Science.gov

Sample records for acids glycine l-alanine

  1. Characterisation of L-alanine and glycine absorption across the gut of an ancient vertebrate.

    PubMed

    Glover, Chris N; Bucking, Carol; Wood, Chris M

    2011-08-01

    This study utilised an in vitro technique to characterise absorption of two amino acids across the intestinal epithelium of Pacific hagfish, Eptatretus stoutii. Uptake of L-alanine and glycine conformed to Michaelis-Menten kinetics. An uptake affinity (K(m); substrate concentration required to attain a 50% uptake saturation) of 7.0 mM and an uptake capacity (J (max)) of 83 nmol cm(-2) h(-1) were described for L-alanine. The K(m) and J(max) for glycine were 2.2 mM and 11.9 nmol cm(-2) h(-1), respectively. Evidence suggested that the pathways of L-alanine and glycine absorption were shared, and sodium dependent. Further analysis indicated that glycine uptake was independent of luminal pH and proline, but a component of uptake was significantly impaired by 100-fold excesses of threonine or asparagine. The presence of a short-term (24 h) exposure to waterborne glycine, similar in nature to that which may be expected to occur when feeding inside an animal carcass, had no significant impact on gastrointestinal glycine uptake. This may indicate a lack of cross talk between absorptive epithelia. These results are the first published data to describe gastrointestinal uptake of an organic nutrient in the oldest extant vertebrate and may provide potential insight into the evolution of nutrient transport systems.

  2. Determination of β-N-methylamino-L-alanine, N-(2-aminoethyl)glycine, and 2,4-diaminobutyric acid in Food Products Containing Cyanobacteria by Ultra-Performance Liquid Chromatography and Tandem Mass Spectrometry: Single-Laboratory Validation.

    PubMed

    Glover, W Broc; Baker, Teesha C; Murch, Susan J; Brown, Paula N

    2015-01-01

    A single-laboratory validation study was completed for the determination of β-N-methylamino-L-alanine (BMAA), N-(2-aminoethyl)glycine (AEG), and 2,4-diaminobutyric acid (DAB) in bulk natural health product supplements purchased from a health food store in Canada. BMAA and its isomers were extracted with acid hydrolysis to free analytes from protein association. Acid was removed with the residue evaporated to dryness and reconstituted with derivatization using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Fluor). Chromatographic separation and detection were achieved using RP ultra-performance LC coupled to a tandem mass spectrometer operated in multiple reaction monitoring mode. Data from biological samples were evaluated for precision and accuracy across different days to ensure repeatability. Accuracy was assessed by spike recovery of biological samples using varying amino acid concentrations, with an average recovery across all samples of 108.6%. The analytical range was found to be 764-0.746 ng/mL prior to derivatization, thereby providing a linear range compatible with potentially widely varying analyte concentrations in commercial health food products. Both the U. S. Food and Drug Administration (FDA) and U. S. Pharmacopeia definitions were evaluated for determining method limits, with the FDA approach found to be most suitable having an LOD of 0.187 ng/mL and LLOQ of 0.746 ng/mL. BMAA in the collected specimens was detected at concentrations lower than 1 μg/g, while AEG and DAB were found at concentrations as high as 100 μg/g. Finding these analytes, even at low concentrations, has potential public health significance and suggests a need to screen such products prior to distribution. The method described provides a rapid, accurate, and precise method to facilitate that screening process. PMID:26651568

  3. FT-IR and Raman spectroscopic and DFT studies of anti-cancer active molecule N-{(meta-ferrocenyl) Benzoyl} - L-Alanine - Glycine ethyl ester

    NASA Astrophysics Data System (ADS)

    Xavier, T. S.; Kenny, Peter T. M.; Manimaran, D.; Joe, I. Hubert

    2015-06-01

    FT-Raman and FT-IR spectra of N-{(meta-ferrocenyl) Benzoyl} - L-alanine - glycine ethyl ester were recorded in solid phase. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering intensities were calculated by using density functional method(B3LYP) with 6-31G(d, p) basis set. Vibrational assignment of the molecule was done by using potential energy distribution analysis. Natural bond orbital analysis, Mulliken charge analysis and HOMO-LUMO energy were used to elucidate the reasons for intra molecular charge transfer. Docking studies were conducted to predict its anticancer activity.

  4. Determination of β-Cyano-L-alanine, γ-Glutamyl-β-cyano-L-alanine, and Common Free Amino Acids in Vicia sativa (Fabaceae) Seeds by Reversed-Phase High-Performance Liquid Chromatography

    PubMed Central

    Megías, Cristina; Cortés-Giraldo, Isabel; Girón-Calle, Julio; Vioque, Javier; Alaiz, Manuel

    2014-01-01

    A method for determination of β-cyano-L-alanine, γ-glutamyl-β-cyano-L-alanine and other free amino acids in Vicia sativa is presented. Seed extracts were derivatized by reaction with diethyl ethoxymethylenemalonate and analyzed by reverse-phase high-performance liquid chromatography. Calibration curves showed very good linearity of the response. The limit of detection and quantification was 0.15 and 0.50 μM, respectively. The method has high intra- (RSD = 0.28–0.31%) and interrepeatability (RSD = 2.76–3.08%) and remarkable accuracy with a 99% recovery in spiked samples. The method is very easy to carry out and allows for ready analysis of large number of samples using very basic HPLC equipment because the derivatized samples are very stable and have very good chromatographic properties. The method has been applied to the determination of γ-glutamyl-β-cyano-L-alanine, β-cyano-L-alanine, and common free amino acids in eight wild populations of V. sativa from southwestern Spain. PMID:25587488

  5. One-dimensional coordination polymers: Cu(II) and Zn(II) complexes of N-(2-pyridylmethyl)-glycine and N-(2-pyridylmethyl)- L-alanine

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobai; Ranford, John D.; Vittal, Jagadese J.

    2006-08-01

    The crystal structures of three Cu(II) and one Zn(II) complexes of N-(2-pyridylmethyl)- L-glycine (Hpgly) and N-(2-pyridylmethyl)- L-alanine (Hpala) have been described. They are [Cu(pgly)Cl] · H 2O ( 1), [Cu(pala)Cl] · H 2O ( 2), [Cu(pala)(CH 3COO)] · 0.75H 2O ( 3), and [Zn(pgly)(NO 3)] ( 4). All these compounds have 1D polymeric structures in the solid state. In 1 and 2, the chloride ions bridge [Cu(pgly)] and [Cu(pala)] fragments, respectively, to generate 1D polymers while the bridging acetate ligands are responsible for the formation of ΛΔΛΔ type spiral polymers in 3. The nitrate ion in 4 is only acting as a terminal ligand while the carboxylate oxygen atom of the pala ligand bridges the Zn(II) centers to form the zigzag coordination polymeric chain. The 1D coordination polymers in 1 and 2 have very similar arrangements although crystallized in different space groups, and host 1D water chains in their crystal lattices.

  6. Theoretical and experimental study of valence photoelectron spectrum of D,L-alanine amino acid.

    PubMed

    Farrokhpour, H; Fathi, F; De Brito, A Naves

    2012-07-01

    In this work, the He-I (21.218 eV) photoelectron spectrum of D,L-alanine in the gas phase is revisited experimentally and theoretically. To support the experiment, the high level ab initio calculations were used to calculate and assign the photoelectron spectra of the four most stable conformers of gaseous alanine, carefully. The symmetry adapted cluster/configuration interaction (SAC-CI) method based on single and double excitation operators (SD-R) and its more accurate version, termed general-R, was used to separately calculate the energies and intensities of the ionization bands of the L- and D-alanine conformers. The intensities of ionization bands were calculated based on the monopole approximation. Also, natural bonding orbital (NBO) calculations were employed for better spectral band assignment. The relative electronic energy, Gibbs free energy, and Boltzmann population ratio of the conformers were calculated at the experimental temperature (403 K) using several theoretical methods. The theoretical photoelectron spectrum of alanine was calculated by summing over the spectra of individual D and L conformers weighted by different population ratios. Finally, the population ratio of the four most stable conformers of alanine was estimated from the experimental photoelectron spectrum using theoretical calculations for the first time.

  7. Neurotoxic Non-proteinogenic Amino Acid β-N-Methylamino-L-alanine and Its Role in Biological Systems.

    PubMed

    Popova, A A; Koksharova, O A

    2016-08-01

    Secondary metabolites of photoautotrophic organisms have attracted considerable interest in recent years. In particular, molecules of non-proteinogenic amino acids participating in various physiological processes and capable of producing adverse ecological effects have been actively investigated. For example, the non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) is neurotoxic to animals including humans. It is known that BMAA accumulation via the food chain can lead to development of neurodegenerative diseases in humans such as Alzheimer's and Parkinson's diseases as well as amyotrophic lateral sclerosis. Moreover, BMAA can be mistakenly incorporated into a protein molecule instead of serine. Natural sources of BMAA and methods for its detection are discussed in this review, as well as the role of BMAA in metabolism of its producers and possible mechanisms of toxicity of this amino acid in different living organisms. PMID:27677549

  8. Enzymatic determination of carbon-14 labeled L-alanine in biological samples

    SciTech Connect

    Serra, F.; Palou, A.; Pons, A.

    1987-07-15

    A method for determination of L-alanine-specific radioactivity in biological samples is presented. This method is based on the specific enzymatic transformation of L-alanine to pyruvic acid hydrazone catalyzed by the enzyme L-alanine dehydrogenase, formation of the pyruvic acid 2,4-dinitrophenylhydrazone derivative, and quantitative trapping in Amberlite XAD-7 columns, followed by radioactivity counting of the lipophilic eluate. No interferences from other UC-labeled materials such as D-glucose, glycerol, L-lactate, L-serine, L-glutamate, L-phenylalanine, glycine, L-leucine, and L-arginine were observed. This inexpensive and high-speed method is applicable to the simultaneous determination of L-alanine-specific radioactivity for a large number of samples.

  9. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals

    NASA Astrophysics Data System (ADS)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm × 12 mm × 8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied.

  10. Dipeptide Nanotubes Containing Unnatural Fluorine-Substituted β(2,3)-Diarylamino Acid and L-Alanine as Candidates for Biomedical Applications.

    PubMed

    Bonetti, Andrea; Pellegrino, Sara; Das, Priyadip; Yuran, Sivan; Bucci, Raffaella; Ferri, Nicola; Meneghetti, Fiorella; Castellano, Carlo; Reches, Meital; Gelmi, Maria Luisa

    2015-09-18

    The synthesis and the structural characterization of dipeptides composed of unnatural fluorine-substituted β(2,3)-diarylamino acid and L-alanine are reported. Depending on the stereochemistry of the β amino acid, these dipeptides are able to self-assemble into proteolytic stable nanotubes. These architectures were able to enter the cell and locate in the cytoplasmic/perinuclear region and represent interesting candidates for biomedical applications.

  11. Amino acids (L-arginine and L-alanine) passivated CdS nanoparticles: Synthesis of spherical hierarchical structure and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Talwatkar, S. S.; Tamgadge, Y. S.; Sunatkari, A. L.; Gambhire, A. B.; Muley, G. G.

    2014-12-01

    CdS nanoparticles (NPs) passivated with amino acids (L-alanine and L-arginine) having spherical hierarchical morphology were synthesized by room temperature wet chemical method. Synthesized NPs were characterized by ultraviolet-visible (UV-vis) spectroscopy to study the variation of band gaps with concentration of surface modifying agents. Increase in band gap has been observed with the increase in concentration of surface modifying agents and was found more prominent for CdS NPs passivated with L-alanine. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were carried out for the study of crystal structure and morphology of CdS NPs. The average particle size of CdS NPs calculated from Debye-Scherer formula was found to less than 5 nm and agrees well with those determined from UV-vis spectra and TEM data. Fourier transform infrared (FT-IR) spectroscopy was performed to know the functional groups of the grown NPs. Peaks in FT-IR spectra indicate the formation of CdS NPs and capping with L-alanine and L-arginine. Photoluminescence spectra of these NPs were also studied. Finally, colloidal solution of CdS-PVAc was subjected to Z-scan experiment under low power cw laser illumination to characterize them for third order nonlinear optical properties. CdS-PVAc colloidal solution shows enhanced nonlinear absorption due to RSA and weak FCA on account of two photon absorption processes triggered by thermal effect.

  12. Vibrational dynamics of crystalline L-alanine

    SciTech Connect

    Bordallo, H.N.; Eckert, J.; Barthes, M.

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  13. Excess of L-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the laboratory

    NASA Astrophysics Data System (ADS)

    Managadze, George G.; Engel, Michael H.; Getty, Stephanie; Wurz, Peter; Brinckerhoff, William B.; Shokolov, Anatoly G.; Sholin, Gennady V.; Terent'ev, Sergey A.; Chumikov, Alexander E.; Skalkin, Alexander S.; Blank, Vladimir D.; Prokhorov, Vyacheslav M.; Managadze, Nina G.; Luchnikov, Konstantin A.

    2016-10-01

    We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

  14. Atomic Layer Deposition of L-Alanine Polypeptide

    SciTech Connect

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; Dunphy, Darren R.; Tsai, Andy; Tam, Siu-Yue; Fan, Hongyou Y.; Zhang, Hongxia; Rogers, David; Rempe, Susan; Atanassov, Plamen; Cecchi, Joseph L.; Brinker, C. Jeffrey

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  15. L-alanine uptake in membrane vesicles from Mytilus edulis gills

    SciTech Connect

    Pajor, A.M.; Wright, S.H.

    1986-03-05

    Previous studies have shown that gills from M. edulis can accumulate L-alanine from seawater by a saturable process specific for ..cap alpha..-neutral amino acids. This uptake occurs against chemical gradients in excess of 10/sup 6/ to 1. To further characterize this uptake, membrane vesicles were prepared from M. edulis gill tissue by differential centrifugation. Enrichments of putative enzyme markers (relative to that in combined initial fractions) were as follows: ..gamma..-Glutamyltranspeptidase, 25-30x; Alkaline Phosphatase, 5-6x; K/sup +/-dependent para-Nitrophenyl Phosphatase, 3-5x; Succinate Dehydrogenase 0.1-0.2x. These results suggest that the preparation is enriched in plasma membranes, although histochemical studies will be needed to verify this. The time course of /sup 14/C-L-alanine uptake in the presence of inwardly-directed Na/sup +/ gradient showed a transient overshoot (3-5 fold) at 10 minutes which decreased to equilibrium after six hours. The size of the overshoot and early uptake rates depended on the size of the inwardly-directed Na/sup +/ gradient. No overshoot was seen in the presence of inwardly-directed gradients of LiCl or choline-Cl, or with equilibrium concentrations NaCl or mannitol. A reduced overshoot was seen with a gradient of NaSCN. A small overshoot was seen with an inwardly-directed gradient of KCl. Transport of L-alanine included saturable and diffusive components. Uptake of 6 ..mu..M L-alanine was inhibited more than 80% by 100 ..mu..M ..cap alpha..-zwitterionic amino acids (alanine, leucine, glycine); by 30 to 75% by proline, aspartate and lysine; and less than 20% by a ..beta..-amino acid, taurine. The results of these experiments agree with those from intact gill studies and support the hypothesis that L-alanine is transported into gill epithelial cells by a secondary active transport process involving Na/sup +/.

  16. On the existence of 'L-alanine cadmium bromide'.

    PubMed

    Srinivasan, Bikshandarkoil R

    2013-12-01

    It is argued that the recently reported nonlinear optical crystal L-alanine cadmium bromide, grown by slow solvent evaporation method at room temperature [P. Ilayabarathi, J. Chandrasekaran, Spectrochim. Acta 96A (2012) 684-689] is the well-known L-alanine crystal. The isolation of L-alanine crystal is explained due to fractional crystallization.

  17. Ruthenium-Nitrosyl Complexes with Glycine, l-Alanine, l-Valine, l-Proline, d-Proline, l-Serine, l-Threonine, and l-Tyrosine: Synthesis, X-ray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity

    PubMed Central

    2014-01-01

    The reactions of [Ru(NO)Cl5]2– with glycine (Gly), l-alanine (l-Ala), l-valine (l-Val), l-proline (l-Pro), d-proline (d-Pro), l-serine (l-Ser), l-threonine (l-Thr), and l-tyrosine (l-Tyr) in n-butanol or n-propanol afforded eight new complexes (1–8) of the general formula [RuCl3(AA–H)(NO)]−, where AA = Gly, l-Ala, l-Val, l-Pro, d-Pro, l-Ser, l-Thr, and l-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), 1H NMR, UV–visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA–H)(NO)], as was also recently reported for osmium analogues with Gly, l-Pro, and d-Pro (see Z. Anorg. Allg. Chem.2013, 639, 1590–1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  18. Expression of rat liver Na+/L-alanine co-transport in Xenopus laevis oocytes. Effect of glucagon in vivo.

    PubMed Central

    Palacin, M; Werner, A; Dittmer, J; Murer, H; Biber, J

    1990-01-01

    Poly(A)+ RNA (mRNA) isolated from rat liver was injected into Xenopus laevis oocytes, and expression of Na+/L-alanine transport was assayed by measuring Na(+)-dependent uptake of L-[3H]alanine. Expression of Na+/L-alanine transport was detected 3-7 days after mRNA injection, and was due to an increment of the Na(+)-dependent component. After injection of 40 ng of total mRNA, Na(+)-dependent uptake of L-alanine was 2.5-fold higher than in water-injected oocytes. In contrast with Na+/L-alanine transport by water-injected oocytes, expressed Na+/L-alanine transport was inhibited by N-methylaminoisobutyric acid, was inhibited by an extracellular pH of 6.5 and was saturated at approx. 1 mM-L-alanine. After sucrose-density-gradient fractionation, highest expression of Na+/L-alanine uptake was observed with mRNA of 1.9-2.5 kb in length. Compared with mRNA isolated from control rats, mRNA isolated from glucagon-treated rats showed a approx. 2-fold higher expression of Na+/L-alanine transport. The results demonstrate that both liver Na+/L-alanine transport systems (A and ASC) can be expressed in X. laevis oocytes. Furthermore, the data obtained with mRNA isolated from glucagon-treated rats suggest that glucagon regulates liver Na+/L-alanine transport (at least in part) via the availability of the corresponding mRNA. Images Fig. 6. PMID:2396979

  19. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Cysteine L-Cystine L-Glutamic acid L-Glutamine Aminoacetic acid (glycine) L-Histidine L-Isoleucine L... following: L-Alanine L-Arginine L-Arginine Monohydrochloride L-Cysteine Monohydrochloride L-Cystine... (including L-asparagine) 7.0 L-Cystine (including L-cysteine) 2.3 L-Glutamic acid (including L-glutamine)...

  20. On the existence of "L-threonine formate", "L-alanine lithium chloride" and "bis L-alanine lithium chloride" crystals.

    PubMed

    Petrosyan, A M; Ghazaryan, V V; Fleck, M

    2013-03-15

    We argue that the recently reported crystals "L-threonine formate" as well as "L-alanine lithium chloride" and "bis L-alanine lithium chloride" actually are the well-known crystals L-threonine and L-alanine, respectively.

  1. Rapid Crystallization of L-Alanine on Engineered Surfaces using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Alabanza, Anginelle M; Pozharski, Edwin; Aslan, Kadir

    2012-01-01

    This study demonstrates the application of metal-assisted and microwave-accelerated evaporative crystallization (MA-MAEC) technique to rapid crystallization of L-alanine on surface engineered silver nanostructures. In this regard, silver island films (SIFs) were modified with hexamethylenediamine (HMA), 1-undecanethiol (UDET), and 11-mercaptoundecanoic acid (MUDA), which introduced -NH(2), -CH(3) and -COOH functional groups to SIFs, respectively. L-Alanine was crystallized on these engineered surfaces and blank SIFs at room temperature and using MA-MAEC technique. Significant improvements in crystal size, shape, and quality were observed on HMA-, MUDA- and UDET-modified SIFs at room temperature (crystallization time = 144, 40 and 147 min, respectively) as compared to those crystals grown on blank SIFs. Using the MA-MAEC technique, the crystallization time of L-alanine on engineered surfaces were reduced to 17 sec for microwave power level 10 (i.e., duty cycle 100%) and 7 min for microwave power level 1 (duty cycle 10%). Raman spectroscopy and powder x-ray diffraction (XRD) measurements showed that L-Alanine crystals grown on engineered surfaces using MA-MAEC technique had identical characteristic peaks of L-alanine crystals grown using traditional evaporative crystallization. PMID:22267957

  2. Innovative effect of illite on improved microbiological conversion of L-tyrosine to 3,4 dihydroxy phenyl L-alanine (L-DOPA) by Aspergillus oryzae ME2 under acidic reaction conditions.

    PubMed

    Sikander, Ali; Ikram-ul-Haq

    2006-11-01

    In the present investigation, the previous ultraviolet irradiated mutant strain of Aspergillus oryzae UV-7 was further improved in terms of 3,4 dihydroxy phenyl L-alanine (L-DOPA) activity after chemical mutagenesis through 1-methyl 3-nitro 1-nitroso guanidine (MNNG = 250-1500 microg/ml) treatment (0-30 min). Among several mutant variants, the one that produced a larger amount of L-DOPA from L-tyrosine was designated to as ME2 and it was made 2-deoxy-D-glucose-resistant by growing it at various concentrations of 2 dg (0.01-0.025 %, w/v) in Vogel's agar medium. Relatively better production of L-DOPA (> 0.60 mg/ml) was obtained when 2.0% (w/v) glucose was used as a carbon source in the mycelium production medium and the tyrosinase activity increased constitutively (1.08 mg/ml), which resulted in a greater production of L-DOPA. At optimum pH0 (pH 6.0) and reaction time (60 min), more than 65% sugar was utilized for cell mass formation. The maximum conversion of L-tyrosine to L-DOPA (0.428 mg/ml) was achieved 60 min after the biochemical reaction. Mould mycelium was used for microbiological conversion of L-tyrosine to L-DOPA because tyrosinases, beta-carboxylases, and tyrosine hydroxylases are intracellular enzymes. The effect of illite (1.0 x 10(6)-6.0 x 10(6) M) on biochemical conversion of L-tyrosine to L-DOPA by Aspergillus oryzae ME(2 )was also carried out. Best results of L-DOPA biosynthesis were observed when the concentration of illite was 3.5 x 10(-6) M (1.686 mg/ml L-DOPA produced with 1.525 mg/ml consumption of L-tyrosine). It was noted that the addition of illite not only increased enzyme activity but also enhanced the permeability of cell membrane to facilitate the secretion of enzymes into the reaction broth. The comparison of kinetic parameters showed the ability of mutant to yield L-DOPA (i.e., Yp/x 7.360 +/- 0.04 mg/mg). When the culture grown on various illite concentrations was monitored for Qp, Qs, and qp, there was significant enhancement (p < 0

  3. The effect of exogenous β-N-methylamino-L: -alanine on the growth of Synechocystis PCC6803.

    PubMed

    Downing, Simoné; van de Venter, Maryna; Downing, Timothy G

    2012-01-01

    β-N-Methylamino-L: -alanine (BMAA), a non-proteinogenic amino acid, has been detected in a range of cyanobacteria, including terrestrial, aquatic, free living and endosymbiotic species. The widespread occurrence of cyanobacteria in the environment raises concerns regarding the ecological and toxicological impact of BMAA, and consequently, studies have focussed extensively on the toxicity and environmental impact of BMAA, while no research has addressed the ecophysiological or metabolic role of the compound in cyanobacteria. In this study, both the uptake of exogenous BMAA by and the effect of exogenous BMAA on the growth of Synechocystis PCC6803 were investigated. BMAA was rapidly taken up by the non-diazotrophic cyanobacterium Synechocystis PCC6803 in a concentration dependent manner. The presence of exogenous BMAA resulted in a substantial and concentration-dependent decrease in cell growth and the substantial loss of photosynthetic pigmentation. Similar effects were seen in the presence of the non-proteinogenic amino acid, 2,4-diaminobutyric acid but to a lesser degree than that of BMAA. The effects were reversed when light was decreased from 16 to 10 μmol m(-2) s(-1). Control cultures grown in the presence of L: -arginine, L: -asparagine, L: -glutamate and glycine showed normal or slightly increased growth with no change in pigmentation. The decrease in growth rate coupled to bleaching indicates that BMAA may induce chlorosis in the presence of adequate photosynthetic radiation suggesting a connection between BMAA and the induction of conditions, such as nitrogen or sulphur depletion, that result in growth arrest and the induction of chlorosis. PMID:21994035

  4. The GerW protein is essential for L-alanine-stimulated germination of Bacillus subtilis spores.

    PubMed

    Kuwana, Ritsuko; Takamatsu, Hiromu

    2013-11-01

    GerW (formerly called YtfJ) is a protein found in dormant spores of Bacillus subtilis. We have studied spore proteins in B. subtilis before, and here we report the characterization of GerW protein. Northern blot analysis revealed that gerW mRNA was transcribed by SigF-containing RNA polymerase beginning 1 h after the initiation of sporulation. Fluorescence was detected in forespores and dormant spores of B. subtilis recombinant strains expressing GerW-GFP. During germination in the presence of L-alanine or a mixture of L-asparagine, D-glucose, D-fructose and potassium ions (AGFK), normal spores of B. subtilis became darkened, stained positive with Hoechst 33342 and carboxyfluorescein diacetate succinimidyl ester (CFDA-SE), and released dipicolinic acid (DPA). In the case of gerW-deficient spores, AGFK triggered germination in a manner similar to that seen in the wild-type spores, whereas spores stimulated by L-alanine remained refractive under the phase contrast microscope, failed to stain positive with Hoechst 33342 or CFDA-SE, and released almost no DPA. These results indicate that GerW is essential for the L-alanine-induced breakdown of spore dormancy followed by core rehydration and the resumption of enzymatic activity, and suggest that GerW is involved in the early stages of germination in the presence of l-alanine.

  5. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile. PMID:26474598

  6. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile.

  7. Glycine-Linked Nucleoside-β-Amino Acids: Polyamide Analogues of Nucleic Acids.

    PubMed

    Banerjee, Anjan; Bagmare, Seema; Varada, Manojkumar; Kumar, Vaijayanti A

    2015-08-19

    3'-5'-Deoxyribose-sugar-phoshate backbone in DNA is completely replaced by 2'-deoxyribonucleoside-based β-amino acids interlinked by glycine to create uncharged polyamide DNA with 3'-5'-directionality. These oligomers as conjugates of α-amino acids and nucleoside-β-amino acids bind strongly and sequence-specifically only to the antiparallel complementary RNA and DNA.

  8. Thiophenyl-substituted triazolyl-thione L-alanine: asymmetric synthesis, aggregation and biological properties.

    PubMed

    Saghyan, Ashot S; Simonyan, Hayarpi M; Petrosyan, Satenik G; Geolchanyan, Arpine V; Roviello, Giovanni N; Musumeci, Domenica; Roviello, Valentina

    2014-10-01

    In this work, we report the asymmetric synthesis and characterization of an artificial amino acid based on triazolyl-thione L-alanine, which was modified with a thiophenyl-substituted moiety, as well as in vitro studies of its nucleic acid-binding ability. We found, by dynamic light scattering studies, that the synthetic amino acid was able to form supramolecular aggregates having a hydrodynamic diameter higher than 200 nm. Furthermore, we demonstrated, by UV and CD experiments, that the heteroaromatic amino acid, whose enzymatic stability was demonstrated by HPLC analysis also after 24 h of incubation in human serum, was able to bind a RNA complex, which is a feature of biomedical interest in view of innovative antiviral strategies based on modulation of RNA-RNA molecular recognition.

  9. Detection of Cyanotoxins, β-N-methylamino-l-alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis

    PubMed Central

    Banack, Sandra Anne; Caller, Tracie; Henegan, Patricia; Haney, James; Murby, Amanda; Metcalf, James S.; Powell, James; Cox, Paul Alan; Stommel, Elijah

    2015-01-01

    A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-l-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association. PMID:25643180

  10. Controlled radical polymerization of an acrylamide containing L-alanine moiety via ATRP.

    PubMed

    Rafiee, Zahra

    2016-02-01

    Homopolymerization of an optically active acrylamide having an amino acid moiety in the side chain, N-acryloyl-L-alanine (AAla) was carried out via atom transfer radical polymerization (ATRP) at room temperature using 2-hydroxyethyl-2'-methyl-2'-bromopropionate (HMB) or sodium-4-(bromomethyl)benzoate (SBB) as initiator in pure water, methanol/water mixture and pure methanol solvents. The polymerization reaction resulted in the optically active biocompatible amino acid-based homopolymer in good yield with narrow molecular weight distribution. The number average molecular weight increased with conversion and polydispersity was low. The structure and molecular weight of synthesized polymer were characterized by (1)H NMR, FT-IR spectroscopic techniques and size-exclusion chromatography.

  11. Active transport of. gamma. -aminobutyric acid and glycine into synaptic vesicles

    SciTech Connect

    Kish, P.E.; Fischer-Bovenkerk, C.; Ueda, T. )

    1989-05-01

    Although {gamma}-aminobutyric acid (GABA) and glycine are recognized as major amino acid inhibitory neurotransmitters in the central nervous system, their storage is poorly understood. In this study the authors have characterized vesicular GABA and glycine uptakes in the cerebrum and spinal cord, respectively. They present evidence that GABA and glycine are each taken up into isolated synaptic vesicles in an ATP-dependent manner and that the uptake is driven by an electrochemical proton gradient. Uptake for both amino acids exhibited kinetics with low affinity similar to a vesicular glutamate uptake. The ATP-dependent GABA uptake was not inhibited by the putative amino acid neurotransmitters glycine, taurine, glutamate, or aspartate or by GABA analogs, agonists, and antagonists. Similarly, ATP-dependent glycine uptake was hardly affected by GABA, taurine, glutamate, or aspartate or by glycine analogs or antagonists. The GABA uptake was not affected by chloride, which is in contrast to the uptake of the excitatory neurotransmitter glutamate, whereas the glycine uptake was slightly stimulated by low concentrations of chloride. Tissue distribution studies indicate that the vesicular uptake systems for GABA, glycine, and glutamate are distributed in different proportions in the cerebrum and spinal cord. These results suggest that the vesicular uptake systems for GABA, glycine, and glutamate are distinct from each other.

  12. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    PubMed

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-01

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations.

  13. [Regulation of key enzymes of L-alanine biosynthesis by Brevibacterium flavum producer strains].

    PubMed

    Melkonian, L O; Avetisova, G E; Ambartsumian, A A; Chakhalian, A Kh; Sagian, A S

    2013-01-01

    The mechanisms of L-alanine overproduction by Brevibacterium flavum producer strains were studied. It was shown that beta-CI-L-alanine is an inhibitor of some key enzymes involved in the synthesis of L-alanine, including alanine transaminase and valine-pyruvate transaminase. Two highly active B. flavum GL1 and GL1 8 producer strains, which are resistant to the inhibitory effect of beta-Cl-L-alanine, were obtained using a parental B. flavum AA5 producer strain, characterized by a reduced activity of alanine racemase (>or=98%). It was demonstrated that the increased L-alanine synthesis efficiency observed in the producer strains developed in this work is associated with the absence of inhibition of alanine transaminase by the end product of the biosynthesis reaction, as well as with the effect of derepression of both alanine transaminase and valine-pyruvate transaminase synthesis by the studied compound.

  14. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.50 Glycine...) Shall bring such products into compliance with an authorizing food additive regulation. A food additive... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glycine (aminoacetic acid) in food for...

  15. Antigen-specific suppression in genetic responder mice to L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). Characterization of conventional and hybridoma-derived factors produced by suppressor T cells from mice injected as neonates with syngeneic GAT macrophages.

    PubMed

    Sorensen, C M; Pierce, C W

    1982-12-01

    Spleen cells from C57BL/10 mice injected with syngeneic B10 L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT)-pulsed macrophages (GAT-M phi) within 18 h of birth were unable to respond to soluble GAT, GAT-methylated bovine serum albumin, or B10 GAT-M phi as adults. Spleen cells from these neonatally treated mice responded at control levels to GAT presented in allogeneic M phi and to sheep erythrocytes. Partially purified T cells from these neonatally treated mice suppressed responses by syngeneic virgin, but not primed, spleen cells in an antigen-specific manner and acted during the early phases of the response. These responder GAT-specific suppressor T cells (GAT-TSR) were sensitive to anti-Thy-1 + C and 500-rad irradiation and have the phenotype Ly-1-2+, I-J+; GAT-TSR cells can only suppress responses by spleen cells syngeneic with the GAT-TSR cells at the I-J subregion of H-2. Restimulation of these Ts cells with syngeneic GAT-M phi induces an antigen-specific suppressor factor within the supernatant fluid. The factor, GAT-TsFR, is a glycoprotein with a molecular weight between 48,000 and 63,000, as determined by gel filtration chromatography using isotonic buffers; it bears serologically detectable determinants encoded by the I-J subregion of the H-2 complex, has an antigen-binding site for GAT and L-glutamic acid50-L-tyrosine50, and shares idiotypic determinants with anti-GAT antibodies. The presence of GAT-TsFR in the first 36 h of in vitro culture is required for significant suppression. Furthermore, only responses by spleen cell syngeneic with the cells producing GAT-TsFR at the I-J subregion are suppressed. The fusion of GAT-TsFR-producing cells with BW5147 resulted in generation of two hybridomas with properties and characteristics identical to those of the conventional GAT-TsFR with one exception: conventional and hybridoma 372.D6.5 GAT-TsFR only suppress responses by spleen cells of the I-Jb haplotype, whereas suppression mediated by the second hybridoma

  16. Mode of Action of Glycine on the Biosynthesis of Peptidoglycan

    PubMed Central

    Hammes, W.; Schleifer, K. H.; Kandler, O.

    1973-01-01

    The mechanism of glycine action in growth inhibition was studied on eight different species of bacteria of various genera representing the four most common peptidoglycan types. To inhibit the growth of the different organisms to 80%, glycine concentrations from 0.05 to 1.33 M had to be applied. The inhibited cells showed morphological aberrations. It has been demonstrated that glycine is incorporated into the nucleotide-activated peptidoglycan precursors. The amount of incorporated glycine was equivalent to the decrease in the amount of alanine. With one exception glycine is also incorporated into the peptidoglycan. Studies on the primary structure of both the peptidoglycan precursors and the corresponding peptidoglycan have revealed that glycine can replace l-alanine in position 1 and d-alanine residues in positions 4 and 5 of the peptide subunit. Replacement of l-alanine in position 1 of the peptide subunit together with an accumulation of uridine diphosphate-muramic acid (UDP-MurNAc), indicating an inhibition of the UDP-MurNAc:l-Ala ligase, has been found in three bacteria (Staphylococcus aureus, Lactobacillus cellobiosus and L. plantarum). However, discrimination against precursors with glycine in position 1 in peptidoglycan synthesis has been observed only in S. aureus. Replacement of d-alanine residues was most common. It occurred in the peptidoglycan with one exception in all strains studied. In Corynebacterium sp., C. callunae, L. plantarum, and L. cellobiosus most of the d-alanine replacing glycine occurs C-terminal in position 4, and in C. insidiosum and S. aureus glycine is found C-terminal in position 5. It is suggested that the modified peptidoglycan precursors are accumulated by being poor substrates for some of the enzymes involved in peptidoglycan synthesis. Two mechanisms leading to a more loosely cross-linked peptidoglycan and to morphological changes of the cells are considered. First, the accumulation of glycine-containing precursors may lead to

  17. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    PubMed

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production.

  18. Na sup + -glycine cotransport in canalicular liver plasma membrane vesicles

    SciTech Connect

    Moseley, R.H.; Ballatori, N.; Murphy, S.M. Yale Univ. School of Medicine, New Haven, CT Univ. of Rochester School of Medicine and Dentistry, NY )

    1988-08-01

    By use of purified rat canalicular liver plasma membrane (cLPM) vesicles, the present study determined the driving forces for glycine transport across this membrane domain. Initial rates of ({sup 3}H)glycine uptake in cLPM vesicles were stimulated by an inwardly directed Na{sup +} gradient but not by a K{sup +} gradient. Na{sup +} gradient-dependent uptake of glycine demonstrated cation specificity for Na{sup +}, dependence on extravesicular Cl{sup {minus}}, stimulation by an intravesicular-negative membrane potential, and inhibition by dissipation of the Na{sup +} gradient with gramicidin D. Na{sup +} gradient-dependent glycine cotransport also demonstrated greater sensitivity to inhibition by sarcosine than 2-(methylamino)-isobutyric acid. Accelerated exchange diffusion of ({sup 3}H)glycine was demonstrated in the presence of Na{sup +} when cLPM vesicles were preloaded with glycine but not with L-alanine or L-proline. Substrate velocity analysis of net Na{sup +}-dependent ({sup 3}H)glycine uptake over the range of amino acid concentrations from 5 {mu}M to 5 mM demonstrated two saturable transport systems, one of high capacity and low affinity and one of low capacity and comparatively high affinity. These results indicate that, in addition to previously described neutral and anionic amino acid transport systems, Na{sup +} gradient-dependent glycine transport mechanisms are present on the canalicular domain of the liver plasma membrane. These canalicular reabsorptive mechanisms may serve to reclaim some of the glycine generated within the canalicular lumen from the intrabiliary hydrolysis of glutathione.

  19. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed.

  20. Comparative 4f-4f absorption spectral study for the interactions of Nd(III) with some amino acids: Preliminary thermodynamics and kinetic studies of interaction of Nd(III):glycine with Ca(II)

    NASA Astrophysics Data System (ADS)

    Moaienla, T.; Bendangsenla, N.; David Singh, Th.; Sumitra, Ch.; Rajmuhon Singh, N.; Indira Devi, M.

    2012-02-01

    Spectral analysis of Nd(III) complexes with some amino acids viz.; glycine, L-alanine, L-phenylalanine and L-aspartic acid in the presence and absence of Ca 2+ was carried out in some organic solvents; CH 3OH, CH 3CN, DMF and dioxane using comparative absorption spectra of 4f-4f transitions. The study was carried out by evaluating various energy interaction parameters like Slator-Condon ( Fk), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding parameter ( b1/2), percent-covalency ( δ) by applying partial and multiple regression analysis. The values of oscillator strength ( Pobs) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been calculated. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( Pobs) and Tλ values, reveal the mode of binding with the different ligands. Kinetic studies for the complexation of Nd(III):glycine:Ca(II) have also been discussed at different temperatures in DMF medium and from it the values of activation energy ( Ea) and thermodynamic parameters like Δ H°, Δ S° and Δ G° for the complexation are evaluated.

  1. The Cyanobacteria Derived Toxin Beta-N-Methylamino-L-Alanine and Amyotrophic Lateral Sclerosis

    PubMed Central

    Banack, Sandra Anne; Caller, Tracie A.; Stommel, Elijah W.

    2010-01-01

    There is mounting evidence to suggest that environmental factors play a major role in the development of neurodegenerative diseases like ALS (Amyotrophic Lateral Sclerosis). The non-protein amino acid beta-N-methylamino-L-alanine (BMAA) was first associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) in Guam, and has been implicated as a potential environmental factor in ALS, Alzheimer’s disease, and other neurodegenerative diseases. BMAA has a number of toxic effects on motor neurons including direct agonist action on NMDA and AMPA receptors, induction of oxidative stress, and depletion of glutathione. As a non-protein amino acid, there is also the strong possibility that BMAA could cause intraneuronal protein misfolding, the hallmark of neurodegeneration. While an animal model for BMAA-induced ALS is lacking, there is substantial evidence to support a link between this toxin and ALS. The ramifications of discovering an environmental trigger for ALS are enormous. In this article, we discuss the history, ecology, pharmacology and clinical ramifications of this ubiquitous, cyanobacteria-derived toxin. PMID:22069578

  2. Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation.

    PubMed

    Mayr, Johannes A; Zimmermann, Franz A; Fauth, Christine; Bergheim, Christa; Meierhofer, David; Radmayr, Doris; Zschocke, Johannes; Koch, Johannes; Sperl, Wolfgang

    2011-12-01

    Lipoic acid is an essential prosthetic group of four mitochondrial enzymes involved in the oxidative decarboxylation of pyruvate, α-ketoglutarate, and branched chain amino acids and in the glycine cleavage. Lipoic acid is synthesized stepwise within mitochondria through a process that includes lipoic acid synthetase. We identified the homozygous mutation c.746G>A (p.Arg249His) in LIAS in an individual with neonatal-onset epilepsy, muscular hypotonia, lactic acidosis, and elevated glycine concentration in plasma and urine. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate and decreased pyruvate dehydrogenase complex activity. A pronounced reduction of the prosthetic group lipoamide was found in lipoylated proteins.

  3. Hypercondensation of an amino acid: synthesis and characterization of a black glycine polymer.

    PubMed

    Fox, Stefan; Dalai, Punam; Lambert, Jean-François; Strasdeit, Henry

    2015-06-01

    A granular material was obtained by thermal polymerization of glycine at 200 °C. It has been named "thermomelanoid" because of its strikingly deep-black color. The polymerization process is mainly a dehydration condensation leading to conventional amide bonds, and also CC double bonds that are formed from CO and CH2 groups ("hypercondensation"). Spectroscopic data, in particular from (13) C and (15) N solid-state cross-polarization magic angle spinning (CP-MAS) NMR spectra, suggest that the black color is due to (cross-)conjugated CC, CO, and NH groups. Small glycine peptides, especially triglycine, appear to be key intermediates in the formation of the thermomelanoid. This has been concluded by comparing the thermal behavior of glyn homopeptides (n=2-6) and glycine. The glycine polymerization was accompanied by the formation of small amounts of byproducts. Notably, a few percent of alanine and aspartic acid could be detected in the polymer. By using (13) C-labeled glycine, it was shown that these two amino acids formed through a common pathway, namely CαCα bond formation between glycine molecules. The thermomelanoid is hydrolyzed by strong acids and bases at room temperature, forming brown solutions. PMID:25933438

  4. Biochemical characterization of an inhibitor of Escherichia coli UDP-N-acetylmuramyl-l-alanine ligase.

    PubMed

    Ehmann, David E; Demeritt, Julie E; Hull, Kenneth G; Fisher, Stewart L

    2004-05-01

    UDP-N-acetylmuramyl-l-alanine ligase (MurC) is an essential bacterial enzyme involved in peptidoglycan biosynthesis and a target for the discovery of novel antibacterial agents. As a result of a high-throughput screen (HTS) against a chemical library for inhibitors of MurC, a series of benzofuran acyl-sulfonamides was identified as potential leads. One of these compounds, Compound A, inhibited Escherichia coli MurC with an IC(50) of 2.3 microM. Compound A exhibited time-dependent, partially reversible inhibition of E. coli MurC. Kinetic studies revealed a mode of inhibition consistent with the compound acting competitively with the MurC substrates ATP and UDP-N-acetyl-muramic acid (UNAM) with a K(i) of 4.5 microM against ATP and 6.3 microM against UNAM. Fluorescence binding experiments yielded a K(d) of 3.1 microM for the compound binding to MurC. Compound A also exhibited high-affinity binding to bovine serum albumin (BSA) as evidenced by a severe reduction in MurC inhibition upon addition of BSA. This finding is consistent with the high lipophilicity of the compound. Advancement of this compound series for further drug development will require reduction of albumin binding. PMID:15134649

  5. Quantification of neurotoxin BMAA (β-N-methylamino-L-alanine) in seafood from Swedish markets

    NASA Astrophysics Data System (ADS)

    Jiang, Liying; Kiselova, Nadezda; Rosén, Johan; Ilag, Leopold L.

    2014-11-01

    The neurotoxin β-N-methylamino-L-alanine (BMAA) produced naturally by cyanobacteria, diatoms and dinoflagellates can be transferred and accumulated up the food chain, and may be a risk factor for neurodegenerative diseases. This study provides the first systematic screening of BMAA exposure of a large population through the consumption of seafood sold in metropolitan markets. BMAA was distinguished from known isomers by liquid chromatography tandem mass spectrometry after acidic hydrolysis and derivatization. Using deuterium-labeled internal standard, BMAA was quantified as 0.01-0.90 μg/g wet weight of tissues in blue mussel, oyster, shrimp, plaice, char and herring, but was undetectable (<0.01 μg/g) in other samples (salmon, cod, perch and crayfish). Provided that the content of BMAA detected is relevant for intake calculations, the data presented may be used for a first estimation of BMAA exposure through seafood from Swedish markets, and to refine the design of future toxicological experiments and assessments.

  6. β-N-methylamino-L-alanine induces neurological deficits and shortened life span in Drosophila.

    PubMed

    Zhou, Xianchong; Escala, Wilfredo; Papapetropoulos, Spyridon; Zhai, R Grace

    2010-11-01

    The neurotoxic non-protein amino acid, β-N-methylamino-L-alanine (BMAA), was first associated with the high incidence of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia Complex (ALS/PDC) in Guam. Recently, BMAA has been implicated as a fierce environmental factor that contributes to the etiology of Alzheimer's and Parkinson's diseases, in addition to ALS. However, the toxicity of BMAA in vivo has not been clearly demonstrated. Here we report our investigation of the neurotoxicity of BMAA in Drosophila. We found that dietary intake of BMAA reduced life span, locomotor functions, and learning and memory abilities in flies. The severity of the alterations in phenotype is correlated with the concentration of BMAA detected in flies. Interestingly, developmental exposure to BMAA had limited impact on survival rate, but reduced fertility in females, and caused delayed neurological impairment in aged adults. Our studies indicate that BMAA exposure causes chronic neurotoxicity, and that Drosophila serves as a useful model in dissecting the pathogenesis of ALS/PDC.

  7. Biotransfer of β-N-Methylamino-l-alanine (BMAA) in a Eutrophicated Freshwater Lake

    PubMed Central

    Lage, Sandra; Annadotter, Heléne; Rasmussen, Ulla; Rydberg, Sara

    2015-01-01

    β-N-Methylamino-l-alanine (BMAA), a neurotoxic non-protein amino acid, plays a significant role as an environmental risk factor in neurodegenerative diseases, such as amyotrophic lateral sclerosis. BMAA producers occur globally, colonizing almost all habitats and represent species from distinct phytoplanktonic groups, i.e., cyanobacteria, diatoms, and dinoflagellates. Bioaccumulation of BMAA in invertebrate and vertebrate organisms has also been registered around the globe. In the Baltic Sea, BMAA has been detected in several commercial fish species, raising the question of the bioaccumulation of BMAA in Swedish limnic systems. Here we find the presence of BMAA in water samples from Lake Finjasjön and identify its bioaccumulation patterns in both plankti-benthivorous and piscivorous fish, according to fish species, total weight, gender, and season of collection. For the first time, a large number of fish individuals were used in order to draw conclusions on BMAA bioaccumulation in a closed ecological community based on a statistical approach. We may, therefore, conclude that feeding patterns (plankti-benthivorous) and increased age of fish may lead to a higher tissue concentration of BMAA. PMID:25738330

  8. Glycine restores the anabolic response to leucine in a mouse model of acute inflammation.

    PubMed

    Ham, Daniel J; Caldow, Marissa K; Chhen, Victoria; Chee, Annabel; Wang, Xuemin; Proud, Christopher G; Lynch, Gordon S; Koopman, René

    2016-06-01

    Amino acids, especially leucine, potently stimulate protein synthesis and reduce protein breakdown in healthy skeletal muscle and as a result have received considerable attention as potential treatments for muscle wasting. However, the normal anabolic response to amino acids is impaired during muscle-wasting conditions. Although the exact mechanisms of this anabolic resistance are unclear, inflammation and ROS are believed to play a central role. The nonessential amino acid glycine has anti-inflammatory and antioxidant properties and preserves muscle mass in calorie-restricted and tumor-bearing mice. We hypothesized that glycine would restore the normal muscle anabolic response to amino acids under inflammatory conditions. Relative rates of basal and leucine-stimulated protein synthesis were measured using SUnSET methodology 4 h after an injection of 1 mg/kg lipopolysaccharide (LPS). Whereas leucine failed to stimulate muscle protein synthesis in LPS-treated mice pretreated with l-alanine (isonitrogenous control), leucine robustly stimulated protein synthesis (+51%) in mice pretreated with 1 g/kg glycine. The improvement in leucine-stimulated protein synthesis was accompanied by a higher phosphorylation status of mTOR, S6, and 4E-BP1 compared with l-alanine-treated controls. Despite its known anti-inflammatory action in inflammatory cells, glycine did not alter the skeletal muscle inflammatory response to LPS in vivo or in vitro but markedly reduced DHE staining intensity, a marker of oxidative stress, in muscle cross-sections and attenuated LPS-induced wasting in C2C12 myotubes. Our observations in male C57BL/6 mice suggest that glycine may represent a promising nutritional intervention for the attenuation of skeletal muscle wasting.

  9. Formation routes of interstellar glycine involving carboxylic acids: possible favoritism between gas and solid phase.

    PubMed

    Pilling, Sergio; Baptista, Leonardo; Boechat-Roberty, Heloisa M; Andrade, Diana P P

    2011-11-01

    Despite the extensive search for glycine (NH₂CH₂COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH₂OH. Another possible reaction involves NH₂CH₂ and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH

  10. The Infrared Spectrum of Matrix Isolated Aminoacetonitrile: A Precursor to the Amino Acid Glycine

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Bauschlicher, Charles W., Jr.; Sandford, Scott A.

    2003-01-01

    We present infrared (IR) spectral data from matrix isolation experiments and density functional theory calculations on the pre-biologically interesting molecule aminoacetonitrile, a precursor to glycine. We find that this nitrile has an unusually weak nitrile (C=N) stretch in the infrared, in contrast to expectations based on measurements and models of other nitriles under astrophysical conditions. The absence of an observable nitrile absorption feature in the infrared will make the IR search for this molecule considerably more difficult, and will raise estimates of upper limits on nitriles in interstellar and outer Solar System ices. This is also of relevance to assessing the formation routes of the amino acid glycine, since aminoacetonitrile is the putative precursor to glycine via the Strecker synthesis, the mechanism postulated to have produced the amino acids in meteorites.

  11. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative...

  12. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative...

  13. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.50 Glycine (aminoacetic acid) in food for human consumption. (a) Heretofore,...

  14. Mycobacterium smegmatis L-alanine dehydrogenase (Ald) is required for proficient utilization of alanine as a sole nitrogen source and sustained anaerobic growth.

    PubMed

    Feng, Zhengyu; Cáceres, Nancy E; Sarath, Gautam; Barletta, Raúl G

    2002-09-01

    NAD(H)-dependent L-alanine dehydrogenase (EC 1.4.1.1) (Ald) catalyzes the oxidative deamination of L-alanine and the reductive amination of pyruvate. To assess the physiological role of Ald in Mycobacterium smegmatis, we cloned the ald gene, identified its promoter, determined the protein expression levels, and analyzed the combined effects of nutrient supplementation, oxygen availability, and growth stage on enzyme activity. High Ald activities were observed in cells grown in the presence of L- or D-alanine regardless of the oxygen availability and growth stage. In exponentially growing cells under aerobic conditions, supplementation with alanine resulted in a 25- to 50-fold increase in the enzyme activity. In the absence of alanine supplementation, 23-fold-higher Ald activities were observed in cells grown exponentially under anaerobic conditions. Furthermore, M. smegmatis ald null mutants were constructed by targeted disruption and were shown to lack any detectable Ald activity. In contrast, the glycine dehydrogenase (EC 1.4.1.10) (Gdh) activity in mutant cells remained at wild-type levels, indicating that another enzyme protein is responsible for the physiologically relevant reductive amination of glyoxylate. The ald mutants grew poorly in minimal medium with L-alanine as the sole nitrogen source, reaching a saturation density 100-fold less than that of the wild-type strain. Likewise, mutants grew to a saturation density 10-fold less than that of the wild-type strain under anaerobic conditions. In summary, the phenotypes displayed by the M. smegmatis ald mutants suggest that Ald plays an important role in both alanine utilization and anaerobic growth.

  15. Interaction of L-alanyl-L-valine and L-valyl-L-alanine with organic vapors: thermal stability of clathrates, sorption capacity and the change in the morphology of dipeptide films.

    PubMed

    Ziganshin, Marat A; Gubina, Nadezhda S; Gerasimov, Alexander V; Gorbatchuk, Valery V; Ziganshina, Sufia A; Chuklanov, Anton P; Bukharaev, Anastas A

    2015-08-21

    The strong effect of the amino acid sequence in L-alanyl-L-valine and L-valyl-L-alanine on their sorption properties toward organic compounds and water, and the thermal stability of the inclusion compounds of these dipeptides have been found. Generally, L-valyl-L-alanine has a greater sorption capacity for the studied compounds, but the thermal stability of the L-alanyl-L-valine clathrates is higher. Unusual selectivity of L-valyl-L-alanine for vapors of few chloroalkanes was observed. The correlation between the change in the surface morphology of thin film of dipeptides and stoichiometry of their clathrates with organic compounds was found. This discovery may be used to predict the influence of vapors on the morphology of films of short-chain oligopeptides.

  16. L-alanine and inosine enhancement of glucose triggering in Bacillus megaterium spores.

    PubMed

    Bédard, J; Lefebvre, G M

    1989-08-01

    Both rate and extent of germination of Bacillus megaterium 14581 (ATCC) spores are considerably augmented when L-alanine and inosine are added to the glucose commonly used as triggering agent for this strain. This enhancement does not arise from heterogeneity in germination requirements of the dormant spore, but is rather a consequence of the combined action of glucose and either or both of the added reagents on a sizeable fraction of spores unable to germinate in glucose alone. Nearly half of the spores that eventually germinate in the mixture of germinants used are either triggered by glucose or are sensitized by it to subsequent triggering by L-alanine and inosine in the first 10 s of imbibition. For a good number of these spores, then, triggering consists of a sequence of separable events. PMID:2510916

  17. Adsorption of di-l-alanine on Cu(110) investigated with scanning tunneling microscopy [rapid communication

    NASA Astrophysics Data System (ADS)

    Stensgaard, I.

    2003-11-01

    Sub-monolayer growth of a small chiral peptide, di- L-alanine, on Cu(1 1 0) was investigated by variable temperature scanning tunneling microscopy (STM). At low coverage and for temperatures above ≈-220 K the molecules nucleate along the [ 3¯ 3 2] direction to form short, mainly one-dimensional islands. An increase in coverage leads to the formation of [ 3¯ 3 2]-directed, elongated islands. Images with sub-molecular resolution reveal that the orientation of the molecules within one particular island depends on the deposition temperature. At higher coverage, up to one monolayer, the islands coalesce, giving rise to phase boundaries between domains of opposite orientation. An atomic-scale model for di- L-alanine on Cu(1 1 0) is presented.

  18. AMPHOTERIC BEHAVIOR OF COMPLEX SYSTEMS : II. TITRATION OF SULFANILIC ACID-GLYCINE MIXTURES.

    PubMed

    Stearn, A E

    1926-11-20

    Electrometric titrations of glycine, sulfanilic acid, and various mixtures of the two have been made. These mixtures are shown to give a curve which, between their respective isoelectric points, is different from that of either substance. These mixtures have a maximum buffering power at a pH which can be theoretically calculated, and which has the characteristics of an "isoelectric point of the system." Other pairs of ampholytes are shown to act in an analogous manner.

  19. Addition of amino acids and dipeptides to fullerene C{sub 60} giving rise to monoadducts

    SciTech Connect

    Romanova, V.S.; Tsyryapkin, V.A.; Vol`pin, M.E.

    1994-12-01

    The authors have developed a general method for the direct addition of amino acids and dipeptides of various structures to fullerene C{sub 60}. In all cases the addition involves the amino group. The reaction proceeds when the solutions of fullerene and an amino acid (or dipeptide) are mixed at 50-100 {degrees}C. The fullerene derivatives of the following amino acids and dipeptides have been obtained: glycine, p-aminobenzoic acid, {omega}-aminocaproic acid, L-proline, L-alanine, L-alanyl-Lalanine, D,L-alanyl-D,L-alanine, glycyl-L-valine. The adduct of methyl L-ananinate with C{sub 60} was also prepared.

  20. Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to delta15N and microbial peptidoglycan studies.

    PubMed

    Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko

    2009-01-01

    We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.

  1. Glycine intake decreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats.

    PubMed

    El Hafidi, Mohammed; Pérez, Israel; Zamora, Jose; Soto, Virgilia; Carvajal-Sandoval, Guillermo; Baños, Guadalupe

    2004-12-01

    The study investigated the mechanism by which glycine protects against increased circulating nonesterified fatty acids (NEFA), fat cell size, intra-abdominal fat accumulation, and blood pressure (BP) induced in male Wistar rats by sucrose ingestion. The addition of 1% glycine to the drinking water containing 30% sucrose, for 4 wk, markedly reduced high BP in sucrose-fed rats (SFR) (122.3 +/- 5.6 vs. 147.6 +/- 5.4 mmHg in SFR without glycine, P < 0.001). Decreases in plasma triglyceride (TG) levels (0.9 +/- 0.3 vs. 1.4 +/- 0.3 mM, P < 0.001), intra-abdominal fat (6.8 +/- 2.16 vs. 14.8 +/- 4.0 g, P < 0.01), and adipose cell size were observed in SFR treated with glycine compared with SFR without treatment. Total NEFA concentration in the plasma of SFR was significantly decreased by glycine intake (0.64 +/- 0.08 vs. 1.11 +/- 0.09 mM in SFR without glycine, P < 0.001). In control animals, glycine decreased glucose, TGs, and total NEFA but without reaching significance. In SFR treated with glycine, mitochondrial respiration, as an indicator of the rate of fat oxidation, showed an increase in the state IV oxidation rate of the beta-oxidation substrates octanoic acid and palmitoyl carnitine. This suggests an enhancement of hepatic fatty acid metabolism, i.e., in their transport, activation, or beta-oxidation. These findings imply that the protection by glycine against elevated BP might be attributed to its effect in increasing fatty acid oxidation, reducing intra-abdominal fat accumulation and circulating NEFA, which have been proposed as links between obesity and hypertension.

  2. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    NASA Astrophysics Data System (ADS)

    Seyedhosseini, E.; Bdikin, I.; Ivanov, M.; Vasileva, D.; Kudryavtsev, A.; Rodriguez, B. J.; Kholkin, A. L.

    2015-08-01

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  3. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    SciTech Connect

    Seyedhosseini, E. Ivanov, M.; Bdikin, I.; Vasileva, D.; Kudryavtsev, A.; Rodriguez, B. J.; Kholkin, A. L.

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  4. Painting proteins blue: β-(1-azulenyl)-L-alanine as a probe for studying protein-protein interactions.

    PubMed

    Moroz, Yurii S; Binder, Wolfgang; Nygren, Patrik; Caputo, Gregory A; Korendovych, Ivan V

    2013-01-18

    We demonstrated that β-(1-azulenyl)-L-alanine, a fluorescent pseudoisosteric analog of tryptophan, exhibits weak environmental dependence and thus allows for using weak intrinsic quenchers, such as methionines, to monitor protein-protein interactions while not perturbing them.

  5. Electron attachment to amino acid clusters in helium nanodroplets: Glycine, alanine, and serine

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Denifl, S.; Märk, T. D.; Ellis, A. M.; Scheier, P.

    2010-06-01

    The first detailed study of electron attachment to amino acid clusters is reported. The amino acids chosen for investigation were glycine, alanine, and serine. Clusters of these amino acids were formed inside helium nanodroplets, which provide a convenient low temperature (0.37 K) environment for growing noncovalent clusters. When subjected to low energy (2 eV) electron impact the chemistry for glycine and alanine clusters was found to be similar. In both cases, parent cluster anions were the major products, which contrasts with the corresponding monomers in the gas phase, where the dehydrogenated products ([AAn-H]-, where AA=amino acid monomer) dominate. Serine clusters are different, with the major product being the parent anion minus an OH group, an outcome presumably conferred by the facile loss of an OH group from the β carbon of serine. In addition to the bare parent anions and various fragment anions, helium atoms are also observed attached to both the parent anion clusters and the dehydrogenated parent anion clusters. Finally, we present the first anion yield spectra of amino acid clusters from doped helium nanodroplets as a function of incident electron energy.

  6. FT-Raman and FTIR spectroscopic studies of N-octadecanoyl-L-alanine amphiphiles.

    PubMed

    Du, Xuezhong; Liang, Yingqiu

    2004-01-01

    FTIR spectroscopy is used to compare the difference in molecular structure between Langmuir-Blodgett (LB) films (transferred at the surface pressure 40 mN/m with the vertical method and 0 mN/m with the horizontal method) and bulk sample of N-Octadecanoyl-L-alanine amphiphiles. The bulk sample possesses a very similar microstructure (intermolecular hydrogen-bonding interaction and triclinic chain packing) to the well-ordered LB films. Much information on molecular structure of the bulk sample is obtained using FT-Raman spectroscopy, and several weak Raman scattering peaks are assigned.

  7. Toxicity of the cyanobacterial neurotoxin beta-N-methylamino-L-alanine to three aquatic animal species.

    PubMed

    Purdie, Esme L; Metcalf, James S; Kashmiri, Shereen; Codd, Geoffrey A

    2009-01-01

    Beta-N-methylamino-L-alanine (BMAA), a neurotoxin and candidate contributory cause of neurodegenerative diseases including amyotrophic lateral sclerosis, is produced by aquatic and terrestrial cyanobacteria. We have determined BMAA toxicity to three aquatic animal species: zebra fish (Danio rerio), brine shrimp (Artemia salina) and the protozoan Nassula sorex. Responses included: clonus convulsions and abnormal spinal axis formation (D. rerio), loss of phototaxis (A. salina) and mortalities (all species). These systems offer potential to further understand BMAA toxicity and the bioaccumulation and fates of BMAA in aquatic food chains leading to potential human exposure.

  8. Effect of folic acid and glycine supplementation on embryo development and folate metabolism during early pregnancy in pigs.

    PubMed

    Guay, F; Matte, J J; Girard, C L; Palin, M F; Giguère, A; Laforest, J P

    2002-08-01

    The present work aimed to determine if different levels of prolificacy either by parity or by genetic origin are linked to folate metabolism. Nulliparous Yorkshire-Landrace (YL) and multiparous YL, and multiparous Meishan-Landrace (ML) sows were randomly assigned to two treatments: 0 ppm or 15 ppm folic acid+0.6% glycine. Supplements were given from the estrus before mating until slaughter on d 25 of gestation. At slaughter, embryo and endometrial tissues were collected to determine concentrations of DNA, protein, and homocysteine. Allantoic fluid samples were also collected to determine concentrations of folates, vitamin B12 and amino acids. Blood samples were taken at first estrus, at mating, and on d 8, 16, and 25 of gestation to determine serum concentrations of folates, vitamin B12, and relative total folate binding capacity (TFBC). Over the entire experiment, multiparous YL sows had higher average serum concentrations of folates than nulliparous YL sows (P < 0.05) but had similar serum concentrations of relative TFBC. Concentrations of folates and relative TFBC averaged higher in ML measured over the entire experiment than in multiparous YL sows (P < 0.05). Concentrations of serum vitamin B12 were higher in multiparous YL than in ML sows or YL nulliparous sows (P < 0.05) over the entire experiment. In allantoic fluid, folates, vitamin B12, and essential amino acids contents were significantly lower in ML than in YL multiparous sows (P < 0.05). The folic acid+glycine supplement increased concentrations of serum folates, but the increase was more marked in nulliparous YL sows (nulliparous x folic acid+glycine, P < 0.05). The folic acid+glycine supplement had no effect on litter size and embryo survival, but it tended to increase embryo DNA in multiparous YL sows (P = 0.06) but not in ML and nulliparous YL sows. Homocysteine was decreased by folic acid+glycine supplement in embryos from all sows, but in endometrium, the folic acid+glycine effect was dependent on

  9. Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA).

