Science.gov

Sample records for acids including glycine

  1. Beneficial Effects of the Amino Acid Glycine.

    PubMed

    Pérez-Torres, Israel; Zuniga-Munoz, Alejandra María; Guarner-Lans, Veronica

    2017-01-01

    Glycine is the smallest non-essential, neutral and metabolically inert amino acid, with a carbon atom bound to two hydrogen atoms, and to an amino and a carboxyl group. This amino acid is an essential substrate for the synthesis of several biologically important biomolecules and compounds. It participates in the synthesis of proteins, of the tripeptide glutathione and in detoxification reactions. It has a broad spectrum of anti-inflammatory, cytoprotective and immunomodulatory properties. To exert its actions, glycine binds to different receptors. The GlyR anion channel is the most studied receptor for glycine. However, there are GlyR-independent mechanisms for glycine cytoprotection and other possible binding molecules of glycine are the NMDA receptor and receptors GlyT1 and GlyT2. Although, in humans, the normal serum level of glycine is approximately 300 μM, increasing glycine intake can lead to blood levels of more than 900 μM that increase its benefic actions without having harmful side effects. The herbal pesticide glyphosate might disrupt glycine homeostasis. Many in vitro studies involving different cell types have demonstrated beneficial effects of the addition of glycine. Glycine also improved conditions of isolated perfused or stored organs. In vivo studies in experimental animals have also tested glycine as a protector molecule and some studies on the beneficial effects of glycine after its clinical application have been done. Although at high-doses, glycine may cause toxic effects, further studies are needed to investigate the safe range of usage of this aminoacid and to test the diverse routes of administration.

  2. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review

    PubMed Central

    Razak, Meerza Abdul; Begum, Pathan Shajahan

    2017-01-01

    Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states. PMID:28337245

  3. Arachidonic acid inhibits glycine transport in cultured glial cells.

    PubMed Central

    Zafra, F; Alcantara, R; Gomeza, J; Aragon, C; Gimenez, C

    1990-01-01

    The effects of arachidonic acid on glycine uptake, exchange and efflux in C6 glioma cells were investigated. Arachidonic acid produced a dose-dependent inhibition of high-affinity glycine uptake. This effect was not due to a simple detergent-like action on membranes, as the inhibition of glycine transport was most pronounced with cis-unsaturated long-chain fatty acids, whereas saturated and trans-unsaturated fatty acids had relatively little or no effect. Endogenous unsaturated non-esterified fatty acids may exert a similar inhibitory effect on the transport of glycine. The mechanism for this inhibitory effect has been examined in a plasma membrane vesicle preparation derived from C6 cells, which avoids metabolic or compartmentation interferences. The results suggest that part of the selective inhibition of glycine transport by arachidonic acid could be due to the effects of the arachidonic acid on the lipid domain surrounding the carrier. PMID:2121132

  4. Anticoagulant Effects of Heparin Complexes with Prolyl-Glycine Peptide and Glycine and Proline Amino Acids.

    PubMed

    Grigorieva, M E; Obergan, T Yu; Maystrenko, E S; Kalugina, M D

    2016-05-01

    The study demonstrates the formation of heparin complexes with prolyl-glycine peptide and proline and glycine amino acids. The method was developed for in vitro production of these complexes at 1:1 dipeptide to heparin molar ratio and 2:1 amino acid to heparin molar ratio. These complexes, unlike the constituents, proline and glycine, exhibited significant anticoagulant, antiplatelet, and fibrin-depolymerization activities of varying degree in vitro and in vivo. The heparin-dipeptide complex produced maximum effect. The dipeptide by itself also showed anticoagulant properties, but less pronounced than in the complex with heparin.

  5. Quantum chemical calculations of glycine glutaric acid

    NASA Astrophysics Data System (ADS)

    Arioǧlu, ćaǧla; Tamer, Ömer; Avci, Davut; Atalay, Yusuf

    2017-02-01

    Density functional theory (DFT) calculations of glycine glutaric acid were performed by using B3LYP levels with 6-311++G(d,p) basis set. The theoretical structural parameters such as bond lengths and bond angles are in a good agreement with the experimental values of the title compound. HOMO and LUMO energies were calculated, and the obtained energy gap shows that charge transfer occurs in the title compound. Vibrational frequencies were calculated and compare with experimental ones. 3D molecular surfaces of the title compound were simulated using the same level and basis set. Finally, the 13C and 1H NMR chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method.

  6. Effect of Pressure on the Release of Radioactive Glycine and Gamma-Aminobutyric Acid from Spinal Cord Synaptosomes

    DTIC Science & Technology

    1987-11-01

    include Security Classification) Effect of Pressure on the Release of Radioactive Glycine and-Aminobutyric Acid from Spinal Cord Synaptosomes 12. PERSONAL... Spinal Cord ; Synaptosomes 19. ABSTRACT (Continue on reverse if necessary and identify by block number) AkcoSSSiOf For @TIC NTIS GRA&I (o.pyr DTIC TAR...Neurochemistry Effect of Pressure on the Release of Radioactive Glycine and 7-Aminobutyric Acid from Spinal Cord Synaptosomes Sara C. Gilman, Joel S. Colton

  7. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile.

  8. Glycine as a d-amino acid surrogate in the K+-selectivity filter

    PubMed Central

    Valiyaveetil, Francis I.; Sekedat, Matthew; MacKinnon, Roderick; Muir, Tom W.

    2004-01-01

    The K+ channel-selectivity filter consists of two absolutely conserved glycine residues. Crystal structures show that the first glycine in the selectivity filter, Gly-77 in KcsA, is in a left-handed helical conformation. Although the left-handed helical conformation is not favorable for the naturally occurring l-amino acids, it is favorable for the chirally opposite d-amino acids. Here, we demonstrate that Gly-77 can be replaced by d-Ala with almost complete retention of function. In contrast, substitution with an l-amino acid results in a nonfunctional channel. This finding suggests that glycine is used as a surrogate d-amino acid in the selectivity filter. The absolute conservation of glycine in the K+-selectivity filter can be explained as a result of glycine being the only natural amino acid that can play this role. PMID:15563591

  9. Active transport of. gamma. -aminobutyric acid and glycine into synaptic vesicles

    SciTech Connect

    Kish, P.E.; Fischer-Bovenkerk, C.; Ueda, T. )

    1989-05-01

    Although {gamma}-aminobutyric acid (GABA) and glycine are recognized as major amino acid inhibitory neurotransmitters in the central nervous system, their storage is poorly understood. In this study the authors have characterized vesicular GABA and glycine uptakes in the cerebrum and spinal cord, respectively. They present evidence that GABA and glycine are each taken up into isolated synaptic vesicles in an ATP-dependent manner and that the uptake is driven by an electrochemical proton gradient. Uptake for both amino acids exhibited kinetics with low affinity similar to a vesicular glutamate uptake. The ATP-dependent GABA uptake was not inhibited by the putative amino acid neurotransmitters glycine, taurine, glutamate, or aspartate or by GABA analogs, agonists, and antagonists. Similarly, ATP-dependent glycine uptake was hardly affected by GABA, taurine, glutamate, or aspartate or by glycine analogs or antagonists. The GABA uptake was not affected by chloride, which is in contrast to the uptake of the excitatory neurotransmitter glutamate, whereas the glycine uptake was slightly stimulated by low concentrations of chloride. Tissue distribution studies indicate that the vesicular uptake systems for GABA, glycine, and glutamate are distributed in different proportions in the cerebrum and spinal cord. These results suggest that the vesicular uptake systems for GABA, glycine, and glutamate are distinct from each other.

  10. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... patterns in food technology. Therefore, the Food and Drug Administration no longer regards glycine and its... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  11. Taurine activates glycine and gamma-aminobutyric acid A receptors in rat substantia gelatinosa neurons.

    PubMed

    Wu, Jun; Kohno, Tatsuro; Georgiev, Stefan K; Ikoma, Miho; Ishii, Hideaki; Petrenko, Andrey B; Baba, Hiroshi

    2008-02-12

    Taurine has been suggested to modulate nociceptive information at the spinal cord level. In this study, the pharmacological properties of taurine were investigated in adult rat substantia gelatinosa (SG) neurons using whole-cell patch-clamp method. We found that taurine seemed to have higher efficacy than glycine on glycine receptors in SG neurons. An increase in chloride conductance was responsible for taurine-induced currents. Taurine at 0.3 mM activated glycine receptors, whereas at 3 mM activated both glycine and gamma-aminobutyric acid A receptors. The currents activated by coapplication of taurine and glycine are cross inhibitive. Altogether these results show that taurine might represent another important neurotransmitter or modulator in SG neurons, which may be involved in antinociception.

  12. Heat-initiated prebiotic formation of peptides from glycine/aspartic acid and glycine/valine in aqueous environment and clay suspension

    NASA Astrophysics Data System (ADS)

    Pant, Chandra Kala; Lata, Hem; Pathak, Hari Datt; Mehata, Mohan Singh

    2009-04-01

    The effect of heat on the reaction system of glycine/aspartic acid and glycine/valine in the aqueous environment as well as in montmorillonite clay suspension with or without divalent cations (Ca2+, Mg2+ and Ni2+) has been investigated at 85°C±5°C for varying periods under prebiotic drying and wetting conditions. The resulting products were analysed and characterized by chromatographic and spectroscopic methods. Peptide formation appears to depend on the duration of heat effect, nature of reactant amino acids and, to some extent, on montmorillonite clay incorporated with divalent cations. In the glycine/aspartic acid system, oligomerization of glycine was limited up to trimer level (Gly)3 along with the formation of glycyl-aspartic acid, while linear and cyclic peptides of aspartic acid were not formed, whereas the glycine/valine system preferentially elongated homo-oligopeptide of glycine up to pentamer level (Gly)5 along with formation of hetero-peptides (Gly-Val and Val-Gly). These studies are relevant in the context of the prebiotic origin of proteins and the role of clay and metal ions in condensation and oligomerization of amino acids. The length of the bio-oligomer chain depends upon the reaction conditions. However, condensation into even a small length seems significant, as the same process would have taken millions of years in the primitive era of the Earth, leading to the first proteins.

  13. The Infrared Spectrum of Matrix Isolated Aminoacetonitrile: A Precursor to the Amino Acid Glycine

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Bauschlicher, Charles W., Jr.; Sandford, Scott A.

    2003-01-01

    We present infrared (IR) spectral data from matrix isolation experiments and density functional theory calculations on the pre-biologically interesting molecule aminoacetonitrile, a precursor to glycine. We find that this nitrile has an unusually weak nitrile (C=N) stretch in the infrared, in contrast to expectations based on measurements and models of other nitriles under astrophysical conditions. The absence of an observable nitrile absorption feature in the infrared will make the IR search for this molecule considerably more difficult, and will raise estimates of upper limits on nitriles in interstellar and outer Solar System ices. This is also of relevance to assessing the formation routes of the amino acid glycine, since aminoacetonitrile is the putative precursor to glycine via the Strecker synthesis, the mechanism postulated to have produced the amino acids in meteorites.

  14. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... increasing due to changing use patterns in food technology. Therefore, the Food and Drug Administration no... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  15. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... increasing due to changing use patterns in food technology. Therefore, the Food and Drug Administration no... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  16. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... increasing due to changing use patterns in food technology. Therefore, the Food and Drug Administration no... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  17. 21 CFR 170.50 - Glycine (aminoacetic acid) in food for human consumption.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... increasing due to changing use patterns in food technology. Therefore, the Food and Drug Administration no... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycine (aminoacetic acid) in food for human consumption. 170.50 Section 170.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  18. Acid phosphatase activities during the germination of Glycine max seeds.

    PubMed

    dos Prazeres, Janaina Nicanuzia; Ferreira, Carmen Veríssima; Aoyama, Hiroshi

    2004-01-01

    In this paper, we describe a study concerning the determination of some characteristics of soybean seedlings and the detection of acid phosphatase activities towards different substrates during the germination. Enzyme activities with p-nitrophenylphosphate (pNPP) and inorganic pyrophosphate (PPi) as substrates were detected from the 5th and 7th days after germination, respectively. Acid phosphatase activities with tyrosine phosphate (TyrP), glucose-6-phosphate (G6P) and phosphoenol pyruvate (PEP) were also observed but to a lesser extent. Under the same conditions, no enzyme activity was detected with phytic acid (PhyAc) as substrate. The appearance of phosphatase activity was coincident with the decrease of inorganic phosphate content during germination; over the same period, the protein content increased up to the 5th day, decreased until the 8th day, and remained constant after this period. Relative to phosphatase activity in the cotyledons, the activities detected in the hypocotyl and roots were 82% and 38%, respectively. During storage the enzyme maintained about 63% of its activity for 3 months at 5 degrees C. The specificity constant (Vmax/Km) values for pNPP and PPi were 212 and 64 mu kat mM-1 mg-1, respectively. Amongst the substrates tested, PPi could be a potential physiological substrate for acid phosphatase during the germination of soybean seeds.

  19. Pharmacology of the inhibitory glycine receptor: agonist and antagonist actions of amino acids and piperidine carboxylic acid compounds.

    PubMed

    Schmieden, V; Betz, H

    1995-11-01

    To define structure-activity relations for ligands binding to the inhibitory glycine receptor (GlyR), the agonistic and antagonistic properties of alpha- and beta-amino acids were analyzed at the recombinant human alpha 1 GlyR expressed in Xenopus oocytes. The agonistic activity of alpha-amino acids exhibited a marked stereoselectivity and was highly susceptible to substitutions at the C alpha-atom. In contrast, alpha-amino acid antagonism was not enantiomer dependent and was influenced little by C alpha-atom substitutions. The beta-amino acids taurine, beta-aminobutyric acid (beta-ABA), and beta-aminoisobutyric acid (beta-AIBA) are partial agonists at the GlyR. Low concentrations of these compounds competitively inhibited glycine responses, whereas higher concentrations elicited a significant membrane current. Nipecotic acid, which contains a trans-beta-amino acid configuration, behaved as purely competitive GlyR antagonist. Our data are consistent with the existence of a common binding site for all amino acid agonists and antagonists, at which the functional consequences of binding depend on the particular conformation a given ligand adopts within the binding pocket. In the case of beta-amino acids, the trans conformation appears to mediate antagonistic receptor binding, and the cis conformation appears to mediate agonistic receptor binding. This led us to propose that the partial agonist activity of a given beta-amino acid is determined by the relative mole fractions of the respective cis/trans conformers.

  20. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    NASA Astrophysics Data System (ADS)

    Seyedhosseini, E.; Bdikin, I.; Ivanov, M.; Vasileva, D.; Kudryavtsev, A.; Rodriguez, B. J.; Kholkin, A. L.

    2015-08-01

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  1. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    SciTech Connect

    Seyedhosseini, E. Ivanov, M.; Bdikin, I.; Vasileva, D.; Kudryavtsev, A.; Rodriguez, B. J.; Kholkin, A. L.

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  2. A theoretical investigation of the relative stability of hydrated glycine and methylcarbamic acid--from water clusters to interstellar ices.

    PubMed

    Kayi, Hakan; Kaiser, Ralf I; Head, John D

    2012-04-14

    We have theoretically investigated how the low-energy conformers of the neutral and the zwitterionic forms of glycine as well as methylcarbamic acid are stabilized by the presence water. The MP2/6-311++G(d,p) method was utilized to conduct calculations on glycine and methylcarbamic acid in both isolated clusters and in clusters embedded in the conductor-like polarizable continuum model (C-PCM), where the clusters explicitly contain between one and ten water molecules. The neutral forms of glycine and methylcarbamic acid were found to have similar hydration energies, whereas the neutral methylcarbamic acid was determined to be approximately 32 kJ mol(-1) more stable than the neutral glycine in the isolated clusters and 30 kJ mol(-1) more stable in the C-PCM embedded clusters. Both the number and strength of the hydrogen bonding interactions between water and the zwitterions drive the stability. This lowers the relative energy of the glycine zwitterion from 50 kJ mol(-1) above neutral glycine, when there are two water molecules in the clusters to 11 kJ mol(-1) below for the clusters containing ten water molecules. For the methylcarbamic acid clusters with two water molecules, the zwitterion is 51 kJ mol(-1) higher in energy than the neutral form, but it remains 13 kJ mol(-1) above the neutral methylcarbamic acid in the clusters containing ten water molecules. When the bulk water environment is simulated by the C-PCM calculations, we find both the methylcarbamic acid and glycine zwitterionic forms have similar energies at 20 kJ mol(-1) above the neutral methylcarbamic acid energy and 10 kJ mol(-1) lower than the neutral glycine energy. Although neither methylcarbamic acid nor glycine have been detected in the interstellar medium yet, our findings indicate that methylcarbamic acid is the more stable product from methylamine and carbon dioxide reactions in a water ice. This suggests that methylcarbamic acid likely plays a role in the intermediate steps if glycine is

  3. Synthesis of tricyclic indole-2-carboxylic [correction of caboxylic] acids as potent NMDA-glycine antagonists.

    PubMed

    Katayama, S; Ae, N; Nagata, R

    2001-05-18

    The practical synthesis of a series of tricyclic indole-2-carboxylic acids, 7-chloro-3-arylaminocarbonylmethyl-1,3,4,5-tetrahydrobenz[cd]indole-2-carboxylic acids, as a new class of potent NMDA-glycine antagonists is described. The synthetic route to the key intermediate 12a comprises a regioselective iodination of 4-chloro-2-nitrotoluene, modified Reissert indole synthesis, Jeffery's Heck-type reaction with allyl alcohol, Wittig-Horner-Emmons reaction, and iodination at the indole C-3 position. The key step in the route is an intramolecular cyclization of 12a to give the tricyclic indole structure. Two methods of cyclization, (1) an intramolecular radical cyclization of 12a and (2) a sequence of intramolecular Heck reaction of 12a followed by a 1,4-reduction, were performed. The resulting tricyclic indole diester 13a was selectively hydrolyzed to afford the desired tricyclic indole monocarboxylic acid 16 on a multihundred gram scale without any chromatographic purifications. Optical resolution of 16 to (-)-isomer 17 and (+)-isomer 18 was carried out, and the resulting isomers were derivatized, respectively. Evaluation of the optically active derivatives for affinity to the NMDA-glycine binding site using the radio ligand binding assay with [(3)H]-5,7-dichlorokynurenic acid revealed that the derivatives of (-)-isomer 17 were more potent than the others and that especially substituted anilide (-)-isomer 24 (K(i) = 0.8 nM) showed high affinity.

  4. The epidermis of scales in gecko lizards contains multiple forms of beta-keratins including basic glycine-proline-serine-rich proteins.

    PubMed

    Toni, M; Dalla Valle, L; Alibardi, L

    2007-05-01

    The epidermis of scales of gecko lizards comprises alpha- and beta-keratins. Using bidimensional electrophoresis and immunoblotting, we have characterized keratins of corneous layers of scales in geckos, especially beta-keratins in digit pad lamellae. In the latter, the formation of thin bristles (setae) allow for the adhesion and climbing vertical or inverted surfaces. alpha-Keratins of 55-66 kDa remain in the acidic and neutral range of pI, while beta-keratins of 13-18 kDa show a broader variation of pI (4-10). Some protein spots for beta-keratins correspond to previously sequenced, basic glycine-proline-serine-rich beta-keratins of 169-191 amino acids. The predicted secondary structure shows that a large part of the molecule has a random-coiled conformation, small alpha helix regions, and a central region with 2-3 strands (beta-folding). The latter, termed core-box, shows homology with feather-scale-claw keratins of birds and is involved in the formation of beta-keratin filaments. Immunolocalization of beta-keratins indicates that these proteins are mainly present in the beta-layer and oberhautchen layer, including setae. The sequenced proteins of setae form bundles of keratins that determine their elongation. This process resembles that of feather-keratin on the elongation of barbule cells in feathers. It is suggested that small proteins rich in glycine, serine, and proline evolved in reptiles and birds to reinforce the mechanical resistance of the cytokeratin cytoskeleton initially present in the epidermis of scales and feathers.

  5. Response of Meloidogyne spp., Heterodera glycines, and Radopholus similis to Tannic Acid.

    PubMed

    Hewlett, T E; Hewlett, E M; Dickson, D W

    1997-12-01

    Tannins, which are water-soluble polyphenols, are toxic to numerous fungi, bacteria, and yeasts. Our objectives were to study the efficacy of tannic acid in control of Meloidogyne arenaria on tomato and its effects on the behavior of M. arenaria, M. incognita, Heterodera glycines, and Radopholus similis. Three concentrations of tannic acid, 0.1, 1.0, and 10 g/500 cm(3) of soil, were applied preplant (powder) and at-plant (powder and drench) into soil infested with M. arenaria. Tannic acid at the 1.0-g rate reduced galling compared with the untreated control, regardless of methods of application. The 0.1-g rate resulted in no reduction in galling when applied preplant but reduced galling when applied as a drench and in one of two experiments when applied at-plant. The 10-g rate was phytotoxic to tomato seedlings except when applied 7 days preplant. In the latter case, root galling was suppressed to very low numbers. In behavior studies on water agar, Meloidogyne second-stage juveniles were attracted to areas with an increasing tannic acid gradient. Radopholus similis was repelled from the tannic acid gradient in one of two experiments. There was no effect on H. glycines. The response of M. arenaria second-stage juveniles to different concentrations of tannic acid dissolved in alginate was tested. Movement behavior of the second-stage juveniles were observed at 1,000 and 10,000 mug/ml of tannic acid, but not at 10 and 100 mug/ml.

  6. Interaction of flavanols with amino acids: postoxidative reactivity of the B-ring of catechin with glycine.

    PubMed

    Guerra, Paula Vanessa; Yaylayan, Varoujan A

    2014-04-30

    Flavanol-related structures such as epicatechin and catechins have been associated with potential antioxidant activity in food and are known to interfere with the Maillard reaction through scavenging of reactive dicarbonyl compounds. High-resolution ESI-TOF mass spectrometry and an isotope labeling technique were used to assess the reactivity of glycine with (+)-catechin heated under oxidative conditions at 120 °C for 70 min. Evidence based on accurate mass analysis of the products obtained and the isotope incorporation pattern of [(13)C-1]glycine, [(13)C-2]glycine, and [(15)N]glycine experiments indicated that (+)-catechin formed various adducts with glycine; two of them incorporated a single amino acid, and three adducts incorporated two amino acid moieties. Some of these adducts underwent dehydration reaction at ring C, and in some the C-ring remained intact. Detailed MS/MS analyses of the fragmentation patterns of these adducts have confirmed the addition of amino acid moieties to the oxidized B-ring of (+)-catechin through the formation of Schiff bases. Formation of such nonvolatile (+)-catechin/amino acid adducts provides insight into how amino acid can have the potential of modifying the antioxidant properties of (+)-catechin and how catechin in turn has the potential of modifying the profile of the Maillard reaction.

  7. Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid.

    PubMed

    dos Santos, Wanderley Dantas; Ferrarese, Maria de Lourdes L; Finger, Aline; Teixeira, Aline C N; Ferrarese-Filho, Osvaldo

    2004-06-01

    Changes in soluble and cell wall bound peroxidase (POD, EC 1.11.1.7) activity, phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity, and lignin content in roots of ferulic acid-stressed soybean (Glycine max (L.) Merr.) seedlings and their relationships with root growth were investigated. Three-day-old soybean seedlings were cultivated in half-strength Hoagland nutrient solution containing 1.0 mM ferulic acid for 24-72 hr. Length, fresh weight, and dry weight of roots decreased, while soluble and cell wall bound POD activity, PAL activity, and lignin content increased after ferulic acid treatment. These enzymes probably participate in root growth reduction in association with cell wall stiffening related to the formation of cross-linking among cell wall polymers and lignin production.

  8. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    PubMed

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  9. Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine

    PubMed Central

    Akinkunmi, Ezekiel; Ojo, Isaac; Adebajo, Clement; Isabirye, David

    2017-01-01

    Enantiomerically enriched coordination compounds of aspartic acid and racemic mixtures of coordination compounds of glycine metal-ligand ratio 1 : 3 were synthesized and characterized using infrared and UV-Vis spectrophotometric techniques and magnetic susceptibility measurements. Five of the complexes were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride as resolving agents. The antimicrobial and cytotoxic activities of these complexes were then determined. The results obtained indicated that aspartic acid and glycine coordinated in a bidentate fashion. The enantiomeric purity of the compounds was in the range of 22.10–32.10%, with (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex as the more efficient resolving agent. The resolved complexes exhibited better activity in some cases compared to the parent complexes for both biological activities. It was therefore inferred that although the increase in the lipophilicity of the complexes may assist in the permeability of the complexes through the cell membrane of the pathogens, the enantiomeric purity of the complexes is also of importance in their activity as antimicrobial and cytotoxic agents. PMID:28293149

  10. Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine.

    PubMed

    Aiyelabola, Temitayo; Akinkunmi, Ezekiel; Ojo, Isaac; Obuotor, Efere; Adebajo, Clement; Isabirye, David

    2017-01-01

    Enantiomerically enriched coordination compounds of aspartic acid and racemic mixtures of coordination compounds of glycine metal-ligand ratio 1 : 3 were synthesized and characterized using infrared and UV-Vis spectrophotometric techniques and magnetic susceptibility measurements. Five of the complexes were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride as resolving agents. The antimicrobial and cytotoxic activities of these complexes were then determined. The results obtained indicated that aspartic acid and glycine coordinated in a bidentate fashion. The enantiomeric purity of the compounds was in the range of 22.10-32.10%, with (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex as the more efficient resolving agent. The resolved complexes exhibited better activity in some cases compared to the parent complexes for both biological activities. It was therefore inferred that although the increase in the lipophilicity of the complexes may assist in the permeability of the complexes through the cell membrane of the pathogens, the enantiomeric purity of the complexes is also of importance in their activity as antimicrobial and cytotoxic agents.

  11. Contribution towards a Metabolite Profile of the Detoxification of Benzoic Acid through Glycine Conjugation: An Intervention Study

    PubMed Central

    Mason, Shayne; Mienie, Lodewyk J.; Westerhuis, Johan A.; Reinecke, Carolus J.

    2016-01-01

    Benzoic acid is widely used as a preservative in food products and is detoxified in humans through glycine conjugation. Different viewpoints prevail on the physiological significance of the glycine conjugation reaction and concerns have been raised on potential public health consequences following uncontrolled benzoic acid ingestion. We performed a metabolomics study which used commercial benzoic acid containing flavored water as vehicle for designed interventions, and report here on the controlled consumption of the benzoic acid by 21 cases across 6 time points for a total of 126 time points. Metabolomics data from urinary samples analyzed by nuclear magnetic resonance spectroscopy were generated in a time-dependent cross-over study. We used ANOVA-simultaneous component analysis (ASCA), repeated measures analysis of variance (RM-ANOVA) and unfolded principal component analysis (unfolded PCA) to supplement conventional statistical methods to uncover fully the metabolic perturbations due to the xenobiotic intervention, encapsulated in the metabolomics tensor (three-dimensional matrices having cases, spectral areas and time as axes). Identification of the biologically important metabolites by the novel combination of statistical methods proved the power of this approach for metabolomics studies having complex data structures in general. The study disclosed a high degree of inter-individual variation in detoxification of the xenobiotic and revealed metabolic information, indicating that detoxification of benzoic acid through glycine conjugation to hippuric acid does not indicate glycine depletion, but is supplemented by ample glycine regeneration. The observations lend support to the view of maintenance of glycine homeostasis during detoxification. The study indicates also that time-dependent metabolomics investigations, using designed interventions, provide a way of interpreting the variation induced by the different factors of a designed experiment–an approach

  12. Genetics Home Reference: glycine encephalopathy

    MedlinePlus

    ... a molecule called glycine. This molecule is an amino acid , which is a building block of proteins. Glycine ... Additional Information & Resources MedlinePlus (3 links) Health Topic: Amino Acid Metabolism Disorders Health Topic: Genetic Brain Disorders Health ...

  13. Thermodynamic characteristics of acid-base equilibria of glycyl-glycyl-glycine in water-ethanol solutions at 298 K

    NASA Astrophysics Data System (ADS)

    Pham Thi, L.; Usacheva, T. R.; Sharnin, V. A.

    2016-12-01

    The enthalpies of the acid dissociation of glycyl-glycyl-glycine zwitterions and triglycinium ions are determined calorimetrically in water-ethanol solvents containing 0.0, 0.10, 0.30, and 0.50 molar fractions of ethanol at ionic strengths of 0.1 (maintained by sodium perchlorate) and T = 298.15 K. It is found that increasing the ethanol content in the solvent enhances the endothermic effect of triglycinium ion dissociation and reduces the endothermic effect of glycyl-glycyl-glycine dissociation. The results are discussed in terms of the solvation thermodynamics.

  14. Isovaleric, methylmalonic, and propionic acid decrease anesthetic EC50 in tadpoles, modulate glycine receptor function, and interact with the lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine

    PubMed Central

    Weng, Yun; Hsu, Tienyi Theresa; Zhao, Jing; Nishimura, Stefanie; Fuller, Gerald G.; Sonner, James M.

