated the emergence of the new SoFAAS terminology was the concept of discretionary calories (a "calorie" is defined as the amount of energy needed to increase the temperature of 1 kg of water by 1°C), which were defined as calories consumed after an individual had met his or her recommended nutrient intakes while consuming fewer calories than the daily recommendation. A limitation with this concept was that additional amounts of nutrient-dense foods consumed beyond the recommended amount were also considered discretionary calories. The rationale for this was that if nutrient-dense foods were consumed beyond recommended amounts, after total energy intake was met then this constituted excess energy intake. In the 2010 DGAs, the terminology was changed to solid fats and added sugars (SoFAS); thus, alcohol was excluded because it made a minor contribution to overall intake and did not apply to children. The SoFAS terminology also negated nutrient-dense foods that were consumed in amounts above the recommendations for the specific food groups in the food patterns. The ambiguous SoFAS terminology was later changed to "empty calories" to reflect only those calories from solid fats and added sugars (and alcohol if consumed beyond moderate amounts). The purpose of this review is to provide an historical perspective on how the dietary recommendations went from SoFAAS to SoFAS and how discretionary calories went to empty calories between the 2005 and 2010 DGAs. This information will provide practitioners, as well as the public, with valuable information to better understand the evolution of SoFAS over time. © 2015 American Society for Nutrition.

  11. Development of the SoFAS (Solid Fats and Added Sugars) Concept: The 2010 Dietary Guidelines for Americans123

    PubMed Central

    Nicklas, Theresa A; O’Neil, Carol E

    2015-01-01

    The diets of most US children and adults are poor, as reflected by low diet quality scores, when compared with the recommendations of the Dietary Guidelines for Americans (DGAs). Contributing to these low scores is that most Americans overconsume solid fats, which may contain saturated fatty acids and added sugars; although alcohol consumption was generally modest, it provided few nutrients. Thus, the 2005 DGAs generated a new recommendation: to reduce intakes of solid fats, alcohol, and added sugars (SoFAAS). What precipitated the emergence of the new SoFAAS terminology was the concept of discretionary calories (a “calorie” is defined as the amount of energy needed to increase the temperature of 1 kg of water by 1°C), which were defined as calories consumed after an individual had met his or her recommended nutrient intakes while consuming fewer calories than the daily recommendation. A limitation with this concept was that additional amounts of nutrient-dense foods consumed beyond the recommended amount were also considered discretionary calories. The rationale for this was that if nutrient-dense foods were consumed beyond recommended amounts, after total energy intake was met then this constituted excess energy intake. In the 2010 DGAs, the terminology was changed to solid fats and added sugars (SoFAS); thus, alcohol was excluded because it made a minor contribution to overall intake and did not apply to children. The SoFAS terminology also negated nutrient-dense foods that were consumed in amounts above the recommendations for the specific food groups in the food patterns. The ambiguous SoFAS terminology was later changed to “empty calories” to reflect only those calories from solid fats and added sugars (and alcohol if consumed beyond moderate amounts). The purpose of this review is to provide an historical perspective on how the dietary recommendations went from SoFAAS to SoFAS and how discretionary calories went to empty calories between the 2005 and 2010 DGAs. This information will provide practitioners, as well as the public, with valuable information to better understand the evolution of SoFAS over time. PMID:25979510

  12. Immunomodulatory Effect of H. Pylori CagA Genotype and Gastric Hormones On Gastric Versus Inflammatory Cells Fas Gene Expression in Iraqi Patients with Gastroduodenal Disorders.