    PubMed

    Frøyset, Ann Kristin; Khan, Essa Ahsan; Fladmark, Kari Espolin

    2016-01-01

    The non-protein amino acid β-methylamino-L-alanine (BMAA) is a neurotoxin present in microalgae and shown to accumulate in the food web. BMAA has been linked to the complex neurodegenerative disorder of Guam and to increased incidents sporadic ALS. Two main neurotoxic routes are suggested; an excitotoxic by acting as an agonist towards glutamate receptors and a metabolic by misincorporating into cellular proteins. We have used zebrafish, an increasingly used model for neurodegenerative diseases, to further identify signaling components involved in BMAA-induced toxicity. Zebrafish embryos were exposed to sub-lethal dosages of BMAA and a label-free proteomics analysis was conducted on larvae 4 days post fertilization. The exposed larvae showed no developmental abnormalities, but a reduced heart rate and increased expression of GSK3 isoforms. Search towards a reviewed database containing 2968 entries identified 480 proteins. Only 17 of these were regulated 2-fold or more in the exposed larvae. Seven of these proteins could be associated to glutamate receptor signaling and recycling. The remaining nine have all been linked to disturbance in protein homeostasis, reactive oxygen species (ROS) development or neuronal cell death. We also found that BMAA influenced the endocannabinoid system by up-regulation of fatty acid amide hydrolase (FAAH) and that FAAH inhibitor URB597 reduced the BMAA effect on heart rate and GSK3 expression. PMID:27404450

  10. Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA)

    PubMed Central

    Frøyset, Ann Kristin; Khan, Essa Ahsan; Fladmark, Kari Espolin

    2016-01-01

    The non-protein amino acid β-methylamino-L-alanine (BMAA) is a neurotoxin present in microalgae and shown to accumulate in the food web. BMAA has been linked to the complex neurodegenerative disorder of Guam and to increased incidents sporadic ALS. Two main neurotoxic routes are suggested; an excitotoxic by acting as an agonist towards glutamate receptors and a metabolic by misincorporating into cellular proteins. We have used zebrafish, an increasingly used model for neurodegenerative diseases, to further identify signaling components involved in BMAA-induced toxicity. Zebrafish embryos were exposed to sub-lethal dosages of BMAA and a label-free proteomics analysis was conducted on larvae 4 days post fertilization. The exposed larvae showed no developmental abnormalities, but a reduced heart rate and increased expression of GSK3 isoforms. Search towards a reviewed database containing 2968 entries identified 480 proteins. Only 17 of these were regulated 2-fold or more in the exposed larvae. Seven of these proteins could be associated to glutamate receptor signaling and recycling. The remaining nine have all been linked to disturbance in protein homeostasis, reactive oxygen species (ROS) development or neuronal cell death. We also found that BMAA influenced the endocannabinoid system by up-regulation of fatty acid amide hydrolase (FAAH) and that FAAH inhibitor URB597 reduced the BMAA effect on heart rate and GSK3 expression. PMID:27404450

  11. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants.

    PubMed

    Motulsky, Aude; Lafleur, Michel; Couffin-Hoarau, Anne-Claude; Hoarau, Didier; Boury, Frank; Benoit, Jean-Pierre; Leroux, Jean-Christophe

    2005-11-01

    The development of simple and efficient drug delivery systems for the sustained release of peptides/proteins and low molecular weight hydrophilic molecules is an ongoing challenge. The purpose of this work was to prepare and characterize novel biodegradable in situ-forming implants obtained via the self-assembly of L-alanine derivatives in pharmaceutical oils. Six different amphiphilic organogelators based on L-alanine were synthesized. These derivatives could successfully gel various vegetable and synthetic oils approved for parenteral administration. Gelation was thermoreversible, and phase transition temperatures depended on gelator structure, concentration and solvent. Hydrogen bonds and van der Waals interactions were shown to be the main forces implicated in network formation. Selected formulations were then injected subcutaneously in rats for preliminary assessment of biocompatibility. Histopathological analysis of the surrounding tissues revealed mild, chronic inflammation and an overall good biocompatibility profile of the implants over the 8 wk evaluation period. This study demonstrates that in situ-forming organogels represent a potentially promising platform for sustained drug delivery.

  12. First report for voltammetric determination of methyldopa in the presence of folic acid and glycine.

    PubMed

    Molaakbari, Elahe; Mostafavi, Ali; Beitollahi, Hadi

    2014-03-01

    In this study, a carbon paste electrode modified with TiO2 nanoparticles and ferrocene monocarboxylic acid (FM) was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for the detection of methyldopa in the presence of folic acid and glycine. The peak potentials recorded in a phosphate buffer solution (PBS) of pH7.0 were 325, 750 and 880 mV vs. Ag/AgCl/KCl (3.0M) for methyldopa, folic acid and glycine, respectively. Under the optimum pH of 7.0, the oxidation of methyldopa occurred at a potential about 160 mV less positive than that of the unmodified carbon paste electrode (CPE). The response of catalytic current with methyldopa concentration showed a linear relation in the range from 2.0×10(-7) to 1.0×10(-4)M with a detection limit of 8.0 (± 0.2)×10(-8)M.

  13. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    PubMed Central

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  14. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions.

    PubMed

    Zimmerman, David; Goto, Joy J; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  15. The effect of β-N-methylamino-L-alanine (BMAA) on oxidative stress response enzymes of the macrophyte Ceratophyllum demersum.

    PubMed

    Esterhuizen-Londt, M; Pflugmacher, S; Downing, T G

    2011-04-01

    Cyanobacteria are known to produce bioactive secondary metabolites such as hepatotoxins, cytotoxins and neurotoxins. The newly recognized neurotoxin β-N-methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid found in the majority of cyanobacterial genera tested. Evidence that exists for implication of BMAA in neurodegenerative disorders relies on bioaccumulation and biomagnification from symbiotic cyanobacteria. Uptake and accumulation of free BMAA by various non-symbiotic organisms, including aquatic macrophytes, has been documented but to date limited evidence of ecotoxicology exists. We therefore investigated the effect of BMAA on the oxidative stress responses of the macrophyte, Ceratophyllum demersum. Markers for oxidative stress in this study are the antioxidative enzymes superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase and glutathione reductase. We found that BMAA had an inhibitory effect on all the oxidative stress response enzymes tested in plants exposed to BMAA. However enzymes not related to oxidative stress response were not affected by BMAA in in vitro experiments. Binding studies in the presence of BMAA showed reduced enzyme specific activity over time compared to the control. This study shows that BMAA causes oxidative stress indirectly as it inhibits antioxidant enzymes required to combat reactive oxygen species that cause damage to cells. Further investigations are required to fully understand the inhibitory effect of BMAA on these enzymes. PMID:21334358

  16. FORMATION OF GLYCINE ON ULTRAVIOLET-IRRADIATED INTERSTELLAR ICE-ANALOG FILMS AND IMPLICATIONS FOR INTERSTELLAR AMINO ACIDS

    SciTech Connect

    Lee, Chang-Woo; Kim, Joon-Ki; Moon, Eui-Seong; Kang, Heon; Minh, Y. C.

    2009-05-20

    We report the synthesis of glycine on interstellar ice-analog films composed of water, methylamine (MA), and carbon dioxide under irradiation of ultraviolet (UV) photons. Analysis of the UV-irradiated ice films by in situ mass spectrometric methods revealed glycine and other isomers as photochemical products. Deuterium-labeling experiments were conducted to determine the structures of the photoproducts and to examine their formation pathways. The reactions occur via photocleavages of C-H and N-H bonds in MA, followed by subsequent reactions of the nascent H atom with CO{sub 2}, leading to the formation of HOCO and then to glycine and carbamic acid. The photochemical synthesis of glycine occurs efficiently at the ice surfaces, and the competing photosynthesis and photodestruction processes can reach a steady-state kinetic balance at an extended UV exposure, maintaining a substantial population level of glycine. The observation suggests that interstellar amino acids can be created on ice grains, and that they can also be stored in the ices by maintaining a kinetic balance under interstellar UV irradiation. As such, the transport of amino acids in interstellar space may be possible without depleting the net abundance of amino acids in the ices but rather increasing the structural diversity of the molecules.

  17. Growth, Structural And Optical Studies On Bis L-alanine Lithium Chloride (BLALC) Single Crystal

    NASA Astrophysics Data System (ADS)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Bis L-alanine Lithium Chloride (BLALC) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 15 x 9 x 4 mm3 have been obtained in 28 days. The grown crystals were colourless and transparent. Single crystal X-ray diffraction (XRD) study showed that BLALC belongs to orthorhombic system with a non-centro-symmetric space group P212121. The crystallinity of BLALC crystal was confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. The functional groups of the grown crystals have been identified by FTIR studies. UV-visible transmittance spectrum was recorded to study the optical transparency of BLALC crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique.

  18. Spectrofluorimetric determination of ofloxacin in milk with N-(9-fluorenylmethyloxycarbonyl)-L-alanine.

    PubMed

    Tong, Zhao; Bianfei, Yu; Wanjin, Tang; Haixia, Zhang

    2015-09-01

    It was found that N-(9-fluorenylmethyloxycarbonyl)-L-alanine (F-Ala) could interact with ofloxacin (OFL) and enhance the fluorescence of OFL, which could be used to set up a new fluorescence spectrophotometry method to detect OFL without isolation procedure. The experimental conditions were discussed and when MeOH was used as solvent, 0.001 μg mL(-1) of OFL could be detected. For making the method could be used easily in milk samples, MeOH/H2O (v/v, 4:1, pH 4.1) was used as the optimal solvent condition, the limit of quantification of OFL could be reached 0.01 μg mL(-1) in milk samples with recovery more than 88% at least.

  19. Discovery of an L-alanine ester prodrug of the Hsp90 inhibitor, MPC-3100.

    PubMed

    Kim, Se-Ho; Tangallapally, Rajendra; Kim, In Chul; Trovato, Richard; Parker, Daniel; Patton, J Scott; Reeves, Leslie; Bradford, Chad; Wettstein, Daniel; Baichwal, Vijay; Papac, Damon; Bajji, Ashok; Carlson, Robert; Yager, Kraig M

    2015-11-15

    Various types of Hsp90 inhibitors have been and continue to undergo clinical investigation. One development candidate is the purine-based, synthetic Hsp90 inhibitor 1 (MPC-3100), which successfully completed a phase I clinical study. However, further clinical development of 1 was hindered by poor solubility and consequent formulation issues and promoted development of a more water soluble prodrug. Towards this end, numerous pro-moieties were explored in vitro and in vivo. These studies resulted in identification of L-alanine ester mesylate, 2i (MPC-0767), which exhibited improved aqueous solubility, adequate chemical stability, and rapid bioconversion without the need for solubilizing excipients. Based on improved physical characteristics and favorable PK and PD profiles, 2i mesylate was selected for further development. A convergent, scalable, chromatography-free synthesis for 2i mesylate was developed to support further clinical evaluation.

  20. Experimental and DFT computational studies of L-alanine cadmium chloride crystals

    NASA Astrophysics Data System (ADS)

    Ignatius, I. Cicili; Dheivamalar, S.; Kirubavathi, K.; Selvaraju, K.

    2016-05-01

    In this work, we report the combined experimental and theoretical study on molecular structure and vibrational spectra of nonlinear optical crystal L-alanine cadmium chloride (LACC). The single X-ray diffraction studies have revealed that the compound crystallizes in monoclinic system C2 space group with cell parameters a = 16.270, b = 7.358, c = 7.887 and Z = 4. FTIR and Raman spectra of the nonlinear optical materials LACC have been recorded and analyzed. The optimized geometric bond length and bond angles are obtained with the help of density functional theory (DFT) (B3LYP) calculation. The optimized geometric bond lengths and bond angles obtained by using DFT show good agreement with the experimental data. Using the natural bond orbital analysis the electronic effect and hydrogen bonding were confirmed. The HOMO-LUMO energy gap and the first order hyperpolarizability were calculated and it supports the nonlinear optical activity of LACC crystal.

  1. Spectrofluorimetric determination of ofloxacin in milk with N-(9-fluorenylmethyloxycarbonyl)-L-alanine

    NASA Astrophysics Data System (ADS)

    Tong, Zhao; Bianfei, Yu; Wanjin, Tang; Haixia, Zhang

    2015-09-01

    It was found that N-(9-fluorenylmethyloxycarbonyl)-L-alanine (F-Ala) could interact with ofloxacin (OFL) and enhance the fluorescence of OFL, which could be used to set up a new fluorescence spectrophotometry method to detect OFL without isolation procedure. The experimental conditions were discussed and when MeOH was used as solvent, 0.001 μg mL-1 of OFL could be detected. For making the method could be used easily in milk samples, MeOH/H2O (v/v, 4:1, pH 4.1) was used as the optimal solvent condition, the limit of quantification of OFL could be reached 0.01 μg mL-1 in milk samples with recovery more than 88% at least.

  2. First report on the efficacy of l-alanine-based in situ-forming implants for the long-term parenteral delivery of drugs.

    PubMed

    Plourde, François; Motulsky, Aude; Couffin-Hoarau, Anne-Claude; Hoarau, Didier; Ong, Huy; Leroux, Jean-Christophe

    2005-11-28

    The recent advent of biotechnologies has led to the development of labile macromolecular therapeutic agents that require complex formulations for their efficient administration. This work reports a novel concept for the systemic, sustained delivery of such agents. The proposed approach is based on the spontaneous self-assembly of low-molecular weight amphiphilic amino acid derivatives in a hydrophobic pharmaceutical vehicle. The injectable, in situ-forming organogels were obtained by mixing N-stearoyl l-alanine (m)ethyl esters with a vegetable oil and a biocompatible hydrophilic solvent. The gels' in vivo-delivering properties were evaluated in rats with leuprolide, a luteinizing hormone-releasing hormone agonist used in prostate cancer, endometriosis and precocious puberty treatment. Following subcutaneous injection, the gels degraded and gradually released leuprolide for 14 to 25 days. Drug release was accompanied by sustained castration lasting up to 50 days, as assessed by testosterone levels. This study demonstrates that in situ-forming implants based on l-alanine derivatives represent a novel injectable platform for the controlled delivery of hydrophilic compounds, which is simpler than currently available implant and microsphere technologies.

  3. Genetics Home Reference: glycine encephalopathy

    MedlinePlus

    ... a molecule called glycine. This molecule is an amino acid , which is a building block of proteins. Glycine ... Additional Information & Resources MedlinePlus (3 links) Health Topic: Amino Acid Metabolism Disorders Health Topic: Genetic Brain Disorders Health ...

  4. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    NASA Astrophysics Data System (ADS)

    Cavaignac, A. L. O.; Lima, R. J. C.; Façanha Filho, P. F.; Moreno, A. J. D.; Freire, P. T. C.

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  5. Polymerization of amino acids under primitive earth conditions.

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Ponnamperuma, C.

    1972-01-01

    Small amounts of peptides were obtained when equal amounts of methane and ammonia were reacted with vaporized aqueous solutions of C14-labeled glycine, L-alanine, L-aspartic acid, L-glutamic acid and L-threonine in the presence of a continuous spark discharge in a 24-hr cyclic process. The experiment was designed to demonstrate the possibility of peptide synthesis under simulated primeval earth conditions. It is theorized that some dehydration-condensation processes may have taken place, with ammonium cyanide, the hydrogencyanide tetramer or aminonitriles as intermediate products, during the early chemical evolution of the earth.

  6. Maternal Transfer of the Cyanobacterial Neurotoxin β-N-Methylamino-L-Alanine (BMAA) via Milk to Suckling Offspring

    PubMed Central

    Andersson, Marie; Karlsson, Oskar; Bergström, Ulrika; Brittebo, Eva B.; Brandt, Ingvar

    2013-01-01

    The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease and proposed to be biomagnified in terrestrial and aquatic food chains. We have previously shown that the neonatal period in rats, which in humans corresponds to the last trimester of pregnancy and the first few years of age, is a particularly sensitive period for exposure to BMAA. The present study aimed to examine the secretion of 14C-labeled L- and D-BMAA into milk in lactating mice and the subsequent transfer of BMAA into the developing brain. The results suggest that secretion into milk is an important elimination pathway of BMAA in lactating mothers and an efficient exposure route predominantly for L-BMAA but also for D-BMAA in suckling mice. Following secretion of [14C]L-BMAA into milk, the levels of [14C]L-BMAA in the brains of the suckling neonatal mice significantly exceeded the levels in the maternal brains. In vitro studies using the mouse mammary epithelial HC11 cell line confirmed a more efficient influx and efflux of L-BMAA than of D-BMAA in cells, suggesting enantiomer-selective transport. Competition experiments with other amino acids and a low sodium dependency of the influx suggests that the amino acid transporters LAT1 and LAT2 are involved in the transport of L-BMAA into milk. Given the persistent neurodevelopmental toxicity following injection of L-BMAA to neonatal rodent pups, the current results highlight the need to determine whether BMAA is enriched mother's and cow's milk. PMID:24194910

  7. N-Acetyl-L-alanine N'-methylamide: a density functional analysis of the vibrational absorption and vibrational circular dichroism spectra

    NASA Astrophysics Data System (ADS)

    Jalkanen, K. J.; Suhai, S.

    1996-07-01

    Ab initio 6-31G ∗ Becke 3LYP DFT optimized geometries, vibrational frequencies, vibrational absorption (VA) intensities and vibrational circular dichroism (VCD) intensities have been calculated for the eight low energy conformers of N-acetyl-L-alanine N'-methylamide (L-AANMA) in the gas phase and one conformer stabilized by the addition of four water molecules. The VA and VCD spectra are calculated with the 6-31G ∗ Becke 3LYP force fields (Hessians) and atomic polar tensors (APT); 6-31G ∗∗ RHF atomic axial tensors (AAT) for the eight gas phase structures and 6-31G ∗/6-31G RHF AAT for the L-AANMA-water complex. The VA and VCD spectra are also calculated using the 6-31G ∗ Becke 3LYP Hessians; 6-31G ∗∗ RHF APT and AAT for the eight gas phase structures and 6-31G ∗/6-31G RHF APT and AAT for the L-AANMA-water complex. The rotational strengths of the amide A, I, II, III, IV, V and VI modes found in proteins as a function of φ and ψ (for various secondary structures) are for the first time reported for an inherently optically active molecule (non-glycine model) using the 6-31G ∗∗ and 6-31G ∗/6-31G RHF DOG AAT and 6-31G ∗ Becke 3LYP Hessians and APT. This is also the first reported VCD calculation of a molecule with the solvent present. The molecule is not completely solvated, but the important hydrogen-bonded interactions are present and the feasibility of the calculation of the Hessian, APT and AAT with solvent molecules present is demonstrated. The VA and VCD spectra are compared to the experimental VA and VCD spectra in the literature and the conformational analysis (CA) and vibrational assignment of L-AANMA are reinvestigated. The rotational strengths of the amide modes for the various conformers are also compared to peptide and protein VCD spectra of molecules with known secondary structures. The agreement between the calculated rotational strengths of the various amide modes for which experimental measurements have been made is very good

  8. Cadmium inhibition of L-alanine transport into renal brush border membrane vesicles isolated from the winter flounder (Pseudopleuronectes americanus)

    SciTech Connect

    Bevan, C.; Kinne-Saffran, E.; Foulkes, E.C.; Kinne, R.K. )

    1989-12-01

    Using isolated brush border membrane vesicles from the kidney of the winter flounder (Pseudopleuronectes americanus), we have studied the effect of cadmium on L-alanine transport. Pretreatment of vesicles with 0.1 mM Cd{sup 2+} resulted in inhibition of L-alanine uptake in the presence of a NaCl (but not KCl) gradient. Inhibition was due to a specific interaction with the sodium-alanine cotransport system and not a change in the driving forces for alanine transport, since Cd{sup 2+} did not affect sodium-dependent D-glucose uptake. The effect of Cd{sup 2+} on Na{sup +}-alanine cotransport showed mixed-type inhibition which is only partially reversible by EDTA. Cd{sup 2+} uptake itself was shown to be time and temperature dependent, resulting in binding to both sides of the membrane. No direct correlation was possible between inhibition of L-alanine transport and the amount of Cd{sup 2+} taken up by the membranes. Nevertheless, the striking time dependence of the effect of Cd{sup 2+} on sodium-dependent L-alanine uptake and the inability of EDTA to reverse the inhibitory action of Cd{sup 2+} suggest that Cd{sup 2+} inhibits Na+-alanine cotransport at the cytoplasmic side of the membrane.

  9. β-(1-Azulenyl)-L-alanine--a functional probe for determination of pKa of histidine residues.

    PubMed

    Gosavi, Pallavi M; Moroz, Yurii S; Korendovych, Ivan V

    2015-03-28

    β-(1-Azulenyl)-L-alanine (AzAla) can be incorporated into the influenza A virus M2 proton channel. AzAla's sensitivity to the protonation state of the nearby histidines and the lack of environmental fluorescence dependence allow for direct and straightforward determination of histidine pKa values in ion channels.

  10. Synthesis of a molecularly imprinted sorbent for selective solid-phase extraction of β-N-methylamino-L-alanine.

    PubMed

    Svoboda, Pavel; Combes, Audrey; Petit, Julia; Nováková, Lucie; Pichon, Valérie

    2015-11-01

    The aim of the work was to synthesize a molecularly imprinted material for the selective solid-phase extraction (SPE) of β-N-methylamino-L-alanine (L-2-amino-3-methylpropionic acid; BMAA) from cyanobacterial extracts. BMAA and its structural analogs that can be used as template are small, polar and hydrophilic molecules. These molecules are poorly soluble in organic solvents that are commonly used for the synthesis of acrylic-based polymers. Therefore, a sol gel approach was chosen to carry out the synthesis and the resulting sorbents were evaluated with different extraction procedures in order to determine their ability to selectively retain BMAA. The presence of imprinted cavities in the sorbent was demonstrated by comparing elution profiles obtained by using molecularly imprinted silica (MIS) and non-imprinted silica (NIS) as a control. The molecularly imprinted solid-phase extraction (MISPE) procedure was first developed in a pure medium (acetonitrile) and further optimized for the treatment of cyanobacterial samples. It was characterized by high elution recoveries (89% and 77% respectively in pure and in real media).The repeatability of the extraction procedure in pure medium, in real medium and the reproducibility of MIS synthesis all expressed as RSD values of extraction recovery of BMAA were equal to 3%, 12% and 5%, respectively. A MIS capacity of 0.34 µmol/g was measured. The matrix effects, which affected the quantification of BMAA when employing a mixed mode sorbent, were completely removed by adding a clean-up step of the mixed-mode sorbent extract on the MIS.

  11. A theoretical study of medium effects on the structure of the glycine analogue aminomethylphosphonic acid.

    PubMed

    Benbrahim, Nasséra; Rahmouni, Ali; Ruiz-López, Manuel F

    2008-09-28

    alpha-Aminophosphonic acids are analogues of natural alpha-aminoacids and very promising agents for use in various pharmaceutical applications. However, in contrast to the numerous theoretical investigations on the structure of natural alpha-aminoacids, only very few studies on alpha-aminophosphonic acids have been performed. In the present work, we report a detailed investigation of the simplest compound, the glycine analogue aminomethylphosphonic acid (AMPA), by means of quantum mechanical calculations at the B3LYP/6-311++G(3df,2p)//B3LYP/6-31+G(d,p) and MP2/6-311++G(3df,2p)//B3LYP/6-31+G(d,p) levels. We focus on the structure of the neutral species looking at the evolution of non-ionized and ionized forms from gas phase to non-polar solvents and aqueous media. Continuum and discrete-continuum solvent models have been employed to account for the effects of the environment. The discussion is centered on: (1) the geometry and relative stability of possible conformers in gas phase and aqueous solution, (2) the free energy of tautomerization in different media, (3) the role of hydrogen bonds in liquid water, and (4) the free energy of transfer from water to a hydrophobic solvent such as cyclohexane. Systematic comparison between AMPA and Gly is performed. Though both systems exhibit many similarities, some important differences have also been found that may be explained, at least in part, by the higher acidity of phosphonic acids compared to carboxylic acids. In particular, in solvents lacking hydrogen-bond formation capability, Gly derivatives should mainly exist as non-ionized molecules while the equivalent AMPA derivatives should adopt a zwitterionic structure in media with dielectric constant above 10. This might have significant environmental or biological consequences that will need to be addressed.

  12. Growth and characterization of L-alanine cadmium bromide a semiorganic nonlinear optical crystals

    NASA Astrophysics Data System (ADS)

    Ilayabarathi, P.; Chandrasekaran, J.

    2012-10-01

    A new semiorganic nonlinear optical crystal, L-alanine cadmium bromide (LACB) was grown from aqueous solution by slow solvent evaporation method at room temperature. As grown crystals were characterized for its spectral, thermal, linear and second order nonlinear optical properties. LACB crystallizes in orthorhombic system and unit cell parameters a = 5.771(2) Å, b = 6.014(4) Å, c = 12.298(2) Å, α = β = γ = 90° and volume = 426.8(3) Å3. The mode of vibrations of different molecular groups present in the crystal was identified by FTIR study. The grown crystals were found to be transparent in the entire visible region. The thermal strength and the decomposition of the grown crystals were studied using TG/DTA and DSC analysis. Dielectric measurement revealed that the crystals had very low dielectric constant at higher frequency in room temperature. The mechanical behavior was studied by Vicker's microhardness tester. The grown crystal has negative photoconductivity nature. The fluorescence spectrum of the crystal was recorded and its optical band gap is about 3.356 eV. The NLO property of crystal using modified Kurtz-Perry powder technique with Nd:YAG laser light of wavelength 1064 nm indicated that their second harmonic generation (SHG) efficiency was half that of pure KDP.

  13. Cycas micronesica (Cycadales) plants devoid of endophytic cyanobacteria increase in beta-methylamino-L-alanine.

    PubMed

    Marler, Thomas E; Snyder, Laura R; Shaw, Christopher A

    2010-09-15

    Cycads are among the most ancient of extant Spermatophytes, and are known for their pharmacologically active compounds. beta-methylamino-l-alanine (BMAA) is one metabolite that been implicated as causal of human neurodegenerative diseases in Guam. We grew Cycas micronesica seedlings without endophytic cyanobacteria symbiosis, and quantified initial and ending BMAA in various plant tissues. BMAA increased 79% during nine months of seedling growth, and root tissue contained 75% of the ultimate BMAA pool. Endophytic cyanobacteria symbionts were not the source of BMAA increase in these seedlings, which contradicts previously reported claims that biosynthesis of this toxin by cyanobacteria initiates its accumulation in the Guam environment. The preferential loading of root tissue with BMAA does not support earlier reports that this toxin serves a defensive role against herbivory of leaf or seed tissues. The long history of conflicting results in Guam's cycad toxin research continues, and recent developments underscore the sense of urgency in continued research as this endangered cycad population approaches extirpation from the island.

  14. Cycas micronesica (Cycadales) plants devoid of endophytic cyanobacteria increase in beta-methylamino-L-alanine.

    PubMed

    Marler, Thomas E; Snyder, Laura R; Shaw, Christopher A

    2010-09-15

    Cycads are among the most ancient of extant Spermatophytes, and are known for their pharmacologically active compounds. beta-methylamino-l-alanine (BMAA) is one metabolite that been implicated as causal of human neurodegenerative diseases in Guam. We grew Cycas micronesica seedlings without endophytic cyanobacteria symbiosis, and quantified initial and ending BMAA in various plant tissues. BMAA increased 79% during nine months of seedling growth, and root tissue contained 75% of the ultimate BMAA pool. Endophytic cyanobacteria symbionts were not the source of BMAA increase in these seedlings, which contradicts previously reported claims that biosynthesis of this toxin by cyanobacteria initiates its accumulation in the Guam environment. The preferential loading of root tissue with BMAA does not support earlier reports that this toxin serves a defensive role against herbivory of leaf or seed tissues. The long history of conflicting results in Guam's cycad toxin research continues, and recent developments underscore the sense of urgency in continued research as this endangered cycad population approaches extirpation from the island. PMID:20570592

  15. Altered Glycine Decarboxylation Inhibition in Isonicotinic Acid Hydrazide-Resistant Mutant Callus Lines and in Regenerated Plants and Seed Progeny

    PubMed Central

    Zelitch, Israel; Berlyn, Mary B.

    1982-01-01

    Isonicotinic acid hydrazide (INH), an inhibitor of the photorespiratory pathway blocking the conversion of glycine to serine and CO2, has been used as a selective agent to obtain INH-resistant tobacco (Nicotiana tabacum) callus cells. Of 22 cell lines that were INH-resistant, none were different from wild-type cells in their ability to take up [3H]INH or to oxidize INH to isonicotinic acid. In 7 of the 22 cell lines, INH resistance was associated with decreased inhibition of NAD-dependent glycine decarboxylation activity in isolated mitochondrial preparations. In the cell line that was most extensively investigated (I 24), this biochemical phenotype (exhibiting a 3-fold higher Ki with INH) was observed in leaf mitochondria of regenerated plants and of plants produced from them by self-fertilization. After crosses between resistant and sensitive plants, the decreased inhibition of glycine decarboxylation was observed among F2 and backcross progeny only in those plants previously identified as INH-resistant by callus growth tests. In contrast, in siblings identified as INH-sensitive, glycine decarboxylation was inhibited by INH at the wild-type level. This demonstration of the transfer of an altered enzyme property from callus to regenerated plants and through seed progeny fulfills an important requirement for the use of somatic cell genetics to produce biochemical mutants of higher plants. PMID:16662158

  16. The secondary structures of poly ( L-alanine) blocks in some diblock copolymers of poly( L-alanine)- b-poly(ethylene glycol) monomethyl ether in the solid state characterized by nuclear magnetic resonance and infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Guo L.; Sun, Ping C.; Lin, Hai; Ma, Jian B.

    2004-02-01

    The 13C cross-polarization/magic-angle spinning (CP/MAS) spectra of the solid-state nuclear magnetic resonance (NMR) and the infrared spectra of three diblock copolymers, poly ( L-alanine)- block-poly(ethylene glycol) monomethyl ether (PLA- b-MPEG), with various proportions of two blocks were studied in comparison with those of the homopolymer poly( L-alanine), PLA, and the blends of two blocks (PLA and MPEG). The secondary structures such as α-helix and β-sheet of poly ( L-alanine) (PLA) blocks in the block copolymers could be elucidated from the signals in the solid-state 13C CP/MAS NMR spectra and transmittance peaks in the Fourier-transformation infrared (FTIR) spectra. Dramatic differences in the secondary structures were observed for the diblock copolymers, homopolymer PLA and blend samples. It was found that with the increase of the fraction of PLA block in the block copolymers, the ratio of β-sheet to α-helical conformation of PLA block went up although the α-helical conformation was much more than β-sheet conformation in total. It contradicted the general prediction of the secondary structure of homopolypeptides or PLA/PEG blends, in which the β-sheet conformation content decreased with the decrease of the polymerization degree of PLA. The investigation in FTIR spectrometry resulted in the same conclusion.

  17. Acute β-N-Methylamino-L-alanine Toxicity in a Mouse Model

    PubMed Central

    Al-Sammak, Maitham Ahmed; Rogers, Douglas G.; Hoagland, Kyle D.

    2015-01-01

    The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) is considered to be an “excitotoxin,” and its suggested mechanism of action is killing neurons. Long-term exposure to L-BMAA is believed to lead to neurodegenerative diseases including Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis (Lou Gehrig's disease). Objectives of this study were to determine the presumptive median lethal dose (LD50), the Lowest-Observed-Adverse-Effect Level (LOAEL), and histopathologic lesions caused by the naturally occurring BMAA isomer, L-BMAA, in mice. Seventy NIH Swiss Outbred mice (35 male and 35 female) were used. Treatment group mice were injected intraperitoneally with 0.03, 0.3, 1, 2, and 3 mg/g body weight L-BMAA, respectively, and control mice were sham-injected. The presumptive LD50 of L-BMAA was 3 mg/g BW and the LOAEL was 2 mg/g BW. There were no histopathologic lesions in brain, liver, heart, kidney, lung, or spleen in any of the mice during the 14-day study. L-BMAA was detected in brains and livers in all of treated mice but not in control mice. Males injected with 0.03 mg/g BW, 0.3 mg/g BW, and 3.0 mg/g BW L-BMAA showed consistently higher concentrations (P < 0.01) in brain and liver samples as compared to females in those respective groups. PMID:26604922

  18. Environmental neurotoxins β-N-methylamino-l-alanine (BMAA) and mercury in shark cartilage dietary supplements.

    PubMed

    Mondo, Kiyo; Broc Glover, W; Murch, Susan J; Liu, Guangliang; Cai, Yong; Davis, David A; Mash, Deborah C

    2014-08-01

    Shark cartilage products are marketed as dietary supplements with claimed health benefits for animal and human use. Shark fin and cartilage products sold as extracts, dry powders and in capsules are marketed based on traditional Chinese medicine claims that it nourishes the blood, enhances appetite, and energizes multiple internal organs. Shark cartilage contains a mixture of chondroitin and glucosamine, a popular nutritional supplement ingested to improve cartilage function. Sharks are long-lived apex predators, that bioaccumulate environmental marine toxins and methylmercury from dietary exposures. We recently reported detection of the cyanobacterial toxin β-N-methylamino-l-alanine (BMAA) in the fins of seven different species of sharks from South Florida coastal waters. Since BMAA has been linked to degenerative brain diseases, the consumption of shark products may pose a human risk for BMAA exposures. In this report, we tested sixteen commercial shark cartilage supplements for BMAA by high performance liquid chromatography (HPLC-FD) with fluorescence detection and ultra performance liquid chromatography/mass spectrometry/mass spectrometry (UPLC-MS/MS). Total mercury (Hg) levels were measured in the same shark cartilage products by cold vapor atomic fluorescence spectrometry (CVAFS). We report here that BMAA was detected in fifteen out of sixteen products with concentrations ranging from 86 to 265μg/g (dry weight). All of the shark fin products contained low concentrations of Hg. While Hg contamination is a known risk, the results of the present study demonstrate that shark cartilage products also may contain the neurotoxin BMAA. Although the neurotoxic potential of dietary exposure to BMAA is currently unknown, the results demonstrate that shark cartilage products may contain two environmental neurotoxins that have synergistic toxicities.

  19. Studies on spin-trapped radicals in. gamma. -irradiated aqueous solutions of glycylglycine and glycyl-L-alanine by high-performance liquid chromatography and ESR spectroscopy

    SciTech Connect

    Moriya, F.; Makino, K.; Suzuki, N.; Rokushika, S.; Hatano, H.

    1980-12-25

    Aqueous solutions of glycylglycine and glycyl-L-alanine were ..gamma..-irradiated in the presence of a spin trap, 2-methyl-2-nitrosopropane. Stable spin adducts produced in the ..gamma..-irradiated solutions were analyzed by means of high-performance liquid chromatography and ESR spectroscopy. Five spin adducts were found and identified, as follows: t-BuN(O.)CH/sub 2/CONHCH/sub 2/COO/sup -/ (I) and NH/sub 3//sup +/CH/sub 2/CONHCH(COO/sup -/)N(O.)-t-Bu (IIb) from glycylglycine; t-BuN(O.)CH/sub 2/CONHCH(CH/sub 3/)COO/sup -/ (III), NH/sub 3//sup +/CH/sub 2/CONHC(CH/sub 3/)(COO/sup -/)N(O.)-t-Bu (IV) and NH/sub 3//sup +/CH/sub 2/CONHCH(COO/sup -/)CH/sub 2/N(O.)-t-Bu (V) from glycyl-L-alanine. It was found that spin adduct III exhibits ESR spectra with unequal splittings of the two ..beta.. hydrogens while spin adduct I does not. This fact revealed that the asymmetry of the delta carbon in spin adduct III causes the magnetic nonequivalence through a peptide bond. It was demonstrated that ESR spectra of spin adducts IIb and V changed remarkably with pH through the acid-dissociation equilibria of the carboxyl or amino groups. The pK/sub a/ values for the dissociation have been determined to be 2.0 for the carboxyl group of spin adduct IIb, and 3.0 for that of V.

  20. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  1. DL-β-Aminobutyric Acid-Induced Resistance in Soybean against Aphis glycines Matsumura (Hemiptera: Aphididae)

    PubMed Central

    Zhong, Yunpeng; Wang, Biao; Yan, Junhui; Cheng, Linjing; Yao, Luming; Xiao, Liang; Wu, Tianlong

    2014-01-01

    Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA. PMID:24454805

  2. Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine.

    PubMed

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  3. Inelastic neutron scattering, Raman, vibrational analysis with anharmonic corrections, and scaled quantum mechanical force field for polycrystalline L-alanine

    NASA Astrophysics Data System (ADS)

    Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.

    2008-01-01

    A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.

  4. Cycling time trial performance may be impaired by whey protein and L-alanine intake during prolonged exercise.

    PubMed

    Schroer, Adam B; Saunders, Michael J; Baur, Daniel A; Womack, Christopher J; Luden, Nicholas D

    2014-10-01

    Previous studies reported that adding protein (PRO) to carbohydrate (CHO) solutions enhances endurance performance. The ergogenic effect may be a function of additional protein/amino acid calories, but this has not been examined. In addition, although supplemental L-alanine (ALA) is readily oxidized during exercise, the subsequent impact on metabolism and prolonged endurance performance is unknown. The purpose of this investigation was to independently gauge the impact of whey PRO hydrolysate and ALA supplementation on performance and various physiological parameters. Eight cyclists (age: 22.3 ± 5.6 yr, weight: 70.0 ± 8.0 kg, VO2max: 59.4 ± 4.9 ml · kg(-1) · min(-1)) performed 120 min of constant-load cycling (55% of peak power) followed by a 30-km time trial (TT) under placebo (PLA), PRO, and ALA conditions. Magnitude-based qualitative inferences were applied to evaluate treatment differences and data are presented as percent difference between treatments ± 90% confidence limit. Both ALA (2.1 ± 2.7%) and PRO intake (-2.1 ± 2.2%) possibly harmed performance compared with PLA. Of interest, heart rate was possibly lower with ALA than PLA at 20- (-2.7 ± 3.4%) and 120-min (-1.7 ± 2.9%) of constant-load cycling and the serum interleukin-6 (IL-6) response to 120 min of cycling was likely attenuated with PRO compared with PLA (PLA, 6.6 ± 3.7 fold vs. PRO, 2.9 ± 1.8 fold). In addition, blood glucose levels were lower with PRO than PLA at 20- (-8.8 ± 2.3%; very likely) and 120-min (-4.9 ± 4.6%; likely) of constant-load cycling. Although ALA intake appears to lower HR and PRO ingestion dampens the IL-6 response to exercise, the ingestion of PRO (without CHO) or ALA does not enhance, and may actually impair, performance following prolonged cycling.

  5. Variable clinical manifestations of a glycine to glutamic acid substitution of the COL3A1 gene at residue 736

    SciTech Connect

    Pope, F.M.; Narcisi, P.; Richards, A.J.

    1994-09-01

    Glycine substitutions at the 3{prime} end of the COL3A1 gene generally produce a characteristic clinical phenotype including acrogeria and severe vascular fragility. Here we report a three generation British family in which the propositus presented with aneurysms of the groins. He, his mother, sister and elder daughter all had the external clinical phenotype of vascular EDS IV whilst another daughter and nephew were clinically normal. Cultured skin fibroblasts from the propositus and his clinically affected relatives poorly secreted normal and overmodified collagen III species. Normal components of secreted proteins predominated whilst overmodified molecules were prominent in intracellular material. Surprisingly the normal children also secreted less collagen type III than expected (though more than their clinically abnormal relatives). cDNA from bases 2671 to 3714 were amplified as four overlapping PCR fragments and analysed by DGGE. The region between 2671 and 3015 was heterozygous. Sequencing showed a mutation of glycine to glutamic acid at residue 736. This mutation created an extra Apa 1 restriction site which was suitable for family studies. These showed inheritance of the mutant gene by both vascular and non-vascular clinical phenotypes. This family therefore illustrates that replacement of glycine to glutamic acid at position 736 produces variable clinical and biochemical phenotypes ranging from easily recognizable vascular EDS IV with very poor collagen secretion to an EDS III-like picture and with less severe protein disturbance. The reasons for these differences are at present unexplained.

  6. Alpha-amino acid behaves differently from beta- or gamma-amino acids as treated by trimetaphosphate.

    PubMed

    Gao, X; Liu, Y; Xu, P X; Cai, Y M; Zhao, Y F

    2008-01-01

    The condensation reactions of sodium trimetaphosphate with single amino acids, namely glycine, L-alanine, beta-alanine and gamma-aminobutyric acid or pairs of these amino acids were reinvestigated by electrospray ion-trap mass spectrometry and high performance liquid chromatography. It was found when mixtures were treated by sodium trimetaphosphate only in the presence of alpha-amino acid dipeptides were formed. Without addition of alpha-amino acids, the beta-amino acid or gamma-aminobutyric acid could not form peptide either by themselves or with their mixtures under the same conditions. From the data it is concluded that phosphate might select alpha-amino acids to produce the peptides being important precursors for the origin of life. PMID:17973074

  7. The DNA replication inhibitor microcin B17 is a forty-three-amino-acid protein containing sixty percent glycine.

    PubMed

    Davagnino, J; Herrero, M; Furlong, D; Moreno, F; Kolter, R

    1986-11-01

    Microcin B17 is a low-molecular-weight protein that inhibits DNA replication in a number of enteric bacteria. It is produced by bacterial strains which harbor a 70-kilobase plasmid called pMccB17. Four plasmid genes (named mcbABCD) are required for its production. The product of the mcbA gene was identified by labelling minicells. The mcbA gene product was slightly larger when a mutation in any of the other three production genes was present. This indicates that these genes are involved in processing the primary mcbA product to yield the active molecule. The mcbA gene product predicted from the nucleotide sequence has 69 amino acids including 28 glycine residues. Microcin B17 was extracted from the cells by boiling in 100 mM acetic acid, 1 mM EDTA, and purified to homogeneity in a single step by high-performance liquid chromatography through a C18 column. The N-terminal amino acid sequence and amino acid composition demonstrated that mcbA is the structural gene for microcin B17. The active molecule is a processed product lacking the first 26 N-terminal residues. The 43 remaining residues include 26 glycines. While microcin B17 is an exported protein, the cleaved N-terminal peptide does not have the characteristic properties of a "signal sequence", which suggests that it is secreted by a mechanism different from that used by most secreted proteins of E. coli.

  8. Antimicrobial Activity of Metal & Metal Oxide Nanoparticles Interfaced With Ligand Complexes Of 8-Hydroxyquinoline And α-Amino Acids

    NASA Astrophysics Data System (ADS)

    Bhanjana, Gaurav; Kumar, Neeraj; Thakur, Rajesh; Dilbaghi, Neeraj; Kumar, Sandeep

    2011-12-01

    Antimicrobial nanotechnology is a recent addition to the fight against disease causing organisms, replacing heavy metals and toxins. In the present work, mixed ligand complexes of metals like zinc, silver etc. and metal oxide have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N-and/O-donor amino acids such as L-serine, L-alanine, glycine, cysteine and histidine as secondary ligands. These complexes were characterized using different spectroscopic techniques. The complexes were tested for antifungal and antibacterial activity by using agar well diffusion bioassay.

  9. Experimental and theoretical enthalpies of formation of glycine-based sulfate/bisulfate amino acid ionic liquids.

    PubMed

    Zhu, Jing-Fang; He, Ling; Zhang, Lei; Huang, Ming; Tao, Guo-Hong

    2012-01-12

    The experimental and theoretical enthalpies of formation of several structural-similar glycine-based sulfate/bisulfate amino acid ionic liquids including glycine sulfate (Gly(2)SO(4), 1), glycine bisulfate (GlyHSO(4), 2), N,N-dimethylglycine sulfate ([DMGly](2)SO(4), 3), N,N-dimethylglycine bisulfate ([DMGly]HSO(4), 4), N,N-dimethylglycine methyl ester sulfate ([DMGlyC(1)](2)SO(4), 5), N,N-dimethylglycine methyl ester bisulfate ([DMGlyC(1)]HSO(4), 6), N,N,N-trimethylglycine methyl ester sulfate ([TMGlyC(1)](2)SO(4), 7), and N,N,N-trimethylglycine methyl ester bisulfate ([TMGlyC(1)]HSO(4), 8) were studied. Their experimental enthalpies of formation were obtained from the corresponding energies of combustion determined by the bomb calorimetry method. The enthalpies of formation of these amino acid ionic liquids are in the range from -1406 kJ mol(-1) to -1128 kJ mol(-1). Systematic theoretical study on these amino acid ionic liquids were performed by quantum chemistry calculation using the Gaussian03 suite of programs. The geometric optimization and the frequency analyses are carried out using the B3LYP method with the 6-31+G** basis set. Their calculated enthalpies of formation were derived from the single point energies carried out with the HF/6-31+G**, B3LYP/6-31+G**, B3LYP/6-311++G**, and MP2/6-311++G** level of theory, respectively. The relevance of experimental and calculated enthalpies of formation was studied. The calculated enthalpies of formation are in good agreement with their experimental data in less than 3% error. PMID:22148242

  10. Characterization of a factor IX variant with a glycine207 to glutamic acid mutation.

    PubMed

    Lin, S W; Lin, C N; Hamaguchi, N; Smith, K J; Shen, M C

    1994-09-15

    Factor IXTaipei9 is a factor IX variant from a hemophilia B patient with reduced levels of circulating protein molecules (cross-reacting material reduced, CRM). This variant contained a glycine (Gly) to glutamic acid (Glu) substitution at the 207th codon of mature factor IX. The functional consequences of the Gly-->Glu mutation in factor IXTaipei9 (IXG207E) were characterized in this study. Plasma-derived IXG207E exhibited a mobility similar to that of normal factor IX on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its specific activity was estimated to be 3.5% that of the purified normal factor IX in a one-stage partial thromboplastin time assay (aPTT). Cleavage of factor IXG207E by factor XIa or factor VIIa-tissue factor complex appeared to be normal. When the calcium-dependent conformational change was examined by monitoring quenching of intrinsic fluorescence, both normal factor IX and IXG207E exhibited equivalent intrinsic fluorescence quenching. Activated factor IXG207E (IXaG207E) also binds antithrombin III equally as well as normal factor IXa. However, aberrant binding of the active site probe p-aminobenzamidine was observed for factor XIa-activated factor IXG207E, indicating that the active site pocket of the heavy chain of factor IXaG207E was abnormal. Moreover, the rate of activation of factor X by factor IXaG207E, as measured in a purified system using chromogenic substrates, was estimated to be 1/40 of that of normal factor IXa. A computer-modeled heavy-chain structure of factor IXa predicts a hydrophobic environment surrounding Gly-207 and this Gly forms a hydrogen bound to the active site serine-365. The molecular mechanism of the Gly-->Glu mutation in factor IXTaipei9 might result in the alteration of the microenvironment of the active site pocket which renders the active site serine-365 inaccessible to its substrate. PMID:7915915

  11. Physicochemical Properties of L-Alanine in Aqueous Silver Sulphate Solutions at (298.15, 308.15, and 318.15) K

    NASA Astrophysics Data System (ADS)

    Sinha, Biswajit; Sarkar, Abhijit; Roy, Pran Kumar; Brahman, Dhiraj

    2011-10-01

    Apparent molar volumes {(\\varphi_V)} and viscosity B coefficients for L-alanine in (0.005, 0.010, 0.015, and 0.020) mol · dm-3 aqueous silver sulphate (Ag2SO4) solutions were determined from the solution density and viscosity measurements at (298.15, 308.15, and 318.15) K as a function of amino acid concentration. The standard partial molar volumes {(\\varphi_V^0)} and experimental slopes {(S_V^ast )} obtained from the Masson equation were interpreted in terms of solute-solvent and solute-solute interactions, respectively. To analyze solution viscosities in terms of viscosity B coefficients, the Jones-Dole equation was applied. The structure-making or -breaking ability of the amino acid has also been discussed in terms of the sign of {(δ2\\varphi_V^0/δ T2)P} . The activation parameters of viscous flow for the ternary solutions were also derived and explained in terms of transition state theory.

  12. Transfer of developmental neurotoxin β-N-methylamino-l-alanine (BMAA) via milk to nursed offspring: Studies by mass spectrometry and image analysis.

    PubMed

    Andersson, Marie; Karlsson, Oskar; Banack, Sandra Anne; Brandt, Ingvar

    2016-09-01

    The cyanobacterial non-proteinogenic amino acid β-N-methylamino-l-alanine (BMAA) is proposed to be involved in the etiology of amyotrophic lateral sclerosis/parkinsonism dementia complex. When administered as single doses to neonatal rats, BMAA gives rise to cognitive and neurodegenerative impairments in the adult animal. Here, we employed mass spectrometry (LC-MS/MS) and autoradiographic imaging to examine the mother-to-pup transfer of BMAA in rats. The results show that unchanged BMAA was secreted into the milk and distributed to the suckling pups. The concentration of BMAA in pup stomach milk and the neonatal liver peaked after 8h, while the concentration in the pup brain increased throughout the study period. About 1 and 6% of the BMAA recovered from adult liver and brain were released following hydrolysis, suggesting that this fraction was associated with protein. No association to milk protein was observed. Injection of rat pups with [methyl-(14)C]-l-BMAA or [carboxyl-(14)C]-l-BMAA resulted in highly similar distribution patterns, indicating no or low metabolic elimination of the methylamino- or carboxyl groups. In conclusion, BMAA is transported as a free amino acid to rat milk and suckling pups. The results strengthen the proposal that mothers' milk could be a source of exposure for BMAA in human infants.

  13. Transfer of developmental neurotoxin β-N-methylamino-l-alanine (BMAA) via milk to nursed offspring: Studies by mass spectrometry and image analysis.

    PubMed

    Andersson, Marie; Karlsson, Oskar; Banack, Sandra Anne; Brandt, Ingvar

    2016-09-01

    The cyanobacterial non-proteinogenic amino acid β-N-methylamino-l-alanine (BMAA) is proposed to be involved in the etiology of amyotrophic lateral sclerosis/parkinsonism dementia complex. When administered as single doses to neonatal rats, BMAA gives rise to cognitive and neurodegenerative impairments in the adult animal. Here, we employed mass spectrometry (LC-MS/MS) and autoradiographic imaging to examine the mother-to-pup transfer of BMAA in rats. The results show that unchanged BMAA was secreted into the milk and distributed to the suckling pups. The concentration of BMAA in pup stomach milk and the neonatal liver peaked after 8h, while the concentration in the pup brain increased throughout the study period. About 1 and 6% of the BMAA recovered from adult liver and brain were released following hydrolysis, suggesting that this fraction was associated with protein. No association to milk protein was observed. Injection of rat pups with [methyl-(14)C]-l-BMAA or [carboxyl-(14)C]-l-BMAA resulted in highly similar distribution patterns, indicating no or low metabolic elimination of the methylamino- or carboxyl groups. In conclusion, BMAA is transported as a free amino acid to rat milk and suckling pups. The results strengthen the proposal that mothers' milk could be a source of exposure for BMAA in human infants. PMID:27320960

  14. Prolonged L-alanine exposure induces changes in metabolism, Ca(2+) handling and desensitization of insulin secretion in clonal pancreatic beta-cells.

    PubMed

    McClenaghan, Neville H; Scullion, Siobhan M; Mion, Brian; Hewage, Chandralal; Malthouse, J Paul G; Flatt, Peter R; Newsholme, Philip; Brennan, Lorraine

    2009-02-01

    Acute insulin-releasing actions of amino acids have been studied in detail, but comparatively little is known about the beta-cell effects of long-term exposure to amino acids. The present study examined the effects of prolonged exposure of beta-cells to the metabolizable amino acid L-alanine. Basal insulin release or cellular insulin content were not significantly altered by alanine culture, but acute alanine-induced insulin secretion was suppressed by 74% (P<0.001). Acute stimulation of insulin secretion with glucose, KCl or KIC (2-oxoisocaproic acid) following alanine culture was not affected. Acute alanine exposure evoked strong cellular depolarization after control culture, whereas AUC (area under the curve) analysis revealed significant (P<0.01) suppression of this action after culture with alanine. Compared with control cells, prior exposure to alanine also markedly decreased (P<0.01) the acute elevation of [Ca(2+)](i) (intracellular [Ca(2+)]) induced by acute alanine exposure. These diminished stimulatory responses were partially restored after 18 h of culture in the absence of alanine, indicating reversible amino-acid-induced desensitization. (13)C NMR spectra revealed that alanine culture increased glutamate labelling at position C4 (by 60%; P<0.01), as a result of an increase in the singlet peak, indicating increased flux through pyruvate dehydrogenase. Consistent with this, protein expression of the pyruvate dehydrogenase kinases PDK2 and PDK4 was significantly reduced. This was accompanied by a decrease in cellular ATP (P<0.05), consistent with diminished insulin-releasing actions of this amino acid. Collectively, these results illustrate the phenomenon of beta-cell desensitization by amino acids, indicating that prolonged exposure to alanine can induce reversible alterations to metabolic flux, Ca(2+) handling and insulin secretion. PMID:18702613

  15. Domain Motions and Functionally-Key Residues of l-Alanine Dehydrogenase Revealed by an Elastic Network Model

    PubMed Central

    Li, Xing-Yuan; Zhang, Jing-Chao; Zhu, Yan-Ying; Su, Ji-Guo

    2015-01-01

    Mycobacterium tuberculosis l-alanine dehydrogenase (l-MtAlaDH) plays an important role in catalyzing l-alanine to ammonia and pyruvate, which has been considered to be a potential target for tuberculosis treatment. In the present work, the functional domain motions encoded in the structure of l-MtAlaDH were investigated by using the Gaussian network model (GNM) and the anisotropy network model (ANM). The slowest modes for the open-apo and closed-holo structures of the enzyme show that the domain motions have a common hinge axis centered in residues Met133 and Met301. Accompanying the conformational transition, both the 1,4-dihydronicotinamide adenine dinucleotide (NAD)-binding domain (NBD) and the substrate-binding domain (SBD) move in a highly coupled way. The first three slowest modes of ANM exhibit the open-closed, rotation and twist motions of l-MtAlaDH, respectively. The calculation of the fast modes reveals the residues responsible for the stability of the protein, and some of them are involved in the interaction with the ligand. Then, the functionally-important residues relevant to the binding of the ligand were identified by using a thermodynamic method. Our computational results are consistent with the experimental data, which will help us to understand the physical mechanism for the function of l-MtAlaDH. PMID:26690143

  16. Short one-pot chemo-enzymatic synthesis of L-lysine and L-alanine diblock co-oligopeptides.

    PubMed

    Fagerland, Jenny; Finne-Wistrand, Anna; Numata, Keiji

    2014-03-10

    Amphiphilic diblock co-oligopeptides are interesting and functional macromolecular materials for biomedical applications because of their self-assembling properties. Here, we developed a synthesis method for diblock co-oligopeptides by using chemo-enzymatic polymerization, which was a relatively short (30 min) and efficient reaction (over 40% yield). Block and random oligo(L-lysine-co-L-alanine) [oligo(Lys-co-Ala)] were synthesized using activated papain as enzymatic catalyst. The reaction time was optimized according to kinetic studies of oligo(L-alanine) and oligo(L-lysine). Using (1)H NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we confirmed that diblock and random co-oligopeptides were synthesized. Optical microscopy further revealed differences in the crystalline morphology between random and block co-oligopeptides. Plate-like, hexagonal, and hollow crystals were formed due to the strong impact of the monomer distribution and pH of the solution. The different crystalline structures open up interesting possibilities to form materials for both tissue engineering and controlled drug/gene delivery systems.

  17. Enantioselective Collision-Activated Dissociation of Gas-Phase Tryptophan Induced by Chiral Recognition of Protonated uc(l)-Alanine Peptides

    NASA Astrophysics Data System (ADS)

    Fujihara, Akimasa; Matsuyama, Hiroki; Tajiri, Michiko; Wada, Yoshinao; Hayakawa, Shigeo

    2016-06-01

    Enantioselective dissociation in the gas phase is important for enantiomeric enrichment and chiral transmission processes in molecular clouds regarding the origin of homochirality in biomolecules. Enantioselective collision-activated dissociation (CAD) of tryptophan (Trp) and the chiral recognition ability of uc(l)-alanine peptides (uc(l)-Ala n ; n = 2-4) were examined using a linear ion trap mass spectrometer. CAD spectra of gas-phase heterochiral H+(uc(d)-Trp)(uc(l)-Ala n ) and homochiral H+(uc(l)-Trp)(uc(l)-Ala n ) noncovalent complexes were obtained as a function of the peptide size n. The H2O-elimination product was observed in CAD spectra of both heterochiral and homochiral complexes for n = 2 and 4, and in homochiral H+(uc(l)-Trp)(uc(l)-Ala3), indicating that the proton is attached to the uc(l)-alanine peptide, and H2O loss occurs from H+(uc(l)-Ala n ) in the noncovalent complexes. H2O loss did not occur in heterochiral H+(uc(d)-Trp)(uc(l)-Ala3), where NH3 loss and (H2O + CO) loss were the primary dissociation pathways. In heterochiral H+(uc(d)-Trp)(uc(l)-Ala3), the protonation site is the amino group of uc(d)-Trp, and NH3 loss and (H2O + CO) loss occur from H+(uc(d)-Trp). uc(l)-Ala peptides recognize uc(d)-Trp through protonation of the amino group for peptide size n = 3. NH3 loss and (H2O + CO) loss from H+(uc(d)-Trp) proceeds via enantioselective CAD in gas-phase heterochiral H+(uc(d)-Trp)(uc(l)-Ala3) at room temperature, whereas uc(l)-Trp dissociation was not observed in homochiral H+(uc(l)-Trp)(uc(l)-Ala3). These results suggest that enantioselective dissociation induced by chiral recognition of uc(l)-Ala peptides through protonation could play an important role in enantiomeric enrichment and chiral transmission processes of amino acids.

  18. Crystal Engineering of l-Alanine with l-Leucine Additive using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization

    PubMed Central

    2015-01-01

    In this work, we demonstrated that the change in the morphology of l-alanine crystals can be controlled with the addition of l-leucine using the metal-assisted and microwave accelerated evaporative crystallization (MA-MAEC) technique. Crystallization experiments, where an increasing stoichiometric amount of l-leucine is added to initial l-alanine solutions, were carried out on circular poly(methyl methacrylate) (PMMA) disks modified with a 21-well capacity silicon isolator and silver nanoparticle films using microwave heating (MA-MAEC) and at room temperature (control experiments). The use of the MA-MAEC technique afforded for the growth of l-alanine crystals with different morphologies up to ∼10-fold faster than those grown at room temperature. In addition, the length of l-alanine crystals was systematically increased from ∼380 to ∼2000 μm using the MA-MAEC technique. Optical microscope images revealed that the shape of l-alanine crystals was changed from tetragonal shape (without l-leucine additive) to more elongated and wire-like structures with the addition of the l-leucine additive. Further characterization of l-alanine crystals was undertaken by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy and powder X-ray diffraction (PXRD) measurements. In order to elucidate the growth mechanism of l-alanine crystals, theoretical simulations of l-alanine’s morphology with and without l-leucine additive were carried out using Materials Studio software in conjunction with our experimental data. Theoretical simulations revealed that the growth of l-alanine’s {011} and {120} crystal faces were inhibited due to the incorporation of l-leucine into these crystal faces in selected positions. PMID:24839404

  19. Low Temperature Effects on Soybean (Glycine max [L.] Merr. cv. Wells) Free Amino Acid Pools during Germination 1

    PubMed Central

    Duke, Stanley H.; Schrader, Larry E.; Miller, Marna Geyer; Niece, Ronald L.

    1978-01-01

    The free amino acid concentrations in cotyledons and axes of soybean (Glycine max [L.] Merr. cv. Wells) seedlings were determined by automated single column analysis after germination at 10 and 23 C. After 5 days germination at 10 C, glutamate and aspartate were in high concentration in both cotyledons and axes (38 and 24% of total free amino acids recovered, respectively), whereas the concentrations of their amide derivatives, asparagine and glutamine, were low in cotyledons (4.4%) and high in axes (21%). In contrast, after 5 days germination at 23 C, asparagine and glutamine accounted for 22 and 45% of total free amino acids in cotyledons and axes respectively, and aspartate and glutamate concentrations were low. The activities of glutamine synthetase and asparagine synthetase were considerably lower in tissues from the 10 C treatment than those from the 23 C treatment. Aspartate and glutamate concentrations were nearly equal in all but one sample. Both glutamate oxaloacetate transaminase and glutamate dehydrogenase activities were much higher in axis tissues at 23 C as compared to 10 C. Arrhenius plots of axis glutamate oxaloacetate transaminase and glutamate dehydrogenase activities were biphasic and triphasic, respectively, with energies of activation for both increasing with low temperature. Energies of activation were identical for glutamate oxaloacetate transaminase from 10 and 23 C treatments but much higher for glutamate dehydrogenase from 23 C-treated axes. This indicates a difference in enzyme complement for glutamate dehydrogenase with the two treatments. Hydrolysis of free amino acid sample (basic fraction) aliquots showed large quantities of peptides in 23 C-treated axes at 2 days, while few or no peptides were found in the 10 C treatment. Amino acid residues most prevalent in peptides were aspartate, threonine, serine, glutamate, and glycine. PMID:16660575

  20. Transport of L-glutamine, L-alanine, L-arginine and L-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS.

    PubMed

    Hägglund, Maria G A; Hellsten, Sofie V; Bagchi, Sonchita; Philippot, Gaëtan; Löfqvist, Erik; Nilsson, Victor C O; Almkvist, Ingrid; Karlsson, Edvin; Sreedharan, Smitha; Tafreshiha, Atieh; Fredriksson, Robert

    2015-03-27

    Glutamine transporters are important for regulating levels of glutamate and GABA in the brain. To date, six members of the SLC38 family (SNATs) have been characterized and functionally subdivided them into System A (SNAT1, SNAT2 and SNAT4) and System N (SNAT3, SNAT5 and SNAT7). Here we present the first functional characterization of SLC38A8, one of the previous orphan transporters from the family, and we suggest that the encoded protein should be named SNAT8 to adhere with the SNAT nomenclature. We show that SLC38A8 has preference for transporting L-glutamine, L-alanine, L-arginine, L-histidine and L-aspartate using a Na+-dependent transport mechanism and that the functional characteristics of SNAT8 have highest similarity to the known System A transporters. We also provide a comprehensive central nervous system expression profile in mouse brain for the Slc38a8 gene and the SNAT8 protein. We show that Slc38a8 (SNAT8) is expressed in all neurons, both excitatory and inhibitory, in mouse brain using in situ hybridization and immunohistochemistry. Furthermore, proximity ligation assay shows highly similar subcellular expression of SNAT7 and SNAT8. In conclusion, the neuronal SLC38A8 has a broad amino acid transport profile and is the first identified neuronal System A transporter. This suggests a key role of SNAT8 in the glutamine/glutamate (GABA) cycle in the brain.