    2010-01-01

    Introduction Elevated concentrations of isovaleric, methylmalonic, and propionic acid are associated with impaired consciousness in genetic diseases (organic acidemias). We conjectured that part of the central nervous system depression observed in these disorders was due to anesthetic effects of these metabolites. We tested three hypotheses. First, that these metabolites would have anesthetic-sparing effects, possibly being anesthetics by themselves. Second, that these compounds would modulate glycine and GABAA receptor function, increasing chloride currents through these channels as potent clinical inhaled anesthetics do. Third, that these compounds would affect physical properties of lipids. Methods Anesthetic EC50’s were measured in Xenopus laevis tadpoles. Glycine and GABAA receptors were expressed in Xenopus laevis oocytes and studied using two-electrode voltage clamping. Pressure-area isotherms of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers were measured with and without added organic acids. Results Isovaleric acid was an anesthetic in tadpoles, while methylmalonic and propionic acid decreased isoflurane’s EC50 by half. All three organic acids concentration-dependently increased current through α1 glycine receptors. There were minimal effects on α1β2γ2s GABAA receptors. The organic acids increased total lateral pressure (surface pressure) of DPPC monolayers, including at mean molecular areas typical of bilayers. Conclusion Isovaleric, methylmalonic, and propionic acid have anesthetic affects in tadpoles, positively modulate glycine receptor fuction, and affect physical properties of DPPC monolayers. PMID:19372333

  15. Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression.

    PubMed

    Karabudak, T; Bor, M; Özdemir, F; Türkan, İ

    2014-03-01

    Cold stress is among the environmental stressors limiting productivity, yield and quality of agricultural plants. Tolerance to cold stress is associated with the increased unsaturated fatty acids ratio in the plant membranes which are also known to be substrates of octadecanoid pathway for jasmonate and other oxylipins biosynthesis. Accumulation of osmoprotectant, glycine betaine (GB) is well known to be effective in the protecting membranes and mitigating cold stress effects but, the mode of action is poorly understood. We studied the role of GB in cold stress responses of two tomato cultivated varieties; Gerry (cold stress sensitive) and T47657 (moderately cold stress tolerant) and compared the differences in lypoxygenase-13 (TomLOXF) and fatty acid desaturase 7 (FAD7) gene expression profiles and physiological parameters including relative growth rates, relative water content, osmotic potential, photosynthetic efficiency, membrane leakage, lipid peroxidation levels. Our results indicated that GB might have a role in inducing FAD7 and LOX expressions for providing protection against cold stress in tomato plants which could be related to the desaturation process of lipids leading to increased membrane stability and/or induction of other genes related to stress defense mechanisms via octadecanoid pathway or lipid peroxidation products.

  16. Differentiation of Malassezia furfur and Malassezia sympodialis by glycine utilization.

    PubMed

    Murai, T; Nakamura, Y; Kano, R; Watanabe, S; Hasegawa, A

    2002-06-01

    The genus Malassezia has been revised to include six lipophilic species and one nonlipophilic species. These Malassezia species have been investigated to differentiate their morphological and physiological characteristics. However, assimilation of amino acids as a nitrogen source by these species was not well elucidated. In the present study, isolates of Malassezia species were examined with a glycine medium (containing 7-266 mmol glycine, 7.4 mmol KH(2)PO(4), 4.1 mmol MgSO(4)7H(2)O, 29.6 mmol thiamine, 0.5% Tween-80 and 2% agar) and a modified Dixon glycine medium (0.6% peptone, 3.6% malt extract, 2% ox-bile, 1% Tween-40, 0.2% glycerol, 0.2% oleic acid, 7 mmol glycine and 2% agar). All M. furfur isolates developed on the glycine medium, assimilating glycine at concentrations of at least 7 mmol l(-1). However, the other six Malassezia species were unable to grow on the glycine medium. Also, many colonies of M. furfur grew rapidly, within 2-3 days on the modified Dixon glycine medium, although the other six species showed slow and poor development. From these results, it was suggested that M. furfur might be able to utilize glycine as a single nitrogen source, which the other Malassezia species could not. Therefore, glycine medium was recommended for the differentiation of M. furfur from other species of Malassezia.

  17. Mixed complexes of palladium(II) with 1-aminoethylidene-1,1-diphosphonic acid and glycine

    NASA Astrophysics Data System (ADS)

    Kozachkova, A. N.; Tsaryk, N. V.; Dudko, A. V.; Pekhnyo, V. I.; Trachevsky, V. V.; Rozhenko, A. B.; Novotortsev, V. M.; Eremenko, I. L.

    2012-10-01

    The complexing of palladium(II) with two biological active reagents: glycine (Gly, HA) and 1-aminoethylidene-1,1-diphosphonic acid (AEDP, H4L) at concentrations of chloride ions (0.15 mol/L) corresponding to physiological levels is studied by means of spectrophotometry, pH potentiometry, and 31P NMR spectroscopy. The formation constants for mixed complexes with compositions of [PdH2LA]- (logβ = 43.7) and [PdHLA]2- (logβ = 39.05) are determined. The both ligands are found to be coordinated to palladium(II) in a bidentant-cyclic manner: through amine nitrogen and the oxygen atom of the carboxyl group (in the case of Gly), or through the phosphonic group (in the case of AEDP). A diagram of the distribution of equilibrium concentrations of the complexes depending on pH is calculated for the system K2[PdCl4]: Gly: AEDP = 1: 1: 1. It is demonstrated that there are complexes with compositions of [PdHLA]2-, [PdA2], and [Pd(HL)2]4- in solutions with C_{Cl^ - } = 0.15 mol/L and pH 6-7.

  18. Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine.

    PubMed

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  19. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  20. DL-β-Aminobutyric Acid-Induced Resistance in Soybean against Aphis glycines Matsumura (Hemiptera: Aphididae)

    PubMed Central

    Zhong, Yunpeng; Wang, Biao; Yan, Junhui; Cheng, Linjing; Yao, Luming; Xiao, Liang; Wu, Tianlong

    2014-01-01

    Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA. PMID:24454805

  1. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  2. Remediation of saline soil from shrimp farms by three different plants including soybean (Glycine max (L.) Merr.).

    PubMed

    Boonsaner, Maliwan; Hawker, Darryl W

    2012-01-01

    Shrimp farm activity can elevate in-situ soil salinity that in turn may affect any subsequent crop production if land usage changes. The utility of three different plants viz. soybean (Glycine max (L.) Merr.), narrow leaf cat-tail (Typha angustifolia L.) and sea holly (Acanthus ebracteatus Vahl) for phytoremediation of saline soil derived from former shrimp farm activity was investigated. The latter two species have been categorized as halophytes. In experiments of 16 days' duration and using sodium chloride concentrations (50-70 mg g(-1) dry weight) similar to those found in the benthic material of shrimp farms in Nakhon Pathom Province, central Thailand, the bioconcentration factors of sodium chloride (BCF; g soil dry weight g(-1) plant dry weight) in soybean (2240-4840) were found to be significantly higher than those found for narrow leaf cat-tail (16-20) and sea holly (15-17) at p < 0.05. The translocation of sodium chloride from root to shoot was noted in all plant species investigated, as well as wilting and defoliation due to the effects of sodium chloride. Approximately 90 %, 70 % and 60 % removal of sodium chloride in root zone soil was observed after growing soybean, narrow leaf cat-tail and sea holly, respectively. Soybean plants thus showed the greatest ability to decrease soil salinity, with measured root zone soil conductivity levels falling from 16.4-18 dS m(-1) (characteristic of strongly saline soils) to 1.5- 2.1 dS m(-1) (weakly saline). Although an important economic crop, soybean may also have potential in soil remediation.

  3. Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled ((13)C, (15)N) glycine to test for direct uptake by dominant grasses.

    PubMed

    Streeter, T C; Bol, R; Bardgett, R D

    2000-01-01

    It is becoming increasingly apparent that soil amino acids are a principal source of nitrogen (N) for certain plants, and especially those of N-limited environments. This study of temperate upland grasslands used glycine-2-(13)C-(15)N and ((15)NH4)(2)SO(4) labelling techniques to test the hypothesis that plant species which dominate 'unimproved' semi-natural grasslands (Festuca-Agrostis-Galium) are able to utilise amino acid N for growth, whereas those plants which dominate 'improved' grasslands (Lolium-Cynosurus), that receive regular applications of inorganic fertiliser, use inorganic N forms as their main N source. Data from field experiments confirmed that 'free' amino acids were more abundant in 'unimproved' than 'improved' grassland and that glycine was the dominant amino acid type (up to 42% of total). Secondly, the injection of representative amounts of glycine-2-(13)C-(15)N (4.76 and 42.86 mM) into intact soil cores from the two grassland types provided evidence of direct uptake of glycine by plants, with both (15)N and (13)C being detected in plant material of both grasslands. Finally, a microcosm experiment demonstrated no preferential uptake of amino acid N by the grasses which dominate the grassland types, namely Holcus lanatus, Festuca rubra, Agrostis capillaris from the 'unimproved' grassland, and Lolium perenne from the 'improved' grassland. Again, both (13)C and (15)N were detected in all grass species suggesting uptake of intact glycine by these plants.

  4. Effect of gamma-aminobutyric acid agonists, glycine, taurine and neuropeptides on acetylcholine release from the rabbit retina.

    PubMed

    Cunningham, J R; Neal, M J

    1983-03-01

    The light-evoked release of [3H]acetylcholine (ACh) from the rabbit retina in vivo was measured and taken as an index of cholinergic amacrine cell activity. The light-evoked release of [3H]ACh was reduced by locally applied gamma-aminobutyric acid (GABA), muscimol and 3-aminopropanesulphonic acid (3-APS). The concentrations of these drugs which reduced the light-evoked release of [3H]ACh by 50% (EC50) were 900, 0.3 and 5 microM respectively. In contrast, (-)-baclofen (5 mM), but not (+)-baclofen, significantly increased the light-evoked release of [3H]ACh. The GABA antagonist, bicuculline increased the resting release of [3H]ACh but abolished the inhibitory action of muscimol on the light-evoked release of [3H]ACh. Glycine and taurine also reduced the light-evoked release of [3H]ACh from the retina, their EC50 values being 1.5 and 0.3 mM respectively. This action was blocked by strychnine, but not by bicuculline. In contrast to the GABA antagonist, strychnine did not affect the spontaneous resting release of [3H]ACh. Retinal [3H]ACh release was not affected by dopamine, 5-hydroxytryptamine (5-HT) morphine, substance P, somatostatin, cholecystokinin sulphate, thyrotropin releasing hormone, luteinizing hormone releasing hormone or angiotensin. Electroretinographic changes produced by amino acids and GABA agonists involved mainly the b-wave and were not correlated with their effects on ACh release. Thus, GABA increased the b-wave amplitude, 3-APS had no effect, whilst muscimol, taurine and glycine either had no effect, or reduced the b-wave amplitude. No obvious changes in the e.r.g. were produced by baclofen, dopamine, 5-HT, morphine or any of the peptides studied with the exception of somatostatin, which reduced the amplitude of the b-wave. It is concluded that cholinergic amacrine cell activity in the rabbit retina may be affected by inputs from other amacrines using GABA or glycine (taurine) as their transmitters, but probably not by inputs from peptidergic or

  5. Free amino acid content and metabolic activities of setting and aborting soybean ovaries. [Glycine max (L. ) Merr

    SciTech Connect

    Ghiasi, H.; Paech, C.; Dybing, C.D.

    1987-09-01

    Fruits of soybean (glycine max (L.) Merr.) that are destined to abscise shortly after anthesis grow more slowly than fruits that will be retained. In this work, amino acid composition, protein metabolism, and nucleic acid metabolism were studied in setting and abscising soybean ovaries from anthesis to 6 days after anthesis. Principal free amino acids were asparagine, aspartic acid, glutamic acid, serine, and glutamine. Percent aspartate and glutamate declined as the ovaries grew, with aspartate declining more in abscising and glutamate more in setting ovaries. Percent glutamate was positively correlated to percent abscission throughout the period. Proline, serine, and leucine were positively correlated to abscission from 0 to 2 days after anthesis, whereas significant negative correlations were observed at these ages for ethanolamine and arginine. /sup 75/Se fed as selenate and /sup 14/C fed as sucrose, glycine, and alanine were readily incorporated into soluble and insoluble proteins in a 24-hour in vitro incubation. Radioactivity of total proteins, expressed on a per-ovary basis, was negatively correlated with percent abscission and positively correlated with ovary weight. (/sup 14/C)Glutamine and serine followed the opposite pattern, with greater protein labeling in abscising than in setting ovaries. When data were expressed as disintegrations per minute per milligram ovary fresh weight, protein labeling from alanine was seen to be significantly greater in abscising ovaries at anthesis and throughout the sampling period. Nucleic acid labeling from uridine was highly correlated to ovary weight; labeling from thymidine was greater in setting than abscising ovaries at anthesis and in abscising ovaries at later stages of development.

  6. Effects of inhibitory amino acids on expression of GABAA Rα and glycine Rα1 in hypoxic rat cortical neurons during development

    PubMed Central

    Qian, H; Feng, Y; He, XZ; Yang, YL; Sung, JH; Xia, Y

    2011-01-01

    Recent studies suggest that GABA and glycine are protective to mature but toxic to immature cortical neurons during prolonged hypoxia. Since the action of these inhibitory amino acids is mediated by GABA and glycine receptors, the expression of these receptors is a critical factor in determining neuronal response to GABAA and glycine in hypoxia. Therefore, we asked whether in rat cortical neurons, 1) hypoxia alters the expression of the GABA and glycine receptors; 2) inhibitory amino acids change the course of GABA and glycine receptor expression; and 3) there are any differences between the immature and mature neurons. In cultured rat cortical neurons from day 4 (4 Days in Vitro or DIV 4) to day 20 (DIV 20), we observed that 1) GABAARα and GlyRα1 underwent differential changes in expression during the development in-vitro; 2) hypoxia for 3 days decreased GABAARα and GlyRα1 density in the neurons in-between DIV 4 and DIV 20, but did not induce a major change in immature (DIV 4) and mature (DIV 20) neurons; 3) during normoxia GABA, glycine and taurine decreased GABAARα and GlyRα1 density in the immature neurons, but had a tendency to increase the density in the mature neurons, except for taurine; 4) under hypoxia, all these amino acids decreased GABAARα and GlyRα1 density in most groups of the immature neurons with a slight effect on the mature neurons; and 5) δ-opioid receptor activation with DADLE increased GABAARα and GlyRα1 density in both the immature and mature neurons under normoxia and in the mature neurons under hypoxic condition. These data suggest that inhibitory amino acids differentially regulate the expression of GABAA and glycine receptors in rat cortical neurons in normoxic and hypoxic conditions with major differences between the immature and mature neurons. PMID:22018691

  7. Vibrational analysis of amino acids and short peptides in hydrated media. I. L-glycine and L-leucine.

    PubMed

    Derbel, Najoua; Hernández, Belén; Pflüger, Fernando; Liquier, Jean; Geinguenaud, Frédéric; Jaïdane, Nejmeddine; Lakhdar, Zohra Ben; Ghomi, Mahmoud

    2007-02-15

    Raman scattering and Fourier-transform infrared (FT-IR) attenuated transmission reflectance (ATR) spectra of two alpha-amino acids (alpha-AAs), i.e., glycine and leucine, were measured in H2O and D2O (at neutral pH and pD). This series of observed vibrational data gave us the opportunity to analyze vibrational features of both AAs in hydrated media by density functional theory (DFT) calculations at the B3LYP/6-31++G* level. Harmonic vibrational modes calculated after geometry optimization on the clusters containing each AA and 12 surrounding water molecules, which represent primary models for hydration scheme of amino acids, allowed us to assign the main observed peaks.

  8. Stereoselective Michael Addition of Glycine Anions to Chiral Fischer Alkenylcarbene Complexes. Asymmetric Synthesis of beta-Substituted Glutamic Acids.

    PubMed

    Ezquerra, Jesús; Pedregal, Concepción; Merino, Isabel; Flórez, Josefa; Barluenga, José; García-Granda, Santiago; Llorca, María-Amparo

    1999-09-03

    The reaction of lithium enolates of achiral N-protected glycine esters with chiral alkoxyalkenylcarbene complexes of chromium provided the corresponding Michael adducts with either high anti or syn selectivity depending on the nature of the nitrogen protecting group, and high diastereofacial selectivity when carbene complexes containing the (-)-8-phenylmenthyloxy group were employed. Subsequent oxidation of the metal-carbene moiety followed by deprotection of the amine group and hydrolysis of both carboxylic esters afforded enantiomerically enriched 3-substituted glutamic acids of natural as well as unnatural stereochemistry. Alternatively, when the deprotection step was performed previously to the oxidation, cyclic aminocarbene complexes were formed, which finally led to optically active 3-substituted pyroglutamic acids.

  9. Conformational characterization of peptides rich in the cycloaliphatic C alpha,alpha-disubstituted glycine 1-aminocyclononane-1-carboxylic acid.

    PubMed

    Gatos, M; Formaggio, F; Crisma, M; Valle, G; Toniolo, C; Bonora, G M; Saviano, M; Iacovino, R; Menchise, V; Galdiero, S; Pedone, C; Benedetti, E

    1997-01-01

    A series of N- and C-protected, monodispersed homo-oligopeptides (to the pentamer level) from the cycloaliphatic C alpha,alpha-dialkylated glycine 1-aminocyclononane-1-carboxylic acid (Ac9c) and two Ala/Ac9c tripeptides have been synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives mCIAc-Ac9c-OH and Z-Ac9c-OtBu, the dipeptide pBrBz-(Ac9c)2-OtBu, the tetrapeptide Z-(Ac9c)4-OtBu, and the pentapeptide Z-(Ac9c)5-OtBu were determined in the crystal state by X-ray diffraction. Based on this information, the average geometry and the preferred conformation for the cyclononyl moiety of the Ac9c residue have been assessed. The backbone conformational data are strongly in favour of the conclusion that the Ac9c residue is a strong beta-turn and helix former. A comparison with the structural propensity of alpha-aminoisobutyric acid, the prototype of C alpha,alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3-8) is made and the implications for the use of the Ac9c residue in conformationally constrained analogues of bioactive peptides are briefly examined.

  10. N- Trichloro- and dichloroacetyl amino acids and compounds of amino acids with halogeno acetic acids: 35Cl nuclear quadrupole resonance spectroscopy; crystal structure of N- trichloroacetyl- glycine, - DL-alanine, and - L-alanine

    NASA Astrophysics Data System (ADS)

    Dou, Shi-qi; Kehrer, Armin; Ofial, Armin R.; Weiss, Alarich

    1995-02-01

    The crystal structures of N- trichloroacetyl- glycine ( N- TCA- G), N-trichloroacetyl-dl-alanine ( N-TCA- dl-A ), and N-trichloroacetyl- l-alanine ( N-TCA- l-A ) were determined. In addition, the 35Cl NQR spectra of these N-trichloroacetyl amino acids, of N-trichloroacetyl- l-valine ( N-TCA- l-V ), and of N- dichloroacetyl- glycine and - L-alanine were measured, mostly as a function of temperature. Compounds of glycine and L-alanine with chlorodifluoroacetic acid, of glycine and L-leucine with monochloroacetic acid, of glycine and L-leucine with dichloroacetic acid, and of glycine and L-leucine with trichloroacetic acid were also studied using 35Cl NQR. The structures (in picometres and degrees) were found to be as follows. N- TCA- G: Pna2 1, Z = 8, a = 1641, b = 1002, c = 1018. N-TCA- dl-A : {C2}/{c}, Z = 8, a = 3280, b = 556, c = 1031, β = 96.68. N-TCA- l-A: P1 , Z = 2, a = 967, b = 949, c = 619, α = 74.97, β = 74.20, γ = 61.20. The 35Cl NQR frequencies (ν) were observed in the range 35-41 MHz, and decrease with increasing temperature. Some of the resonances bleach out at a temperature ( Tb) far below the melting temperature; this provides information about the crystal structures at 77 K. No phase transitions were observed by differential thermal analysis between 77 and 295 K. The crystal structures are discussed in connection with the NQR results, and conclusions are drawn about the structures of the compounds for which only 35Cl NQR data are available.

  11. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    PubMed

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures.

  12. Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice.

    PubMed

    Van den Bossche, Lien; Hindryckx, Pieter; Devisscher, Lindsey; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanden Bussche, Julie; Vanhaecke, Lynn; Van de Wiele, Tom; De Vos, Martine; Laukens, Debby

    2017-04-01

    The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD.IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we

  13. Growth, Optical, Dielectric and Ferroelectric Properties of Non-Linear Optical Single Crystal: Glycine-Phthalic Acid

    NASA Astrophysics Data System (ADS)

    Suresh, Sagadevan

    2016-11-01

    Single crystals of glycine-phthalic acid (GPA) were grown by slow evaporation process using aqueous solution. X-ray diffraction analysis was used to examine its cell structure and it was found that the GPA crystal corresponded to the orthorhombic system. To identify absorption range and cut-off wavelength for the GPA crystal, UV-visible spectrum was recorded. UV-visible spectroscopy was used to study the optical constants such as the refractive index, the extinction coefficient, electrical susceptibility, and optical conductivity. As a function of different frequencies and temperatures, the dielectric constant and the dielectric loss were examined. The electrical properties like plasma energy, Penn gap, Fermi energy, and polarizability were determined for the analysis of the second harmonic generation (SHG). Using the Kurtz powder technique, the SHG of the GPA crystal was studied. Investigations relating to hysteresis were carried out to ascertain the ferroelectric nature of the material.

  14. Amino acid composition, including key derivatives of eccrine sweat: potential biomarkers of certain atopic skin conditions.

    PubMed

    Mark, Harker; Harding, Clive R

    2013-04-01

    The free amino acid (AA) composition of eccrine sweat is different from other biological fluids, for reasons which are not properly understood. We undertook the detailed analysis of the AA composition of freshly isolated pure human eccrine sweat, including some of the key derivatives of AA metabolism, to better understand the key biological mechanisms governing its composition. Eccrine sweat was collected from the axillae of 12 healthy subjects immediately upon formation. Free AA analysis was performed using an automatic AA analyser after ninhydrin derivatization. Pyrrolidine-5-carboxylic acid (PCA) and urocanic acid (UCA) levels were determined using GC/MS. The free AA composition of sweat was dominated by the presence of serine accounting for just over one-fifth of the total free AA composition. Glycine was the next most abundant followed by PCA, alanine, citrulline and threonine, respectively. The data obtained indicate that the AA content of sweat bears a remarkable similarity to the AA composition of the epidermal protein profilaggrin. This protein is the key source of free AAs and their derivatives that form a major part of the natural moisturizing factor (NMF) within the stratum corneum (SC) and plays a major role in maintaining the barrier integrity of human skin. As perturbations in the production of NMF can lead to abnormal barrier function and can arise as a consequence of filaggrin genotype, we propose the quantification of AAs in sweat may serve as a non-invasive diagnostic biomarker for certain atopic skin conditions, that is, atopic dermatitis (AD).

  15. Glycinium semi-malonate and a glutaric acid-glycine cocrystal: new structures with short O-H...O hydrogen bonds.

    PubMed

    Losev, Evgeniy A; Zakharov, Boris A; Drebushchak, Tatiana N; Boldyreva, Elena V

    2011-08-01

    Glycinium semi-malonate, C(2)H(6)NO(2)(+)·C(3)H(3)O(4)(-), (I), and glutaric acid-glycine (1/1), C(2)H(5)NO(2)·C(5)H(8)O(4), (II), are new examples of two-component crystal structures containing glycine and carboxylic acids. (II) is the first example of a glycine cocrystal which cannot be classified as a salt, as glutaric acid remains completely protonated. In the structure of (I), there are chains formed exclusively by glycinium cations, or exclusively by malonate anions, and these chains are linked with each other. Two types of very short O-H...O hydrogen bonds are present in the structure of (I), one linking glycinium cations with malonate anions, and the other linking malonate anions with each other. In contrast to (I), no direct linkages between molecules of the same type can be found in (II); all the hydrogen-bonded chains are heteromolecular, with molecules of neutral glutaric acid alternating with glycine zwitterions, linked by two types of short O-H...O hydrogen bonds.

  16. IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles.

    PubMed

    Ojamäe, Lars; Aulin, Christian; Pedersen, Henrik; Käll, Per-Olov

    2006-04-01

    Nanocrystalline TiO2 powders of the rutile polymorph, synthesized by a sol-gel method, were treated with water solutions containing, respectively, formic, acetic, and citric acid and glycine in order to study the adsorption properties of these organic species. The samples were characterized by FTIR, Raman, powder XRD, and TEM. It was found that HCOOH, CH3COOH and HOC(COOH)(CH2COOH)2--but not NH2CH2COOH--adsorbed onto TiO2. The adsorption of HCOOH, CH3COOH and NH2CH2COOH onto the (110) surface of rutile was also studied by quantum-chemical periodic density functional theory (DFT) calculations. The organic molecules were from the computations found to adsorb strongly to the surfaces in a bridge-coordinating mode, where the two oxygens of the deprotonated carboxylic acid bind to two surface titanium ions. Surface relaxation is found to influence adsorption geometries and energies significantly. The results from DFT calculations and ab initio molecular-dynamics simulations of formic acid adsorption onto TiO2 are compared and match well with the experimental IR measurements, supporting the bridge-binding geometry of carboxylic-acid adsorption on the TiO2 nanoparticles.

  17. γ-Aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on mesencephalic trigeminal neurons that innervate jaw-closing muscle spindles in the rat: ultrastructure and development.

    PubMed

    Paik, Sang Kyoo; Kwak, Myung Kyw; Bae, Jin Young; Yi, Hyun Won; Yoshida, Atsushi; Ahn, Dong Kuk; Bae, Yong Chul

    2012-10-15

    Unlike other primary sensory neurons, the neurons in the mesencephalic trigeminal nucleus (Vmes) receive most of their synaptic input onto their somata. Detailed description of the synaptic boutons onto Vmes neurons is crucial for understanding the synaptic input onto these neurons and their role in the motor control of masticatory muscles. For this, we investigated the distribution of γ-aminobutyric acid (GABA)-, glycine-, and glutamate-immunopositive (+) boutons on Vmes neurons and their ultrastructural parameters that relate to transmitter release: Vmes neurons that innervate masseteric muscle spindles were identified by labeling with horseradish peroxidase injected into the muscle, and immunogold staining and quantitative ultrastructural analysis of synapses onto these neurons were performed in adult rats and during postnatal development. The bouton volume, mitochondrial volume, and active zone area of the boutons contacting labeled somata (axosomatic synapses) were similar to those of boutons forming axoaxonic synapses with Vmes neurons but smaller than those of boutons forming axodendritic or axosomatic synapses with most other neurons. GABA+ , glycine+ , and glutamate+ boutons constituted a large majority (83%) of all boutons on labeled somata. A considerable fraction of boutons (28%) was glycine(+) , and all glycine+ boutons were also GABA+ . Bouton size remained unchanged during postnatal development. These findings suggest that the excitability of Vmes neurons is determined to a great extent by GABA, glycine, and glutamate and that the relatively lower synaptic strength of axosomatic synapses may reflect the role of the Vmes neurons in modulating orofacial motor function.

  18. Suppression of glycine-15N incorporation into urinary uric acid by adenine-8-13C in normal and gouty subjects

    PubMed Central

    Seegmiller, J. Edwin; Klinenberg, James R.; Miller, John; Watts, R. W. E.

    1968-01-01

    Adenine inhibited the de novo synthesis of purines in both normal and gouty man as shown by inhibition of the incorporation of glycine-15N into urinary uric acid without altering the incorporation of glycine-15N into urinary creatinine. The diminished purine synthesis did not result in a diminution in the 24 hr excretion of uric acid. This observation was explainable in part by the prompt conversion of adenine to uric acid. In addition to this direct conversion, adenine-8-13C provided a slow and prolonged contribution to urinary uric acid. A feedback inhibition of purine synthesis by nucleotides derived from adenine provides the best interpretation of these results. PMID:5645862

  19. Inositol-1 (or 4)-monophosphatase from Glycine max embryo axes is a phosphatase with broad substrate specificity that includes phytate dephosphorylation.

    PubMed

    Islas-Flores, Ignacio; Villanueva, Marco A

    2007-04-01

    A phosphate-hydrolyzing activity from Glycine max embryo axes was purified by a series of chromatographic steps and electroelution from activity gels, and demonstrated to be an inositol-1 (or 4)-monophosphatase by partial internal amino acid sequence. This enzyme hydrolyzed ATP, sodium pyrophosphate (NaPPi), inositol hexakisphosphate, and inositol 1-monophosphate, but not p-nitrophenyl phosphate, ADP, AMP or glucose 6-P. Using NaPPi as substrate, the highly purified protein hydrolyzed up to 0.4 mmol phosphate min(-1) mg(-1) protein and had a Km(avg) of 235 microM for NaPPi. Since NaPPi is relatively inexpensive and readily available, we used this as substrate for the subsequent characterization. We observed the following: (a) specific inhibition by Li and NaF but not by butanedione monoxime, or orthovanadate; (b) activation by Cu(2+) and Mg(2+); (c) optimum activity at pH 7.4; and (d) temperature stability after 1-h incubations at 37-80 degrees C, with maximum activity at 37 degrees C. The partially purified protein was detected by in-gel activity assays and the band was electroeluted to yield a highly purified protein. Analysis by SDS-PAGE and native IEF-PAGE yielded a single major polypeptide of 29 kDa and pI approximately 5.9, respectively. In addition, in-gel activity from embryo axes and whole hypocotyls at early germination times revealed one high and one intermediate molecular weight isoform, but only the intermediate one corresponded to IMPase. Throughout the post-imbibition period, the activity of the high molecular weight isoform disappeared and IMPase increased, indicating an increasing expression of the enzyme as germination and growth proceeded. These data indicate that the inositol-1 (or 4)-monophosphatase present in the embryo axis of G. max has a wide phosphate substrate specificity, and may play an important role in phosphate metabolism during the germination process.