    PubMed

    Al-Ezzy, Ali Ibrahim Ali

    2016-09-15

    To evaluate the Immunomodulatory effects of CagA expression; pepsinogen I, II & gastrin-17 on PMNs and lymphocytes Fas expression in inflammatory and gastric cells; demographic distribution of Fas molecule in gastric tissue and inflammatory cells. Gastroduodenal biopsies were taken from 80 patients for histopathology and H. pylori diagnosis. Serum samples were used for evaluation of pepsinogen I (PGI); (PGII); gastrin-17 (G-17). Significant difference (p < 0.001) in lymphocytes & PMNs Fas expression; epithelial & lamina propria Fas localization among H. pylori associated gastric disorders. No correlation between grade of lymphocytes & PMNs Fas expression in gastric epithelia; lamina propria and types of gastric disorder. Significant difference (p < 0.001) in total gastric Fas expression, epithelial Fas; lamina propria and gastric gland Fas expression according to CagA , PGI; PGII; PGI/PGII; Gastrin-17. Total gastric Fas expression has significant correlation with CagA , PGII levels. Gastric epithelial and gastric lamina propria Fas expression have significant correlation with CagA , PGI; PGII levels. Significant difference (p < 0.001) was found in lymphocytes & PMNs Fas expression; epithelial & lamina propria localization of lymphocytes & PMNs Fas expression according to CagA , PGI; PGII; PGI/PGII; Gastrin-17. Lymphocytes Fas expression have correlation with PGI, PGII, PGI/PGII. PMNs Fas expression have correlation with PGI, PGII. Fas gene expression and localization on gastric and inflammatory cells affected directly by H. pylori CagA and indirectly by gastric hormones. This contributes to progression of various gastric disorders according to severity of CagA induced gastric pathology and gastric hormones disturbance throughout the course of infection and disease.

  13. Transfer of Fas (CD95) protein from the cell surface to the surface of polystyrene beads coated with anti-Fas antibody clone CH-11

    PubMed Central

    Sawai, H.; Domae, N.

    2010-01-01

    Mouse monoclonal anti-Fas (CD95) antibody clone CH-11 has been widely used in research on apoptosis. CH-11 has the ability to bind to Fas protein on cell surface and induce apoptosis. Here, we used polystyrene beads coated with CH-11 to investigate the role of lipid rafts in Fas-mediated apoptosis in SKW6.4 cells. Unexpectedly, by treatment of the cells with CH-11-coated beads Fas protein was detached from cell surface and transferred to the surface of CH-11-coated beads. Western blot analysis showed that Fas protein containing both extracellular and intracellular domains was attached to the beads. Fas protein was not transferred from the cells to the surface of the beads coated with other anti-Fas antibodies or Fas ligand. Similar phenomenon was observed in Jurkat T cells. Furthermore, CH-11-induced apoptosis was suppressed by pretreatment with CH-11-coated beads in Jurkat cells. These results suggest that CH-11 might possess distinct properties on Fas protein compared with other anti-Fas antibodies or Fas ligand, and also suggest that caution should be needed to use polystyrene beads coated with antibodies such as CH-11. PMID:20353915

  14. Fas-Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis.

    PubMed

    Volpe, Elisabetta; Sambucci, Manolo; Battistini, Luca; Borsellino, Giovanna

    2016-01-01

    Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas-FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas-FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas-FasL in regulating Th17 and Treg cells' functions, in the context of MS.

  15. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection.

    PubMed

    Afford, S C; Randhawa, S; Eliopoulos, A G; Hubscher, S G; Young, L S; Adams, D H

    1999-01-18

    We propose that a novel mechanism of hepatocyte apoptosis, involving a cooperative interaction between CD40 and Fas, is involved in the hepatocyte loss of chronic liver allograft rejection. We detected increased hepatocyte expression of Fas, Fas ligand (FasL), and CD40 associated with dropout of centrilobular (acinar zone 3) hepatocytes in chronic allograft rejection. Expression of CD40 ligand (CD40L) was also increased but was largely restricted to CD68(+) macrophages. A functional role for CD40 and Fas in hepatocyte apoptosis was demonstrated in vitro using primary human hepatocytes and the HepG2 cell line in both of which apoptosis was induced, not only by cross-linking Fas directly but also via CD40 activation. Our data suggest that CD40 activation induces apoptosis via Fas because (a) ligation of CD40 upregulated hepatocyte FasL expression, and (b) apoptosis induced via activation of CD40 was prevented by a neutralizing monoclonal antibody to FasL. Thus, CD40 engagement triggers apoptosis of human hepatocytes and might amplify Fas-dependent hepatocyte apoptosis in chronic rejection and other inflammatory liver diseases in which Fas-mediated apoptosis is involved.