  1. Characterization of a meso-chiral isomer of a hexanuclear Cu(II) cage from racemization of the L-alanine Schiff base.

    PubMed

    Rajesh, Chinnaiyan Mahalingam; Ray, Manabendra

    2014-09-14

    We are reporting structural characterization of two new hexanuclear cages (H3O)2[Cu3(μ3-OH)(μ3-NH3)(0.5)(L)3]2·8H2O (1) and (H3O)2[Cu3(μ3-OH)(μ3-H2O)(0.5)(L)3]2·8H2O (1a) where L(2-) is the dianionic form of the Schiff base of L-alanine and salicylaldehyde. The complex 1 has two C3 symmetric hydroxo bridged trinuclear halves joined by an ammonia or water molecule at the center through H-bonding. Each of the trinuclear halves is enantiopure but of opposite chirality to the other half, making the hexanuclear unit a meso isomer. Temperature dependent magnetic measurements showed the presence of ferromagnetic interactions among trinuclear Cu(II) units, a rare occurrence among trinuclear Cu(II) complexes. Characterization of the LiHL showed it to be enantiopure. Addition of a base, monitored using optical rotation, showed that racemization occurs as a result of base addition. The racemization depends on the base as well as the temperature. Base or Cu(II) induced racemization of amino acid derivatives has been indicated in a number of cases in the past but structural characterization of the products or formation of this type of chiral hexanuclear architecture was never reported. Structures of the complex and the ligand have a number of interesting H-bonding situations.

  2. Beta-N-methylamino-l-alanine: LC-MS/MS Optimization, Screening of Cyanobacterial Strains and Occurrence in Shellfish from Thau, a French Mediterranean Lagoon

    PubMed Central

    Réveillon, Damien; Abadie, Eric; Séchet, Véronique; Brient, Luc; Savar, Véronique; Bardouil, Michèle; Hess, Philipp; Amzil, Zouher

    2014-01-01

    β-N-methylamino-l-alanine (BMAA) is a neurotoxic non-protein amino acid suggested to be involved in neurodegenerative diseases. It was reported to be produced by cyanobacteria, but also found in edible aquatic organisms, thus raising concern of a widespread human exposure. However, the chemical analysis of BMAA and its isomers are controversial, mainly due to the lack of selectivity of the analytical methods. Using factorial design, we have optimized the chromatographic separation of underivatized analogues by a hydrophilic interaction chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) method. A combination of an effective solid phase extraction (SPE) clean-up, appropriate chromatographic resolution and the use of specific mass spectral transitions allowed for the development of a highly selective and sensitive analytical procedure to identify and quantify BMAA and its isomers (in both free and total form) in cyanobacteria and mollusk matrices (LOQ of 0.225 and 0.15 µg/g dry weight, respectively). Ten species of cyanobacteria (six are reported to be BMAA producers) were screened with this method, and neither free nor bound BMAA could be found, while both free and bound DAB were present in almost all samples. Mussels and oysters collected in 2009 in the Thau Lagoon, France, were also screened, and bound BMAA and its two isomers, DAB and AEG, were observed in all samples (from 0.6 to 14.4 µg/g DW), while only several samples contained quantifiable free BMAA. PMID:25405857

  3. The importance of glutamate, glycine, and {gamma}-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity

    SciTech Connect

    Fitsanakis, Vanessa A.; Aschner, Michael . E-mail: michael.aschner@vanderbilt.edu

    2005-05-01

    Historically, amino acids were studied in the context of their importance in protein synthesis. In the 1950s, the focus of research shifted as amino acids were recognized as putative neurotransmitters. Today, many amino acids are considered important neurochemicals. Although many amino acids play a role in neurotransmission, glutamate (Glu), glycine (Gly), and {gamma}-aminobutyric acid (GABA) are among the more prevalent and better understood. Glu, the major excitatory neurotransmitter, and Gly and GABA, the major inhibitory neurotransmitters, in the central nervous system, are known to be tightly regulated. Prolonged exposure to environmental toxicants, such as manganese (Mn), mercury (Hg), or lead (Pb), however, can lead to dysregulation of these neurochemicals and subsequent neurotoxicity. While the ability of these metals to disrupt the regulation of Glu, Gly and GABA have been studied, few articles have examined the collective role of these amino acids in the respective metal's mechanism of toxicity. For each of the neurotransmitters above, we will provide a brief synopsis of their regulatory function, including the importance of transport and re-uptake in maintaining their optimal function. Additionally, the review will address the hypothesis that aberrant homeostasis of any of these amino acids, or a combination of the three, plays a role in the neurotoxicity of Mn, Hg, or Pb.

  4. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  5. Vibrational spectral characterization, NLO studies and charge transfer analysis of the organometallic material L-Alanine cadmium chloride

    NASA Astrophysics Data System (ADS)

    Arun Sasi, B. S.; Bright, K. C.; James, C.

    2016-01-01

    An organometallic nonlinear crystal, L-Alanine Cadmium Chloride (LACC) was synthesized by slow evaporation technique. The effects of hydrogen bonding on the structure, binding of ligand to metal ion, natural orbital occupancies, and vibrational frequencies were investigated using density functional theory (DFT) with the combined B3LYP and LANL2DZ basis set. Vibrational assignments were made on the basis of calculated potential energy distribution values from MOLVIB program. The topological analysis of electron localization function (ELF) provides basin population N (integrated density over the attractor basin), standard deviation (σ), and their relative fluctuation, defined as λ = σ2/N, which are sensitive criteria of delocalization. The molecular stability, electronic exchange interaction, and bond strength of the molecule were studied by natural bond orbital (NBO) analysis. The second harmonic generation (SHG) efficiency was determined using Kurtz and Perry method. Natural bond orbital analysis was carried out to study various intramolecular interactions that are responsible for the stabilization of the molecule.

  6. Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder

    SciTech Connect

    Peng Tianyou . E-mail: typeng@whu.edu.cn; Liu Xun; Dai Ke; Xiao Jiangrong; Song Haibo

    2006-09-14

    Nanocrystalline alumina powders were prepared by combustion synthesis using glycine as fuel and nitrate as an oxidizer. The effect of the pH values in the precursor solutions on crystallite sizes, surface areas and morphologies of the synthesized alumina powder has been investigated by X-ray diffractometry, thermal analysis, nitrogen adsorption-desorption, and transmission electron microscopy. With decreasing the pH values in the precursor solutions, the obtained materials could be modified from segregated nanoparticles (pH 10.5) to aggregates of nanoparticles (pH 6.0), and finally to a flaky morphology (pH 2.5). The rates of decomposition, the interaction of coordination as well as the hydrogen bonding of the glycine and the Al-hydroxides species at different pH values were found to be responsible for the generation of flake and/or segregated nanoparticles during auto-ignition reactions. The as-prepared combustion ashes were converted into pure nanocrystalline alumina after calcination at elevated temperatures. The specific surface areas of the products calcined at 800 deg. C ranged from 96 to 39 m{sup 2}/g with the pH decreased from 10.5 to 2.5.

  7. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures.

  8. Energetics of the molecular interactions of L-alanine and L-serine with xylitol, D-sorbitol, and D-mannitol in aqueous solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.

    2013-04-01

    Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ○) and the transfer (Δtr H ○) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.

  9. Growth, Optical, Dielectric and Ferroelectric Properties of Non-Linear Optical Single Crystal: Glycine-Phthalic Acid

    NASA Astrophysics Data System (ADS)

    Suresh, Sagadevan

    2016-07-01

    Single crystals of glycine-phthalic acid (GPA) were grown by slow evaporation process using aqueous solution. X-ray diffraction analysis was used to examine its cell structure and it was found that the GPA crystal corresponded to the orthorhombic system. To identify absorption range and cut-off wavelength for the GPA crystal, UV-visible spectrum was recorded. UV-visible spectroscopy was used to study the optical constants such as the refractive index, the extinction coefficient, electrical susceptibility, and optical conductivity. As a function of different frequencies and temperatures, the dielectric constant and the dielectric loss were examined. The electrical properties like plasma energy, Penn gap, Fermi energy, and polarizability were determined for the analysis of the second harmonic generation (SHG). Using the Kurtz powder technique, the SHG of the GPA crystal was studied. Investigations relating to hysteresis were carried out to ascertain the ferroelectric nature of the material.

  10. Growth, Optical, Dielectric and Ferroelectric Properties of Non-Linear Optical Single Crystal: Glycine-Phthalic Acid

    NASA Astrophysics Data System (ADS)

    Suresh, Sagadevan

    2016-11-01

    Single crystals of glycine-phthalic acid (GPA) were grown by slow evaporation process using aqueous solution. X-ray diffraction analysis was used to examine its cell structure and it was found that the GPA crystal corresponded to the orthorhombic system. To identify absorption range and cut-off wavelength for the GPA crystal, UV-visible spectrum was recorded. UV-visible spectroscopy was used to study the optical constants such as the refractive index, the extinction coefficient, electrical susceptibility, and optical conductivity. As a function of different frequencies and temperatures, the dielectric constant and the dielectric loss were examined. The electrical properties like plasma energy, Penn gap, Fermi energy, and polarizability were determined for the analysis of the second harmonic generation (SHG). Using the Kurtz powder technique, the SHG of the GPA crystal was studied. Investigations relating to hysteresis were carried out to ascertain the ferroelectric nature of the material.

  11. Oligomerization of Glycine and Alanine Catalyzed by Iron Oxides: Implications for Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G.; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  12. Oligomerization of glycine and alanine catalyzed by iron oxides: implications for prebiotic chemistry.

    PubMed

    Shanker, Uma; Bhushan, Brij; Bhattacharjee, G; Kamaluddin

    2012-02-01

    Iron oxide minerals are probable constituents of the sediments present in geothermal regions of the primitive earth. They might have adsorbed different organic monomers (amino acids, nucleotides etc.) and catalyzed polymerization processes leading to the formation of the first living cell. In the present work we tested the catalytic activity of three forms of iron oxides (Goethite, Akaganeite and Hematite) in the intermolecular condensation of each of the amino acids glycine and L-alanine. The effect of zinc oxide and titanium dioxide on the oligomerization has also been studied. Oligomerization studies were performed for 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The products formed were characterized by HPLC and ESI-MS techniques. All three forms of iron oxides catalyzed peptide bond formation (23.2% of gly2 and 10.65% of ala2). The reaction was monitored every 7 days. Formation of peptides was observed to start after 7 days at 50°C. Maximum yield of peptides was found after 35 days at 90°C. Reaction at 120°C favors formation of diketopiperazine derivatives. It is also important to note that after 35 days of reaction, goethite produced dimer and trimer with the highest yield among the oxides tested. We suggest that the activity of goethite could probably be due to its high surface area and surface acidity.

  13. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes.

    PubMed Central

    Møller, Michael T N; Samari, Hamid R; Fengsrud, Monica; Strømhaug, Per E; øStvold, Anne C; Seglen, Per O

    2003-01-01

    Glycine N-methyltransferase (GNMT) is an abundant cytosolic enzyme that catalyses the methylation of glycine into sarcosine, coupled with conversion of the methyl donor, S -adenosylmethionine (AdoMet), into S -adenosylhomocysteine (AdoHcy). GNMT is believed to play a role in monitoring the AdoMet/AdoHcy ratio, and hence the cellular methylation capacity, but regulation of the enzyme itself is not well understood. In the present study, treatment of isolated rat hepatocytes with the protein phosphatase inhibitor okadaic acid, was found to induce an overphosphorylation of GNMT, as shown by proteomic analysis. The analysis comprised two-dimensional gel electrophoretic separation of (32)P-labelled phosphoproteins and identification of individual protein spots by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry. The identity of GNMT was verified by N-terminal Edman sequencing of tryptic peptides. Chromatographic separation of proteolytic peptides and (32)P-labelled amino acids suggested that GNMT was phosphorylated within a limited region, and only at serine residues. GNMT phosphorylation could be suppressed by naringin, an okadaic acid-antagonistic flavonoid. To assess the possible functional role of GNMT phosphorylation, the effect of okadaic acid on hepatocytic AdoMet and AdoHcy levels was examined, using HPLC separation for metabolite analysis. Surprisingly, okadaic acid was found to have no effect on the basal levels of AdoMet or AdoHcy. An accelerated AdoMet-AdoHcy flux, induced by the addition of methionine (1 mM), was likewise unaffected by okadaic acid. 5-Aminoimidazole-4-carboxamide riboside, an activator of the hepatocytic AMP-activated protein kinase, similarly induced GNMT phosphorylation without affecting AdoMet and AdoHcy levels. Activation of cAMP-dependent protein kinase by dibutyryl-cAMP, reported to cause GNMT phosphorylation under cell-free conditions, also had little effect on hepatocytic AdoMet and AdoHcy levels

  14. Liquid chromatographic determination of the cyanobacterial toxin beta-n-methylamino-L-alanine in algae food supplements, freshwater fish, and bottled water.

    PubMed

    Scott, Peter M; Niedzwiadek, Barbara; Rawn, Dorothea F K; Lau, Ben P-Y

    2009-08-01

    Beta-N-Methylamino-L-alanine (BMAA) is a neurotoxin originally found in cycad seeds and now known to be produced by many species of freshwater and marine cyanobacteria. We developed a method for its determination in blue-green algae (BGA) food supplements, freshwater fish, and bottled water by using a strong cation-exchange, solid-phase extraction column for cleanup after 0.3 M trichloroacetic acid extraction of BGA supplements and fish. Bottled water was applied directly onto the solid-phase extraction column. For analysis of carbonated water, sonication and pH adjustment to 1.5 were needed. To determine protein-bound BMAA, the protein pellet left after extraction of the BGA supplement and fish was hydrolyzed by boiling with 6 M hydrochloric acid; BMAA was cleaned up on a C18 column and a strong cation-exchange, solid-phase extraction column. Determination of BMAA was by liquid chromatography of the fluorescent derivative formed with 9-fluorenylmethyl chloroformate. The method was validated by recovery experiments using spiking levels of 1.0 to 10 microg/g for BGA supplements, 0.5 to 5.0 microg/g for fish, and 0.002 microg/g for bottled water; mean recoveries were in the range of 67 to 89% for BGA supplements and fish, and 59 to 92% for bottled water. Recoveries of BMAA from spiked extracts of hydrolyzed protein from BGA supplements and fish ranged from 66 to 83%. The cleanup developed provides a useful method for surveying foods and supplements for BMAA and protein-bound BMAA.

  15. Effect of folic acid plus glycine supplement on uterine prostaglandin and endometrial granulocyte-macrophage colony-stimulating factor expression during early pregnancy in pigs.

    PubMed

    Guay, Frédéric; Matte, J Jacques; Girard, Christiane L; Palin, Marie-France; Giguère, Alain; Laforest, Jean-Paul

    2004-01-15

    The objective was to determine the effects of folic acid+glycine supplement on uterine metabolism of prostaglandin and mRNA expression of endometrial granulocyte-macrophage colony-stimulating factor (GM-CSF) in nulliparous (NYL) and multiparous Yorkshire-Landrace (YL) sows, and in multiparous Meishan-Landrace sows (ML). In each of these three groups, sows were randomly assigned to two treatments: 15 ppm folic acid+0.6% glycine or no supplement. The dietary supplement was given from the estrus before mating to slaughter on Day 25 of pregnancy. At slaughter, endometrial tissue was collected to determine endometrial expression levels of GM-CSF mRNA, cyclooxygenase-1 (COX1) and -2 (COX2) and to evaluate in vitro endometrial secretion of prostaglandin E2 (PGE2) secretion. Allantoic fluid samples were also collected to determine the concentration of PGE2, prostaglandin F2alpha (PGF2alpha), estradiol-17beta (E2), progesterone (P4), and transforming-growth factor-beta2 (TGF-beta2). The allantoic contents of PGF2alpha, E2 and P4, and endometrial in vitro secretion of PGE2 were not significantly influenced by the folic acid+glycine supplement. The folic acid+glycine supplement tended (P<0.07) to increase allantoic content of PGE2 and TGF-beta2 in all sows and increased (P<0.05) endometrial expression of COX2, especially in NYL sows. The endometrial expression of COX1 was decreased (P<0.05) by folic acid+glycine supplement, especially in multiparous YL sows. The allantoic contents of PGE2 and PGF2alpha were not significantly affected by sow type. However, NYL sows had higher (P<0.05) endometrial in vitro secretion of PGE2 and allantoic content of P4 than multiparous YL and ML sows. The allantoic content of E2 was also higher (P<0.05) in NYL sows than in multiparous ML sows only. The allantoic content of TGF-beta2 was lower (P<0.05) in multiparous ML than in multiparous YL only sows. Finally, in YL and NYL sows, folic acid+glycine supplement decreased (P<0.05) the endometrial

  16. Self-Assembly, Supramolecular Organization, and Phase Behavior of L-Alanine Alkyl Esters (n = 9-18) and Characterization of Equimolar L-Alanine Lauryl Ester/Lauryl Sulfate Catanionic Complex.

    PubMed

    Sivaramakrishna, D; Swamy, Musti J

    2015-09-01

    A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms

  17. Nitrosation of aspartic acid, aspartame, and glycine ethylester. Alkylation of 4-(p-nitrobenzyl)pyridine (NBP) in vitro and binding to DNA in the rat.

    PubMed

    Meier, I; Shephard, S E; Lutz, W K

    1990-05-01

    In a colorimetric assay using 4-(p-nitrobenzyl)pyridine (NBP) as a nucleophilic scavenger of alkylating agents, the nitrosation and alkylation reactions were investigated for a number of amino acids and derivatives. The alkylating activity increased with the square of the nitrite concentration. The nitrosation rate constants for aspartic acid, aspartame, and glycine ethylester (= precursors C) were 0.08, 1.4 and less than or equal to 0.2, respectively, expressed in terms of the pH-dependent k2 rate constant of the equation dNOC/dt = k2.[C].[nitrite]2. The rates correlated inversely with the basicity of the amino group. The stability of the alkylating activity was astonishingly high, both in acid and at neutral pH. Half-lives of 500, 200, and 30 min were determined for aspartic acid (pH 3.5), aspartame (pH 2.5), and glycine ethylester (pH 2.5). Values of 60, 15, and 2 min, respectively, were found at pH 7. It is concluded that rearrangement of the primary N-nitroso product to the ultimate alkylating agent could be rate-limiting. The potential of nitrosated alpha-amino acids to bind to DNA in vivo was investigated by oral gavage of radiolabelled glycine ethylester to rats, followed immediately by sodium nitrite. DNA was isolated from stomach and liver and analysed for radioactivity and modified nucleotides. No indication of DNA adduct formation was obtained. Based on an estimation of the dose fraction converted from glycine ethylester to the nitroso product under the given experimental conditions, the maximum possible DNA-binding potency of nitroso glycine ethylester is about one order of magnitude below the methylating potency of N-nitrosomethylurea in rat stomach. The apparent discrepancy to the in vitro data could be due to efficient detoxification processes in mammalian cells.

  18. Chiral effects on helicity studied via the energy landscape of short (D, L)-alanine peptides.

    PubMed

    Neelamraju, Sridhar; Oakley, Mark T; Johnston, Roy L

    2015-10-28

    The homochirality of natural amino acids facilitates the formation of regular secondary structures such as α-helices and β-sheets. Here, we study the relationship between chirality and backbone structure for the example of hexa-alanine. The most stable stereoisomers are identified through global optimisation. Further, the energy landscape, a database of connected low-energy local minima and transition points, is constructed for various neutral and zwitterionic stereoisomers of hexa-alanine. Three order parameters for partial helicity are applied and metric disconnectivity graphs are presented with partial helicity as a metric. We also apply the Zimm-Bragg model to derive average partial helicities for Ace-(L-Ala)6-NHMe, Ace-(D-Ala-L-Ala)3-NHMe, and Ace-(L-Ala)3-(D-Ala)3-NHMe from the database of local minima and compare with previous studies.

  19. Chiral effects on helicity studied via the energy landscape of short (d, l)-alanine peptides

    NASA Astrophysics Data System (ADS)

    Neelamraju, Sridhar; Oakley, Mark T.; Johnston, Roy L.

    2015-10-01

    The homochirality of natural amino acids facilitates the formation of regular secondary structures such as α-helices and β-sheets. Here, we study the relationship between chirality and backbone structure for the example of hexa-alanine. The most stable stereoisomers are identified through global optimisation. Further, the energy landscape, a database of connected low-energy local minima and transition points, is constructed for various neutral and zwitterionic stereoisomers of hexa-alanine. Three order parameters for partial helicity are applied and metric disconnectivity graphs are presented with partial helicity as a metric. We also apply the Zimm-Bragg model to derive average partial helicities for Ace-(l-Ala)6-NHMe, Ace-(d-Ala-l-Ala)3-NHMe, and Ace-(l-Ala)3-(d-Ala)3-NHMe from the database of local minima and compare with previous studies.

  20. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds.

    PubMed

    Silva, Luís R; Pereira, Maria J; Azevedo, Jessica; Mulas, Rebeca; Velazquez, Encarna; González-Andrés, Fernando; Valentão, Patrícia; Andrade, Paula B

    2013-12-15

    Soybean (Glycine max (L.) Merrill) is one of the most important food crops for human and animal consumption, providing oil and protein at relatively low cost. The least expensive source of nitrogen for soybean is the biological fixation of atmospheric nitrogen by the symbiotic association with soil bacteria, belonging mainly to the genus Bradyrhizobium. This study was conducted to assess the effect of the inoculation of G. max with Bradyrhizobium japonicum on the metabolite profile and antioxidant potential of its seeds. Phenolic compounds, sterols, triterpenes, organic acids, fatty acids and volatiles profiles were characterised by different chromatographic techniques. The antioxidant activity was evaluated against DPPH, superoxide and nitric oxide radicals. Inoculation with B. japonicum induced changes in the profiles of primary and secondary metabolites of G. max seeds, without affecting their antioxidant capacity. The increase of organic and fatty acids and volatiles suggest a positive effect of the inoculation process. These findings indicate that the inoculation with nodulating B. japonicum is a beneficial agricultural practice, increasing the content of bioactive metabolites in G. max seeds owing to the establishment of symbiosis between plant and microorganism, with direct effects on seed quality.

  1. LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen.

    PubMed Central

    Schwacke, R; Grallath, S; Breitkreuz, K E; Stransky, E; Stransky, H; Frommer, W B; Rentsch, D

    1999-01-01

    During maturation, pollen undergoes a period of dehydration accompanied by the accumulation of compatible solutes. Solute import across the pollen plasma membrane, which occurs via proteinaceous transporters, is required to support pollen development and also for subsequent germination and pollen tube growth. Analysis of the free amino acid composition of various tissues in tomato revealed that the proline content in flowers was 60 times higher than in any other organ analyzed. Within the floral organs, proline was confined predominantly to pollen, where it represented >70% of total free amino acids. Uptake experiments demonstrated that mature as well as germinated pollen rapidly take up proline. To identify proline transporters in tomato pollen, we isolated genes homologous to Arabidopsis proline transporters. LeProT1 was specifically expressed both in mature and germinating pollen, as demonstrated by RNA in situ hybridization. Expression in a yeast mutant demonstrated that LeProT1 transports proline and gamma-amino butyric acid with low affinity and glycine betaine with high affinity. Direct uptake and competition studies demonstrate that LeProT1 constitutes a general transporter for compatible solutes. PMID:10072398

  2. Water deficit-induced changes in abscisic acid, growth polysomes, and translatable RNA in soybean hypocotyls. [Glycine max L

    SciTech Connect

    Bensen, R.J.; Boyer, J.S.; Mullet, J.E. )

    1988-01-01

    Soybean seedlings (Glycine max L.) were germinated and dark-grown in water-saturated vermiculite for 48 hours, then transferred either to water-saturated vermiculite or to low water potential vermiculite. A decrease in growth rate was detectable within 0.8 hour post-transfer to low water potential vermiculite. A fourfold increase in the abscisic acid content of the elongating region was observed within 0.5 hour. At 24 hours post-transfer, hypocotyl elongation was severely arrested and abscisic acid reached its highest measured level. A comparison of the polyA{sup +} RNA populations isolated at 24 hours post-transfer from the elongating region of water-saturated and low water potential vermiculite-grown seedlings was made by two-dimensional polyacrylamide gel analysis of in vitro translation products. It revealed both increases and decreases in the relative amounts of a number of translation products. Rewatering seedlings grown in low water potential vermiculite at 24 hours post-transfer led to a total recovery in growth rate within 0.5 hour, while abscisic acid in the elongating hypocotyl region required 1 to 2 hours to return to uninduced levels. Application of 1.0 millimolar {+-} abscisic acid to well-watered seedlings resulted in a 48% reduction in hypocotyl growth rate during the first 2 hours after treatment. Plants treated with abscisic acid for 24 hours had a lower polysome content than control plants. However, hypocotyl growth inhibition in abscisic acid-treated seedlings preceded the decline in polysome content.

  3. Relative output factor and beam profile measurements of small radiation fields with an L-alanine/K-Band EPR minidosimeter

    SciTech Connect

    Chen Abrego, Felipe; Calcina, Carmen Sandra Guzman; Almeida, Adelaide de; Almeida, Carlos Eduardo de; Baffa, Oswaldo

    2007-05-15

    The performance of an L-alanine dosimeter with millimeter dimensions was evaluated for dosimetry in small radiation fields. Relative output factor (ROF) measurements were made for 0.5x0.5, 1x1, 3x3, 5x5, 10x10 cm{sup 2} square fields and for 5-, 10-, 20-, 40-mm-diam circular fields. In beam profile (BP) measurements, only 1x1, 3x3, 5x5 cm{sup 2} square fields and 10-, 20-, 40-mm-diam circular fields were used. For square and circular field irradiations, Varian/Clinac 2100, and a Siemens/Mevatron 6 MV linear accelerators were used, respectively. For a batch of 800 L-alanine minidosimeters (miniALAs) the average mass was 4.3{+-}0.5 (1{sigma}) mg, the diameter was 1.22{+-}0.07 (1{sigma}) mm, and the length was 3.5{+-}0.2 (1{sigma}) mm. A K-Band (24 GHz) electron paramagnetic resonance (EPR) spectrometer was used for recording the spectrum of irradiated and nonirradiated miniALAs. To evaluate the performance of the miniALAs, their ROF and BP results were compared with those of other types of detectors, such as an ionization chamber (PTW 0.125 cc), a miniTLD (LiF: Mg,Cu,P), and Kodak/X-Omat V radiographic film. Compared to other dosimeters, the ROF results for miniALA show differences of up to 3% for the smallest fields and 7% for the largest ones. These differences were within the miniALA experimental uncertainty ({approx}5-6% at 1{sigma}). For BP measurements, the maximum penumbra width difference observed between miniALA and film (10%-90% width) was less than 1 mm for square fields and within 1-2 mm for circular fields. These penumbra width results indicate that the spatial resolution of the miniALA is comparable to that of radiographic film and its dimensions are adequate for the field sizes used in this experiment. The K-Band EPR spectrometer provided adequate sensitivity for assessment of miniALAs with doses of the order of tens of Grays, making this dosimetry system (K-Band/miniALA) a potential candidate for use in radiosurgery dosimetry.

  4. Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry.

    PubMed

    McCarron, Pearse; Logan, Alan C; Giddings, Sabrina D; Quilliam, Michael A

    2014-01-01

    Over the last decade the amino acid beta-N-methylamino-L-alanine (BMAA) has come under intense scrutiny. International laboratory and epidemiological research continues to support the hypothesis that environmental exposure to BMAA (e.g., through dietary practices, water supply) can promote the risk of various neurodegenerative diseases. A wide variety of cyanobacteria spp. have previously been reported to produce BMAA, with production levels dependent upon species, strain and environmental conditions. Since spirulina (Arthrospira spp.) is a member of the cyanobacteria phylum frequently consumed via dietary supplements, the presence of BMAA in such products may have public health implications. In the current work, we have analyzed ten spirulina-containing samples for the presence of BMAA; six pure spirulina samples from two separate raw materials suppliers, and four commercially-available multi-ingredient products containing 1.45 g of spirulina per 8.5 g serving. Because of controversy surrounding the measurement of BMAA, we have used two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods: one based on reversed phase LC (RPLC) with derivatization and the other based on hydrophilic interaction LC (HILIC). Potential matrix effects were corrected for by internal standardization using a stable isotope labeled BMAA standard. BMAA was not detected at low limits of detection (80 ng/g dry weight) in any of these product samples. Although these results are reassuring, BMAA analyses should be conducted on a wider sample selection and, perhaps, as part of ongoing spirulina production quality control testing and specifications. PMID:25120905

  5. Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry

    PubMed Central

    2014-01-01

    Over the last decade the amino acid beta-N-methylamino-L-alanine (BMAA) has come under intense scrutiny. International laboratory and epidemiological research continues to support the hypothesis that environmental exposure to BMAA (e.g., through dietary practices, water supply) can promote the risk of various neurodegenerative diseases. A wide variety of cyanobacteria spp. have previously been reported to produce BMAA, with production levels dependent upon species, strain and environmental conditions. Since spirulina (Arthrospira spp.) is a member of the cyanobacteria phylum frequently consumed via dietary supplements, the presence of BMAA in such products may have public health implications. In the current work, we have analyzed ten spirulina-containing samples for the presence of BMAA; six pure spirulina samples from two separate raw materials suppliers, and four commercially-available multi-ingredient products containing 1.45 g of spirulina per 8.5 g serving. Because of controversy surrounding the measurement of BMAA, we have used two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods: one based on reversed phase LC (RPLC) with derivatization and the other based on hydrophilic interaction LC (HILIC). Potential matrix effects were corrected for by internal standardization using a stable isotope labeled BMAA standard. BMAA was not detected at low limits of detection (80 ng/g dry weight) in any of these product samples. Although these results are reassuring, BMAA analyses should be conducted on a wider sample selection and, perhaps, as part of ongoing spirulina production quality control testing and specifications. PMID:25120905

  6. β-N-methylamino-l-alanine causes neurological and pathological phenotypes mimicking Amyotrophic Lateral Sclerosis (ALS): the first step towards an experimental model for sporadic ALS.

    PubMed

    de Munck, Estefanía; Muñoz-Sáez, Emma; Miguel, Begoña G; Solas, M Teresa; Ojeda, Irene; Martínez, Ana; Gil, Carmen; Arahuetes, Rosa Ma

    2013-09-01

    β-N-methylamino-l-alanine (L-BMAA) is a neurotoxic amino acid that has been related to various neurodegenerative diseases. The aim of this work was to analyze the biotoxicity produced by L-BMAA in vivo in rats, trying to elucidate its physiopathological mechanisms and to search for analogies between the found effects and pathologies like Amyotrophic Lateral Sclerosis (ALS). Our data demonstrated that the neurotoxic effects in vivo were dosage-dependent. For evaluating the state of the animals, a neurological evaluation scale was developed as well as a set of functional tests. Ultrastructural cell analysis of spinal motoneurons has revealed alterations both in endoplasmic reticulum and mitochondria. Since GSK3β could play a role in some neuropathological processes, we analyzed the alterations occurring in GSK3β levels in L-BMAA treated rats, we have observed an increase in the active form of GSK3β levels in lumbar spinal cord and motor cerebral cortex. On the other hand, (TAR)-DNA-binding protein 43 (TDP-43) increased in L-BMAA treated animals. Our results indicated that N-acetylaspartate (NAA) declined in animals treated with L-BMAA, and the ratio of N-acetylaspartate/choline (NAA/Cho), N-acetylaspartate/creatine (NAA/Cr) and N-acetylaspartate/choline+creatine (NAA/Cho+Cr) tended to decrease in lumbar spinal cord and motor cortex. This project offers some encouraging results that could help establishing the progress in the development of an animal model of sporadic ALS and L-BMAA could be a useful tool for this purpose.

  7. Syn-Selective Synthesis of β-Branched α-Amino Acids by Alkylation of Glycine-Derived Imines with Secondary Sulfonates.

    PubMed

    Lou, Sha; McKenna, Grace M; Tymonko, Steven A; Ramirez, Antonio; Benkovics, Tamas; Conlon, David A; González-Bobes, Francisco

    2015-10-16

    A syn-selective synthesis of β-branched α-amino acids has been developed based on the alkylation of glycine imine esters with secondary sulfonates. The potassium counterion for the enolate, the solvent, and the leaving group on the electrophile were key levers to maximize the diasteroselectivity of the alkylation. The optimized conditions enabled a straightforward preparation of a number of β-branched α-amino acids that can be challenging to obtain.

  8. Enzymatic preparation of. cap alpha. - and. beta. -deuterated or tritiated amino acids with l-methionine. gamma. -lyase

    SciTech Connect

    Esaki, N.; Sawada, S.; Tanaka, H.; Soda, K.

    1982-01-15

    L-Methionine ..gamma..-lyase catalyzes the exchange of ..cap alpha..- and ..beta..-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium or tritium of solvents. The rate of ..cap alpha..-hydrogen exchange with deuterium was about 40 times faster than that of the elimination reactions. The deuterium and tritium were exchanged also with the ..cap alpha..- and ..beta..-hydrogens of the straight-chain amino acids which do not undergo the elimination: L-alanine, L-..cap alpha..-aminobutyrate, L-norvaline, and L-norleucine. No exchange occurs for the D-isomers, acidic L-amino acids, basic L-amino acids, and branched-chain L-amino acids, although ..cap alpha..-hydrogen of glycine, L-trypotophan, and L-phenylalanine is exchanged slowly. These enzymatic hydrogen-exchange reactions facilitate specific labeling of the L-amino acids with deuterium and tritium.

  9. The cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) induces neuronal and behavioral changes in honeybees.

    PubMed

    Okle, Oliver; Rath, Lisa; Galizia, C Giovanni; Dietrich, Daniel R

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-l-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using (14)C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca(2+) homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA.

  10. β-N-methylamino-L-alanine (BMAA) uptake by the animal model, Daphnia magna and subsequent oxidative stress.

    PubMed

    Esterhuizen-Londt, Maranda; Wiegand, Claudia; Downing, Tim G

    2015-06-15

    β-N-methylamino-l-alanine (BMAA), produced by cyanobacteria, is a neurotoxin implicated in Amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). BMAA concentrations in cyanobacteria are lower than those thought to be necessary to result in neurological damage thus bioaccumulation or biomagnification is required to achieve concentrations able to cause neurodegeneration. Many cyanobacteria produce BMAA and uptake routes into the food web require examination. In this study we investigate the uptake of BMAA by adult phytoplanktivorus Daphnia magna via exposure to dissolved pure BMAA and BMAA containing cyanobacteria, as well as the subsequent oxidative stress response in the daphnia. Free BMAA and protein-associated BMAA were quantified by LC-MS/MS. Dissolved BMAA was taken up and was found as free BMAA in D. magna. No protein-associated BMAA was detected in D. magna after a 24-h exposure period. No BMAA was detectable in D. magna after exposure to BMAA containing cyanobacteria. BMAA inhibited the oxidative stress defence and biotransformation enzymes within 24-h exposure in the tested Daphnia and could therefore impair the oxidant status and the capability of detoxifying other substances in D. magna.

  11. Transporter-associated currents in the gamma-aminobutyric acid transporter GAT-1 are conditionally impaired by mutations of a conserved glycine residue.

    PubMed

    Zhou, Yonggang; Kanner, Baruch I

    2005-05-27

    To determine whether glycine residues play a role in the conformational changes during neurotransmitter transport, we have analyzed site-directed mutants of the gamma-aminobutyric acid (GABA) transporter GAT-1 in a domain containing three consecutive glycines conserved throughout the sodium- and chloride-dependent neurotransmitter transporter family. Only cysteine replacement of glycine 80 resulted in the complete loss of [(3)H]GABA uptake, but oocytes expressing this mutant exhibited the sodium-dependent transient currents thought to reflect a charge-moving conformational change. When sodium was removed and subsequently added back, the transients by G80C did not recover, as opposed to wild type, where recovery was almost complete. Remarkably, the transients by G80C could be restored after exposure of the oocytes to either GABA or a depolarizing pre-pulse. These treatments also resulted in a full recovery of the transients by the wild type. Whereas in wild type lithium leak currents are observed after prior sodium depletion, this was not the case for the glycine 80 mutants unless GABA was added or the oocytes were subjected to a depolarizing pre-pulse. Thus, glycine 80 appears essential for conformational transitions in GAT-1. When this residue is mutated, removal of sodium results in "freezing" the transporter in one conformation from which it can only exit by compensatory changes induced by GABA or depolarization. Our results can be explained by a model invoking two outward-facing states of the empty transporter and a defective transition between these states in the glycine 80 mutants.

  12. Genome-Wide Identification, Classification, and Expression Analysis of Amino Acid Transporter Gene Family in Glycine Max.

    PubMed

    Cheng, Lin; Yuan, Hong-Yu; Ren, Ren; Zhao, Shi-Qi; Han, Ya-Peng; Zhou, Qi-Ying; Ke, Dan-Xia; Wang, Ying-Xiang; Wang, Lei

    2016-01-01

    Amino acid transporters (AATs) play important roles in transporting amino acid across cellular membranes and are essential for plant growth and development. To date, the AAT gene family in soybean (Glycine max L.) has not been characterized. In this study, we identified 189 AAT genes from the entire soybean genomic sequence, and classified them into 12 distinct subfamilies based upon their sequence composition and phylogenetic positions. To further investigate the functions of these genes, we analyzed the chromosome distributions, gene structures, duplication patterns, phylogenetic tree, tissue expression patterns of the 189 AAT genes in soybean. We found that a large number of AAT genes in soybean were expanded via gene duplication, 46 and 36 GmAAT genes were WGD/segmental and tandemly duplicated, respectively. Further comprehensive analyses of the expression profiles of GmAAT genes in various stages of vegetative and reproductive development showed that soybean AAT genes exhibited preferential or distinct expression patterns among different tissues. Overall, our study provides a framework for further analysis of the biological functions of AAT genes in either soybean or other crops.

  13. Genome-Wide Identification, Classification, and Expression Analysis of Amino Acid Transporter Gene Family in Glycine Max

    PubMed Central

    Cheng, Lin; Yuan, Hong-Yu; Ren, Ren; Zhao, Shi-Qi; Han, Ya-Peng; Zhou, Qi-Ying; Ke, Dan-Xia; Wang, Ying-Xiang; Wang, Lei

    2016-01-01

    Amino acid transporters (AATs) play important roles in transporting amino acid across cellular membranes and are essential for plant growth and development. To date, the AAT gene family in soybean (Glycine max L.) has not been characterized. In this study, we identified 189 AAT genes from the entire soybean genomic sequence, and classified them into 12 distinct subfamilies based upon their sequence composition and phylogenetic positions. To further investigate the functions of these genes, we analyzed the chromosome distributions, gene structures, duplication patterns, phylogenetic tree, tissue expression patterns of the 189 AAT genes in soybean. We found that a large number of AAT genes in soybean were expanded via gene duplication, 46 and 36 GmAAT genes were WGD/segmental and tandemly duplicated, respectively. Further comprehensive analyses of the expression profiles of GmAAT genes in various stages of vegetative and reproductive development showed that soybean AAT genes exhibited preferential or distinct expression patterns among different tissues. Overall, our study provides a framework for further analysis of the biological functions of AAT genes in either soybean or other crops. PMID:27148336

  14. The glycine deportation system and its pharmacological consequences☆

    PubMed Central

    Beyoğlu, Diren; Idle, Jeffrey R.

    2013-01-01

    The glycine deportation system is an essential component of glycine catabolism in man whereby 400 to 800 mg glycine per day are deported into urine as hippuric acid. The molecular escort for this deportation is benzoic acid, which derives from the diet and from gut microbiota metabolism of dietary precursors. Three components of this system, involving hepatic and renal metabolism, and renal active tubular secretion help regulate systemic and central nervous system levels of glycine. When glycine levels are pathologically high, as in congenital nonketotic hyperglycinemia, the glycine deportation system can be upregulated with pharmacological doses of benzoic acid to assist in normalization of glycine homeostasis. In congenital urea cycle enzymopathies, similar activation of the glycine deportation system with benzoic acid is useful for the excretion of excess nitrogen in the form of glycine. Drugs which can substitute for benzoic acid as substrates for the glycine deportation system have adverse reactions that may involve perturbations of glycine homeostasis. The cancer chemotherapeutic agent ifosfamide has an unacceptably high incidence of encephalopathy. This would appear to arise as a result of the production of toxic aldehyde metabolites which deplete ATP production and sequester NADH in the mitochondrial matrix, thereby inhibiting the glycine deportation system and causing de novo glycine synthesis by the glycine cleavage system. We hypothesize that this would result in hyperglycinemia and encephalopathy. This understanding may lead to novel prophylactic strategies for ifosfamide encephalopathy. Thus, the glycine deportation system plays multiple key roles in physiological and neurotoxicological processes involving glycine. PMID:22584143

  15. Gustatory responsiveness to the 20 proteinogenic amino acids in the spider monkey (Ateles geoffroyi).

    PubMed

    Larsson, Jenny; Maitz, Anna; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2014-03-29

    The gustatory responsiveness of four adult spider monkeys to the 20 proteinogenic amino acids was assessed in two-bottle preference tests of brief duration (1min). We found that Ateles geoffroyi responded with significant preferences for seven amino acids (glycine, l-proline, l-alanine, l-serine, l-glutamic acid, l-aspartic acid, and l-lysine) when presented at a concentration of 100mM and/or 200mM and tested against water. At the same concentrations, the animals significantly rejected five amino acids (l-tryptophan, l-tyrosine, l-valine, l-cysteine, and l-isoleucine) and were indifferent to the remaining tastants. Further, the results show that the spider monkeys discriminated concentrations as low as 0.2mM l-lysine, 2mM l-glutamic acid, 10mM l-proline, 20mM l-valine, 40mM glycine, l-serine, and l-aspartic acid, and 80mM l-alanine from the alternative stimulus, with individual animals even scoring lower threshold values. A comparison between the taste qualities of the proteinogenic amino acids as described by humans and the preferences and aversions observed in the spider monkeys suggests a fairly high degree of agreement in the taste quality perception of these tastants between the two species. A comparison between the taste preference thresholds obtained with the spider monkeys and taste detection thresholds reported in human subjects suggests that the taste sensitivity of A. geoffroyi for the amino acids tested here might match that of Homo sapiens. The results support the assumption that the taste responses of spider monkeys to proteinogenic amino acids might reflect an evolutionary adaptation to their frugivorous and thus protein-poor diet. PMID:24480073

  16. Substrate specificity of amino acid transport in sheep erythrocytes.

    PubMed Central

    Young, J D; Ellory, J C

    1977-01-01

    The specificity of amino acid transport in normal (high-glutathione) sheep erythrocytes was investigated by studying the interaction of various neutral and dibasic amino acids in both competition and exchange experiments. Apparent Ki values were obtained for amino acids as inhibitors of L-alanine influx. Amino acids previously found to be transported by high-glutathione cells at fast rates (L-cysteine, L-alpha-amino-n-butyrate) were the most effective inhibitors. D-Alanine and D-alpha-amino-n-butyrate were without effect. Of the remaining amino acids studied, only L-norvaline, L-valine, L-norleucine, L-serine and L-2,4-diamino-n-butyrate significantly inhibited L-alanine uptake. L-Alanine efflux from pre-loaded cells was markedly stimulated by extracellular L-alanine. Those amino acids that inhibited L-alanine influx also stimulated L-alanine efflux. In addition, D-alanine, D-alpha-amino-n-biutyrate, L-threonine, L-asparagine, L-alpha, beta-diaminoproprionate, L-ornithine, L-lysine and S-2-aminoethyl-L-cysteine also significantly stimulated L-alanine efflux. L-Lysine uptake was inhibited by L-alanine but not by D-alanine, and the inhibitory potency of L-alanine was not influenced by the replacement of Na+ in the incubation medium with choline. L-Lysine efflux from pre-loaded cells was stimulated by L-alanine but not by D-alanine. It is concluded that these cells possess a highly selective stero-specific amino acid-transport system. Although the optimum substrates are small neutral amino acids, this system also has a significant affinity for dibasic amino acids. PMID:849280

  17. Propofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats

    PubMed Central

    Yang, Jing; Wang, Wei; Yong, Zheng; Mi, Weidong; Zhang, Hong

    2015-01-01

    Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signals. The objective of this study was to investigate the effects of increasing dosage of propofol on the release of glutamate (Glu), γ-aminobutyric acid (GABA) and glycine (Gly) in the spinal dorsal horn. Materials and Methods: The efflux of Glu, GABA or Gly in the spinal dorsal horn of rats was detected using transverse spinal microdialysis under an awake condition and various depths of propofol anesthesia. The infusion rates of propofol were, in order, 400 µg/(kg·min), 600 µg/(kg·min) and 800 µg/(kg·min), with a 20 min infusion period being maintained at each infusion rate. Results: Propofol decreased the glutamate efflux within spinal dorsal horn in a dose-dependent manner, and the maximum decrease was 56.8 ± 6.0% at high-dose propofol infusion producing immobility. The inhibitory GABA and Gly efflux was also decreased about 15–20% at low-dose propofol infusion only producing sedation, but did not continue to drop with higher doses of propofol. Conclusion: Propofol decreased both excitatory and inhibitory amino acids efflux in spinal dorsal horn, and the preferential suppression of the excitatory amino acid might be associated with the analgesic effect of propofol. PMID:26557972

  18. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    PubMed

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  19. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    SciTech Connect

    Okle, Oliver; Rath, Lisa; Galizia, C. Giovanni; Dietrich, Daniel R.

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.

  20. Long-term cognitive impairments in adult rats treated neonatally with beta-N-Methylamino-L-Alanine.

    PubMed

    Karlsson, Oskar; Roman, Erika; Brittebo, Eva B

    2009-11-01

    Most cyanobacteria (blue-green algae) can produce the neurotoxin beta-N-methylamino-L-alanine (BMAA). Dietary exposure to BMAA has been suggested to be involved in the etiology of the neurodegenerative disease amyotrophic lateral sclerosis/Parkinsonism-dementia complex (ALS/PDC). Little is known about BMAA-induced neurotoxicity following neonatal administration. Our previous studies have revealed an uptake of BMAA in the hippocampus and striatum of neonatal mice. Furthermore, rats treated with BMAA during the neonatal period displayed acute but transient motoric disturbances and failed to show habituation at juvenile age suggesting impairments in learning functions. In the present study, the aim was to investigate long-term behavioral effects of BMAA administration in neonatal rats. BMAA was administered on postnatal days 9-10 (200 or 600 mg/kg; subcutaneous injection). Spatial learning and memory was investigated in adulthood using the radial arm maze test. The results revealed impaired learning but not memory in BMAA-treated animals. The observed impairments were not due to alterations in motoric capacity, general activity, or behavioral profiles, as assessed in the multivariate concentric square field (MCSF) and open field tests. An aversive stimulus in the MCSF test revealed impairments in avoidance learning and/or memory. There was no difference in basal serum corticosterone levels in BMAA-treated animals, indicating that the observed long-term effects were not secondary to an altered basal hypothalamic-pituitary-adrenal axis function. The present data demonstrated long-term learning impairments following neonatal BMAA administration. Further studies on biochemical effects in various brain regions and subsequent behavioral alterations are needed to elucidate the mechanisms of BMAA-induced developmental neurotoxicity.

  1. Evaluation of a thiodipeptide, L-phenylalanyl-Ψ[CS-N]-L-alanine, as a novel probe for peptide transporter 1.

    PubMed

    Arakawa, Hiroshi; Saito, Sachi; Kanagawa, Masahiko; Kamioka, Hiroki; Yano, Kentaro; Morimoto, Kaori; Ogihara, Takuo

    2014-01-01

    L-Phenylalanyl-Ψ[CS-N]-l-alanine (Phe-Ψ-Ala), a thiourea dipeptide, was evaluated as a probe for peptide transporter 1 (PEPT1). Uptake of Phe-Ψ-Ala in PEPT1-overexpressing HeLa cells was significantly higher than that in vector-transfected HeLa cells and the Km value was 275 ± 32 µM. The uptake was pH-dependent, being highest at pH 6.0, and was significantly decreased in the presence of PEPT1 inhibitors [glycylsarcosine (Gly-Sar), cephalexin, valaciclovir, glycylglycine, and glycylproline]. In metabolism assay using rat intestinal mucosa, rat hepatic microsomes, and human hepatocytes, the amount of Phe-Ψ-Ala was unchanged, whereas phenylalanylalanine was extensively decomposed. The clearance, distribution volume, and half-life of intravenously administered Phe-Ψ-Ala in rats were 0.151 ± 0.008 L/h/kg, 0.235 ± 0.012 L/kg, and 1.14 ± 0.07 h, respectively. The maximum plasma concentration of orally administered Phe-Ψ-Ala (2.31 ± 0.60 µg/mL) in the presence of Gly-Sar was significantly decreased compared with that in the absence of glycylsarcosine (3.74 ± 0.44 µg/mL), suggesting that the intestinal absorption of Phe-Ψ-Ala is mediated by intestinal PEPT1. In conclusion, our results indicate that Phe-Ψ-Ala is a high-affinity, metabolically stable, non-radioactive probe for PEPT1, and it should prove useful in studies of PEPT1, e.g., for predicting drug-drug interactions mediated by PEPT1 in vitro and in vivo.

  2. Incorporation of glycine-2-C-14 in acid-insoluble proteins of rat bones and teeth during hypokinesia and administration of thyrocalcitonine

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Stekolnikov, L. I.; Uglova, N. N.; Potkin, V. Y.

    1979-01-01

    A forced limitation of the motor activity in rats (from 5 to 60 days) results in reduced incorporation of glycine 2-C14 in the total acid insoluble proteins of limb bones and its increase in the teeth and mandibular-maxillary bones. Daily administration of five micrograms of thyrocalcitonine together with polyvinylpyrrolidone normalizes the protein metabolism in the bone tissues during the 40 days of experimentation.

  3. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    PubMed

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-01

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory.

  4. Identification of a highly conserved valine-glycine-phenylalanine amino acid triplet required for HIV-1 Nef function

    PubMed Central

    2012-01-01

    Background The Nef protein of HIV facilitates virus replication and disease progression in infected patients. This role as pathogenesis factor depends on several genetically separable Nef functions that are mediated by interactions of highly conserved protein-protein interaction motifs with different host cell proteins. By studying the functionality of a series of nef alleles from clinical isolates, we identified a dysfunctional HIV group O Nef in which a highly conserved valine-glycine-phenylalanine (VGF) region, which links a preceding acidic cluster with the following proline-rich motif into an amphipathic surface was deleted. In this study, we aimed to study the functional importance of this VGF region. Results The dysfunctional HIV group O8 nef allele was restored to the consensus sequence, and mutants of canonical (NL4.3, NA-7, SF2) and non-canonical (B2 and C1422) HIV-1 group M nef alleles were generated in which the amino acids of the VGF region were changed into alanines (VGF→AAA) and tested for their capacity to interfere with surface receptor trafficking, signal transduction and enhancement of viral replication and infectivity. We found the VGF motif, and each individual amino acid of this motif, to be critical for downregulation of MHC-I and CXCR4. Moreover, Nef’s association with the cellular p21-activated kinase 2 (PAK2), the resulting deregulation of cofilin and inhibition of host cell actin remodeling, and targeting of Lck kinase to the trans-golgi-network (TGN) were affected as well. Of particular interest, VGF integrity was essential for Nef-mediated enhancement of HIV virion infectivity and HIV replication in peripheral blood lymphocytes. For targeting of Lck kinase to the TGN and viral infectivity, especially the phenylalanine of the triplet was essential. At the molecular level, the VGF motif was required for the physical interaction of the adjacent proline-rich motif with Hck. Conclusion Based on these findings, we propose that this highly

  5. Antiferromagnetic spin chain behavior and a transition to 3D magnetic order in Cu(D,L-alanine)2: Roles of H-bonds

    NASA Astrophysics Data System (ADS)

    Calvo, Rafael; Sartoris, Rosana P.; Calvo, Hernán L.; Chagas, Edson F.; Rapp, Raul E.

    2016-05-01

    We study the spin chain behavior, a transition to 3D magnetic order and the magnitudes of the exchange interactions for the metal-amino acid complex Cu(D,L-alanine)2•H2O, a model compound to investigate exchange couplings supported by chemical paths characteristic of biomolecules. Thermal and magnetic data were obtained as a function of temperature (T) and magnetic field (B0). The magnetic contribution to the specific heat, measured between 0.48 and 30 K, displays above 1.8 K a 1D spin-chain behavior that can be fitted with an intrachain antiferromagnetic (AFM) exchange coupling constant 2J0=(-2.12±0.08) cm-1 (defined as ℋex(i,i+1) = -2J0SiṡSi+1), between neighbor coppers at 4.49 Å along chains connected by non-covalent and H-bonds. We also observe a narrow specific heat peak at 0.89 K indicating a phase transition to a 3D magnetically ordered phase. Magnetization curves at fixed T = 2, 4 and 7 K with B0 between 0 and 9 T, and at T between 2 and 300 K with several fixed values of B0 were globally fitted by an intrachain AFM exchange coupling constant 2J0=(-2.27±0.02) cm-1 and g = 2.091±0.005. Interchain interactions J1 between coppers in neighbor chains connected through long chemical paths with total length of 9.51 Å cannot be estimated from magnetization curves. However, observation of the phase transition in the specific heat data allows estimating the range 0.1≤|2J1|≤0.4 cm-1, covering the predictions of various approximations. We analyze the magnitudes of 2J0 and 2J1 in terms of the structure of the corresponding chemical paths. The main contribution in supporting the intrachain interaction is assigned to H-bonds while the interchain interactions are supported by paths containing H-bonds and carboxylate bridges, with the role of the H-bonds being predominant. We compare the obtained intrachain coupling with studies of compounds showing similar behavior and discuss the validity of the approximations allowing to calculate the interchain

  6. Acquisition of Raman spectra of amino acids using portable instruments: Outdoor measurements and comparison

    NASA Astrophysics Data System (ADS)

    Culka, A.; Jehlička, J.; Edwards, H. G. M.

    2010-12-01

    Raman spectra of 13 amino acids: L-alanine, β-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-glutamine, glycine, L-methionine, L-proline, L-serine, L-threonine, L-tryptophan and L-tyrosine were acquired outdoors using two portable Raman instruments from the Ahura and Delta Nu manufacturers, both with 785 nm laser excitation. Both instruments provide quality Raman spectra with nevertheless a variable dependence upon the prevailing experimental conditions. The data acquired in these experiments will inform the selection of suitable Raman spectrometers for the in-field detection of biomolecules of relevance to the search for life signatures spectroscopically in terrestrial extreme environments and in extraterrestrial exploration, especially of planetary surfaces and subsurfaces using robotic instrumentation.

  7. Production and physicochemical assessment of new stevia amino acid sweeteners from the natural stevioside.

    PubMed

    Khattab, Sherine N; Massoud, Mona I; Jad, Yahya El-Sayed; Bekhit, Adnan A; El-Faham, Ayman

    2015-04-15

    New stevia amino acid sweeteners, stevia glycine ethyl ester (ST-GL) and stevia l-alanine methyl ester (ST-GL), were synthesised and characterised by IR, NMR ((1)H NMR and (13)C NMR) and elemental analysis. The purity of the new sweeteners was determined by HPLC and their sensory properties were evaluated relative to sucrose in an aqueous system. Furthermore, the stevia derivatives (ST-GL and ST-AL) were evaluated for their acute toxicity, melting point, solubility and heat stability. The novel sweeteners were stable in acidic, neutral or basic aqueous solutions maintained at 100 °C for 2 h. The sweetness intensity rate of the novel sweeteners was higher than sucrose. Stevia amino acid (ST-GL and ST-AL) solutions had a clean sweetness taste without bitterness when compared to stevioside. The novel sweeteners can be utilised as non-caloric sweeteners in the production of low-calorie food.

  8. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  9. The interaction of salicylic acid and Ca(2+) alleviates aluminum toxicity in soybean (Glycine max L.).

    PubMed

    Lan, Tu; You, Jiangfeng; Kong, Lingnan; Yu, Miao; Liu, Minghui; Yang, Zhenming

    2016-01-01

    Both calcium ion (Ca(2+)) and salicylic acid (SA) influence various stress responses in plants. In acidic soils, aluminum (Al) toxicity adversely affects crop yield. In this study, we determined the influences of Ca(2+) and SA on root elongation, Al accumulation, and citrate secretion in soybean plant. We also investigated the activity of antioxidative enzymes in Al-exposed soybean roots. Root elongation was severally inhibited when the roots were exposed to 30 μM Al. The Al-induced inhibition of root elongation was ameliorated by Ca(2+) and SA but aggravated by Ca(2+) channel inhibitor (VP), CaM antagonists (TFP), Ca(2+) chelator (EGTA), and SA biosynthesis inhibitor (PAC). Furthermore, 1.0 mM CaCl2 and 10 μM SA reduced the accumulation of Al in roots, but their inhibitors stimulated the accumulation of Al in roots. Citrate secretion from these roots increased with the addition of either 1.0 mM CaCl2 or 10 μM SA but did not increase significantly when treated with higher Ca(2+) concentration. Enzymatic analysis showed that Ca(2+) and SA stimulated the activities of superoxidase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in Al-treated roots. In addition, SA restored the inhibition of Ca(2+) inhibitors on root elongation and Al content. Thus, both Ca(2+) and SA contribute to Al tolerance in soybean. Furthermore, Ca(2+) supplements rapidly increased Al-induced accumulation of free-SA or conjugated SA (SAG), while Ca(2+) inhibitors delayed the accumulation of SA for more than 8 h. Within 4 h of treatment, SA increased cytosolic Ca(2+) concentration in Al-treated roots, and upregulated the expression of four genes that possibly encode calmodulin-like (CML) proteins. These findings indicate that SA is involved in Ca(2+)-mediated signal transduction pathways in Al tolerance.

  10. Efficient Enzymatic Preparation of (13) N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems.

    PubMed

    da Silva, Eunice S; Gómez-Vallejo, Vanessa; Baz, Zuriñe; Llop, Jordi; López-Gallego, Fernando

    2016-09-12

    Nitrogen-13 can be efficiently produced in biomedical cyclotrons in different chemical forms, and its stable isotopes are present in the majority of biologically active molecules. Hence, it may constitute a convenient alternative to Fluorine-18 and Carbon-11 for the preparation of positron-emitter-labelled radiotracers; however, its short half-life demands for the development of simple, fast, and efficient synthetic processes. Herein, we report the one-pot, enzymatic and non-carrier-added synthesis of the (13) N-labelled amino acids l-[(13) N]alanine, [(13) N]glycine, and l-[(13) N]serine by using l-alanine dehydrogenase from Bacillus subtilis, an enzyme that catalyses the reductive amination of α-keto acids by using nicotinamide adenine dinucleotide (NADH) as the redox cofactor and ammonia as the amine source. The integration of both l-alanine dehydrogenase and formate dehydrogenase from Candida boidinii in the same reaction vessel to facilitate the in situ regeneration of NADH during the radiochemical synthesis of the amino acids allowed a 50-fold decrease in the concentration of the cofactor without compromising reaction yields. After optimization of the experimental conditions, radiochemical yields were sufficient to carry out in vivo imaging studies in small rodents. PMID:27515007

  11. Quantum yields of decomposition and homo-dimerization of solid L-alanine induced by 7.2 eV Vacuum ultraviolet light irradiation: an estimate of the half-life of L-alanine on the surface of space objects.

    PubMed

    Izumi, Yudai; Nakagawa, Kazumichi

    2011-08-01

    One of the leading hypotheses regarding the origin of prebiotic molecules on primitive Earth is that they formed from inorganic molecules in extraterrestrial environments and were delivered by meteorites, space dust and comets. To evaluate the availability of extraterrestrial amino acids, it is necessary to examine their decomposition and oligomerization rates as induced by extraterrestrial energy sources, such as vacuum ultraviolet (VUV) and X-ray photons and high energy particles. This paper reports the quantum yields of decomposition ((8.2 ± 0.7) × 10(-2) photon(-1)) and homo-dimerization ((1.2 ± 0.3) × 10(-3) photon(-1)) and decomposition of the dimer (0.24 ± 0.06 photon(-1)) of solid L-alanine (Ala) induced by VUV light with an energy of 7.2 eV. Using these quantum yields, the half-life of L-Ala on the surface of a space object in the present earth orbit was estimated to be about 52 days, even when only photons with an energy of 7.2 eV emitted from the present Sun were considered. The actual half-life of solid L-Ala on the surface of a space object orbit around the present day Earth would certainly be much shorter than our estimate, because of the added effect of photons and particles of other energies. Thus, we propose that L-Ala needs to be shielded from solar VUV in protected environments, such as the interior of a meteorite, within a time scale of days after synthesis to ensure its arrival on the primitive Earth.

  12. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression.

  13. Laboratory simulation of ultraviolet irradiation from the Sun on amino acids. III. irradiation of glycine-tyrosine

    NASA Astrophysics Data System (ADS)

    Scappini, F.; Capobianco, M. L.; Casadei, F.; Zamboni, R.

    2009-04-01

    The effects of near ultraviolet (UV) radiation on water solutions of tyrosine and glycine-tyrosine are investigated using a broadband xenon lamp in the region 200-800 nm. These experiments form a contribution in the laboratory simulation of the solar irradiation on the building blocks of life with regard to the origin of life. Results are presented showing the photodecomposition of tyrosine and glycine-tyrosine, at different concentrations, against UV doses. The analysis of the irradiated solutions is carried out by spectroscopic and analytical techniques. The findings of our laboratory simulations are used to constrain the early stages of the life emerging process.

  14. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  15. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans

    PubMed Central

    Glynn, Erin L.; Piner, Lucy W.; Huffman, Kim M.; Slentz, Cris A.; Elliot-Penry, Lorraine; AbouAssi, Hiba; White, Phillip J.; Bain, James R.; Muehlbauer, Michael J.; Ilkayeva, Olga R.; Stevens, Robert D.; Porter Starr, Kathryn N.; Bales, Connie W.; Volpi, Elena; Brosnan, M. Julia; Trimmer, Jeff K.; Rolph, Timothy P.