  20. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds.

    PubMed

    Silva, Luís R; Pereira, Maria J; Azevedo, Jessica; Mulas, Rebeca; Velazquez, Encarna; González-Andrés, Fernando; Valentão, Patrícia; Andrade, Paula B

    2013-12-15

    Soybean (Glycine max (L.) Merrill) is one of the most important food crops for human and animal consumption, providing oil and protein at relatively low cost. The least expensive source of nitrogen for soybean is the biological fixation of atmospheric nitrogen by the symbiotic association with soil bacteria, belonging mainly to the genus Bradyrhizobium. This study was conducted to assess the effect of the inoculation of G. max with Bradyrhizobium japonicum on the metabolite profile and antioxidant potential of its seeds. Phenolic compounds, sterols, triterpenes, organic acids, fatty acids and volatiles profiles were characterised by different chromatographic techniques. The antioxidant activity was evaluated against DPPH, superoxide and nitric oxide radicals. Inoculation with B. japonicum induced changes in the profiles of primary and secondary metabolites of G. max seeds, without affecting their antioxidant capacity. The increase of organic and fatty acids and volatiles suggest a positive effect of the inoculation process. These findings indicate that the inoculation with nodulating B. japonicum is a beneficial agricultural practice, increasing the content of bioactive metabolites in G. max seeds owing to the establishment of symbiosis between plant and microorganism, with direct effects on seed quality.

  1. LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen.

    PubMed Central

    Schwacke, R; Grallath, S; Breitkreuz, K E; Stransky, E; Stransky, H; Frommer, W B; Rentsch, D

    1999-01-01

    During maturation, pollen undergoes a period of dehydration accompanied by the accumulation of compatible solutes. Solute import across the pollen plasma membrane, which occurs via proteinaceous transporters, is required to support pollen development and also for subsequent germination and pollen tube growth. Analysis of the free amino acid composition of various tissues in tomato revealed that the proline content in flowers was 60 times higher than in any other organ analyzed. Within the floral organs, proline was confined predominantly to pollen, where it represented >70% of total free amino acids. Uptake experiments demonstrated that mature as well as germinated pollen rapidly take up proline. To identify proline transporters in tomato pollen, we isolated genes homologous to Arabidopsis proline transporters. LeProT1 was specifically expressed both in mature and germinating pollen, as demonstrated by RNA in situ hybridization. Expression in a yeast mutant demonstrated that LeProT1 transports proline and gamma-amino butyric acid with low affinity and glycine betaine with high affinity. Direct uptake and competition studies demonstrate that LeProT1 constitutes a general transporter for compatible solutes. PMID:10072398

  2. Water deficit-induced changes in abscisic acid, growth polysomes, and translatable RNA in soybean hypocotyls. [Glycine max L

    SciTech Connect

    Bensen, R.J.; Boyer, J.S.; Mullet, J.E. )

    1988-01-01

    Soybean seedlings (Glycine max L.) were germinated and dark-grown in water-saturated vermiculite for 48 hours, then transferred either to water-saturated vermiculite or to low water potential vermiculite. A decrease in growth rate was detectable within 0.8 hour post-transfer to low water potential vermiculite. A fourfold increase in the abscisic acid content of the elongating region was observed within 0.5 hour. At 24 hours post-transfer, hypocotyl elongation was severely arrested and abscisic acid reached its highest measured level. A comparison of the polyA{sup +} RNA populations isolated at 24 hours post-transfer from the elongating region of water-saturated and low water potential vermiculite-grown seedlings was made by two-dimensional polyacrylamide gel analysis of in vitro translation products. It revealed both increases and decreases in the relative amounts of a number of translation products. Rewatering seedlings grown in low water potential vermiculite at 24 hours post-transfer led to a total recovery in growth rate within 0.5 hour, while abscisic acid in the elongating hypocotyl region required 1 to 2 hours to return to uninduced levels. Application of 1.0 millimolar {+-} abscisic acid to well-watered seedlings resulted in a 48% reduction in hypocotyl growth rate during the first 2 hours after treatment. Plants treated with abscisic acid for 24 hours had a lower polysome content than control plants. However, hypocotyl growth inhibition in abscisic acid-treated seedlings preceded the decline in polysome content.

  3. Syn-Selective Synthesis of β-Branched α-Amino Acids by Alkylation of Glycine-Derived Imines with Secondary Sulfonates.

    PubMed

    Lou, Sha; McKenna, Grace M; Tymonko, Steven A; Ramirez, Antonio; Benkovics, Tamas; Conlon, David A; González-Bobes, Francisco

    2015-10-16

    A syn-selective synthesis of β-branched α-amino acids has been developed based on the alkylation of glycine imine esters with secondary sulfonates. The potassium counterion for the enolate, the solvent, and the leaving group on the electrophile were key levers to maximize the diasteroselectivity of the alkylation. The optimized conditions enabled a straightforward preparation of a number of β-branched α-amino acids that can be challenging to obtain.

  4. Improved synthesis of glycine, taurine and sulfate conjugated bile acids as reference compounds and internal standards for ESI-MS/MS urinary profiling of inborn errors of bile acid synthesis.

    PubMed

    Donazzolo, Elena; Gucciardi, Antonina; Mazzier, Daniela; Peggion, Cristina; Pirillo, Paola; Naturale, Mauro; Moretto, Alessandro; Giordano, Giuseppe

    2017-03-11

    Bile acid synthesis defects are rare genetic disorders characterized by a failure to produce normal bile acids (BAs), and by an accumulation of unusual and intermediary cholanoids. Measurements of cholanoids in urine samples by mass spectrometry are a gold standard for the diagnosis of these diseases. In this work improved methods for the chemical synthesis of 30 BAs conjugated with glycine, taurine and sulfate were developed. Diethyl phosphorocyanidate (DEPC) and diphenyl phosphoryl azide (DPPA) were used as coupling reagents for glycine and taurine conjugation. Sulfated BAs were obtained by sulfur trioxide-triethylamine complex (SO3-TEA) as sulfating agent and thereafter conjugated with glycine and taurine. All products were characterized by NMR, IR spectroscopy and high resolution mass spectrometry (HRMS). The use of these compounds as internal standards allows an improved accuracy of both identification and quantification of urinary bile acids.

  5. Comparison of oleic acid metabolism in the soybean (Glycine max (L. ) Merr. ) genotypes Williams and A5, a mutant with decreased linoleic acid in the seed

    SciTech Connect

    Martin, B.A.; Rinne, R.W.

    1986-05-01

    The metabolism of oleoyl coenzyme A (CoA) was examined in developing seed from two soybean (Glycine max (L.) Merr.) genotypes: Williams, a standard cultivar and A5, a mutant containing nearly twice the oleic acid (18:1) content of Williams. The in vitro rates of esterification of oleoyl-CoA to lysophosphatides by acyl-CoA: lysophosphatidylcholine acyltransferase was similar in both genotypes and lysophosphatidyl-ethanolamine was a poor substrate. Crude extracts desaturated exogenous (1-/sup 14/C)dioleoyl phosphatidylcholine at 14% of the rate achieved with (1-/sup 14/C)oleoyl-CoA, and 50 micromolar lysophosphaatidylcholine. The desaturase enzyme also required NADH for full activity. Extracts from Williams contained 1.5-fold more oleoyl phosphatidylcholine desaturase activity, on a fresh weight basis, than did A5 and appeared to have a similar affinity for oleoyl-CoA. There was 1.2- to 1.9-fold more linoleic acid (18:2) in phosphatidylcholine from Williams than from A5, measured at two stages of development, but both genotypes had a similar distribution of fatty acids in the one and two positions. Phosphatidylethanolamine in A5 contained relatively more linoleic acid (18:2) in the one position than did Williams. The increased oleic acid (18:1) content in A5 appeared to be a result of decreased rates of 18:1 desaturation of oleoyl-phosphatidylcholine in this genotype.

  6. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    PubMed

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  7. Characterization of an Acidic Chitinase from Seeds of Black Soybean (Glycine max (L) Merr Tainan No. 3)

    PubMed Central

    Chang, Ya-Min; Chen, Li-Chun; Wang, Hsin-Yi; Chiang, Chui-Liang; Chang, Chen-Tien; Chung, Yun-Chin

    2014-01-01

    Using 4-methylumbelliferyl-β-D-N,N′,N″-triacetylchitotrioside (4-MU-GlcNAc3) as a substrate, an acidic chitinase was purified from seeds of black soybean (Glycine max Tainan no. 3) by ammonium sulfate fractionation and three successive steps of column chromatography. The purified chitinase was a monomeric enzyme with molecular mass of 20.1 kDa and isoelectric point of 4.34. The enzyme catalyzed the hydrolysis of synthetic substrates p-nitrophenyl N-acetyl chitooligosaccharides with chain length from 3 to 5 (GlcNAcn, n = 3-5), and pNp-GlcNAc4 was the most degradable substrate. Using pNp-GlcNAc4 as a substrate, the optimal pH for the enzyme reaction was 4.0; kinetic parameters Km and kcat were 245 µM and 10.31 min−1, respectively. This enzyme also showed activity toward CM-chitin-RBV, a polymer form of chitin, and N-acetyl chitooligosaccharides, an oligomer form of chitin. The smallest oligomer substrate was an N-acetylglucosamine tetramer. These results suggested that this enzyme was an endo-splitting chitinase with short substrate cleavage activity and useful for biotechnological applications, in particular for the production of N-acetyl chitooligosaccharides. PMID:25437446

  8. Submillimeter-wave Spectrum of Aminoacetonitrile and its Deuterated Isotopologues, Possible Precursors of the Simplest Amino Acid Glycine

    NASA Astrophysics Data System (ADS)

    Motoki, Yuta; Tsunoda, Yukari; Ozeki, Hiroyuki; Kobayashi, Kaori

    2013-12-01

    Aminoacetonitrile, CH2NH2CN, has been considered one of the important precursors of glycine, the simplest amino acid, and was identified in Sgr B2(N) by Belloche et al. based on their reanalysis of previous laboratory measurements. However, these laboratory measurements were limited to the 1 mm wavelength region even for the normal species, and recent new radio telescopes like ALMA require rest frequencies in a higher frequency range. Therefore, we have extended the pure rotational spectra of aminoacetonitrile and its amino-hydrogen-deuterated isotopologues (NHDCH2CN and ND2CH2CN) up to 1.2 THz and 0.6 THz, respectively. Belloche et al. indicated that the normal species may have been misassigned in a previous microwave study by Bogey et al. We found that two more b-type spectral transitions were misassigned, and all b-type transition frequencies above Ka = 2 had to be remeasured. For isotopologues, spectra above 40 GHz were observed for the first time and higher order centrifugal distortion constants have been determined. The extension of the measurements helped improve the molecular constants. The errors in the frequency catalog data of normal and deuterated isotopologues are on the order of 100 kHz up to 1.2 THz and 0.6 THz, respectively, which are precise enough for the future astronomical observations.

  9. Characterization of an acidic chitinase from seeds of black soybean (Glycine max (L) Merr Tainan No. 3).

    PubMed

    Chang, Ya-Min; Chen, Li-Chun; Wang, Hsin-Yi; Chiang, Chui-Liang; Chang, Chen-Tien; Chung, Yun-Chin

    2014-01-01

    Using 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside (4-MU-GlcNAc3) as a substrate, an acidic chitinase was purified from seeds of black soybean (Glycine max Tainan no. 3) by ammonium sulfate fractionation and three successive steps of column chromatography. The purified chitinase was a monomeric enzyme with molecular mass of 20.1 kDa and isoelectric point of 4.34. The enzyme catalyzed the hydrolysis of synthetic substrates p-nitrophenyl N-acetyl chitooligosaccharides with chain length from 3 to 5 (GlcNAcn, n = 3-5), and pNp-GlcNAc4 was the most degradable substrate. Using pNp-GlcNAc4 as a substrate, the optimal pH for the enzyme reaction was 4.0; kinetic parameters Km and kcat were 245 µM and 10.31 min-1, respectively. This enzyme also showed activity toward CM-chitin-RBV, a polymer form of chitin, and N-acetyl chitooligosaccharides, an oligomer form of chitin. The smallest oligomer substrate was an N-acetylglucosamine tetramer. These results suggested that this enzyme was an endo-splitting chitinase with short substrate cleavage activity and useful for biotechnological applications, in particular for the production of N-acetyl chitooligosaccharides.

  10. Combination of cathodic reduction with adsorption for accelerated removal of Cr(VI) through reticulated vitreous carbon electrodes modified with sulfuric acid-glycine co-doped polyaniline.

    PubMed

    Mo, Xi; Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Huang, Jing; Yang, Xia; Song, Pei-pei; Wang, Li-ke

    2015-04-09

    Improving the reduction kinetics is crucial in the electroreduction process of Cr(VI). In this study, we developed a novel adsorption-electroreduction system for accelerated removal of Cr(VI) by employing reticulated vitreous carbon electrode modified with sulfuric acid-glycine co-doped polyaniline (RVC/PANI-SA-GLY). Firstly, response surface methodology confirmed the optimum polymerization condition of co-doped polyaniline for modifying electrodes (Aniline, sulfuric acid and glycine, respectively, of 0.2 mol/L, 0.85 mol/L, 0.93 mol/L) when untraditional dopant glycine was added. Subsequently, RVC/PANI-SA-GLY showed higher Cr(VI) removal percentages in electroreduction experiments over RVC electrode modified with sulfuric acid doped polyaniline (RVC/PANI-SA) and bare RVC electrode. In contrast to RVC/PANI-SA, the improvement by RVC/PANI-SA-GLY was more significant and especially obvious at more negative potential, lower initial Cr(VI) concentration, relatively less acidic solution and higher current densities, best achieving 7.84% higher removal efficiency with entire Cr(VI) eliminated after 900 s. Current efficiencies were likewise enhanced by RVC/PANI-SA-GLY under quite negative potentials. Fourier transform infrared (FTIR) and energy dispersive spectrometer (EDS) analysis revealed a possible adsorption-reduction mechanism of RVC/PANI-SA-GLY, which greatly contributed to the faster reduction kinetics and was probably relative to the absorption between protonated amine groups of glycine and HCrO4(-). Eventually, the stability of RVC/PANI-SA-GLY was proven relatively satisfactory.

  11. Incorporation of glycine-2-C-14 in acid-insoluble proteins of rat bones and teeth during hypokinesia and administration of thyrocalcitonine

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Stekolnikov, L. I.; Uglova, N. N.; Potkin, V. Y.

    1979-01-01

    A forced limitation of the motor activity in rats (from 5 to 60 days) results in reduced incorporation of glycine 2-C14 in the total acid insoluble proteins of limb bones and its increase in the teeth and mandibular-maxillary bones. Daily administration of five micrograms of thyrocalcitonine together with polyvinylpyrrolidone normalizes the protein metabolism in the bone tissues during the 40 days of experimentation.

  12. Effect of glycine supplementation in low protein diets with amino acids from soy protein isolate or free amino acids on broiler growth and nitrogen utilisation.

    PubMed

    Siegert, W; Wild, K J; Schollenberger, M; Helmbrecht, A; Rodehutscord, M

    2016-06-01

    Here, it was investigated whether substitution of amino acids (AA) from soy protein isolate with free AA in low crude protein diets influences the growth performance and N utilisation in broilers, and whether interactions with dietary glycine equivalent (Glyequi) concentration exist. Birds were distributed in two 2 × 2 factorial arrangements of 48 floor pens containing 10 birds each, plus 48 metabolism cages containing two birds each. Experimental feed was provided for ad libitum consumption from d 7 to 22. Diets contained either a soy protein isolate at 79 g/kg or a mix of free AA, which supplied the same amount of 18 proteinogenic AA. A mix of free glycine and l-serine was used to obtain low and high (12.0 and 20.5 g/kg dry matter) levels of dietary Glyequi. Substitution of soy protein isolate with free AA reduced the average daily gain and feed efficiency, mainly due to reduced feed intake. Efficiency of N accretion was not influenced by the AA source or Glyequi concentration on d 21, possibly due to the lower AA digestibility of soy protein isolate and higher urinary excretion of nitrogenous substances in the treatments with the AA mix. The average daily weight gain of the treatments with high Glyequi concentration was higher for both AA sources. This increase was due to higher average daily feed intake by broilers in the treatments with soy protein isolate and due to the increased feed efficiency in the treatments with the AA mix. Broilers exhibited different growth responses to dietary Glyequi between the AA sources; however, these responses could not be attributed to the different utilisation of Glyequi for uric acid synthesis.

  13. Rapid and sensitive step gradient assays of glutamate, glycine, taurine and gamma-aminobutyric acid by high-performance liquid chromatography-fluorescence detection with o-phthalaldehyde-mercaptoethanol derivatization with an emphasis on microdialysis samples.

    PubMed

    Piepponen, T P; Skujins, A

    2001-06-15

    We developed a rapid step-gradient HPLC method for determination of glutamate, glycine and taurine, and a separate method for determination of gamma-aminobutyric acid (GABA) in striatal microdialysates. The amino acids were pre-column derivatized with o-phthalaldehyde-2-mercaptoethanol by using an automated refrigerated autoinjector. Separation of the amino acids was established with a non-porous ODS-II HPLC column, late-eluting substances were washed out with a one-step low-pressure gradient. Concentrations of the amino acids were determined with a fixed-wavelength fluorescence detector. The detection limit for GABA was 80 fmol in a 15 microl sample, detection limits for glutamate, glycine and taurine were not determined because their concentrations in striatal perfusates were far above their detection limits. Total analysis time was less than 12 min, including the wash-out step. The methods described are relatively simple, sensitive, inexpensive, and fast enough to keep up with the microdialysis sampling.

  14. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    PubMed

    Fernández-Murray, J Pedro; Prykhozhij, Sergey V; Dufay, J Noelia; Steele, Shelby L; Gaston, Daniel; Nasrallah, Gheyath K; Coombs, Andrew J; Liwski, Robert S; Fernandez, Conrad V; Berman, Jason N; McMaster, Christopher R

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  15. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia

    PubMed Central

    Dufay, J. Noelia; Steele, Shelby L.; Gaston, Daniel; Nasrallah, Gheyath K.; Coombs, Andrew J.; Liwski, Robert S.; Fernandez, Conrad V.; Berman, Jason N.; McMaster, Christopher R.

    2016-01-01

    Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala) a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia. PMID:26821380

  16. Effect of chaotropic agents on reversible unfolding of a soybean (Glycine max) seed acid phosphatase.

    PubMed

    Cavagis, Alexandre Donizeti Martins; Granjeiro, Paulo Afonso; Ferreira, Carmen Veríssima; Aoyama, Hiroshi

    2004-04-01

    In this work we examined the effect of urea and guanidinium chloride on the structural stability of a single isoform of soybean seed acid phosphatase, based on the intensity of tryptophan fluorescence as a function of denaturant concentration. The free energy of unfolding, DeltaGu, was calculated at 25 degrees C as a function of the concentrations of both chaotropic agents; the conformational stability, DeltaG (H2O), was determined to be 2.48 kcal mol(-1). Center of mass, determined from analysis of fluorescence data, was used as a parameter to assess conformational changes. Our results indicate that complete enzyme inactivation occurred before full enzyme unfolding in both cases, and suggest that there are differences between the conformational flexibility of the active-site and that of the macromolecule as a whole.

  17. Poly(ornithine-co-arginine-co-glycine-co-aspartic Acid): Preparation via NCA Polymerization and its Potential as a Polymeric Tumor-Penetrating Agent.

    PubMed

    Yu, Haiyang; Tang, Zhaohui; Zhang, Dawei; Song, Wantong; Duan, Taicheng; Gu, Jingkai; Chen, Xuesi

    2015-06-01

    A novel random copolypeptide of ornithine, arginine, glycine, and aspartic acid [Poly(ornithine-co-arginine-co-glycine-co-aspartic acid), Poly(O,R,G,D)] has been prepared through ring-opening polymerization of N-δ-carbobenzoxy-l-ornithine N-carboxyanhydride [Orn(Cbz)-NCA)], l-glycine N-carboxyanhydride (Gly-NCA) and β-benzyl l-aspartate N-carboxyanhydride [Asp(Bn)-NCA], following by subsequent deprotection and guanidization. The structure of Poly(O,R,G,D) was confirmed by nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC). Low cytotoxicity of Poly(O,R,G,D) was confirmed from MTT assay. The Poly(O,R,G,D) contain some internal sequences of RXXR (X = O, R, G, or D) that could be proteolytically cleaved to expose the cryptic CendR element and bind to Neuropilin-1. This would lead to vascular and tissue permeabilization. Therefore trypsin-cleaved Poly(O,R,G,D) increase the vascular leakage of Evans blue from dermal microvessels at the injection site in vivo skin permeability assay. The intratumoral injection of the Poly(O,R,G,D) significantly enhanced the concentration of cisplatin-loaded nanoparticles in MCF-7 solid tumors. These results show that Poly(O,R,G,D) could increase the vascular leakage and tissue penetration of nanoparticles in a solid tumor and can be used as a potential polymeric tumor-penetrating agent.

  18. The interaction of salicylic acid and Ca(2+) alleviates aluminum toxicity in soybean (Glycine max L.).

    PubMed

    Lan, Tu; You, Jiangfeng; Kong, Lingnan; Yu, Miao; Liu, Minghui; Yang, Zhenming

    2016-01-01

    Both calcium ion (Ca(2+)) and salicylic acid (SA) influence various stress responses in plants. In acidic soils, aluminum (Al) toxicity adversely affects crop yield. In this study, we determined the influences of Ca(2+) and SA on root elongation, Al accumulation, and citrate secretion in soybean plant. We also investigated the activity of antioxidative enzymes in Al-exposed soybean roots. Root elongation was severally inhibited when the roots were exposed to 30 μM Al. The Al-induced inhibition of root elongation was ameliorated by Ca(2+) and SA but aggravated by Ca(2+) channel inhibitor (VP), CaM antagonists (TFP), Ca(2+) chelator (EGTA), and SA biosynthesis inhibitor (PAC). Furthermore, 1.0 mM CaCl2 and 10 μM SA reduced the accumulation of Al in roots, but their inhibitors stimulated the accumulation of Al in roots. Citrate secretion from these roots increased with the addition of either 1.0 mM CaCl2 or 10 μM SA but did not increase significantly when treated with higher Ca(2+) concentration. Enzymatic analysis showed that Ca(2+) and SA stimulated the activities of superoxidase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in Al-treated roots. In addition, SA restored the inhibition of Ca(2+) inhibitors on root elongation and Al content. Thus, both Ca(2+) and SA contribute to Al tolerance in soybean. Furthermore, Ca(2+) supplements rapidly increased Al-induced accumulation of free-SA or conjugated SA (SAG), while Ca(2+) inhibitors delayed the accumulation of SA for more than 8 h. Within 4 h of treatment, SA increased cytosolic Ca(2+) concentration in Al-treated roots, and upregulated the expression of four genes that possibly encode calmodulin-like (CML) proteins. These findings indicate that SA is involved in Ca(2+)-mediated signal transduction pathways in Al tolerance.

  19. PREPARATIVE ISOLATION AND PURIFICATION OF THREE GLYCINE-CONJUGATED CHOLIC ACIDS FROM PULVIS FELLIS SUIS BY HIGH-SPEED COUNTERCURRENT CHROMATOGRAPHY COUPLED WITH ELSD DETECTION

    PubMed Central

    He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro

    2011-01-01

    Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, 1H NMR and 13C NMR. PMID:23008527

  20. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  1. Modulatory role of jasmonic acid on photosynthetic pigments, antioxidants and stress markers of Glycine max L. under nickel stress.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Sharma, Poonam; Gill, Sarvajeet Singh; Kaur, Harpreet; Mushtaq, Ruquia

    2015-10-01

    Jasmonic acid (JA) is a very young candidate of plant growth regulators which is being explored for various antistress properties. Present study deals with the hypothesis that JA can modulate antioxidant mechanism of higher plants with tight regulation of biomembrane peroxidation, making plants tolerant to toxic Ni(2+). 2 mM NiCl2 as a source of Ni(2+) appeared as sub lethal dose for the growth of 15 days old Glycine max seedlings. Exogenous application of 1 μM and 1 nM JA prior to NiCl2 exposure, made seedlings of Glycine max more tolerant to Ni(2+)stress as compared to control untreated seedlings. Regulatory inhibition of MDA and H2O2 production by JA with or without Ni(2+) treatment made plants more resistant to Ni(2+) stress which may be associated with ameliorative activity of antioxidant enzymes system composed of SOD, POD, CAT and APOX. Ascorbate, a secondary metabolite synthesized from D-glucose act as an antioxidant in plant cells. Many fold enhancements in AsA content of Ni(2+) treated seedlings supplemented with different concentrations of JA was observed. Significant improvement in AsA levels by JA with or without Ni(2+) stress may involve two aspects, either denovo synthesis level regulation of AsA or recycling of AsA from an oxidized form. Improvement in total protein content showed the uplift modulation of transcriptional machinery by JA which was also maintained under Ni(2+) stress. Photosynthetic pigments as total chl, chl a and b showed inhibition in presence of Ni(2+) stress which was not found much effective under JA supplementation as compared to control. Present findings revealed that although JA was not helpful for protection of photosynthetic pigments but it modulates the other machinery of plants significantly including various antioxidants positively, while tightly inhibiting stress related processes responsible for lipid peroxidation to make plants tolerant to Ni(2+) stress.

  2. Aqueous V(V)-peroxo-amino acid chemistry. Synthesis, structural and spectroscopic characterization of unusual ternary dinuclear tetraperoxo vanadium(V)-glycine complexes.

    PubMed

    Gabriel, C; Kaliva, M; Venetis, J; Baran, P; Rodriguez-Escudero, I; Voyiatzis, G; Zervou, M; Salifoglou, A

    2009-01-19

    Vanadium participation in cellular events entails in-depth comprehension of its soluble and bioavailable forms bearing physiological ligands in aqueous distributions of binary and ternary systems. Poised to understand the ternary V(V)-H(2)O(2)-amino acid interactions relevant to that metal ion's biological role, we have launched synthetic efforts involving the physiological ligands glycine and H(2)O(2). In a pH-specific fashion, V(2)O(5), glycine, and H(2)O(2) reacted and afforded the unusual complexes (H(3)O)(2)[V(2)(O)(2)(mu(2):eta(2):eta(1)-O(2))(2)(eta(2)-O(2))(2)(C(2)H(5)NO(2))] x 5/4 H(2)O (1) and K(2)[V(2)(O)(2)(mu(2):eta(2):eta(1)-O(2))(2)(eta(2)-O(2))(2)(C(2)H(5)NO(2))] x H(2)O (2). 1 crystallizes in the triclinic space group P1, with a = 7.805(4) A, b = 8.134(5) A, c = 12.010(7) A, alpha = 72.298(9) degrees, beta = 72.991(9) degrees, gamma = 64.111(9) degrees, V = 641.9(6) A(3), and Z = 2. 2 crystallizes in the triclinic space group P1, with a = 7.6766(9) A, b = 7.9534(9) A, c = 11.7494(13) A, alpha = 71.768(2) degrees, beta = 73.233(2) degrees, gamma = 65.660(2) degrees, V = 610.15(12) A(3), and Z = 2. Both complexes 1 and 2 were characterized by UV/visible, LC-MS, FT-IR, Raman, NMR spectroscopy, cyclic voltammetry, and X-ray crystallography. The structures of 1 and 2 reveal the presence of unusual ternary dinuclear vanadium-tetraperoxo-glycine complexes containing [(V(V)=O)(O(2))(2)](-) units interacting through long V-O bonds and an effective glycinate bridge. The latter ligand is present in the dianionic assembly as a bidentate moiety spanning both V(V) centers in a zwitterionic form. The collective physicochemical properties of the two ternary species 1 and 2 project the chemical role of the low molecular mass biosubstrate glycine in binding V(V)-diperoxo units, thereby stabilizing a dinuclear V(V)-tetraperoxo dianion. Structural comparisons of the anions in 1 and 2 with other known dinuclear V(V)-tetraperoxo binary anionic species provide insight

  3. Investigation of the mechanism of chlorination of glyphosate and glycine in water.

    PubMed

    Mehrsheikh, Akbar; Bleeke, Marian; Brosillon, Stephan; Laplanche, Alain; Roche, Pascal

    2006-09-01

    The chlorination reactions of glyphosate and glycine in water were thoroughly studied. Utilizing isotopically enriched (13C and 15N) samples of glycine and glyphosate and 1H, 13C, 31P, and 15N NMR spectroscopy we were able to identify all significant terminal chlorination products of glycine and glyphosate, and show that glyphosate degradation closely parallels that of glycine. We have determined that the C1 carboxylic acid carbon of glycine/glyphosate is quantitatively converted to CO2 upon chlorination. The C2 methylene carbon of glycine/glyphosate is converted to CO2 and methanediol. The relative abundance of these two products is a function of the pH of the chlorination reactions. Under near neutral to basic reaction conditions (pH 6-9), CO2 is the predominant product, whereas, under acidic reaction conditions (pH < 6) the formation of methanediol is favored. The C3 phosphonomethylene carbon of glyphosate is quantitatively converted to methanediol under all conditions tested. The nitrogen atom of glycine/glyphosate is transformed into nitrogen gas and nitrate, and the phosphorus moiety of glyphosate produces phosphoric acid upon chlorination. In addition to these terminal chlorination products, a number of labile intermediates were also identified including N-chloromethanimine, N-chloroaminomethanol, and cyanogen chloride. The chlorination products identified in this study are not unique to glyphosate and are similar to those expected from chlorination of amino acids, proteins, peptides, and many other natural organic matters present in drinking water.