  16. The expression of Fas Ligand by macrophages and its upregulation by human immunodeficiency virus infection.

    PubMed Central

    Dockrell, D H; Badley, A D; Villacian, J S; Heppelmann, C J; Algeciras, A; Ziesmer, S; Yagita, H; Lynch, D H; Roche, P C; Leibson, P J; Paya, C V

    1998-01-01

    Fas/Fas Ligand (FasL) interactions play a significant role in peripheral T lymphocyte homeostasis and in certain pathological states characterized by T cell depletion. In this study, we demonstrate that antigen-presenting cells such as monocyte-derived human macrophages (MDM) but not monocyte-derived dendritic cells express basal levels of FasL. HIV infection of MDM increases FasL protein expression independent of posttranslational mechanisms, thus highlighting the virus-induced transcriptional upregulation of FasL. The in vitro relevance of these observations is confirmed in human lymphoid tissue. FasL protein expression is constitutive and restricted to tissue macrophages and not dendritic cells. Moreover, a significant increase in macrophage-associated FasL is observed in lymphoid tissue from HIV (+) individuals (P < 0.001), which is further supported by increased levels of FasL mRNA using in situ hybridization. The degree of FasL protein expression in vivo correlates with the degree of tissue apoptosis (r = 0.761, P < 0. 001), which is significantly increased in tissue from HIV-infected patients (P < 0.001). These results identify human tissue macrophages as a relevant source for FasL expression in vitro and in vivo and highlight the potential role of FasL expression in the immunopathogenesis of HIV infection. PMID:9616211

  17. Human Milk Plasmalogens Are Highly Enriched in Long-Chain PUFAs.

    PubMed

    Moukarzel, Sara; Dyer, Roger A; Keller, Bernd O; Elango, Rajavel; Innis, Sheila M

    2016-11-01

    Human milk contains unique glycerophospholipids, including ethanolamine-containing plasmalogens (Pls-PEs) in the milk fat globule membrane, which have been implicated in infant brain development. Brain Pls-PEs accumulate postnatally and are enriched in long-chain polyunsaturated fatty acids (LC-PUFAs), particularly docosahexaenoic acid (DHA). Fatty acid (FA) composition of Pls-PEs in milk is poorly understood because of the analytical challenges in separating Pls-PEs from other phospholipids in the predominating presence of triacylglycerols. The variability of Pls-PE FAs and the potential role of maternal diet remain unknown. Our primary objectives were to establish improved methodology for extracting Pls-PEs from human milk, enabling FA analysis, and to compare FA composition between Pls-PEs and 2 major milk phospholipids, phosphatidylcholine and phosphatidylethanolamine. Our secondary objective was to explore associations between maternal DHA intake and DHA in milk phospholipids and variability in phospholipid-DHA within a woman. Mature milk was collected from 25 women, with 4 providing 3 milk samples on 3 separate days. Lipids were extracted, and phospholipids were removed by solid phase extraction. Pls-PEs were separated by using normal-phase HPLC, recovered and analyzed for FAs by GLC. Diet was assessed by using a validated food-frequency questionnaire. Pls-PE concentration in human milk was significantly higher in LC-PUFAs than phosphatidylethanolamine and phosphatidylcholine, including arachidonic acid (AA) and DHA. The mean ± SD concentration of AAs in Pls-PEs was ∼2.5-fold higher than in phosphatidylethanolamine (10.5 ± 1.71 and 3.82 ± 0.92 g/100 g, respectively). DHA in Pls-PEs varied across women (0.95-6.51 g/100 g), likely independent of maternal DHA intake. Pls-PE DHA also varied within a woman across days (CV ranged from 9.8% to 28%). Human milk provides the infant with LC-PUFAs from multiple lipid pools, including a source from Pls-PEs. The biological determinants of Pls-PE FAs and physiological relevance to the breastfed infant remain to be elucidated. © 2016 American Society for Nutrition.