    2016-01-01

    Aims/hypotheses Obesity is associated with decreased insulin sensitivity (IS) and elevated plasma branched-chain amino acids (BCAAs). The purpose of this study was to investigate the relationship between BCAA metabolism and IS in overweight (OW) individuals during exercise intervention. Methods Whole-body leucine turnover, IS by hyperinsulinaemic–euglycaemic clamp, and circulating and skeletal muscle amino acids, branched-chain α-keto acids and acylcarnitines were measured in ten healthy controls (Control) and nine OW, untrained, insulin-resistant individuals (OW-Untrained). OW-Untrained then underwent a 6 month aerobic and resistance exercise programme and repeated testing (OW-Trained). Results IS was higher in Control vs OW-Untrained and increased significantly following exercise. IS was lower in OW-Trained vs Control expressed relative to body mass, but was not different from Control when normalised to fat-free mass (FFM). Plasma BCAAs and leucine turnover (relative to FFM) were higher in OW-Untrained vs Control, but did not change on average with exercise. Despite this, within individuals, the decrease in molar sum of circulating BCAAs was the best metabolic predictor of improvement in IS. Circulating glycine levels were higher in Control and OW-Trained vs OW-Untrained, and urinary metabolic profiling suggests that exercise induces more efficient elimination of excess acyl groups derived from BCAA and aromatic amino acid (AA) metabolism via formation of urinary glycine adducts. Conclusions/interpretation A mechanism involving more efficient elimination of excess acyl groups derived from BCAA and aromatic AA metabolism via glycine conjugation in the liver, rather than increased BCAA disposal through oxidation and turnover, may mediate interactions between exercise, BCAA metabolism and IS. Trial registration Clinicaltrials.gov NCT01786941 PMID:26254576

  16. Differential laser-induced perturbation Raman spectroscopy: a comparison with Raman spectroscopy for analysis and classification of amino acids and dipeptides

    NASA Astrophysics Data System (ADS)

    Oztekin, Erman K.; Smith, Sarah E.; Hahn, David W.

    2015-04-01

    Differential-laser induced perturbation spectroscopy (DLIPS) is a new spectral analysis technique for classification and identification, with key potential applications for analysis of complex biomolecular systems. DLIPS takes advantage of the complex ultraviolet (UV) laser-material interactions based on difference spectroscopy by coupling low intensity UV laser perturbation with a traditional spectroscopy probe. Here, we quantify the DLIPS performance using a Raman scattering probe in classification of basic constituents of collagenous tissues, namely, the amino acids glycine, L-proline, and L-alanine, and the dipeptides glycine-glycine, glycine-alanine and glycine-proline and compare the performance to a traditional Raman spectroscopy probe via several multivariate analyses. We find that the DLIPS approach yields an ˜40% improvement in discrimination among these tissue building blocks. The effects of the 193-nm perturbation laser are further examined by assessing the photodestruction of targeted material molecular bonds. The DLIPS method with a Raman probe holds promise for future tissue diagnosis, either as a stand-alone technique or as part of an orthogonal biosensing scheme.

  17. New salts of amino acids with dimeric cations

    NASA Astrophysics Data System (ADS)

    Ghazaryan, V. V.; Fleck, M.; Petrosyan, A. M.

    2010-10-01

    Among salts of amino acids there are compounds with the composition 2A..HX, which consist of dimeric A...A+ cations with short symmetric or asymmetric hydrogen bonds between zwitter-ionic and protonated moieties. These species are materials liable to undergo phase transitions or possess interesting nonlinear optical properties. Here, we report the preparation of 20 new salts with dimeric cations from aqueous solutions, including compounds of glycine, betaine, β- alanine, L-alanine, L-phenylalanine, L-threonine, L-valine, L-leucine and L-proline, with BF4-, ClO4-, Cl-, Br-, HSeO3-, and HC2O4-; as anions. The prepared salts are characterized by IR and Raman spectroscopy. Some of them are grown in form of good quality single crystals, which allowed the determination of their crystal structure.

  18. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  19. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells

    PubMed Central

    Francis, Brian R.

    2015-01-01

    Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and

  20. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide.

    PubMed

    Carvalho, M Fernanda N N; Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a -N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states. PMID:27340465

  1. N-( p-Ethynylbenzoyl) derivatives of amino acid and dipeptide methyl esters - Synthesis and structural study

    NASA Astrophysics Data System (ADS)

    Eißmann, Frank; Weber, Edwin

    2011-11-01

    A series of N-( p-ethynylbenzoyl) derivatives ( 1-4) of the amino acids glycine and L-alanine as well as the dipeptides glycylglycine and L-alanylglycine has been synthesized via a two-step reaction sequence including the reaction of an appropriate N-( p-bromobenzoyl) precursor with trimethylsilylacetylene followed by deprotection of the trimethylsilyl protecting group, respectively. X-ray crystal structures of the amino acid and dipeptide methyl esters 1-4 are reported. The amide and peptide bonds within each molecular structure are planar and adopt the trans-configuration. The packing structures are governed by N sbnd H⋯O interactions leading to the formation of characteristic strand motifs. Further stabilization results from weaker C sbnd H⋯O and C sbnd H⋯π contacts.

  2. Strecker degradation of amino acids promoted by a camphor-derived sulfonamide

    PubMed Central

    Ferreira, M João; Knittel, Ana S O; Oliveira, Maria da Conceição; Costa Pessoa, João; Herrmann, Rudolf; Wagner, Gabriele

    2016-01-01

    Summary A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a –N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states. PMID:27340465

  3. Amino acid suppression of taurine-sensitive chemosensory neurons.

    PubMed

    Gleeson, R A; Ache, B W

    1985-05-27

    Single unit recordings from chemoreceptors on the antennule of the spiny lobster revealed a population of taurine-sensitive cells whose response is suppressed when taurine is presented in mixture with certain amino acids. A synthetic mixture of 21 amino acids plus betaine, which mimics the composition of a natural food stimulus (crab muscle tissue) and itself contains taurine, totally and reversibly blocked the taurine response of this group of receptor cells. An analysis of the contribution to this suppression by the six major components (based on concentration) in the mixture revealed partial or complete inhibitory activity by five of the compounds. In a sample group of the inhibited cells, mean percent suppression of the taurine response was 99% for glycine and L-arginine, 98% for L-glutamine, 60% for L-alanine and 43% for L-proline. Both glycine and alanine in binary mixture with taurine caused a right-shift in the concentration-response function for taurine, suggesting a competitive mechanism of suppression. pA2 values determined from these data yielded 4.17 for glycine and 3.55 for alanine. These results suggest that the processing of chemical information in quality and/or intensity coding of natural stimulus mixtures can be tempered by interactions of the components at the receptor-cell level, and possibly at the receptor-sites themselves.

  4. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise.

    PubMed

    Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation. PMID:27215379

  5. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    PubMed Central

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  6. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise.

    PubMed

    Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.

  7. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity

    PubMed Central

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  8. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  9. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method

    NASA Astrophysics Data System (ADS)

    Rolfe, S. M.; Patel, M. R.; Gilmour, I.; Olsson-Francis, K.; Ringrose, T. J.

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined l-alanine, l-aspartic acid, l-cysteine, l-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for l-alanine (strongest intensity band: 832 cm-1), l-aspartic acid (938 cm-1), l-cysteine (679 cm-1), l-glutamine (1090 cm-1) and glycine (875 cm-1), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made.

  10. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method.

    PubMed

    Rolfe, S M; Patel, M R; Gilmour, I; Olsson-Francis, K; Ringrose, T J

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined L-alanine, L-aspartic acid, L-cysteine, L-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for L-alanine (strongest intensity band: 832 cm(-1)), L-aspartic acid (938 cm(-1)), L-cysteine (679 cm(-1)), L-glutamine (1090 cm(-1)) and glycine (875 cm(-1)), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made. PMID:26744263

  11. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method.

    PubMed

    Rolfe, S M; Patel, M R; Gilmour, I; Olsson-Francis, K; Ringrose, T J

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined L-alanine, L-aspartic acid, L-cysteine, L-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for L-alanine (strongest intensity band: 832 cm(-1)), L-aspartic acid (938 cm(-1)), L-cysteine (679 cm(-1)), L-glutamine (1090 cm(-1)) and glycine (875 cm(-1)), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made.

  12. The effect of 100 MeV oxygen ion on electrical and optical properties of nonlinear optical l-alanine sodium nitrate single crystals

    SciTech Connect

    Ahlam, M. A.; Prakash, A. P. Gnana

    2012-06-05

    Single crystals of nonlinear optical (NLO) L-alanine Sodium Nitrate (LASN) were grown by slow evaporation method. The grown crystals were irradiated by 100 MeV oxygen ions with the cumulative doses of 1Mrad, 6 Mrad and 10 Mrad. The dielectric properties, differential scanning calorimetry (DSC) and second harmonic generation (SHG) of the crystals were studied before and after irradiation. The dielectric constant was found to increase after irradiation. The DSC reveals that the melting point remains unaffected due to irradiation. The SHG efficiency of LASN was found to decrease with increase in radiation dose.

  13. Determination of the carbon, hydrogen and nitrogen contents of alanine and their uncertainties using the certified reference material L-alanine (NMIJ CRM 6011-a).

    PubMed

    Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko

    2013-01-01

    The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.

  14. Cyanobacteria produce N-(2-aminoethyl)glycine, a backbone for peptide nucleic acids which may have been the first genetic molecules for life on Earth.

    PubMed

    Banack, Sandra Anne; Metcalf, James S; Jiang, Liying; Craighead, Derek; Ilag, Leopold L; Cox, Paul Alan

    2012-01-01

    Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth.

  15. Cyanobacteria Produce N-(2-Aminoethyl)Glycine, a Backbone for Peptide Nucleic Acids Which May Have Been the First Genetic Molecules for Life on Earth

    PubMed Central

    Banack, Sandra Anne; Metcalf, James S.; Jiang, Liying; Craighead, Derek; Ilag, Leopold L.; Cox, Paul Alan

    2012-01-01

    Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth. PMID:23145061

  16. Aminopeptidase-like activities in Caenorhabditis elegans and the soybean cyst nematode, Heterodera glycines.

    PubMed

    Masler, E P; Kovaleva, E S; Sardanelli, S

    2001-09-01

    Aminopeptidase-like activities in crude whole body extracts of the free-living nematode Caenorhabditis elegans and the plant parasitic soybean cyst nematode Heterodera glycines were examined. General characteristics including pH optima, heat lability, and inactivation of enzyme by organic solvent were the same for the two species. All developmental stages of H. glycines exhibited activity. In older females, activity was present primarily in the eggs. Affinity for the substrate L-alanine-4-nitroanilide was the same regardless of the stage examined, and was similar for the two species (m for C. elegans and m for H. glycines). Nearly all (>95%) of C. elegans aminopeptidase-like activity was present in the soluble fraction of the extract, while H. glycines activity was distributed between the soluble and membrane fractions. Specific activities of the soluble enzymes were highest in C. elegans and H. glycines juveniles. The C. elegans enzyme was susceptible to a number of aminopeptidase inhibitors, particularly to amastatin and leuhistin, each of which inhibited aminopeptidase-like activity more than 90% at 90 microm. In H. glycines, aminopeptidase-like activity was inhibited 39% by amastatin at 900 microm. The apparent molecular weight of the soluble C. elegans enzyme is 70-80 kDa. Some activity in H. glycines is present in the 70-80 kDa range, but most activity (80-90%) is associated with a very high molecular weight (>240 kDa) component.

  17. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  18. AmiC functions as an N-acetylmuramyl-l-alanine amidase necessary for cell separation and can promote autolysis in Neisseria gonorrhoeae.

    PubMed

    Garcia, Daniel L; Dillard, Joseph P

    2006-10-01

    Neisseria gonorrhoeae is prone to undergo autolysis under many conditions not conducive to growth. The role of autolysis during gonococcal infection is not known, but possible advantages for the bacterial population include provision of nutrients to a starving population, modulation of the host immune response by released cell components, and donation of DNA for natural transformation. Biochemical studies indicated that an N-acetylmuramyl-l-alanine amidase is responsible for cell wall breakdown during autolysis. In order to better understand autolysis and in hopes of creating a nonautolytic mutant, we mutated amiC, the gene for a putative peptidoglycan-degrading amidase in N. gonorrhoeae. Characterization of peptidoglycan fragments released during growth showed that an amiC mutant did not produce free disaccharide, consistent with a role for AmiC as an N-acetylmuramyl-l-alanine amidase. Compared to the wild-type parent, the mutant exhibited altered growth characteristics, including slowed exponential-phase growth, increased turbidity in stationary phase, and increased colony opacity. Thin-section electron micrographs showed that mutant cells did not fully separate but grew as clumps. Complementation of the amiC deletion mutant with wild-type amiC restored wild-type growth characteristics and transparent colony morphology. Overexpression of amiC resulted in increased cell lysis, supporting AmiC's purported function as a gonococcal autolysin. However, amiC mutants still underwent autolysis in stationary phase, indicating that other gonococcal enzymes are also involved in this process.

  19. Identification in pituitary tissue of a peptide alpha-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid.

    PubMed

    Eipper, B A; Mains, R E; Glembotski, C C

    1983-08-01

    An enzymatic activity capable of producing an alpha-amidated peptide product from its glycine-extended precursor has been identified in secretory granules of rat anterior, intermediate, and neural pituitary and bovine intermediate pituitary. High levels of endogenous inhibitors of this alpha-amidation activity have also been found in tissue homogenates. The alpha-amidation activity is totally inhibited by addition of divalent metal ion chelators such as diethyldithiocarbamate, o-phenanthroline, and EDTA; alpha-amidation activity is restored to above control levels upon addition of copper. The alpha-amidation reaction requires the presence of molecular oxygen. Of the various cofactors tested, ascorbic acid was the most potent stimulator of alpha-amidation. The alpha-amidation activity has a neutral pH optimum and is primarily soluble following several cycles of freezing and thawing. Kinetic studies with the bovine intermediate pituitary granule-associated activity demonstrated a linear Lineweaver-Burk plot when D-Tyr-Val-Gly was the varied substrate; the apparent Km and Vmax varied with the concentration of ascorbic acid. The substrate specificity of the alpha-amidation activity appears to be quite broad; the conversion of D-Tyr-Val-Gly into D-Tyr-Val-NH2 is inhibited by the addition of a variety of glycine-extended peptides.

  20. The Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  1. Low-temperature phase transition in glycine-glutaric acid co-crystals studied by single-crystal X-ray diffraction, Raman spectroscopy and differential scanning calorimetry.

    PubMed

    Zakharov, Boris A; Losev, Evgeniy A; Kolesov, Boris A; Drebushchak, Valeri A; Boldyreva, Elena V

    2012-06-01

    The occurrence of a first-order reversible phase transition in glycine-glutaric acid co-crystals at 220-230 K has been confirmed by three different techniques - single-crystal X-ray diffraction, polarized Raman spectroscopy and differential scanning calorimetry. The most interesting feature of this phase transition is that every second glutaric acid molecule changes its conformation, and this fact results in the space-group symmetry change from P2(1)/c to P1. The topology of the hydrogen-bonded motifs remains almost the same and hydrogen bonds do not switch to other atoms, although the hydrogen bond lengths do change and some of the bonds become inequivalent.

  2. Fractionation of Dipeptidase Activities of Streptococcus lactis and Dipeptidase Specificity of Some Lactic Acid Bacteria

    PubMed Central

    Sørhaug, Terje; Solberg, Peter

    1973-01-01

    Proteins in sonic extracts of Streptococcus lactis were separated by starch-gel electrophoresis at high voltage. Each slab was sliced longitudinally, and half was stained for peptidases in a mixture containing a peptide, L-amino acid oxidase (snake venom), peroxidase, and o-dianisdine; the other half was stained in amido black for protein. In addition to sonic treatment, trypsin also released enzyme from acetone-treated cells. Glycyl-L-phenylalanine, L-phenylalanyl-glycine, L-alanyl-L-phenylalanine, and L-phenylalanyl-L-alanine served as substrates in characterizing the enzymes. Five different fractions of various specificities appeared in the gels. Broad-range substrate specificities were found for sonic extracts of S. lactis, S. cremoris, S. durans, and Lactobacillus acidophilus. Images PMID:4633426

  3. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  4. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  5. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  6. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  7. 15N chemical shift tensors and conformation of solid polypeptides containing 15N-labeled glycine residue by 15N NMR

    NASA Astrophysics Data System (ADS)

    Shoji, Akira; Ozaki, Takuo; Fujito, Teruaki; Deguchi, Kenzo; Ando, Isao; Magoshi, Jun

    1998-01-01

    The correlation between the isotropic 15N chemical shift ( δiso) and 15N chemical shift tensor components ( δ11, δ22 and δ33) and the main-chain conformation such as the polyglycine I (PGI: β-sheet), II (PGII: 3 1-helix), α-helix and β-sheet forms of solid polypeptides [Gly∗,X] n consisting of 15N-labeled glycine (Gly∗) and other amino acids (X: natural abundance of 15N) has been studied by solid-state 15N NMR method. A series of polypeptides [Gly∗,X] n (X = glycine, L-alanine, L-leucine, L-valine, L-isoleucine, β-benzyl L-aspartate, γ-benzyl L-glutamate, ɛ-carbobenzoxy L-lysine, and sarcosine) were synthesized by the α-amino acid N-carboxy anhydride (NCA) method. Conformations of these polypeptides in the solid state were characterized on the basis of conformation-dependent 13C chemical shifts in the 13C cross-polarization-magic angle spinning (CP-MAS) NMR spectra and by the characteristic bands in the IR and far-IR spectra. The δiso, δ11, δ22 and δ33 of the polypetides were determined from the 15N CP-MAS and 15N CP-static (powder pattern) spectra. It was found that the δiso, δ11, δ22 and δ33 in the PGI form (δ 83.5, 185, 40.7 and 25 ppm, resp.) are upfield from those in the PGII form (88.5, 194, 42.1 and 29 ppm, resp.), which were reproduced by the calculated 15N shielding constants using the finite perturbation theory (FPT)-INDO method. It was also found that the δ22 of the Gly∗ of [Gly∗,X] n is closely related to the main-chain conformation and the neighboring amino acid sequence, although the δiso is almost independent of the glycine content and conformation. Consequently, the δ22 value of Gly∗ containing copolypeptides is useful for the structural (main-chain conformation and neighboring amino acid sequence) analysis in the solid state by 15N NMR, if the 15N-labeled copolypeptide or natural protein can be provided. In addition, it is shown that the δiso of the glycine residue is useful for the conformational study of some

  8. Glycine fluxes in squid giant axons.

    PubMed

    Caldwell, P C; Lea, T J

    1978-05-01

    1. The influx of a number of amino acids into squid giant axons has been studied. Particular emphasis has been placed on glycine and to a lesser extent glutamate. 2. To facilitate the study of the uptake of 14C-labelled amino acids a technique was devised in which the 14C taken up was measured directly in the intact axon with a glass scintillator fibre. This technique gave results similar to the usual technique in which the axoplasm was extruded for the assay of radioactivity. 3. The changes in glycine influx with extracellular glycine concentration suggests that two saturating components are present, one with high affinity and one with low affinity. 4. The glycine influx does not seem normally to be sensitive to the removal of extracellular sodium by replacement with choline. A Na-sensitive component appeared, however, after a period of immersion in artificial sea water. There was also some depression of glycine influx if Na were replaced by Li. 5. Glutamate uptake was greatly reduced by removal of extracellular Na in confirmation of work by Baker & Potashner (1973). Orthophosphate uptake was also greatly reduced by removal of extracellular Na. 6. CN reversibly inhibited glycine uptake after a delay, indicating that part of the uptake mechanism may require ATP. 7. 14C-labelled glycine injected into squid axons was found not to exchange to any serious extent with other compounds over periods of a few hours. The glycine efflux could therefore be studied. This was found to be markedly increased by extracellular glycine and by certain other neutral amino acids applied extracellularly in the artificial sea water. 8. The enhanced glycine efflux in extracellular glycine was not affected by ouabain and CN. 9. It is suggested that glycine uptake in squid axons involves two components. One is sensitive to CN and ouabain and probably derives energy from ATP break-down. The other is probably an ATP independent exchange diffusion system in which other amino acids as well as

  9. Cyanobacterial Blooms and the Occurrence of the neurotoxin beta-N-methylamino-L-alanine (BMAA) in South Florida Aquatic Food Webs

    PubMed Central

    Brand, Larry E.; Pablo, John; Compton, Angela; Hammerschlag, Neil; Mash, Deborah C.

    2010-01-01

    Recent studies demonstrate that most cyanobacteria produce the neurotoxin beta-N-methylamino-L-alanine (BMAA) and that it can biomagnify in at least one terrestrial food chain. BMAA has been implicated as a significant environmental risk in the development of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis (ALS). We examined several blooms of cyanobacteria in South Florida, and the BMAA content of resident animals, including species used as human food. A wide range of BMAA concentrations were found, ranging from below assay detection limits to approximately 7000 μg/g, a concentration associated with a potential long-term human health hazard. PMID:21057660

  10. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    SciTech Connect

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura; Rayon, Victor M.; Largo, Antonio

    2012-04-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the higher energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.

  11. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  12. Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen.

    PubMed

    Chang, Hsin-Hou; Shyu, Huey-Fen; Wang, Yo-Ming; Sun, Der-Shan; Shyu, Rong-Hwa; Tang, Shiao-Shek; Huang, Yao-Shine

    2002-09-15

    Dengue virus infection causes life-threatening hemorrhagic fever. Increasing evidence implies that dengue viral nonstructural protein 1 (NS1) exhibits a tendency to elicit potentially hazardous autoantibodies, which show a wide spectrum of specificity against extracellular matrix and platelet antigens. How NS1 elicits autoantibodies remains unclear. To address the hypothesis that NS1 and matrix proteins may have structural and functional similarity, cell-matrix and cell-NS1 interactions were evaluated using a cell-adhesion assay. The present study showed that dengue NS1 immobilized on coverslips resulted in more cell adhesion than did the control proteins. This cell adhesion was inhibited by peptides containing arginine-glycine-aspartic acid (RGD), a motif important for integrin-mediated cell adhesion. In addition, anti-NS1 antibodies blocked RGD-mediated cell adhesion. Although there is no RGD motif in the NS1 protein sequence, these data indicate that RGD structural mimicry exists within the NS1 antigen.

  13. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba".

    PubMed

    Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro

    2015-04-01

    This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.

  14. The effect of an arginine-glycine-aspartic acid peptide and hyaluronate synthetic matrix on epithelialization of meshed skin graft interstices.

    PubMed

    Cooper, M L; Hansbrough, J F; Polarek, J W

    1996-01-01

    Keratinocytes and fibroblasts interact with proteins of the extracellular matrix such as fibronectin and vitronectin through RGD (arginine-glycine-aspartic acid) cell-attachment sequences. This study evaluated the ability of a provisional synthetic matrix composed of an RGD peptide and hyaluronic acid to accelerate the epithelialization of the interstices of meshed, human, split-thickness skin when placed on full-thickness wounds of athymic mice. Full-thickness skin defects, sparing the panniculus carnosus, were created on athymic mice and 3:1 meshed, human skin was placed on them. The grafts had four central, isolated interstices, which epithelialized by migration of human keratinocytes. Conditions were either the addition to the wound of the synthetic matrix or a matrix of hyaluronic acid alone. The time to closure of the graft interstices was decreased (p < 0.02) in the wounds treated with the RGD peptide-hyaluronic acid provisional matrix. The resultant epithelium of the closed interstices was significantly thicker 8 days after surgery for the RGD-treated wounds. Basement membrane proteins (laminin and type IV collagen) were also found to be present at the dermoepidermal junction earlier in the RGD-treated wounds. These results imply that use of the RGD peptide conjugate to effect cell-matrix interactions may have clinical significance in the field of wound healing.

  15. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba".

    PubMed

    Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro

    2015-04-01

    This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone. PMID:25510614

  16. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  17. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  18. Growth, structural, optical and mechanical studies on acid mixed glycine metal salt (GABN) crystal as potential NLO material

    NASA Astrophysics Data System (ADS)

    Khandpekar, Mahendra M.; Dongare, Shailesh S.; Patil, Shirish B.; Pati, Shankar P.

    2012-03-01

    Transparent crystals of α-glycine with ammonium nitrate and barium nitrate (GABN) have been grown from aqueous solution by slow evaporation technique at room temperature. Crystals of size 11 × 7 × 4 mm 3 have been obtained in about 3-4 weeks time. The solubility of GABN has been determined in water. The grown crystal belongs to orthorhombic system with cell parameters a = 7.317 A.U, b = 12.154 A.U and c = 5.468 A.U with a unit cell volume 486.35 (A.U) 3. The presence of chemical components/groups has been identified by CHN, EDAX and NMR analysis. Comparative IR and Raman studies indicate a molecule with a lack of centre of symmetry. A wide transparency window useful for optoelectronic applications is indicated by the UV Studies. Using a Nd-YAG laser (1064 nm), the optical second harmonic generation (SHG) conversion efficiency of GABN is found to be 1.406 times of that of standard KDP. On exposure to light the GABN crystals are found to exhibit negative photoconductivity. I-V characteristics, SEM studies, dielectrics studies, and Vickers micro hardness measurement have been carried out.

  19. Additivity of the Stabilization Effect of Single Amino Acid Substitutions in Triple Mutants of Recombinant Formate Dehydrogenase from the Soybean Glycine max.

    PubMed

    Alekseeva, A A; Kargov, I S; Kleimenov, S Yu; Savin, S S; Tishkov, V I

    2015-01-01

    Recently, we demonstrated that the amino acid substitutions Ala267Met and Ala267Met/Ile272Val (Alekseeva et al., Biochemistry, 2012), Phe290Asp, Phe290Asn and Phe290Ser (Alekseeva et al., Prot. Eng. Des. Select, 2012) in recombinant formate dehydrogenase from soya Glycine max (SoyFDH) lead to a significant (up to 30-100 times) increase in the thermal stability of the enzyme. The substitutions Phe290Asp, Phe290Asn and Phe290Ser were introduced into double mutant SoyFDH Ala267Met/Ile272Val by site-directed mutagenesis. Combinations of three substitutions did not lead to a noticeable change in the catalytic properties of the mutant enzymes. The stability of the resultant triple mutants was studied through thermal inactivation kinetics and differential scanning calorimetry. The thermal stability of the new mutant SoyFDHs was shown to be much higher than that of their precursors. The stability of the best mutant SoyFDH Ala267Met/Ile272Val/Phe290Asp turned out to be comparable to that of the most stable wild-type formate dehydrogenases from other sources. The results obtained with both methods indicate a great synergistic contribution of individual amino acid substitutions to the common stabilization effect.

  20. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  1. Effects of glycine-arginine-α-ketoisocaproic acid supplementation in college-age trained females during multi-bouts of resistance exercise.

    PubMed

    Wax, Benjamin; Hilton, Laura; Vickers, Brad; Gilliland, Katherine; Conrad, Mandy

    2013-03-01

    Glycine-arginine-α-ketoisocaproic acid (GAKIC) has been proposed to increase anaerobic high-intensity exercise performance in male subjects. However, the effects of GAKIC ingestion in female subjects have not been studied. Therefore, the purpose of this study was to investigate the effects of GAKIC supplementation on total load volume (i.e., mass lifted) and metabolic parameters during repeated bouts of submaximal leg extensions in college-age females. Nine resistance-trained females participated in a randomized, counterbalanced, double blind study. Subjects were randomly assigned to placebo or GAKIC (10.2 g) and performed six sets of 50% of one repetition maximum leg extensions (two legs simultaneously) to failure. One week later, subjects ingested the other supplement and performed the same exercise protocol. Furthermore, blood lactic acid, blood glucose, and heart rate were also measured preexercise and 5 s after the completion of the exercise protocol (postexercise). GAKIC supplementation significantly increased leg extension total load volume (GAKIC = 1721.7 ± 479.9 kg; placebo = 1479.1 ± 396.8 kg, p < .01). Heart rate and blood lactic acid were significantly increased (p < .01 for both measures) postexercise compared to preexercise, but were not significantly different between GAKIC and placebo (p = .40 for heart rate; p = .88 for lactic acid). Blood glucose was significantly decreased (p = .03) postexercise compared to preexercise, but was not significantly different (p = .78) between GAKIC and placebo. Collectively, these findings suggest that GAKIC increased lower body resistance performance in trained college-age females; however, these findings are not necessarily generalizable.

  2. Spectroscopic investigations of humic-like acids formed via polycondensation reactions between glycine, catechol and glucose in the presence of natural zeolites

    NASA Astrophysics Data System (ADS)

    Fukuchi, Shigeki; Miura, Akitaka; Okabe, Ryo; Fukushima, Masami; Sasaki, Masahide; Sato, Tsutomu

    2010-10-01

    Polycondensation reactions between low-molecular-weight compounds, such as amino acids, sugars and phenols, are crucially important processes in the formation of humic substances, and clay minerals have the ability to catalyze these reactions. In the present study, catechol (CT), glycine (Gly) and glucose (Gl) were used as representative phenols, amino acids and sugars, respectively, and the effects of the catalytic activities of natural zeolites on polycondensation reactions between these compounds were investigated. The extent of polycondensation was evaluated by measuring the specific absorbance at 600 nm ( E600) as an index of the degree of darkening. After a 3-week incubation period, the E600 values for solutions that contained zeolite samples were 4-10 times greater than those measured in the absence of zeolite, suggesting that the zeolite had, in fact, catalyzed the polycondensation reaction. The humic-like acids (HLAs) produced in the reactions were isolated, and their elemental composition and molecular weights determined. When formed in the presence of a zeolite, the nitrogen contents and molecular weights for the HLAs were significantly higher, compared to the HLA sample formed in the absence of zeolite. In addition, solid-state CP-MAS 13C NMR spectra and carboxylic group analyses of the HLA samples indicated that the concentration of carbonyl carbon species for quinones and ketones produced in the presence of zeolite were higher than the corresponding values for samples produced in the absence of a zeolite. Carbonyl carbons in quinones and ketones indicate the nucleophilic characteristics of the samples. Therefore, a nitrogen atom in Gly, which serves as nucleophile, is incorporated into quinones and ketones in CT and Gl. The differences in the catalytic activities of the zeolite samples can be attributed to differences in their transition metal content (Fe, Mn and Ti), which function as Lewis acids.

  3. Pore Diameter Dependence and Segmental Dynamics of Poly-Z-L-lysine and Poly-L-alanine Confined in 1D Nanocylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Tuncel, Eylul; Suzuki, Yasuhito; Iossifidis, Agathaggelos; Steinhart, Martin; Butt, Hans-Jurgen; Floudas, George; Duran, Hatice

    Structure formation, thermodynamic stability, phase and dynamic behaviors of polypeptides are strongly affected by confinement. Since understanding the changes in these behaviors will allow their rational design as functional devices with tunable properties, herein we investigated Poly-Z-L-lysine (PZLL) and Poly-L-alanine (PAla) homopolypeptides confined in nanoporous alumina containing aligned cylindrical nanopores as a function of pore size by differential scanning calorimetry (DSC), Fourier Transform Infrared Spectroscopy, Solid-state NMR, X-ray diffraction, Dielectric spectroscopy(DS). Bulk PZLL exhibits a glass transition temperature (Tg) at about 301K while PZLL nanorods showed slightly lower Tg (294K). The dynamic investigation by DS also revealed a decrease (4K) in Tg between bulk and PZLL nanorods. DS is a very sensitive probe of the local and global secondary structure relaxation through the large dipole to study effect of confinement. The results revealed that the local segmental dynamics, associated with broken hydrogen bonds, and segmental dynamics speed-up on confinement.

  4. Model Studies on the Antioxidative Effect of Polyphenols in Thermally Treated D-Glucose/L-Alanine Solutions with Added Metal Ions.

    PubMed

    Wilker, Daniel; Heinrich, Anna B; Kroh, Lothar W

    2015-12-30

    The influence of different polyphenolic compounds (PPs) on the Maillard reaction in a d-glucose/l-alanine model system with or without metal ions was studied under various reaction conditions. At temperatures up to 100 °C the PPs showed pro-oxidative effects due to their reducing effects on metal ions. This can be explained by a combined redox cycling mechanism of metals and PPs that promotes oxidation in the Maillard reaction. The antioxidative capacities of the PPs were measured with three different assays and correlated directly with their pro-oxidative effects on d-glucosone formation. The degree of the pro-oxidative effect depended not only on the PPs' reducing potential and their antioxidative ability but also on their concentration, the temperature, and the pH value of the model system. At low pH values and temperatures, the PPs were more stable and therefore showed an increased pro-oxidative tendency. In contrast, some of the used PPs were almost completely degraded at temperatures of 130 °C, and the formed polymers were able to complex metal ions. In the absence of these catalyzing ions, the oxidation ratio of d-glucose to d-glucosone was decreased.

  5. Nepenthes insignis uses a C2-portion of the carbon skeleton of L-alanine acquired via its carnivorous organs, to build up the allelochemical plumbagin.

    PubMed

    Rischer, Heiko; Hamm, Andreas; Bringmann, Gerhard

    2002-03-01

    Tropical pitcher plants (Nepenthes) catch animals in their specialized cup-shaped leaves, digest the prey by secreting enzymes, and actively take up the resulting compounds. The benefit of this behaviour is the ability to grow and compete in nutrient-poor habitats. Our present in vitro study shows that not only the nitrogen of alanine fed to the carnivorous organs is used by the plant but that in addition intact C2-units derived from C-2 and C-3 of stable isotope labelled L-alanine serve as building blocks, here exemplarily for the synthesis of the secondary metabolite plumbagin, a potent allelochemical. This result adds a new facet to the benefit of carnivory for plants. The availability of plumbagin by a de novo synthesis probably enhances the plants' fitness in their defence against phytophagous and pathogenic organisms. A missing specific uptake or CoA activation mechanism might be the reason that acetate fed to the pitchers was not incorporated into the naphthoquinone plumbagin. The dihydronaphthoquinone glucosides rossoliside and plumbaside A, here isolated for the first time from Nepenthes, by contrast, showed no incorporation after feeding of any of the two precursors, suggesting these compounds to be storage forms with probably very low turnover rates. PMID:11867092

  6. Structural, vibrational spectroscopic studies and quantum chemical calculations of n-(2,4-dinitrophenyl)-L-alanine methyl ester by density functional theory

    NASA Astrophysics Data System (ADS)

    Govindarasu, K.; Kavitha, E.

    2015-05-01

    In this paper, the vibrational wavenumbers of N-(2,4-dinitrophenyl)-L-alanine methyl ester (abbreviated as Dnp-ala-ome) were obtained from ab initio studies based on the density functional theory approach with B3LYP and M06-2X/6-31G(d,p) level of theories. The optimized geometry and structural features of the most potential nonlinear optical crystal Dnp-ala-ome and the vibrational spectral investigations have been thoroughly described with the FT-Raman and FT-IR spectra supported by the DFT computations. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-50 cm-1) in the solid phase and the UV-Vis spectra that dissolved in ethanol were recorded in the range of 200-800 nm. The Natural population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer, intramolecular and hyperconjugative interactions on the geometries. The effects of frontier orbitals, HOMO and LUMO, transition of electron density transfer have also been discussed. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of Dnp-ala-ome were calculated. In addition, molecular electrostatic potential (MEP) was investigated using theoretical calculations. The chemical reactivity and thermodynamic properties (heat capacity, entropy and enthalpy) of at different temperature are calculated.

  7. Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain.

    PubMed

    Karlsson, Oskar; Jiang, Liying; Ersson, Lisa; Malmström, Tim; Ilag, Leopold L; Brittebo, Eva B

    2015-01-01

    β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA.

  8. Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain

    PubMed Central

    Karlsson, Oskar; Jiang, Liying; Ersson, Lisa; Malmström, Tim; Ilag, Leopold L.; Brittebo, Eva B.

    2015-01-01

    β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA. PMID:26498001

  9. Transfer Partial Molar Isentropic Compressibilities of ( l-Alanine/ l-Glutamine/Glycylglycine) from Water to 0.512 {mol} \\cdot {kg}^{-1} Aqueous {KNO}3/0.512 {mol} \\cdot {kg}^{-1} Aqueous {K}2{SO}4 Solutions Between 298.15 K and 323.15 K

    NASA Astrophysics Data System (ADS)

    Riyazuddeen; Gazal, Umaima

    2013-03-01

    Speeds of sound of ( l-alanine/ l-glutamine/glycylglycine + 0.512 {mol}\\cdot {kg}^{-1} aqueous {KNO}3/0.512 {mol}\\cdot {kg}^{-1} aqueous {K}2{SO}4) systems have been measured for several molal concentrations of amino acid/peptide at different temperatures: T = (298.15 to 323.15) K. Using the speed-of-sound and density data, the parameters, partial molar isentropic compressibilities φ _{kappa }0 and transfer partial molar isentropic compressibilities Δ _{tr} φ _{kappa }0, have been computed. The trends of variation of φ _{kappa }0 and Δ _{tr} φ _{kappa }0 with changes in molal concentration of the solute and temperature have been discussed in terms of zwitterion-ion, zwitterion-water dipole, ion-water dipole, and ion-ion interactions operative in the systems.

  10. Effect of Cooking on Isoflavones, Phenolic Acids, and Antioxidant Activity in Sprouts of Prosoy Soybean (Glycine max).

    PubMed

    Kumari, Shweta; Chang, Sam K C

    2016-07-01

    Soy sprouts possess health benefits and is required to be cooked before consumption. The effects of cooking on the phenolic components and antioxidant properties of soy sprouts with different germination days were investigated. A food-grade cultivar Prosoy with a high protein content was germinated for 1, 2, 3, 5, and 7 d and cooked till palatable for 20, 20, 5, 5, and 7 min, respectively. Total phenolic content (TPC), total flavonoids content (TFC), condensed tannins content (CTC), individual phenolic acids, isoflavones, DPPH, ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) of raw and cooked sprouts were measured. Cooking caused significant losses in phenolic content and antioxidant activities, and maximum loss was on day 3 > 5 > 7, including TPC (32%, 23%, and 15%), TFC (50%, 44%, and 20%), CTC (73%, 47%, and 12%), DPPH (31%, 15%, and 5%), FRAP (34%, 25%, and 1%), and ORAC (34%, 22%, 32%), respectively. Cooking caused significant losses in most individual phenolic acid, benzoic group, cinnamic group, total phenolic composition, individual isoflavones, and total isoflavones. The losses of phenolic acids such as gallic, protocatechuic, hydroxybenzoic, syringic, chlorogenic, or sinapic acids during cooking were not compensated by the increases in trihydroxybenzoic, vanillic or coumaric acids on certain days of germination. Cooking caused minimal changes in phenolic acid composition of day 1 and 2 sprouts compared to 3, 5, and 7 d sprouts. PMID:27258930

  11. [Analysis of roots of soybean (Glycine max Merrill) treated with exogenous citric acid plus short-time aluminum stress by direct determination of FTIR spectrum].

    PubMed

    Jin, Ting-Ting; Liu, Peng; Zhang, Zhi-Xiang; Xu, Gen-Di; Zhao, Li-Li

    2009-02-01

    In the present study, 19 soybean (Glycine max L.) cultivars were analyzed and found to differ considerably in aluminum (Al) resistance. The cultivars Zhechun No. 2 (Al-resistant) and Zhechun No. 3 (Al-sensitive) were selected for further analysis. Experiments were performed with plants grown in full nutrient solution for 30 days. Fourier transform infrared spectrometry (FTIR) with OMNI-sampler was applied to the direct determination of different varieties of soybean root tissues, treated with aluminum in a dose-and time-dependent manner plus exogenous citric acid. Then the characteristic absorption peaks of spectra were analyzed and some differences in the FTIR spectra among samples were found from the comparison of the spectra. Results showed that the intensity and the shape of absorption peaks of their FTIR spectra exhibited some differences between different kinds of soybean and different treatment, especially around 1 057, 1 602, 2 927 and 3 292 cm(-1), which mainly reflected the content variety of protein, glucide, nucleic acid and so on. Thus it could be concluded that the effect of aluminum stress and existence of exogenous citric acid did not change the component of chemical substance in soybean roots, although the content of certain substance varied. The two dimensional discriminates analysis chart was drawn by the ratio of area at 2 927 cm(-1) to that at 3297 cm(-1) as the abscissa vs the ratio of area at 1 057 cm(-1) to that at 1 602 cm(-1) as the vertical, to discover the difference between the treatment of aluminum plus exogenous citric acid and that of single aluminum. Result indicates that the difference in the shape of absorption peaks of FTIR spectra became smaller and that presumed the content variety with different treatment was not remarkable under the condition of exogenous citric acid, especially in Zhechun No 3. From all mentioned above it is made clear that exogenous citric acid could really ameliorate distinctly the effect of aluminum on

  12. Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements: Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, L-Valines, Polyethylenes, and Oils.

    PubMed

    Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B; Brand, Willi A; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita T; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A J; Sauer, Peter E; Sessions, Alex L; Werner, Roland A

    2016-04-19

    An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ(2)H(VSMOW-SLAP) values from -210.8 to +397.0 mUr or ‰, for δ(13)C(VPDB-LSVEC) from -40.81 to +0.49 mUr and for δ(15)N(Air) from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a (2)H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ(2)H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain (13)C and carbon-bound organic (2)H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies. PMID:26974360

  13. Differential neuroprotective effects of the NMDA receptor-associated glycine site partial agonists 1-aminocyclopropanecarboxylic acid (ACPC) and D-cycloserine in lithium-pilocarpine status epilepticus.

    PubMed

    Peterson, Steven L; Purvis, Rebecca S; Griffith, James W

    2004-09-01

    The status epilepticus (SE) induced in rats by lithium-pilocarpine (Li-pilo) shares many common features with soman-induced SE including a glutamatergic phase that is inhibited by NMDA antagonists. The present study determined whether 1-aminocyclopropanecarboxylic acid (ACPC) or D-cycloserine (DCS), both partial agonists of the strychnine-insensitive glycine site on the NMDA receptor ionophore complex, exerted anticonvulsant or neuroprotectant activity in Li-pilo SE. ACPC or DCS were administered either immediately following pilocarpine (exposure treatment) or 5 min after the onset of SE as determined by ECoG activity. SE was allowed to proceed for 3 h before termination with propofol. The rats were sacrificed 24 h following pilocarpine administration. Neither drug had an effect on the latency to seizure onset or the duration of seizure activity. ACPC administered 5 min after SE onset produced significant neuroprotection in cortical regions, amygdala and CA1 of the hippocampus. In contrast, when administered as exposure treatment ACPC enhanced the neural damage in the thalamus and CA3 of the hippocampus suggesting the neuropathology in those regions is mediated by a different subset of NMDA receptors. DCS had no neuroprotectant activity in Li-pilo SE but exacerbated neuronal damage in the thalamus. Neither drug affected the cholinergic convulsions but both had differential effects on neural damage. This suggests that the SE-induced seizure activity and subsequent neuronal damage involve independent mechanisms.

  14. Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Sharma, Poonam; Gill, Sarvajeet Singh; Kaur, Harpreet; Mushtaq, Ruquia

    2015-10-01

    Jasmonic acid (JA) is a very young candidate of plant growth regulators which is being explored for various antistress properties. Present study deals with the hypothesis that JA can modulate antioxidant mechanism of higher plants with tight regulation of biomembrane peroxidation, making plants tolerant to toxic Ni(2+). 2 mM NiCl2 as a source of Ni(2+) appeared as sub lethal dose for the growth of 15 days old Glycine max seedlings. Exogenous application of 1 μM and 1 nM JA prior to NiCl2 exposure, made seedlings of Glycine max more tolerant to Ni(2+)stress as compared to control untreated seedlings. Regulatory inhibition of MDA and H2O2 production by JA with or without Ni(2+) treatment made plants more resistant to Ni(2+) stress which may be associated with ameliorative activity of antioxidant enzymes system composed of SOD, POD, CAT and APOX. Ascorbate, a secondary metabolite synthesized from D-glucose act as an antioxidant in plant cells. Many fold enhancements in AsA content of Ni(2+) treated seedlings supplemented with different concentrations of JA was observed. Significant improvement in AsA levels by JA with or without Ni(2+) stress may involve two aspects, either denovo synthesis level regulation of AsA or recycling of AsA from an oxidized form. Improvement in total protein content showed the uplift modulation of transcriptional machinery by JA which was also maintained under Ni(2+) stress. Photosynthetic pigments as total chl, chl a and b showed inhibition in presence of Ni(2+) stress which was not found much effective under JA supplementation as compared to control. Present findings revealed that although JA was not helpful for protection of photosynthetic pigments but it modulates the other machinery of plants significantly including various antioxidants positively, while tightly inhibiting stress related processes responsible for lipid peroxidation to make plants tolerant to Ni(2+) stress.

  15. Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Sharma, Poonam; Gill, Sarvajeet Singh; Kaur, Harpreet; Mushtaq, Ruquia

    2015-10-01

    Jasmonic acid (JA) is a very young candidate of plant growth regulators which is being explored for various antistress properties. Present study deals with the hypothesis that JA can modulate antioxidant mechanism of higher plants with tight regulation of biomembrane peroxidation, making plants tolerant to toxic Ni(2+). 2 mM NiCl2 as a source of Ni(2+) appeared as sub lethal dose for the growth of 15 days old Glycine max seedlings. Exogenous application of 1 μM and 1 nM JA prior to NiCl2 exposure, made seedlings of Glycine max more tolerant to Ni(2+)stress as compared to control untreated seedlings. Regulatory inhibition of MDA and H2O2 production by JA with or without Ni(2+) treatment made plants more resistant to Ni(2+) stress which may be associated with ameliorative activity of antioxidant enzymes system composed of SOD, POD, CAT and APOX. Ascorbate, a secondary metabolite synthesized from D-glucose act as an antioxidant in plant cells. Many fold enhancements in AsA content of Ni(2+) treated seedlings supplemented with different concentrations of JA was observed. Significant improvement in AsA levels by JA with or without Ni(2+) stress may involve two aspects, either denovo synthesis level regulation of AsA or recycling of AsA from an oxidized form. Improvement in total protein content showed the uplift modulation of transcriptional machinery by JA which was also maintained under Ni(2+) stress. Photosynthetic pigments as total chl, chl a and b showed inhibition in presence of Ni(2+) stress which was not found much effective under JA supplementation as compared to control. Present findings revealed that although JA was not helpful for protection of photosynthetic pigments but it modulates the other machinery of plants significantly including various antioxidants positively, while tightly inhibiting stress related processes responsible for lipid peroxidation to make plants tolerant to Ni(2+) stress. PMID:26600682

  16. Differentiation of Malassezia furfur and Malassezia sympodialis by glycine utilization.

    PubMed

    Murai, T; Nakamura, Y; Kano, R; Watanabe, S; Hasegawa, A

    2002-06-01

    The genus Malassezia has been revised to include six lipophilic species and one nonlipophilic species. These Malassezia species have been investigated to differentiate their morphological and physiological characteristics. However, assimilation of amino acids as a nitrogen source by these species was not well elucidated. In the present study, isolates of Malassezia species were examined with a glycine medium (containing 7-266 mmol glycine, 7.4 mmol KH(2)PO(4), 4.1 mmol MgSO(4)7H(2)O, 29.6 mmol thiamine, 0.5% Tween-80 and 2% agar) and a modified Dixon glycine medium (0.6% peptone, 3.6% malt extract, 2% ox-bile, 1% Tween-40, 0.2% glycerol, 0.2% oleic acid, 7 mmol glycine and 2% agar). All M. furfur isolates developed on the glycine medium, assimilating glycine at concentrations of at least 7 mmol l(-1). However, the other six Malassezia species were unable to grow on the glycine medium. Also, many colonies of M. furfur grew rapidly, within 2-3 days on the modified Dixon glycine medium, although the other six species showed slow and poor development. From these results, it was suggested that M. furfur might be able to utilize glycine as a single nitrogen source, which the other Malassezia species could not. Therefore, glycine medium was recommended for the differentiation of M. furfur from other species of Malassezia.

  17. Plant and Soil Emissions of Amines and Amino Acids: A Source of Secondary Aerosol Precursors

    NASA Astrophysics Data System (ADS)

    Jackson, M. L.; Doskey, P. V.; Pypker, T. G.

    2011-12-01

    Ammonia (NH3) is the most abundant alkaline gas in the atmosphere and forms secondary aerosol by neutralizing sulfuric and nitric acids that are released during combustion of fossil fuels. Ammonia is primarily emitted by cropping and livestock operations. However, C2 and C3 amines (pKb 3.3-3.4), which are stronger bases than NH3 (pKb 4.7) have been observed in nuclei mode aerosol that is the precursor to secondary aerosol. Mixtures of amines and amino acids have been identified in diverse environments in aerosol, fog water, cloud water, the soluble fraction of precipitation, and in dew. Glycine (pKb 4.2), serine (pKb 4.8) and alanine (pKb 3.7 and 4.1 for the D and L forms, respectively) are typically the most abundant species. The only reported values of gas-phase glycine, serine and alanine were in marine air and ranged from 6-14 pptv. The origin of atmospheric amines and amino acids has not been fully identified, although sources are likely similar to NH3. Nitrate assimilation in plants forms glycine, serine, and L-alanine, while D-alanine is present in bacterial cell walls. Glycine is converted to serine during C3 plant photorespiration, producing CO2 and NH3. Bacteria metabolize glycine and alanine to methylamine and ethylamine via decarboxylation. Likely sources of amino acids are plants and bacteria, thus concentrations near continental sources are likely greater than those measured in marine air. The overall goal of the research is to examine seasonal variations and relationships between the exchange of CO2, NH3, amines, and amino acids with a corn/soybean rotation in the Midwest Corn Belt. The study presents gaseous profiles of organic amine compounds from various species of vegetation using a mist chamber trapping technique and analysis of the derivatized species by high pressure liquid chromatography with fluorescence detection. Amino acid and amine profiles were obtained for red oak (Quercus rubra), sugar maple (Acer saccharinum), white pine (Pinus

  18. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).

    PubMed

    Yuan, Feng-Jie; Zhu, Dan-Hua; Deng, Bo; Fu, Xu-Jun; Dong, De-Kun; Zhu, Shen-Long; Li, Bai-Quan; Shu, Qing-Yao

    2009-05-13

    Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional traits. Multilocation/season comparative analyses showed that the two mutations did not affect the concentration of crude protein, any of the individual amino acids, crude oil, and individual saturated fatty acids. Among other traits, Gm-lpa-TW75-1 had consistently higher sucrose contents (+47.4-86.1%) and lower raffinose contents (-74.2 to -84.3%) than those of wild type (WT) parent Taiwan 75; Gm-lpa-ZC-2 had higher total isoflavone contents (3038.8-4305.4 microg/g) than its parent Zhechun # 3 (1583.6-2644.9 microg/g) in all environments. Further tests of homozygous F(3) progenies of the cross Gm-lpa-ZC-2 x Wuxing # 4 (WT variety) showed that LPA lines had a mean content of total isoflavone significantly higher than WT lines. This study demonstrated that two LPA mutant genes have no negative effects on seed quality and nutritional traits; they instead have the potential to improve a few other properties. Therefore, these two mutant genes are valuable genetic resources for breeding high quality soybean varieties.

  19. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).

    PubMed

    Yuan, Feng-Jie; Zhu, Dan-Hua; Deng, Bo; Fu, Xu-Jun; Dong, De-Kun; Zhu, Shen-Long; Li, Bai-Quan; Shu, Qing-Yao

    2009-05-13

    Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional traits. Multilocation/season comparative analyses showed that the two mutations did not affect the concentration of crude protein, any of the individual amino acids, crude oil, and individual saturated fatty acids. Among other traits, Gm-lpa-TW75-1 had consistently higher sucrose contents (+47.4-86.1%) and lower raffinose contents (-74.2 to -84.3%) than those of wild type (WT) parent Taiwan 75; Gm-lpa-ZC-2 had higher total isoflavone contents (3038.8-4305.4 microg/g) than its parent Zhechun # 3 (1583.6-2644.9 microg/g) in all environments. Further tests of homozygous F(3) progenies of the cross Gm-lpa-ZC-2 x Wuxing # 4 (WT variety) showed that LPA lines had a mean content of total isoflavone significantly higher than WT lines. This study demonstrated that two LPA mutant genes have no negative effects on seed quality and nutritional traits; they instead have the potential to improve a few other properties. Therefore, these two mutant genes are valuable genetic resources for breeding high quality soybean varieties. PMID:19323582

  20. Dietary L-leucine and L-alanine supplementation have similar acute effects in the prevention of high-fat diet-induced obesity.

    PubMed

    Freudenberg, Anne; Petzke, Klaus J; Klaus, Susanne

    2013-02-01

    High-protein diets have been shown to alleviate detrimental effects of high-fat diets and this effect can be partially mimicked by dietary L-leucine supplementation. Here, we aimed to elucidate the early mechanisms and the specificity of leucine effects. We performed a 1-week trial with male C57BL/6 mice fed ad libitum with semisynthetic high-fat diets containing an adequate (10 % w/w, AP) or high (50 % w/w, HP) amount of whey protein, or supplemented with L-leucine corresponding to the leucine content within the HP diet (Leu) or supplemented with equimolar L-alanine (Ala). Food and water intake were monitored continuously using a computer-controlled monitor system and body composition changes were assessed using quantitative NMR. HP completely prevented the AP-induced accumulation of body fat. Leu and Ala resulted in a similar reduction of body fat accumulation which was intermediate between AP and HP. There were no significant effects on plasma glucose or insulin. Triacylglycerol content and gene expression of lipogenesis enzymes in liver as well as plasma cholesterol were reduced by HP compared to AP with Leu and Ala again showing intermediate effects. Body fat gain and liver triacylglycerols were strongly correlated with total energy intake. Water intake was rapidly increased by HP feeding and total water intake correlated strongly with total amino nitrogen intake. We concluded that the positive effects of high-protein diets on metabolic syndrome associated traits are acutely due to effects on satiety possibly linked to amino nitrogen intake and on the subsequent suppression of liver lipogenesis without evidence for a specific leucine effect.

  1. Near-IR laser generation of a high-energy conformer of L-alanine and the mechanism of its decay in a low-temperature nitrogen matrix.

    PubMed

    Nunes, Cláudio M; Lapinski, Leszek; Fausto, Rui; Reva, Igor

    2013-03-28

    Monomers of L-alanine (ALA) were isolated in cryogenic nitrogen matrices at 14 K. Two conformers were identified for the compound trapped from the gas-phase into the solid nitrogen environment. The potential energy surface (PES) of ALA was theoretically calculated at the MP2 and QCISD levels. Twelve minima were located on this PES. Seven low-energy conformers fall within the 0-10 kJ mol(-1) range and should be appreciably populated in the equilibrium gas phase prior to deposition. Observation of only two forms in the matrices is explained in terms of calculated barriers to conformational rearrangements. All conformers with the O=C-O-H moiety in the cis orientation are separated by low barriers and collapse to the most stable form I during deposition of the matrix onto the low-temperature substrate. The second observed form II has the O=C-O-H group in the trans orientation. The remaining trans forms have very high relative energies (between 24 and 30 kJ mol(-1)) and are not populated. The high-energy trans form VI, that differs from I only by rotation of the OH group, was found to be separated from other conformers by barriers that are high enough to open a perspective for its stabilization in a matrix. The form VI was photoproduced in situ by narrow-band near-infrared irradiation of the samples at 6935-6910 cm(-1), where the first overtone of the OH stretching vibration in form I appears. The photogenerated form VI decays in N2 matrices back to conformer I with a characteristic decay time of ∼15 min. The mechanism of the VI → I relaxation is rationalized in terms of the proton tunneling.

  2. A Highly Active and Negatively Charged Streptococcus pyogenes Lysin with a Rare d-Alanyl-l-Alanine Endopeptidase Activity Protects Mice against Streptococcal Bacteremia

    PubMed Central

    Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W.

    2014-01-01

    Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. PMID:24637688

  3. 21 CFR 520.550 - Dextrose/glycine/electrolyte.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ingredients: sodium chloride 8.82 grams, potassium phosphate 4.20 grams, citric acid anhydrous 0.5 gram, potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and dextrose 44.0 grams. (b)...

  4. Synthesis and carbonic anhydrase inhibitory properties of amino acid - coumarin/quinolinone conjugates incorporating glycine, alanine and phenylalanine moieties.

    PubMed

    Küçükbay, F Zehra; Küçükbay, Hasan; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid-coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs > 50 μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92 nM and 1.19 μM for hCA IV, and between 0.11 and 0.79 μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.

  5. Molecular dynamics simulations of glycine crystal-solution interface

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumik; Briesen, Heiko

    2009-11-01

    Glycine is an amino acid that has several applications in the pharmaceutical industry. Hence, growth of α-glycine crystals through solution crystallization is an important process. To gain a fundamental understanding of the seeded growth of α-glycine from aqueous solution, the (110) face of α-glycine crystal in contact with a solution of glycine in water has been simulated with molecular dynamics. The temporal change in the location of the interface of the α-glycine crystal seed has been characterized by detecting a density gradient. It is found that the α-glycine crystal dissolves with time at a progressively decreasing rate. Diffusion coefficients of glycine adjacent to (110) face of α-glycine crystal have been calculated at various temperatures (280, 285, 290, 295, and 300 K) and concentrations (3.6, 4.5, and 6.0 mol/l) and compared to that in the bulk solution. In order to gain a fundamental insight into the nature of variation in such properties at the interface and the bulk, the formation of hydrogen bonds at various temperatures and concentrations has been investigated. It is found that the nature of interaction between various atoms of glycine molecules, as characterized by radial distribution functions, can provide interesting insight into the formation of hydrogen bonds that in turn affect the diffusion coefficients at the interface.

  6. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    SciTech Connect

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  7. Influence of amino acid specificities on the molecular and supramolecular organization of glycine-rich elastin-like polypeptides in water.

    PubMed

    Salvi, Anna M; Moscarelli, Pasquale; Satriano, Giuseppina; Bochicchio, Brigida; Castle, James E

    2011-10-01

    Elastin-like polypeptides adopt complex supramolecular structures, showing either a hydrophobic or a hydrophilic surface, depending on their surrounding environment and the supporting substrate. The preferred organization is important in many situations ranging from biocompatibility to bio-function. Here we compare the n-repeat pentamer LeuGlyGlyValGly (n = 7) with the analogue ValGlyGlyValGly (n = 5), as water suspensions and as deposits on silicon substrates. These sequences contain the repeat XxxGlyGlyZzzGly (Xxx, Zzz = Val, Leu) motif belonging to the hydrophobic glycine-rich domain of elastin and represent a simplified model from which to obtain information on molecular interactions functional to elastin itself. The compounds studied differ only by the presence of the -CH(2)- spacer in the Leu moiety and thus the work was aimed at revealing the influence of this spacer element on self assembly. Both polypeptides were studied under identical conditions, using combined techniques, to identify differences in their conformational states both at molecular (CD, FTIR) and supramolecular (XPS, AFM) levels. By these means, together with a Congo Red spectroscopic assay of β-sheet formation in water, a clear correlation between amino acid sequences (sequence specificity) and their kinetics and ordering of aggregation has emerged. The novel outcomes of this work are from the supplementary measurements, made to augment the AFM and XPS studies, showing that the significant step in the self assembly of both polypeptides takes place in the liquid phase and from the finding that the substitution of Val by Leu in the first position of the pentapeptide effectively inhibits the formation of amyloidal fibers. PMID:21509743

  8. Genetics of Amino Acid Taste and Appetite.

    PubMed

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518

  9. Amino acid specificity of fibers of the facial/trigeminal complex innervating the maxillary barbel in the Japanese sea catfish, Plotosus japonicus.

    PubMed

    Caprio, John; Shimohara, Mami; Marui, Takayuki; Kohbara, Jun; Harada, Shuitsu; Kiyohara, Sadao

    2015-12-01

    The Japanese sea catfish, Plotosus japonicus, possesses taste and solitary chemoreceptor cells (SCCs) located on the external body surface that detect specific water-soluble substances. Here, we identify two major fiber types of the facial/trigeminal complex that transmit amino acid information to the medulla. Both single and few fiber preparations respond to amino acid stimulation in the 0.1 μM to mM range. One fiber type responds best to glycine and l-alanine (i.e. Gly/Ala fibers) whereas the other fiber type is best stimulated by l-proline and glycine betaine (hereafter referred to only as betaine) (i.e. Pro/Bet fibers). We demonstrate that betaine, which does not alter the pH of the seawater and therefore does not activate the animals' highly sensitive pH sensors (Caprio et al., Science 344:1154-1156, 2014), is sufficient to elicit appetitive food search behavior. We further show that the amino acid specificity of fibers of the facial/trigeminal complex in P. japonicus is different from that in Ariopsis felis (Michel and Caprio, J. Neurophysiol. 66:247-260, 1991; Michel et al., J. Comp. Physiol. A. 172:129-138, 1993), a representative member of the only other family (Ariidae) of extant marine catfishes. PMID:26459116

  10. Amino acid specificity of fibers of the facial/trigeminal complex innervating the maxillary barbel in the Japanese sea catfish, Plotosus japonicus.

    PubMed

    Caprio, John; Shimohara, Mami; Marui, Takayuki; Kohbara, Jun; Harada, Shuitsu; Kiyohara, Sadao

    2015-12-01

    The Japanese sea catfish, Plotosus japonicus, possesses taste and solitary chemoreceptor cells (SCCs) located on the external body surface that detect specific water-soluble substances. Here, we identify two major fiber types of the facial/trigeminal complex that transmit amino acid information to the medulla. Both single and few fiber preparations respond to amino acid stimulation in the 0.1 μM to mM range. One fiber type responds best to glycine and l-alanine (i.e. Gly/Ala fibers) whereas the other fiber type is best stimulated by l-proline and glycine betaine (hereafter referred to only as betaine) (i.e. Pro/Bet fibers). We demonstrate that betaine, which does not alter the pH of the seawater and therefore does not activate the animals' highly sensitive pH sensors (Caprio et al., Science 344:1154-1156, 2014), is sufficient to elicit appetitive food search behavior. We further show that the amino acid specificity of fibers of the facial/trigeminal complex in P. japonicus is different from that in Ariopsis felis (Michel and Caprio, J. Neurophysiol. 66:247-260, 1991; Michel et al., J. Comp. Physiol. A. 172:129-138, 1993), a representative member of the only other family (Ariidae) of extant marine catfishes.

  11. Glycine Ablation during Comet/Meteoroid Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Mckay, Christopher P.; Borucki, William J.

    2004-01-01

    Amino acids and other organic compounds important to the chemistry of life are thought to have been delivered to early Earth by asteroids and comets. The survivability of such compounds upon high speed entry is not well understood. If molecular processing occurs during entry, the nature of the new molecules produced by such processing is also an open question. To address this question, we have initiated a study of the ablation of glycine, the simplest amino acid, upon the high speed entry of a comet or meteoroid into an atmosphere. The study assumes glycine is distributed on the surface of the comet/meteoroid. The high speed impact creates electrons, ions, and radicals in the atmosphere that react with the surface and either desorb glycine or break it up. The ablation process is studied as a function of entry speed and atmospheric composition. The AURORA code from the commercially available software package CHEMKIN is used in the study.