  4. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans

    PubMed Central

    Glynn, Erin L.; Piner, Lucy W.; Huffman, Kim M.; Slentz, Cris A.; Elliot-Penry, Lorraine; AbouAssi, Hiba; White, Phillip J.; Bain, James R.; Muehlbauer, Michael J.; Ilkayeva, Olga R.; Stevens, Robert D.; Porter Starr, Kathryn N.; Bales, Connie W.; Volpi, Elena; Brosnan, M. Julia; Trimmer, Jeff K.; Rolph, Timothy P.

    2016-01-01

    Aims/hypotheses Obesity is associated with decreased insulin sensitivity (IS) and elevated plasma branched-chain amino acids (BCAAs). The purpose of this study was to investigate the relationship between BCAA metabolism and IS in overweight (OW) individuals during exercise intervention. Methods Whole-body leucine turnover, IS by hyperinsulinaemic–euglycaemic clamp, and circulating and skeletal muscle amino acids, branched-chain α-keto acids and acylcarnitines were measured in ten healthy controls (Control) and nine OW, untrained, insulin-resistant individuals (OW-Untrained). OW-Untrained then underwent a 6 month aerobic and resistance exercise programme and repeated testing (OW-Trained). Results IS was higher in Control vs OW-Untrained and increased significantly following exercise. IS was lower in OW-Trained vs Control expressed relative to body mass, but was not different from Control when normalised to fat-free mass (FFM). Plasma BCAAs and leucine turnover (relative to FFM) were higher in OW-Untrained vs Control, but did not change on average with exercise. Despite this, within individuals, the decrease in molar sum of circulating BCAAs was the best metabolic predictor of improvement in IS. Circulating glycine levels were higher in Control and OW-Trained vs OW-Untrained, and urinary metabolic profiling suggests that exercise induces more efficient elimination of excess acyl groups derived from BCAA and aromatic amino acid (AA) metabolism via formation of urinary glycine adducts. Conclusions/interpretation A mechanism involving more efficient elimination of excess acyl groups derived from BCAA and aromatic AA metabolism via glycine conjugation in the liver, rather than increased BCAA disposal through oxidation and turnover, may mediate interactions between exercise, BCAA metabolism and IS. Trial registration Clinicaltrials.gov NCT01786941 PMID:26254576

  5. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  6. Extraterrestrial Amino Acids in Ureilites Including Almahata Sitta

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.

    2011-01-01

    Ureilites are a class of meteorites that lack chondrules (achondrites) but have relatively high carbon abundances, averaging approx.3 wt %. Using highly sensitive liquid chromatography coupled with UV fluorescence and time-of-flight mass spectrometry (LC-FD/ToF-MS), it was recently determined that there are amino acids in. fragment 94 of the Almahata Sitta ureilite[l]. Based on the presence of amino acids that are rare in the Earth's biosphere, as well as the near-racemic enantiomeric ratios of marry of the more common amino acids, it was concluded that most of the detected amino acids were indigenous to the meteorite. Although the composition of the Almahata Sitta ureilite appears to be unlike other recovered ureilites, the discovery of amino acids in this meteorite raises the question of whether other ureilites rnav also contain amino acids. Herein we present the results of LC-FDlTo.F-MS analyses of: a sand sample from the Almahata Sitta strewn held, Almahata Sitta fragments 425 (an ordinary H5 chondrite) and 427 (ureilite), as well as an Antarctic ureilite (Allan lulls, ALHA 77257).

  7. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity

    PubMed Central

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  8. A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE

    SciTech Connect

    Garrod, Robin T.

    2013-03-01

    A new chemical model is presented that simulates fully coupled gas-phase, grain-surface, and bulk-ice chemistry in hot cores. Glycine (NH{sub 2}CH{sub 2}COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid, and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures {approx}40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 Multiplication-Sign 10{sup -11}-8 Multiplication-Sign 10{sup -9}, occurring at {approx}200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen abstraction from organic molecules by OH, and NH{sub 2}, are crucial to the buildup of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.

  9. Preferential Pathway for Glycine Formation in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Boechat-Roberty, H. M.; Baptista, L.; Santos A. C., F.

    Interstellar clouds, similar to that from which the solar system was formed, contain many organic molecules including aldehydes, acids, ketones, and sugars Ehrenfreund & Charnley (2000). Those organic compounds have important functions in terrestrial biochemistry and could also have been important in prebiotic synthesis. The simplest amino acid, glycine (NH2CH2COOH), was recently detected in the hot molecular cores Sgr B2(N-LMH), Orion KL, and W51 e1/e2 Kuan et al. (2003). The formic acid (HCOOH) and acetic acid(CH3COOH) have also been detected in those regions Liu et al. (2002), Remijan et al. (2004). The goal of this work is to study experimentally photoionization and photodissociation processes of glycine precursor molecules, acetic acid and formic acid to elucidate a possible preferentially in the glycine synthesis between ice and gas phase. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator TGM) beamline (100 - 310 eV). The experimental set up consists of a high vacuum chamber with a Time-Of-Flight Mass Spectrometer (TOF-MS). Mass spectra were obtained using PhotoElectron PhotoIon Coincidence (PEPICO) technique. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Dissociative and non-dissociative photoionization cross sections for both molecules were also determined Boechat-Roberty, Pilling & Santos (2005). Due to the high photodissociation cross section of formic acid it is possible that in PDRs regions, just after molecules evaporation from the grains surface, it is almost destructed by soft X-rays, justifying the observed low abundance of HCOOH in gaseous phase Ehrenfreund et al. (2001). Acetic acid have shown to be more stable to the ionizing field, and its main outcomes from dissociation process were the reactive ionic fragments COOH+ and CH3CO+. To

  10. Expression of glycine-rich protein genes, AtGRP5 and AtGRP23, induced by the cutin monomer 16-hydroxypalmitic acid in Arabidopsis thaliana.

    PubMed

    Park, Jong Ho; Suh, Mi Chung; Kim, Tae Hyun; Kim, Moon Chul; Cho, Sung Ho

    2008-11-01

    Glycine-rich proteins (GRPs) belong to a large family of heterogenous proteins that are enriched in glycine residues. The expression of two GRP genes of Arabidopsis thaliana, AtGRP5 and AtGRP23, was induced by 16-hydroxypalmitic acid (HPA), a major component of cutin. The expression of AtGRP3, which encodes a GRP protein that is structurally different from AtGRP5 and AtGRP23, was not responsive to HPA application. Treatment with HPA also induced expression of the pathogen-related PR-1 and PR-4 genes. Abscisic acid and salicylic acid treatments enhanced the transcript levels of AtGRP5 and AtGRP23 as well as those of AtGRP3. It was also demonstrated that HPA effectively elicited the accumulation of H2O2 in rosette leaves of Arabidopsis. Results suggest the possible role of some species of GRPs, such as AtGRP5 and AtGRP23, in response to the pathogenic invasion mediated by cutin monomers in plants.

  11. Cyanobacteria Produce N-(2-Aminoethyl)Glycine, a Backbone for Peptide Nucleic Acids Which May Have Been the First Genetic Molecules for Life on Earth

    PubMed Central

    Banack, Sandra Anne; Metcalf, James S.; Jiang, Liying; Craighead, Derek; Ilag, Leopold L.; Cox, Paul Alan

    2012-01-01

    Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth. PMID:23145061

  12. Computational Identification of Amino-Acid Mutations that Further Improve the Activity of a Chalcone–Flavonone Isomerase from Glycine max

    PubMed Central

    Yuan, Hui; Wu, Jiaqi; Wang, Xiaoqiang; Chen, Jiakuan; Zhong, Yang; Huang, Qiang; Nan, Peng

    2017-01-01

    Protein design for improving enzymatic activity remains a challenge in biochemistry, especially to identify target amino-acid sites for mutagenesis and to design beneficial mutations for those sites. Here, we employ a computational approach that combines multiple sequence alignment, positive selection detection, and molecular docking to identify and design beneficial amino-acid mutations that further improve the intramolecular-cyclization activity of a chalcone–flavonone isomerase from Glycine max (GmCHI). By this approach, two GmCHI mutants with higher activities were predicted and verified. The results demonstrate that this approach could determine the beneficial amino-acid mutations for improving the enzymatic activity, and may find more applications in engineering of enzymes. PMID:28286513

  13. Cyanobacteria produce N-(2-aminoethyl)glycine, a backbone for peptide nucleic acids which may have been the first genetic molecules for life on Earth.

    PubMed

    Banack, Sandra Anne; Metcalf, James S; Jiang, Liying; Craighead, Derek; Ilag, Leopold L; Cox, Paul Alan

    2012-01-01

    Prior to the evolution of DNA-based organisms on earth over 3.5 billion years ago it is hypothesized that RNA was the primary genetic molecule. Before RNA-based organisms arose, peptide nucleic acids may have been used to transmit genetic information by the earliest forms of life on earth. We discovered that cyanobacteria produce N-(2-aminoethyl)glycine (AEG), a backbone for peptide nucleic acids. We detected AEG in axenic strains of cyanobacteria with an average concentration of 1 µg/g. We also detected AEG in environmental samples of cyanobacteria as both a free or weakly bound molecule and a tightly bound form released by acid hydrolysis, at concentrations ranging from not detected to 34 µg/g. The production of AEG by diverse taxa of cyanobacteria suggests that AEG may be a primitive feature which arose early in the evolution of life on earth.

  14. Radiolysis of amino acids by heavy and energetic cosmic ray analogues in simulated space environments: α-glycine zwitterion form

    NASA Astrophysics Data System (ADS)

    Portugal, Williamary; Pilling, Sergio; Boduch, Philippe; Rothard, Hermann; Andrade, Diana P. P.

    2014-07-01

    In this work, we studied the stability of the glycine molecule in the crystalline zwitterion form, known as α-glycine (+NH3CH2COO-), under the action of heavy cosmic ray analogues. The experiments were conducted in a high vacuum chamber at the heavy-ion accelerator Grand Accélérateur National d'Ions Lourds (GANIL), in Caen, France. The samples were bombarded at two temperatures (14 and 300 K) by 58Ni11+ ions of 46 MeV, up to a final fluence of 1013 ion cm-2. The chemical evolution of the sample was evaluated in situ using a Fourier Transform Infrared Spectrometer (FTIR). The bombardment at 14 K produced several daughter species, such as OCN-, CO, CO2 and CN-. The results also suggest the appearance of peptide bonds during irradiation, but this must be confirmed by further experiments. The half-life of glycine in the interstellar medium was estimated to be 7.8 × 103 yr (300 K) and 2.8 × 103 yr (14 K). In the Solar system, the values were 8.4 × 102 yr (300 K) and 3.6 × 103 yr (14 K). It is believed that glycine could be present in space environments that suffered aqueous changes, such as the interiors of comets, meteorites and planetesimals. This molecule is present in the proteins of all living beings. Therefore, studying its stability in these environments will provide further understanding of the role of this species in prebiotic chemistry on Earth.

  15. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  16. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  17. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  18. 21 CFR 520.550 - Glucose/glycine/electrolyte.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Glucose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Glucose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and glucose 44.0 grams. (b) Sponsor....

  19. Preparation of arginine-glycine-aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization.

    PubMed

    Chang, Che-Yi; Wang, Ming-Chen; Miyagawa, Takuya; Chen, Zhi-Yu; Lin, Feng-Huei; Chen, Ko-Hua; Liu, Guei-Sheung; Tseng, Ching-Li

    2017-01-01

    Neovascularization (NV) of the cornea can disrupt visual function, causing ocular diseases, including blindness. Therefore, treatment of corneal NV has a high public health impact. Epigalloccatechin-3-gallate (EGCG), presenting antiangiogenesis effects, was chosen as an inhibitor to treat human vascular endothelial cells for corneal NV treatment. An arginine-glycine-aspartic acid (RGD) peptide-hyaluronic acid (HA)-conjugated complex coating on the gelatin/EGCG self-assembly nanoparticles (GEH-RGD NPs) was synthesized for targeting the αvβ3 integrin on human umbilical vein endothelial cells (HUVECs) in this study, and a corneal NV mouse model was used to evaluate the therapeutic effect of this nanomedicine used as eyedrops. HA-RGD conjugation via COOH and amine groups was confirmed by (1)H-nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The average diameter of GEH-RGD NPs was 168.87±22.5 nm with positive charge (19.7±2 mV), with an EGCG-loading efficiency up to 95%. Images of GEH-RGD NPs acquired from transmission electron microscopy showed a spherical shape and shell structure of about 200 nm. A slow-release pattern was observed in the nanoformulation at about 30% after 30 hours. Surface plasmon resonance confirmed that GEH-RGD NPs specifically bound to the integrin αvβ3. In vitro cell-viability assay showed that GEH-RGD efficiently inhibited HUVEC proliferation at low EGCG concentrations (20 μg/mL) when compared with EGCG or non-RGD-modified NPs. Furthermore, GEH-RGD NPs significantly inhibited HUVEC migration down to 58%, lasting for 24 hours. In the corneal NV mouse model, fewer and thinner vessels were observed in the alkali-burned cornea after treatment with GEH-RGD NP eyedrops. Overall, this study indicates that GEH-RGD NPs were successfully developed and synthesized as an inhibitor of vascular endothelial cells with specific targeting capacity. Moreover, they can be used in eyedrops to inhibit angiogenesis in corneal NV mice.

  20. Size dependent electrical and magnetic properties of ZnFe2O4 nanoparticles synthesized by the combustion method: Comparison between aspartic acid and glycine as fuels

    NASA Astrophysics Data System (ADS)

    Shanmugavani, A.; Kalai Selvan, R.; Layek, Samar; Sanjeeviraja, C.

    2014-03-01

    Using two different fuels such as aspartic acid and glycine, the spinel zinc ferrite nanoparticles were synthesized by the combustion method at different pH values. The thermochemical calculations for both the fuel assisted materials and its adiabatic flame temperature were calculated. The X-ray diffraction (XRD) pattern revealed the formation of single phase ZnFe2O4 with high crystallinity. The characteristic functional groups of Fe3O and Zn3O were identified through FTIR analysis. Uniform size distribution of spherical particle in the average size range of 35-100 nm was inferred from SEM images. The room temperature DC conductivities of ZnFe2O4 particles prepared by using aspartic and glycine are in the order of 10-7 and 10-8 respectively. The dielectric spectral analysis inferred that the obtained dielectric constant is high at low frequency and decreases with increase in frequency. This dielectric behavior is in accordance with the Maxwell-Wagner interfacial polarization. VSM and Mössbauer analysis revealed that the prepared material exhibits paramagnetic behavior and Fe3+ state of iron content in ZnFe2O4 at room temperature.

  1. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    SciTech Connect

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura; Rayon, Victor M.; Largo, Antonio

    2012-04-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the higher energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.

  2. Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. [Glycine max L

    SciTech Connect

    Davis, K.R.; Darvill, A.G.; Albersheim, P.; Dell, A.

    1986-02-01

    Recent studies have demonstrated that an apparently homogeneous preparation of an ..cap alpha..-1,4-D-endopolygalacturonic acid lyase (EC 4.2,2.2) isolated from the phytopathogenic bacterium Erwinia carotovora induced phytoalexin accumulation in cotyledons of soybean (Glycine max (L.) Merr. cv Wayne) and that this pectin-degrading enzyme released heat-stable elicitors of phytoalexins from soybean cell walls, citrus pectin, and sodium polypectate. The present paper reports the purification, by anion-exchange chromatography on QAE-Sephadex columns followed by gel-permeation chromatography on a Bio-Gel P-6 column, of the two fractions with highest specific elicitor activity present in a crude elicitor-preparation obtained by lyase treatment of sodium polypectate. Structural analysis of the fraction with highest specific elicitor activity indicated that the major, if not only, component was a decasaccharide of ..cap alpha..-1,4-D-galactosyluronic acid that contained the expected product of lyase cleavage, 4-deoxy-..beta..-L-5-threo-hexopyranos-4-enyluronic acid (4,5-unsaturated galactosyluronic acid), at the nonreducing terminus. This modified decagalacturonide fraction exhibited half-maximum and maximum elicitor activity at 1 microgram/cotyledon (6 micromolar) and 5 micrograms/cotyledon (32 micromolar) galactosyluronic acid equivalents, respectively. Reducing 90 to 95% of the carboxyl groups of the galactosyluronic acid residues abolished the elicitor activity of the decagalacturonide fraction. The second most elicitor-active fraction contained mostly undeca-..cap alpha..-1,4-D-galactosyluronic acid that contained 4,5-unsaturated galactosyluronic acid at the nonreducing termini. This fraction exhibited half-maximum and maximum elicitor activity at approximately 3 micrograms/cotyledon (17 micromolar) and 6 micrograms/cotyledon (34 micromolar) galactosyluronic acid equivalents, respectively.

  3. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.

  4. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba".

    PubMed

    Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro

    2015-04-01

    This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.

  5. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  6. Limiting values of diffusion coefficients of glycine, alanine, [Formula: see text]-amino butyric acid, norvaline and norleucine in a relevant physiological aqueous medium.

    PubMed

    Rodriguez, Diana M; Verissimo, Luis M P; Barros, Marisa C F; Rodrigues, Daniela F S L; Rodrigo, Maria Melia; Esteso, Miguel A; Romero, Carmen M; Ribeiro, Ana C F

    2017-02-01

    The side chain effect on transport in ionic aqueous salt solutions was investigated for [Formula: see text]-amino acids glycine, alanine, [Formula: see text]-amino butyric acid, norvaline, and norleucine --that together define a chemical homologous series based on the length of the characteristic side chain which increases from zero to four carbons, respectively. Binary mutual diffusion coefficients at infinitesimal concentration in aqueous solutions of NaCl (0.15 mol kg (-1)) are measured by means of Taylor dispersion technique for this series and significant differences were found against previous published results for identical systems in pure water. In this way, NaCl effect on the transport of each amino acid is thus assessed and discussed in terms of salting-out effects. Also, solvated Stokes hydrodynamic radii were computed for the series showing comparable results in water and NaCl solution. The new information should prove useful in the design and characterization of transport-controlled systems in physiological and pharmacological studies.

  7. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  8. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  9. Growth, structural, optical and mechanical studies on acid mixed glycine metal salt (GABN) crystal as potential NLO material

    NASA Astrophysics Data System (ADS)

    Khandpekar, Mahendra M.; Dongare, Shailesh S.; Patil, Shirish B.; Pati, Shankar P.

    2012-03-01

    Transparent crystals of α-glycine with ammonium nitrate and barium nitrate (GABN) have been grown from aqueous solution by slow evaporation technique at room temperature. Crystals of size 11 × 7 × 4 mm 3 have been obtained in about 3-4 weeks time. The solubility of GABN has been determined in water. The grown crystal belongs to orthorhombic system with cell parameters a = 7.317 A.U, b = 12.154 A.U and c = 5.468 A.U with a unit cell volume 486.35 (A.U) 3. The presence of chemical components/groups has been identified by CHN, EDAX and NMR analysis. Comparative IR and Raman studies indicate a molecule with a lack of centre of symmetry. A wide transparency window useful for optoelectronic applications is indicated by the UV Studies. Using a Nd-YAG laser (1064 nm), the optical second harmonic generation (SHG) conversion efficiency of GABN is found to be 1.406 times of that of standard KDP. On exposure to light the GABN crystals are found to exhibit negative photoconductivity. I-V characteristics, SEM studies, dielectrics studies, and Vickers micro hardness measurement have been carried out.

  10. The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine

    PubMed Central

    Zhang, Hai Xia; Hyrc, Krzysztof; Thio, Liu Lin

    2009-01-01

    Sarcosine is an amino acid involved in one-carbon metabolism and a promising therapy for schizophrenia because it enhances NMDA receptor (NMDAR) function by inhibiting glycine uptake. The structural similarity between sarcosine and glycine led us to hypothesize that sarcosine is also an agonist like glycine. We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons. We found that sarcosine is an NMDAR co-agonist at the glycine binding site. However, sarcosine differed from glycine because less NMDAR desensitization occurred with sarcosine than with glycine as the co-agonist. This finding led us to examine whether the physiological effects of NMDAR activation with these two co-agonists are the same. The difference in desensitization probably accounts for rises in intracellular Ca2+, as assessed by the fluorescent indicator fura-FF, being larger when NMDAR activation occurred with sarcosine than with glycine. In addition, Ca2+-activated K+ currents following NMDAR activation were larger with sarcosine than with glycine. Compared to glycine, NMDAR-mediated autaptic currents decayed faster with sarcosine suggesting that NMDAR deactivation also differs with these two co-agonists. Despite these differences, NMDAR-dependent neuronal death as assessed by propidium iodide was similar with both co-agonists. The same was true for neuronal bursting. Thus, sarcosine may enhance NMDAR function by more than one mechanism and may have different effects from other NMDAR co-agonists. PMID:19433577

  11. Spectroscopic investigations of humic-like acids formed via polycondensation reactions between glycine, catechol and glucose in the presence of natural zeolites

    NASA Astrophysics Data System (ADS)

    Fukuchi, Shigeki; Miura, Akitaka; Okabe, Ryo; Fukushima, Masami; Sasaki, Masahide; Sato, Tsutomu

    2010-10-01

    Polycondensation reactions between low-molecular-weight compounds, such as amino acids, sugars and phenols, are crucially important processes in the formation of humic substances, and clay minerals have the ability to catalyze these reactions. In the present study, catechol (CT), glycine (Gly) and glucose (Gl) were used as representative phenols, amino acids and sugars, respectively, and the effects of the catalytic activities of natural zeolites on polycondensation reactions between these compounds were investigated. The extent of polycondensation was evaluated by measuring the specific absorbance at 600 nm ( E600) as an index of the degree of darkening. After a 3-week incubation period, the E600 values for solutions that contained zeolite samples were 4-10 times greater than those measured in the absence of zeolite, suggesting that the zeolite had, in fact, catalyzed the polycondensation reaction. The humic-like acids (HLAs) produced in the reactions were isolated, and their elemental composition and molecular weights determined. When formed in the presence of a zeolite, the nitrogen contents and molecular weights for the HLAs were significantly higher, compared to the HLA sample formed in the absence of zeolite. In addition, solid-state CP-MAS 13C NMR spectra and carboxylic group analyses of the HLA samples indicated that the concentration of carbonyl carbon species for quinones and ketones produced in the presence of zeolite were higher than the corresponding values for samples produced in the absence of a zeolite. Carbonyl carbons in quinones and ketones indicate the nucleophilic characteristics of the samples. Therefore, a nitrogen atom in Gly, which serves as nucleophile, is incorporated into quinones and ketones in CT and Gl. The differences in the catalytic activities of the zeolite samples can be attributed to differences in their transition metal content (Fe, Mn and Ti), which function as Lewis acids.

  12. Gas chromatographic analysis of infant formulas for total fatty acids, including trans fatty acids.

    PubMed

    Satchithanandam, Subramaniam; Fritsche, Jan; Rader, Jeanne I

    2002-01-01

    Twelve powdered and 13 liquid infant formulas were analyzed by using an extension of AOAC Official Method 996.01 for fat analysis in cereal products. Samples were hydrolyzed with 8 N HCl and extracted with ethyl and petroleum ethers. Fatty acid methyl esters were prepared by refluxing the mixed ether extracts with methanolic sodium hydroxide in the presence of 14% boron trifluoride in methanol. The extracts were analyzed by gas chromatography. In powdered formulas, saturated fatty acid (SFA) content (mean +/- SD; n = 12) was 41.05 +/- 3.94%, monounsaturated fatty acid (MUFA) content was 36.97 +/- 3.38%, polyunsaturated fatty acid (PUFA) content was 20.07 +/- 3.08%, and total trans fatty acid content was 1.30 +/- 1.27%. In liquid formulas, SFA content (mean +/- SD; n = 13) was 42.29 +/- 2.98%, MUFA content was 36.05 +/- 2.47%, PUFA content was 20.65 +/- 2.40%, and total trans fatty acid content was 0.88 +/- 0.54%. Total fat content in powdered formulas ranged from 4.4 to 5.5 g/100 kcal and linoleic acid content ranged from 868 to 1166 mg/100 kcal. In liquid formulas, total fat content ranged from 4.1 to 5.1 g/100 kcal and linoleic acid content ranged from 820 to 1100 mg/100 kcal. There were no significant differences between powdered and liquid infant formulas in concentrations of total fat, SFA, MUFA, PUFA, or trans fatty acids.

  13. Elution behavior of metal ions with mixed glycine-nitric acid eluents in Dowex 50W-X8 column: separation of Th(IV), Ce(IV), Bi(III), Fe(III), and Al(III)

    SciTech Connect

    Eusebius, L.; Ghose, A.; Dey, A.

    1982-01-01

    Distribution coefficients (K) determined by the batch technique in acidic glycine media using Dowex 50W-X8 cation exchanger (H/sup +/-form, 100-200 mesh size) revealed that this medium can effectively be employed to separate a number of tetravalent and trivalent metal ions from bivalent metal ions. In fixed glycine (0.40 M) and varying concentration of nitric acid (0.10 to 1.0 M), a number of mixtures containing two or three metal ions were resolved on columns using about 8 g of exchanger. In 0.40 M glycine-1.0 M HNO/sub 3/ medium, Th(IV)/Ce(IV) were separated from Al(III)/Fe(III)/Bi(III)/Co(II)/Ni(II)/Cu(II)/Zn(II)/Cd(II)/Hg(II)/Pb(II)/Ag(I) and also Al(III)/Bi(III) from a number of divalent metal ions. In 0.40 M glycine-0.50 M HNO/sub 3/ medium, the resolution of following ternary mixtures were also achieved: Th(IV)/Ce(IV)-Al(III)/Bi(III)-Fe(III)/Co(II)/Ni(II)/Cu(II)/Zn(II)/Cd(II)/Hg(II)/Pb(II)/Ag(I). Th(IV)/Al(III)/Fe(III)/Bi(III) were also separated from other divalent metal ions in 1.60 M glycine-0.50 M HNO/sub 3/ medium. The values of K, elution characteristics of metal ions, elution curves, and the results of the resolution of a number of mixtures of metal ions along with standard deviations are reported.

  14. New chiral didehydroamino acid derivatives from a cyclic glycine template with 3,6-dihydro-2H-1,4-oxazin-2-one structure: applications to the asymmetric synthesis of nonproteinogenic alpha-amino acids.

    PubMed

    Chinchilla, R; Falvello, L R; Galindo, N; Nájera, C

    2000-05-19

    New chiral (Z)-alpha,beta-didehydroamino acid (DDAA) derivatives with 3,5-dihydro-2H-1,4-oxazin-2-one structure 11a-f have been stereoselectively prepared after condensation of chiral glycine equivalent 7 with aldehydes in the presence of K(2)CO(3) under mild solid-liquid phase-transfer catalysis reaction conditions. These new systems have been used in diastereoselective cyclopropanation reactions using Corey's ylide for the asymmetric synthesis of 1-aminocyclopropane-1-carboxylic acids (ACCs) such as allo-corononamic and allo-norcoronamic acids. The hydrogenation reaction of these systems at ambient pressure in the presence of formaldehyde affords saturated oxazinones and N-methylated oxazinones which have been transformed into the N-methyl-alpha-amino acids (N-MAAs) (S)-2-(methylamino)butanoic acid and (S)-N-methylleucine. In addition, the parent alpha, beta-didehydroalanine derivative 11g has been prepared by a direct aminomethylation-elimination sequence from 7 and Eschenmoser's salt and has been used in Diels-Alder cycloaddition with endo selectivity for the synthesis of the enantiomerically pure bicyclic alpha-amino acids (-)-2-aminobicyclo[2.2.1]heptane-2-carboxylic and (-)-2-aminobicyclo[2.2.2]octane-2-carboxylic acids.

  15. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz [Livermore, CA

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  16. Two step derivatization for the analyses of organic, amino acids and glycines on filter paper plasma by GC-MS/SIM.