  18. Neurodevelopmental functioning in children with FAS, pFAS, and ARND.

    PubMed

    Chasnoff, Ira J; Wells, Anne M; Telford, Erin; Schmidt, Christine; Messer, Gwendolyn

    2010-04-01

    The purpose of this article is to compare the neurodevelopmental profiles of 78 foster and adopted children with fetal alcohol syndrome (FAS), partial FAS (pFAS), or alcohol-related neurodevelopmental disorder (ARND). Seventy-eight foster and adopted children underwent a comprehensive diagnostic evaluation. By using criteria more stringent than those required by current guidelines, the children were placed in 1 of 3 diagnostic categories: FAS, pFAS, or ARND. Each child was evaluated across the domains of neuropsychological functioning most frequently affected by prenatal exposure to alcohol. Multivariate analyses of variance were conducted to examine differences in neuropsychological functioning between the 3 diagnostic groups. Descriptive discriminant analyses were performed in follow-up to the multivariate analyses of variance. The children in the 3 diagnostic categories were similar for descriptive and child welfare variables. Children with FAS had significantly decreased mean weight, height, and head circumference. Children with FAS exhibited the most impaired level of general intelligence, significantly worse language-based memory compared with children with ARND, and significantly poorer functional communication skills than children with pFAS. On executive functioning, the FAS group of children performed significantly worse on sequencing and shift than either the pFAS or ARND groups. Children with pFAS and ARND were similar in all neurodevelopmental domains that were tested. The children who met tightly defined physical criteria for a diagnosis of FAS demonstrated significantly poorer neurodevelopmental functioning than children with pFAS and ARND. Children in these latter 2 groups were similar in all neurodevelopmental domains that were tested.

  19. Leukocyte function-associated antigen-1-dependent lysis of Fas+ (CD95+/Apo-1+) innocent bystanders by antigen-specific CD8+ CTL.

    PubMed

    Kojima, H; Eshima, K; Takayama, H; Sitkovsky, M V

    1997-09-15

    Exquisite specificity toward Ag-bearing cells (cognate targets) is one of the most important properties of CD8+ CTL-mediated cytotoxicity. Using highly Ag-specific CD8+ CTL lines and clones, which spare noncognate, Ag-free targets, we found that in the presence of Ag-bearing targets the CTL acquire the ability to lyse noncognate target cells (bystanders). It is shown that the unexpectedly rapid and efficient lysis of bystanders by Ag-activated CTL is mediated by a Fas ligand (FasL)/Fas-based mechanism and does not depend on perforin. The CTL lysed Fas-expressing bystanders, but spared the Fas-negative or anti-Fas mAb-resistant bystander cells. Accordingly, the FasL-deficient gld/gld CTL did not kill bystanders, while perforin-deficient CTL did. Unlike anti-Fas mAb-induced cell death, the lysis of bystanders was not only FasL/Fas dependent but also required adhesion molecule LFA-1 on the surface of the activated CTL. Lysis of bystanders is viewed as acceptable "collateral" damage, but the persistent presence of activated CTL could result in immunopathologies involving functional Fas-expressing tissues.

  20. The Cytocidal Activity of OK‐432‐activated Mononuclear Cells against Human Glioma Cells is Partly Mediated through the Fas Ligand/Fas System

    PubMed Central

    Toda, Keisuke; Shiraishi, Tetsuya; Hirotsu, Tatsumi; Fukuyama, Kouzou; Mineta, Toshihiro; Kawaguchi, Shojiro; Tabuchi, Kazuo

    1996-01-01

    We have been applying an adoptive immunotherapy protocol to patients with malignant brain tumors using OK‐432‐activated peripheral blood mononuclear cells (OK‐MCs). In order to elucidate the mechanism of OK‐MCs' cytotoxicity, we examined the expression of Fas ligand mRNA in OK‐MCs and the cytocidal activity of these cells against a human glioma cell line, T98G which expresses a high level of Fas. The expression of Fas ligand mRNA was low in non‐treated peripheral blood mononuclear cells and was elevated by treatment with OK‐432, irrespective of the dose employed. Apoptosis of T98G cells induced by OK‐MCs was unequivocally inhibited by the pretreatment of T98G cells with ZB4 monoclonal antibody, which binds to Fas and blocks the binding of Fas ligand to Fas. These data indicate that the cytotoxic activity of OK‐MCs via apoptosis seems to be at least partly mediated by the Fas ligand/Fas system. Adoptive immunotherapy using the Fas ligand/Fas system could be a new treatment modality for human malignant brain tumors. PMID:8878461

Top