  12. ALS-linked SOD1 in glial cells enhances ß-N-Methylamino L-Alanine (BMAA)-induced toxicity in Drosophila

    PubMed Central

    Islam, Rafique; Zhang, Bing

    2012-01-01

    Environmental factors have been implicated in the etiology of a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the role of environmental agents in ALS remains poorly understood. To this end, we used transgenic fruit flies (Drosophila melanogaster) to explore the interaction between mutant superoxide dismutase 1 (SOD1) and chemicals such as ß-N-methylamino L-alanine (BMAA), the herbicide agent paraquat, and superoxide species. We expressed ALS-linked human SOD1 (hSOD1A4V, and hSOD1G85R), hSOD1wt as well as the Drosophila native SOD1 (dSOD1) in motoneurons (MNs) or in glial cells alone and simultaneously in both types of cells. We then examined the effect of BMAA (3 mM), paraquat (20 mM), and hydrogen peroxide (H2O2, 1%) on the lifespan of SOD1-expressing flies. Our data show that glial expression of mutant and wild type hSOD1s reduces the ability of flies to climb. Further, we show that while all three chemicals significantly shorten the lifespan of flies, mutant SOD1 does not have a significant additional effect on the lifespan of flies fed on paraquat, but further shortens the lifespan of flies fed on H2O2. Finally, we show that BMAA shows a dramatic cell-type specific effect with mutant SOD1. Flies with expression of mutant hSOD1 in MNs survived longer on BMAA compared to control flies. In contrast, BMAA significantly shortened the lifespan of flies expressing mutant hSOD1 in glia. Consistent with a neuronal protection role, flies expressing these mutant hSOD1s in both MNs and glia also lived longer. Hence, our studies reveal a synergistic effect of mutant SOD1 with H2O2 and novel roles for mutant hSOD1s in neurons to reduce BMAA toxicity and in glia to enhance the toxicity of BMAA in flies. PMID:24627764

  13. Purine and glycine metabolism by purinolytic clostridia.

    PubMed Central

    Dürre, P; Andreesen, J R

    1983-01-01

    Cell extracts of Clostridium acidiurici, C. cylindrosporum, and C. purinolyticum converted purine, hypoxanthine, 2-hydroxypurine, 6,8-dihydroxypurine, and uric acid into xanthine by the shortest possible route. Adenine was transformed to xanthine only by C. purinolyticum, whereas the other two species formed 6-amino-8-hydroxypurine, which was neither deaminated nor hydroxylated further. 8-Hydroxypurine was formed from purine by all three species. Xanthine dehydrogenase activity was constitutively expressed by C. purinolyticum. Due to the lability of the enzyme activity, comparative studies could not be done with a purified preparation. All enzymes reported to be involved in formiminoglycine metabolism of C. acidiurici and C. cylindrosporum were present in C. purinolyticum. However, glycine was reduced directly to acetate in all three species, as indicated by radiochemical data and by the detection of glycine reductase in cell extracts of C. cylindrosporum and C. purinolyticum. The expression of glycine reductase and the high ratio of glycine fermented to uric acid present points to an energetic advantage for the glycine reductase system, which is expressed when selenium compounds are added to the growth media. PMID:6833177

  14. Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

  15. Shock synthesis of amino acids from impacting cometary and icy planet surface analogues

    NASA Astrophysics Data System (ADS)

    Martins, Zita; Price, Mark C.; Goldman, Nir; Sephton, Mark A.; Burchell, Mark J.

    2013-12-01

    Comets are known to harbour simple ices and the organic precursors of the building blocks of proteins--amino acids--that are essential to life. Indeed, glycine, the simplest amino acid, was recently confirmed to be present on comet 81P/Wild-2 from samples returned by NASA's Stardust spacecraft. Impacts of icy bodies (such as comets) onto rocky surfaces, and, equally, impacts of rocky bodies onto icy surfaces (such as the jovian and saturnian satellites), could have been responsible for the manufacture of these complex organic molecules through a process of shock synthesis. Here we present laboratory experiments in which we shocked ice mixtures analogous to those found in a comet with a steel projectile fired at high velocities in a light gas gun to test whether amino acids could be produced. We found that the hypervelocity impact shock of a typical comet ice mixture produced several amino acids after hydrolysis. These include equal amounts of D- and L-alanine, and the non-protein amino acids α-aminoisobutyric acid and isovaline as well as their precursors. Our findings suggest a pathway for the synthetic production of the components of proteins within our Solar System, and thus a potential pathway towards life through icy impacts.

  16. Amide-conjugated indole-3-acetic acid and adventitious root formation in mung bean cuttings

    SciTech Connect

    Norcini, J.G.

    1986-01-01

    The purpose of this research was to investigate further the relationship between amide-conjugated auxin and adventitious root formation. Indoleacetylaspartic acid (IAA-aspartate) was positively identified as the predominant conjugate isolated from mung bean cuttings after the cuttings has been treated with 10/sup -3/ M IAA. In cuttings treated with (1-/sup 14/C)IAA immediately after excision (0 hr), the percent of extractable /sup 14/C in IAA-aspartate in the hypocotyl sharply increased until 36 hr, then steadily declined. (/sup 14/C)IAA was completely metabolized between 12 and 24 hr. The rooting activities of IAA-L-aspartate, IAA-L-alanine, and IAA-glycine were determined at various stages of root formation; some cuttings were pretreated with 10/sup -3/ M IAA at 0 hr. Pretreated cuttings that were treated with IAA-glycine at 12, 24, 36 hr exhibited the greatest consistency between replications, the greatest number of long roots, and the longest roots. The conjugates did not stimulate rooting as effectively as IAA, yet like IAA, generally enhanced rooting the greatest when applied before the first cell division (24 hr).

  17. Glycine decarboxylase in Rhodopseudomonas spheroides and in rat liver mitochondria

    PubMed Central

    Tait, G. H.

    1970-01-01

    1. Glycine decarboxylase and glycine–bicarbonate exchange activities were detected in extracts of Rhodopseudomonas spheroides and in rat liver mitochondria and their properties were studied. 2. The glycine decarboxylase activity from both sources is stimulated when glyoxylate is added to the assay system. 3. Several proteins participate in these reactions and a heat-stable low-molecular-weight protein was purified from both sources. 4. These enzyme activities increase markedly when R. spheroides is grown in the presence of glycine, glyoxylate, glycollate, oxalate or serine. 5. All the enzymes required to catalyse the conversion of glycine into acetyl-CoA via serine and pyruvate were detected in extracts of R. spheroides; of these glycine decarboxylase has the lowest activity. 6. The increase in the activity of glycine decarboxylase on illumination of R. spheroides in a medium containing glycine, and the greater increase when ATP is also present in the medium, probably accounts for the increased incorporation of the methylene carbon atom of glycine into fatty acids found previously under these conditions (Gajdos, Gajdos-Török, Gorchein, Neuberger & Tait, 1968). 7. The results are compared with those obtained by other workers on the glycine decarboxylase and glycine–bicarbonate exchange activities in other systems. PMID:5476725

  18. Preparation and pH stability of ferrous glycinate liposomes.

    PubMed

    Ding, Baomiao; Xia, Shuqin; Hayat, Khizar; Zhang, Xiaoming

    2009-04-01

    Ferrous glycinate liposomes were prepared by reverse phase evaporation method. The effects of cholesterol, Tween 80, ferrous glycinate concentration, hydrating medium, pH of hydrating medium, and sonication strength on the encapsulation efficiency of liposomes were investigated. Encapsulation efficiency was significantly influenced by the different technique parameters. Ferrous glycinate liposomes might be obtained with high encapsulation efficiency of 84.80% under the conditions of optimized technique parameters. The zeta potential and average particle size of liposomes in the hydrating medium of pH 7.0 were 9.6 mV and 559.2 nm, respectively. The release property of ferrous glycinate liposomes in vitro was investigated in simulated gastrointestinal juice. A small amount of ferrous glycinate was released from liposomes in the first 4 h in simulated gastrointestinal juice. The mean diameters of liposomes increased from 559.2 to 692.9, 677.8, and 599.3 nm after incubation in simulated gastrointestinal juice of pH 1.3, 7.5, and 7.5 in the presence of bile salts, respectively. Results showed that the stability of ferrous glycinate in strong acid environment was greatly improved by encapsulation in liposomes, which protected ferrous glycinate from disrupting the extracapsular environment by lipid bilayer. The bioavailability of ferrous glycinate, as the iron source for biological activity including hemoglobin formation, may be increased. The ferrous glycinate liposomes may be a kind of promising iron fortifier. PMID:19253959

  19. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  20. Relative utilization of serine and glycine by chicks.

    PubMed

    Featherston, W R

    1975-01-01

    Studies were conducted on the relative utilizaiton of glycine and serine by chicks fed basal crystalline amino acid diets devoid of these amino acids. The crystalline amino acid mixture was fed at one and three times the requirement levels, thereby stimulating uric acid synthesis at differing rates. In addition, 5 per cent L-glutamine replaced L-glutamic acid on an isonitrogenous basis in three diets containing normal levels of amino acids in the second study. Chicks fed diets devoid of glycine and serine grew less rapidly and less efficiently than chicks fed diets containing either serine or glycine plus serine. These decreases were roughly the same whether the diet contained normal or high levels of amino acids. Serine was as efficient as glycine in supporting chick growth and feed efficiency regardless of whether diets containing normal or high levels of amino acids were fed. Chicks fed diets containing high levels of amino acids grew approximately 81 per cent as rapidly, but 24 per cent more efficiently, than chicks fed normal levels of amino acids, and excreted approximately twice the amount of uric acid per gram of nitrogen consumed. In spite of increased uric acid excretion by chicks fed the high amino acid diets, the dietary void in glycine and serine was no more detrimental to chick growth or feed efficiency than that noted when normal levels of amino acids were fed. Feeding 5 per cent L-glutamine rather than L-glutamic acid in the diet containing normal levels of amino acids had little effect on weight gain, feed efficiency or uric acid excretion. The absence of cystine from the amino acid mixture used in the third study did not have a marked influence on the relative utilization of glycine and serine by the chick. PMID:1169769

  1. The origin of amino acids in lunar regolith samples

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: α-aminoisobutyric acid (AIB), D- and L-β-amino-n-butyric acid (β-ABA), DL-α-amino-n-butyric acid, γ-amino-n-butyric acid, β-alanine, and ε-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic β-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, β-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the

  2. Allosteric modulation of glycine receptors

    PubMed Central

    Yevenes, Gonzalo E; Zeilhofer, Hanns Ulrich

    2011-01-01

    Inhibitory (or strychnine sensitive) glycine receptors (GlyRs) are anion-selective transmitter-gated ion channels of the cys-loop superfamily, which includes among others also the inhibitory γ-aminobutyric acid receptors (GABAA receptors). While GABA mediates fast inhibitory neurotransmission throughout the CNS, the action of glycine as a fast inhibitory neurotransmitter is more restricted. This probably explains why GABAA receptors constitute a group of extremely successful drug targets in the treatment of a wide variety of CNS diseases, including anxiety, sleep disorders and epilepsy, while drugs specifically targeting GlyRs are virtually lacking. However, the spatially more restricted distribution of glycinergic inhibition may be advantageous in situations when a more localized enhancement of inhibition is sought. Inhibitory GlyRs are particularly relevant for the control of excitability in the mammalian spinal cord, brain stem and a few selected brain areas, such as the cerebellum and the retina. At these sites, GlyRs regulate important physiological functions, including respiratory rhythms, motor control, muscle tone and sensory as well as pain processing. In the hippocampus, RNA-edited high affinity extrasynaptic GlyRs may contribute to the pathology of temporal lobe epilepsy. Although specific modulators have not yet been identified, GlyRs still possess sites for allosteric modulation by a number of structurally diverse molecules, including alcohols, neurosteroids, cannabinoids, tropeines, general anaesthetics, certain neurotransmitters and cations. This review summarizes the present knowledge about this modulation and the molecular bases of the interactions involved. PMID:21557733

  3. Glycine receptors are functionally expressed on bullfrog retinal cone photoreceptors.

    PubMed

    Ge, L-H; Lee, S-C; Liu, J; Yang, X-L

    2007-04-25

    Using immunocytochemical and whole cell recording techniques, we examined expression of glycine receptors on bullfrog retinal cone photoreceptors. Immunofluorescence double labeling experiments conducted on retinal sections and isolated cell preparations showed that terminals and inner segments of cones were immunoreactive to both alpha1 and beta subunits of glycine receptors. Moreover, application of glycine induced a sustained inward current from isolated cones, which increased in amplitude in a dose-dependent manner, with an EC50 (concentration of glycine producing half-maximal response) of 67.3+/-4.9 microM, and the current was blocked by the glycine receptor antagonist strychnine, but not 5,7-dichlorokynurenic acid (DCKA) of 200 microM, a blocker of the glycine recognition site at the N-methyl-D-aspartate (NMDA) receptor. The glycine-induced current reversed in polarity at a potential close to the calculated chloride equilibrium potential, and the reversal potential was changed as a function of the extracellular chloride concentration. These results suggest that strychnine-sensitive glycine receptors are functionally expressed in bullfrog cones, which may mediate signal feedback from glycinergic interplexiform cells to cones in the outer retina. PMID:17346892

  4. Photorespiratory Glycine Metabolism in Corn Leaf Discs 1

    PubMed Central

    Marek, Laura F.; Stewart, Cecil R.

    1983-01-01

    The total glycine pool in Zea mays L. Mo17×B73 leaf discs was measured after steady state photosynthesis in 50%, 21% and 1% O2. The glycine pool was a function of O2 concentration; it was largest in 50% O2 and smallest in 1% O2. Incubation of discs with methyl hydroxybutynoic acid in 21% O2 in the light caused an accumulation of carbon in glycolate. This accumulation was O2 sensitive, as subsequent photosynthetic periods in 50%, 21%, and 1% O2 resulted in the largest glycolate pool in 50% O2 and the smallest in 1% O2. At the same time, the O2-dependent increase in the glycine pool was eliminated. After untreated leaf discs reached steady state photosynthesis in 21% O2, measurements made subsequently in darkness, or in 1% O2 in the light, showed that the glycine pool decreased. On the basis of these results, we conclude that a major portion of the total glycine pool in corn is an intermediate in the photorespiratory glycolate pathway. Considering both the rate of decay of the glycine pool in the dark and the rate of decay of the glycine pool after changing from 21% to 1% O2, we conclude that this glycine pool is turning over slowly. PMID:16663158

  5. Differential laser-induced perturbation Raman spectroscopy: a comparison with Raman spectroscopy for analysis and classification of amino acids and dipeptides.

    PubMed

    Oztekin, Erman K; Smith, Sarah E; Hahn, David W

    2015-04-01

    Differential-laser induced perturbation spectroscopy (DLIPS) is a new spectral analysis technique for classification and identification, with key potential applications for analysis of complex biomolecular systems. DLIPS takes advantage of the complex ultraviolet (UV) laser–material interactions based on difference spectroscopy by coupling low intensity UV laser perturbation with a traditional spectroscopy probe. Here, we quantify the DLIPS performance using a Raman scattering probe in classification of basic constituents of collagenous tissues, namely, the amino acids glycine, L-proline, and L-alanine, and the dipeptides glycine–glycine, glycine–alanine and glycine–proline and compare the performance to a traditional Raman spectroscopy probe via several multivariate analyses. We find that the DLIPS approach yields an ~40% improvement in discrimination among these tissue building blocks. The effects of the 193-nm perturbation laser are further examined by assessing the photodestruction of targeted material molecular bonds. The DLIPS method with a Raman probe holds promise for future tissue diagnosis, either as a stand-alone technique or as part of an orthogonal biosensing scheme.

  6. Catalysis of Dialanine Formation by Glycine in the Salt-Induced Peptide Formation Reaction.

    NASA Astrophysics Data System (ADS)

    Suwannachot, Yuttana; Rode, Bernd M.

    1998-02-01

    Mutual catalysis of amino acids in the salt-induced peptide formation (SIPF) reaction is demonstrated for the case of glycine/alanine. The presence of glycine enhances dialanine formation by a factor up to 50 and enables dialanine formation at much lower alanine concentrations. The actual amounts of glycine play an important role for this catalytic effect, the optimal glycine concentration is 1/8 of the alanine concentration. The mechanism appears to be based on the formation of the intermediate Gly-Ala-Ala tripeptide, connected to one coordination site of copper(II) ion, and subsequent hydrolysis to dialanine and glycine.

  7. Permanganate oxidation of α-amino acids: kinetic correlations for the nonautocatalytic and autocatalytic reaction pathways.

    PubMed

    Perez-Benito, Joaquin F

    2011-09-01

    The reactions of permanganate ion with seven α-amino acids in aqueous KH(2)PO(4)/K(2)HPO(4) buffers have been followed spectrophotometrically at two different wavelengths: 526 nm (decay of MnO(4)(-)) and 418 nm (formation of colloidal MnO(2)). All of the reactions studied were autocatalyzed by colloidal MnO(2), with the contribution of the autocatalytic reaction pathway decreasing in the order glycine > l-threonine > l-alanine > l-glutamic acid > l-leucine > l-isoleucine > l-valine. The rate constants corresponding to the nonautocatalytic and autocatalytic pathways were obtained by means of either a differential rate law or an integrated one, the latter requiring the use of an iterative method for its implementation. The activation parameters for the two pathways were determined and analyzed to obtain statistically significant correlations for the series of reactions studied. The activation enthalpy of the nonautocatalytic pathway showed a strong, positive dependence on the standard Gibbs energy for the dissociation of the protonated amino group of the α-amino acid. Linear enthalpy-entropy correlations were found for both pathways, leading to isokinetic temperatures of 370 ± 21 K (nonautocatalytic) and 364 ± 28 K (autocatalytic). Mechanisms in agreement with the experimental data are proposed for the two reaction pathways.

  8. Glycine and Glycine Receptor Signalling in Non-Neuronal Cells

    PubMed Central

    den Eynden, Jimmy Van; Ali, Sheen Saheb; Horwood, Nikki; Carmans, Sofie; Brône, Bert; Hellings, Niels; Steels, Paul; Harvey, Robert J.; Rigo, Jean-Michel

    2009-01-01

    Glycine is an inhibitory neurotransmitter acting mainly in the caudal part of the central nervous system. Besides this neurotransmitter function, glycine has cytoprotective and modulatory effects in different non-neuronal cell types. Modulatory effects were mainly described in immune cells, endothelial cells and macroglial cells, where glycine modulates proliferation, differentiation, migration and cytokine production. Activation of glycine receptors (GlyRs) causes membrane potential changes that in turn modulate calcium flux and downstream effects in these cells. Cytoprotective effects were mainly described in renal cells, hepatocytes and endothelial cells, where glycine protects cells from ischemic cell death. In these cell types, glycine has been suggested to stabilize porous defects that develop in the plasma membranes of ischemic cells, leading to leakage of macromolecules and subsequent cell death. Although there is some evidence linking these effects to the activation of GlyRs, they seem to operate in an entirely different mode from classical neuronal subtypes. PMID:19738917

  9. Glycine enhanced separation of Co(II) and Ni(II) with bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) by liquid-liquid extraction and supported liquid membranes

    SciTech Connect

    Reichley-Yinger, L.; Danesi, P.R.

    1985-01-01

    The extraction behavior of Co and Ni ions from aqueous nitrate solution containing glycine, and their separation by liquid-liquid extraction and supported liquid membranes (SLMs) has been studied. The separation factor between the two metals is greatly enhanced by the presence of glycine. The enhancement is due to the preferential complexation of the Ni ions by glycine. The conditional equilibrium constants of the extraction reactions and the SLM permeability coefficients have been measured. The results indicate that metal glycinate complexes are not extracted and that in presence of glycine very clean Co-Ni separation can be obtained in a single SLM pass.

  10. cDNA cloning and deduced amino acid sequence of a major, glycine-rich cuticular protein from the coleopteran Tenebrio molitor. Temporal and spatial distribution of the transcript during metamorphosis.

    PubMed

    Charles, J P; Bouhin, H; Quennedey, B; Courrent, A; Delachambre, J

    1992-06-15

    In Coleoptera, the elytra (forewings), with a very hard and thick cuticle, protect the membranous and delicate hindwings against mechanical stress. We have isolated and characterized a cDNA encoding a major cuticle protein in Tenebrio molitor, named ACP-20. The deduced amino acid sequence is roughly tripartite, with two terminal glycine-rich domains and a central region showing pronounced similarities with some other hard cuticle proteins. Northern blot and in situ hybridization analyses reveal that ACP-20 gene expression is developmentally regulated since transcript accumulation occurs only in epidermal regions synthesizing hard cuticle and is restricted to the period of preecdysial adult cuticle deposition. Moreover, application of a juvenile hormone analogue prevents the appearance of the transcript, indicating that juvenile hormone, a key molecule involved in the control of insect metamorphosis, negatively regulates the expression of the ACP-20 gene.

  11. Glycine lithium nitrate crystals

    NASA Astrophysics Data System (ADS)

    González-Valenzuela, R.; Hernández-Paredes, J.; Medrano-Pesqueira, T.; Esparza-Ponce, H. E.; Jesús-Castillo, S.; Rodriguez-Mijangos, R.; Terpugov, V. S.; Alvarez-Ramos, M. E.; Duarte-Möller, A.

    Crystals of glycine lithium nitrate with non-linear optical properties have been grown in a solution by slow evaporation at room temperature. The crystal shows a good thermal stability from room temperature to 175 °C where the crystal begins to degrade. This property is desirable for future technological applications. Also, a good performance on the second harmonic generation was found, characterizing the emitted dominant wavelength by a customized indirect procedure using luminance and chromaticity measured data based on the CIE-1931 standard. Additionally, the 532 nm signal was detected by using a variant to the Kurtz and Perry method.

  12. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids.

    PubMed

    Zhang, Jianmin; Zhang, Suojiang; Dong, Kun; Zhang, Yanqiang; Shen, Youqing; Lv, Xingmei

    2006-05-15

    A new type of "task specific ionic liquid", tetrabutylphosphonium amino acid [P(C4)4][AA], was synthesized by the reaction of tetrabutylphosphonium hydroxide [P(C4)4][OH] with amino acids, including glycine, L-alanine, L-beta-alanine, L-serine, and L-lysine. The liquids produced were characterized by NMR, IR spectroscopies, and elemental analysis, and their thermal decomposition temperature, glass transition temperature, electrical conductivity, density, and viscosity were recorded in detail. The [P(C4)4][AA] supported on porous silica gel effected fast and reversible CO2 absorption when compared with bubbling CO2 into the bulk of the ionic liquid. No changes in absorption capacity and kinetics were found after four cycles of absorption/desorption. The CO2 absorption capacity at equilibrium was 50 mol % of the ionic liquids. In the presence of water (1 wt %), the ionic liquids could absorb equimolar amounts of CO2. The CO2 absorption mechanisms of the ionic liquids with and without water were different. PMID:16528787

  13. Effect of diet-induced obesity on kinetic parameters of amino acid uptake by rat erythrocytes.

    PubMed

    Picó, C; Pons, A; Palou, A

    1992-11-01

    The effects of cafeteria diet-induced obesity upon in vitro uptake of L-Alanine, Glycine, L-Lysine, L-Glutamine, L-Glutamic acid, L-Phenylalanine and L-Leucine by isolated rat erythrocytes have been studied. The total Phe and Leu uptakes followed Michaelis-Menten kinetics. The Glu uptake was fitted to diffusion kinetics. The uptakes of Ala, Gly, Lys and Gln were best explained by a two-component transport: one saturable and one diffusion. Obesity increased the Km value for Ala, Gln and Leu, and the Vmax value for Ala, but decreased the Vmax for Lys. Kinetic parameters of Phe uptake were unaffected by obesity. In addition, the pseudo-first order rate constant (Vmax/Km) for Ala, Gly, Gln, Lys and Leu uptake decreased as a result of cafeteria diet-induced obesity. The Kd value for Ala, Gly, Gln and Glu decreased and that of Lys increased as result of obesity. These adaptations could, at least in part, explain alterations in amino acid distribution between blood cells and plasma related to overfeeding or obesity.

  14. Cometary Glycine Detected in Samples Returned by Stardust

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    Our previous analysis of cometary samples returned to Earth by NASA's Stardust spacecraft showed several amines and amino acids, but the or igin of these compounds could not be firmly established. Here, we pre sent the stable carbon isotopic ratios of glycine and E-amino-n-caproic acid (EACA), the two most abundant amino acids identified in Stardu st-returned foil samples measured by gas chromatography-mass spectrom etry coupled with isotope ratio mass spectrometry. The Delta C-13 value for glycine of +29 +/- ? 6%: strongly suggests an extraterrestrial origin For glycine, while the Delta C-13 value for EACA of -25 +/-2 % indicates terrestrial contamination by Nylon-6 during curation. This represents the first detection of a cometary amino acid.

  15. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

    PubMed Central

    Dufay, J. Noelia; Steele, Shelby L.; Gaston, Daniel; Nasrallah, Gheyath K.; Coombs, Andrew J.; Liwski, Robert S.; Fernandez, Conrad V.; Berman, Jason N.; McMaster, Christopher R.

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  16. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    PubMed

    Fernández-Murray, J Pedro; Prykhozhij, Sergey V; Dufay, J Noelia; Steele, Shelby L; Gaston, Daniel; Nasrallah, Gheyath K; Coombs, Andrew J; Liwski, Robert S; Fernandez, Conrad V; Berman, Jason N; McMaster, Christopher R

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  17. DETECTABILITY OF GLYCINE IN SOLAR-TYPE SYSTEM PRECURSORS

    SciTech Connect

    Jiménez-Serra, Izaskun; Testi, Leonardo; Caselli, Paola; Viti, Serena E-mail: ltesti@eso.org E-mail: sv@star.ucl.ac.uk

    2014-06-01

    Glycine (NH{sub 2}CH{sub 2}COOH) is the simplest amino acid relevant to life. Its detection in the interstellar medium is key to understanding the formation mechanisms of pre-biotic molecules and their subsequent delivery onto planetary systems. Glycine has been extensively searched for toward hot molecular cores, although these studies did not yield any firm detection. In contrast to hot cores, low-mass star forming regions, in particular their earliest stages represented by cold pre-stellar cores, may be better suited for the detection of glycine as well as more relevant to the study of pre-biotic chemistry in young solar system analogs. We present one-dimensional spherically symmetric radiative transfer calculations of the glycine emission expected to arise from the low-mass pre-stellar core L1544. Water vapor has recently been reported toward this core, indicating that a small fraction of the grain mantles in L1544 (∼0.5%) has been injected into the gas phase. Assuming that glycine is photo-desorbed together with water in L1544, and considering a solid abundance of glycine on ices of ∼10{sup –4} with respect to water, our calculations reveal that several glycine lines between 67 GHz and 80 GHz have peak intensities larger than 10 mK. These results show for the first time that glycine could reach detectable levels in cold objects such as L1544. This opens up the possibility of detecting glycine, and other pre-biotic species, at the coldest and earliest stages in the formation of solar-type systems with near-future instrumentation such as the Band 2 receivers of ALMA.

  18. Compositions containing poly ([gamma]glutamylcysteinyl)glycines

    DOEpatents

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1992-02-18

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and the apparatus used in effecting the removal are described. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 figs.

  19. A DFT study of adsorption of glycine onto the surface of BC2N nanotube

    NASA Astrophysics Data System (ADS)

    Soltani, Alireza; Azmoodeh, Zivar; Javan, Masoud Bezi; Lemeski, E. Tazikeh; Karami, Leila

    2016-10-01

    A theoretical study of structure and the energy interaction of amino acid glycine (NH2CH2COOH) with BC2N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC2N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC2N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  20. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a substantial role in non-foodborne human, animal and avian diseases as well as human foodborne disease. Previously discovered C. perfringens bacteriophage lytic enzyme amino acid sequences were utilized to iden...

  1. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  2. Baicalin Activates Glycine and γ-Aminobutyric Acid Receptors on Substantia Gelatinosa Neurons of the Trigeminal Subsnucleus Caudalis in Juvenile Mice.

    PubMed

    Yin, Hua; Bhattarai, Janardhan Prasad; Oh, Sun Mi; Park, Soo Joung; Ahn, Dong Kuk; Han, Seong Kyu

    2016-01-01

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives nociceptive afferent inputs from thin-myelinated A[Formula: see text] fibers and unmyelinated C fibers and has been shown to be involved in the processing of orofacial nociceptive information. Scutellaria baicalensis Georgi (Huang-Qin, SbG), one of the 50 fundamental herbs of Chinese herbology, has been used historically as anti-inflammatory and antineoplastic medicine. Baicalin, one of the major compounds of SbG, has been reported to have neuroprotective, anti-inflammatory and analgesic effects. However, the receptor type activated by baicalin and its precise action mechanism on the SG neurons of Vc have not yet been studied. The whole-cell patch clamp technique was performed to examine the ion channels activated by baicalin on the SG neurons of Vc. In high Cl[Formula: see text] pipette solution, the baicalin (300[Formula: see text][Formula: see text]M) induced repeatable inward currents ([Formula: see text][Formula: see text]pA, [Formula: see text]) without desensitization on all the SG neurons tested. Further, the inward currents showed a concentration (0.1-3[Formula: see text]mM) dependent pattern. The inward current was sustained in the presence of tetrodotoxin (0.5[Formula: see text][Formula: see text]M), a voltage sensitive Na[Formula: see text] channel blocker. In addition, baicalin-induced inward currents were reduced in the presence of picrotoxin (50[Formula: see text][Formula: see text]M), a GABAA receptor antagonist, flumazenil (100[Formula: see text][Formula: see text]M), a benzodiazepine-sensitive GABAA receptor antagonist, and strychnine (2[Formula: see text][Formula: see text]M), a glycine receptor antagonist, respectively. These results indicate that baicalin has inhibitory effects on the SG neurons of the Vc, which are due to the activation of GABAA and/or the glycine receptor. Our results suggest that baicalin may be a potential target for orofacial pain modulation

  3. Ionization constants of aqueous amino acids at temperatures up to 250°C using hydrothermal pH indicators and UV-visible spectroscopy: Glycine, α-alanine, and proline

    NASA Astrophysics Data System (ADS)

    Clarke, Rodney G. F.; Collins, Christopher M.; Roberts, Jenene C.; Trevani, Liliana N.; Bartholomew, Richard J.; Tremaine, Peter R.

    2005-06-01

    Ionization constants for several simple amino acids have been measured for the first time under hydrothermal conditions, using visible spectroscopy with a high-temperature, high-pressure flow cell and thermally stable colorimetric pH indicators. This method minimizes amino acid decomposition at high temperatures because the data can be collected rapidly with short equilibration times. The first ionization constant for proline and α-alanine, K a,COOH, and the first and second ionization constants for glycine, K a,COOH and K a,NH4+, have been determined at temperatures as high as 250°C. Values for the standard partial molar heat capacity of ionization, Δ rC po, COOH and Δ rC po, NH4+, have been determined from the temperature dependence of ln (K a,COOH) and ln (K a,NH4+). The methodology has been validated by measuring the ionization constant of acetic acid up to 250°C, with results that agree with literature values obtained by potentiometric measurements to within the combined experimental uncertainty. We dedicate this paper to the memory of Dr. Donald Irish (1932-2002) of the University of Waterloo—friend and former supervisor of two of the authors (R.J.B. and P.R.T.).

  4. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    PubMed

    Peña-Soler, Esther; Fernandez, Francisco J; López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J; Quintana, Juan F; Rudd, Kenneth E; Coll, Miquel; Vega, M Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  5. Aspects of Structure and Bonding in Copper-Amino Acid Complexes Revealed by Single Crystal EPR/ENDOR Spectroscopy and Density Functional Calculations

    PubMed Central

    Colaneri, Michael J.; Vitali, Jacqueline; Peisach, Jack

    2010-01-01

    This work deduces from a series of well defined copper-doped amino acid crystals, relationships between structural features of the copper complexes and ligand-bound proton hyperfine parameters. These were established by combining results from electron paramagnetic resonance (EPR)/electron-nuclear double resonance (ENDOR) studies, crystallography and were further assessed by quantum mechanical (QM) calculations. A detailed evaluation of previous studies on Cu2+-doped into α-glycine, triglycine sulfate, α-glycylglycine and l-alanine crystals reveal correlations between geometric features of the copper sites and proton hyperfine couplings from amino bound and carbon bound hydrogens. Experimental variations in proton isotropic hyperfine coupling values (aiso) could be fit to cosine-square dependences on dihedral angles, namely, for Cα-bound hydrogens, aiso = −1.09 + 8.21cos2θ MHz, and for amino hydrogens, aiso = −6.16 + 4.15cos2φ MHz. For the Cα hydrogens, this dependency suggests a hyperconjugative-like mechanism for transfer of spin density into the hydrogen 1s-orbital. In the course of this work, it was also necessary to reanalyze the ENDOR measurements from Cu2+-doped α-glycine since the initial study determined the 14N coupling parameters without holding its nuclear quadrupole tensor traceless. This new treatment of the data was needed to correctly align the 14N hyperfine tensor principal directions in the molecular complex. In order to provide a theoretical basis for the coupling variations, QM calculations performed at the Density Functional Theory (DFT) level were used to compute the proton hyperfine tensors in the four crystal complexes as well as in a geometry-optimized Cu2+(glycine)2 model. These theoretical calculations confirmed systematic changes in couplings with dihedral angles, but greatly overestimated the experimental geometric sensitivity to the amino hydrogen isotropic coupling. PMID:19378965

  6. Polymers from amino acids: development of dual ester-urethane melt condensation approach and mechanistic aspects.

    PubMed

    Anantharaj, S; Jayakannan, M

    2012-08-13

    A new dual ester-urethane melt condensation methodology for biological monomers-amino acids was developed to synthesize new classes of thermoplastic polymers under eco-friendly and solvent-free polymerization approach. Naturally abundant L-amino acids were converted into dual functional ester-urethane monomers by tailor-made synthetic approach. Direct polycondensation of these amino acid monomers with commercial diols under melt condition produced high molecular weight poly(ester-urethane)s. The occurrence of the dual ester-urethane process and the structure of the new poly(ester-urethane)s were confirmed by (1)H and (13)C NMR. The new dual ester-urethane condensation approach was demonstrated for variety of amino acids: glycine, β-alanine, L-alanine, L-leucine, L-valine, and L-phenylalanine. MALDI-TOF-MS end group analysis confirmed that the amino acid monomers were thermally stable under the melt polymerization condition. The mechanism of melt process and the kinetics of the polycondensation were studied by model reactions and it was found that the amino acid monomer was very special in the sense that their ester and urethane functionality could be selectively reacted by polymerization temperature or catalyst. The new polymers were self-organized as β-sheet in aqueous or organic solvents and their thermal properties such as glass transition temperature and crystallinity could be readily varied using different l-amino acid monomers or diols in the feed. Thus, the current investigation opens up new platform of research activates for making thermally stable and renewable engineering thermoplastics from natural resource amino acids. PMID:22713137

  7. Reaction behaviors of glycine under super- and subcritical water conditions.

    PubMed

    Alargov, Dimitar K; Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2002-02-01

    The influence of temperature and pressure on the dimerization and decomposition of glycine under simulated hydrothermal system conditions was studied by injecting a glycine solution into water in the sub- and supercritical state. The experiments at five different temperatures of supplied water--250, 300, 350, 374, and 400 degrees C--were performed at 22.2 and 40.0 MPa. At 350 degrees C, experiments under 15.0-40.0 MPa were conducted. Diglycine, triglycine (trace), diketopiperazine, and an unidentified product with a high molecular mass (433 Da) were the main products of oligomerization. The results show that temperature and pressure influence the extent of dimerization and decomposition of glycine. The maximum of dimers formation was observed at 350 and 375 degrees C at 22.2 and 40.0 MPa, respectively, and coincided with a high rate of glycine decomposition. Glycine, alanine, aspartic acid, as well as other amino acids, were obtained by injecting a mixture of formaldehyde and ammonia. The results support the oligomerization and synthesis of amino acids in a submarine hydrothermal system. PMID:11889913

  8. Reaction Behaviors of Glycine under Super- and Subcritical Water Conditions

    NASA Astrophysics Data System (ADS)

    Alargov, Dimitar K.; Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2002-02-01

    The influence of temperature and pressure on the dimerization and decomposition of glycine under simulated hydrothermal system conditions was studied by injecting a glycine solution into water in the sub- and supercritical state. The experiments at five different temperatures of supplied water - 250, 300, 350, 374, and 400 °C - were performed at 22.2 and 40.0 MPa. At 350 °C, experiments under 15.0-40.0 MPa were conducted. Diglycine, triglycine (trace), diketopiperazine, and an unidentified product with a high molecular mass (433 Da) were the main products of oligomerization. The results show that temperature and pressure influence the extent of dimerization and decomposition of glycine. The maximum of dimers formation was observed at 350 and 375 °C at 22.2 and 40.0 MPa, respectively, and coincided with a high rate of glycine decomposition. Glycine, alanine, aspartic acid, as well as other amino acids, were obtained by injecting a mixture of formaldehyde and ammonia. The results support the oligomerization and synthesis of amino acids in a submarine hydrothermal system.

  9. Alpha-amylase from germinating soybean (Glycine max) seeds--purification, characterization and sequential similarity of conserved and catalytic amino acid residues.

    PubMed

    Kumari, Arpana; Singh, Vinay Kumar; Fitter, Jörg; Polen, Tino; Kayastha, Arvind M

    2010-10-01

    Starch hydrolyzing amylase from germinated soybeans seeds (Glycine max) has been purified 400-fold to electrophoretic homogeneity with a final specific activity of 384 units/mg. SDS-PAGE of the final preparation revealed a single protein band of 100 kDa, whereas molecular mass was determined to be 84 kDa by MALDI-TOF and gel filtration on Superdex-200 (FPLC). The enzyme exhibited maximum activity at pH 5.5 and a pI value of 4.85. The energy of activation was determined to be 6.09 kcal/mol in the temperature range 25-85 degrees C. Apparent Michaelis constant (K(m)((app))) for starch was 0.71 mg/mL and turnover number (k(cat)) was 280 s(-1) in 50 mM sodium acetate buffer, pH 5.5. Thermal inactivation studies at 85 degrees C showed first-order kinetics with rate constant (k) equal to 0.0063 min(-1). Soybean alpha-amylase showed high specificity for its primary substrate starch. High similarity of soybean alpha-amylase with known amylases suggests that this alpha-amylase belongs to glycosyl hydrolase family 13. Cereal alpha-amylases have gained importance due to their compatibility for biotechnological applications. Wide availability and easy purification protocol make soybean as an attractive alternative for plant alpha-amylase. Soybean can be used as commercially viable source of alpha-amylase for various industrial applications. PMID:20655076

  10. Amino Acid Residues Critical for the Specificity for Betaine Aldehyde of the Plant ALDH10 Isoenzyme Involved in the Synthesis of Glycine Betaine1[W][OA

    PubMed Central

    Díaz-Sánchez, Ángel G.; González-Segura, Lilian; Mújica-Jiménez, Carlos; Rudiño-Piñera, Enrique; Montiel, Carmina; Martínez-Castilla, León P.; Muñoz-Clares, Rosario A.

    2012-01-01

    Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant Km(BAL) increases and Vmax/Km(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the Vmax/Km(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants. PMID:22345508

  11. [Effects of low molecular organic acids on nitrogen accumulation, nodulation, and nitrogen fixation of soybean (Glycine max L.) under phosphorus deficiency stress].

    PubMed

    Wang, Shu-Qi; Han, Xiao-Zeng; Qiao, Yun-Fa; Yan, Jun; Li, Xiao-Hui

    2009-05-01

    A greenhouse sand culture experiment was conducted to study the effects of citric acid, oxalic acid, malic acid, and their mixture on the nitrogen accumulation, nodulation, and nitrogen fixation of soybean. After the application of test low molecular weight organic acids, the nitrogen accumulation in the aboveground part of soybean decreased by 17.6%-44.9% at seedling stage, 29.8%-88.4% at flowering stage, 9.18%-69.6% at podding stage, and 2.21%-41.7% at maturing stage). In the meanwhile, the nodule number, nitrogenase activity, and leghemoglobin content decreased by 11.4%-59.6%, 80.5%-91.7%, and 11.9%-59.9%, respectively, resulting in a significant decrease (9.71%-64.5%) of nitrogen fixation of soybean, compared with the control. The inhibitory effect of test low molecular weight organic acids increased with their increasing concentration. Oxalic acid had a higher inhibitory effect than citric acid and malic acid, and the mixture of the three organic acids had an enhanced inhibitory effect.

  12. Growth medium-dependent glycine incorporation into the peptidoglycan of Caulobacter crescentus.

    PubMed

    Takacs, Constantin N; Hocking, Jason; Cabeen, Matthew T; Bui, Nhat Khai; Poggio, Sebastian; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2013-01-01

    The peptidoglycan (PG) is a macromolecular component of the bacterial cell wall that maintains the shape and integrity of the cell. The PG of Caulobacter crescentus, unlike that of many other Gram-negative bacteria, has repeatedly been shown to contain significant amounts of glycine. This compositional peculiarity has been deemed an intrinsic characteristic of this species. By performing a comprehensive qualitative and quantitative analysis of the C. crescentus PG by high-performance liquid chromatography (HPLC) and mass spectrometry (MS), we show here that glycine incorporation into the C. crescentus PG depends on the presence of exogenous glycine in the growth medium. High levels of glycine were detected at the fifth position of the peptide side chains of PG isolated from C. crescentus cells grown in the complex laboratory medium PYE or in defined medium (M2G) supplemented with casamino acids or glycine alone. In contrast, glycine incorporation was undetectable when cells were grown in M2G medium lacking glycine. Remarkably, glycine incorporation into C. crescentus peptidoglycan occurred even in the presence of low millimolar to sub-millimolar concentrations of free glycine. High glycine content in the PG had no obvious effects on growth rates, mode of PG incorporation or cell morphology. Hence, the C. crescentus PG is able to retain its physiological functions in cell growth and morphogenesis despite significant alterations in its composition, in what we deem to be unprecedented plasticity.

  13. Molecular interactions of α-amino acids insight into aqueous β-cyclodextrin systems.

    PubMed

    Ekka, Deepak; Roy, Mahendra Nath

    2013-10-01

    Qualitative and quantitative analysis of molecular interaction prevailing in glycine, L-alanine, L-valine and aqueous solution of β-cyclodextrin (β-CD) have been probed by thermophysical properties. Density (ρ), viscosity (η), and ultrasonic speed (u) measurements have been reported at different temperatures. The extent of interaction (solute-solvent interaction) is expressed in terms of the limiting apparent molar volume ([Formula: see text]), viscosity B-coefficient and limiting apparent molar adiabatic compressibility ([Formula: see text]). The changes on the enthalpy ([Formula: see text]) and entropy ([Formula: see text]) of the encapsulation analysis give information about the driving forces governing the inclusion. The temperature dependence behaviour of partial molar quantities and group contributions to partial molar volumes has been determined for the amino acids. The trends in transfer volumes, [Formula: see text], have been interpreted in terms of solute-cosolute interactions based on a cosphere overlap model. The role of the solvent (aqueous solution of β-CD) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

  14. Modulation of N-methyl-d-aspartate receptor function by glycine transport

    PubMed Central

    Bergeron, Richard; Meyer, Torsten M.; Coyle, Joseph T.; Greene, Robert W.

    1998-01-01

    The recent discovery of glycine transporters in both the central nervous system and the periphery suggests that glycine transport may be critical to N-methyl-d-aspartate receptor (NMDAR) function by controlling glycine concentration at the NMDAR modulatory glycine site. Data obtained from whole-cell patch–clamp recordings of hippocampal pyramidal neurons, in vitro, demonstrated that exogenous glycine and glycine transporter type 1 (GLYT1) antagonist selectively enhanced the amplitude of the NMDA component of a glutamatergic excitatory postsynaptic current. The effect was blocked by 2-amino-5-phosphonovaleric acid and 7-chloro-kynurenic acid but not by strychnine. Thus, the glycine-binding site was not saturated under the control conditions. Furthermore, GLYT1 antagonist enhanced NMDAR function during perfusion with medium containing 10 μM glycine, a concentration similar to that in the cerebrospinal fluid in vivo, thereby supporting the hypothesis that the GLYT1 maintains subsaturating concentration of glycine at synaptically activated NMDAR. The enhancement of NMDAR function by specific GLYT1 antagonism may be a feasible target for therapeutic agents directed toward diseases related to hypofunction of NMDAR. PMID:9861038

  15. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    SciTech Connect

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-04-15

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.

  16. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    NASA Astrophysics Data System (ADS)

    Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.

    2013-06-01

    The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  17. Glycine reduces cadmium-induced teratogenic damage in mice.

    PubMed

    Paniagua-Castro, Norma; Escalona-Cardoso, Gerardo; Chamorro-Cevallos, Germán

    2007-01-01

    The effect of glycine in preventing cadmium (Cd) teratogenicity in mice was studied. Cadmium chloride (CdCl2) was administered subcutaneously at 1, 2 or 4 mg/kg doses on gestation days (GD) 7, 8 and 9. Glycine was given ad libitum (in the drinking water) from GD0 through GD18 (the day when animals were killed), as a 1% and 2% drinking water solution. Cd and nucleic acid concentrations in embryos were determined. The most common finding seen after CdCl2 4 mg/kg exposure was exencephaly. The incidence of this malformation was significantly reduced in mice receiving 2% glycine while fetal Cd significantly decreased as compared to cadmium-treated positive control animals. Increased nucleic acid levels were seen in the same embryos. In glycine non-supplemented mice given CdCl2 4 mg/kg, embryonic lipid peroxidation proved to be increased. In conclusion, lipid peroxidation was associated with cadmium-induced teratogenicity, and glycine inhibited the cadmium-induced effect by inhibiting placental transport of cadmium. However, further detailed studies are needed to establish the mechanism(s) of action.

  18. Assessment of Fatty Acid Profile and Seed Mineral Nutrients of Two Soybean (Glycine max L.) Cultivars Under Elevated Ultraviolet-B: Role of ROS, Pigments and Antioxidants.

    PubMed

    Choudhary, Krishna Kumar; Agrawal, Shashi Bhushan

    2016-01-01

    Current scenarios under global climate change envisage a considerable increase in ultraviolet B (UV-B) radiation in near future which may affect the productivity and yield quality of major agricultural crops. Present investigation was conducted to examine various defense strategies adopted against elevated UV-B (ambient + 7.2 kJ m-(2) day-(1) ) and their impact on seed nutrients, content and quality of oil including fatty acid profile of two soybean cultivars (JS-335 and PS-1042). Elevated UV-B (eUV-B) exposure leads toward higher unsaturation of fatty acids and changes in other oil quality parameters (acid, iodine and saponification value) indicated that eUV-B favored the synthesis of long-chain fatty acids with fewer carboxylic acid groups, making the oil rancid, with undesirable flavor and low nutritional value. The effect was more severe in JS-335 as compared to PS-1042. Negative effects were also seen on nutrients of soybean seeds. Adverse effects resulted due to insufficient quenching of ROS (superoxide radical and hydrogen peroxide) by the defense system and thus unable to overcome the imposed oxidative stress. Credit of better performance by PS-1042 against eUV-B may be given to the adoption of efficient defense strategies like higher wax deposition, increase in lignin and flavonoids (quercetin and kaempferol) contents. PMID:26489397

  19. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Incharoensakdi, Aran

    2015-02-01

    Alkaliphilic halotolerant cyanobacterium Aphanothece halophytica showed optimal growth in the medium containing 0.5 M NaCl. The increase of exogenously added glycine to the medium up to 10 mM significantly promoted cell growth under both normal (0.5 M NaCl) and salt stress (2.0 M NaCl) conditions. Salt stress imposed by either 2.0 or 3.0 M NaCl retarded cell growth; however, exogenously added glycine at 10 mM concentration to salt-stress medium resulted in the reduction of growth inhibition particularly under 3.0 M NaCl condition. The uptake of glycine by intact A. halophytica was shown to exhibit saturation kinetics with an apparent K s of 160 μM and V max of 3.9 nmol/min/mg protein. The optimal pH for glycine uptake was at pH 8.0. The uptake activity was decreased in the presence of high concentration of NaCl. Both metabolic inhibitors and ionophores decreased glycine uptake in A. halophytica suggesting an energy-dependent glycine uptake. Several neutral amino acids showed considerable inhibition of glycine uptake with higher than 50 % inhibition observed with serine, cysteine and alanine whereas acidic, basic and aromatic amino acids showed only slight inhibition of glycine uptake.

  20. Integrin αvβ3 as a Promising Target to Image Neoangiogenesis Using In-House Generator-Produced Positron Emitter (68)Ga-Labeled DOTA-Arginine-Glycine-Aspartic Acid (RGD) Ligand.

    PubMed

    Vatsa, Rakhee; Bhusari, Priya; Kumar, Sunil; Chakraborty, Sudipta; Dash, Ashutosh; Singh, Gurpreet; Dhawan, Devinder Kumar; Shukla, Jaya; Mittal, Bhagwant Rai

    2015-06-01

    For the growth and spread of a tumor beyond 2 mm, angiogenesis plays a crucial role, and association of various integrins with angiogenesis is evidential. The aim of the study was radiolabeling of DOTA-chelated RGD (arginine-glycine-aspartic acid) peptide with (68)Ga for PET imaging in locally advanced breast carcinoma. DOTA-RGD was incubated with (68)GaCl3, eluted in 0.05 m HCl. Elution volume, peptide amount, and reaction pH were studied. Radio-ITLC, gas chromatography, endotoxin, and sterility testing were performed. Serial (n=3) and whole-body (n=2) PET/CT imaging was done on patients post i.v. injection of 111-185 MBq of (68)Ga-DOTA-RGD. Maximum radiolabeling yield was achieved with 3 mL elution volume of 15-20 μg peptide at pH 3.5-4.0 with 10 minutes of incubation at 95°C. Product samples were sterile having 99.5% radiochemical purity with residual ethanol content and endotoxins in injectable limits. Intense radiotracer uptake was noticed in the tumor with SUVmax 15.3 at 45 minutes in serial images. Physiological radiotracer uptake was seen in the liver, spleen, ventricles, and thyroid with excretion through the kidneys. The authors concluded that (68)Ga-DOTA-RGD has the potential for imaging α,vβ3 integrin-expressing tumors. PMID:26083951

  1. Integrin αvβ3 as a Promising Target to Image Neoangiogenesis Using In-House Generator-Produced Positron Emitter (68)Ga-Labeled DOTA-Arginine-Glycine-Aspartic Acid (RGD) Ligand.

    PubMed

    Vatsa, Rakhee; Bhusari, Priya; Kumar, Sunil; Chakraborty, Sudipta; Dash, Ashutosh; Singh, Gurpreet; Dhawan, Devinder Kumar; Shukla, Jaya; Mittal, Bhagwant Rai

    2015-06-01

    For the growth and spread of a tumor beyond 2 mm, angiogenesis plays a crucial role, and association of various integrins with angiogenesis is evidential. The aim of the study was radiolabeling of DOTA-chelated RGD (arginine-glycine-aspartic acid) peptide with (68)Ga for PET imaging in locally advanced breast carcinoma. DOTA-RGD was incubated with (68)GaCl3, eluted in 0.05 m HCl. Elution volume, peptide amount, and reaction pH were studied. Radio-ITLC, gas chromatography, endotoxin, and sterility testing were performed. Serial (n=3) and whole-body (n=2) PET/CT imaging was done on patients post i.v. injection of 111-185 MBq of (68)Ga-DOTA-RGD. Maximum radiolabeling yield was achieved with 3 mL elution volume of 15-20 μg peptide at pH 3.5-4.0 with 10 minutes of incubation at 95°C. Product samples were sterile having 99.5% radiochemical purity with residual ethanol content and endotoxins in injectable limits. Intense radiotracer uptake was noticed in the tumor with SUVmax 15.3 at 45 minutes in serial images. Physiological radiotracer uptake was seen in the liver, spleen, ventricles, and thyroid with excretion through the kidneys. The authors concluded that (68)Ga-DOTA-RGD has the potential for imaging α,vβ3 integrin-expressing tumors.

  2. Liquid chromatography/electrospray ionization/isotopic dilution mass spectrometry analysis of n-(phosphonomethyl) glycine and mass spectrometry analysis of aminomethyl phosphonic acid in environmental water and vegetation matrixes.

    PubMed

    Grey, L; Nguyen, B; Yang, P

    2001-01-01

    A liquid chromatography/electrospray/mass spectrometry (LC/ES/MS) method was developed for the analysis of glyphosate (n-phosphonomethyl glycine) and its metabolite, aminomethyl phosphonic acid (AMPA) using isotope-labelled glyphosate as a method surrogate. Optimized parameters were achieved to derivatize glyphosate and AMPA using 9-fluorenylmethyl chloroformate (FMOC-Cl) in borate buffer prior to a reversed-phase LC analysis. Method spike recovery data obtained using laboratory and real world sample matrixes indicated an excellent correlation between the recovery of the native and isotope-labelled glyphosate. Hence, the first performance-based, isotope dilution MS method with superior precision, accuracy, and data quality was developed for the analysis of glyphosate. There was, however, no observable correlation between the isotope-labelled glyphosate and AMPA. Thus, the use of this procedure for the accurate analysis of AMPA was not supported. Method detection limits established using standard U.S. Environmental Protection Agency protocol were 0.06 and 0.30 microg/L, respectively, for glyphosate and AMPA in water matrixes and 0.11 and 0.53 microg/g, respectively, in vegetation matrixes. Problems, solutions, and the method performance data related to the analysis of chlorine-treated drinking water samples are discussed. Applying this method to other environmental matrixes, e.g., soil, with minimum modifications is possible, assuring accurate, multimedia studies of glyphosate concentration in the environment and the delivery of useful multimedia information for regulatory applications.

  3. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity.

    PubMed

    Ghosh, Subhajit; Dey, Joykrishna

    2015-11-15

    The function of a protein depends upon its structure and surfactant molecules are known to alter protein structure. For this reason protein-surfactant interaction is important in biological, pharmaceutical, and cosmetic industries. In the present work, interactions of a series of anionic surfactants having the same hydrocarbon chain length, but different amino acid head group, such as l-alanine, l-valine, l-leucine, and l-phenylalanine with the transport protein, bovine serum albumin (BSA), were studied at low surfactant concentrations using fluorescence and circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The results of fluorescence measurements suggest that the surfactant molecules bind simultaneously to the drug binding site I and II of the protein subdomain IIA and IIIA, respectively. The fluorescence as well as CD spectra suggest that the conformation of BSA goes to a more structured state upon surfactant binding at low concentrations. The binding constants of the surfactants were determined by the use of fluorescence as well as ITC measurements and were compared with that of the corresponding glycine-derived surfactant. The binding constant values clearly indicate a significant head-group effect on the BSA-surfactant interaction and the interaction is mainly hydrophobic in nature.

  4. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    PubMed

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-01

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors.

  5. How the Glycine and GABA Receptors Were Purified

    PubMed Central

    2012-01-01

    Purification by Affinity Chromatography of the Glycine Receptor of Rat Spinal Cord (Pfeiffer, F., Graham, D., and Betz, H. (1982) J. Biol. Chem. 257, 9389–9393) A γ-Aminobutyric Acid/Benzodiazepine Receptor Complex of Bovine Cerebral Cortex (Sigel, E., Stephenson, F. A., Mamalaki, C., and Barnard, E. A. (1983) J. Biol. Chem. 258, 6965–6971) PMID:23180805

  6. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  7. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    SciTech Connect

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-05-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. /sup 14/CO/sub 2/ production from the catabolism of /sup 14/C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. /sup 14/CO/sub 2/ formation from (1-/sup 14/C)- and (2-/sup 14/C)glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate.

  8. 75 FR 66352 - Glycine From the People's Republic of China: Initiation of Antidumping Anti-circumvention Inquiry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... sweetener/taste enhancer, a buffering agent, re-absorbable amino acid, chemical intermediate, and a metal... and Chiyuen International Trading Ltd., a manufacturer in the PRC of amino acetic acid (i.e., glycine... China (PRC). See Antidumping Duty Order: Glycine from People's Republic of China, 60 FR 16116 (March...

  9. Mutation of asparagine 52 to glycine promotes the alkaline form of iso-1-cytochrome c and causes loss of cooperativity in acid unfolding.

    PubMed

    Baddam, Saritha; Bowler, Bruce E

    2006-04-11

    The kinetics and thermodynamics of the alkaline and acid conformational transitions of a Lys 79 --> Ala/Asn 52 --> Gly (A79G52) variant of iso-1-cytochrome c are studied. The Lys 79 --> Ala mutation is designed to limit heme ligation in the alkaline conformer to Lys 73. The Asn 52 --> Gly mutation is intended to shift the population of the alkaline conformer to physiological pH based on the hierarchical nature of the cooperative substructures of this protein. The midpoint pH for formation of the alkaline conformer is approximately 7.45. The kinetics for the alkaline conformational transition of the A79G52 variant are consistent with the ionization constant, pK(H), for the trigger group controlling formation of the alkaline conformer being approximately 9.5. This pK(H) is low for alkaline conformers involving lysine-heme ligation but is consistent with the pK(a) of the highest of three ionizable groups which modulate formation of the histidine-heme alkaline conformer of a His 73 variant of iso-1-cytochrome c [Martinez, R. E., and Bowler, B. E. (2004) J. Am. Chem. Soc. 126, 6751-6758]. The acid transition of the A79G52 variant is split into two phases. Both the Lys 79 --> Ala and Asn 52 --> Gly mutations are expected to affect the buried hydrogen bond network of cytochrome c, suggesting that this network is an important modulator of the acid unfolding of cytochrome c. PMID:16584196

  10. Quest for Cells Responsible for Age-related Increase of Salivary Glycine and Proline.

    PubMed

    Hino, Shunsuke; Nishiyama, Akira; Matsuta, Tomohiko; Horie, Norio; Shimoyama, Tetsuo; Tanaka, Shoji; Sakagami, Hiroshi

    2016-01-01

    We have previously reported that salivary glycine and proline levels are increased to nearly butanoate level in elderly people. In order to identify the source of glycine and proline, we performed high-performance liquid chromatography analysis of amino acid production to a total of seven oral cells before and after stimulation with inflammation inducers. We found that production of amino acids (per a given number of cells) by normal oral mesenchymal cells (gingival fibroblast, pulp cell, periodontal ligament fibroblast) was approximately three-fold that of oral squamous cell carcinoma cell lines (HSC-2, HSC-3, HSC-4, Ca9-22), and that production of glycine and especially proline by all these seven cells was much lower than that of glutamine and glutamic acid. Treatment of three oral mesenchymal cells with interleukin (IL)-1β or lipopoly-saccharide (LPS) reproducibly increased the production of glutamic acid and glutamine, but not that of glycine and proline. Glycine and proline only marginally stimulated the IL-8 production by IL-1β-stimulated gingival fibroblast, whereas glycine dose-dependently inhibited the nitric oxide production by lipopolysaccharide-stimulated mouse macrophage-like RAW264.7 cells. These data demonstrated that normal oral mesenchymal cells are not the major source of glycine and proline that accumulates in the saliva of aged people, suggesting the involvement of the deregulation of collagen metabolism during aging. PMID:26912818

  11. Ion chromatographic analysis of selected free amino acids and cations to investigate the change of nitrogen metabolism by herbicide stress in soybean (glycine max).

    PubMed

    Jia, M; Keutgen, N; Matsuhashi, S; Mitzuniwa, C; Ito, T; Fujimura, T; Hashimoto, S

    2001-01-01

    A simple and reliable method for the determination of NH4+, K+, Na+, aspartic acid, asparagine, glutamine, and alanine by ion chromatography has been developed. It is suitable for monitoring changes of nitrogen metabolism in soybean because it can accurately measure concentrations o asparagine and NH4+, two key substances for nitrogen storage and transport in this plant species Analysis of asparagine distribution in soybean indicated that higher levels (up to 18.4 micromol g(-1) of fresh mass) occur in stems and lower levels in roots (2.0 micromol g(-1) of fresh mass) and leaves (1.6 micromol g(-1) of fresh mass). When the herbicide metsulfuron-methyl (0.5, 5, and 50 ppb) was applied via the nutrient solution to the root system, asparagine concentrations increased 3-6 times in stems roots, and leaves. Metsulfuron-methyl is known to impair the synthesis of branched amino acids and, in consequence, protein synthesis. Thus, nitrogen consumption was limited, leading to ar accumulation of asparagine. The possible use of this physiological response in agricultural practice to identify herbicide stress in soybean and to detect low-level residues of sulfonylurea herbicides ir the soil is discussed.

  12. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  13. Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment

    NASA Astrophysics Data System (ADS)

    Veuger, Bart; van Oevelen, Dick; Middelburg, Jack J.

    2012-04-01

    The fate of microbial carbon, nitrogen, hydrolysable amino acids (HAAs), monosaccharides, and fatty acids in sediment was investigated experimentally. The microbial community of a tidal flat sediment was labeled with 13C-enriched glucose and 15N-enriched ammonium, and sediment was incubated for up to 371 days. Analysis of total concentrations and 13C- and 15N content of bulk sediment, hydrolysable amino acids (including D-alanine), monosaccharides, total fatty acids (TFAs), and phospholipid-derived fatty acids (PLFAs) allowed us to trace the fate of microbial biomass and -detritus and the major biochemical groups therein (proteins, carbohydrates, and lipids) over intermediate time scales (weeks-months). Moreover, the unidentified fraction of the labeled material (i.e. not analyzed as HAA, FA, or carbohydrate) provided information on the formation and fate of molecularly uncharacterizable organic matter. Loss of 13C and 15N from the sediment was slow (half live of 433 days) which may have been due to the permanently anoxic conditions in the experiment. Loss rates for the different biochemical groups were also low with the following order of loss rate constants: PLFA > TFA > HAA > monosaccharides. The unidentified 13C-pool was rapidly formed (within days) and then decreased relatively slowly, resulting in a gradual relative accumulation of this pool over time. Degradation and microbial reworking of the labeled material resulted in subtle, yet consistent, diagenetic changes within the different biochemical groups. In the HAA pool, glycine, lysine, and proline were lost relatively slowly (i.e. best preserved) while there was no accumulation of D-alanine relative to L-alanine, indicating no relative accumulation of bacterial macromolecules rich in D-alanine. In the fatty acid pool, there was very little difference between PLFAs and TFAs, indicating a very similar lability of these pools. Differences between individual fatty acids included a relatively slow loss of i15

  14. Glycine modulates membrane potential, cell volume, and phagocytosis in murine microglia.

    PubMed

    Komm, Barbara; Beyreis, Marlena; Kittl, Michael; Jakab, Martin; Ritter, Markus; Kerschbaum, Hubert H

    2014-08-01

    Phagocytes form engulfment pseudopodia at the contact area with their target particle by a process resembling cell volume (CV) regulatory mechanisms. We evaluated whether the osmoregulatory active neutral amino acid glycine, which contributes to CV regulation via activation of sodium-dependent neutral amino acid transporters (SNATs) improves phagocytosis in isotonic and hypertonic conditions in the murine microglial cell line BV-2 and primary microglial cells (pMG). In BV-2 cells and pMG, RT-PCR analysis revealed expression of SNATs (Slc38a1, Slc38a2), but not of GlyRs (Glra1-4). In BV-2 cells, glycine (5 mM) led to a rapid Na(+)-dependent depolarization of membrane potential (V mem). Furthermore, glycine increased CV by about 9%. Visualizing of phagocytosis of polystyrene microspheres by scanning electron microscopy revealed that glycine (1 mM) increased the number of BV-2 cells containing at least one microsphere by about 13%. Glycine-dependent increase in phagocytosis was suppressed by the SNAT inhibitor α-(methylamino)isobutyric acid (MeAIB), by replacing extracellular Na(+) with choline, and under hypertonic conditions, but not by the GlyR antagonist strychnine or the GlyR agonist taurine. Interestingly, hypertonicity-induced suppression of phagocytosis was rescued by glycine. These findings demonstrate that glycine increases phagocytosis in iso- and hypertonic conditions by activation of SNATs.