    PubMed

    Yoon, Hye-Ran

    2007-03-01

    A rapid dried-filter paper plasma-spot analytical method was developed to quantify organic acids, amino acids, and glycines simultaneously in a two-step derivatization procedure with good sensitivity and specificity. The new method involves a two-step trimethylsilyl (TMS) - trifluoroacyl (TFA) derivatization procedure using GC-MS/ selective ion monitoring (GC-MS/SIM). The dried-filter paper plasma was fortified with an internal standard (tropate) as well as a standard mixture of distilled water and methanol. Methyl orange was added to the residue as an indicator. N-methyl-N-(trimethylsilyl-trifluoroacetamide) and N-methyl-bis-trifluoroacetamide were then added and heated to 60 degrees C for 10 and 15 min to produce the TMS and TFA derivatives, respectively. Using this method, the silylation of carboxylic functional groups was carried out, which was followed by the trifluoroacyl derivatization of the amino functional group. The derivatives were analyzed by GC-MS/SIM. A calibration cure showed a linear relationship for the target compounds between concentrations of 10-500 ng/mL. The limit of detection and quantification on a plasma spot were 10-90 ng/mL (S/N=9) and 80-500 ng/ mL, respectively. The correlation coefficient ranged from 0.938 and 0.999. When applied to the samples from positive patients, the method clearly differentiated normal subjects from the patients with various metabolic disorders such as PKU, MSUD, OTC and a Propionic Aciduria. The new developed method might be useful for making a rapid, sensitive and simultaneous diagnosis of inherited organic and amino acid disorders. In addition, this method is expected to be an alternative method for screening newborns for metabolic disorders in laboratories where expensive MS/MS is unavailable.

  17. Ligustrazine-Oleanolic Acid Glycine Derivative, G-TOA, Selectively Inhibited the Proliferation and Induced Apoptosis of Activated HSC-T6 Cells.

    PubMed

    Bi, Siling; Chu, Fuhao; Wang, Mina; Li, Bi; Mao, Pei; Zhang, Huazheng; Wang, Penglong; Guo, Wenbo; Xu, Liang; Ren, Liwei; Lei, Haimin; Zhang, Yuzhong

    2016-11-23

    Hepatic fibrosis is a naturally occurring wound-healing reaction, with an imbalance of extracellular matrix (ECM) during tissue repair response, which can further deteriorate to hepatocellular carcinoma without timely treatment. Inhibiting activated hepatic stellate cell (HSC) proliferation and inducing apoptosis are the main methods for the treatment of liver fibrosis. In our previous study, we found that the TOA-glycine derivative (G-TOA) had exhibited more significant inhibitory activity against HepG2 cells and better hydrophilicity than TOA, ligustrazine (TMP), and oleanolic acid (OA). However, inhibiting activated HSC proliferation and inducing apoptosis by G-TOA had not been reported. In this paper, the selective cytotoxicity of G-TOA was evaluated on HSC-T6 cells and L02 cells, and apoptosis mechanisms were explored. It was found that G-TOA could selectively inhibit the proliferation of activated HSC-T6 cells, induce morphological changes, early apoptosis, and mitochondrial membrane potential depolarization, increase intracellular free calcium levels, downregulate the expression of NF-κB/p65 and COX-2 protein, and decrease the ratio of Bcl-2/Bax, thereby inducing HSC-T6 cell apoptosis. Thence, G-TOA might be a potential antifibrosis agent for the therapy of hepatic fibrosis, provided that it exerts anti-fibrosis effects on activated HSC-T6 cells.

  18. Cometary Glycine Detected in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, D. P.; Dworkin, J. P.

    2010-01-01

    In January 2006, NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth. The Stardust cometary collector consisted of aerogel cells lined with aluminum foils designed to capture impacting particles and facilitate removal of the aerogel. Preliminary examinations of these comet-exposed materials revealed a suite of organic compounds, including several amines and amino acids which were later examined in more detail. Methylamine (NH2CH3) and ethylamine (NH2C2H5) were detected in the exposed aerogel at concentrations greatly exceeding those found in control samples, while the amino acid glycine (NH2CH2COOH) was detected in several foil samples as well as in the comet-exposed aerogel. None of these three compounds had been previously detected in comets, although methylamine had been observed in the interstellar medium. Although comparison with control samples suggested that the detected glycine was cometary. the previous work was not able to conclusively identify its origin. Here, we present the results of compound-specific carbon isotopic analysis of glycine in Stardust cometary collector foils. Several foils from the interstellar side of the Stardust collector were also analyzed for amino acid abundance, but concentrations were too low to perform isotopic ana!ysis.

  19. GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1

    PubMed Central

    Sarwar, Zaara; Lundgren, Benjamin R.; Grassa, Michael T.; Wang, Michael X.; Gribble, Megan; Moffat, Jennifer F.

    2016-01-01

    ABSTRACT Glycine serves as a major source of single carbon units for biochemical reactions within bacterial cells. Utilization of glycine is tightly regulated and revolves around a key group of proteins known as the glycine cleavage system (GCS). Our lab previously identified the transcriptional regulator GcsR (PA2449) as being required for catabolism of glycine in the opportunistic pathogen Pseudomonas aeruginosa PAO1. In an effort to clarify and have an overall better understanding of the role of GcsR in glycine metabolism, a combination of transcriptome sequencing and electrophoretic mobility shift assays was used to identify target genes of this transcriptional regulator. It was found that GcsR binds to an 18-bp consensus sequence (TGTAACG-N4-CGTTCCG) upstream of the gcs2 operon, consisting of the gcvH2, gcvP2, glyA2, sdaA, and gcvT2 genes. The proteins encoded by these genes, namely, the GCS (GcvH2-GcvP2-GcvT2), serine hydroxymethyltransferase (GlyA2), and serine dehydratase (SdaA), form a metabolic pathway for the conversion of glycine into pyruvate, which can enter the central metabolism. GcsR activates transcription of the gcs2 operon in response to glycine. Interestingly, GcsR belongs to a family of transcriptional regulators known as TyrR-like enhancer-binding proteins (EBPs). Until this study, TyrR-like EBPs were only known to function in regulating aromatic amino acid metabolism. GcsR is the founding member of a new class of TyrR-like EBPs that function in the regulation of glycine metabolism. Indeed, homologs of GcsR and its target genes are present in almost all sequenced genomes of the Pseudomonadales order, suggesting that this genetic regulatory mechanism is a common theme for pseudomonads. IMPORTANCE Glycine is required for various cellular functions, including cell wall synthesis, protein synthesis, and the biosynthesis of several important metabolites. Regulating levels of glycine metabolism allows P. aeruginosa to maintain the metabolic flux

  20. Supplemental safflower oil affects the fatty acid profile, including conjugated linoleic acid, of lamb.

    PubMed

    Boles, J A; Kott, R W; Hatfield, P G; Bergman, J W; Flynn, C R

    2005-09-01

    The objective of this study was to determine whether increasing levels of dietary safflower oil would alter unsaturated fat (especially CLA) and tocopherol content of lamb, animal performance, carcass characteristics, or color stability of lamb muscle tissue. Targhee x Rambouillet wethers (n = 60) were assigned to one of three diets (four pens per treatment with five lambs per pen) in a completely random design. Diets were formulated with supplemental safflower oil at 0 (control), 3, or 6% (as-fed basis) of the diet. Diets containing approximately 80% concentrate and 20% roughage were formulated, on a DM basis, to be isocaloric and isonitrogenous and to meet or exceed NRC requirements for Ca, P, and other nutrients. A subsample of 12 wethers per treatment was selected based on average BW (54 kg) and slaughtered. Carcass data (LM area, fat thickness, and internal fat content) and wholesale cut weight (leg, loin, rack, shoulder, breast, and foreshank), along with fatty acid, tocopherol, and color analysis, were determined on each carcass. The LM and infraspinatus were sampled for fatty acid profile. Increasing safflower oil supplementation from 0 to 3 or 6% increased the proportion of linoleic acid in the diet from 49.93 to 55.32 to 62.38%, respectively, whereas the percentage of oleic acid decreased from 27.94 to 23.80 to 20.73%, respectively. The percentage of oil in the diet did not (P > or = 0.11) alter the growth and carcass characteristics of lambs, nor did it alter the tocopherol content or color stability of meat. Increasing levels of safflower oil in lamb diets decreased (P < 0.01) the weight percentage of oleic acid in the infraspinatus and LM, and increased linoleic acid (P < 0.01). Oil supplementation increased (P < 0.01) the weight percentage of various isomers of CLA in muscle, with the greatest change in the cis-9,trans-11 isomer. Supplementation of sheep diets with safflower oil, up to 6% of the diet, resulted in increasing levels of unsaturated fatty

  1. Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base.

    PubMed

    Kawashima, Aki; Shu, Shuangjie; Takeda, Ryosuke; Kawamura, Akie; Sato, Tatsunori; Moriwaki, Hiroki; Wang, Jiang; Izawa, Kunisuke; Aceña, José Luis; Soloshonok, Vadim A; Liu, Hong

    2016-04-01

    Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is in extremely high demand due to the pharmaceutical importance of this tailor-made, sterically constrained α-amino acid. Here we report the development of an advanced procedure for preparation of the target amino acid via two-step SN2 and SN2' alkylation of novel axially chiral nucleophilic glycine equivalent. Excellent yields and diastereoselectivity coupled with reliable and easy scalability render this method of immediate use for practical synthesis of (1R,2S)-vinyl-ACCA.

  2. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).

    PubMed

    Yuan, Feng-Jie; Zhu, Dan-Hua; Deng, Bo; Fu, Xu-Jun; Dong, De-Kun; Zhu, Shen-Long; Li, Bai-Quan; Shu, Qing-Yao

    2009-05-13

    Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional traits. Multilocation/season comparative analyses showed that the two mutations did not affect the concentration of crude protein, any of the individual amino acids, crude oil, and individual saturated fatty acids. Among other traits, Gm-lpa-TW75-1 had consistently higher sucrose contents (+47.4-86.1%) and lower raffinose contents (-74.2 to -84.3%) than those of wild type (WT) parent Taiwan 75; Gm-lpa-ZC-2 had higher total isoflavone contents (3038.8-4305.4 microg/g) than its parent Zhechun # 3 (1583.6-2644.9 microg/g) in all environments. Further tests of homozygous F(3) progenies of the cross Gm-lpa-ZC-2 x Wuxing # 4 (WT variety) showed that LPA lines had a mean content of total isoflavone significantly higher than WT lines. This study demonstrated that two LPA mutant genes have no negative effects on seed quality and nutritional traits; they instead have the potential to improve a few other properties. Therefore, these two mutant genes are valuable genetic resources for breeding high quality soybean varieties.

  3. Oral supplementation with glycine reduces oxidative stress in patients with metabolic syndrome, improving their systolic blood pressure.

    PubMed

    Díaz-Flores, Margarita; Cruz, Miguel; Duran-Reyes, Genoveva; Munguia-Miranda, Catarina; Loza-Rodríguez, Hilda; Pulido-Casas, Evelyn; Torres-Ramírez, Nayeli; Gaja-Rodriguez, Olga; Kumate, Jesus; Baiza-Gutman, Luis Arturo; Hernández-Saavedra, Daniel

    2013-10-01

    Reactive oxygen species derived from abdominal fat and uncontrolled glucose metabolism are contributing factors to both oxidative stress and the development of metabolic syndrome (MetS). This study was designed to evaluate the effects of daily administration of an oral glycine supplement on antioxidant enzymes and lipid peroxidation in MetS patients. The study included 60 volunteers: 30 individuals that were supplemented with glycine (15 g/day) and 30 that were given a placebo for 3 months. We analysed thiobarbituric acid reactive substances (TBARS) and S-nitrosohemoglobin (SNO-Hb) in plasma; the enzymatic activities of glucose-6-phosphate dehydrogenase (G6PD), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) in erythrocytes; and the expression of CAT, GPX, and SOD2 in leukocytes. Individuals treated with glycine showed a 25% decrease in TBARS compared with the placebo-treated group. Furthermore, there was a 20% reduction in SOD-specific activity in the glycine-treated group, which correlated with SOD2 expression. G6PD activity and SNO-Hb levels increased in the glycine-treated male group. Systolic blood pressure (SBP) also showed a significant decrease in the glycine-treated men (p = 0.043). Glycine plays an important role in balancing the redox reactions in the human body, thus protecting against oxidative damage in MetS patients.

  4. Photoinhibition and recovery in a herbicide-resistant mutant from Glycine max (L.) Merr. cell cultures deficient in fatty acid unsaturation.

    PubMed

    Alfonso, Miguel; Collados, Raquel; Yruela, Inmaculada; Picorel, Rafael

    2004-07-01

    Photoinhibition and recovery were studied in two photosynthetic cell suspensions from soybean (Glycine max L. Merr): the wild type (WT) and the herbicide-resistant D1 mutant STR7. This mutant also showed an increase in saturated fatty acids from thylakoid lipids. STR7 was more sensitive to photoinhibition under culture conditions. In vivo photoinhibition experiments in the presence of chloramphenicol, in vitro studies in isolated thylakoid membranes, and immunoblot analysis indicated that the process of light-induced degradation of the D1 protein was not involved in the response of STR7 to light. At growth temperature (24 degrees C), the recovery rate of photoinhibited photosystem II (PSII) was slower in STR7 relative to WT. Photoinhibition and recovery were differentially affected by temperature in both cell lines. The rates of photoinhibition were faster in STR7 at any temperature below 27 degrees C. The rates of PSII recovery from STR7 were more severely affected than those of WT at temperatures lower than 24 degrees C. The photoinhibition and recovery rates of WT at 17 degrees C mimicked those of STR7 at 24 degrees C. In organelle translation studies indicated that synthesis and elongation of D1 were substantially similar in both cell lines. However, sucrose gradient fractionation of chloroplast membranes demonstrated that D1 and also other PSII proteins such as D2, OEE33, and LCHII had a reduced capability to incorporate into PSII to yield a mature assembled complex in STR7. This effect may become the rate-limiting step during the recovery of photoinhibited PSII and may explain the increased sensitivity to high light found in STR7. Our data may hint at a possible role of fatty acids from membrane lipids in the assembly and dynamics of PSII.

  5. Synthesis and carbonic anhydrase inhibitory properties of amino acid - coumarin/quinolinone conjugates incorporating glycine, alanine and phenylalanine moieties.

    PubMed

    Küçükbay, F Zehra; Küçükbay, Hasan; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid-coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs > 50 μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92 nM and 1.19 μM for hCA IV, and between 0.11 and 0.79 μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.

  6. New organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils

    USGS Publications Warehouse

    Schimmelmann, Arndt; Qi, Haiping; Coplen, Tyler B.; Brand, Willi A.; Fong, Jon; Meier-Augenstein, Wolfram; Kemp, Helen F.; Toman, Blaza; Ackermann, Annika; Assonov, Sergey; Aerts-Bijma, Anita; Brejcha, Ramona; Chikaraishi, Yoshito; Darwish, Tamim; Elsner, Martin; Gehre, Matthias; Geilmann, Heike; Gröning, Manfred; Hélie, Jean-François; Herrero-Martín, Sara; Meijer, Harro A.J.; Sauer, Peter E.; Sessions, Alex L.; Werner, Roland A.

    2016-01-01

    An international project developed, quality-tested, and determined isotope−δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope−δ scales. The RMs span a range of δ2HVSMOW-SLAP values from −210.8 to +397.0 mUr or ‰, for δ13CVPDB-LSVEC from −40.81 to +0.49 mUr and for δ15NAir from −5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a 2H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ2H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain 13C and carbon-bound organic 2H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.

  7. The Kinetics of Intramolecular Distribution of 15N in Uric Acid after Administration of [15N]Glycine A REAPPRAISAL OF THE SIGNIFICANCE OF PREFERENTIAL LABELING OF N-(3 + 9) OF URIC ACID IN PRIMARY GOUT

    PubMed Central

    Sperling, Oded; Wyngaarden, James B.; Starmer, C. Frank

    1973-01-01

    The concept of an abnormality of glutamine metabolism in primary gout was first proposed on the basis of isotope data: when [15N]glycine was administered to gouty subjects, there was disproportionately great enrichment of N-(3 + 9) of uric acid, which derive from the amide-N of glutamine. An unduly high concentration of 15N in glutamine was postulated, and attributed to a hypothetical defect in catabolism of glutamine. Excess glutamine was proposed as the driving force of uric acid overproduction. We have reexamined this proposition in four gouty subjects: one mild overproducer of uric acid with “idiopathic gout,” one marked overproducer with high-grade but “partial” hypoxanthine-guanine phosphoribosyl-transferase deficiency, and two extraordinary overproducers with superactive phosphoribosylpyrophosphate synthetases. In the last three, the driving force of excessive purine biosynthesis is a known surplus of α-5-phosphoribosyl-1-pyrophosphate. Disproportionately high labeling of N-(3 + 9) was present in all four gouty subjects, most marked in the most flamboyant overproducers. The precursor glucine pool was sampled by periodic administration of benzoic acid and isolation of urinary hippuric acid. Similarly, the precursor glutamine pool was sampled by periodic administration of phenylacetic acid and isolation of the amide-N of urinary phenylacetylglutamine. The time course of 15N enrichment of hippurate differed from that of the amide-N of glutamine. Whereas initial enrichment values of hippurate were very high, those of glutamine-amide-N were low, increasing to a maximum at about 3 h, and then declining less rapidly than those of hippurate. However, enrichment values of hippurate and of phenacetyl glutamine were normal in all of the gouty subjects studied. Thus, preferential enrichment of N-(3 + 9) in gouty overproducers given [15N]glycine does not necessarily reflect a specific abnormality of glutamine metabolism, but rather appears to be a kinetic

  8. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    SciTech Connect

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  9. Effect of pressure on the release of radioactive glycine and gamma-aminobutyric acid from spinal cord synaptosomes

    SciTech Connect

    Gilman, S.C.; Colton, J.S.; Dutka, A.J.

    1987-11-01

    Exposure to high hydrostatic pressure produces neurological changes referred to as the high-pressure nervous syndrome (HPNS). Manifestations of HPNS include tremor, EEG changes, and convulsions. These symptoms suggest an alteration in synaptic transmission, particularly with inhibitory neural pathways. Because spinal cord transmission has been implicated in HPNS, this study investigated inhibitory neurotransmitter function in the cord at high pressure. Guinea pig spinal cord synaptosome preparations were used to study the effect of compression to 67.7 atmospheres. This study suggest that decreased tonic inhibitory regulation at the level of the spinal cord contributes to the hyperexcitability observed in animals with compression to high pressure.

  10. Ectopic expression of Arabidopsis genes encoding salicylic acid- and jasmonic acid-related proteins confers partial resistance to soybean cyst nematode (Heterodera glycines) in transgenic soybean roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) an...

  11. Chemical-exchange-saturation-transfer magnetic resonance imaging to map gamma-aminobutyric acid, glutamate, myoinositol, glycine, and asparagine: Phantom experiments

    NASA Astrophysics Data System (ADS)

    Oh, Jang-Hoon; Kim, Hyug-Gi; Woo, Dong-Cheol; Jeong, Ha-Kyu; Lee, Soo Yeol; Jahng, Geon-Ho

    2017-03-01

    The physical and technical development of chemical-exchange-saturation-transfer (CEST) magnetic resonance imaging (MRI) using clinical 3 T MRI was explored with the goal of mapping asparagine (Asn), gamma-aminobutyric acid (GABA), glutamate (Glu), glycine (Gly), and myoinositol (MI), which exist in the brain. Phantoms with nine different conditions at concentrations of 10, 30, and 50 mM and pH values of 5.6, 6.2, and 7.4 were prepared for the five target molecules to evaluate the dependence of the CEST effect in the concentration, the pH, and the amplitude of the applied radiofrequency field B1. CEST images in the offset frequency range of ±6 parts per million (ppm) were acquired using a pulsed radio-frequency saturation scheme with a clinical 3 T MRI system. A voxel-based main magnetic field B0 inhomogeneity correction, where B0 is the center frequency offset at zero ppm, was performed by using the spline interpolation method to fit the full Z-spectrum to estimate the center frequency. A voxel-based CEST asymmetry map was calculated to evaluate amide (-NH), amine (-NH2), and hydroxyl (-OH) groups for the five target molecules. The CEST effect for Glu, GABA, and Gly clearly increased with increasing concentrations. The CEST effect for MI was minimal, with no noticeable differences at different concentrations. The CEST effect for Glu and Gly increased with increasing acidity. The highest CEST asymmetry for GABA was observed at pH 6.2. The CEST effect for Glu, GABA, and Gly increased with increasing B1 amplitude. For all target molecules, the CEST effect for the human 3 T MRI system increased with increasing concentration and B1 amplitude, but varied with pH, depending on the characteristics of the molecules. The CEST effect for MI may be not suitable with clinical MRI systems. These results show that CEST imaging in the brain with the amine protons by using 3 T MRI is possible for several neuronal diseases.

  12. Extension of a PBPK model for ethylene glycol and glycolic acid to include the competitive formation and clearance of metabolites associated with kidney toxicity in rats and humans

    SciTech Connect

    Corley, R.A.; Saghir, S.A.; Bartels, M.J.; Hansen, S.C.; Creim, J.; McMartin, K.E.; Snellings, W.M.

    2011-02-01

    A previously developed PBPK model for ethylene glycol and glycolic acid was extended to include glyoxylic acid, oxalic acid, and the precipitation of calcium oxalate that is associated with kidney toxicity in rats and humans. The development and evaluation of the PBPK model was based upon previously published pharmacokinetic studies coupled with measured blood and tissue partition coefficients and rates of in vitro metabolism of glyoxylic acid to oxalic acid, glycine and other metabolites using primary hepatocytes isolated from male Wistar rats and humans. Precipitation of oxalic acid with calcium in the kidneys was assumed to occur only at concentrations exceeding the thermodynamic solubility product for calcium oxalate. This solubility product can be affected by local concentrations of calcium and other ions that are expressed in the model using an ion activity product estimated from toxicity studies such that calcium oxalate precipitation would be minimal at dietary exposures below the NOAEL for kidney toxicity in the sensitive male Wistar rat. The resulting integrated PBPK predicts that bolus oral or dietary exposures to ethylene glycol would result in typically 1.4-1.6-fold higher peak oxalate levels and 1.6-2-fold higher AUC's for calcium oxalate in kidneys of humans as compared with comparably exposed male Wistar rats over a dose range of 1-1000 mg/kg. The converse (male Wistar rats predicted to have greater oxalate levels in the kidneys than humans) was found for inhalation exposures although no accumulation of calcium oxalate is predicted to occur until exposures are well in excess of the theoretical saturated vapor concentration of 200 mg/m{sup 3}. While the current model is capable of such cross-species, dose, and route-of-exposure comparisons, it also highlights several areas of potential research that will improve confidence in such predictions, especially at low doses relevant for most human exposures.

  13. Effect of omega-3 fatty acids on the modification of erythrocyte membrane fatty acid content including oleic acid in peritoneal dialysis patients.

    PubMed

    An, W S; Lee, S M; Son, Y K; Kim, S E; Kim, K H; Han, J Y; Bae, H R; Park, Y

    2012-01-01

    Erythrocyte membrane fatty acids (FA), such as oleic acid, are related to acute coronary syndrome. There is no report about the effect of omega-3 FA on oleic acid in peritoneal dialysis (PD) patients. We hypothesized that omega-3 FA can modify erythrocyte membrane FA, including oleic acid, in PD patients. In a double-blind, randomized, placebo-controlled study, 18 patients who were treated with PD for at least 6 months were randomized to treatment for 12 weeks with omega-3 FA or placebo. Erythrocyte membrane FA content was measured by gas chromatography at baseline and after 12 weeks. The erythrocyte membrane content of eicosapentaenoic acid and docosahexaenoic acid was significantly increased and saturated FA and oleic acid were significantly decreased in the omega-3 FA supplementation group after 12 weeks compared to baseline. In conclusion, erythrocyte membrane FA content, including oleic acid, was significantly modified by omega-3 FA supplementation for 12 weeks in PD patients.

  14. Assignment of the Perfluoropropionic Acid-Formic Acid Complex and the Difficulties of Including High K_a Transitions.

    NASA Astrophysics Data System (ADS)

    Obenchain, Daniel A.; Lin, Wei; Novick, Stewart E.; Cooke, S. A.

    2016-06-01

    We recently began an investigation into the perfluoropropionic acid\\cdotsformic acid complex using broadband microwave spectroscopy. This study aims to examine the possible double proton transfer between the two interacting carboxcyclic acid groups. The spectrum presented as a doubled set of lines, with spacing between transitions of < 1 MHz. Transitions appeared to be a-type, R branch transitions for an asymmetric top. Assignment of all K_a=1,0 transitions yields decent fits to a standard rotational Hamiltonian. Treatment of the doubling as either a two state system (presumably with a double proton transfer) or as two distinct, but nearly identical conformations of the complex produce fits of similar quality. Including higher K_a transitions for the a-type, R-branch lines greatly increases the error of these fits. A previous study involving the trifluoroacetic acid\\cdotsformic acid complex published observed similar high K_a transitions, but did not include them in the published fit. We hope to shed more light on this conundrum. Similarities to other double-well potential minimum systems will be discussed. Martinache, L.; Kresa, W.; Wegener, M.;, Vonmont, U.; and Bauder, A. Chem. Phys. 148 (1990) 129-140.

  15. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  16. Identification of combined conjugation of nabumetone phase I metabolites with glucuronic acid and glycine in minipig biotransformation using coupling high-performance liquid chromatography with electrospray ionization mass spectrometry.

    PubMed

    Česlová, Lenka; Holčapek, Michal; Nobilis, Milan

    2014-01-01

    High-performance liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS) was applied for the analysis of nabumetone metabolites during the biotransformation in minipigs. In addition to known phase I metabolites, the identification of phase II metabolites was achieved on the basis of their full-scan mass spectra and subsequent MS(n) analysis using both positive-ion and negative-ion ESI mode. Some phase I metabolites are conjugated with both glucuronide acid and glycine, which is quite unusual type of phase II metabolite not presented so far for nabumetone. These metabolites were found in small intestine content, but they were absent in minipigs urine.

  17. Substitutions of aspartic acid for glycine-220 and of arginine for glycine-664 in the triple helix of the pro alpha 1(I) chain of type I procollagen produce lethal osteogenesis imperfecta and disrupt the ability of collagen fibrils to incorporate crystalline hydroxyapatite.

    PubMed Central

    Culbert, A A; Lowe, M P; Atkinson, M; Byers, P H; Wallis, G A; Kadler, K E

    1995-01-01

    We identified two infants with lethal (type II) osteogenesis imperfecta (OI) who were heterozygous for mutations in the COL1A1 gene that resulted in substitutions of aspartic acid for glycine at position 220 and arginine for glycine at position 664 in the product of one COL1A1 allele in each individual. In normal age- and site-matched bone, approximately 70% (by number) of the collagen fibrils were encrusted with plate-like crystallites of hydroxyapatite. In contrast, approximately 5% (by number) of the collagen fibrils in the probands' bone contained crystallites. In contrast with normal bone, the c-axes of hydroxyapatite crystallites were sometimes poorly aligned with the long axis of fibrils obtained from OI bone. Chemical analysis showed that the OI samples contained normal amounts of calcium. The probands' bone samples contained type I collagen, overmodified type I collagen and elevated levels of type III and V collagens. On the basis of biochemical and morphological data, the fibrils in the OI samples were co-polymers of normal and mutant collagen. The results are consistent with a model of fibril mineralization in which the presence of abnormal type I collagen prevents normal collagen in the same fibril from incorporating hydroxyapatite crystallites. Images Figure 1 Figure 2 Figure 3 PMID:7487936

  18. Microbial production of amino acids in Japan.

    PubMed

    Kumagai, H

    2000-01-01

    The microbial biotechnology of amino acids production which was developed and industrialized in Japan have been summarized. The amino acids include L-glutamic acid, L-lysine, L-threonine, L-aspartic acid, L-alanine, L-cysteine, L-dihydroxyphenylalanine, D-p-hydroxyphenyl-glycine, and hydroxy-L-proline.

  19. Studies on Dyeing Process Variables for Salt Free Reactive Dyeing of Glycine Modified Cationized Cotton Muslin Fabric

    NASA Astrophysics Data System (ADS)

    Samanta, Ashis Kumar; Kar, Tapas Ranjan; Mukhopadhyay, Asis; Shome, Debashis; Konar, Adwaita

    2015-04-01

    Bleached cotton muslin fabric with or without pre-oxidized with NaIO4 (oxy-cotton) was chemically modified with glycine (amino acid) by pad dry calendar process to investigate the changes in textile properties and its dyeability with reactive dye. This glycine modified cotton incorporates new functional groups producing -NH3 + or -C=NH+ -ion (cationic groups) in acid bath to obtain cationized cotton making it amenable to a newer route of salt free reactive dyeing in acid bath. In the present work the process variables of reactive dyeing in the salt free acid bath for dyeing of amine (glycine) modified cationized cotton were studied and optimized. The present study also includes thorough investigation of changes in important textile related properties and dyeability with reactive dye after such chemical modifications. Between oxidized and unoxidized cotton muslin fabric, unoxidized cotton fabric shows better reactive dye uptake in both conventional alkaline bath dyeing and nonconventional salt free acid bath dyeing particularly for high exhaustion class of reactive dye with acceptable level of colour fastness and overall balance of other textile related properties. Moreover, application of dye fixing agent further improves surface colour depth (K/S) of the glycine treated cotton fabric for HE brand of reactive dyes. Corresponding reaction mechanisms for such modifications were supported by FTIR spectroscopy. Finally unoxidized cotton and pre-oxidized cotton further treated with glycine (amino acid) provide a new route of acid bath salt free reactive dyeing showing much higher dye uptake and higher degree of surface cover with amino acid residue anchored to modified cotton.

  20. Characterization of seed storage proteins of several perennial glycine species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial Glycine species, distant relatives of soybean, have been recognized as a potential source of new genetic diversity for soybean improvement. The subgenus Glycine includes around 30 perennial species, which are well adapted to drought conditions and possess resistance to a number of soybean ...