  15. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    PubMed

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  16. Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts.

    PubMed

    Hirata, Hiroshi; Ohnishi, Toshiyuki; Ishida, Haruka; Tomida, Kensuke; Sakai, Miwa; Hara, Masakazu; Watanabe, Naoharu

    2012-03-15

    In rose flowers, 2-phenylethanol (2PE) is biosynthesized from l-phenylalanine (l-Phe) via phenylacetaldehyde (PAld) by the actions of two enzymes, pyridoxal-5'-phosphate (PLP)-dependent aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). We here report that Rosa 'Yves Piaget' aromatic amino acid aminotransferase produced phenylpyruvic acid (PPA) from l-Phe in isolated petal protoplasts. We have cloned three full length cDNAs (RyAAAT1-3) of aromatic amino acid aminotransferase families based on rose EST database and homology regions. The RyAAATs enzymes were heterogeneously expressed in Escherichia coli and characterized biochemically. The recombinant RyAAAT3 showed the highest activity toward l-Phe in comparison with l-tryptophan, l-tyrosine, d-Phe, glycine, and l-alanine, and showed 9.7-fold higher activity with l-Phe rather than PPA as a substrate. RyAAAT3 had an optimal activity at pH 9 and at 45-55°C with α-ketoglutaric acid, and was found to be a PLP dependent enzyme based on the inhibition test using Carbidopa, an inhibitor of PLP-dependent enzymes. The transcript of RyAAAT3 was expressed in flowers as well as other organs of R. 'Yves Piaget'. RNAi suppression of RyAAAT3 decreased 2PE production, revealing the involvement of RyAAAT3 in 2PE biosynthesis in rose protoplasts and indicating that rose protoplasts have potentially two different 2PE biosynthetic pathways, the AADC route and the new route via PPA from l-Phe. PMID:22236980

  17. Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts.

    PubMed

    Hirata, Hiroshi; Ohnishi, Toshiyuki; Ishida, Haruka; Tomida, Kensuke; Sakai, Miwa; Hara, Masakazu; Watanabe, Naoharu

    2012-03-15

    In rose flowers, 2-phenylethanol (2PE) is biosynthesized from l-phenylalanine (l-Phe) via phenylacetaldehyde (PAld) by the actions of two enzymes, pyridoxal-5'-phosphate (PLP)-dependent aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). We here report that Rosa 'Yves Piaget' aromatic amino acid aminotransferase produced phenylpyruvic acid (PPA) from l-Phe in isolated petal protoplasts. We have cloned three full length cDNAs (RyAAAT1-3) of aromatic amino acid aminotransferase families based on rose EST database and homology regions. The RyAAATs enzymes were heterogeneously expressed in Escherichia coli and characterized biochemically. The recombinant RyAAAT3 showed the highest activity toward l-Phe in comparison with l-tryptophan, l-tyrosine, d-Phe, glycine, and l-alanine, and showed 9.7-fold higher activity with l-Phe rather than PPA as a substrate. RyAAAT3 had an optimal activity at pH 9 and at 45-55°C with α-ketoglutaric acid, and was found to be a PLP dependent enzyme based on the inhibition test using Carbidopa, an inhibitor of PLP-dependent enzymes. The transcript of RyAAAT3 was expressed in flowers as well as other organs of R. 'Yves Piaget'. RNAi suppression of RyAAAT3 decreased 2PE production, revealing the involvement of RyAAAT3 in 2PE biosynthesis in rose protoplasts and indicating that rose protoplasts have potentially two different 2PE biosynthetic pathways, the AADC route and the new route via PPA from l-Phe.

  18. A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE

    SciTech Connect

    Garrod, Robin T.

    2013-03-01

    A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH{sub 2}CH{sub 2}COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures {approx}40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 Multiplication-Sign 10{sup -11}-8 Multiplication-Sign 10{sup -9}, occurring at {approx}200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH{sub 2}, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

  19. Substitution of aspartic acid for glycine at position 310 in type II collagen produces achondrogenesis II, and substitution of serine at position 805 produces hypochondrogenesis: analysis of genotype-phenotype relationships.

    PubMed Central

    Bonaventure, J; Cohen-Solal, L; Ritvaniemi, P; Van Maldergem, L; Kadhom, N; Delezoide, A L; Maroteaux, P; Prockop, D J; Ala-Kokko, L

    1995-01-01

    Two different mutations were found in two unrelated probands with lethal chondrodysplasias, one with achondrogenesis type II and the other with the less severe phenotype of hypochondrogenesis. The mutations in the COL2A1 gene were identified by denaturing gradient gel electrophoresis analysis of genomic DNA followed by dideoxynucleotide sequencing and restriction site analysis. The proband with achondrogenesis type II had a heterozygous single-base mutation that substituted aspartate for glycine at position 310 of the alpha 1(II) chain of type II procollagen. The proband with hypochondrogenesis had a heterozygous single-base mutation that substituted serine for glycine at position 805. Type II collagen extracted from cartilage from the probands demonstrated the presence of type I collagen and a delayed electrophoretic mobility, indicating post-translational overmodifications. Analysis of CNBr peptides showed that, in proband 1, the entire peptides were overmodified. Examination of chondrocytes cultured in agarose or alginate indicated that there was a delayed secretion of type II procollagen. In addition, type II collagen synthesized by cartilage fragments from the probands demonstrated a decreased thermal stability. The melting temperature of the type II collagen containing the aspartate-for-glycine substitution was reduced by 4 degrees C, and that of the collagen containing the serine-for-glycine substitution was reduced by 2 degrees C. Electron microscopy of the extracellular matrix from the chondrocyte cultures showed a decreased density of matrix and the presence of unusually short and thin fibrils. Our results indicate that glycine substitutions in the N-terminal region of the type II collagen molecule can produce more severe phenotypes than mutations in the C-terminal region. The aspartate-for-glycine substitution at position 310, which was associated with defective secretion and a probable increased degradation of collagen, is the most destabilizing

  20. Substitution of aspartic acid for glycine at position 310 in type II collagen produces achondrogenesis II, and substitution of serine at position 805 produces hypochondrogenesis: analysis of genotype-phenotype relationships.

    PubMed

    Bonaventure, J; Cohen-Solal, L; Ritvaniemi, P; Van Maldergem, L; Kadhom, N; Delezoide, A L; Maroteaux, P; Prockop, D J; Ala-Kokko, L

    1995-05-01

    Two different mutations were found in two unrelated probands with lethal chondrodysplasias, one with achondrogenesis type II and the other with the less severe phenotype of hypochondrogenesis. The mutations in the COL2A1 gene were identified by denaturing gradient gel electrophoresis analysis of genomic DNA followed by dideoxynucleotide sequencing and restriction site analysis. The proband with achondrogenesis type II had a heterozygous single-base mutation that substituted aspartate for glycine at position 310 of the alpha 1(II) chain of type II procollagen. The proband with hypochondrogenesis had a heterozygous single-base mutation that substituted serine for glycine at position 805. Type II collagen extracted from cartilage from the probands demonstrated the presence of type I collagen and a delayed electrophoretic mobility, indicating post-translational overmodifications. Analysis of CNBr peptides showed that, in proband 1, the entire peptides were overmodified. Examination of chondrocytes cultured in agarose or alginate indicated that there was a delayed secretion of type II procollagen. In addition, type II collagen synthesized by cartilage fragments from the probands demonstrated a decreased thermal stability. The melting temperature of the type II collagen containing the aspartate-for-glycine substitution was reduced by 4 degrees C, and that of the collagen containing the serine-for-glycine substitution was reduced by 2 degrees C. Electron microscopy of the extracellular matrix from the chondrocyte cultures showed a decreased density of matrix and the presence of unusually short and thin fibrils. Our results indicate that glycine substitutions in the N-terminal region of the type II collagen molecule can produce more severe phenotypes than mutations in the C-terminal region. The aspartate-for-glycine substitution at position 310, which was associated with defective secretion and a probable increased degradation of collagen, is the most destabilizing

  1. [Resorption and incorporation of radioactive labeled amino acids during administration of various protein carriers in rats. 1. Resorption of 14C leucine and 3H glycine after intragastric administration].

    PubMed

    Zimmer, M; Bergner, H; Simon, O

    1975-07-01

    Male Albino rats (90-100 g) were fed ad libitum (with limited periods of feeding) for 14 days. The diets were adjusted to a crude protein content of 10%. Powdered whole egg, fish meal, yeast and gelatine were used as protein sources. Additionally, one group of rats was fed a protein-free diet. On the 15th day of experiment the rats were fed a test diet at a level of 2 g per 100 g of body weight. 2 hrs after that the rats received 25 muCi of 3H glycine and 5 muCi of 14C-L-Leucine per 100 g of body weight administered by way of intragastric infusion. It was found that a large proportion of the radioactive amino acids were absorbed as early as after 0.5 hr. The highest rate of absorption was observed in animals fed dietary proteins of poor quality or a protein free diet, so that in animals receiving a gelatine diet or a protein-free diet only 68.4% or 56.4% of the administered amount of 14C activity were detected inside the gastro intestinal tract after 0.5 hr. Analogous data for the 3H activity were 52.4% and 25.3%. Maximum absorption occurred after 3-7 hrs. Following this the level of radioactivity in the intestinal contents again increased reaching a peak value after 14-24 hrs; in the case of 14C activity this peak value amounted to 25.4% of the administered dose in animals fed the gelatine diet and 32.8% in the group receiving the protein-free diet. It was established that the major proportion of the resecreted amount of 14C activity was present in leucine. Until 72 hrs after the intake of 14C activity the level of radioactivity was again found to decline, a processes which was induced by processes occurring in the large intestines. Moreover, evidence was obtained in confirmation of previous findings, indicating that the composition of faecal amino acids was constant and unaffected by dietary proteins.

  2. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase.

    PubMed

    Taylor, Nicolas L; Day, David A; Millar, A Harvey

    2002-11-01

    A cytotoxic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), rapidly inhibited glycine, malate/pyruvate, and 2-oxoglutarate-dependent O2 consumption by pea leaf mitochondria. Dose- and time-dependence of inhibition showed that glycine oxidation was the most severely affected with a K(0.5) of 30 microm. Several mitochondrial proteins containing lipoic acid moieties differentially lost their reactivity to a lipoic acid antibody following HNE treatment. The most dramatic loss of antigenicity was seen with the 17-kDa glycine decarboxylase complex (GDC) H-protein, which was correlated with the loss of glycine-dependent O2 consumption. Paraquat treatment of pea seedlings induced lipid peroxidation, which resulted in the rapid loss of glycine-dependent respiration and loss of H-protein reactivity with lipoic acid antibodies. Pea plants exposed to chilling and water deficit responded similarly. In contrast, the damage to other lipoic acid-containing mitochondrial enzymes was minor under these conditions. The implication of the acute sensitivity of glycine decarboxylase complex H-protein to lipid peroxidation products is discussed in the context of photorespiration and potential repair mechanisms in plant mitochondria.

  3. Developmental stability of taurine's activation on glycine receptors in cultured neurons of rat auditory cortex.

    PubMed

    Tang, Zheng-Quan; Lu, Yun-Gang; Chen, Lin

    2008-01-01

    Taurine is an endogenous amino acid that can activate glycine and/or gamma-aminobutyric acid type A (GABA(A)) receptors in the central nervous system. During natural development, taurine's receptor target undergoes a shift from glycine receptors to GABA(A) receptors in cortical neurons. Here, we demonstrate that taurine's receptor target in cortical neurons remains stable during in vitro development. With whole-cell patch-clamp recordings, we found that taurine always activated glycine receptors, rather than GABA(A) receptors, in neurons of rat auditory cortex cultured for 5-22 days. Our results suggest that the functional sensitivity of glycine and GABA(A) receptors to taurine is critically regulated by their developmental environments.

  4. Effects of Rhizobacteria on Soybean Cyst Nematode, Heterodera glycines

    PubMed Central

    Tian, Honglin; Riggs, Robert D.

    2000-01-01

    Rhizobacteria were isolated from the rhizoplane and rhizosphere of soybean plants from fields in Arkansas and tested for their effect on numbers of soybean cyst nematode (Heterodera glycines). In initial greenhouse tests in heat-treated silt loam soil, 138 of the 201 bacterial isolates tested had no influence on numbers of cysts and eggs + second-stage juveniles (J2) of H. glycines, 36 reduced (suppressive isolates) and 27 increased (enhancing isolates) numbers of cysts and (or) eggs + J2 when compared to the controls (P ≤ 0.05). When 20 suppressive and five enhancing isolates were retested in the same soil, the results were highly variable and inconclusive. The 25 isolates were then evaluated in vitro for their effects on eggs and J2 of H. glycines. No clear relationship was detected between the inhibition of egg hatch or immobilization of J2 in vitro and antagonistic activity toward nematodes in vivo. Amendment of the soil with 0.1% (w/w) peptone or casein hydrolysate did not improve the effects of suppressive isolates on numbers of H. glycines. Nineteen of the 25 isolates were identified based on analysis of fatty acid methyl esters, and they are in 11 different genera. PMID:19270992

  5. Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae.

    PubMed

    Villas-Bôas, Silas Granato; Kesson, Mats; Nielsen, Jens

    2005-05-01

    Glyoxylate biosynthesis in Saccharomyces cerevisiae is traditionally mainly ascribed to the reaction catalyzed by isocitrate lyase (Icl), which converts isocitrate to glyoxylate and succinate. However, Icl is generally reported to be repressed by glucose and yet glyoxylate is detected at high levels in S. cerevisiae extracts during cultivation on glucose. In bacteria there is an alternative pathway for glyoxylate biosynthesis that involves a direct oxidation of glycine. Therefore, we investigated the glycine metabolism in S. cerevisiae coupling metabolomics data and (13)C-isotope-labeling analysis of two reference strains and a mutant with a deletion in a gene encoding an alanine:glyoxylate aminotransferase. The strains were cultivated on minimal medium containing glucose or galactose, and (13)C-glycine as sole nitrogen source. Glyoxylate presented (13)C-labeling in all cultivation conditions. Furthermore, glyoxylate seemed to be converted to 2-oxovalerate, an unusual metabolite in S. cerevisiae. 2-Oxovalerate can possibly be converted to 2-oxoisovalerate, a key precursor in the biosynthesis of branched-chain amino acids. Hence, we propose a new pathway for glycine catabolism and glyoxylate biosynthesis in S. cerevisiae that seems not to be repressed by glucose and is active under both aerobic and anaerobic conditions. This work demonstrates the great potential of coupling metabolomics data and isotope-labeling analysis for pathway reconstructions.

  6. Soft x-ray ionization induced fragmentation of glycine

    SciTech Connect

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C–C{sub α} bond and the presence of the CNH{sub 2}{sup +} fragment.

  7. Cometary Glycine Detected in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, D. P.; Dworkin, J. P.

    2010-01-01

    In January 2006, NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth. The Stardust cometary collector consisted of aerogel cells lined with aluminum foils designed to capture impacting particles and facilitate removal of the aerogel. Preliminary examinations of these comet-exposed materials revealed a suite of organic compounds, including several amines and amino acids which were later examined in more detail. Methylamine (NH2CH3) and ethylamine (NH2C2H5) were detected in the exposed aerogel at concentrations greatly exceeding those found in control samples, while the amino acid glycine (NH2CH2COOH) was detected in several foil samples as well as in the comet-exposed aerogel. None of these three compounds had been previously detected in comets, although methylamine had been observed in the interstellar medium. Although comparison with control samples suggested that the detected glycine was cometary. the previous work was not able to conclusively identify its origin. Here, we present the results of compound-specific carbon isotopic analysis of glycine in Stardust cometary collector foils. Several foils from the interstellar side of the Stardust collector were also analyzed for amino acid abundance, but concentrations were too low to perform isotopic ana!ysis.

  8. Glycine and L-carnitine therapy in 3-methylcrotonyl-CoA carboxylase deficiency.

    PubMed

    Rutledge, S L; Berry, G T; Stanley, C A; van Hove, J L; Millington, D

    1995-01-01

    Genetic deficiency of 3-methylcrotonyl-CoA carboxylase (3-MCC) is a rare inborn error of leucine metabolism producing an organic acidaemia. With accumulation of 3-methylcrotonyl-CoA, there is increased production of 3-hydroxyisovaleric acid, the glycine conjugate (3-methylcrotonylglycine), and the carnitine conjugate (3-hydroxyisovalerylcarnitine). The conjugates represent endogenous detoxification products. We studied excretion rates of these conjugates at baseline and with glycine and carnitine therapy in an 8-year-old girl with 3-MCC deficiency. Her preadmission diet was continued. Plasma and urine samples were obtained after 24 h of each of the following: L-carnitine 100 mg/kg per day and glycine 100, 175 and 250 mg/kg per day. Plasma and urinary carnitine levels were reduced by 80% and 50%, respectively with abnormal urinary excretion patterns. These normalized with carnitine therapy. Acylcarnitine excretion increased with carnitine therapy. The glycine conjugate, 3-methylcrotonylglycine (3-MCG), was the major metabolite excreted at all times and its excretion increased with glycine therapy. Clearly, in 3-MCC deficiency the available glycine and carnitine pools are not sufficient to meet the potential for conjugation of accumulated metabolites, suggesting a possible therapeutic role for glycine and carnitine therapy in this disorder.

  9. Activation-induced structural change in the GluN1/GluN3A excitatory glycine receptor

    SciTech Connect

    Balasuriya, Dilshan; Takahashi, Hirohide; Srivats, Shyam; Edwardson, J. Michael

    2014-08-08

    Highlights: • We studied the response of the GluN1/GluN3A excitatory glycine receptor to activation. • GluN1 and GluN3A subunits interacted within transfected cells. • The GluN1/GluN3A receptor was functionally active. • Glycine or D-serine caused a ∼1 nm height reduction in bilayer-integrated receptors. • This height reduction was abolished by the glycine antagonist DCKA. - Abstract: Unlike GluN2-containing N-methyl-D-aspartate (NMDA) receptors, which require both glycine and glutamate for activation, receptors composed of GluN1 and GluN3 subunits are activated by glycine alone. Here, we used atomic force microscopy (AFM) imaging to examine the response to activation of the GluN1/GluN3A excitatory glycine receptor. GluN1 and GluN3A subunits were shown to interact intimately within transfected tsA 201 cells. Isolated GluN1/GluN3A receptors integrated into lipid bilayers responded to addition of either glycine or D-serine, but not glutamate, with a ∼1 nm reduction in height of the extracellular domain. The height reduction in response to glycine was abolished by the glycine antagonist 5,7-dichlorokynurenic acid. Our results represent the first demonstration of the effect of activation on the conformation of this receptor.

  10. About the detectability of glycine in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Lattelais, M.; Pauzat, F.; Pilmé, J.; Ellinger, Y.; Ceccarelli, C.

    2011-08-01

    Context. Glycine, the simplest of aminoacids, has been found in several carbonaceous meteorites. It remains unclear, however, wether glycine is formed in the interstellar medium (ISM) and therefore available everywhere in the Universe. For this reason, radioastronomers have searched for many years unsuccessfully to detect glycine in the ISM. Aims: We provide possible guidelines to optimize the return of these searches. Since, for most of the species observed so far in the ISM, the most abundant isomer of a given generic chemical formula is the most stable one (minimum energy principle (MEP)), we assess whether neutral glycine is the best molecule to search for or whether one of its isomers/conformers or ionic, protonated, or zwitterionic derivatives would have a higher probability of being detected. Methods: The question of the relative stability of these different species is addressed by means of quantum density functional theory (DFT) simulations within the hybrid B3LYP formalism. Each fully optimized structure is verified as a stationary point by means of a vibrational analysis. A comprehensive screening of 32 isomers/conformers of the C2H5O2N chemical formula (neutral, negative, and positive ions together with the corresponding protonated species and the possible zwitterionic structures) is carried out. In the sensitive case of the neutral compounds, more accurate relative energies were obtained by means of high level post Hartree-Fock coupled cluster calculations with large basis sets (CCSD(T)/cc-pVQZ). Results: We find that neutral glycine is not the most stable isomer and, therefore, probably not the most abundant one, which might explain why it has escaped detection so far. We find instead that N-methyl carbamic acid and methyl carbamate are the two most stable isomers and, therefore, probably the two most abundant ones. Among the non-neutral forms, we found that glycine is the most stable isomer only if protonated or zwitterionic if present in interstellar

  11. A Sensitive VLA Search for Small-Scale Glycine Emission Toward OMC-1

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Pedelty, J. A.; Snyder, L. E.; Jewell, P. R.; Lovas, F. J.; Palmer, Patrick; Liu, S.-Y.

    2002-01-01

    We have conducted a deep Q-band (lambda-7 mm) search with the Very Large Array (VLA) toward OMC-1 for the lowest energy conformation (conformer I) of glycine (NH2CH2COOH) in four rotational transitions: the 6(sub 15)- 5(sub 14), 6(sub 24)-5(sub 23), 7(sub 17- 6(sub 16), and 7(sub 07)-6(sub 06). Our VLA observations sample the smallest-scale structures to date in the search for glycine toward OMC-1. No glycine emission features were detected. Thus if glycine exists in OMC-1, either it is below our detection limit, or it is more spatially extended than other large molecules in this source, or it is primarily in its high energy form (conformer II). Our VLA glycine fractional abundance limits in OMC-1 are comparable to those determined from previous IRAM 30m measurements -- somewhat better or worse depending on the specific source model -- and the entire approximately 1 foot primary beam of the VLA was searched while sensitive to an areal spatial scale approximately 150 times smaller than the 24 inch beam of the IRAM single-element telescope. In the course of this work, we detected and imaged the 4(sub 14)-3(sub 13) A and E transitions of methyl formate (HCOOCH3) and also the 2(sub 02) - 1(sub 01) transition of formic acid (HCOOH). Since formic acid is a possible precursor to glycine, our glycine limits and formic acid results provide a constraint on this potential formation chemistry route for glycine in OMC-1.

  12. Determination of glycine in biofluid by hydrophilic interaction chromatography coupled with tandem mass spectrometry and its application to the quantification of glycine released by embryonal carcinoma stem cells.

    PubMed

    Tang, Ya-Bin; Teng, Lin; Sun, Fan; Wang, Xiao-Lin; Peng, Liang; Cui, Yong-Yao; Hu, Jin-Jia; Luan, Xin; Zhu, Liang; Chen, Hong-Zhuan

    2012-09-15

    Because glycine plays a prominent role in living creatures, an accurate and precise quantitative analysis method for the compound is needed. Herein, a new approach to analyze glycine by hydrophilic interaction chromatography (HILIC) coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS) was developed. This method avoids the use of derivatization and/or ion-pairing reagents. N-methyl-D-aspartate (NMDA) is used as the internal standard (IS). The mobile phase for the isocratic elution consisted of 10 mM ammonium formate in acetonitrile-water (70:30, v/v, adjusted to pH 2.8 with formic acid), and a flow rate of 250 μL/min was used. Two microliters of sample was injected for analysis. The signal was monitored in the positive multiple reaction monitoring (MRM) mode. The total run time was 5 min. The dynamic range was 40-2000 ng/mL for glycine in the biological matrix. The LLOQ (lower limit of quantification) of this method was 40 ng/mL (80 pg on column). The validated method was applied to determine the dynamic release of glycine from P19 embryonal carcinoma stem cells (ECSCs). Glycine spontaneously released from the ECSCs into the intercellular space gradually increased from 331.02±60.36 ng/mL at 2 min in the beginning to 963.52±283.80 ng/mL at 60 min and 948.27±235.09 ng/mL at 120 min, finally reaching a plateau, indicating that ECSCs consecutively release glycine until achieving equilibration between the release and the reuptake of the compound; on the contrary, the negative control NIH/3T3 embryonic fibroblast cells did not release glycine. This finding will help to improve our understanding of the novel effects of neurotransmitters, including glycine, on non-neural systems. PMID:22906796

  13. Glycine transporter 1 is a target for the treatment of epilepsy.

    PubMed

    Shen, Hai-Ying; van Vliet, Erwin A; Bright, Kerry-Ann; Hanthorn, Marissa; Lytle, Nikki K; Gorter, Jan; Aronica, Eleonora; Boison, Detlev

    2015-12-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the synaptic availability of glycine is largely under control of glycine transporter 1 (GlyT1). Since epilepsy is a disorder of disrupted network homeostasis affecting the equilibrium of various neurotransmitters and neuromodulators, we hypothesized that changes in hippocampal GlyT1 expression and resulting disruption of glycine homeostasis might be implicated in the pathophysiology of epilepsy. Using two different rodent models of temporal lobe epilepsy (TLE)--the intrahippocampal kainic acid model of TLE in mice, and the rat model of tetanic stimulation-induced TLE--we first demonstrated robust overexpression of GlyT1 in the hippocampal formation, suggesting dysfunctional glycine signaling in epilepsy. Overexpression of GlyT1 in the hippocampal formation was corroborated in human TLE samples by quantitative real time PCR. In support of a role of dysfunctional glycine signaling in the pathophysiology of epilepsy, both the genetic deletion of GlyT1 in hippocampus and the GlyT1 inhibitor LY2365109 increased seizure thresholds in mice. Importantly, chronic seizures in the mouse model of TLE were robustly suppressed by systemic administration of the GlyT1 inhibitor LY2365109. We conclude that GlyT1 overexpression in the epileptic brain constitutes a new target for therapeutic intervention, and that GlyT1 inhibitors constitute a new class of antiictogenic drugs. These findings are of translational value since GlyT1 inhibitors are already in clinical development to treat cognitive symptoms in schizophrenia.

  14. Glycine transporter 1 is a target for the treatment of epilepsy.

    PubMed

    Shen, Hai-Ying; van Vliet, Erwin A; Bright, Kerry-Ann; Hanthorn, Marissa; Lytle, Nikki K; Gorter, Jan; Aronica, Eleonora; Boison, Detlev

    2015-12-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the synaptic availability of glycine is largely under control of glycine transporter 1 (GlyT1). Since epilepsy is a disorder of disrupted network homeostasis affecting the equilibrium of various neurotransmitters and neuromodulators, we hypothesized that changes in hippocampal GlyT1 expression and resulting disruption of glycine homeostasis might be implicated in the pathophysiology of epilepsy. Using two different rodent models of temporal lobe epilepsy (TLE)--the intrahippocampal kainic acid model of TLE in mice, and the rat model of tetanic stimulation-induced TLE--we first demonstrated robust overexpression of GlyT1 in the hippocampal formation, suggesting dysfunctional glycine signaling in epilepsy. Overexpression of GlyT1 in the hippocampal formation was corroborated in human TLE samples by quantitative real time PCR. In support of a role of dysfunctional glycine signaling in the pathophysiology of epilepsy, both the genetic deletion of GlyT1 in hippocampus and the GlyT1 inhibitor LY2365109 increased seizure thresholds in mice. Importantly, chronic seizures in the mouse model of TLE were robustly suppressed by systemic administration of the GlyT1 inhibitor LY2365109. We conclude that GlyT1 overexpression in the epileptic brain constitutes a new target for therapeutic intervention, and that GlyT1 inhibitors constitute a new class of antiictogenic drugs. These findings are of translational value since GlyT1 inhibitors are already in clinical development to treat cognitive symptoms in schizophrenia. PMID:26302655

  15. Plant-Induced Hatching of Eggs of the Soybean Cyst Nematode Heterodera glycines.

    PubMed

    Tefft, P M; Bone, L W

    1985-07-01

    Root diffusate from soybean plants caused greater hatching of Heterodera glycines eggs during vegetative growth of the host, but the activity declined with plant senescence. Chelation of the root diffusate with ethylenediamine tetraacetic acid (EDTA) significantly increased hatching activity for H. glycines eggs. Diffusate from leafless plants caused little hatching, whereas treatment of intact plants with the growth regulators gibberellin and kinetin had no effect on the hatching activity of root diffusate. Treating H. glycines eggs with zinc chloride and root diffusate reduced egg hatching from zinc chloride alone. Levels of zinc in the root diffusate were insufficient to induce egg hatch, based on analysis by atomic absorption spectrophotometry. The enzymatic activity of leucine aminopeptidase in H. glycines eggs was not altered by treatment with chelated or nonchelated root diffusate.

  16. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  17. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The...

  18. 75 FR 62141 - Glycine From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... glycine from China (60 FR 16116). Following first five-year reviews by Commerce and the Commission... from China (65 FR 45752). Following second five-year reviews by Commerce and the Commission, effective... glycine from China (70 FR 69316). The Commission is now conducting a third review to determine...

  19. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  20. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions.

    PubMed

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard; Nielsen, Per Halkjær

    2015-07-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. (13)C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using (3)H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  1. New Insights into Amino Acid Preservation in the Early Oceans using Modern Analytical Techniques

    NASA Astrophysics Data System (ADS)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J.

    2015-12-01

    Protein- and non-protein-amino acids likely occupied the oceans at the time of the origin and evolution of life. Primordial soup-, hydrothermal vent-, and meteoritic-processes likely contributed to this early chemical inventory. Prebiotic synthesis and carbonaceous meteorite studies suggest that non-protein amino acids were likely more abundant than their protein-counterparts. Amino acid preservation before abiotic and biotic destruction is key to biomarker availability in paleoenvironments and remains an important uncertainty. To constrain primitive amino acid lifetimes, a 1992 archived seawater/beach sand mixture was spiked with D,L-alanine, D,L-valine (Val), α-aminoisobutyric acid (α-AIB), D,L-isovaline (Iva), and glycine (Gly). Analysis by high performance liquid chromatography with fluorescence detection (HPLC-FD) showed that only D-Val and non-protein amino acids were abundant after 2250 days. The mixture was re-analyzed in 2012 using HPLC-FD and a triple quadrupole mass spectrometer (QqQ-MS). The analytical results 20 years after the inception of the experiment were strikingly similar to those after 2250 days. To confirm that viable microorganisms were still present, the mixture was re-spiked with Gly in 2012. Aliquots were collected immediately after spiking, and at 5- and 9-month intervals thereafter. Final HPLC-FD/QqQ-MS analyses were performed in 2014. The 2014 analyses revealed that only α-AIB, D,L-Iva, and D-Val remained abundant. The disappearance of Gly indicated that microorganisms still lived in the mixture and were capable of consuming protein amino acids. These findings demonstrate that non-protein amino acids are minimally impacted by biological degradation and thus have very long lifetimes under these conditions. Primitive non-protein amino acids from terrestrial synthesis, or meteorite in-fall, likely experienced greater preservation than protein amino acids in paleo-oceanic environments. Such robust molecules may have reached a steady

  2. New Insights into Amino Acid Preservation in the Early Oceans Using Modern Analytical Techniques

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Brinton, Karen L.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.; Bada, Jeffrey L.

    2015-01-01

    Protein- and non-protein-amino acids likely occupied the oceans at the time of the origin and evolution of life. Primordial soup-, hydrothermal vent-, and meteoritic-processes likely contributed to this early chemical inventory. Prebiotic synthesis and carbonaceous meteorite studies suggest that non-protein amino acids were likely more abundant than their protein-counterparts. Amino acid preservation before abiotic and biotic destruction is key to biomarker availability in paleoenvironments and remains an important uncertainty. To constrain primitive amino acid lifetimes, a 1992 archived seawater/beach sand mixture was spiked with D,L-alanine, D,L-valine (Val), alpha-aminoisobutyric acid (alpha-AIB), D,L-isovaline (Iva), and glycine (Gly). Analysis by high performance liquid chromatography with fluorescence detection (HPLC-FD) showed that only D-Val and non-protein amino acids were abundant after 2250 days. The mixture was re-analyzed in 2012 using HPLC-FD and a triple quadrupole mass spectrometer (QqQ-MS). The analytical results 20 years after the inception of the experiment were strikingly similar to those after 2250 days. To confirm that viable microorganisms were still present, the mixture was re-spiked with Gly in 2012. Aliquots were collected immediately after spiking, and at 5- and 9-month intervals thereafter. Final HPLC-FD/QqQ-MS analyses were performed in 2014. The 2014 analyses revealed that only alpha-AIB, D,L-Iva, and D-Val remained abundant. The disappearance of Gly indicated that microorganisms still lived in the mixture and were capable of consuming protein amino acids. These findings demonstrate that non-protein amino acids are minimally impacted by biological degradation and thus have very long lifetimes under these conditions. Primitive non-protein amino acids from terrestrial synthesis, or meteorite in-fall, likely experienced great-er preservation than protein amino acids in paleo-oceanic environments. Such robust molecules may have reached a

  3. Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine.

    PubMed Central

    Benveniste, M; Mayer, M L

    1995-01-01

    1. N-methyl-D-aspartate (NMDA) receptor responses were recorded from rat hippocampal neurons grown in dissociated culture, using whole-cell, outside-out and nucleated patch recording techniques. Rapid perfusion was used to study voltage-dependent block of NMDA receptors by 9-aminoacridine (9-AA) and by Mg2+. 2. Large amplitude tail currents were evoked on depolarization to +60 mV after application at -100 mV of NMDA and 9-AA but not NMDA and Mg2+. These tail currents were resistant to block by competitive antagonists to the glutamate and glycine binding sites on NMDA receptors and were not evoked when either NMDA or 9-AA were applied alone. 3. The decay kinetics of the tail current were dependent on agonist affinity; the time required for 80% charge transfer was 10-fold briefer for NMDA than for glutamate and 7-fold briefer for L-alanine than for glycine. These results are in accord with a sequential model for block of NMDA receptors by 9-AA, in which neither glutamate nor glycine can dissociate from the open-blocked state of the receptor. 4. Tail current responses had amplitudes 2- to 4-fold larger than responses to maximally effective concentrations of glutamate and glycine, indicating that NMDA receptor channels accumulate in the open-blocked state during co-application of agonist and 9-AA. The rise time and decay kinetics of tail current responses were faster than the response to brief applications of a maximally effective concentration of glutamate. Together, these results suggest that at +60 mV recovery from block by 9-AA occurs faster than the rate of opening of NMDA receptors in response to glutamate. 5. Our experiments suggest that open channel block of NMDA receptors can provide a novel approach for measurement of both open probability and the first latency distribution for ion channel opening in response to the binding of agonists, and provide additional evidence suggesting that the delayed opening of NMDA receptor channels underlies slow activation and

  4. Biological activities of indoleacetylamino acids and their use as auxins in tissue culture

    SciTech Connect

    Hangarter, R.P.; Peterson, M.D.; Good, N.E.

    1980-05-01

    The auxin activities of a number of indoleacetylamino acid conjugates have been determined in three test systems: growth of tomato hypocotyl explants (Lycopersicon esculentum Mill. cv. Marglobe); growth of tobacco callus cultures (Nicotiana tabacum L. cv. Wisconsin 38); and ethylene production from pea stems (Pisum sativum L. cv. Alaska). The activities of the conjugates differ greatly depending on the amino acid moiety. Indoleacetyl-L-alanine supports rapid callus growth from the tomato hypocotyls while inhibiting growth of shoots and roots. Indoleacetlyglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting growth of shoots and roots. Indoleacetylglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting shoot formation. The other amino acid conjugates tested (valine, leucine, aspartic acid, threonine, methionine, phenylalanine, and proline) support shoot formation without supporting root formation or much callus growth. The tobacco callus system, which forms abundant shoots in the presence or absence of free indoleacetic acid, produces only rapid undifferentiated growth in the presence of indoleacetyl-L-alanine and indoleacetylglycine. The other conjugates inhibit shoot formatin weakly if at all. Most of the conjugates induce sustained ethylene production from the pea stems but at rates well below the initial rates observed with free indoleacetic acid. Many, but not all of the effects of conjugates such as indoleacetyl-L-alanine can be mimicked by frequent renewals of the supply of free indoleacetic acid.

  5. Development of fingermark on the surface of fired cartridge casing using amino acid sensitive reagents: Change of viewpoint.

    PubMed

    Hong, Sungwook; Han, Aleum

    2016-09-01

    Four amino acid sensitive fingermark enhancement reagents (ninhydrin, 5-methylthioninhydrin (5-MTN), 1,8-diazafloren-9-one (DFO), 1,2-indandione (1,2-IND) were used for the development of fingermark on the surface of brass. The reagents were used for the detection of a trace amount of metallic ion on the surface of cartridge casings to develop latent fingermarks. Ninhydrin-l-alanine (NIN-ALA), 5-MTN-l-alanine (MTN-ALA), DFO-l-alanine (DFO-ALA), 1,2-IND-l-alanine (IND-ALA) complexes were prepared and applied to the fired cartridge casings, for the further enhancement of fingermarks developed by corrosion on the surface of brass. Of the four complexes, NIN-ALA and MTN-ALA complexes induced color changes to enhance fingermarks on fired cartridge casings, but photoluminescence was not observed. About 31% of cartridge casings treated with MTN-ALA showed enhanced fingermarks. DFO-ALA and IND-ALA did not show any enhancement of fingermarks. PMID:27235594

  6. Transport of. cap alpha. -aminoisobutyric acid by Streptococcus pyogenes and its derived L-form

    SciTech Connect

    Reizer, J.; Panos, C.

    1982-01-01

    We studied the uptake of ..cap alpha..-aminoisobutyric acid (AIB) in Streptococcus pyogenes and its physiologically isotonic L-form. S. pyogenes cells starved for glucose or treated with carbonyl cyanide-m-chlorophenyl hydrazone accumulated limited amounts of AIB. A high apparent K/sub m/ value characterized the glucose-independent transport of AIB. The rate and extent of AIB accumulation significantly increased in the presence of glucose. Two saturable transport components with distinct apparent K/sub m/values characterized glycolysis-coupled transport of AIB. A biphasic Lineweaver-Burk plot was also obtained for L-alanine transport by glycolyzing S. pyogenes cells. AIB seems to share a common transport system(s) with glycine, L- and D-anine, L-serine, and L-valine. This was shown by the competitive exchange efflux of accumulated AIB. About 30% of the AIB uptake was not inhibited by a saturating amount of L-valine, indicating the existence of more than one system for AIB transport, p-Chloromercuribenzoate markedly inhibited the accumulation of AIB by both glycolyzing and glucose-starved cells. In contrast, carbonyl cyanide-m-chlorophenyl hydrazone affected only metabolism-dependent uptake of AIB, which was also sensitive to dinitrophenol, N-ethylmaleimide, iodoacetate, fluoride (NaF), arsenate, and N,N'-dicyclohexylcarbodiimide. These results are interpreted according to the chemiosmotic theory of Mitchell, whereby a proton motive force constitutes the driving force for AIB accumulation. AIB was not accumulated by the L-form. However, a temporary accumulation of AIB by a counterflow mechanism and a saturable system with a low apparent affinity were demonstrated for AIB transport by this organism. We suggest that a deficiency in the coupling of energy to AIB transport is responsible for the apparent lack of active AIB accumulation by the L-form.

  7. Formation of 4(5)-Methylimidazole in Aqueous d-Glucose-Amino Acids Model System.

    PubMed

    Karim, Faris; Smith, J Scott

    2016-01-01

    The International Agency for Research on Cancer (IRAC) has classified 4(5)-methylimidazole (4-MeI) as a group 2B possible human carcinogen. Thus, how 4-MeI forms in a D-glucose (Glu) amino acids (AA) model system is important, as it is how browning is affected. An aqueous solution of Glu was mixed individually in equimolar amounts at 3 concentrations (0.05, 0.1, and 0.15 M) with aqueous solutions of L-Alanine (Ala), L-Arginine (Arg), Glycine (Gly), L-Lysine (Lys), and L-Serine (Ser). The Glu-AA mixtures were reacted at 60, 120, and 160 °C for 1 h. The 4-MeI levels were measured by gas chromatography-mass spectrometry after derivatization with isobutylchloroformate. No 4-MeI was formed at 60 °C for any treatment combination; however, at 120 °C and 0.05 M, Glu-Arg and Glu-Lys produced 0.13 and 0.14 mg/kg of 4-MeI. At 160 °C and 0.05 M all treatment combinations formed 4-MeI. At 160 °C and 0.15 M, the observed levels of Glu-Ala, Glu-Arg, Glu-Gly, Glu-Lys, and Glu-Ser were 0.21, 1.00, 0.15, 0.22, and 0.16 mg/kg. The AA type, reactant concentrations, and temperature significantly affected (P < 0.001) formation of 4-MeI as well as browning. Glu-Lys treatment in all combinations produced the most browning, but Glu-Arg produced the most 4-MeI. This method showed that foods processed using low temperatures may have reduced levels of 4-MeI.

  8. Relative hydrophobicity between the phases and partition of cytochrome-c in glycine ionic liquids aqueous two-phase systems.

    PubMed

    Wu, Changzeng; Wang, Jianji; Li, Zhiyong; Jing, Jun; Wang, Huiyong

    2013-08-30

    In this work, glycine ionic liquids tetramethylammonium glycine ([N1111][Gly]), tetraethylammonium glycine ([N2222][Gly]), tetra-n-butylammonium glycine ([N4444][Gly]), tetra-n-butylphosphonium glycine ([P4444][Gly]) and tetra-n-pentylammonium glycine ([N5555][Gly]) were synthesized and used to prepare aqueous two-phase systems (ATPSs) in the presence of K2HPO4. Binodal curves of such ATPSs and partition coefficients of a series of dinitrophenylated (DNP) amino acids in these ATPSs were determined at 298.15K to understand the effect of cationic structure of the ionic liquids on the phase-forming ability of glycine ionic liquids, relative hydrophobicity between the phases in the ionic liquids ATPSs, and polarity of the ionic liquids-rich phases. With the attempt to correlate the relative hydrophobicity of the phases in the ATPSs with their extraction capability for proteins, partition coefficients of cytochrome-c in the ATPSs were also determined. It was shown that partition coefficients of cytochrome-c were in the range from 2.83 to 20.7 under the studied pH conditions. Then, hydrophobic interactions between cytochrome-c and the ionic liquid are suggested to be the main driving force for the preferential partition of cytochrome-c in the glycine ionic liquid-rich phases of the ATPSs. Result derived from polarity of the ionic liquids-rich phases supports this mechanism.

  9. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology.

    PubMed

    Satomura, Takenori; Sakuraba, Haruhiko; Suye, Shin-Ichiro; Ohshima, Toshihisa

    2015-11-01

    Dye-linked D-amino acid dehydrogenases (Dye-DADHs) catalyze the dehydrogenation of free D-amino acids in the presence of an artificial electron acceptor. Although Dye-DADHs functioning in catabolism of L-alanine and as primary enzymes in electron transport chains are widely distributed in mesophilic Gram-negative bacteria, biochemical and biotechnological information on these enzymes remains scanty. This is in large part due to their instability after isolation. On the other hand, in the last decade, several novel types of Dye-DADH have been found in thermophilic bacteria and hyperthermophilic archaea, where they contribute not only to L-alanine catabolism but also to the catabolism of other amino acids, including D-arginine and L-hydroxyproline. In this minireview, we summarize recent developments in our understanding of the biochemical characteristics of Dye-DADHs and their specific application to electrochemical biosensors. PMID:26362681

  10. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology.

    PubMed

    Satomura, Takenori; Sakuraba, Haruhiko; Suye, Shin-Ichiro; Ohshima, Toshihisa

    2015-11-01

    Dye-linked D-amino acid dehydrogenases (Dye-DADHs) catalyze the dehydrogenation of free D-amino acids in the presence of an artificial electron acceptor. Although Dye-DADHs functioning in catabolism of L-alanine and as primary enzymes in electron transport chains are widely distributed in mesophilic Gram-negative bacteria, biochemical and biotechnological information on these enzymes remains scanty. This is in large part due to their instability after isolation. On the other hand, in the last decade, several novel types of Dye-DADH have been found in thermophilic bacteria and hyperthermophilic archaea, where they contribute not only to L-alanine catabolism but also to the catabolism of other amino acids, including D-arginine and L-hydroxyproline. In this minireview, we summarize recent developments in our understanding of the biochemical characteristics of Dye-DADHs and their specific application to electrochemical biosensors.

  11. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    NASA Astrophysics Data System (ADS)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  12. Temporal alteration of spreading depression by the glycine transporter type-1 inhibitors NFPS and Org-24461 in chicken retina.

    PubMed

    Kertesz, Szabolcs; Szabo, Geza; Udvari, Szabolcs; Levay, Gyorgy; Matyus, Peter; Harsing, Laszlo G

    2013-01-25

    We used isolated chicken retina to induce spreading depression by the glutamate receptor agonist N-methyl-d-aspartate. The N-methyl-d-aspartate-induced latency time of spreading depression was extended by the glycine(B) binding site competitive antagonist 7-chlorokynurenic acid. Addition of the glycine transporter type-1 inhibitors NFPS and Org-24461 reversed the inhibitory effect of 7-chlorokynurenic acid on N-methyl-d-aspartate-evoked spreading depression. The glycine uptake inhibitory activity of Org-24461, NFPS, and some newly synthesized analogs of NFPS was determined in CHO cells stably expressing human glycine transporter type-1b isoform. Compounds, which failed to inhibit glycine transporter type-1, also did not have effect on retinal spreading depression. These experiments indicate that the spreading depression model in chicken retina is a useful in vitro test to determine activity of glycine transporter type-1 inhibitors. In addition, our data serve further evidence for the role of glycine transporter type-1 in retinal neurotransmission and light processing.

  13. GABA and glycine in the developing brain.

    PubMed

    Ito, Susumu

    2016-09-01

    GABA and glycine are major inhibitory neurotransmitters in the CNS and act on receptors coupled to chloride channels. During early developmental periods, both GABA and glycine depolarize membrane potentials due to the relatively high intracellular Cl(-) concentration. Therefore, they can act as excitatory neurotransmitters. GABA and glycine are involved in spontaneous neural network activities in the immature CNS such as giant depolarizing potentials (GDPs) in neonatal hippocampal neurons, which are generated by the synchronous activity of GABAergic interneurons and glutamatergic principal neurons. GDPs and GDP-like activities in the developing brains are thought to be important for the activity-dependent functiogenesis through Ca(2+) influx and/or other intracellular signaling pathways activated by depolarization or stimulation of metabotropic receptors. However, if GABA and glycine do not shift from excitatory to inhibitory neurotransmitters at the birth and in maturation, it may result in neural disorders including autism spectrum disorders. PMID:26951057

  14. A Didactic Experience of Statistical Analysis for the Determination of Glycine in a Nonaqueous Medium Using ANOVA and a Computer Program

    ERIC Educational Resources Information Center

    Santos-Delgado, M. J.; Larrea-Tarruella, L.

    2004-01-01

    The back-titration methods are compared statistically to establish glycine in a nonaqueous medium of acetic acid. Important variations in the mean values of glycine are observed due to the interaction effects between the analysis of variance (ANOVA) technique and a statistical study through a computer software.

  15. Complexation equilibria and coordination aspects of Zn(II) complexes contain 2-aminobenzamide and some bioactive amino acid mixed ligands: pH-metric, spectroscopic and thermodynamic studies.

    PubMed

    Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha; Raji, Saravanan

    2014-01-01

    Mixed ligand complexation of 2-aminobenzamide (2AB) as ligand [L] with Zn(II) in the presence of some bio-relevant amino acid constituents like glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) as ligand [B] have been investigated using pH-metric measurements with a combined pH electrode at different temperatures (300, 310, 320 and 330 ± 0.1 K) in 50% (v/v) ethanol-water mixture containing I = 0.15 M NaClO(4) as supporting electrolyte. Computer assisted analysis of the experimental titration data showed the presence of ZnLB and ZnLB2 species as mixed ligand complexes in addition to various binary species. In ZnLB/ZnLB(2) species, both primary and secondary ligands act as bidentate to form a stable six, five membered chelate ring. The calculated stabilization parameter Deltalog K, log X, log X' and % R.S. values clearly show the mixed ligand complexes have higher stabilities than their binary. Thermodynamic parameters DeltaG, DeltaH and DeltaS have been derived from the temperature dependence of the stability constants. The complexation behavior of ZnLB species has been studied by means of electronic spectra. The percentage distribution of various binary and mixed ligand species of each type of the complexes in solution depending on pH and the ratio of Zn(II) to 2-aminobenzamide/amino acid of the systems.

  16. Complexation equilibria and coordination aspects of Zn(II) complexes contain 2-aminobenzamide and some bioactive amino acid mixed ligands: pH-metric, spectroscopic and thermodynamic studies.

    PubMed

    Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha; Raji, Saravanan

    2014-01-01

    Mixed ligand complexation of 2-aminobenzamide (2AB) as ligand [L] with Zn(II) in the presence of some bio-relevant amino acid constituents like glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) as ligand [B] have been investigated using pH-metric measurements with a combined pH electrode at different temperatures (300, 310, 320 and 330 ± 0.1 K) in 50% (v/v) ethanol-water mixture containing I = 0.15 M NaClO(4) as supporting electrolyte. Computer assisted analysis of the experimental titration data showed the presence of ZnLB and ZnLB2 species as mixed ligand complexes in addition to various binary species. In ZnLB/ZnLB(2) species, both primary and secondary ligands act as bidentate to form a stable six, five membered chelate ring. The calculated stabilization parameter Deltalog K, log X, log X' and % R.S. values clearly show the mixed ligand complexes have higher stabilities than their binary. Thermodynamic parameters DeltaG, DeltaH and DeltaS have been derived from the temperature dependence of the stability constants. The complexation behavior of ZnLB species has been studied by means of electronic spectra. The percentage distribution of various binary and mixed ligand species of each type of the complexes in solution depending on pH and the ratio of Zn(II) to 2-aminobenzamide/amino acid of the systems. PMID:25551720

  17. Standard thermodynamic functions of complex formation between Cu2+ and glycine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Gorboletova, G. G.; Metlin, A. A.

    2013-05-01

    Heat effects of the interaction of copper(II) solutions with aminoacetic acid (glycine) are measured by the direct calorimetry at 298.15 K and ionic strengths of 0.5, 1.0, and 1.5 against a background of potassium nitrate. Standard enthalpy values for reactions of the formation of aminoacetic acid copper complexes in aqueous solutions are obtained using an equation with a single individual parameter by extrapolating it to zero ionic strength. The standard thermodynamic characteristics of complex formation in the Cu2+-glycine system are calculated. It is shown that glycine-like coordination is most likely in Cu(II) complexes with L-asparagine, L-glutamine, and L-valine.

  18. Glycine-Glomus-Rhizobium Symbiosis

    PubMed Central

    Bethlenfalvay, Gabor J.; Brown, Milford S.; Mihara, Keiko L.; Stafford, Alan E.

    1987-01-01

    Soybean (Glycine max [L.] Merr.) plants were nodulated (Bradyrhizobium japonicum) and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or left uncolonized. All plants were grown unstressed for 21 days initially. After this period, some VAM and non-VAM plants were exposed to four 8-day drought cycles while others were kept well watered. Drought cycles were terminated by rewatering when soil moisture potentials reached −1.2 megapascal. Nodule development and activity, transpiration, leaf conductance, leaf and root parameters including fresh and dry weight, and N and P nutrition of VAM plants and of non-VAM, P-fed plants grown under the same controlled conditions were compared. All parameters, except N content, were greater in VAM plants than in P-fed, non-VAM plants when under stress. The opposite was generally true in the unstressed comparisons. Transpiration and leaf conductance were significantly greater in stressed VAM than in non-VAM plants during the first half of the final stress cycle. Values for both VAM and non-VAM plants decreased linearly with time during the cycle and converged at a high level of stress (−1.2 megapascal). Effects of VAM fungi on the consequences of drought stress relative to P nutrition and leaf gas exchange are discussed in the light of these findings and those reported in the literature. PMID:16665641

  19. Glycine exists mainly as monomers, not dimers, in supersaturated aqueous solutions: implications for understanding its crystallization and polymorphism.

    PubMed

    Huang, Jun; Stringfellow, Thomas C; Yu, Lian

    2008-10-22

    Glycine, the simplest amino acid, is described as existing as hydrogen-bonded cyclic dimers in supersaturated aqueous solutions and, as a result, crystallizing in a centrosymmetric polymorph (polymorph alpha) for which the dimer can be viewed as the building unit, in favor of other polymorphs of polar structures. In exhibiting this relation between polymorphic selectivity and self-association in solution, glycine is thought to illustrate a general principle. We measured the freezing-point depression of glycine-water up to 30% supersaturation and found that glycine exists mainly as monomers, not dimers, and that the dimer stability constant K D is smaller than 0.1 kg of H 2O/mol if the observed osmotic abnormality is attributed to dimerization. We also revisited a report cited as evidence for glycine dimerization: the slowdown of glycine diffusion with solution age. Pulsed gradient spin-echo NMR spectroscopy was used in place of the previous method of Gouy interferometry to avoid perturbations to sloution structure caused by the interdiffusion between two solutions of different concentrations. No aging effect was observed on glycine diffusion up to 24% supersaturation after five days. The solute size calculated from diffusivity, viscosity, and the Stokes-Einstein relation showed no increase with concentration or solution age. We conclude that glycine exists in supersaturated aqueous solutions mainly as monomers, not dimers, and remains so upon aging. This result does not invalidate the theories of how pH and additives affect glycine's polymorphic preference, because they begin with the assumption that alpha glycine is the preferred polymorph under normal conditions, but requires a new explanation for that assumption itself. PMID:18816054

  20. N-[[(Mercaptoacetyl)amino]benzoyl]glycines as mucolytic agents.

    PubMed

    Martin, T A; Comer, W T

    1985-07-01

    m- and p-aminobenzoic acids were converted to the title compounds by sequential use of ClCH2COCl, SOCl2, glycine methyl or ethyl ester, AcSK, and hydrolysis. The title compounds and a number of salts were compared for mucolytic activity, toxicity, stability, and hygroscopicity. When compared to N-acetyl-L-cysteine (NAC), the compounds exhibit several times the in vitro mucolytic activity of NAC on a molar basis. The most promising candidate appears to be the sodium salt 3.5H2O 2 of the meta series. PMID:4009614

  1. N-[[(Mercaptoacetyl)amino]benzoyl]glycines as mucolytic agents.

    PubMed

    Martin, T A; Comer, W T

    1985-07-01

    m- and p-aminobenzoic acids were converted to the title compounds by sequential use of ClCH2COCl, SOCl2, glycine methyl or ethyl ester, AcSK, and hydrolysis. The title compounds and a number of salts were compared for mucolytic activity, toxicity, stability, and hygroscopicity. When compared to N-acetyl-L-cysteine (NAC), the compounds exhibit several times the in vitro mucolytic activity of NAC on a molar basis. The most promising candidate appears to be the sodium salt 3.5H2O 2 of the meta series.

  2. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  3. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well. PMID:26369758

  4. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  5. Organic foliar Milstop shows efficacy against soybean aphid (Aphis glycines) on soybean (Glycine max)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) has been produced in the United States since 1765. Soybean aphids (Aphis glycines Matsumura) were first detected on soybean in the United States in 2000 and now cause an estimated yield loss of up to US$4.9 billion annually. Organic soybean producers have few insecti...

  6. Exploring Solute-Solvent Interactions of -Amino Acids in Aqueous [] Arrangements by Volumetric, Viscometric, Refractometric, and Acoustic Approach

    NASA Astrophysics Data System (ADS)

    Roy, Mahendra Nath; Roy, Milan Chandra; Basak, Saptarshi

    2014-05-01

    Qualitative and quantitative analysis of molecular interaction prevailing in glycine, l-alanine, l-valine, and aqueous solution of ionic liquid (IL) [1-ethylpyridinium tetrafluoroborate (] have been investigated by thermophysical properties. The apparent molar volume (), viscosity -coefficient, molal refraction (), and adiabatic compressibility ( of glycine, l-alanine, and l-valine have been studied in 0.001 mol , 0.003 mol , and 0.005 mol aqueous 1-ethylpyridinium tetrafluoroborate [] solutions at 298.15 K from the values of densities , viscosities (), refractive index (, and speed of sound , respectively. The extent of interaction, i.e., the solute-solvent interaction is expressed in terms of the limiting apparent molar volume (, viscosity -coefficient, and limiting apparent molar adiabatic compressibility (. The limiting apparent molar volumes (, experimental slopes ( derived from the Masson equation, and viscosity - and -coefficients using the Jones-Dole equation have been interpreted in terms of ion-ion and ion-solvent interactions, respectively. Molal refractions ( have been calculated with the help of the Lorentz-Lorenz equation. The role of the solvent (aqueous IL solution) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

  7. Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring.

    PubMed

    Lu, Yonghai; Lam, Honming; Pi, Erxu; Zhan, Qinglei; Tsai, Sauna; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming

    2013-09-11

    Metabolomics is developing as an important functional genomics tool for understanding plant systems' response to genetic and environmental changes. Here, we characterized the metabolic changes of cultivated soybean C08 (Glycine max L. Merr) and wild soybean W05 (Glycine soja Sieb.et Zucc.) under salt stress using MS-based metabolomics, in order to reveal the phenotypes of their eight hybrid offspring (9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590). Total small molecule extracts of soybean seedling leaves were profiled by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-Fourier transform mass spectrometry (LC-FT/MS). We found that wild soybean contained higher amounts of disaccharides, sugar alcohols, and acetylated amino acids than cultivated soybean, but with lower amounts of monosaccharides, carboxylic acids, and unsaturated fatty acids. Further investigations demonstrated that the ability of soybean to tolerate salt was mainly based on synthesis of compatible solutes, induction of reactive oxygen species (ROS) scavengers, cell membrane modifications, and induction of plant hormones. On the basis of metabolic phenotype, the salt-tolerance abilities of 9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590 were discriminated. Our results demonstrated that MS-based metabolomics provides a fast and powerful approach to discriminate the salt-tolerance characteristics of soybeans.

  8. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes

    PubMed Central

    Carvajal-González, Alexander; Leite, M. Isabel; Waters, Patrick; Woodhall, Mark; Coutinho, Ester; Balint, Bettina; Lang, Bethan; Pettingill, Philippa; Carr, Aisling; Sheerin, Una-Marie; Press, Raomand; Lunn, Michael P.; Lim, Ming; Maddison, Paul; Meinck, H.-M.; Vandenberghe, Wim

    2014-01-01

    The clinical associations of glycine receptor antibodies have not yet been described fully. We identified prospectively 52 antibody-positive patients and collated their clinical features, investigations and immunotherapy responses. Serum glycine receptor antibody endpoint titres ranged from 1:20 to 1:60 000. In 11 paired samples, serum levels were higher than (n = 10) or equal to (n = 1) cerebrospinal fluid levels; there was intrathecal synthesis of glycine receptor antibodies in each of the six pairs available for detailed study. Four patients also had high glutamic acid decarboxylase antibodies (>1000 U/ml), and one had high voltage-gated potassium channel-complex antibody (2442 pM). Seven patients with very low titres (<1:50) and unknown or alternative diagnoses were excluded from further study. Three of the remaining 45 patients had newly-identified thymomas and one had a lymphoma. Thirty-three patients were classified as progressive encephalomyelitis with rigidity and myoclonus, and two as stiff person syndrome; five had a limbic encephalitis or epileptic encephalopathy, two had brainstem features mainly, two had demyelinating optic neuropathies and one had an unclear diagnosis. Four patients (9%) died during the acute disease, but most showed marked improvement with immunotherapies. At most recent follow-up, (2–7 years, median 3 years, since first antibody detection), the median modified Rankin scale scores (excluding the four deaths) decreased from 5 at maximal severity to 1 (P < 0.0001), but relapses have occurred in five patients and a proportion are on reducing steroids or other maintenance immunotherapies as well as symptomatic treatments. The glycine receptor antibodies activated complement on glycine receptor-transfected human embryonic kidney cells at room temperature, and caused internalization and lysosomal degradation of the glycine receptors at 37°C. Immunoglobulin G antibodies bound to rodent spinal cord and brainstem co-localizing with

  9. Nazarov cyclization of dienylaziridines: synthesis of cyclopentadienyl/hydrinedienyl/indenyl glycines.

    PubMed

    Sudhakar, Gangarajula; Reddy, Karla Janardhan; Nanubolu, Jagadesh Babu

    2015-09-01

    Cyclopentadienyl, hydrinedienyl, and indenyl glycines were synthesized using dienylaziridines as Nazarov cyclization precursors for the first time. Several substrates were synthesized to demonstrate the compatibility of this reaction. Asymmetric synthesis of these amino acids was also developed to show the additional scope of this method. PMID:26203635

  10. 77 FR 73426 - Glycine From the People's Republic of China: Final Partial Affirmative Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... of purity and is used as a sweetener/taste enhancer, a buffering agent, reabsorbable amino acid... Antidumping Duty Order: Glycine From the People's Republic of China, 60 FR 16116 (March 29, 1995) (Order... Order and Initiation of Scope Inquiry, 77 FR 21532 (April 10, 2012) (Preliminary Determination)....

  11. 76 FR 57951 - Glycine From the People's Republic of China: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... and is used as a sweetener/taste enhancer, a buffering agent, reabsorbable amino acid, chemical... Antidumping Duty Order: Glycine From the People's Republic of China, 60 FR 16116 (March 29, 1995). On October... of Five-Year (``Sunset'') Review, 75 FR 60731 (October 1, 2010). As a result of this sunset...

  12. 77 FR 21532 - Glycine From the People's Republic of China: Preliminary Partial Affirmative Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... of purity and is used as a sweetener/taste enhancer, a buffering agent, reabsorbable amino acid...: Glycine From the People's Republic of China, 60 FR 16116 (March 29, 1995) (Order). DATES: Effective Date... FR 16640 (March 28, 2008) (Indian Investigation) and accompanying Issues and Decision Memorandum...

  13. Ir-Spectroscopy of Glycine and its Complexes with Water in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Letzner, M.; Grün, S. A.; Schwaab, G.; Havenith, M.

    2011-06-01

    Glycine is the smallest amino acid, and therefore it is of special interest as a model and starting point for theoretical and experimental studies. Whereas the crystalline form of glycine consists of zwitterions NH_3+-CH_2-COO-, gas phase glycine is known to exist in the nonionized form NH_2-CH_2-COOH. The interaction between glycine and water has been widely studied using a large variety of theoretical methods. Depending on the theoretical level used, a stabilisation of the zwitterionic form is predicted for complexes containing from 2 to 7 water molecules. In low-temperature Ar matrices a set of characteristic IR absorption bands for the zwitterionic form has been observed. The higher stoichiometry complexes (glycine)\\cdots(H_2O)_n with n larger than 3 are demonstrated to be zwitterionic H-bonded complexes. The multitude of conformations expected for these glycine-water complexes makes a combination of low temperature and high resolution spectroscopy essential. We want to use the advantages of our experiment to investigate glycine and its complexes with water in helium-nanodroplets at ultracold temperatures in the range from 3000-3800 Cm-1. Our measurements were carried out using a high power IR-OPO (cw: 2.7 W) as radiation source and a helium nanodroplet spectrometer. Helium-nanodroplets are formed by expansion of helium at 55 bar through a 5 μm nozzle which is kept at a temperature of 16 K. The status of the project is presented. P.-G. Jönsson et al., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 1827 (1972) G. Junk et al., J. Am. Chem. Soc. 85, 839 (1963) R. Ramaekers et al., J. Chem. Phys., 120 (2004)

  14. Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA)

    NASA Astrophysics Data System (ADS)

    Pudjiastuti, Lily; Susianto, Altway, Ali; IC, Maria Hestia; Arsi, Kartika

    2015-12-01

    In industry, especially petrochemical, oil and natural gas industry, required separation process of CO2 gas which is a corrosive gas (acid gas). This characteristic can damage the plant utility and piping systems as well as reducing the caloric value of natural gas. Corrosive characteristic of CO2 will appear in areas where there is a decrease in temperature and pressure, such as at the elbow pipe, tubing, cooler and injector turbine. From disadvantages as described above, then it is important to do separation process in the CO2 gas stream, one of the method for remove CO2 from the gas stream is reactive absorption using alkanolamine based solution with promotor. Therefore, this study is done to determine the kinetics constant of CO2 absorption in diethanolamine (DEA) solution using a glycine promoter. Glycine is chosen as a promoter because glycine is a primary amine compound which is reactive, moreover, glycine has resistance to high temperatures so it will not easy to degradable and suitable for application in industry. The method used in this study is absorption using laboratory scale wetted wall column equipment at atmospheric of pressure. This study will to provide the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that rising temperatures from 303,15 - 328,15 K and the increase of concentration of glycine from 1% - 3% weight will increase the absorption rate of carbon dioxide in DEA promoted with glycine by 24,2% and 59,764% respectively, also the reaction kinetic constant is 1.419 × 1012 exp (-3634/T) (m3/kmol.s). This result show that the addition of glycine as a promoter can increase absorption rate of carbon dioxide in diethanolamine solution and cover the weaknesses of diethanolamine solution.

  15. Uptake of nitrate, ammonium and glycine by plants of Tasmanian wet eucalypt forests.

    PubMed

    Warren, C R; Adams, P R

    2007-03-01

    A central assumption of ecosystem N cycling has been that organic N must be converted to inorganic N to be available for plant uptake, but this has been questioned by recent studies. We examined uptake of nitrate, ammonium and the amino acid glycine in three species from Eucalyptus obliqua L'Her. wet forest in Tasmania, south-eastern Australia, to test the hypothesis that all three species can take up glycine, and to compare rates of glycine uptake with rates of uptake of nitrate and ammonium uptake. The alternative hypothesis that species vary in their preference for nitrate, ammonium and glycine ("niche differentiation") was also examined. Measurements were made on the canopy dominant Eucalyptus obliqua, and two rain forest tree species found in the understory or as sub-dominants of the canopy, Nothofagus cunninghamii (Hook.) Oerst. and Phyllocladus aspleniifolius (Labill.) Hook.f. Nitrogen uptake was examined in situ with attached roots placed in uptake solutions containing equimolar concentrations (100 micromol l(-1)) of (15)N-nitrate, (15)N-ammonium and 2-(13)C(2) (15)N-glycine. Species did not differ in their preference for different forms of N (species x N form interaction, P > 0.05), and thus there was no evidence of niche differentiation. In all species, rates of uptake were highest for ammonium (11 +/- 5 micromol g(DM) (-1) h(-1); mean +/- SD, n = 108), uptake of glycine occurred at less than half this rate (4.4 +/- 2.6 micromol g(DM) (-1) h(-1)), whereas uptake of nitrate occurred at one-tenth of this rate (0.9 +/- 1.2 micromol g(DM) (-1) h(-1)). The strong positive relationship between (15)N and (13)C uptake indicated that at least 72% of glycine-N was taken up intact. These findings indicate the potential for considerable uptake of organic N in the field.

  16. A Rigorous Attempt to Verify Interstellar Glycine

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Lovas, F. J.; Hollis, J. M.; Friedel, D. N.; Jewell, P. R.; Remijan, A.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.

    2004-01-01

    In 2003, Kuan, Charnley, and co-workers reported the detection of interstellar glycine (NH2CH2COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr BP(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper, we present essential criteria which can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published SEST data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify several common molecular candidates that should be examined further as more likely carriers of the lines reported as glycine. Finally, we illustrate that rotational temperature diagrams used without the support of correct spectroscopic assignments are not a reliable tool for the identification of interstellar molecules. Subject headings: ISM: abundances - ISM: clouds - ISM: individual (Sagittarius B2[N-

  17. Development of 2′-substituted (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine analogues as potent N-methyl-d-aspartic acid receptor agonists

    PubMed Central

    Risgaard, Rune; Nielsen, Simon D.; Hansen, Kasper B.; Jensen, Christina M.; Nielsen, Birgitte; Traynelis, Stephen F.; Clausen, Rasmus P.

    2013-01-01

    A series of 2′-substituted analogues of the selective NMDA receptor ligand (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine ((S)-CCG-IV) have been designed, synthesized and pharmacologically characterized. The design was based on a docking study hypothesizing that substituents in the 2′-position would protrude into a region where differences among the NMDA receptor GluN2 subunits exist. Various synthetic routes were explored, and two different routes provided a series of alkyl-substituted analogues. Pharmacological characterization revealed that these compounds are NMDA receptor agonists and that potency decreases with increasing size of the alkyl groups. Variations in agonist activity are observed at the different recombinant NMDA receptor subtypes. This study demonstrates that it is possible to introduce substituents in the 2′-position of (S)-CCG-IV while maintaining agonist activity and that variation among NMDA receptor subtypes may be achieved by probing this region of the receptor. PMID:23614571

  18. Antidepressants modulate glycine action in rat hippocampus

    PubMed Central

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-01-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  19. Glycine decarboxylase controls photosynthesis and plant growth.

    PubMed

    Timm, Stefan; Florian, Alexandra; Arrivault, Stephanie; Stitt, Mark; Fernie, Alisdair R; Bauwe, Hermann

    2012-10-19

    Photorespiration makes oxygenic photosynthesis possible by scavenging 2-phosphoglycolate. Hence, compromising photorespiration impairs photosynthesis. We examined whether facilitating photorespiratory carbon flow in turn accelerates photosynthesis and found that overexpression of the H-protein of glycine decarboxylase indeed considerably enhanced net-photosynthesis and growth of Arabidopsis thaliana. At the molecular level, lower glycine levels confirmed elevated GDC activity in vivo, and lower levels of the CO(2) acceptor ribulose 1,5-bisphosphate indicated higher drain from CO(2) fixation. Thus, the photorespiratory enzyme glycine decarboxylase appears as an important feed-back signaller that contributes to the control of the Calvin-Benson cycle and hence carbon flow through both photosynthesis and photorespiration.

  20. Antidepressants modulate glycine action in rat hippocampus.

    PubMed

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-12-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  1. Glycine as a regulator of tryptophan-dependent pigment synthesis in Malassezia furfur.

    PubMed

    Barchmann, Thorsten; Hort, Wiebke; Krämer, Hans-Joachim; Mayser, Peter

    2011-01-01

    The effects of the addition of different amino nitrogens on growth, morphology and secondary metabolism of Malassezia furfur were investigated. After primary culture on Dixon agar, M. furfur CBS 1878 was transferred into a fluid medium together with the nitrogen sources, glycine (Gly) or tryptophan (Trp), or a combination of both. Growth was measured by means of a direct cell counting method and pigment synthesis was photometrically assessed. Addition of glycine resulted in an exponential increase in biomass, but not in pigment production. Tryptophan as the sole nitrogen source caused distinct brown staining of the medium, without increasing biomass. Simultaneous equimolar addition of both amino acids resulted in an initial increase in biomass as a sign of preferential metabolism of glycine, followed by a growth plateau and pigment production which, caused by higher biomass, occurred more rapidly than after addition of tryptophan alone. The yeast-cell morphology changed from round to oval. Addition of glycine to the tryptophan-containing liquid culture stopped pigment formation with simultaneous growth induction. These in vitro on-off phenomena depending on the nitrogen source might be significant in the pathogenesis of pityriasis versicolor: hyperhidrosis followed by preferential consumption of individual nitrogen sources such as glycine with exponential growth and thereafter transamination of tryptophan and TRP-dependent pigment synthesis. PMID:19702622

  2. Oligo-Glycine Synthesis in an Aqueous Solution of Glycine Under Oxidative Conditions

    NASA Astrophysics Data System (ADS)

    Yamagata, Yukio; Yamashita, Atsunori; Inomata, Katsuhiko

    1980-03-01

    Di-and tri-glycine were synthesized in 1M aqueous solution of glycine by bubbling for 90 hr with oxygen discharged in the path from an oxygen cylinder. The peptides were also produced by an incubation at 37°C of 2M glycine solution prepared with 75% hydrogen peroxide, and the yields were traced for 200 days. The final yields were about 0.25% and 0.01% for di-and tri-glycine, respectively. The solution at 166 days of incubation was applied to a Sephadex G 10 column, and the fractions around the top of the chromatogram were found to increase the intensity of ninhydrin color about 4˜5 times after hydrolysis, indicating an existence of oligo-glycine. The solutions of 1M glycine and 0.5M diglycine prepared with 30% hydrogen peroxide were incubated at 37°C for 38 days, and di-and tetra-glycine were detected in the yields of 0.12% and 0.33%, respectively.

  3. GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1

    PubMed Central

    Sarwar, Zaara; Lundgren, Benjamin R.; Grassa, Michael T.; Wang, Michael X.; Gribble, Megan; Moffat, Jennifer F.

    2016-01-01

    ABSTRACT Glycine serves as a major source of single carbon units for biochemical reactions within bacterial cells. Utilization of glycine is tightly regulated and revolves around a key group of proteins known as the glycine cleavage system (GCS). Our lab previously identified the transcriptional regulator GcsR (PA2449) as being required for catabolism of glycine in the opportunistic pathogen Pseudomonas aeruginosa PAO1. In an effort to clarify and have an overall better understanding of the role of GcsR in glycine metabolism, a combination of transcriptome sequencing and electrophoretic mobility shift assays was used to identify target genes of this transcriptional regulator. It was found that GcsR binds to an 18-bp consensus sequence (TGTAACG-N4-CGTTCCG) upstream of the gcs2 operon, consisting of the gcvH2, gcvP2, glyA2, sdaA, and gcvT2 genes. The proteins encoded by these genes, namely, the GCS (GcvH2-GcvP2-GcvT2), serine hydroxymethyltransferase (GlyA2), and serine dehydratase (SdaA), form a metabolic pathway for the conversion of glycine into pyruvate, which can enter the central metabolism. GcsR activates transcription of the gcs2 operon in response to glycine. Interestingly, GcsR belongs to a family of transcriptional regulators known as TyrR-like enhancer-binding proteins (EBPs). Until this study, TyrR-like EBPs were only known to function in regulating aromatic amino acid metabolism. GcsR is the founding member of a new class of TyrR-like EBPs that function in the regulation of glycine metabolism. Indeed, homologs of GcsR and its target genes are present in almost all sequenced genomes of the Pseudomonadales order, suggesting that this genetic regulatory mechanism is a common theme for pseudomonads. IMPORTANCE Glycine is required for various cellular functions, including cell wall synthesis, protein synthesis, and the biosynthesis of several important metabolites. Regulating levels of glycine metabolism allows P. aeruginosa to maintain the metabolic flux

  4. A rare case of glycine encephalopathy unveiled by valproate therapy.

    PubMed

    Subramanian, Velusamy; Kadiyala, Pramila; Hariharan, Praveen; Neeraj, E

    2015-01-01

    Glycine encephalopathy (GE) or nonketotic hyperglycinemia is an autosomal recessive disorder due to a primary defect in glycine cleavage enzyme system. It is characterized by elevated levels of glycine in plasma and cerebrospinal fluid usually presenting with seizures, hypotonia, and developmental delay. In our case, paradoxical increase in seizure frequency on starting sodium valproate led us to diagnose GE. PMID:26167219

  5. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glycine. 172.812 Section 172.812 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN...

  6. Engineering and characterization of fluorogenic glycine riboswitches

    PubMed Central

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-01-01

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (kon), and dissociation (koff) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. kon and koff were in the order of 10−3s−1 and 10−2s−1, respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. PMID:27220466

  7. Identification of Rotylenchulus reniformis resistant Glycine lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the Mid South. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen....

  8. Rapid crystallization of glycine using metal-assisted and microwave-accelerated evaporative crystallization: the effect of engineered surfaces and sample volume.

    PubMed

    Grell, Tsehai A J; Pinard, Melissa A; Pettis, Danielle; Aslan, Kadir

    2012-01-01

    Metal-Assisted and Microwave-Accelerated Evaporative Crystallization (MA-MAEC), is a new approach to crystallization of drug compounds, amino acids, DNA and proteins. In this work, we report our additional findings on the effect of engineered surfaces and sample volume on the rapid crystallization of glycine. With the use of hydrophilic functionalized surfaces and the MA-MAEC technique, glycine crystals ~1 mm in size were grown in 35 seconds with 100% selectivity for the α-form.The use of moderately hydrophobic surfaces resulted in the growth of glycine crystals only at room temperature. An increase in volume of initial glycine solution (5-100 μL) resulted in an increase in crystal size without a significant increase in total crystallization time. Raman spectroscopy and powder X-ray diffraction results demonstrated that the glycine crystals grown on engineered surfaces were structurally identical to those grown using conventional evaporative crystallization.

  9. A Novel Glycinate-based Body Wash

    PubMed Central

    Regan, Jamie; Ananthapadmanabhan, K.P.

    2013-01-01

    Objective: To assess the properties of a novel body wash containing the mild surfactant glycinate. Design: Biochemical and clinical assays. Setting: Research laboratories and clinical sites in the United States and Canada. Participants: Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Measurements: Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. Results: The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores <3 and erythema scores <2 (both on a 0-6 scale) indicated an initial reduction in visual dryness. In subjects with eczema, normal use resulted in significant improvements (p<0.05) at Week 4 compared with baseline in skin dryness (change from baseline = −0.73), rash (−0.56), itch (−0.927), tightness (−0.585), and all eczema (−0.756). The glycinate-based body wash removed 56 percent of a long-lasting cosmetic foundation from skin compared with less than 30 percent removed by two competitive products tested. The glycinate-based body wash was preferred over a competitive mild cleansing product overall. Conclusion: The patented glycinate-containing body wash demonstrated better product mildness and patient-preferred attributes and clinical benefits. PMID:23882306

  10. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, a perennial wild relative of soybean in the subgenus Glycine Willd., shows high levels of resistan...

  11. Removal of brownish-black tarnish on silver-copper alloy objects with sodium glycinate

    NASA Astrophysics Data System (ADS)

    de Figueiredo, João Cura D.'Ars; Asevedo, Samara Santos; Barbosa, João Henrique Ribeiro

    2014-10-01

    This article has the principal aim of presenting a new method of chemical cleaning of tarnished silver-copper alloy objects. The chemical cleaning must be harmless to the health, selective to tarnish removal, and easy to use. Sodium glycinate was selected for the study. The reactions of sodium glycinate with tarnish and the silver-copper alloy were evaluated. Products of the reaction, the lixiviated material, and the esthetics of silver-copper alloy coins (used as prototypes) were studied to evaluate if the proposed method can be applied to the cleaning of silver objects. Silver-copper alloys can be deteriorated through a uniform and superficial corrosion process that produces brownish-black tarnish. This tarnish alters the esthetic of the object. The cleaning of artistic and archeological objects requires more caution than regular cleaning, and it must take into account the procedures for the conservation and restoration of cultural heritage. There are different methods for cleaning silver-copper alloy objects, chemical cleaning is one of them. We studied two chemical cleaning methods that use sodium glycinate and sodium acetylglycinate solutions. Silver-copper alloy coins were artificially corroded in a basic thiourea solution and immersed in solutions of sodium glycinate and sodium acetylglycinate. After immersion, optical microscopy and scanning electron microscopy of the surfaces were studied. The sodium glycinate solution was shown to be very efficient in removing the brownish-black tarnish. Absorption spectroscopy measured the percentage of silver and copper lixiviated in immersion baths, and very small quantities of these metals were detected. Infrared absorption spectroscopy and X-ray fluorescence characterized the obtained products. The greater efficiency of the sodium glycinate solution compared to the sodium acetylglycinate solution was explained by chelation and Hard-Soft Acid-Base Theory with the aid of quantum chemical calculations.

  12. Differential distribution of glycine transporters in Müller cells and neurons in amphibian retinas.

    PubMed

    Jiang, Zheng; Li, Baoqin; Jursky, Frantisek; Shen, Wen

    2007-01-01

    Amphibian retinas are commonly used for electrophysiological studies on neural function and transduction because they share the same general properties as higher vertebrate retinas. Glycinergic synapses have been well described in amphibian retinas. However, the role of glycine transporters in the synapses is largely unknown. We studied the distribution and function of glycine transporters in the retinas from tiger salamanders, mudpuppies, and leopard frogs by immunofluorescence labeling and whole-cell recording methods. Our results indicated that GlyT1- and GlyT2-like transporters were present in Müller cells and neurons, respectively. GlyT1 labeling was present in Müller glial cells and co-localized with Glial fibrillary acidic protein (GFAP), a Müller cell marker, whereas the GlyT2 immunoreactivity was present in the somas of amacrine cells (ACs) and processes in the inner plexiform layer (IPL) and the outer plexiform layer (OPL). Because the axon processes of glycinergic interplexiform cells (IPCs) are the only source of glycine input in the OPL, GlyT2 staining revealed a spatial pattern of the axon processes of IPCs in the OPL. The function of GlyT2 in the IPCs was studied in tiger salamander retinal horizontal cells (HCs) by whole-cell gramicidin perforated recording. The results demonstrated that inhibition of GlyT2 by a specific inhibitor, amoxapine, increased a tonic glycine input to HCs. Thus, the GlyT2 transporter is responsible for uptake of synaptic glycine in the outer retina. We also compared the distribution of glycine transporters in other amphibian species: salamander, mudpuppy, and frog. The results are consistent with the general pattern that GlyT1-like transporters are present in Müller cells and GlyT2-like transporters in neurons in amphibian retinas. PMID:17640406

  13. Thermal formation of methylammonium methylcarbamate in interstellar ice analogs: a glycine salt precursor under VUV irradiation

    NASA Astrophysics Data System (ADS)

    Duvernay, Fabrice; Borget, Fabien; Bossa, Jean-Baptiste; Theule, Patrice; Dhendecourt, Louis; Chiavassa, Thierry

    Dust grains in the interstellar medium (ISM) play an important role in dense molecular clouds chemistry of providing a surface (catalyst) upon which atoms and molecules can freeze out, forming icy mantles. Dense molecular clouds are characterized by low temperature (10 -50 K) and represent the birth sites of stars. After a gravitationnal breakdown, a part of the dense molecular cloud collapses toward the formation of star and subsequently a protoplanetary disk from which planets, asteroids and comets will appear. During this evolution, interstellar or-ganic material inside ices undergoes different range of chemical alterations (thermal cycling process, ultraviolet photons, electron scattering and cosmic rays irradiation) hence increasing the molecular complexity before their incorporation inside precometary ices. To date, it is supposed that comets could have delivered to the early Earth the organic materials essential to a prebiotic chemistry, one of the prerequisites toward the origin of living systems. The for-mation of prebiotical molecules such as the simplest amino acids (glycine) is proposed in this current study mainly based on laboratory experiments simulating the chemistry occuring on ices within protostellar environments. Infrared spectroscopy and mass spectroscopy are used to monitor the thermal formation of glycine isomer form: the methylammonium methylcarbamate [CH3NH3+][CH3NHCOO-] in interstellar ice analogs made up of two astrophysical relevant molecules: carbon dioxide (CO2) and methylamine (CH3NH2). Using infrared spectroscopy, we study the photochemical behaviour of a pure sample of methylammonium methylcarbamate under vacuum ultraviolet (VUV) field. We show that a glycine isomer salt could readily enter into the composition of ices in colder region of protostellar environments. Upon ultraviolet irra-diation, this latter can undergo an isomerization process induced by photons yielding a glycine salt: the methylammonium glycinate [CH3NH3+][NH2CH2

  14. D-amino acid-induced expression of D-amino acid oxidase in the yeast Schizosaccharomyces pombe.

    PubMed

    Takahashi, Shouji; Okada, Hirotsune; Abe, Katsumasa; Kera, Yoshio

    2012-12-01

    We investigated D-amino acid oxidase (DAO) induction in the popular model yeast Schizosaccharomyces pombe. The product of the putative DAO gene of the yeast expressed in E. coli displayed oxidase activity to neutral and basic D-amino acids, but not to an L-amino acid or acidic D-amino acids, showing that the putative DAO gene encodes catalytically active DAO. DAO activity was weakly detected in yeast cells grown on a culture medium without D-amino acid, and was approximately doubled by adding D-alanine. The elimination of ammonium chloride from culture medium induced activity by up to eight-fold. L-Alanine also induced the activity, but only by about half of that induced by D-alanine. The induction by D-alanine reached a maximum level at 2 h cultivation; it remained roughly constant until cell growth reached a stationary phase. The best inducer was D-alanine, followed by D-proline and then D-serine. Not effective were N-carbamoyl-D,L-alanine (a better inducer of DAO than D-alanine in the yeast Trigonopsis variabilis), and both basic and acidic D-amino acids. These results showed that S. pombe DAO could be a suitable model for analyzing the regulation of DAO expression in eukaryotic organisms. PMID:22986818

  15. Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine max) soybean seeds using proteomic analysis.

    PubMed

    Natarajan, Savithiry S; Xu, Chenping; Bae, Hanhong; Caperna, Thomas J; Garrett, Wesley M

    2006-04-19

    A combined proteomic approach was applied for the separation, identification, and comparison of two major storage proteins, beta-conglycinin and glycinin, in wild (Glycine soja) and cultivated (Glycine max) soybean seeds. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with three different immobilized pH gradient (IPG) strips was an effective method to separate a large number of abundant and less-abundant storage proteins. Most of the subunits of beta-conglycinin were well-separated in the pH range 3.0-10.0, while acidic and basic glycinin polypeptides were well-separated in pH ranges 4.0-7.0 and 6.0-11.0, respectively. Although the overall distribution pattern of the protein spots was similar in both genotypes using pH 3.0-10.0, variations in number and intensity of protein spots were better resolved using a combination of pH 4.0-7.0 and pH 6.0-11.0. The total number of storage protein spots detected in wild and cultivated genotypes was approximately 44 and 34, respectively. This is the first study reporting the comparison of protein profiles of wild and cultivated genotypes of soybean seeds using proteomic tools.

  16. Activation of glycine receptor phase-shifts the circadian rhythm in neuronal activity in the mouse suprachiasmatic nucleus

    PubMed Central

    Mordel, Jérôme; Karnas, Diana; Inyushkin, Alexey; Challet, Etienne; Pévet, Paul; Meissl, Hilmar

    2011-01-01

    Abstract In mammals, the master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is composed of numerous synchronized oscillating cells that drive daily behavioural and physiological processes. Several entrainment pathways, afferent inputs to the SCN with their neurotransmitter and neuromodulator systems, can reset the circadian system regularly and also modulate neuronal activity within the SCN. In the present study, we investigated the function of the inhibitory neurotransmitter glycine on neuronal activity in the mouse SCN and on resetting of the circadian clock. The effects of glycine on the electrical activity of SCN cells from C57Bl/6 mice were studied either by patch-clamp recordings from acute brain slices or by long-term recordings from organotypic brain slices using multi-microelectrode arrays (MEA). Voltage-clamp recordings confirmed the existence of glycine-induced, chloride-selective currents in SCN neurons. These currents were reversibly suppressed by strychnine, phenylbenzene ω-phosphono-α-amino acid (PMBA) or ginkgolide B, selective blockers of glycine receptors (GlyRs). Long-term recordings of the spontaneous activity of SCN neurons revealed that glycine application induces a phase advance during the subjective day and a phase delay during the early subjective night. Both effects were suppressed by strychnine or by PMBA. These results suggest that glycine is able to modulate circadian activity by acting directly on its specific receptors in SCN neurons. PMID:21486797

  17. Glycine receptors influence radial migration in the embryonic mouse neocortex.

    PubMed

    Nimmervoll, Birgit; Denter, Denise G; Sava, Irina; Kilb, Werner; Luhmann, Heiko J

    2011-07-13

    To investigate whether glycine receptors influence radial migration in the neocortex, we analyzed the effect of glycine and the glycinergic antagonist strychnine, on the distribution of 5-bromo-2'deoxyuridine-labeled neurons in organotypic slice cultures from embryonic mice cortices. Application of glycine impeded radial migration only in the presence of the glycine-transport blockers, ALX-5407 and ALX-1393. This effect was blocked by the specific glycine receptor antagonist strychnine, whereas application of strychnine in the absence of glycine was without effect. We conclude from these observations that an activation of glycine receptors can impede radial migration, but that the glycinergic system is not directly implicated in the regulation of radial migration in organotypic slice cultures.

  18. Effects of Glycine, Water, Ammonia, and Ammonium Bicarbonate on the Oligomerization of Methionine

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Furukawa, Yoshihiro; Otake, Tsubasa; Kakegawa, Takeshi

    2016-09-01

    The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the oligomerization

  19. Glycine supplementation in vitro enhances porcine preimplantation embryo cell number and decreases apoptosis but does not lead to live births

    PubMed Central

    Redel, Bethany K.; Spate, Lee D.; Lee, Kiho; Mao, Jiude; Whitworth, Kristin M.

    2016-01-01

    SUMMARY Most in vitro culture conditions are less‐than‐optimal for embryo development. Here, we used a transcriptional‐profiling database to identify culture‐induced differences in gene expression in porcine blastocysts compared to in vivo‐produced counterparts. Genes involved in glycine transport (SLC6A9), glycine metabolism (GLDC, GCSH, DLD, and AMT), and serine metabolism (PSAT1, PSPH, and PHGDH) were differentially expressed. Addition of 10 mM glycine to the culture medium (currently containing 0.1 mM) reduced the abundance of SLC6A9 transcript and increased total cell number, primarily in the trophectoderm lineage (P = 0.003); this was likely by decreasing the percentage of apoptotic nuclei. As serine and glycine can be reversibly metabolized by serine hydroxymethyltransferase 2 (SHMT2), we assessed the abundance of SHMT2 transcript as well as its functional role by inhibiting it with aminomethylphosphonic acid (AMPA), a glycine analog, during in vitro culture. Both AMPA supplementation and elevated glycine decreased the mRNA abundance of SHMT2 and tumor protein p53 (TP53), which is activated in response to cellular stress, compared to controls (P ≤ 0.02). On the other hand, mitochondrial activity of blastocysts, mtDNA copy number, and abundance of mitochondria‐related transcripts did not differ between control and 10 mM glycine culture conditions. Despite improvements to these metrics of blastocyst quality, transfer of embryos cultured in 10 mM glycine did not result in pregnancy whereas the transfer of in vitro‐produced embryos cultured in control medium yielded live births. Mol. Reprod. Dev. 83: 246–258, 2016. © 2016 The Authors. PMID:26824641

  20. Glycine supplementation in vitro enhances porcine preimplantation embryo cell number and decreases apoptosis but does not lead to live births.

    PubMed

    Redel, Bethany K; Spate, Lee D; Lee, Kiho; Mao, Jiude; Whitworth, Kristin M; Prather, Randall S

    2016-03-01

    Most in vitro culture conditions are less-than-optimal for embryo development. Here, we used a transcriptional-profiling database to identify culture-induced differences in gene expression in porcine blastocysts compared to in vivo-produced counterparts. Genes involved in glycine transport (SLC6A9), glycine metabolism (GLDC, GCSH, DLD, and AMT), and serine metabolism (PSAT1, PSPH, and PHGDH) were differentially expressed. Addition of 10 mM glycine to the culture medium (currently containing 0.1 mM) reduced the abundance of SLC6A9 transcript and increased total cell number, primarily in the trophectoderm lineage (P = 0.003); this was likely by decreasing the percentage of apoptotic nuclei. As serine and glycine can be reversibly metabolized by serine hydroxymethyltransferase 2 (SHMT2), we assessed the abundance of SHMT2 transcript as well as its functional role by inhibiting it with aminomethylphosphonic acid (AMPA), a glycine analog, during in vitro culture. Both AMPA supplementation and elevated glycine decreased the mRNA abundance of SHMT2 and tumor protein p53 (TP53), which is activated in response to cellular stress, compared to controls (P ≤ 0.02). On the other hand, mitochondrial activity of blastocysts, mtDNA copy number, and abundance of mitochondria-related transcripts did not differ between control and 10 mM glycine culture conditions. Despite improvements to these metrics of blastocyst quality, transfer of embryos cultured in 10 mM glycine did not result in pregnancy whereas the transfer of in vitro-produced embryos cultured in control medium yielded live births. Mol. Reprod. Dev. 83: 246-258, 2016. © 2016 The Authors. PMID:26824641

  1. Degradation of glycine and alanine on irradiated quartz.

    PubMed

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  2. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    PubMed

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    of 120 cells/linear mm. Their morphology indicates that they include Golgi and Lugaro cell types with the majority containing both glycine and GABA or glutamic acid decarboxylase. These data are consistent with the proposal that, as in the rat cerebellum, these granular cell layer interneurons corelease glycine and GABA in the primate cerebellum. The patterns of labeling for glycine and GABA within Golgi and Lugaro cells also indicate that there are biochemical sub-types which are morphologically similar. Further, we find that glycine, GABA and glutamic acid decarboxylase identified candelabrum cells adjacent to the Purkinje cells which is the first time that this interneuron has been reported in primate cerebellar cortex. We propose that candelabrum cells, like the majority of Golgi and Lugaro cells, release both glycine and GABA.

  3. Studies on Dyeing Process Variables for Salt Free Reactive Dyeing of Glycine Modified Cationized Cotton Muslin Fabric

    NASA Astrophysics Data System (ADS)

    Samanta, Ashis Kumar; Kar, Tapas Ranjan; Mukhopadhyay, Asis; Shome, Debashis; Konar, Adwaita

    2015-04-01

    Bleached cotton muslin fabric with or without pre-oxidized with NaIO4 (oxy-cotton) was chemically modified with glycine (amino acid) by pad dry calendar process to investigate the changes in textile properties and its dyeability with reactive dye. This glycine modified cotton incorporates new functional groups producing -NH3 + or -C=NH+ -ion (cationic groups) in acid bath to obtain cationized cotton making it amenable to a newer route of salt free reactive dyeing in acid bath. In the present work the process variables of reactive dyeing in the salt free acid bath for dyeing of amine (glycine) modified cationized cotton were studied and optimized. The present study also includes thorough investigation of changes in important textile related properties and dyeability with reactive dye after such chemical modifications. Between oxidized and unoxidized cotton muslin fabric, unoxidized cotton fabric shows better reactive dye uptake in both conventional alkaline bath dyeing and nonconventional salt free acid bath dyeing particularly for high exhaustion class of reactive dye with acceptable level of colour fastness and overall balance of other textile related properties. Moreover, application of dye fixing agent further improves surface colour depth (K/S) of the glycine treated cotton fabric for HE brand of reactive dyes. Corresponding reaction mechanisms for such modifications were supported by FTIR spectroscopy. Finally unoxidized cotton and pre-oxidized cotton further treated with glycine (amino acid) provide a new route of acid bath salt free reactive dyeing showing much higher dye uptake and higher degree of surface cover with amino acid residue anchored to modified cotton.

  4. Further Characterization of Glycine-Containing Microcystins from the McMurdo Dry Valleys of Antarctica

    PubMed Central

    Puddick, Jonathan; Prinsep, Michèle R.; Wood, Susanna A.; Cary, Stephen Craig; Hamilton, David P.; Holland, Patrick T.

    2015-01-01

    Microcystins are hepatotoxic cyclic peptides produced by several cyanobacterial genera worldwide. In 2008, our research group identified eight new glycine-containing microcystin congeners in two hydro-terrestrial mat samples from the McMurdo Dry Valleys of Eastern Antarctica. During the present study, high-resolution mass spectrometry, amino acid analysis and micro-scale thiol derivatization were used to further elucidate their structures. The Antarctic microcystin congeners contained the rare substitution of the position-1 d-alanine for glycine, as well as the acetyl desmethyl modification of the position-5 Adda moiety (3S-amino-9S-methoxy-2S,6,8S-trimethyl-10-phenyldeca-4E,6E-dienoic acid). Amino acid analysis was used to determine the stereochemistry of several of the amino acids and conclusively demonstrated the presence of glycine in the microcystins. A recently developed thiol derivatization technique showed that each microcystin contained dehydrobutyrine in position-7 instead of the commonly observed N-methyl dehydroalanine. PMID:25675414

  5. Structural Isotopic Effects in the smallest chiral amino acid: Observation of a structural phase transition in fully deuterated alanine.

    NASA Astrophysics Data System (ADS)

    Bordallo, Heloisa; de Souza, Joelma; de Tarso, Paulo; Argyriou, Dimitri

    2008-03-01

    A first study of possible changes instigated by deuteration in amino acids was carried out using neutron diffraction, inelastic neutron scattering and Raman scattering in L-alanine, C2H4(NH2)COOH. Careful analysis of the structural parameters shows that deuteration of L-alanine engenders significant geometric changes as a function of temperature, which can be directly related to the observation of new lattice vibration modes in the Raman spectra. The combination of the experimental data suggests that C2D4(ND2)COOD undergoes a structural phase transition (or a structural rearrangement) at about 170 K. Considering that this particular amino acid is a hydrogen-bonded system with short hydrogen bonds (OH ˜ 1.8 å), we evoke the Ubbelohde effect to conclude that substitution of hydrogen for deuterium gives rise to changes in the hydrogen-bonding interactions. The structural differences suggest distinct relative stabilities for the hydrogenous and deuterated L-alanine. De Souza et al. - Journal of Physical Chemistry B (Letters) 111, 5034-39 (2007)

  6. Dicationic Surfactants with Glycine Counter Ions for Oligonucleotide Transportation.

    PubMed

    Pietralik, Zuzanna; Skrzypczak, Andrzej; Kozak, Maciej

    2016-08-01

    Gemini surfactants are good candidates to bind, protect, and deliver nucleic acids. Herein, the concept of amino acids (namely glycine) as counter ions of gemini surfactants for gene therapy application was explored. This study was conducted on DNA and RNA oligomers and two quaternary bis-imidazolium salts, having 2,5-dioxahexane and 2,8-dioxanonane spacer groups. The toxicity level of surfactants was assessed by an MTT assay, and their ability to bind nucleic acids was tested through electrophoresis. The nucleic acid conformation was established based on circular dichroism and infrared spectroscopic analyses. The structures of the formed complexes were characterized by small-angle scattering of synchrotron radiation. Both studied surfactants appear to be suitable for gene therapy; however, although they vary by only three methylene groups in the spacer, they differ in binding ability and toxicity. The tested oligonucleotides maintained their native conformations upon surfactant addition and the studied lipoplexes formed a variety of structures. In systems based on a 2,5-dioxahexane spacer, a hexagonal phase was observed for DNA-surfactant complexes and a micellar phase was dominant with RNA. For the surfactant with a 2,8-dioxanonane spacer group, the primitive cubic phase prevailed. PMID:27214208

  7. Resveratrol inhibits glycine receptor-mediated ion currents.

    PubMed

    Lee, Byung-Hwan; Hwang, Sung-Hee; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Lee, Joon-Hee; Kim, Hyung-Chun; Rhim, Hyewhon; Nah, Seung-Yeol

    2014-01-01

    Resveratrol is found in grapes, red wine, and berries. Resveratrol has been known to have many beneficial health effects, such as anti-cancer, neuroprotective, anti-nociceptive, and life-prolonging effects. However, the single cellular mechanisms by which resveratrol acts are relatively unknown, especially in terms of possible regulation of receptors involved in synaptic transmission. The glycine receptor is an inhibitory ligand-gated ion channel involved in fast synaptic transmission in spinal cord. In the present study, we investigated the effect of resveratrol on human glycine receptor channel activity. Glycine α1 receptors were expressed in Xenopus oocytes and glycine receptor channel activity was measured using a two-electrode voltage clamp technique. Treatment with resveratrol alone had no effect on oocytes injected with H2O or on oocytes injected with glycine α1 receptor cRNA. In the oocytes injected with glycine α1 receptor cRNA, co- or pre-treatment of resveratrol with glycine inhibited the glycine-induced inward peak current (IGly) in a reversible manner. The inhibitory effect of resveratrol on IGly was also concentration dependent, voltage independent, and non-competitive. These results indicate that resveratrol regulates glycine receptor channel activity and that resveratrol-mediated regulation of glycine receptor channel activity is one of several cellular action mechanisms of resveratrol for pain regulation. PMID:24694604

  8. The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions.

    PubMed

    Pilling, Sergio; Mendes, Luiz A V; Bordalo, Vinicius; Guaman, Christian F M; Ponciano, Cássia R; da Silveira, Enio F

    2013-01-01

    Glycine is the simplest proteinaceous amino acid and is present in all life-forms on Earth. In aqueous solutions, it appears mainly as zwitterion glycine (+NH3CH2COO-); however, in solid phase, it may be found in amorphous or crystalline (α, β, and γ) forms. The crystalline forms differ from each other by the packing of zwitterions in the unitary cells and by the number of intermolecular hydrogen bonds. This molecular species has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, glycine is exposed to several radiation fields at different temperatures. We present an experimental study on the destruction of zwitterionic glycine crystals at room temperature by 1 MeV protons, in which the dependence of the destruction rates of the α-glycine and β-glycine crystals on bombardment fluence is investigated. The samples were analyzed in situ by Fourier transform infrared spectrometry at different proton fluences. The experiments occurred under ultrahigh vacuum conditions at the Van de Graaff accelerator lab at the Pontifical Catholic University at Rio de Janeiro (PUC-Rio), Brazil. For low fluences, the dissociation cross section of α-glycine was observed to be 2.5×10(-14) cm2, a value roughly 5 times higher than the dissociation cross section found for β-glycine. The estimated half-lives of α-glycine and β-glycine zwitterionic forms extrapolated to the Earth orbit environment are 9×10(5) and 4×10(6) years, respectively. In the diffuse interstellar medium the estimated values are 1 order of magnitude lower. These results suggest that pristine interstellar β-glycine is the one most likely to survive the hostile environments of space radiation. A small feature around 1650-1700 cm(-1), tentatively attributed to an amide functional group, was observed in the IR spectra of irradiated samples, suggesting that cosmic rays may induce peptide bond synthesis in

  9. The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions.

    PubMed

    Pilling, Sergio; Mendes, Luiz A V; Bordalo, Vinicius; Guaman, Christian F M; Ponciano, Cássia R; da Silveira, Enio F

    2013-01-01

    Glycine is the simplest proteinaceous amino acid and is present in all life-forms on Earth. In aqueous solutions, it appears mainly as zwitterion glycine (+NH3CH2COO-); however, in solid phase, it may be found in amorphous or crystalline (α, β, and γ) forms. The crystalline forms differ from each other by the packing of zwitterions in the unitary cells and by the number of intermolecular hydrogen bonds. This molecular species has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, glycine is exposed to several radiation fields at different temperatures. We present an experimental study on the destruction of zwitterionic glycine crystals at room temperature by 1 MeV protons, in which the dependence of the destruction rates of the α-glycine and β-glycine crystals on bombardment fluence is investigated. The samples were analyzed in situ by Fourier transform infrared spectrometry at different proton fluences. The experiments occurred under ultrahigh vacuum conditions at the Van de Graaff accelerator lab at the Pontifical Catholic University at Rio de Janeiro (PUC-Rio), Brazil. For low fluences, the dissociation cross section of α-glycine was observed to be 2.5×10(-14) cm2, a value roughly 5 times higher than the dissociation cross section found for β-glycine. The estimated half-lives of α-glycine and β-glycine zwitterionic forms extrapolated to the Earth orbit environment are 9×10(5) and 4×10(6) years, respectively. In the diffuse interstellar medium the estimated values are 1 order of magnitude lower. These results suggest that pristine interstellar β-glycine is the one most likely to survive the hostile environments of space radiation. A small feature around 1650-1700 cm(-1), tentatively attributed to an amide functional group, was observed in the IR spectra of irradiated samples, suggesting that cosmic rays may induce peptide bond synthesis in

  10. Detection of O6-carboxymethyl-2'-deoxyguanosine in DNA following reaction of nitric oxide with glycine and in human blood DNA using a quantitative immunoslot blot assay.

    PubMed

    Cupid, Belinda C; Zeng, Zuotao; Singh, Rajinder; Shuker, David E G

    2004-03-01

    Previous research has shown that a range of nitrosated glycine derivatives react with DNA to form O6-carboxymethylguanine and O6-methylguanine DNA adducts [Harrison et al. (1999) Chem. Res. Toxicol. 12, 106-111). Nitrosated glycine derivatives may be formed in the gastrointestinal tract from the reaction of dietary glycine with nitrosating agents. The aim of this study was to further investigate the role of dietary glycine in the formation of O6-guanine adducts at physiologically relevant concentrations. In vitro studies were performed by reacting 10 microM to 50 mM glycine with nitric oxide in the presence of oxygen. An HPLC assay was developed to measure the resulting nitrosated glycine derivative, diazoacetate anion. The amount of nitrosating agent present in the reaction mixture was determined by colorimetric measurement of nitrite, the hydrolysis product of N2O3. Diazoacetate anion formation depended linearly on glycine concentration. Solutions of nitrosated glycine reacted with 2'-deoxyguanosine and calf thymus DNA to give O6-carboxymethyl-2'-deoxyguanosine and, at high concentrations of glycine and nitric oxide, O6-methyl-2'-deoxyguanosine. At physiological concentrations of glycine and nitric oxide, diazoacetate anion was not detectable. Studies with synthetic diazoacetate anion showed that concentrations < 14 microM did not give detectable O6-carboxyethylguanine in DNA, even when a sensitive immunoslot blot assay was used. However, O6-carboxymethylguanine was detected in human blood DNA samples obtained from three volunteers consuming a standardized high meat diet, using the immunoslot blot assay. O6-Carboxymethylguanine levels ranged from 35 to 80 (detection limit = 15) O6-carboxymethylguanine per 10(8) bases. These studies provide further evidence that nitrosated amino acids may be risk factors for gastrointestinal tract cancers.

  11. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  12. Exposure to the Proton Scavenger Glycine under Alkaline Conditions Induces Escherichia coli Viability Loss

    PubMed Central

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  13. Glycine: an alternative transmitter candidate of the pallidosubthalamic projection neurons in the rat

    SciTech Connect

    Takada, M.; Hattori, T.

    1987-08-22

    Autoradiographic retrograde tracing techniques with radioactive transmitters were used to analyse the identity of a putative transmitter in the rat pallidosubthalamic (GP-STN) pathway. One to 2 hours after the stereotaxic injection of /sup 3/H-glycine restricted to the STN, a large number of neuronal somata were radiolabeled in the GP. No comparable labeling was observed following the injection of /sup 3/H-gamma-aminobutyric acid (/sup 3/H-GABA) into the same nucleus even with survival times as long as 6 hours. Specifically, no significant somatic labeling was detected either in the GP or in the caudoputamen (CPU). Only when /sup 3/H-GABA was injected into the substantia nigra did CPU and GP neurons become labeled. On the contrary, STN neuronal somata were invariably labeled 6 hours after the intrapallidal injection of /sup 3/H-GABA, whereas no perikaryal labeling was observed in the STN after /sup 3/H-glycine injection into the GP. The perikaryal labeling was prevented in all cases by intraventricular administration of colchicine 1 day before the isotope injections. The observations suggest that /sup 3/H-glycine was preferentially transported retrogradely through the GP-STN pathway, and /sup 3/H-GABA through the STN-GP projection. In view of the recent controversy on the role of GABA as a putative transmitter of the GP-STN projection, we now propose glycine as an alternative transmitter candidate of these critically situated neurons in the basal ganglia.

  14. Synthesis of glycine-containing complexes in impacts of comets on early Earth.

    PubMed

    Goldman, Nir; Reed, Evan J; Fried, Laurence E; William Kuo, I-F; Maiti, Amitesh

    2010-11-01

    Delivery of prebiotic compounds to early Earth from an impacting comet is thought to be an unlikely mechanism for the origins of life because of unfavourable chemical conditions on the planet and the high heat from impact. In contrast, we find that impact-induced shock compression of cometary ices followed by expansion to ambient conditions can produce complexes that resemble the amino acid glycine. Our ab initio molecular dynamics simulations show that shock waves drive the synthesis of transient C-N bonded oligomers at extreme pressures and temperatures. On post impact quenching to lower pressures, the oligomers break apart to form a metastable glycine-containing complex. We show that impact from cometary ice could possibly yield amino acids by a synthetic route independent of the pre-existing atmospheric conditions and materials on the planet.

  15. Glycine hydrogen fluoride: Remarkable hydrogen bonding in the dimeric glycine glycinium cation

    NASA Astrophysics Data System (ADS)

    Fleck, M.; Ghazaryan, V. V.; Petrosyan, A. M.

    2010-12-01

    Crystals of glycine hydrogen fluoride (Gly·HF) were prepared from an aqueous solution containing stoichiometric quantities of the components. The crystal structure of Gly·HF was determined, IR and Raman spectra were registered and are discussed. Gly·HF crystallizes in the orthorhombic space group Pbca with Z = 32. The most remarkable feature of the structure is the existence of symmetric dimeric glycine-glycinium cations with short hydrogen bonds (O⋯O distance of 2.446 Å), charge-counterbalanced by hydrogen bifluoride (F sbnd H⋯F) - anions - in addition to the expected glycinium cations and fluoride anions. These results were compared with previously published data on crystals grown in the system glycine-HF-H 2O.

  16. Spectrophotometric Determination of Iron(III)-Glycine Formation Constant in Aqueous Medium Using Competitive Ligand Binding

    ERIC Educational Resources Information Center

    Prasad, Rajendra; Prasad, Surendra

    2009-01-01

    The formation constant of iron(III) complex with glycine (Gly) ligand in aqueous acidic medium (0.2 M HNO[subscript 3], I = 0.2 M at 28 plus or minus 1 degree C) was determined spectrophotometrically in which a competing color reaction between Fe(III) and SCN[superscript -] was used as an indicator reaction. Under the specified conditions Fe(III)…

  17. Evaluation of mechanical properties of some glycine complexes

    SciTech Connect

    Nagaraju, D.; Raja Shekar, P. V.; Chandra, Ch. Sateesh; Rao, K. Kishan; Krishna, N. Gopi

    2014-04-24

    The variation of Vickers hardness with load for (101) glycine zinc chloride (GZC), (001) glycine lithium sulphate (GLS), (001) triglycine sulphate (TGS) and (010) glycine phosphite (GPI) crystals was studied. From the cracks initiated along the corners of the indentation impression, crack lengths were measured and the fracture toughness value and brittle index number were determined. The hardness related parameters viz. yield strength and Young’s modulus were also estimated. The anisotropic nature of the crystals was studied using Knoop indentation technique.

  18. Claisen-type addition of glycine to pyridoxal in water.

    PubMed

    Toth, Krisztina; Amyes, Tina L; Richard, John P; Malthouse, J Paul G; NíBeilliú, Máire E

    2004-09-01

    The reaction between 5'-deoxypyridoxal and glycine in D2O buffered at pD 7.0 does not result in significant formation of the expected products of pyridoxal-catalyzed transamination or deuterium exchange of the alpha-amino protons of glycine, but rather gives a quantitative yield of the two diastereomeric products of the formal Claisen-type addition of glycine to 5'-deoxypyridoxal. The unexpected extensive formation of these products reflects the extraordinary selectivity of the 5'-deoxypyridoxal-stabilized glycine enolate toward addition to the carbonyl group of 5'-deoxypyridoxal in the protic solvent water.

  19. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be...

  20. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism

    PubMed Central

    Peng, Huan; Cui, Jiangkuan; Long, Haibo; Huang, Wenkun; Kong, Lingan; Liu, Shiming; He, Wenting; Hu, Xianqi; Peng, Deliang

    2016-01-01

    Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases). In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7). A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7) were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2) and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi). Similarly, this procedure reduced the number of female adults at 40 dpi, which suggests

  1. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism.

    PubMed

    Peng, Huan; Cui, Jiangkuan; Long, Haibo; Huang, Wenkun; Kong, Lingan; Liu, Shiming; He, Wenting; Hu, Xianqi; Peng, Deliang

    2016-01-01

    Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases). In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7). A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7) were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2) and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi). Similarly, this procedure reduced the number of female adults at 40 dpi, which suggests

  2. New nonlinear optical material: glycine sodium nitrate

    NASA Astrophysics Data System (ADS)

    Bhat, M. Narayan; Dharmaprakash, S. M.

    2002-02-01

    Single crystals of glycine sodium nitrate (GSN), a semiorganic nonlinear optical material has been grown from solution by slow evaporation at ambient temperature. The solubility of GSN has been determined in water. Formation of the new crystal has been confirmed by powder XRD pattern and IR spectra. GSN crystallises in monoclinic system with cell parameters a=14.323(4) Å, b=5.2575(8) Å, c=9.1156(14) Å, β=119.030(18)°, space group Cc. The optical second harmonic generation conversion efficiency of GSN was determined using Kurtz powder technique and found to be two times that of KDP.

  3. The interaction of general anaesthetics with recombinant GABAA and glycine receptors expressed in Xenopus laevis oocytes: a comparative study

    PubMed Central

    Pistis, Marco; Belelli, Delia; Peters, John A; Lambert, Jeremy J

    1997-01-01

    The effects of five structurally dissimilar general anaesthetics were examined in voltage-clamp recordings of agonist-evoked currents mediated by recombinant γ-aminobutyric acid (GABA)A receptors composed of human α1β1 and γ2L subunits expressed in Xenopus laevis oocytes. A quantitative comparison of the effects of these agents was made upon recombinant glycine receptors expressed as a homo-oligomer of human α1 subunits, or as a hetero-oligomer of human α1 and rat β subunits. Complementary RNA-injected oocytes expressing GABAA receptors responded to bath applied GABA with an EC50 of 158±34 μM. Oocytes expressing α1 and α1β glycine receptors subsequent to cDNA injection displayed EC50 values of 76±2 μM and 66±2 μM, respectively, in response to bath applied glycine. Picrotoxin antagonized responses mediated by homo-oligomeric α1 glycine receptors with an IC50 of 4.2±0.8 μM. Hetero-oligomeric α1β glycine receptors were at least 100-fold less sensitive to blockade by picrotoxin. With the appropriate agonist EC10, propofol enhanced GABA and glycine-evoked currents to approximately the maximal response produced by a saturating concentration of either agonist (i.e. Imax). The calculated EC50 values were 2.3±0.2 μM, 16±3 μM and 27±2 μM, for GABAA α1β1γ2L, glycine α1 and α1β receptors, respectively. At relatively high concentrations, propofol was observed to activate directly both GABAA and glycine receptors. Pentobarbitone potentiated GABA-evoked currents to 117±8.5% of Imax with an EC50 of 65±3 μM. The barbiturate also produced a substantial enhancement of the glycine-evoked currents, Imax and EC50 values being 71±2% and 845±66 μM and 51±10% and 757±30 μM for homomeric α1 and heteromeric α1β glycine receptors respectively. At high concentrations, pentobarbitone directly activated GABAA, but not glycine, receptors. The potentiation by propofol or pentobarbitone of currents mediated by α1 homo

  4. Inhibition of homocysteine-induced endoplasmic reticulum stress and endothelial cell damage by l-serine and glycine.

    PubMed

    Sim, Woo-Cheol; Han, Inhoi; Lee, Wonseok; Choi, You-Jin; Lee, Kang-Yo; Kim, Dong Gwang; Jung, Seung-Hwan; Oh, Seon-Hee; Lee, Byung-Hoon

    2016-08-01

    Hyperhomocysteinemia is an independent risk factor for several cardiovascular diseases. The use of vitamins to modulate homocysteine metabolism substantially lowers the risk by reducing plasma homocysteine levels. In this study, we evaluated the effects of l-serine and related amino acids on homocysteine-induced endoplasmic reticulum (ER) stress and endothelial cell damage using EA.hy926 human endothelial cells. Homocysteine treatment decreased cell viability and increased apoptosis, which were reversed by cotreatment with l-serine. l-Serine inhibited homocysteine-induced ER stress as verified by decreased glucose-regulated protein 78kDa (GRP78) and C/EBP homologous protein (CHOP) expression as well as X-box binding protein 1 (xbp1) mRNA splicing. The effects of l-serine on homocysteine-induced ER stress are not attributed to intracellular homocysteine metabolism, but instead to decreased homocysteine uptake. Glycine exerted effects on homocysteine-induced ER stress, apoptosis, and cell viability that were comparable to those of l-serine. Although glycine did not affect homocysteine uptake or export, coincubation of homocysteine with glycine for 24h reduced the intracellular concentration of homocysteine. Taken together, l-serine and glycine cause homocysteine-induced endothelial cell damage by reducing the level of intracellular homocysteine. l-Serine acts by competitively inhibiting homocysteine uptake in the cells. However, the mechanism(s) by which glycine lowers homocysteine levels are unclear. PMID:27064126

  5. Structure of the Homodimeric Glycine Decarboxylase P-protein from Synechocystis sp. PCC 6803 Suggests a Mechanism for Redox Regulation*

    PubMed Central

    Hasse, Dirk; Andersson, Evalena; Carlsson, Gunilla; Masloboy, Axel; Hagemann, Martin; Bauwe, Hermann; Andersson, Inger

    2013-01-01

    Glycine decarboxylase, or P-protein, is a pyridoxal 5′-phosphate (PLP)-dependent enzyme in one-carbon metabolism of all organisms, in the glycine and serine catabolism of vertebrates, and in the photorespiratory pathway of oxygenic phototrophs. P-protein from the cyanobacterium Synechocystis sp. PCC 6803 is an α2 homodimer with high homology to eukaryotic P-proteins. The crystal structure of the apoenzyme shows the C terminus locked in a closed conformation by a disulfide bond between Cys972 in the C terminus and Cys353 located in the active site. The presence of the disulfide bridge isolates the active site from solvent and hinders the binding of PLP and glycine in the active site. Variants produced by substitution of Cys972 and Cys353 by Ser using site-directed mutagenesis have distinctly lower specific activities, supporting the crucial role of these highly conserved redox-sensitive amino acid residues for P-protein activity. Reduction of the 353–972 disulfide releases the C terminus and allows access to the active site. PLP and the substrate glycine bind in the active site of this reduced enzyme and appear to cause further conformational changes involving a flexible surface loop. The observation of the disulfide bond that acts to stabilize the closed form suggests a molecular mechanism for the redox-dependent activation of glycine decarboxylase observed earlier. PMID:24121504

  6. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective.

    PubMed Central

    Schell, Michael J

    2004-01-01

    The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics. PMID:15306409

  7. Inhibition of homocysteine-induced endoplasmic reticulum stress and endothelial cell damage by l-serine and glycine.

    PubMed

    Sim, Woo-Cheol; Han, Inhoi; Lee, Wonseok; Choi, You-Jin; Lee, Kang-Yo; Kim, Dong Gwang; Jung, Seung-Hwan; Oh, Seon-Hee; Lee, Byung-Hoon

    2016-08-01

    Hyperhomocysteinemia is an independent risk factor for several cardiovascular diseases. The use of vitamins to modulate homocysteine metabolism substantially lowers the risk by reducing plasma homocysteine levels. In this study, we evaluated the effects of l-serine and related amino acids on homocysteine-induced endoplasmic reticulum (ER) stress and endothelial cell damage using EA.hy926 human endothelial cells. Homocysteine treatment decreased cell viability and increased apoptosis, which were reversed by cotreatment with l-serine. l-Serine inhibited homocysteine-induced ER stress as verified by decreased glucose-regulated protein 78kDa (GRP78) and C/EBP homologous protein (CHOP) expression as well as X-box binding protein 1 (xbp1) mRNA splicing. The effects of l-serine on homocysteine-induced ER stress are not attributed to intracellular homocysteine metabolism, but instead to decreased homocysteine uptake. Glycine exerted effects on homocysteine-induced ER stress, apoptosis, and cell viability that were comparable to those of l-serine. Although glycine did not affect homocysteine uptake or export, coincubation of homocysteine with glycine for 24h reduced the intracellular concentration of homocysteine. Taken together, l-serine and glycine cause homocysteine-induced endothelial cell damage by reducing the level of intracellular homocysteine. l-Serine acts by competitively inhibiting homocysteine uptake in the cells. However, the mechanism(s) by which glycine lowers homocysteine levels are unclear.

  8. Effect of bromide ion on the reaction pathway between hydroxyl radical and glycine.

    PubMed

    Ying, Liwen; Dong, Wenbo; Yuan, Haixia; Liu, Yan; Ma, Luming

    2015-06-01

    Br(-) and nitrogen-containing organic pollutants, such as amino acids, protein, etc., were often detected in water and wastewater treatment plants using advanced oxidation technologies. All these technologies have one common characteristic, that is, the removal processes involve ·OH. Therefore, it is necessary to study the different reaction pathways among ·OH, Br(-), and amino acids. In this research, glycine was chosen as the representative of amino acids and H2O2 was selected as ·OH precursor. Results showed that Br(-) had a shielding effect on [Formula: see text] of α-carbon in glycine, when it was abstracted by ·OH. The main reaction pathway in the system containing Br(-) was the abstraction of H from amino group in glycine by ·OH, contributing 85 % of total abstracted H. This system had a prominent phenomenon of decarboxylation and performed as alkali production dominating. However, in the system not containing Br(-), the main reaction pathway was the abstraction of H from α-carbon in glycine by ·OH, contributing 97 % of total abstracted H. This system performed as acid production dominating. By laser flash photolysis, the second-order rate constants of abstraction of H from both α-carbon and amino group in glycine by ·OH were obtained as (3.3 ± 0.5) × 10(7) M(-1)·s(-1) and (8.2 ± 0.8) × 10(8) M(-1)·s(-1), respectively. The second-order rate constants of the reaction between [Formula: see text], HṄCH2COO(-) and H2O2 were (1.5 ± 1.1) × 10(7) M(-1)·s(-1) and (4.4 ± 0.3) × 10(7) M(-1)·s(-1), respectively. In addition, Br(-) was found to play a catalytic role in the decomposition of H2O2 under UV radiation. The results mentioned above were significant for the application of advanced oxidation technologies for water containing both amino acids and Br(-) in water and wastewater treatment plants.

  9. Effect of bromide ion on the reaction pathway between hydroxyl radical and glycine.

    PubMed

    Ying, Liwen; Dong, Wenbo; Yuan, Haixia; Liu, Yan; Ma, Luming

    2015-06-01

    Br(-) and nitrogen-containing organic pollutants, such as amino acids, protein, etc., were often detected in water and wastewater treatment plants using advanced oxidation technologies. All these technologies have one common characteristic, that is, the removal processes involve ·OH. Therefore, it is necessary to study the different reaction pathways among ·OH, Br(-), and amino acids. In this research, glycine was chosen as the representative of amino acids and H2O2 was selected as ·OH precursor. Results showed that Br(-) had a shielding effect on [Formula: see text] of α-carbon in glycine, when it was abstracted by ·OH. The main reaction pathway in the system containing Br(-) was the abstraction of H from amino group in glycine by ·OH, contributing 85 % of total abstracted H. This system had a prominent phenomenon of decarboxylation and performed as alkali production dominating. However, in the system not containing Br(-), the main reaction pathway was the abstraction of H from α-carbon in glycine by ·OH, contributing 97 % of total abstracted H. This system performed as acid production dominating. By laser flash photolysis, the second-order rate constants of abstraction of H from both α-carbon and amino group in glycine by ·OH were obtained as (3.3 ± 0.5) × 10(7) M(-1)·s(-1) and (8.2 ± 0.8) × 10(8) M(-1)·s(-1), respectively. The second-order rate constants of the reaction between [Formula: see text], HṄCH2COO(-) and H2O2 were (1.5 ± 1.1) × 10(7) M(-1)·s(-1) and (4.4 ± 0.3) × 10(7) M(-1)·s(-1), respectively. In addition, Br(-) was found to play a catalytic role in the decomposition of H2O2 under UV radiation. The results mentioned above were significant for the application of advanced oxidation technologies for water containing both amino acids and Br(-) in water and wastewater treatment plants. PMID:25548016

  10. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone. PMID:26111613

  11. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone.

  12. Genome Duplication in Soybean (Glycine Subgenus Soja)

    PubMed Central

    Shoemaker, R. C.; Polzin, K.; Labate, J.; Specht, J.; Brummer, E. C.; Olson, T.; Young, N.; Concibido, V.; Wilcox, J.; Tamulonis, J. P.; Kochert, G.; Boerma, H. R.

    1996-01-01

    Restriction fragment length polymorphism mapping data from nine populations (Glycine max X G. soja and G. max X G. max) of the Glycine subgenus soja genome led to the identification of many duplicated segments of the genome. Linkage groups contained up to 33 markers that were duplicated on other linkage groups. The size of homoeologous regions ranged from 1.5 to 106.4 cM, with an average size of 45.3 cM. We observed segments in the soybean genome that were present in as many as six copies with an average of 2.55 duplications per segment. The presence of nested duplications suggests that at least one of the original genomes may have undergone an additional round of tetraploidization. Tetraploidization, along with large internal duplications, accounts for the highly duplicated nature of the genome of the subgenus. Quantitative trait loci for seed protein and oil showed correspondence across homoeologous regions, suggesting that the genes or gene families contributing to seed composition have retained similar functions throughout the evolution of the chromosomes. PMID:8878696

  13. Synthesis of amino acids by the heating of formaldehyde and ammonia.

    PubMed

    Fox, S W; Windsor, C R

    1970-11-27

    The heating of formaldehyde and ammonia yields a product that, on hydrolysis, is converted into seven amino acids: aspartic acid, glutamic acid, serine, proline, valine, glycine, and alanine. Glycine is the predominant amino acid. Inasmuch as formaldehyde and ammonia have been identified as compounds in galactic clouds, these experimental results are interpreted in a cosmochemical and geochemical context.