  1. GLYCINE RESISTANCE IN AGROBACTERIUM TUMEFACIENS

    PubMed Central

    Beardsley, Robert E.

    1962-01-01

    Beardsley, Robert E. (Manhattan College, New York, N. Y.). Glycine resistance in Agrobacterium tumefaciens. J. Bacteriol. 83:6–13. 1962.—The application of the fluctuation test of Luria and Delbrück to the distribution of glycine-resistant bacteria among cultures of Agrobacterium tumefaciens strain B6 indicates that resistance arises by mutation in the absence of glycine. On glycine-supplemented medium, additional resistant colonies arise during prolonged periods of incubation. Their appearance is proceded by L-form growth. In general, the number of generations over which glycine resistance is inherited in the absence of glycine is increased by serial transfers on the selection medium. In liquid medium containing glycine, sensitive bacteria form spheroplasts. Resistant bacteria continue to grow as rod forms. In the medium employed, spheroplasts are unstable. Images PMID:13866159

  2. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    PubMed

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  3. Catalysis of Dialanine Formation by Glycine in the Salt-Induced Peptide Formation Reaction.

    NASA Astrophysics Data System (ADS)

    Suwannachot, Yuttana; Rode, Bernd M.

    1998-02-01

    Mutual catalysis of amino acids in the salt-induced peptide formation (SIPF) reaction is demonstrated for the case of glycine/alanine. The presence of glycine enhances dialanine formation by a factor up to 50 and enables dialanine formation at much lower alanine concentrations. The actual amounts of glycine play an important role for this catalytic effect, the optimal glycine concentration is 1/8 of the alanine concentration. The mechanism appears to be based on the formation of the intermediate Gly-Ala-Ala tripeptide, connected to one coordination site of copper(II) ion, and subsequent hydrolysis to dialanine and glycine.

  4. Nucleotide Accumulation Induced in Staphylococcus aureus by Glycine

    PubMed Central

    Strominger, Jack L.; Birge, Claire H.

    1965-01-01

    Strominger, Jack L. (Washington University School of Medicine, St. Louis, Mo.), and Claire H. Birge. Nucleotide accumulation induced in Staphylococcus aureus by glycine. J. Bacteriol. 89:1124–1127. 1965.—High concentrations of glycine induce accumulation of four uridine nucleotides in Staphylococcus aureus. Investigations of their structure suggest that these compounds are uridine diphosphate (UDP)-acetylmuramic acid, UDP-acetylmuramyl-gly-d-glu-l-lys, UDP-acetylmuramyl-l-ala-d-glu-l-lys and UDP-acetylmuramyl-gly-d-glu-l-lys-d-ala-d-ala. The mechanism by which glycine may induce uridine nucleotide accumulation and protoplast formation is discussed. Images PMID:14276106

  5. Effects of Glycine, Water, Ammonia, and Ammonium Bicarbonate on the Oligomerization of Methionine

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Furukawa, Yoshihiro; Otake, Tsubasa; Kakegawa, Takeshi

    2016-09-01

    The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the oligomerization

  6. Effects of Glycine, Water, Ammonia, and Ammonium Bicarbonate on the Oligomerization of Methionine.

    PubMed

    Huang, Rui; Furukawa, Yoshihiro; Otake, Tsubasa; Kakegawa, Takeshi

    2016-09-23

    The abiotic oligomerization of amino acids may have created primordial, protein-like biological catalysts on the early Earth. Previous studies have proposed and evaluated the potential of diagenesis for the amino acid oligomerization, simulating the formation of peptides that include glycine, alanine, and valine, separately. However, whether such conditions can promote the formation of peptides composed of multiple amino acids remains unclear. Furthermore, the chemistry of pore water in sediments should affect the oligomerization and degradation of amino acids and oligomers, but these effects have not been studied extensively. In this study, we investigated the effects of water, ammonia, ammonium bicarbonate, pH, and glycine on the oligomerization and degradation of methionine under high pressure (150 MPa) and high temperature conditions (175 °C) for 96 h. Methionine is more difficult to oligomerize than glycine and methionine dimer was formed in the incubation of dry powder of methionine. Methionine oligomers as long as trimers, as well as methionylglycine and glycylmethionine, were formed under every condition with these additional compounds. Among the compounds tested, the oligomerization reaction rate was accelerated by the presence of water and by an increase in pH. Ammonia also increased the oligomerization rate but consumed methionine by side reactions and resulted in the rapid degradation of methionine and its peptides. Similarly, glycine accelerated the oligomerization rate of methionine and the degradation of methionine, producing water, ammonia, and bicarbonate through its decomposition. With Gly, heterogeneous dimers (methionylglycine and glycylmethionine) were formed in greater amounts than with other additional compounds although smaller amount of these heterogeneous dimers were formed with other additional compounds. These results suggest that accelerated reaction rates induced by water and co-existing reactive compounds promote the

  7. Glycine and Glycine Receptor Signalling in Non-Neuronal Cells

    PubMed Central

    den Eynden, Jimmy Van; Ali, Sheen Saheb; Horwood, Nikki; Carmans, Sofie; Brône, Bert; Hellings, Niels; Steels, Paul; Harvey, Robert J.; Rigo, Jean-Michel

    2009-01-01

    Glycine is an inhibitory neurotransmitter acting mainly in the caudal part of the central nervous system. Besides this neurotransmitter function, glycine has cytoprotective and modulatory effects in different non-neuronal cell types. Modulatory effects were mainly described in immune cells, endothelial cells and macroglial cells, where glycine modulates proliferation, differentiation, migration and cytokine production. Activation of glycine receptors (GlyRs) causes membrane potential changes that in turn modulate calcium flux and downstream effects in these cells. Cytoprotective effects were mainly described in renal cells, hepatocytes and endothelial cells, where glycine protects cells from ischemic cell death. In these cell types, glycine has been suggested to stabilize porous defects that develop in the plasma membranes of ischemic cells, leading to leakage of macromolecules and subsequent cell death. Although there is some evidence linking these effects to the activation of GlyRs, they seem to operate in an entirely different mode from classical neuronal subtypes. PMID:19738917

  8. GABA and glycine actions on spinal motoneurons.

    PubMed

    Krnjević, K; Puil, E; Werman, R

    1977-06-01

    Applied microiontophoretically in the spinal cord of cats, glycine is consistently more powerful than gamma-aminobutyric acid (GABA) in raising the membrane conductance of lumbosacral motoneurons (mean ratio of equipotent iontophoretic currents tested on same cells is 5.6:1). This is the reverse of the situation in cerebral cortex. The effect of glycine is well maintained during applications lasting about 1 min, but that of GABA, after an early peak, drops to a much lower plateau (mean plateau-over-peak ratio is 0.23). The reversal potentials for the action of GABA and glycine are initially similar but they behave differently during a prolonged application; that for glycine usually remains constant or becomes more negative whereas that for GABA tends to shift in the positive direction. Various explanations of these phenomena are considered. It is suggested that a single process, electrogenic uptake of GABA, may account for both desensitization (by removing GABA from its site of action) and the positive shift in GABA reversal potential (became uptake is probably associated with an influx of Na+).

  9. Replacement of glycine 232 by aspartic acid in the KdpA subunit broadens the ion specificity of the K(+)-translocating KdpFABC complex.

    PubMed Central

    Schrader, M; Fendler, K; Bamberg, E; Gassel, M; Epstein, W; Altendorf, K; Dröse, S

    2000-01-01

    Replacement of glycine residue 232 with aspartate in the KdpA subunit of the K(+)-translocating KdpFABC complex of Escherichia coli leads to a transport complex that has reduced affinity for K(+) and has lost the ability to discriminate Rb(+) ions (, J. Biol. Chem. 270:6678-6685). This glycine residue is the first in a highly conserved GGG motif that was aligned with the GYG sequence of the selectivity filter (P- or H5-loop) of K(+) channels (, Nature. 371:119-122). Investigations with the purified and reconstituted KdpFABC complex using the potential sensitive fluorescent dye DiSC(3)(5) and the "caged-ATP/planar bilayer method" confirm the altered ion specificity observed in uptake measurements with whole cells. In the absence of cations a transient current was observed in the planar bilayer measurements, a phenomenon that was previously observed with the wild-type enzyme and with another kdpA mutant (A:Q116R) and most likely represents the movement of a protein-fixed charge during a conformational transition. After addition of K(+) or Rb(+), a stationary current could be observed, representing the continuous pumping activity of the KdpFABC complex. In addition, DiSC(3)(5) and planar bilayer measurements indicate that the A:G232D Kdp-ATPase also transports Na(+), Li(+), and H(+) with a reduced rate. Similarities to mutations in the GYG motif of K(+) channels are discussed. PMID:10920013

  10. Putative glycine receptors in Hydra: a biochemical and behavioural study.

    PubMed

    Pierobon, P; Minei, R; Porcu, P; Sogliano, C; Tino, A; Marino, G; Biggio, G; Concas, A

    2001-11-01

    Glycine acts as an inhibitory transmitter in the lower brain stem and spinal cord of vertebrate species, while very few data are yet available to support a similar role in invertebrate nervous systems. Here we report the identification and characterization of glycine receptors in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa) by biochemical and behavioural studies. Saturation experiments revealed the occurrence of one population of binding sites of nanomolar affinity (KD = 33 nm) and low capacity (Bmax = 79 fmol/mg protein) for [(3)H]strychnine. The addition of glycine or taurine (0.1 microm-1 mm) produced a dose-dependent inhibition of [(3)H]strychnine binding. Beta-alanine (0.1-1 mm) did not significantly affect [(3)H]strychnine binding. The pharmacological properties of these receptors compare with those of vertebrate glycine receptors. Stimulation of Hydra polyps by reduced glutathione resulted in a significant increase in the duration of mouth opening in the presence of glycine, taurine or beta-alanine. The enhancement of the response was related both to amino acid (10-100 microm) and to glutathione concentration (1-10 microm). The effects of glycine or its agonists were suppressed by strychnine (1-10 microm). D-serine, a glycine agonist at the vertebrate NMDA receptor, produced opposite effects to those of glycine. The effects of d-serine were suppressed by 5,7-dichlorokynurenic acid but not by strychnine. In vitro, [(3)H]strychnine binding was not displaced by d-serine. These results indicate a dual action of glycine in Hydra tissues. The hypothesis that NMDA receptors may also be present in this elementary nervous system is proposed.

  11. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2-deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  12. Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.).

    PubMed

    Watkins, Andrew J; Roussel, Erwan G; Parkes, R John; Sass, Henrik

    2014-01-01

    Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners.

  13. The Formation of Racemic Amino Acids by UV Photolysis of Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Dworkin, Jason P.; Sandford, Scott A.; Cooper, George; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Small biologically relevant organic molecules including the amino acids glycine, alanine, and marine were formed in the laboratory by the UV (Ultraviolet) photolysis of realistic interstellar ice analogs, composed primarily of H2O, and including CH3OH, NH3, and HCN, under interstellar conditions. N-formyl glycine, cycloserine (4-amino-3-isoxazolidinone), and glycerol were detected before hydrolysis, and glycine, racemic alanine, racemic marine, glycerol, ethanolamine, and glyceric acid were found after hydrolysis. This suggests that some meteoritic amino acids (and other molecules) may be the direct result of interstellar ice photochemistry, expanding the current paradigm that they formed by reactions in liquid water on meteorite parent bodies.

  14. Fatty acid composition including cis-9, trans-11 CLA of cooked ground lamb

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is available on effect of cooking on beneficial fatty acids such as conjugated linoleic acid (CLA) and n-3 polyunsaturated fatty acids (PUFA). The objective of this study was to examine impact of cooking on the FA composition of ground lamb of two different muscles. Samples were p...

  15. [Antiinflammatory therapy in ostheoarthritis including omega 3 and omega 6 fatty acids].

    PubMed

    Dzielska-Olczak, Małgorzata; Nowak, Jerzy Z

    2012-05-01

    Osteoarthritis (ostheoarthrosis, OA) is characterized by progressive destruction of articular cartilage, remodeling of the periarticular bone and inflammation of the synovial membrane. In patients occur joints pain, impaired joints motion and disability. The results of many studies indicate an inflammation as foundation of this disease. The management of OA include a combination of pharmacological treatments and nonpharmacological interventions. Pharmacological treatments include used paracetamol, nonsteroidal anti-inflammatory drugs (NSAIDs) and chondroprotectives (glucosamine, chondroitin sulfate and so on). NSAIDs long-term use associated with serious adverse effects. OA symptoms are effectively reduced by nutrients such omega 3 and omega 6 fatty acids (PUFAs as EPA, DHA), which decrease the need for non-steroidal drugs and may less adverse events. They exerts, particularly EPA, anti-inflammatory effect, inhibit catabolic processes, stimulate the anabolic process in the cartilage in the joint. Many different evidence validate that omega 3 alleviate the progression of osteoarthritis and have exciting therapeutic potential for preventing cartilage degradation associated with chronic inflammatory in joints.

  16. Genome-enabled determination of amino acid biosynthesis in Xanthomonas campestris pv. campestris and identification of biosynthetic pathways for alanine, glycine, and isoleucine by 13C-isotopologue profiling.

    PubMed

    Schatschneider, Sarah; Vorhölter, Frank-Jörg; Rückert, Christian; Becker, Anke; Eisenreich, Wolfgang; Pühler, Alfred; Niehaus, Karsten

    2011-10-01

    To elucidate the biosynthetic pathways for all proteinogenic amino acids in Xanthomonas campestris pv. campestris, this study combines results obtained by in silico genome analysis and by (13)C-NMR-based isotopologue profiling to provide a panoramic view on a substantial section of bacterial metabolism. Initially, biosynthesis pathways were reconstructed from an improved annotation of the complete genome of X. campestris pv. campestris B100. This metabolic reconstruction resulted in the unequivocal identification of biosynthesis routes for 17 amino acids in total: arginine, asparagine, aspartate, cysteine, glutamate, glutamine, histidine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. Ambiguous pathways were reconstructed from the genome data for alanine, glycine, and isoleucine biosynthesis. (13)C-NMR analyses supported the identification of the metabolically active pathways. The biosynthetic routes for these amino acids were derived from the precursor molecules pyruvate, serine, and pyruvate, respectively. By combining genome analysis and isotopologue profiling, a comprehensive set of biosynthetic pathways covering all proteinogenic amino acids was unraveled for this plant pathogenic bacterium, which plays an important role in biotechnology as a producer of the exopolysaccharide xanthan. The data obtained lay ground for subsequent functional analyses in post-genomics and biotechnology, while the innovative combination of in silico and wet lab technology described here is promising as a general approach to elucidate metabolic pathways.

  17. Strychnine-sensitive glycine responses of neonatal rat hippocampal neurones.

    PubMed Central

    Ito, S; Cherubini, E

    1991-01-01

    1. Intracellular recordings employing current and voltage clamp techniques were used to study the effects of glycine on rat CA3 hippocampal neurones during the first 3 weeks of postnatal (P) life. 2. Glycine (0.3-1 mM) depolarized neurones from rats less than 4 days old (P4). Neurones from older neonates (P5-P7) were hyperpolarized by glycine, whereas adult neurones were unaffected. 3. Both depolarizing and hyperpolarizing responses were associated with large conductance increases; they reversed polarity at a potential which changed with the extracellular chloride concentration. The responses persisted in tetrodotoxin (1 microM) or in a solution with a much reduced calcium concentration. 4. Strychnine (1 microM) but not bicuculline (10-50 microM) antagonized the effects of glycine. The action of strychnine was apparently competitive with a dissociation constant of 350 nM. 5. In voltage clamp experiments, glycine elicited a non-desensitizing outward current at -60 mV. When a maximal concentration of glycine was applied at the same time as gamma-aminobutyric acid (GABA), the conductance increase induced by the two agonists was additive, suggesting the activation of different populations of channels. 6. Concentrations of glycine lower than 100 microM did not affect membrane potential. However, at 30-50 microM glycine increased the frequency of spontaneous GABA-mediated synaptic responses; this action was not blocked by strychnine. 7. It is concluded that during the first 2 weeks of life glycine acts at strychnine-sensitive receptors to open chloride channels. PMID:1804982

  18. DETECTABILITY OF GLYCINE IN SOLAR-TYPE SYSTEM PRECURSORS

    SciTech Connect

    Jiménez-Serra, Izaskun; Testi, Leonardo; Caselli, Paola; Viti, Serena E-mail: ltesti@eso.org E-mail: sv@star.ucl.ac.uk

    2014-06-01

    Glycine (NH{sub 2}CH{sub 2}COOH) is the simplest amino acid relevant to life. Its detection in the interstellar medium is key to understanding the formation mechanisms of pre-biotic molecules and their subsequent delivery onto planetary systems. Glycine has been extensively searched for toward hot molecular cores, although these studies did not yield any firm detection. In contrast to hot cores, low-mass star forming regions, in particular their earliest stages represented by cold pre-stellar cores, may be better suited for the detection of glycine as well as more relevant to the study of pre-biotic chemistry in young solar system analogs. We present one-dimensional spherically symmetric radiative transfer calculations of the glycine emission expected to arise from the low-mass pre-stellar core L1544. Water vapor has recently been reported toward this core, indicating that a small fraction of the grain mantles in L1544 (∼0.5%) has been injected into the gas phase. Assuming that glycine is photo-desorbed together with water in L1544, and considering a solid abundance of glycine on ices of ∼10{sup –4} with respect to water, our calculations reveal that several glycine lines between 67 GHz and 80 GHz have peak intensities larger than 10 mK. These results show for the first time that glycine could reach detectable levels in cold objects such as L1544. This opens up the possibility of detecting glycine, and other pre-biotic species, at the coldest and earliest stages in the formation of solar-type systems with near-future instrumentation such as the Band 2 receivers of ALMA.

  19. Glycine receptors and brain development

    PubMed Central

    Avila, Ariel; Nguyen, Laurent; Rigo, Jean-Michel

    2013-01-01

    Glycine receptors (GlyRs) are ligand-gated chloride ion channels that mediate fast inhibitory neurotransmission in the spinal cord and the brainstem. There, they are mainly involved in motor control and pain perception in the adult. However, these receptors are also expressed in upper regions of the central nervous system, where they participate in different processes including synaptic neurotransmission. Moreover, GlyRs are present since early stages of brain development and might influence this process. Here, we discuss the current state of the art regarding GlyRs during embryonic and postnatal brain development in light of recent findings about the cellular and molecular mechanisms that control brain development. PMID:24155690

  20. A DFT study of adsorption of glycine onto the surface of BC2N nanotube

    NASA Astrophysics Data System (ADS)

    Soltani, Alireza; Azmoodeh, Zivar; Javan, Masoud Bezi; Lemeski, E. Tazikeh; Karami, Leila

    2016-10-01

    A theoretical study of structure and the energy interaction of amino acid glycine (NH2CH2COOH) with BC2N nanotube is crucial for apperception behavior occurring at the nanobiointerface. Herein, we studied the adsorption of glycine in their radical and zwitterionic forms upon the surface of BC2N nanotube using M06 functional and 6-311G** standard basis set. We also considered the different orientations of the glycine amino acid on the surface of adsorbent. Further, we found out that the stability of glycine from its carbonyl group is higher than hydroxyl and amine groups. Our results also indicated that the electronic structure of BC2N nanotube on the adsorption of glycine from its amine group is more altered than the other groups. Our study exhibits that opto-electronic property of adsorbent is changed after the glycine adsorption.

  1. Some Operational Characteristics of Glycine Release in Rat Retina: The Role of Reverse Mode Operation of Glycine Transporter Type-1 (GlyT-1) in Ischemic Conditions.

    PubMed

    Hanuska, Adrienn; Szénási, Gábor; Albert, Mihaly; Koles, Laszlo; Varga, Agoston; Szabo, Andras; Matyus, Peter; Harsing, Laszlo G

    2016-02-01

    Rat posterior eyecups containing the retina were prepared, loaded with [(3)H]glycine and superfused in order to determine its release originated from glycinergic amacrine cells and/or glial cells. Deprivation of oxygen and glucose from the Krebs-bicarbonate buffer used for superfusion evoked a marked increase of [(3)H]glycine release, an effect that was found to be external Ca(2+)-independent. Whereas oxygen and glucose deprivation increased [(3)H]glycine release, its uptake was reduced suggesting that energy deficiency shifts glycine transporter type-1 operation from normal to reverse mode. The increased release of [(3)H]glycine evoked by oxygen and glucose deprivation was suspended by addition of the non-competitive glycine transporter type-1 inhibitor NFPS and the competitive inhibitor ACPPB further suggesting the involvement of this transporter in the mediation of [(3)H]glycine release. Oxygen and glucose deprivation also evoked [(3)H]glutamate release from rat retina and the concomitantly occurring release of the NMDA receptor agonist glutamate and the coagonist glycine makes NMDA receptor pathological overstimulation possible in hypoxic conditions. [(3)H]Glutamate release was suspended by addition of the excitatory amino acid transporter inhibitor TBOA. Sarcosine, a substrate inhibitor of glycine transporter type-1, also increased [(3)H]glycine release probably by heteroexchange shifting transporter operation into reverse mode. This effect of sarcosine was also external Ca(2+)-independent and could be suspended by NFPS. Energy deficiency in retina induced by ouabain, an inhibitor of the Na(+)-K(+)-dependent ATPase, and by rotenone, a mitochondrial complex I inhibitor added with the glycolytic inhibitor 2-deoxy-D-glucose, led to increase of retinal [(3)H]glycine efflux. These effects of ouabain and rotenone/2-deoxy-D-glucose could also be blocked by NFPS pointed to the preferential reverse mode operation of glycine transporter type-1 as a consequence of

  2. Compositions containing poly ([gamma]glutamylcysteinyl)glycines

    DOEpatents

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1992-02-18

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and the apparatus used in effecting the removal are described. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 figs.

  3. Compositions containing poly (.gamma.-glutamylcysteinyl)glycines

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1992-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  4. Acidity constant determination of novel drug precursor benzothiazolon derivatives including acyl and piperazine moieties

    NASA Astrophysics Data System (ADS)

    Sıdır, İsa; Gülseven Sıdır, Yadigar; Berber, Halil

    2013-07-01

    In this study, protonation and deprotonation behaviors of eight new drug precursor benzothiazolon derivatives in all of acidic and basic scale (super acidic, pH, super basic regions) are analyzed by using UV-visible spectrophotometric technique. Acidity constants (pKa), elucidation of the structure and protonation mechanisms of the studied molecules are obtained. Substituent effect on acidity constant values is discussed. These molecules are protonated from oxygen atom of acetamide group in the keto form. The protonation is found to be considerably contributed by the keto form.

  5. Chemical synthesis of (22E)-3alpha,6alpha,7alpha,12alpha-Tetrahydroxy-5beta-chol-22-en-24-oic acid and its N-acylamidated conjugates with glycine or taurine: precursors of the [22,23-(3)H] labelled tracers.

    PubMed

    Ogawa, Shoujiro; Adachi, Yuuki; Kakiyama, Genta; Shimada, Miki; Mano, Nariyasu; Goto, Junichi; Iida, Takashi

    2010-08-01

    (22E)-3alpha,6alpha,7alpha,12alpha-Tetrahydroxy-5beta-chol-22-en-24-oic acid and its N-acylamidated conjugates with glycine or taurine were synthesized from cholic acid. The key reactions employed are: 1) degradation of the side chain in intermediary C(24) 3alpha,6alpha,7alpha,12alpha-tetrahydroxylated bile acid to the corresponding C(22) 23,24-dinor-aldehyde, followed by Wittig reaction with methyl (triphenylphosphoranylidene)acetate and 2) N-acylamidation of the unconjugated tetrahydroxy-Delta(22)-5beta-cholenoic acid with glycine (or taurine) in the presence of diethylphosphorocyanide and triethylamine as coupling reagents.

  6. THE EFFECT OF THE HYDROGEN ION CONCENTRATION ON THE RATE OF HYDROLYSIS OF GLYCYL GLYCINE, GLYCYL LEUCINE, GLYCYL ALANINE, GLYCYL ASPARAGINE, GLYCYL ASPARTIC ACID, AND BIURET BASE BY EREPSIN.

    PubMed

    Northrop, J H; Simms, H S

    1928-11-20

    1. The rate of hydrolysis at different pH values of glycyl glycine, glycyl leucine, glycyl alanine, glycyl asparagine, glycyl aspartic acid and biuret base has been determined. 2. The pH-activity curves obtained in this way differ for the different substrates. 3. The curves can be satisfactorily predicted by the assumption that erepsin is a weak acid or base with a dissociation constant of 10(-7.6) and that the reaction takes place between a particular ionic species of the enzyme and of the substrate. There are several possible arrangements which will predict the experimental results. 4. The rate of inactivation of erepsin at various pH values has been determined and found to agree with the assumption used above, that the enzyme is a weak acid or base with a dissociation constant of about 10(-7.6). 5. It is pointed out that if the mechanism assumed is correct, the determination of a significant value for the relative rate of hydrolysis of various peptides is a very uncertain procedure.

  7. Estrogen-like osteoprotective effects of glycine in in vitro and in vivo models of menopause.

    PubMed

    Kim, Min-Ho; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-03-01

    Recently, the placenta mesotherapy has been widely used to treat menopause. Placenta contains amino acids, peptides, minerals, and estrogen. Here, we investigated the estrogen-like osteoprotective effects of glycine (a main ingredient of placenta) in in vitro and in vivo models of menopause. We assessed the effect of glycine on MG-63 osteoblast cell line, MCF-7 estrogen-dependent cell line, and ovariectomized (OVX) mice. Glycine significantly increased the MG-63 cell proliferation in a dose-dependent manner. Activity of alkaline phosphatase (ALP) and phosphorylation of extracellular-signal-regulated kinase were increased by glycine in MG-63 cells. Glycine also increased the BrdU-incorporation and Ki-67 mRNA expression in MCF-7 cells. Glycine induced the up-regulation of estrogen receptor-β mRNA expression and estrogen-response element-luciferase activity in MG-63 and MCF-7 cells. In OVX mice, glycine was administered orally at a daily dose of 10 mg/kg per day for 8 weeks. Glycine resulted in the greatest decrease in weight gain caused by ovariectomy. Meanwhile, vaginal weight reduced by ovariectomy was increased by glycine. Glycine significantly increased the ALP activity in OVX mice. MicroCT-analysis showed that glycine significantly enhanced bone mineral density, trabecular number, and connectivity density in OVX mice. Moreover, glycine significantly increased the serum 17β-estradiol levels reduced by ovariectomy. Glycine has an estrogen-like osteoprotective effect in menopause models. Therefore, we suggest that glycine may be useful for the treatment of menopause.

  8. 75 FR 63444 - Glycine From the People's Republic of China: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... purity and is used as a sweetener/taste enhancer, a buffering agent, reabsorbable amino acid, chemical... glycine to the United States are manufactured by Paras, in India, from monochloro acetic acid and...

  9. A Novel Glycinate-based Body Wash

    PubMed Central

    Regan, Jamie; Ananthapadmanabhan, K.P.

    2013-01-01

    Objective: To assess the properties of a novel body wash containing the mild surfactant glycinate. Design: Biochemical and clinical assays. Setting: Research laboratories and clinical sites in the United States and Canada. Participants: Women 18 to 65 years of age (cleansing efficacy); male and female subjects 26 to 63 years of age with mild or moderate dryness and erythema (leg-controlled application test); subjects 5 to 65 years of age with mild-to-moderate eczema (eczema compatibility); and women 18 to 64 years of age (home use). Measurements: Assessments across studies included colorimetric dye exclusion to assess skin damage potential (corneosurfametry), efficacy of cosmetic product removal from skin, change from baseline in visual dryness, change from baseline in Eczema Area and Severity Index, and self-perceived eczema attributes and self-reported product preference. Results: The glycinate-based cleanser demonstrated mildness to skin components when evaluated in a corneosurfametry assay. Short-term use under exaggerated wash conditions in subjects with dryness scores <3 and erythema scores <2 (both on a 0-6 scale) indicated an initial reduction in visual dryness. In subjects with eczema, normal use resulted in significant improvements (p<0.05) at Week 4 compared with baseline in skin dryness (change from baseline = −0.73), rash (−0.56), itch (−0.927), tightness (−0.585), and all eczema (−0.756). The glycinate-based body wash removed 56 percent of a long-lasting cosmetic foundation from skin compared with less than 30 percent removed by two competitive products tested. The glycinate-based body wash was preferred over a competitive mild cleansing product overall. Conclusion: The patented glycinate-containing body wash demonstrated better product mildness and patient-preferred attributes and clinical benefits. PMID:23882306

  10. Alpha-amylase from germinating soybean (Glycine max) seeds--purification, characterization and sequential similarity of conserved and catalytic amino acid residues.

    PubMed

    Kumari, Arpana; Singh, Vinay Kumar; Fitter, Jörg; Polen, Tino; Kayastha, Arvind M

    2010-10-01

    Starch hydrolyzing amylase from germinated soybeans seeds (Glycine max) has been purified 400-fold to electrophoretic homogeneity with a final specific activity of 384 units/mg. SDS-PAGE of the final preparation revealed a single protein band of 100 kDa, whereas molecular mass was determined to be 84 kDa by MALDI-TOF and gel filtration on Superdex-200 (FPLC). The enzyme exhibited maximum activity at pH 5.5 and a pI value of 4.85. The energy of activation was determined to be 6.09 kcal/mol in the temperature range 25-85 degrees C. Apparent Michaelis constant (K(m)((app))) for starch was 0.71 mg/mL and turnover number (k(cat)) was 280 s(-1) in 50 mM sodium acetate buffer, pH 5.5. Thermal inactivation studies at 85 degrees C showed first-order kinetics with rate constant (k) equal to 0.0063 min(-1). Soybean alpha-amylase showed high specificity for its primary substrate starch. High similarity of soybean alpha-amylase with known amylases suggests that this alpha-amylase belongs to glycosyl hydrolase family 13. Cereal alpha-amylases have gained importance due to their compatibility for biotechnological applications. Wide availability and easy purification protocol make soybean as an attractive alternative for plant alpha-amylase. Soybean can be used as commercially viable source of alpha-amylase for various industrial applications.

  11. Influence of Fatty Acid Precursors, Including Food Preservatives, on the Growth and Fatty Acid Composition of Listeria monocytogenes at 37 and 10°C ▿

    PubMed Central

    Julotok, Mudcharee; Singh, Atul K.; Gatto, Craig; Wilkinson, Brian J.

    2010-01-01

    Listeria monocytogenes is a food-borne pathogen that grows at refrigeration temperatures and increases its content of anteiso-C15:0 fatty acid, which is believed to be a homeoviscous adaptation to ensure membrane fluidity, at these temperatures. As a possible novel approach for control of the growth of the organism, the influences of various fatty acid precursors, including branched-chain amino acids and branched- and straight-chain carboxylic acids, some of which are also well-established food preservatives, on the growth and fatty acid composition of the organism at 37°C and 10°C were studied in order to investigate whether the organism could be made to synthesize fatty acids that would result in impaired growth at low temperatures. The results indicate that the fatty acid composition of L. monocytogenes could be modulated by the feeding of branched-chain amino acid, C4, C5, and C6 branched-chain carboxylic acid, and C3 and C4 straight-chain carboxylic acid fatty acid precursors, but the growth-inhibitory effects of several preservatives were independent of effects on fatty acid composition, which were minor in the case of preservatives metabolized via acetyl coenzyme A. The ability of a precursor to modify fatty acid composition was probably a reflection of the substrate specificities of the first enzyme, FabH, in the condensation of primers of fatty acid biosynthesis with malonyl acyl carrier protein. PMID:20048057

  12. Glycine Substitutions in Collagen Heterotrimers Alter Triple Helical Assembly.

    PubMed

    Clements, Katherine A; Acevedo-Jake, Amanda M; Walker, Douglas R; Hartgerink, Jeffrey D

    2017-02-13

    Osteogenesis imperfecta typically results from missense mutations in the collagen genome where the required glycine residues are replaced with another amino acid. Many models have attempted to replicate the structure of mutated collagen on the triple helix level. However, composition and register control of the triple helix is complicated and requires extreme precision, especially when these destabilizing mutations are present. Here we present mutations to a composition- and register-controlled AAB helix where one of the requisite glycines in the A chain of the triple helix is changed to serine or alanine. We see a loss of compositional control when the A chain is mutated, resulting in an A'BB composition that minimizes the number of mutations included in the triple helix. However, when both A and B chains are mutated and no nonmutated peptide chains are available, the designed A'A'B' composition is reestablished. Our work shows the ability of the mutations to influence and alter the composition and register of the collagen triple helix.

  13. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase

    PubMed Central

    Sahonero-Canavesi, Diana X.; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M.; Geiger, Otto

    2016-01-01

    Summary Phospholipids are well known for their membrane forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth. PMID:25711932

  14. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    PubMed

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.

  15. Real-time monitoring of matrix acidizing including the effects of diverting agents

    SciTech Connect

    Hill, A.D.; Zhu, D.

    1996-05-01

    Real-time monitoring of the injection rate and pressure during matrix acidizing provides operators with a way to determine the changing skin factor as stimulation proceeds. Current methods are based either on the assumption of steady-state flow in the region around the wellbore affected by acid injection or on computer solution of the transient flow equations describing the unsteady reservoir flow process occurring during acidizing. In this paper, a new method for real-time monitoring of matrix acidizing, the inverse injectivity vs. superposition time function plot, is presented. This new method can be applied with a spreadsheet computer program or a programmable calculator and accounts for the transient flow effects occurring during matrix acidizing at multiple rates and injection pressures. The evolving skin factor during a matrix treatment is readily obtained from the diagnostic plot. Hypothetical examples show how the inverse injectivity plot can be used to assess the efficiency of stimulation and diversion. Comparisons with previously presented field cases show the new method to be a simple and accurate means of monitoring the evolving skin factor during matrix acidizing.

  16. The Glycine Transport Inhibitor Sarcosine Is an Inhibitory Glycine Receptor Agonist

    PubMed Central

    Zhang, Hai Xia; Lyons-Warren, Ariel; Thio, Liu Lin

    2009-01-01

    Summary Sarcosine is an endogenous amino acid that is a competitive inhibitor of the type I glycine transporter (GlyT1), an N-methyl-D-aspartate receptor (NMDAR) co-agonist, and an important intermediate in one-carbon metabolism. Its therapeutic potential for schizophrenia further underscores its clinical importance. The structural similarity between sarcosine and glycine and sarcosine's ability to serve as an NMDAR co-agonist led us to examine whether sarcosine is also an agonist at the inhibitory glycine receptor (GlyR). We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons and found that sarcosine evoked a dose-dependent, strychnine sensitive, Cl- current that cross-inhibited glycine currents. Sarcosine evoked this current with Li+ in the extracellular solution to block GlyT1, in neurons treated with the essentially irreversible GlyT1 inhibitor N[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine (NFPS), and in neurons plated in the absence of glia. These results indicate that the sarcosine currents did not result from GlyT1 inhibition or heteroexchange. We conclude that sarcosine is a GlyR agonist. PMID:19619564

  17. Molecular basis for substrate discrimination by glycine transporters.

    PubMed

    Vandenberg, Robert J; Shaddick, Kim; Ju, Pengchu

    2007-05-11

    Glycine is an inhibitory neurotransmitter in the spinal cord and brain stem, where it acts on strychnine-sensitive glycine receptors, and is also an excitatory neurotransmitter throughout the brain and spinal cord, where it acts on the N-methyl-d-aspartate family of receptors. There are two Na(+)/Cl(-)-dependent glycine transporters, GLYT1 and GLYT2, which control extracellular glycine concentrations and these transporters show differences in substrate selectivity and blocker sensitivity. A bacterial Na(+)-dependent leucine transporter (LeuT(Aa)) has recently been crystallized and its structure determined. When the amino acid residues within the leucine binding site of LeuT(Aa) are aligned with residues of the two glycine transporters there are a number of identical residues and also some key differences. In this report, we demonstrate that the LeuT(Aa) structure represents a good working model of the Na(+)/Cl(-)-dependent neurotransmitters and that differences in substrate selectivity can be attributed to a single difference of a glycine residue in transmembrane domain 6 of GLYT1 for a serine residue at the corresponding position of GLYT2.

  18. Reaction Behaviors of Glycine under Super- and Subcritical Water Conditions

    NASA Astrophysics Data System (ADS)

    Alargov, Dimitar K.; Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2002-02-01

    The influence of temperature and pressure on the dimerization and decomposition of glycine under simulated hydrothermal system conditions was studied by injecting a glycine solution into water in the sub- and supercritical state. The experiments at five different temperatures of supplied water - 250, 300, 350, 374, and 400 °C - were performed at 22.2 and 40.0 MPa. At 350 °C, experiments under 15.0-40.0 MPa were conducted. Diglycine, triglycine (trace), diketopiperazine, and an unidentified product with a high molecular mass (433 Da) were the main products of oligomerization. The results show that temperature and pressure influence the extent of dimerization and decomposition of glycine. The maximum of dimers formation was observed at 350 and 375 °C at 22.2 and 40.0 MPa, respectively, and coincided with a high rate of glycine decomposition. Glycine, alanine, aspartic acid, as well as other amino acids, were obtained by injecting a mixture of formaldehyde and ammonia. The results support the oligomerization and synthesis of amino acids in a submarine hydrothermal system.

  19. Enhancement of glycine receptor function by ethanol: role of phosphorylation

    PubMed Central

    Paola Mascia, Maria; Wick, Marilee J; Martinez, Larry D; Harris, R Adron

    1998-01-01

    The effects of several kinase inhibitors (staurosporine, GF 109203X, H89, KN62, genistein) and of the phosphatase inhibitor calyculin A were studied on the ethanol potentiation and on the function of homomeric α1 glycine receptor expressed in Xenopus oocytes using a two electrode voltage clamp recording technique.The function of the homomeric α1 glycine receptor was not modified in Xenopus oocytes pretreated with kinase inhibitors or with the phosphatase inhibitor calyculin A.The potentiation of the glycine receptor function induced by ethanol (10–200 mM) was significantly reduced in Xenopus oocytes pretreated with the PKC inhibitors staurosporine or GF 109203X.No differences in propofol (2.5 μM) or halothane (250 μM) actions were found after exposure of Xenopus oocytes to staurosporine.No differences in ethanol sensitivity were found after exposure of Xenopus oocytes expressing glycine α1 receptors to H89, KN62, genistein or to the phosphatase inhibitor calyculin A.The mutant α1 (S391A), in which the PKC phosphorylation site at serine 391 was mutated to alanine, was less sensitive to the effects of ethanol than was the α1 wild type receptor. Moreover, the ethanol potentiation of the glycine receptor function was not affected by treatment with staurosporine in oocytes expressing α1 (S391A).The splice variant of the α1 glycine receptor subunit, α1ins, containing eight additional amino acids and a potential phosphorylation site for PKA, did not differ from wild type for sensitivity to ethanol.These results indicate that phosphorylation by PKC of the homomeric α1 glycine receptor subunit modulates ethanol potentiation, but not the function of the glycine receptor. PMID:9786497

  20. Amino Acid Residues Critical for the Specificity for Betaine Aldehyde of the Plant ALDH10 Isoenzyme Involved in the Synthesis of Glycine Betaine1[W][OA

    PubMed Central

    Díaz-Sánchez, Ángel G.; González-Segura, Lilian; Mújica-Jiménez, Carlos; Rudiño-Piñera, Enrique; Montiel, Carmina; Martínez-Castilla, León P.; Muñoz-Clares, Rosario A.

    2012-01-01

    Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant Km(BAL) increases and Vmax/Km(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the Vmax/Km(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants. PMID:22345508

  1. UV and fluorescence spectral changes induced by neodymium binding of N,N'-ethylenebis[2-(o-hydroxyphenolic)glycine] and N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N' diacetic acid.

    PubMed

    Wang, Zhijun; Yang, Binsheng

    2006-11-01

    In 0.01 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes), pH 7.4 and room temperature, the binding of neodymium to N,N'-ethylenebis[2-(o-hydroxyphenolic)glycine] (EHPG), or N,N'-di(2-hydroxybenzyl)ethylenediamine-N,N' diacetic acid (HBED) had been studied from 210 to 330 nm by means of difference UV spectra. Two peaks at 240 and 292 nm appear in difference UV spectra after neodymium binding to EHPG or HBED. The 1:1 stable complex can be confirmed from spectral titration curves. The molar extinction coefficient of Nd-EHPG and Nd-HBED complexes are Deltaepsilon(Nd-EHPG)=(12.93+/-0.21) x 10(3)cm(-1)M(-1), Deltaepsilon(Nd-HBED)=(14.45+/-0.51) x 10(5)cm(-1)M(-1) at 240 nm, respectively. Using EDTA as a competitor, the conditional equilibrium constants of the complexes are logK(Nd-EHPG)=11.89+/-0.09 and logK(Nd-HBED)=12.19+/-0.15, respectively. At the same conditions, fluorescence measurements show that neodymium binding to EHPG leads to a quenching of the fluorescence of EHPG at near 310 nm. However, there is no obvious fluorescence change of HBED at 318 nm with the binding of neodymium to HBED.

  2. Coordination properties of the oxime analogue of glycine to Cu(II).

    PubMed

    Georgieva, I; Trendafilova, N; Rodríguez-Santiago, L; Sodupe, M

    2005-06-30

    The coordination of Cu2+ by glyoxilic acid oxime (gao)--the oxime analogue of glycine amino acid--and its deprotonated (gao- and gao2-) species has been studied with different density functional methods. Single-point calculations have also been carried out at the single- and double- (triple) excitation coupled-cluster (CCSD(T)) level of theory. The isomers studied involve coordination of Cu2+ to electron-rich sites (O,N) of neutral, anionic, and dianionic gao species in different conformations. In contrast to Cu2+-glycine, for which the ground-state structure is bidentate with the CO2(-) terminus of zwitterionic glycine, for Cu2+-gao the most stable isomer shows monodentate binding of Cu2+ with the carbonylic oxygen of the neutral form. The most stable complexes of Cu2+ interacting with deprotonated gao species (gao- and gao2-) also take place through the carboxylic oxygens but in a bidentate manner. The results with different functionals show that, for these open shell (Cu2+-L) systems, the relative stability of complexes with different coordination environments (and so, different spin distribution) can be quite sensitive to the amount of "Hartree-Fock" exchange included in the functional. Among all the functionals tested in this work, the BHandHLYP is the one that better compares to CCSD(T) results.

  3. Case Studies in Systems Chemistry. Final Report. [Includes Complete Case Study, Carboxylic Acid Equilibria

    ERIC Educational Resources Information Center

    Fleck, George

    This publication was produced as a teaching tool for college chemistry. The book is a text for a computer-based unit on the chemistry of acid-base titrations, and is designed for use with FORTRAN or BASIC computer systems, and with a programmable electronic calculator, in a variety of educational settings. The text attempts to present computer…

  4. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    PubMed

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.

  5. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    SciTech Connect

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-04-15

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.

  6. Lack of positive allosteric modulation of mutated alpha(1)S267I glycine receptors by cannabinoids.

    PubMed

    Foadi, Nilufar; Leuwer, Martin; Demir, Reyhan; Dengler, Reinhard; Buchholz, Vanessa; de la Roche, Jeanne; Karst, Matthias; Haeseler, Gertrud; Ahrens, Jörg

    2010-05-01

    Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. Ajulemic acid and HU210 are non-psychotropic, synthetic cannabinoids. Cannabidiol is a non-psychotropic plant constituent of cannabis sativa. There are hints that non-cannabinoid receptor mechanisms of these cannabinoids might be mediated via glycine receptors. In this study, we investigated the impact of the amino acid residue serine at position 267 on the glycine-modulatory effects of ajulemic acid, cannabidiol and HU210. Mutated alpha(1)S267I glycine receptors transiently expressed in HEK293 cells were studied by utilising the whole-cell clamp technique. The mutation of the alpha(1) subunit TM2 serine residue to isoleucine abolished the co-activation and the direct activation of the glycine receptor by the investigated cannabinoids. The nature of the TM2 (267) residue of the glycine alpha(1) subunit is crucial for the glycine-modulatory effect of ajulemic acid, cannabidiol and HU210. An investigation of the impact of such mutations on the in vivo interaction of cannabinoids with glycine receptors should permit a better understanding of the molecular determinants of action of cannabinoids.

  7. Export of aquatic productivity, including highly unsaturated fatty acids, to terrestrial ecosystems via Odonata.

    PubMed

    Popova, Olga N; Haritonov, Anatoly Y; Sushchik, Nadezhda N; Makhutova, Olesia N; Kalachova, Galina S; Kolmakova, Anzhelika A; Gladyshev, Michail I

    2017-03-01

    Based on 31-year field study of the abundance and biomass of 18 species of odonates in the Barabinsk Forest-Steppe (Western Siberia, Russia), we quantified the contribution of odonates to the export of aquatic productivity to surrounding terrestrial landscape. Emergence varied from 0.8 to 4.9g of wet biomass per m(2) of land area per year. Average export of organic carbon was estimated to be 0.30g·m(-2)·year(-1), which is comparable with the average production of herbivorous terrestrial insects in temperate grasslands. Moreover, in contrast to terrestrial insects, emerging odonates contained high quantities of highly unsaturated fatty acids (HUFA), namely eicosapentaenoic acid (20:5n-3, EPA), and docosahexaenoic acid (22:6n-3, DHA), which are known to be essential for many terrestrial animals, especially for birds. The export of EPA+DHA by odonates was found to be 1.92-11.76mg·m(-2)·year(-1), which is equal to an average general estimation of the export of HUFA by emerging aquatic insects. Therefore, odonates appeared to be a quantitatively and qualitatively important conduit of aquatic productivity to forest-steppe ecosystem.

  8. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    NASA Astrophysics Data System (ADS)

    Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.

    2013-06-01

    The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  9. Glycine transport accounts for the differential role of glycine vs. D-serine at NMDA receptor coagonist sites in the salamander retina

    PubMed Central

    Stevens, Eric R.; Gustafson, Eric C.; Miller, Robert F.

    2010-01-01

    In this study, we demonstrate that D-serine interacts with N-methyl-D-aspartate receptor (NMDAR) coagonist sites of retinal ganglion cells of the tiger salamander retina by showing that exogenous D-serine overcomes the competitive antagonism of 7-chlorokynurenic acid for this site. Additionally, we show that exogenous D-serine was more than 30 times as effective at potentiating NMDAR currents compared with glycine. We thus examined the importance of glycine transport through the application of selective antagonists of the GlyT1 (NFPS) and GlyT2 (ALX-5670) transport systems, while simultaneously evaluating the degree of occupancy of the NMDAR coagonist binding sites. Analysis was carried out with electrophysiological recordings from the inner retina, including whole-cell recordings from retinal ganglion cells and extracellular recordings of the proximal negative field potential. Blocking the GlyT2 transport system had no effect on the light-evoked NMDAR currents or on the sensitivity of these currents to exogenous D-serine. In contrast, when the GlyT1 system was blocked, the coagonist sites of NMDARs showed full occupancy. These findings clearly establish the importance of the GlyT1 transporter as an essential component for maintaining the coagonist sites of NMDARs in a non-saturated state. The normal, unsaturated state of the NMDAR coagonist binding sites allows modulation of the NMDAR currents, by release of either D-serine or glycine. These results are discussed in light of contemporary findings which favor D-serine over glycine as the major coagonist of the NMDARs found in ganglion cells of the tiger salamander retina. PMID:20374282

  10. Possible Transfer of Resistance to Heterodera glycines from Glycine tomentella to Glycine max

    PubMed Central

    Riggs, R. D.; Wang, S.; Singh, R. J.; Hymowitz, T.

    1998-01-01

    Eight wild perennial Glycine species (G. argyrea, G. canescens, G. curvata, G. cyrtoloba, G. latifolia, G. microphylla, G. tabacina, and G. tomentella) were evaluated for resistance to isolates of races 1, 3, and 14 of Heterodera glycines. In a second experiment, reproduction of isolates of races 3, 5, and 14 of H. glycines on five of the wild perennial species was determined. Seventy-one derived fertile lines (2n = 40) that were hybrids between G. max cv Clark 63 and G. tomentella also were evaluated for resistance to isolates of races 3, 5, and 14. All of the wild perennial Glycine species were resistant (Female Indices [FI] less than 10) to all of the isolates that were tested on them. In most cases no females matured. The soybean cvs. Clark 63 and Altona, which were tested at the same time as the hybrids, were susceptible to all isolates of H. glycines tested. When the tests were combined and a single FI calculated with the average number of females on Lee 74, one derived fertile line was resistant to race 3, three derived fertile lines were resistant to race 5, and five derived fertile lines were resistant to race 14. Thus, transfer of resistance to H. glycines from G. tomentella to G. max apparently occurred. PMID:19274245

  11. Interactions between glycine transporter type 1 (GlyT-1) and some inhibitor molecules - glycine transporter type 1 and its inhibitors (review).

    PubMed

    Harsing, Laszlo G; Zsilla, G; Matyus, P; Nagy, K M; Marko, B; Gyarmati, Zs; Timar, J

    2012-03-01

    Glycine is a mandatory positive allosteric modulator of N-methyl-D-aspartate (NMDA)-type ionotropic glutamate receptors in the central nervous system. Elevation of glycine concentrations by inhibition of its reuptake in the vicinity of NMDA receptors may positively influence receptor functions as glycine B binding site on NR1 receptor subunit is not saturated in physiological conditions. Synaptic and extrasynaptic concentrations of glycine are regulated by its type-1 glycine transporter, which is primarily expressed in astroglial and glutamatergic cell membranes. Alteration of synaptic glycine levels may have importance in the treatment of various forms of endogenous psychosis characterized by hypofunctional NMDA receptors. Several lines of evidence indicate that impaired NMDA receptor-mediated glutamatergic neurotransmission is involved in development of the negative (and partly the positive) symptoms and the cognitive deficit in schizophrenia. Inhibitors of glycine transporter type-1 may represent a newly developed therapeutic intervention in treatment of this mental illness. We have synthesized a novel series of N-substituted sarcosines, analogues of the glycine transporter-1 inhibitor NFPS (N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)-propyl]sarcosine). Of the pyridazinone-containing compounds, SzV-1997 was found to be a potent glycine transporter-1 inhibitor in rat brain synaptosomes and it markedly increased extracellular glycine concentrations in conscious rat striatum. SzV-1997 did not exhibit toxic symptoms such as hyperlocomotion, restless movements, respiratory depression, and lethality, characteristic for NFPS. Besides pyridazinone-based, sarcosine-containing glycine transporter-1 inhibitors, a series of substrate-type amino acid inhibitors was investigated in order to obtain better insight into the ligand-binding characteristics of the substrate binding cavity of the transporter.

  12. Combining pharmacophore search, automated docking, and molecular dynamics simulations as a novel strategy for flexible docking. Proof of concept: docking of arginine-glycine-aspartic acid-like compounds into the alphavbeta3 binding site.

    PubMed

    Moitessier, Nicolas; Henry, Christophe; Maigret, Bernard; Chapleur, Yves

    2004-08-12

    A novel and highly efficient flexible docking approach is presented where the conformations (internal degrees of freedom) and orientations (external degrees of freedom) of the ligands are successively considered. This hybrid method takes advantage of the synergistic effects of structure-based and ligand-based drug design techniques. Preliminary antagonist-derived pharmacophore determination provides the postulated bioactive conformation. Subsequent docking of this pharmacophore to the receptor crystal structure results in a postulated pharmacophore/receptor binding mode. Pharmacophore-oriented docking of antagonists is subsequently achieved by matching ligand interacting groups with pharmacophore points. Molecular dynamics in water refines the proposed complexes. To validate the method, arginine-glycine-aspartic acid (RGD) containing peptides, pseudopeptides, and RGD-like antagonists were docked to the crystal structure of alphavbeta3 holoprotein and apoprotein. The proposed directed docking was found to be more accurate, faster, and less biased with respect to the protein structure (holo and apoprotein) than DOCK, Autodock, and FlexX docking methods. The successful docking of an antagonist recently cocrystallized with the receptor to both apo and holoprotein is particularly appealing. The results summarized in this report illustrated the efficiency of our light CoMFA/rigid body docking hybrid method.

  13. Integrin αvβ3 as a Promising Target to Image Neoangiogenesis Using In-House Generator-Produced Positron Emitter (68)Ga-Labeled DOTA-Arginine-Glycine-Aspartic Acid (RGD) Ligand.

    PubMed

    Vatsa, Rakhee; Bhusari, Priya; Kumar, Sunil; Chakraborty, Sudipta; Dash, Ashutosh; Singh, Gurpreet; Dhawan, Devinder Kumar; Shukla, Jaya; Mittal, Bhagwant Rai

    2015-06-01

    For the growth and spread of a tumor beyond 2 mm, angiogenesis plays a crucial role, and association of various integrins with angiogenesis is evidential. The aim of the study was radiolabeling of DOTA-chelated RGD (arginine-glycine-aspartic acid) peptide with (68)Ga for PET imaging in locally advanced breast carcinoma. DOTA-RGD was incubated with (68)GaCl3, eluted in 0.05 m HCl. Elution volume, peptide amount, and reaction pH were studied. Radio-ITLC, gas chromatography, endotoxin, and sterility testing were performed. Serial (n=3) and whole-body (n=2) PET/CT imaging was done on patients post i.v. injection of 111-185 MBq of (68)Ga-DOTA-RGD. Maximum radiolabeling yield was achieved with 3 mL elution volume of 15-20 μg peptide at pH 3.5-4.0 with 10 minutes of incubation at 95°C. Product samples were sterile having 99.5% radiochemical purity with residual ethanol content and endotoxins in injectable limits. Intense radiotracer uptake was noticed in the tumor with SUVmax 15.3 at 45 minutes in serial images. Physiological radiotracer uptake was seen in the liver, spleen, ventricles, and thyroid with excretion through the kidneys. The authors concluded that (68)Ga-DOTA-RGD has the potential for imaging α,vβ3 integrin-expressing tumors.

  14. Protection of folic acid through encapsulation in mesoporous silica particles included in fruit juices.

    PubMed

    Ruiz-Rico, María; Pérez-Esteve, Édgar; Lerma-García, María J; Marcos, María D; Martínez-Máñez, Ramón; Barat, José M

    2017-03-01

    Folic acid (FA) is a synthetic vitamin commonly used for food fortification. However, its vulnerability to processing and storage implies loss of efficiency, which would induce over-fortification by processors to obtain a minimum dose upon consumption. Recent studies have indicated potential adverse effects of FA overdoses, and FA protection during processing and storage could lead to more accurate fortification. In addition, sustained vitamin release after consumption would help improve its metabolism. The objective of this work was to study controlled FA delivery and stability in fruit juices to reduce potential over-fortification risks by using gated mesoporous silica particles (MSPs). The obtained results indicated that FA encapsulation in MSPs significantly improved its stability and contributed to controlled release after consumption by modifying vitamin bioaccessibility. These results confirmed the suitability of MSPs as support for controlled release and protection of bioactive molecules in food matrices in different food production and storage stages.

  15. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    PubMed

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-03

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors.

  16. In-situ Measurements Of The Radiolytic Destruction Of Glycine In Ices: Applications To The Martian Subsurface

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, R. L.

    2012-10-01

    Amino acids and other organic molecules are thought to be easily destroyed on the surface of Mars by the high flux of incident ultraviolet rays or by chemical interactions with oxidizing substances in the soil. However, organic molecules may survive in the subsurface, where chemical processes are driven by penetrating galactic cosmic rays such as MeV protons. Models of the radiation dose as a function of depth on Mars have shown that the contribution of galactic cosmic rays dominates from about one centimeter to a few meters [1]. Theoretical models have also been published to aid in understanding molecular destruction at these depths, but these usually are based on room-temperature laboratory data, studies of single-component samples, and ex-situ methods of chemical analysis. Recent studies of amino-acid survivability include those involving UV photolysis [2, 3] and gamma radiolysis [4], but nearly all chemical and kinetic analyses from such experiments involved room-temperature measurements on samples irradiated and then removed from sealed containers. We report new laboratory studies of the radiation-induced destruction of glycine-containing ices. In-situ infrared spectroscopy was used to study decay rates as a function of temperature and initial glycine concentrations. Our results indicate that glycine's destruction rate depends on temperature, the presence of H2O-ice, and the initial relative abundance of glycine. These trends are not obvious in previous work, suggesting that room-temperature measurements on pure glycine's radiation stability are not directly applicable to Mars and other environments. This work has been supported by the Goddard Center for Astrobiology. [1] Dartnell, L. R., et al., 2007. Geophys. Res. Letters 34:L02207. [2] ten Kate, I. L., et al., 2006. Planet. Space Sci. 54, 296-302. [3] Orzechowska, G. E., et al., 2007. Icarus 187, 584-591. [4] Kminek, G., Bada, J. L., 2006. Earth Planet. Sci. Lett. 245, 1-5.

  17. In-situ Measurements of the Radiolytic Destruction of Glycine in Ices: Applications to the Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Gerakines, Perry A.; Hudson, R. L.

    2012-01-01

    Amino acids and other organic molecules are thought to be easily destroyed on the surface of Mars by the high flux of incident ultraviolet rays or by chemical interactions with oxidizing substances in the soil. However, organic molecules may survive in the subsurface, where chemical processes are driven by penetrating galactic cosmic rays such as MeV protons. Models of the radiation dose as a function of depth on Mars have shown that the contribution of galactic cosmic rays dominates from about one centimeter to a few meters [1 J. Theoretical models have also been published to aid in understanding molecular destruction at these depths, but these usually are based on room-temperature laboratory data, studies of single-component samples, and ex-situ methods of chemical analysis. Recent studies of amino-acid survivability include those involving UV photolysis [2, 3J and gamma radiolysis [4], but nearly all chemical and kinetic analyses from such experiments involved room-temperature measurements on samples irradiated and then removed from sealed containers. We report new laboratory studies of the radiation-induced destruction of glycine-containing ices. In-situ infrared spectroscopy was used to study decay rates as a function of temperature and initial glycine concentrations. Our results indicate that glycine's destruction rate depends on temperature, the presence of H20-ice, and the initial relative abundance of glycine. These trends are not obvious in previous work, suggesting that room-temperature measurements on pure glycine's radiation stability are not directly applicable to Mars and other environments.

  18. Glycine Polymerization on Oxide Minerals

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2016-07-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  19. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    SciTech Connect

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-05-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. /sup 14/CO/sub 2/ production from the catabolism of /sup 14/C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. /sup 14/CO/sub 2/ formation from (1-/sup 14/C)- and (2-/sup 14/C)glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate.