  14. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    SciTech Connect

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-07-20

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH{sup .} radical and H{sub 3}O{sup +} surface defects. The coupling of incoming CO molecules with the surface OH{sup .} radicals on the ice clusters yields the formation of the COOH{sup .} radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol{sup -1} and -22 kcal mol{sup -1}, respectively. The COOH{sup .} radicals couple with incoming NH=CH{sub 2} molecules (experimentally detected in the ISM) to form the NHCH{sub 2}COOH{sup .} radical glycine through energy barriers of 12 kcal mol{sup -1}, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H{sub 3}O{sup +} is present, one proton may be barrierless transferred to NH=CH{sub 2} to give NH{sub 2}=CH{sub 2}{sup +}. This latter may react with the COOH{sup .} radical to give the NH{sub 2}CH{sub 2}COOH{sup +.} glycine radical cation which can then be transformed into the NH{sub 2}CHC(OH){sub 2}{sup +.} species (the most stable form of glycine in its radical cation state) or into the NH{sub 2}CHCOOH{sup .} neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh

  15. Functional characterization of a member of alanine or glycine: cation symporter family in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Kageyama, Hakuto; Tanaka, Yoshito; Incharoensakdi, Aran; Takabe, Teruhiro

    2015-01-01

    Membrane proteins of amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play important roles in the regulation of cellular processes. The alanine or glycine: cation symporter (AGCS) family belongs to APC superfamily and is found in prokaryotes, but its substrate specificity remains to be clarified. In this study, we found that a halotolerant cyanobacterium, Aphanothece halophytica has two putative ApagcS genes. The deduced amino acid sequence of one of genes, ApagcS1, exhibited high homology to Pseudomonas AgcS. The ApagcS1 gene was expressed in Escherichia coli JW4166 which is deficient in glycine uptake. Kinetics studies in JW4166 revealed that ApAgcS1 is a sodium-dependent glycine transporter. Competition experiments showed the significant inhibition by glutamine, asparagine, and glycine. The level of mRNA for ApagcS1 was induced by NaCl and nitrogen-deficient stresses. Uptake of glutamine by ApAgcS1 was also observed. Based on these data, the physiological role of ApAgcS1 was discussed.

  16. The Radiolytic Destruction of Glycine Diluted in H2O and CO2 Ice: Implications for Mars and Other Planetary Environments

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, R. L.

    2013-10-01

    Future missions to Mars and other planetary surfaces will probe under the surfaces of these worlds for signs of organic chemistry. In previous studies we have shown that glycine and other amino acids have radiolytic destruction rates that depend on temperature and on dilution within an H2O ice matrix (Gerakines et al., 2012; Gerakines and Hudson 2013). In the new work presented here, we have examined the destruction of glycine diluted in CO2 ice at various concentrations and irradiated with protons at 0.8 MeV, typical of cosmic rays and solar energetic particles. Destruction rates for glycine were measured by infrared spectroscopy in situ, without removing or warming the ice samples. New results on the half life of glycine in solid CO2 will be compared to those found in H2O ice matrices. The survivability of glycine in icy planetary surfaces rich in H2O and CO2 ice will be discussed, and the implications for planetary science missions will be considered. References: Gerakines, P. A., Hudson, R. L., Moore, M. H., and Bell, J-L. (2012). In-situ Measurements of the Radiation Stability of Amino Acids at 15 - 140 K. Icarus, 220, 647-659. Gerakines, P. A. and Hudson, R. L. (2013). Glycine's Radiolytic Destruction in Ices: First in situ Laboratory Measurements for Mars. Astrobiology, 13, 647-655.

  17. New soybean accessions identified with resistance to Heterodera glycines populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean Cyst Nematode (SCN, Heterodera glycines Ichinohe) is a serious root-parasite of soybean [Glycine max (L.) Merr.], in USA and worldwide. Annual yield losses in USA are estimated to be nearly $1 billion. These losses have remained stable at current levels with the use of resistant cultivars bu...

  18. New soybean accessions evaluated for reaction to Heterodera glycines populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean Cyst Nematode (SCN, Heterodera glycines Ichinohe) is a serious pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. Annual yield losses in the USA are estimated to be over $1 billion. These losses have remained stable with the use of resistant cultivars but over time nematode...

  19. Biodistribution of 99mTc Tricarbonyl Glycine Oligomers

    PubMed Central

    Jang, Beom-Su; Lee, Joo-Sang; Rho, Jong Kook

    2012-01-01

    99mTc tricarbonyl glycine monomers, trimers, and pentamers were synthesized and evaluated for their radiolabeling and in vivo distribution characteristics. We synthesized a 99mTc-tricarbonyl precursor with a low oxidation state (I). 99mTc(CO)3(H2O)3 + was then made to react with monomeric and oligomeric glycine for the development of bifunctional chelating sequences for biomolecules. Labeling yields of 99mTc-tricarbonyl glycine monomers and oligomers were checked by high-performance liquid chromatography. The labeling yields of 99mTc-tricarbonyl glycine and glycine oligomers were more than 95%. We evaluated the characteristics of 99mTc-tricarbonyl glycine oligomers by carrying out a lipophilicity test and an imaging study. The octanol-water partition coefficient of 99mTc tricarbonyl glycine oligomers indicated hydrophilic properties. Single-photon emission computed tomography imaging of 99mTc-tricarbonyl glycine oligomers showed rapid renal excretion through the kidneys with a low uptake in the liver, especially of 99mTc tricarbonyl triglycine. Furthermore, we verified that the addition of triglycine to prototype biomolecules (AGRGDS and RRPYIL) results in the improvement of radiolabeling yield. From these results, we conclude that triglycine has good characteristics for use as a bifunctional chelating sequence for a 99mTc-tricarbonyl- based biomolecular imaging probe. PMID:24278615

  20. Characterization of a novel glycine-rich protein from the cell wall of maize silk tissues.

    PubMed

    Tao, T Y; Ouellet, T; Dadej, K; Miller, S S; Johnson, D A; Singh, J

    2006-08-01

    The isolation, characterization and regulation of expression of a maize silk-specific gene is described. zmgrp5 (Zea mays glycine-rich protein 5) encodes a 187 amino acid glycine-rich protein that displays developmentally regulated silk-specific expression. Northern, Western, in situ mRNA hybridization and transient gene expression analyses indicate that zmgrp5 is expressed in silk hair and in cells of the vascular bundle and pollen tube transmitting tissue elements. The protein is secreted into the extracellular matrix and is localized in the cell wall fraction mainly through interactions mediated by covalent disulphide bridges. Taken together, these results suggest that the protein may play a role in maintaining silk structure during development. This is the first documented isolation of a stigma-specific gene from maize, an important agronomic member of the Poaceae family. PMID:16528565

  1. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine.

    PubMed

    McCue, Jeffrey M; Driscoll, William J; Mueller, Gregory P

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  2. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    SciTech Connect

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  3. Glycine phases formed from frozen aqueous solutions: Revisited

    SciTech Connect

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Manakov, A. Yu.; Drebushchak, V. A.; Ancharov, A. I.; Boldyreva, E. V.; Yunoshev, A. S.

    2012-08-14

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I{sub h} was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into {beta}-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I{sub h} and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine 'X-phase') at 209-216 K, which at 218-226 K transformed into {beta}-polymorph of glycine. The 'X-phase' was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a= 6.648 A, b= 25.867 A, c= 5.610 A, {beta}= 113.12 Masculine-Ordinal-Indicator ); the formation of 'X-phase' from the glycine glassy phase and its transformation into {beta}-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  4. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cysts nematode heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  5. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation

    PubMed Central

    Wilkins, Megan E.; Caley, Alex; Gielen, Marc C.; Harvey, Robert J.

    2016-01-01

    Key points Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission.Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem.A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs.These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact.Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease. Abstract Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, β‐alanine and taurine by 9‐, 6‐ and 3‐fold respectively, and that of the competitive antagonist strychnine by 15‐fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co‐mutating N61, located on a neighbouring β loop to N46, rescued the wild‐type phenotype depending on the amino acid charge. Single‐channel recording identified that burst length for the N46K mutant was reduced and fast agonist application

  6. Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells

    SciTech Connect

    Jackson, P.J.; Unkefer, C.J.; Doolen, J.A.; Watt, K.; Robinson, N.J.

    1987-10-01

    Angiosperms can be selected for the ability to grow in the presence of normally toxic concentrations of certain trace metal ions. Addition of Cd and Cu to Cd-resistant Datura innoxia cell cultures results in the rapid synthesis and accumulation of sulfur-rich, metal-binding polypeptides. The structure of these compounds was determined using amino acid analysis, /sup 13/C NMR, and site-specific enzymic digestion. These compounds are poly(gamma-glutamylcysteinyl)glycines. Greater than 80% of the cellular Cd is bound to the bis and tris forms in Cd-resistant cells. There is a direct correlation between the maximum accumulation of the metal-binding polypeptides and the concentration of toxic ions to which the cells are resistant. In the presence of metal ions, the polypeptides form multimeric aggregates that can be resolved by gel chromatography. Cd binds to both the high and low molecular weight aggregates, whereas Cu preferentially binds to the higher molecular weight forms. The presence of gamma-carboxamide linkages between glutamyl and adjacent cysteinyl residues indicates that these polypeptides are products of biosynthetic pathways. Poly(gamma-glutamylcysteinyl)glycines bind metals and, in this respect, appear to be functional analogs of the protein metallothionein. However, in the absence of supraoptimal concentrations of trace metal ions, the functions of metallothionein in animals and microorganisms and poly(gamma-glutamylcysteinyl)glycines in plants may differ.

  7. The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis.

    PubMed Central

    Okoniewska, M; Tanaka, T; Yada, R Y

    2000-01-01

    Glycine residues are known to contribute to conformational flexibility of polypeptide chains, and have been found to contribute to flexibility of some loops associated with enzymic catalysis. A comparison of porcine pepsin in zymogen, mature and inhibited forms revealed that a loop (a flap), consisting of residues 71--80, located near the active site changed its position upon substrate binding. The loop residue, glycine-76, has been implicated in the catalytic process and thought to participate in a hydrogen-bond network aligning the substrate. This study investigated the role of glycine-76 using site-directed mutagenesis. Three mutants, G76A, G76V and G76S, were constructed to increase conformational restriction of a polypeptide chain. In addition, the serine mutant introduced a hydrogen-bonding potential at position 76 similar to that observed in human renin. All the mutants, regardless of amino acid size and polarity, had lower catalytic efficiency and activated more slowly than the wild-type enzyme. The slower activation process was associated directly with altered proteolytic activity. Consequently, it was proposed that a proteolytic cleavage represents a limiting step of the activation process. Lower catalytic efficiency of the mutants was explained as a decrease in the flap flexibility and, therefore, a different pattern of hydrogen bonds responsible for substrate alignment and flap conformation. The results demonstrated that flap flexibility is essential for efficient catalytic and activation processes. PMID:10861225

  8. Taurine and glycine activate the same Cl- conductance in substantia nigra dopamine neurones.

    PubMed

    Häusser, M A; Yung, W H; Lacey, M G

    1992-01-31

    Intracellular recordings were made from substantia nigra dopamine neurones in a rat brain slice preparation. Spontaneous firing in these cells was reversibly inhibited by taurine applied by superfusion (300 microM-20 mM) or by focal pressure ejection. Neurones recorded with electrodes filled with KCl were depolarised at resting potential by taurine; the taurine depolarisation reversed polarity at -36.6 +/- 1.0 mV (7 cells). When electrodes filled with K-acetate or K-methyl sulphate were used, taurine caused a hyperpolarisation which reversed at -74.2 +/- 3.8 mV (9 cells). These effects of taurine were accompanied by a fall in input resistance or, in voltage clamp, an increase in conductance. Taurine thus appeared to increase membrane chloride conductance. The effect of taurine persisted in tetrodotoxin, 0-Ca2+/10 mM Mg2+, and bicuculline, but was blocked by strychnine (10 microM). Maximal responses to either taurine or glycine occluded responses to the other amino acid. Taurine therefore acts directly on dopamine neurones in the substantia nigra to increase the same membrane Cl- conductance as that mediating the action of glycine. Taurine may also act at the same recognition site as glycine in these cells.

  9. Surface modification of ultrafiltration membranes by grafting glycine-functionalized PVA based on polydopamine coatings

    NASA Astrophysics Data System (ADS)

    Li, Fang; Ye, Jianfeng; Yang, Linming; Deng, Chunhua; Tian, Qing; Yang, Bo

    2015-08-01

    Due to the ease of processing and stability during filtration, polydopamine (PD) coatings with grafted hydrophilic polymers have recently received significant attention. In this study, glycine-functionalized PVA was synthesized and grafted to a PD-coated ultrafiltration (UF) membrane to improve its performance during wastewater filtration. The membranes were modified by grafting PD with glycine-functionalized PVA (PD-g-PVA), and the resultant materials were characterized using surface morphology analyses, contact angle measurements, flux, oil/water emulsion separation tests, and grafted layer stability tests. The performance of the PD-g-PVA membrane was compared to that of the membrane modified with PD-g-polyethylene glycol (PEG). After grafting the PD-g-PVA, the surface roughness of the membranes decreased significantly. The grafted PVA layer, which was stable under acidic and alkaline conditions, protected the PD layer. The filtration experiments with an oil/water emulsion indicated that modifying the glycine-functionalized PVA by grafting can significantly improve the antifouling ability of membranes.

  10. Evolution of threonine aldolases, a diverse family involved in the second pathway of glycine biosynthesis.

    PubMed

    Liu, Guangxiu; Zhang, Manxiao; Chen, Ximing; Zhang, Wei; Ding, Wei; Zhang, Qi

    2015-02-01

    Threonine aldolases (TAs) catalyze the interconversion of threonine and glycine plus acetaldehyde in a pyridoxal phosphate-dependent manner. This class of enzymes complements the primary glycine biosynthetic pathway catalyzed by serine hydroxymethyltransferase (SHMT), and was shown to be necessary for yeast glycine auxotrophy. Because the reverse reaction of TA involves carbon-carbon bond formation, resulting in a β-hydroxyl-α-amino acid with two adjacent chiral centers, TAs are of high interests in synthetic chemistry and bioengineering studies. Here, we report systematic phylogenetic analysis of TAs. Our results demonstrated that L-TAs and D-TAs that are specific for L- and D-threonine, respectively, are two phylogenetically unique families, and both enzymes are different from their closely related enzymes SHMTs and bacterial alanine racemases (ARs). Interestingly, L-TAs can be further grouped into two evolutionarily distinct families, which share low sequence similarity with each other but likely possess the same structural fold, suggesting a convergent evolution of these enzymes. The first L-TA family contains enzymes of both prokaryotic and eukaryotic origins, and is related to fungal ARs, whereas the second contains only prokaryotic L-TAs. Furthermore, we show that horizontal gene transfer may occur frequently during the evolution of both L-TA families. Our results indicate the complex, dynamic, and convergent evolution process of TAs and suggest an updated classification scheme for L-TAs. PMID:25644973

  11. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues.

    PubMed

    Lewinski, Martin; Hallmann, Armin; Staiger, Dorothee

    2016-04-01

    This study focused on the identification and phylogenetic analysis of glycine-rich RNA binding proteins that contain an RNA recognition motif (RRM)-type RNA binding domain in addition to a region with contiguous glycine residues in representative plant species. In higher plants, glycine-rich proteins with an RRM have met considerable interest as they are responsive to environmental cues and play a role in cold tolerance, pathogen defense, flowering time control, and circadian timekeeping. To identify such RRM containing proteins in plant genomes we developed an RRM profile based on the known glycine-rich RRM containing proteins in the reference plant Arabidopsis thaliana. The application of this remodeled RRM profile that omitted sequences from non-plant species reduced the noise when searching plant genomes for RRM proteins compared to a search performed with the known RRM_1 profile. Furthermore, we developed an island scoring function to identify regions with contiguous glycine residues, using a sliding window approach. This approach tags regions in a protein sequence with a high content of the same amino acid, and repetitive structures score higher. This definition of repetitive structures in a fixed sequence length provided a new glance for characterizing patterns which cannot be easily described as regular expressions. By combining the profile-based domain search for well-conserved regions (the RRM) with a scoring technique for regions with repetitive residues we identified groups of proteins related to the A. thaliana glycine-rich RNA binding proteins in eight plant species. PMID:26589419

  12. Presence of a glycine-cysteine-rich beta-protein in the oberhautchen layer of snake epidermis marks the formation of the shedding layer.

    PubMed

    Alibardi, Lorenzo

    2014-11-01

    The complex differentiation of snake epidermis largely depends on the variation in the production of glycine-cysteine-rich versus glycine-rich beta-proteins (beta-keratins) that are deposited on a framework of alpha-keratins. The knowledge of the amino acid sequences of beta-proteins in the snake Pantherophis guttatus has allowed the localization of a glycine-cysteine-rich beta-protein in the spinulated oberhautchen layer of the differentiating shedding complex before molting takes place. This protein decreases in the beta-layer and disappears in mesos and alpha-layers. Conversely, while the mRNA for a glycine-rich beta-protein is highly expressed in differentiating beta-cells, the immunolocalization for this protein is low in these cells. This discrepancy between expression and localization suggests that the epitope in glycine-rich beta-proteins is cleaved or modified by posttranslational processes that take place during the differentiation and maturation of the beta-layer. The present study suggests that among the numerous beta-proteins coded in the snake genome to produce epidermal layers with different textures, the glycine-cysteine-rich beta-protein marks the shedding complex formed between alpha- and beta-layers that allows for molting while its disappearance between the beta- and alpha-layers (mesos region for scale growth) is connected to the formation of the alpha-layers.

  13. Effect of glutamine or glycine containing oral electrolyte solutions on mucosal morphology, clinical and biochemical findings, in calves with viral induced diarrhea.

    PubMed Central

    Naylor, J M; Leibel, T; Middleton, D M

    1997-01-01

    Twenty-one diarrheic calves were randomly assigned to 1 of 3 oral electrolyte treatments. The treatments were either a conventional oral electrolyte containing glycine (40 mmol/L) as the amino acid, an oral electrolyte in which glutamine (40 mmol/L) replaced glycine or an electrolyte in which high concentrations of glutamine (400 mmol/L) replaced glycine. The calves were monitored while on trial and at the end of the treatment they were euthanized and a necropsy was immediately performed. Calves fed the high glutamine electrolyte had more treatment failures (2/7 versus 0/7 for each of the other 2 treatments). There was a significant effect of type of electrolyte on fecal consistency. Calves fed the glycine containing electrolyte had the most solid feces. Duodenal villus height was significantly affected by the type of electrolyte: values (mean +/- 1 SEM) were 0.61 +/- 0.09, 0.46 +/- 0.05, and 0.59 +/- 0.07 mm for high glutamine, low glutamine and glycine electrolytes respectively. There was no significant difference in small intestinal surface area between groups. High glutamine treated calves had the greatest capacity to absorb xylose from the small intestine but this difference was not statistically significant. Overall, this trial does not suggest that substituting glutamine for glycine in oral electrolyte solutions improves treatment of diarrheic calves or speeds mucosal healing. PMID:9008800

  14. Genome-wide identification and phylogenetic analysis of plant RNA binding proteins comprising both RNA recognition motifs and contiguous glycine residues.

    PubMed

    Lewinski, Martin; Hallmann, Armin; Staiger, Dorothee

    2016-04-01

    This study focused on the identification and phylogenetic analysis of glycine-rich RNA binding proteins that contain an RNA recognition motif (RRM)-type RNA binding domain in addition to a region with contiguous glycine residues in representative plant species. In higher plants, glycine-rich proteins with an RRM have met considerable interest as they are responsive to environmental cues and play a role in cold tolerance, pathogen defense, flowering time control, and circadian timekeeping. To identify such RRM containing proteins in plant genomes we developed an RRM profile based on the known glycine-rich RRM containing proteins in the reference plant Arabidopsis thaliana. The application of this remodeled RRM profile that omitted sequences from non-plant species reduced the noise when searching plant genomes for RRM proteins compared to a search performed with the known RRM_1 profile. Furthermore, we developed an island scoring function to identify regions with contiguous glycine residues, using a sliding window approach. This approach tags regions in a protein sequence with a high content of the same amino acid, and repetitive structures score higher. This definition of repetitive structures in a fixed sequence length provided a new glance for characterizing patterns which cannot be easily described as regular expressions. By combining the profile-based domain search for well-conserved regions (the RRM) with a scoring technique for regions with repetitive residues we identified groups of proteins related to the A. thaliana glycine-rich RNA binding proteins in eight plant species.

  15. Asparagine and glycine metabolism in rat liver mitochondria and in mouse L5178Y lymphoma cells resistant or sensitive to the anticancer drug L-asparaginase

    SciTech Connect

    Keefer, J.F. Jr.

    1986-01-01

    Rat liver mitochondrial asparagine was found to be degraded via an aminotransferase and omega-amidase. Evidence includes oxaloacetate production from asparagine only when glyoxylate was added and production of radiolabeled ..cap alpha..-ketosuccinamate via metabolism of (U-/sup 14/C)asparagine. In the cytosol, asparagine is degraded primarily via asparaginase and subsequent transamination. A new HPLC technique for separation of citric acid cycle intermediates was developed using: ion pairing with 20 mM each to tetrabutylammonium hydroxide and Na/sub 2/SO/sub 4/; pH 7.0; isocratic elution; and detection at 210 nm. Amino acid content of mouse lymphoma cells either sensitive (L5178Y) or resistant (L5178Y/L-ASE) to the anticancer drug L-asparaginase was studied. The concentration of asparagine was 1.5 times higher and the concentrations of the essential amino acids histidine, methionine, valine and phenylalanine were two times higher in asparaginase-resistant than sensitive cells. In vivo but not in vitro studies indicated that glucine decreases in sensitive but not resistant cells upon asparaginase treatment. Asparagine and glycine metabolism was further studied using /sup 14/C radiolabel conversion of asparagine, glyoxylate, glycine and serine. Glycine metabolism is especially important in lymphomas and leukemias because these cells contain higher concentrations of glycine that other cancer and normal cells. Therefore, glycine levels were studied and were found to decrease in sensitive but not resistant cells upon asparaginase administration.

  16. Biomolecule-biomaterial interaction: a DFT-D study of glycine adsorption and self-assembly on hydroxylated Cr2O3 surfaces.

    PubMed

    Costa, D; Garrain, P-A; Diawara, B; Marcus, P

    2011-03-15

    The adsorption of glycine, the building block of amino acids, on hydroxylated (0001)-Cr2O3 model surfaces, representing the stainless steel passive film surface, was modeled by means of the GGA + U method. The roles of glycine coverage and surface termination (hydroxylated Cr- and O-terminated surfaces) on the adsorption mode and self-assembly properties were explored. The hydroxylated Cr-terminated Cr2O3 surface, which presents two types of (H)OH groups exhibiting different acidic character, is more reactive than the hydroxylated O-terminated surface, where one single type of OH group is present, for all adsorption modes and coverages considered. Outer sphere adsorption occurs in the zwitterion form, stabilized at low coverage through H-bond formation with coadsorbed water molecules, and at the monolayer coverage by glycine self-assembling. The OH substitution by glycinate is favored on the hydroxylated Cr-terminated surface and not on the O-terminated one. The inclusion of dispersion forces does not change the observed tendencies. An atomistic thermodynamics approach suggests that outer sphere adsorption is thermodynamically favored over inner sphere adsorption in the whole domain of glycine concentration. The obtained SAM's free energies of formation are rationalized in a model considering the balance between sublimation and solvation free energies, and extrapolated to other amino acids, to predict the SAMs formation above hydroxylated surfaces. It is found that hydrophobic AA tend to self-assemble at the surface, whereas hydrophilic ones do not.

  17. Improvement of glycine oxidase by DNA shuffling, and site-saturation mutagenesis of F247 residue.

    PubMed

    Yao, Pei; Lin, Yongjun; Wu, Gaobing; Lu, Yulin; Zhan, Tao; Kumar, Ashok; Zhang, Lili; Liu, Ziduo

    2015-08-01

    Glyphosate is a broad spectrum herbicide widely used throughout the world, and it could be degraded by glycine oxidase (GO) through CN bond cleavage. For a better understanding of the structure-function relationship and improving the activity of B3S1 (GO from Bacillus cereus), DNA shuffling was performed. A mutant B4S7 (The Km, Vmax, kcat and kcat/Km values on glyphosate were 0.1 mM, 0.002401 mM min(-1), 3.62 min(-1) and 36.2 mM(-1) min(-1), respectively. The four parameters on glycine were 50.34 mM, 0.001983 mM min(-1), 2.18 min(-1) and 0.04 mM(-1) min(-1), respectively) was obtained from 10,000 clones, which presented a 3.9-fold increase of the specificity constant (the kcat/Km ratio between glyphosate and glycine) compared with B3S1. Especially, the Km value of B4S7 to glyphosate was much less than those of the reported GO. Structure modeling and molecular docking indicated that the novel mutation point F247S was close to the active site of the enzyme. To identify the role of the site, the remaining 19 amino acids were introduced into the site by site-saturation mutagenesis. The result showed that compared with B3S1, the specificity constant of mutant F247S and F247R increased 0.64-fold and 1.04-fold, respectively. While the specificity constant of mutant F247E decreased 2.01-fold. Therefore, the site 247 plays a crucial role in regulating the substrate specificity. This study provides new information on the structure-function relationship of glycine oxidase and the development of glyphosate-tolerant crops. PMID:26025077

  18. Improvement of glycine oxidase by DNA shuffling, and site-saturation mutagenesis of F247 residue.

    PubMed

    Yao, Pei; Lin, Yongjun; Wu, Gaobing; Lu, Yulin; Zhan, Tao; Kumar, Ashok; Zhang, Lili; Liu, Ziduo

    2015-08-01

    Glyphosate is a broad spectrum herbicide widely used throughout the world, and it could be degraded by glycine oxidase (GO) through CN bond cleavage. For a better understanding of the structure-function relationship and improving the activity of B3S1 (GO from Bacillus cereus), DNA shuffling was performed. A mutant B4S7 (The Km, Vmax, kcat and kcat/Km values on glyphosate were 0.1 mM, 0.002401 mM min(-1), 3.62 min(-1) and 36.2 mM(-1) min(-1), respectively. The four parameters on glycine were 50.34 mM, 0.001983 mM min(-1), 2.18 min(-1) and 0.04 mM(-1) min(-1), respectively) was obtained from 10,000 clones, which presented a 3.9-fold increase of the specificity constant (the kcat/Km ratio between glyphosate and glycine) compared with B3S1. Especially, the Km value of B4S7 to glyphosate was much less than those of the reported GO. Structure modeling and molecular docking indicated that the novel mutation point F247S was close to the active site of the enzyme. To identify the role of the site, the remaining 19 amino acids were introduced into the site by site-saturation mutagenesis. The result showed that compared with B3S1, the specificity constant of mutant F247S and F247R increased 0.64-fold and 1.04-fold, respectively. While the specificity constant of mutant F247E decreased 2.01-fold. Therefore, the site 247 plays a crucial role in regulating the substrate specificity. This study provides new information on the structure-function relationship of glycine oxidase and the development of glyphosate-tolerant crops.

  19. Benzyl isothiocyanate affects development, hatching and reproduction of the soybean cyst nematode Heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzyl isothiocyanate (BITC) applied at micromolar doses decreased Heterodera glycines J2 movement, H. glycines hatching, and reproduction of H. glycines on soybean, Glycine max. Direct exposure of J2 to 30 microM BITC caused an immediate decrease (17%; P < 0.05) in J2 movement relative to 1% methan...

  20. Mixed ligand complex formation of 2-aminobenzamide with Cu(II) in the presence of some amino acids: Synthesis, structural, biological, pH-metric, spectrophotometric and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Dharmaraja, Jeyaprakash; Esakkidurai, Thirugnanasamy; Subbaraj, Paramasivam; Shobana, Sutha

    2013-10-01

    Mixed ligand Cu(II) complexes of 2-aminobenzamide (2AB) and amino acids viz., glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) have been synthesised and characterized by various physico-chemical and spectral techniques. The calculated g-tensor values for Cu(II) complexes at 77 K and 300 K, show the distorted octahedral geometry which has been confirmed from the absorption studies. Consequently, the thermal studies illustrate that the loss of water and acetate molecules in the initial stage which are followed by the decomposition of organic residues. The powder X-ray diffraction and SEM analysis reflect that all the complexes have well-defined crystallinity nature with homogeneous morphology. The binding activities of CT DNA with CuAB complexes have been examined by absorption studies. Further, the oxidative cleavage interactions of 2-aminobenzamide and CuAB complexes with DNA were studied by gel electrophoresis method in H2O2 medium. Also, the complex formation of Cu(II) involving 2-aminobenzamide and amino acids were carried out by a combined pH-metric and spectrophotometric techniques in 50% (v/v) water-ethanol mixture at 300, 310, 320 and 330 ± 0.1 K with I = 0.15 mol dm-3 (NaClO4). In solution, CuAB and CuAB2 species has been detected and the binding modes of 2-aminobenzamide and amino acids in both binary and mixed ligand complexes are same. The calculated stabilization value of Δ log K, log X and log X' indicates higher stabilities for the mixed ligand complexes rather than their binary species. The thermodynamic parameters like ΔG, ΔH and ΔS have been determined from temperature dependence of the stability constant. In vitro biological activities of 2-aminobenzamide, CuA and CuAB complexes show remarkable activities against some bacterial and fungal strains. The percentage distribution of various binary and mixed ligand species in solution at dissimilar pH intervals were also evaluated.

  1. Forced swimming and imipramine modify plasma and brain amino acid concentrations in mice.

    PubMed

    Murakami, Tatsuro; Yamane, Haruka; Tomonaga, Shozo; Furuse, Mitsuhiro

    2009-01-01

    The relationships between monoamine metabolism and forced swimming or antidepressants have been well studied, however information is lacking regarding amino acid metabolism under these conditions. Therefore, the aim of the present study was to investigate the effects of forced swimming and imipramine on amino acid concentrations in plasma, the cerebral cortex and the hypothalamus in mice. Forced swimming caused cerebral cortex concentrations of L-glutamine, L-alanine, and taurine to be increased, while imipramine treatment caused decreased concentrations of L-glutamate, L-alanine, L-tyrosine, L-methionine, and L-ornithine. In the hypothalamus, forced swimming decreased the concentration of L-serine while imipramine treatment caused increased concentration of beta-alanine. Forced swimming caused increased plasma concentration of taurine, while concentrations of L-serine, L-asparagine, L-glutamine and beta-alanine were decreased. Imipramine treatment caused increased plasma concentration of all amino acid, except for L-aspartate and taurine. In conclusion, forced swimming and imipramine treatment modify central and peripheral amino acid metabolism. These results may aid in the identification of amino acids that have antidepressant-like effects, or may help to refine the dosages of antidepressant drugs. PMID:19010319

  2. Identification of a Vibrio cholerae chemoreceptor that senses taurine and amino acids as attractants

    PubMed Central

    Nishiyama, So-ichiro; Takahashi, Yohei; Yamamoto, Kentaro; Suzuki, Daisuke; Itoh, Yasuaki; Sumita, Kazumasa; Uchida, Yumiko; Homma, Michio; Imada, Katsumi; Kawagishi, Ikuro

    2016-01-01

    Vibrio cholerae, the etiological agent of cholera, was found to be attracted by taurine (2-aminoethanesulfonic acid), a major constituent of human bile. Mlp37, the closest homolog of the previously identified amino acid chemoreceptor Mlp24, was found to mediate taxis to taurine as well as L-serine, L-alanine, L-arginine, and other amino acids. Methylation of Mlp37 was enhanced upon the addition of taurine and amino acids. Isothermal titration calorimetry demonstrated that a purified periplasmic fragment of Mlp37 binds directly to taurine, L-serine, L-alanine and L-arginine. Crystal structures of the periplamic domain of Mlp37 revealed that L-serine and taurine bind to the membrane-distal PAS domain in essentially in the same way. The structural information was supported by characterising the in vivo properties of alanine-substituted mutant forms of Mlp37. The fact that the ligand-binding domain of the L-serine complex had a small opening, which would accommodate a larger R group, accounts for the broad ligand specificity of Mlp37 and allowed us to visualise ligand binding to Mlp37 with fluorescently labelled L-serine. Taken together, we conclude that Mlp37 serves as the major chemoreceptor for taurine and various amino acids. PMID:26878914

  3. Growth and Characterization of Glycine Potassium Nitrate NLO crystals

    NASA Astrophysics Data System (ADS)

    Tobin, S.; Bubbly, S. G.; Gudennavar, S. B.

    2011-07-01

    Single crystals of glycine potassium nitrate were grown using slow evaporation technique. The solutions were prepared mixing glycine with potassium nitrate in different ratios stirring continuously for an hour to get a saturated solution. It was then kept at room temperature for controlled evaporation. Optically clear and well shaped crystals were obtained and these were characterized by (FTIR) studies, EDAX and X-ray powder diffraction.

  4. Volumetric characterization of interactions of glycine betaine with protein groups.

    PubMed

    Shek, Yuen Lai; Chalikian, Tigran V

    2011-10-01

    We report the partial molar volumes and adiabatic compressibilities of N-acetyl amino acid amides and oligoglycines at glycine betaine (GB) concentrations ranging from 0 to 4 M. We use these results to evaluate the volumetric contributions of amino acid side chains and the glycyl unit (-CH(2)CONH-) as a function of GB concentration. We analyze the resulting GB dependences within the framework of a statistical thermodynamic model and evaluate the equilibrium constant for the reaction in which a GB molecule binds each of the functionalities under study replacing four water molecules. We calculate the free energy of the transfer of functional groups from water to concentrated GB solutions, ΔG(tr), as the sum of a change in the free energy of cavity formation, ΔΔG(C), and the differential free energy of solute-solvent interactions, ΔΔG(I), in a concentrated GB solution and water. Our results suggest that the transfer free energy, ΔG(tr), results from a fine balance between the large ΔΔG(C) and ΔΔG(I) contributions. The range of the magnitudes and the shape of the GB dependence of ΔG(tr) depend on the identity of a specific solute group. The interplay between ΔΔG(C) and ΔΔG(I) results in pronounced maxima in the GB dependences of ΔG(tr) for the Val, Leu, Ile, Trp, Tyr, and Gln side chains as well as the glycyl unit. This observation is in qualitative agreement with the experimental maxima in the T(M)-versus-GB concentration plots reported for ribonuclease A and lysozyme.

  5. Spectral Luminescent Properties of the Glycine Molecule in a Gas Discharge

    NASA Astrophysics Data System (ADS)

    General, A. A.; Migovich, M. I.; Kelman, V. A.; Zhmenyak, Yu. V.; Zvenigorodsky, V. V.

    2016-01-01

    We have experimentally studied the luminescence spectra of glycine powder in the plasma of a repetitively pulsed longitudinal discharge in argon-glycine and helium-glycine mixtures. We have identified the main fragments of the glycine molecule emitting in the 200-1000 nm region. The emitting molecules due to fragmentation of glycine and dissociation of the carboxyl (-COOH) and amino (-NH2) groups are nitrogen, carbon monoxide, and cyanogen molecules.

  6. GC/MS-based metabolomic studies reveal key roles of glycine in regulating silk synthesis in silkworm, Bombyx mori.

    PubMed

    Chen, Quanmei; Liu, Xinyu; Zhao, Ping; Sun, Yanhui; Zhao, Xinjie; Xiong, Ying; Xu, Guowang; Xia, Qingyou

    2015-02-01

    Metabolic profiling of silkworm, especially the factors that affect silk synthesis at the metabolic level, is little known. Herein, metabolomic method based on gas chromatography-mass spectrometry was applied to identify key metabolic changes in silk synthesis deficient silkworms. Forty-six differential metabolites were identified in Nd group with the defect of silk synthesis. Significant changes in the levels of glycine and uric acid (up-regulation), carbohydrates and free fatty acids (down-regulation) were observed. The further metabolomics of silk synthesis deficient silkworms by decreasing silk proteins synthesis using knocking out fibroin heavy chain gene or extirpating silk glands operation showed that the changes of the metabolites were almost consistent with those of the Nd group. Furthermore, the increased silk yields by supplying more glycine or its related metabolite confirmed that glycine is a key metabolite to regulate silk synthesis. These findings provide important insights into the regulation between metabolic profiling and silk synthesis.

  7. Syntaxin 31 functions in Glycine max resistance to the plant parasitic nematode Heterodera glycines.

    PubMed

    Pant, Shankar R; Matsye, Prachi D; McNeece, Brant T; Sharma, Keshav; Krishnavajhala, Aparna; Lawrence, Gary W; Klink, Vincent P

    2014-05-01

    A Glycine max syntaxin 31 homolog (Gm-SYP38) was identified as being expressed in nematode-induced feeding structures known as syncytia undergoing an incompatible interaction with the plant parasitic nematode Heterodera glycines. The observed Gm-SYP38 expression was consistent with prior gene expression analyses that identified the alpha soluble NSF attachment protein (Gm-α-SNAP) resistance gene because homologs of these genes physically interact and function together in other genetic systems. Syntaxin 31 is a protein that resides on the cis face of the Golgi apparatus and binds α-SNAP-like proteins, but has no known role in resistance. Experiments presented here show Gm-α-SNAP overexpression induces Gm-SYP38 transcription. Overexpression of Gm-SYP38 rescues G. max [Williams 82/PI 518671], genetically rhg1 (-/-), by suppressing H. glycines parasitism. In contrast, Gm-SYP38 RNAi in the rhg1 (+/+) genotype G. max [Peking/PI 548402] increases susceptibility. Gm-α-SNAP and Gm-SYP38 overexpression induce the transcriptional activity of the cytoplasmic receptor-like kinase BOTRYTIS INDUCED KINASE 1 (Gm-BIK1-6) which is a family of defense proteins known to anchor to membranes through a 5' MGXXXS/T(R) N-myristoylation sequence. Gm-BIK1-6 had been identified previously by RNA-seq experiments as expressed in syncytia undergoing an incompatible reaction. Gm-BIK1-6 overexpression rescues the resistant phenotype. In contrast, Gm-BIK1-6 RNAi increases parasitism. The analysis demonstrates a role for syntaxin 31-like genes in resistance that until now was not known.

  8. Growth of gamma glycine crystal and its characterisation

    NASA Astrophysics Data System (ADS)

    Peter, M. Esthaku; Ramasamy, P.

    2010-05-01

    Single crystal of γ-glycine, an organic nonlinear optical material, has been grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and potassium nitrate, lithium nitrate at room temperature. Gamma glycine crystals have been grown up to the dimension of 20 mm × 15 mm × 12 mm. Powder X-ray diffraction of the grown crystal was recorded and indexed. Single crystal X-ray diffraction studies were carried out and the unit cell parameters were compared with the literature values. The γ-phase of glycine is confirmed by single crystal XRD and FTIR spectral analysis. The crystals were characterised by UV-vis-NIR transmission spectrum in the range 200-1100 nm. The second harmonic generation conversion efficiency of γ-glycine crystal was twice the efficiency of KDP crystal. Thermal characteristics of γ-glycine crystals were determined by thermogravimetric analysis (TGA) and differential thermal analysis, which shows the thermal stability of the grown crystals. Dielectric constant and dielectric loss measurements were carried out at different temperatures and frequencies. The microhardness of the grown crystals has been studied using Vicker's microhardness tester.

  9. Growth of gamma glycine crystal and its characterisation.

    PubMed

    Peter, M Esthaku; Ramasamy, P

    2010-05-01

    Single crystal of gamma-glycine, an organic nonlinear optical material, has been grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and potassium nitrate, lithium nitrate at room temperature. Gamma glycine crystals have been grown up to the dimension of 20mmx15mmx12mm. Powder X-ray diffraction of the grown crystal was recorded and indexed. Single crystal X-ray diffraction studies were carried out and the unit cell parameters were compared with the literature values. The gamma-phase of glycine is confirmed by single crystal XRD and FTIR spectral analysis. The crystals were characterised by UV-vis-NIR transmission spectrum in the range 200-1100nm. The second harmonic generation conversion efficiency of gamma-glycine crystal was twice the efficiency of KDP crystal. Thermal characteristics of gamma-glycine crystals were determined by thermogravimetric analysis (TGA) and differential thermal analysis, which shows the thermal stability of the grown crystals. Dielectric constant and dielectric loss measurements were carried out at different temperatures and frequencies. The microhardness of the grown crystals has been studied using Vicker's microhardness tester. PMID:20299279

  10. Glycine receptor mechanism illuminated by electron cryo-microscopy

    PubMed Central

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-01-01

    Summary The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of GlyRs has been hindered by a dearth of high-resolution structures. Here we report electron cryo-microscopy structures of the α1 GlyR with strychnine, glycine, or glycine/ivermectin. Strychnine arrests the receptor in an antagonist-bound, closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain ‘wrist’ interface, and leads to rotation of the transmembrane domain toward the pore axis, occluding the ion conduction pathway. These structures illuminate GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  11. Identification of Rotylenchulus reniformis Resistant Glycine Lines

    PubMed Central

    Stetina, Salliana R.; Smith, James R.; Ray, Jeffery D.

    2014-01-01

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the mid-South region of the United States. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen. Sixty-one wild and domestic soybean lines were evaluated in replicated growth chamber tests. Six previously untested soybean lines with useful levels of resistance to reniform nematode were identified in both initial screening and subsequent confirmation tests: released germplasm lines DS4-SCN05 (PI 656647) and DS-880 (PI 659348); accession PI 567516 C; and breeding lines DS97-84-1, 02011-126-1-1-2-1 and 02011-126-1-1-5-1. Eleven previously untested moderately susceptible or susceptible lines were also identified: released germplasm lines D68-0099 (PI 573285) and LG01-5087-5; accessions PI 200538, PI 416937, PI 423941, PI 437697, PI 467312, PI 468916, PI 594692, and PI 603751 A; and cultivar Stafford (PI 508269). Results of previously tested lines evaluated in the current study agreed with published reports 69.6% of the time for resistant lines and 87.5% of the time for susceptible lines. Soybean breeders may benefit from incorporating the newly identified resistant lines into their breeding programs. PMID:24643425

  12. Dermatological and cosmeceutical benefits of Glycine max (soybean) and its active components.

    PubMed

    Waqas, Muhammad Khurram; Akhtar, Naveed; Mustafa, Rehan; Jamshaid, Muhammad; Khan, Haji Muhammad Shoaib; Murtaza, Ghulam

    2015-01-01

    Glycine max, known as the soybean or soya bean, is a species of legume native to East Asia. Soya beans contain many functional components including phenolic acids, flavonoids, isoflavonoids (quercetin, genistein, and daidzein), small proteins (Bowman-Birk inhibitor, soybean trypsin inhibitor) tannins, and proanthocyanidins. Soybean seeds extract and fresh soymilk fractions have been reported to possess the cosmeceutical and dermatological benefits such as anti-inflammatory, collagen stimulating effect, potent anti-oxidant scavenging peroxyl radicals, skin lightening effect and protection against UV radiation. Thus, present review attempts to give a short overview on dermatological and cosmeceutical studies of soybean and its bioactive compounds.

  13. Serine, glycine and the one-carbon cycle: cancer metabolism in full circle

    PubMed Central

    Locasale, Jason W

    2013-01-01

    One carbon metabolism involving the folate and methionine cycle integrates carbon units from amino acids, including serine and glycine, and generates diverse outputs, such as the biosynthesis of lipids, nucleotides and proteins, the maintenance of redox status, and the substrates for methylation reactions. Long considered a ‘housekeeping’ process, this pathway has been recently shown to have additional complexity. Recent genetic and functional evidence also suggests that hyperactivation of this pathway is a possible driver of oncogenesis and establishes links to cellular epigenetic status. Given the wealth of clinically available agents that target one carbon metabolism, these new findings could present opportunities for translation into precision cancer medicine. PMID:23822983

  14. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.

    PubMed

    Chang, Sungyul; Thurber, Carrie S; Brown, Patrick J; Hartman, Glen L; Lambert, Kris N; Domier, Leslie L

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production.

  15. Comparative Mapping of the Wild Perennial Glycine latifolia and Soybean (G. max) Reveals Extensive Chromosome Rearrangements in the Genus Glycine

    PubMed Central

    Chang, Sungyul; Thurber, Carrie S.; Brown, Patrick J.; Hartman, Glen L.; Lambert, Kris N.; Domier, Leslie L.

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production. PMID

  16. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.

    PubMed

    Chang, Sungyul; Thurber, Carrie S; Brown, Patrick J; Hartman, Glen L; Lambert, Kris N; Domier, Leslie L

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production. PMID

  17. Anabaena sp. PCC7120 transformed with glycine methylation genes from Aphanothece halophytica synthesized glycine betaine showing increased tolerance to salt.

    PubMed

    Waditee-Sirisattha, Rungaroon; Singh, Meenakshi; Kageyama, Hakuto; Sittipol, Daungjai; Rai, Ashwani K; Takabe, Teruhiro

    2012-11-01

    Photosynthetic, nitrogen-fixing Anabaena strains play an important role in the carbon and nitrogen cycles in tropical paddy fields although they are salt sensitive. Improvement in salt tolerance of Anabaena cells by expressing glycine betaine-synthesizing genes is an interesting subject. Due to the absence of choline in cyanobacteria, choline-oxidizing enzyme could not be used for the synthesis of glycine betaine. Here, the genes encoding glycine-sarcosine and dimethylglycine methyltransferases (ApGSMT-DMT) from a halotolerant cyanobacterium Aphanothece halophytica were expressed in Anabaena sp. strain PCC7120. The ApGSMT-DMT-expressing Anabaena cells were capable of synthesizing glycine betaine without the addition of any substance. The accumulation level of glycine betaine in Anabaena increased with rise of salt concentration. The transformed cells exhibited an improved growth and more tolerance to salinity than the control cells. The present work provides a prospect to engineer a nitrogen-fixing cyanobacterium having enhanced tolerance to stress by manipulating de novo synthesis of glycine betaine.

  18. [Relationship between chloride tolerance and polyamine accumulation in Glycine max, Glycine soja, and their hybrid seedlings].

    PubMed

    Chen, Xuan-Qin; Yu, Bing-Jun; Liu, You-Liang

    2007-02-01

    The seedlings of the F4 hybrid strain 'JB185' selected for salt tolerance generation by generation, their parents Glycine max cv. Jackson and Glycine soja population 'BB52' were treated with different NaCl concentrations and iso-osmotic (-0.53 MPa) PEG-6000, NaCl, Na+ (without Cl-) and Cl- (without Na+) solutions for 6 d. The results showed that: (1) The relative electrolyte leakage and malondialdehyde (MDA) content in leaves of the above three soybean seedlings showed an increase trend when the NaCl concentration was elevated, but chlorophyll contents decreased except the significant increase in 'BB52' and 'JB185' under NaCl 50 mmol/L stress. The change in 'JB185' was between its parents. (2) Under different iso-osmotic stresses, the relative electrolyte leakage and MDA contents in leaves of three soybean seedlings also increased mostly, the changes in 'BB52' and 'JB185' under Na+ (without Cl-) stress were more than those under Cl- (without Na+) stress. The free and bound Put, Spd and Spm contents in leaves all increased when compared with the control, the ratios of free (Spd+Spm)/Put and total bound polyamines in 'BB52' and 'JB185' seedlings under Na+ (without Cl-) treatment were the lowest one among three iso-osmotic salt stresses. The results indicate that the F4 hybrid strain 'JB185' is more sensitive to Na+ than Cl- as its wild parent 'BB52' population.

  19. Copper-Catalyzed Aerobic Enantioselective Cross-Dehydrogenative Coupling of N-Aryl Glycine Esters with Terminal Alkynes.

    PubMed

    Xie, Zhiyu; Liu, Xigong; Liu, Lei

    2016-06-17

    A copper-catalyzed enantioselective cross-coupling of a Csp3-H moiety (N-aryl glycine ester) with a Csp-H component (terminal alkyne) using molecular oxygen as the terminal oxidant is described for the first time. The sustainable method provides an efficient and environmentally friendly approach to rapidly prepare a diverse array of optically active non-natural α-amino acids. PMID:27269737

  20. Effects of inhalational general anaesthetics on native glycine receptors in rat medullary neurones and recombinant glycine receptors in Xenopus oocytes.

    PubMed Central

    Downie, D. L.; Hall, A. C.; Lieb, W. R.; Franks, N. P.

    1996-01-01

    1. Glycine responses were studied under voltage clamp in Xenopus oocytes injected with cDNA encoding mammalian glycine receptor subunits and in rat medullary neurones. Bath application of glycine gave strychnine-sensitive currents which reversed close to the expected equilibrium potentials for chloride ions. The peak currents for the receptors expressed in oocytes fitted a Hill equation with EC50 = 215 +/- 5 microM and Hill coefficient nH = 1.70 +/- 0.05 (means +/- s.e. means). The peak currents from the receptors in medullary neurones fitted a Hill equation with EC50 = 30 +/- 1 microM and Hill coefficient nH = 1.76 +/- 0.08. The current-voltage relationship for the receptors expressed in oocytes showed strong outward rectification (with Vrev = -21 +/- 2 mV), while that for the glycine responses from the medullary neurones in symmetrical Cl- was linear (with Vrev = 3.2 +/- 0.6 mV). 2. Inhalational general anaesthetics, at concentrations close to their human minimum alveolar concentrations (MACs), potentiated responses to low concentrations of glycine. The potentiation observed with the recombinant receptors (between 60-22%) was approximately twice that found with the medullary neurones (between 40-80%). For both the recombinant receptors and the receptors in medullary neurones, the degree of potentiation increased in the order of methoxyflurane approximately sevoflurane < halothane approximately isoflurane approximately enflurane. There was no significant difference between the potentiations observed for the two optical isomers of isoflurane. 3. For both the recombinant and native receptors, isoflurane potentiated the currents in a dose-dependent manner at low concentrations of glycine, although at high glycine concentrations the anaesthetic had no significant effect on the glycine-activated responses. The major effect of isoflurane was to cause a parallel leftward shift in the glycine concentration-response curves. The glycine EC50 concentration for the

  1. The syntaxin 31-induced gene, LESION SIMULATING DISEASE1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines.

    PubMed

    Pant, Shankar R; Krishnavajhala, Aparna; McNeece, Brant T; Lawrence, Gary W; Klink, Vincent P

    2015-01-01

    Experiments show the membrane fusion genes α soluble NSF attachment protein (α-SNAP) and syntaxin 31 (Gm-SYP38) contribute to the ability of Glycine max to defend itself from infection by the plant parasitic nematode Heterodera glycines. Accompanying their expression is the transcriptional activation of the defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and NONEXPRESSOR OF PR1 (NPR1) that function in salicylic acid (SA) signaling. These results implicate the added involvement of the antiapoptotic, environmental response gene LESION SIMULATING DISEASE1 (LSD1) in defense. Roots engineered to overexpress the G. max defense genes Gm-α-SNAP, SYP38, EDS1, NPR1, BOTRYTIS INDUCED KINASE1 (BIK1) and xyloglucan endotransglycosylase/hydrolase (XTH) in the susceptible genotype G. max[Williams 82/PI 518671] have induced Gm-LSD1 (Gm-LSD1-2) transcriptional activity. In reciprocal experiments, roots engineered to overexpress Gm-LSD1-2 in the susceptible genotype G. max[Williams 82/PI 518671] have induced levels of SYP38, EDS1, NPR1, BIK1 and XTH, but not α-SNAP prior to infection. In tests examining the role of Gm-LSD1-2 in defense, its overexpression results in ∼52 to 68% reduction in nematode parasitism. In contrast, RNA interference (RNAi) of Gm-LSD1-2 in the resistant genotype G. max[Peking/PI 548402] results in an 3.24-10.42 fold increased ability of H. glycines to parasitize. The results identify that Gm-LSD1-2 functions in the defense response of G. max to H. glycines parasitism. It is proposed that LSD1, as an antiapoptotic protein, may establish an environment whereby the protected, living plant cell could secrete materials in the vicinity of the parasitizing nematode to disarm it. After the targeted incapacitation of the nematode the parasitized cell succumbs to its targeted demise as the infected root region is becoming fortified. PMID:25530246

  2. The syntaxin 31-induced gene, LESION SIMULATING DISEASE1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines.

    PubMed

    Pant, Shankar R; Krishnavajhala, Aparna; McNeece, Brant T; Lawrence, Gary W; Klink, Vincent P

    2015-01-01

    Experiments show the membrane fusion genes α soluble NSF attachment protein (α-SNAP) and syntaxin 31 (Gm-SYP38) contribute to the ability of Glycine max to defend itself from infection by the plant parasitic nematode Heterodera glycines. Accompanying their expression is the transcriptional activation of the defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and NONEXPRESSOR OF PR1 (NPR1) that function in salicylic acid (SA) signaling. These results implicate the added involvement of the antiapoptotic, environmental response gene LESION SIMULATING DISEASE1 (LSD1) in defense. Roots engineered to overexpress the G. max defense genes Gm-α-SNAP, SYP38, EDS1, NPR1, BOTRYTIS INDUCED KINASE1 (BIK1) and xyloglucan endotransglycosylase/hydrolase (XTH) in the susceptible genotype G. max[Williams 82/PI 518671] have induced Gm-LSD1 (Gm-LSD1-2) transcriptional activity. In reciprocal experiments, roots engineered to overexpress Gm-LSD1-2 in the susceptible genotype G. max[Williams 82/PI 518671] have induced levels of SYP38, EDS1, NPR1, BIK1 and XTH, but not α-SNAP prior to infection. In tests examining the role of Gm-LSD1-2 in defense, its overexpression results in ∼52 to 68% reduction in nematode parasitism. In contrast, RNA interference (RNAi) of Gm-LSD1-2 in the resistant genotype G. max[Peking/PI 548402] results in an 3.24-10.42 fold increased ability of H. glycines to parasitize. The results identify that Gm-LSD1-2 functions in the defense response of G. max to H. glycines parasitism. It is proposed that LSD1, as an antiapoptotic protein, may establish an environment whereby the protected, living plant cell could secrete materials in the vicinity of the parasitizing nematode to disarm it. After the targeted incapacitation of the nematode the parasitized cell succumbs to its targeted demise as the infected root region is becoming fortified.

  3. The syntaxin 31-induced gene, LESION SIMULATING DISEASE1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines

    PubMed Central

    Pant, Shankar R; Krishnavajhala, Aparna; McNeece, Brant T; Lawrence, Gary W; Klink, Vincent P

    2015-01-01

    Experiments show the membrane fusion genes α soluble NSF attachment protein (α-SNAP) and syntaxin 31 (Gm-SYP38) contribute to the ability of Glycine max to defend itself from infection by the plant parasitic nematode Heterodera glycines. Accompanying their expression is the transcriptional activation of the defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and NONEXPRESSOR OF PR1 (NPR1) that function in salicylic acid (SA) signaling. These results implicate the added involvement of the antiapoptotic, environmental response gene LESION SIMULATING DISEASE1 (LSD1) in defense. Roots engineered to overexpress the G. max defense genes Gm-α-SNAP, SYP38, EDS1, NPR1, BOTRYTIS INDUCED KINASE1 (BIK1) and xyloglucan endotransglycosylase/hydrolase (XTH) in the susceptible genotype G. max[Williams 82/PI 518671] have induced Gm-LSD1 (Gm-LSD1–2) transcriptional activity. In reciprocal experiments, roots engineered to overexpress Gm-LSD1–2 in the susceptible genotype G. max[Williams 82/PI 518671] have induced levels of SYP38, EDS1, NPR1, BIK1 and XTH, but not α-SNAP prior to infection. In tests examining the role of Gm-LSD1–2 in defense, its overexpression results in ∼52 to 68% reduction in nematode parasitism. In contrast, RNA interference (RNAi) of Gm-LSD1–2 in the resistant genotype G. max[Peking/PI 548402] results in an 3.24–10.42 fold increased ability of H. glycines to parasitize. The results identify that Gm-LSD1–2 functions in the defense response of G. max to H. glycines parasitism. It is proposed that LSD1, as an antiapoptotic protein, may establish an environment whereby the protected, living plant cell could secrete materials in the vicinity of the parasitizing nematode to disarm it. After the targeted incapacitation of the nematode the parasitized cell succumbs to its targeted demise as the infected root region is becoming fortified. PMID:25530246

  4. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  5. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  6. Ensifer glycinis sp. nov., a rhizobial species associated with species of the genus Glycine.

    PubMed

    Yan, Hui; Yan, Jun; Sui, Xin Hua; Wang, En Tao; Chen, Wen Xin; Zhang, Xiao Xia; Chen, Wen Feng

    2016-09-01

    Rhizobial strains from root nodules of Astragalus mongholicus and soybean (Glycine max) were characterized phylogenetically as members of the genus Ensifer (formerly named Sinorhizobium), based on 16S rRNA gene sequence comparisons. Results based upon concatenated sequence analysis of three housekeeping genes (recA, atpD and glnII, ≤ 93.8 % similarities to known species) and average nucleotide identity (ANI) values of whole genome sequence comparisons (ranging from 89.6 % to 83.4 % to Ensifer fredii and Ensifer saheli, respectively) indicated the distinct positions of these novel strains within the genus Ensifer. Phylogeny of symbiotic genes (nodC and nifH) of three novel strains clustered them with rhizobial species Ensifer fredii and Ensifer sojae, both isolated from nodules of Glycine max. Cross-nodulation tests showed that the representative strain CCBAU 23380T could form root nodules with nitrogen fixation capability on Glycine soja, Albizia julibrissin, Vigna unguiculata and Cajanus cajan, but failed to nodulate Astragalus mongholicus, its original host legume. Strain CCBAU 23380T formed inefficient nodules on G. max, and it did not contain 18 : 0, 18 : 1ω7c 11-methyl or summed feature 1 fatty acids, which differed from other related strains. Failure to utilize malonic acid as a carbon source distinguished strain CCBAU 23380T from the type strains of related species. The genome size of CCBAU 23380T was 6.0 Mbp, comprising 5624 predicted genes with DNA G+C content of 62.4 mol%. Based on the results above, a novel species, Ensifer glycinis sp. nov., is proposed, with CCBAU 23380T (=LMG 29231T =HAMBI 3645T) as the type strain. PMID:27125987

  7. Charge and geometry of residues in the loop 2 β hairpin differentially affect agonist and ethanol sensitivity in glycine receptors.

    PubMed

    Perkins, Daya I; Trudell, James R; Asatryan, Liana; Davies, Daryl L; Alkana, Ronald L

    2012-05-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC₅₀ but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC₅₀ while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC₅₀ and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs.

  8. The temperature effect on the glycine decomposition induced by 2 keV electron bombardment in space analog conditions

    NASA Astrophysics Data System (ADS)

    Pilling, Sergio; Nair, Binu G.; Escobar, Antonio; Fraser, Helen; Mason, Nigel

    2014-03-01

    Glycine is the simplest proteinaceous amino acid that has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, such species is exposed to several radiation fields at different temperatures. In aqueous solutions, this species appears mainly as zwitterionic glycine (+NH3CH2COO-) however, in solid phase, it may be found in amorphous or crystalline forms. Here, we present an experimental study on the destruction of two zwitterionic glycine crystals ( α- and β-form) at two different temperatures (300 K and 14 K) by 2 keV electrons in an attempt to test the behavior and stability of this molecular species in different space environments. The samples were analyzed in situ by Fourier transform infrared spectrometry at electron fluences. The experiments were carried out under ultra-high vacuum conditions at the Molecular Physics Laboratory at the Open University at Milton Keynes, UK. The dissociation cross section of glycine is approximately 5 times higher for the 14 K samples when compared to the 300 K samples. In contrast, no significant differences emerged between the dissociation cross sections of α- and β-forms of glycine for fixed temperature experiments. We therefore conclude that the destruction cross section is more heavily dependent on temperature than the phase of the condensed glycine material. This may be associated with the opening of additional reaction routes in the frozen samples involving the trapped daughter species (e.g. CO2 and CO). The half-life of studied samples extrapolated to space conditions shows that glycine molecules on the surface of interstellar grains has less survivability and they are highly sensitive to ambient radiations, however, they can survive extended period of time in the solar system like environments. Survivability increases by a factor of 5 if the samples are at 300 K when compared to low temperature experiments at 14

  9. Freeze-dried whole plasma: evaluating sucrose, trehalose, sorbitol, mannitol and glycine as stabilizers.

    PubMed

    Bakaltcheva, Irina; O'Sullivan, Anne Marie; Hmel, Peter; Ogbu, Helen

    2007-01-01

    activities of the coagulation factors V, VII, VIII, IX, X and the coagulation inhibitors protein C, protein S and antithrombin III were recorded. Factors V and VIII were most prone to degradation. Factor V and VIII activities, in control plasma, were approx. 44+/-3.5% and 58+/-2.3%, at the end of storage. In contrast, much higher factor V and VIII activities were maintained in the lyophilized glycine-supplemented plasma: approx. 60+/-3.5% and 74+/-7.0%, correspondingly. The most stable protein was protein C, which showed no signs of degradation under the testing conditions of this study. All tested stabilizers provided protection. Glycine, however, outperformed all tested polyols, providing superior preservation of plasma clotting properties. Thermograms of 60mM glycine in water and 60mM glycine in plasma show that, in the presence of plasma, glycine does not crystallize. The process of freeze-drying caused a complete loss of plasma pCO(2) (gas) and a substantial increase in plasma pH. Citric acid was found to be a suitable pH adjuster for lyophilized/rehydrated plasma.

  10. Accumulation of 52 kDa glycine rich protein in auxin-deprived strawberry fruits and its role in fruit growth. [Fragaria ananassa

    SciTech Connect

    Reddy, A.S.N.; Poovaiah, B.W.

    1987-04-01

    Growth of strawberry (Fragaria ananassa Duch) receptacles can be stopped at any stage by deachening the fruits and can be resumed by exogenous application of auxin. In their earlier studies they demonstrated auxin regulated polypeptide changes at different stages of strawberry fruit development. Removal of achenes from fruits to deprive auxin resulted in the accumulation of 52 KDa polypeptide. This polypeptide is associated with cell wall and its concentration is increased in a time-dependent manner in auxin deprived receptacles. Incorporation studies with (/sup 35/S) methionine showed the promotion of labelling of 52 kDa polypeptide in the auxin-deprived receptacles within 12 h after removal of the achenes. Amino acid analysis revealed that the 52 KDa polypeptide is rich in glycine. Their studies, with normal and mutant strawberry receptacles, indicate that the synthesis and accumulation of this glycine rich protein correlates with cessation of receptacle growth. These results suggest a role for the glycine rich protein in growth.

  11. Structural phase transition in ferroelectric glycine silver nitrate<