  20. Overexpression of ALDH10A8 and ALDH10A9 Genes Provides Insight into Their Role in Glycine Betaine Synthesis and Affects Primary Metabolism in Arabidopsis thaliana.

    PubMed

    Missihoun, Tagnon D; Willée, Eva; Guegan, Jean-Paul; Berardocco, Solenne; Shafiq, Muhammad R; Bouchereau, Alain; Bartels, Dorothea

    2015-09-01

    Betaine aldehyde dehydrogenases oxidize betaine aldehyde to glycine betaine in species that accumulate glycine betaine as a compatible solute under stress conditions. In contrast, the physiological function of betaine aldehyde dehydrogenase genes is at present unclear in species that do not accumulate glycine betaine, such as Arabidopsis thaliana. To address this question, we overexpressed the Arabidopsis ALDH10A8 and ALDH10A9 genes, which were identified to code for betaine aldehyde dehydrogenases, in wild-type A. thaliana. We analysed changes in metabolite contents of transgenic plants in comparison with the wild type. Using exogenous or endogenous choline, our results indicated that ALDH10A8 and ALDH10A9 are involved in the synthesis of glycine betaine in Arabidopsis. Choline availability seems to be a factor limiting glycine betaine synthesis. Moreover, the contents of diverse metabolites including sugars (glucose and fructose) and amino acids were altered in fully developed transgenic plants compared with the wild type. The plant metabolic response to salt and the salt stress tolerance were impaired only in young transgenic plants, which exhibited a delayed growth of the seedlings early after germination. Our results suggest that a balanced expression of the betaine aldehyde dehydrogenase genes is important for early growth of A. thaliana seedlings and for salt stress mitigation in young seedlings.

  1. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max) reveals extensive chromosome rearrangements in the genus Glycine.

    PubMed

    Chang, Sungyul; Thurber, Carrie S; Brown, Patrick J; Hartman, Glen L; Lambert, Kris N; Domier, Leslie L

    2014-01-01

    Soybean (Glycine max L. Mer.), like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth.) Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib.) de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP) markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L.) chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean production.

  2. Fate of N-nitrosodimethylamine, trihalomethane and haloacetic acid precursors in tertiary treatment including biofiltration.

    PubMed

    Farré, Maria José; Reungoat, Julien; Argaud, Francois Xavier; Rattier, Maxime; Keller, Jürg; Gernjak, Wolfgang

    2011-11-01

    The presence of disinfection by-products (DBPs) such as trihalomethanes (THMs), haloacetic acids (HAAs) and N-nitrosamines in water is of great concern due to their adverse effects on human health. In this work, the removal of N-nitrosodimethylamine (NDMA), total THM and five HAA precursors from secondary effluent by biological activated carbon (BAC) is investigated at full and pilot scale. In the pilot plant two filter media, sand and granular activated carbon, are tested. In addition, we evaluate the influence of ozonation prior to BAC filtration on its performance. Among the bulk of NDMA precursors, the fate of four pharmaceuticals containing a dimethylamino moiety in the chemical structure are individually investigated. Both NDMA formation potential and each of the studied pharmaceuticals are dramatically reduced by the BAC even in the absence of main ozonation prior to the filtration. The low removal of NDMA precursors at the sand filtration in comparison to the removal of NDMA precursors at the BAC suggests that adsorption may play an important role on the removal of NDMA precursors by BAC. Contrary, the precursors for THM and HAA formation are reduced in both sand filtration and BAC indicating that the precursors for the formation of these DBPs are to some extent biodegradable.

  3. Effect of tannic acid on properties of soybean (Glycine max) seed ferritin: a model for interaction between naturally-occurring components in foodstuffs.

    PubMed

    Li, Meiliang; Jia, Xiaoling; Yang, Jingyun; Deng, Jianjun; Zhao, Guanghua

    2012-07-15

    There are many components with different properties co-existing in food, so interactions among these components are likely to occur, thereby affecting food quality. However, relatively little information is available on such interactions. In this study, we focus on the interaction between tannic acid (TA) and soybean seed ferritin (SSF), since they co-exist in many foodstuffs, and the consequence of this interaction. As expected, TA interacts with SSF, resulting in changes in the tertiary/quaternary structure of the protein, while having no effect on its primary and secondary structure. On one hand, such interaction leads to protein association, which markedly inhibited ferritin degradation by pepsin at pH 4.0 and trypsin at pH 7.5. On the other hand, iron release was faster with TA than with ascorbic acid, and such release has a negative effect on iron supplementation. These results help to understand the interactions of food components.

  4. Beta-alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro.

    PubMed

    Mori, Masahiro; Gähwiler, Beat H; Gerber, Urs

    2002-02-15

    Electrophysiological and pharmacological properties of glycine receptors were characterized in hippocampal organotypic slice cultures. In the presence of ionotropic glutamate and GABA(B) receptor antagonists, pressure-application of glycine onto CA3 pyramidal cells induced a current associated with increased chloride conductance, which was inhibited by strychnine. Similar chloride currents could also be induced with beta-alanine or taurine. Whole-cell glycine responses were significantly greater in CA3 pyramidal cells than in CA1 pyramidal cells and dentate granule cells, while responses to GABA were similar among these three cell types. Although these results demonstrate the presence of functional glycine receptors in the hippocampus, no evidence for their activation during synaptic stimulation was found. Gabazine, a selective GABA(A) receptor antagonist, totally blocked evoked IPSCs in CA3 pyramidal cells. Glycine receptor activation is not dependent on transporter-controlled levels of extracellular glycine, as no chloride current was observed in response to sarcosine, an inhibitor of glycine transporters. In contrast, application of guanidinoethanesulfonic acid, an uptake inhibitor of beta-alanine and taurine, induced strychnine-sensitive chloride current in the presence of gabazine. These data indicate that modulation of transporters for the endogenous amino acids, beta-alanine and taurine, can regulate tonic activation of glycine receptors, which may function in maintenance of inhibitory tone in the hippocampus.

  5. Longitudinal distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling

    NASA Astrophysics Data System (ADS)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka

    2016-03-01

    Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.

  6. Quest for Cells Responsible for Age-related Increase of Salivary Glycine and Proline.

    PubMed

    Hino, Shunsuke; Nishiyama, Akira; Matsuta, Tomohiko; Horie, Norio; Shimoyama, Tetsuo; Tanaka, Shoji; Sakagami, Hiroshi

    2016-01-01

    We have previously reported that salivary glycine and proline levels are increased to nearly butanoate level in elderly people. In order to identify the source of glycine and proline, we performed high-performance liquid chromatography analysis of amino acid production to a total of seven oral cells before and after stimulation with inflammation inducers. We found that production of amino acids (per a given number of cells) by normal oral mesenchymal cells (gingival fibroblast, pulp cell, periodontal ligament fibroblast) was approximately three-fold that of oral squamous cell carcinoma cell lines (HSC-2, HSC-3, HSC-4, Ca9-22), and that production of glycine and especially proline by all these seven cells was much lower than that of glutamine and glutamic acid. Treatment of three oral mesenchymal cells with interleukin (IL)-1β or lipopoly-saccharide (LPS) reproducibly increased the production of glutamic acid and glutamine, but not that of glycine and proline. Glycine and proline only marginally stimulated the IL-8 production by IL-1β-stimulated gingival fibroblast, whereas glycine dose-dependently inhibited the nitric oxide production by lipopolysaccharide-stimulated mouse macrophage-like RAW264.7 cells. These data demonstrated that normal oral mesenchymal cells are not the major source of glycine and proline that accumulates in the saliva of aged people, suggesting the involvement of the deregulation of collagen metabolism during aging.

  7. Liver protective effect of ursodeoxycholic acid includes regulation of ADAM17 activity

    PubMed Central

    2013-01-01

    Background Ursodeoxycholic acid (UDCA) is used to treat primary biliary cirrhosis, intrahepatic cholestasis, and other cholestatic conditions. Although much has been learned about the molecular basis of the disease pathophysiology, our understanding of the effects of UDCA remains unclear. Possibly underlying its cytoprotective, anti-apoptotic, anti-oxidative effects, UDCA was reported to regulate the expression of TNFα and other inflammatory cytokines. However, it is not known if this effect involves also modulation of ADAM family of metalloproteinases, which are responsible for release of ectodomains of inflammatory cytokines from the cell surface. We hypothesized that UDCA modulates ADAM17 activity, resulting in amelioration of cholestasis in a murine model of bile duct ligation (BDL). Methods The effect of UDCA on ADAM17 activity was studied using the human liver hepatocellular carcinoma cell line HepG2. Untransfected cells or cells ectopically expressing human ADAM17 were cultured with or without UDCA and further activated using phorbol-12-myristate-13-acetate (PMA). The expression and release of ADAM17 substrates, TNFα, TGFα, and c-Met receptor (or its soluble form, sMet) were evaluated using ELISA and quantitative real-time (qRT) PCR. Immunoblotting analyses were conducted to evaluate expression and activation of ADAM17 as well as the level of ERK1/2 phosphorylation after UDCA treatment. The regulation of tissue inhibitor of metalloproteinases-1 (TIMP-1) by UDCA was studied using zymography and qRT-PCR. A mouse model of acute cholestasis was induced by common BDL technique, during which mice received daily orogastric gavage with either UDCA or vehicle only. Liver injury was quantified using alkaline phosphatase (ALP), relative liver weight, and confirmed by histological analysis. ADAM17 substrates in sera were assessed using a bead multiplex assay. Results UDCA decreases amount of shed TNFα, TGFα, and sMet in cell culture media and the phosphorylation of

  8. Complex organisation of the 5'-end of the human glycine tRNA synthetase gene.

    PubMed

    Mudge, S J; Williams, J H; Eyre, H J; Sutherland, G R; Cowan, P J; Power, D A

    1998-03-16

    Glycine tRNA synthetase (glyRS) catalyses the addition of the amino acid glycine to its cognate tRNA molecules. In the silk moth worm Bombyx mori, this gene is subject to complex transcriptional regulation because of the predominance of glycine in silk. In vertebrates, glycine is a major constituent of collagen but there have been no studies of glyRS regulation. In this study we have isolated and mapped a genomic clone containing the 5'-end of glyRS. Primer extension studies identified only one transcriptional start point (TSP) in three different cell lines. Expression of the transcript identified may be regulated translationally because it contains five potential initiation codons, three of which are in good context for initiation. The most 3' of the potential initiation codons has previously been predicted to be the initiating codon for cytoplasmic glyRS. Two of the upstream codons are in-frame with this codon, and both are predicted to extend the N-terminus of glyRS to include a mitochondrial targeting sequence. Sequencing of genomic DNA surrounding the TSP showed features common to the promoters of housekeeping genes, as well as a canonical TATA box at the unusual position of +9. Surprisingly, promoter activity in vitro was not specified by a 1.9 kb genomic fragment containing the TSP and TATA box, but by a contiguous 0.4 kb fragment immediately downstream. These studies suggest that the transcription of glyRS from a single start point requires downstream promoter elements.

  9. 76 FR 55109 - Glycine From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... COMMISSION Glycine From China Determination On the basis of the record \\1\\ developed in the subject five-year... glycine from China would be likely to lead to continuation or recurrence of material injury to an industry... 2011), entitled Glycine from China: Investigation No. 731-TA-718 (Third Review). By order of...

  10. Fast heavy-ion radiation damage of glycine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Nomura, Shinji; Tsuchida, Hidetsugu; Furuya, Ryosuke; Majima, Takuya; Itoh, Akio

    2016-12-01

    Fast heavy-ion radiolysis of biomolecules in aqueous solution is investigated for an atomistic understanding of radiation damage to normal cells during heavy-particle beam therapy. The smallest amino acid glycine was used as a model biomaterial. Microjets of aqueous glycine solutions under vacuum were irradiated with 4.0-MeV carbon ions corresponding to energies in the Bragg peak region. To understand the effects of the water environment on molecular damage, the yield of glycine dissociation was measured by secondary ion mass spectroscopy. The yield was significantly reduced relative to gas-phase glycine targets. This implies that the numerous water molecules surrounding a single glycine molecule act as a buffer that suppresses dissociation. This is an environmental effect similar to that observed for other biomolecular cluster targets.

  11. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3.

    PubMed Central

    Méthot, N; Song, M S; Sonenberg, N

    1996-01-01

    The binding of mRNA to the ribosome is mediated by eukaryotic initiation factors eukaryotic initiation factor 4F (eIF4F), eIF4B, eIF4A, and eIF3, eIF4F binds to the mRNA cap structure and, in combination with eIF4B, is believed to unwind the secondary structure in the 5' untranslated region to facilitate ribosome binding. eIF3 associates with the 40S ribosomal subunit prior to mRNA binding. eIF4B copurifies with eIF3 and eIF4F through several purification steps, suggesting the involvement of a multisubunit complex during translation initiation. To understand the mechanism by which eIF4B promotes 40S ribosome binding to the mRNA, we studied its interactions with partner proteins by using a filter overlay (protein-protein [far Western]) assay and the two-hybrid system. In this report, we show that eIF4B self-associates and also interacts directly with the p170 subunit of eIF3. A region rich in aspartic acid, arginine, tyrosine, and glycine, termed the DRYG domain, is sufficient for self-association of eIF4B, both in vitro and in vivo, and for interaction with the p170 subunit of eIF3. These experiments suggest that eIF4B participates in mRNA-ribosome binding by acting as an intermediary between the mRNA and eIF3, via a direct interaction with the p170 subunit of eIF3. PMID:8816444

  12. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    PubMed

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  13. Disruption of a putative intersubunit electrostatic bond enhances agonist efficacy at the human α1 glycine receptor.

    PubMed

    Welsh, Brian T; Todorovic, Jelena; Kirson, Dean; Allen, Hunter M; Bayly, Michelle D; Mihic, S John

    2017-02-15

    Partial agonists have lower efficacies than compounds considered 'full agonists', eliciting submaximal responses even at saturating concentrations. Taurine is a partial agonist at the glycine receptor (GlyR), a member of the cys-loop ligand-gated ion channel superfamily. The molecular mechanisms responsible for agonism are not fully understood but evidence suggests that efficacy at these receptors is determined by conformational changes that occur early in the process of receptor activation. We previously identified a residue located near the human α1 glycine binding site (aspartate-97; D97) that, when mutated to arginine (D97R), results in GlyR channels opening spontaneously with a high open probability, mimicking the effects of saturating glycine concentrations on wildtype GlyR. This D97 residue is hypothesized to form an electrostatic interaction with arginine-119 on an adjacent subunit, stabilizing the channel in a shut state. Here we demonstrate that the disruption of this putative bond increases the efficacy of partial agonists including taurine, as well as two other β-amino acid partial agonists, β-aminobutyric acid (β-ABA) and β-aminoisobutyric acid (β-AIBA). Even the subtle charge-conserving mutation of D97 to glutamate (D97E) markedly affects partial agonist efficacy. Mutation to the neutral alanine residue in the D97A mutant mimics the effects seen with D97R, indicating that charge repulsion does not significantly affect these findings. Our findings suggest that the determination of efficacy following ligand binding to the glycine receptor may involve the disruption of an intersubunit electrostatic interaction occurring near the agonist binding site.

  14. Selected nutrient contents, fatty acid composition, including conjugated linoleic acid, and retention values in separable lean from lamb rib loins as affected by external fat and cooking method.

    PubMed

    Badiani, Anna; Montellato, Lara; Bochicchio, Davide; Anfossi, Paola; Zanardi, Emanuela; Maranesi, Magda

    2004-08-11

    Proximate composition and fatty acid profile, conjugated linoleic acid (CLA) isomers included, were determined in separable lean of raw and cooked lamb rib loins. The cooking methods compared, which were also investigated for cooking yields and true nutrient retention values, were dry heating of fat-on cuts and moist heating of fat-off cuts; the latter method was tested as a sort of dietetic approach against the more traditional former type. With significantly (P < 0.05) lower cooking losses, dry heating of fat-on rib-loins produced slightly (although only rarely significantly) higher retention values for all of the nutrients considered, including CLA isomers. On the basis of the retention values obtained, both techniques led to a minimum migration of lipids into the separable lean, which was higher (P < 0.05) in dry heating than in moist heating, and was characterized by the prevalence of saturated and monounsaturated fatty acids. On the whole, the response to cooking of the class of CLA isomers (including that of the nutritionally most important isomer cis-9,trans-11) was more similar to that of the monounsaturated than the polyunsaturated fatty acids.

  15. The Sleep-Promoting and Hypothermic Effects of Glycine are Mediated by NMDA Receptors in the Suprachiasmatic Nucleus

    PubMed Central

    Kawai, Nobuhiro; Sakai, Noriaki; Okuro, Masashi; Karakawa, Sachie; Tsuneyoshi, Yosuke; Kawasaki, Noriko; Takeda, Tomoko; Bannai, Makoto; Nishino, Seiji

    2015-01-01

    The use of glycine as a therapeutic option for improving sleep quality is a novel and safe approach. However, despite clinical evidence of its efficacy, the details of its mechanism remain poorly understood. In this study, we investigated the site of action and sleep-promoting mechanisms of glycine in rats. In acute sleep disturbance, oral administration of glycine-induced non-rapid eye movement (REM) sleep and shortened NREM sleep latency with a simultaneous decrease in core temperature. Oral and intracerebroventricular injection of glycine elevated cutaneous blood flow (CBF) at the plantar surface in a dose-dependent manner, resulting in heat loss. Pretreatment with N-methyl-D-aspartate (NMDA) receptor antagonists AP5 and CGP78608 but not the glycine receptor antagonist strychnine inhibited the CBF increase caused by glycine injection into the brain. Induction of c-Fos expression was observed in the hypothalamic nuclei, including the medial preoptic area (MPO) and the suprachiasmatic nucleus (SCN) shell after glycine administration. Bilateral microinjection of glycine into the SCN elevated CBF in a dose-dependent manner, whereas no effect was observed when glycine was injected into the MPO and dorsal subparaventricular zone. In addition, microinjection of D-serine into the SCN also increased CBF, whereas these effects were blocked in the presence of L-701324. SCN ablation completely abolished the sleep-promoting and hypothermic effects of glycine. These data suggest that exogenous glycine promotes sleep via peripheral vasodilatation through the activation of NMDA receptors in the SCN shell. PMID:25533534

  16. Substitution of aspartic acid for glycine at position 310 in type II collagen produces achondrogenesis II, and substitution of serine at position 805 produces hypochondrogenesis: analysis of genotype-phenotype relationships.

    PubMed

    Bonaventure, J; Cohen-Solal, L; Ritvaniemi, P; Van Maldergem, L; Kadhom, N; Delezoide, A L; Maroteaux, P; Prockop, D J; Ala-Kokko, L

    1995-05-01

    Two different mutations were found in two unrelated probands with lethal chondrodysplasias, one with achondrogenesis type II and the other with the less severe phenotype of hypochondrogenesis. The mutations in the COL2A1 gene were identified by denaturing gradient gel electrophoresis analysis of genomic DNA followed by dideoxynucleotide sequencing and restriction site analysis. The proband with achondrogenesis type II had a heterozygous single-base mutation that substituted aspartate for glycine at position 310 of the alpha 1(II) chain of type II procollagen. The proband with hypochondrogenesis had a heterozygous single-base mutation that substituted serine for glycine at position 805. Type II collagen extracted from cartilage from the probands demonstrated the presence of type I collagen and a delayed electrophoretic mobility, indicating post-translational overmodifications. Analysis of CNBr peptides showed that, in proband 1, the entire peptides were overmodified. Examination of chondrocytes cultured in agarose or alginate indicated that there was a delayed secretion of type II procollagen. In addition, type II collagen synthesized by cartilage fragments from the probands demonstrated a decreased thermal stability. The melting temperature of the type II collagen containing the aspartate-for-glycine substitution was reduced by 4 degrees C, and that of the collagen containing the serine-for-glycine substitution was reduced by 2 degrees C. Electron microscopy of the extracellular matrix from the chondrocyte cultures showed a decreased density of matrix and the presence of unusually short and thin fibrils. Our results indicate that glycine substitutions in the N-terminal region of the type II collagen molecule can produce more severe phenotypes than mutations in the C-terminal region. The aspartate-for-glycine substitution at position 310, which was associated with defective secretion and a probable increased degradation of collagen, is the most destabilizing

  17. Substitution of aspartic acid for glycine at position 310 in type II collagen produces achondrogenesis II, and substitution of serine at position 805 produces hypochondrogenesis: analysis of genotype-phenotype relationships.

    PubMed Central

    Bonaventure, J; Cohen-Solal, L; Ritvaniemi, P; Van Maldergem, L; Kadhom, N; Delezoide, A L; Maroteaux, P; Prockop, D J; Ala-Kokko, L

    1995-01-01

    Two different mutations were found in two unrelated probands with lethal chondrodysplasias, one with achondrogenesis type II and the other with the less severe phenotype of hypochondrogenesis. The mutations in the COL2A1 gene were identified by denaturing gradient gel electrophoresis analysis of genomic DNA followed by dideoxynucleotide sequencing and restriction site analysis. The proband with achondrogenesis type II had a heterozygous single-base mutation that substituted aspartate for glycine at position 310 of the alpha 1(II) chain of type II procollagen. The proband with hypochondrogenesis had a heterozygous single-base mutation that substituted serine for glycine at position 805. Type II collagen extracted from cartilage from the probands demonstrated the presence of type I collagen and a delayed electrophoretic mobility, indicating post-translational overmodifications. Analysis of CNBr peptides showed that, in proband 1, the entire peptides were overmodified. Examination of chondrocytes cultured in agarose or alginate indicated that there was a delayed secretion of type II procollagen. In addition, type II collagen synthesized by cartilage fragments from the probands demonstrated a decreased thermal stability. The melting temperature of the type II collagen containing the aspartate-for-glycine substitution was reduced by 4 degrees C, and that of the collagen containing the serine-for-glycine substitution was reduced by 2 degrees C. Electron microscopy of the extracellular matrix from the chondrocyte cultures showed a decreased density of matrix and the presence of unusually short and thin fibrils. Our results indicate that glycine substitutions in the N-terminal region of the type II collagen molecule can produce more severe phenotypes than mutations in the C-terminal region. The aspartate-for-glycine substitution at position 310, which was associated with defective secretion and a probable increased degradation of collagen, is the most destabilizing

  18. Identification of second arginine-glycine-aspartic acid motif of ovine vitronectin as the complement C9 binding site and its implication in bacterial infection.

    PubMed

    T, Prasada Rao; T, Lakshmi Prasanth; R, Parvathy; S, Murugavel; Devi, Karuna; Joshi, Paritosh

    2017-02-02

    Vitronectin (Vn), a multifunctional protein of blood and extracellular matrix interacts with complement C9. This interaction may modulate innate immunity. Details of Vn-C9 interaction are limited. An assessment of Vn-C9 interaction was made employing goat homologous system. Vn binding to C9 was observed in three different assays. Using recombinant fragments, the C9 binding was mapped to the N-terminus of Vn. Site directed mutagenesis was performed to alter the second RGD sequence (RGD-2) of Vn. Change of R to G or D to A in RGD-2 caused significant decrease in Vn binding to C9 whereas change of R to G in the first RGD motif (RGD-1) had no effect on Vn binding to C9. These results imply that the RGD-2 of goat Vn is involved in C9 binding. In competitive binding assay, the presence of soluble RGD peptide inhibited Vn binding to C9 whereas heparin had no effect. Vn binding to C9 in terms of bacterial pathogenesis was also evaluated. Serum dependent inhibition of E. coli growth was significantly reverted when Vn or its N-fragment were included in the assay. The C-fragment, which did not support C9 binding, also partly nullified serum dependent inhibition of bacterial growth probably through other serum component(s).

  19. Plasma ω-3 fatty acid levels negatively and ω-6 fatty acid levels positively associated with other cardiovascular risk factors including homocysteine in severe obese subjects.

    PubMed

    Mehmetoglu, Idris; Yerlikaya, F Hümeyra; Kurban, Sevil; Polat, Hakkı

    2012-01-01

    Obesity and homocysteine (tHcy) are important risk factors for cardiovascular diseases (CVD). Plasma omega-3 fatty acids (ω-3 FAs) and omega-6 fatty acids (ω-6 FAs) are essential fatty acids with diverse biological effects in human health and disease. We have investigated the relation of plasma ω-3 FAs and ω-6 FAs levels with other cardiovascular risk factors including tHcy in severe obese subjects. This study was performed on 96 severe obese and 65 normal weight subjects. Plasma fatty acid composition was measured by GC/MS and serum tHcy level was measured by HPLC methods. There were no differences between groups in terms of concentrations of serum tHcy, plasma ω-3 FAs, ω-6 FAs and ω-3/ω-6 ratio, whereas serum vitamin B-12 (p<0.01) and folic acid (p<0.05) levels were lower than those of the normal weight subjects. Homocysteine positively correlated with ω-6 FAs and negatively correlated with ω-3 FAs in severe obese and normal weight subjects. Serum vitamin B-12 positively correlated with ω-3 FAs (p<0.01) and ω-3/ω-6 ratio (p<0.01) and negatively correlated with ω-6 FAs (p<0.05) in severe obese subjects. Serum folic acid positively correlated with ω-3 FAs (p<0.01) in severe obese subjects. Our results suggest an association between the plasma ω-3 FAs and ω-6 FAs and serum tHcy concentrations in severe obese and normal weight subjects. Low levels vitamin B-12 and folic acid may have been responsible for the elevated tHcy levels in severe obese subjects, increasing the risk for future development of cardiovascular diseases.

  20. Glycine transporter inhibitors as therapeutic agents for schizophrenia.

    PubMed

    Hashimoto, Kenji

    2006-01-01

    Multiple lines of evidence suggest that a dysfunction in the glutamatergic neurotransmission via the N-methyl-D-aspartate (NMDA) receptors contributes to the pathophysiology of psychiatric diseases including schizophrenia. The potentiation of NMDA receptor function may be a useful approach for the treatment of diseases associated with NMDA receptor hypofunction. One possible strategy is to increase synaptic levels of glycine by blocking the glycine transporter-1 (GlyT-1) in glia cells, since glycine acts as a co-agonist site on the NMDA receptor. In this article, the author reviews the recent important patents on GlyT-1 inhibitors for treatment of schizophrenia and other psychiatric diseases associated with the NMDA receptor hypofunction.

  1. Aboveground Feeding by Soybean Aphid, Aphis glycines, Affects Soybean Cyst Nematode, Heterodera glycines, Reproduction Belowground

    PubMed Central

    McCarville, Michael T.; Soh, David H.; Tylka, Gregory L.; O’Neal, Matthew E.

    2014-01-01

    Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27–52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females) and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity. PMID:24466080

  2. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase.

    PubMed

    Taylor, Nicolas L; Day, David A; Millar, A Harvey

    2002-11-08

    A cytotoxic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), rapidly inhibited glycine, malate/pyruvate, and 2-oxoglutarate-dependent O2 consumption by pea leaf mitochondria. Dose- and time-dependence of inhibition showed that glycine oxidation was the most severely affected with a K(0.5) of 30 microm. Several mitochondrial proteins containing lipoic acid moieties differentially lost their reactivity to a lipoic acid antibody following HNE treatment. The most dramatic loss of antigenicity was seen with the 17-kDa glycine decarboxylase complex (GDC) H-protein, which was correlated with the loss of glycine-dependent O2 consumption. Paraquat treatment of pea seedlings induced lipid peroxidation, which resulted in the rapid loss of glycine-dependent respiration and loss of H-protein reactivity with lipoic acid antibodies. Pea plants exposed to chilling and water deficit responded similarly. In contrast, the damage to other lipoic acid-containing mitochondrial enzymes was minor under these conditions. The implication of the acute sensitivity of glycine decarboxylase complex H-protein to lipid peroxidation products is discussed in the context of photorespiration and potential repair mechanisms in plant mitochondria.

  3. FT-midIR determination of fatty acid profiles, including trans fatty acids, in bakery products after focused microwave-assisted Soxhlet extraction.

    PubMed

    Ruiz-Jiménez, J; Priego-Capote, F; Luque de Castro, M D

    2006-08-01

    A study of the feasibility of Fourier transform medium infrared spectroscopy (FT-midIR) for analytical determination of fatty acid profiles, including trans fatty acids, is presented. The training and validation sets-75% (102 samples) and 25% (36 samples) of the samples once the spectral outliers have been removed-to develop FT-midIR general equations, were built with samples from 140 commercial and home-made bakery products. The concentration of the analytes in the samples used for this study is within the typical range found in these kinds of products. Both sets were independent; thus, the validation set was only used for testing the equations. The criterion used for the selection of the validation set was samples with the highest number of neighbours and the most separation between them (H<0.6). Partial least squares regression and cross validation were used for multivariate calibration. The FT-midIR method does not require post-extraction manipulation and gives information about the fatty acid profile in two min. The 14:0, 16:0, 18:0, 18:1 and 18:2 fatty acids can be determined with excellent precision and other fatty acids with good precision according to the Shenk criteria, R (2)>/=0.90, SEP=1-1.5 SEL and R (2)=0.70-0.89, SEP=2-3 SEL, respectively. The results obtained with the proposed method were compared with those provided by the conventional method based on GC-MS. At 95% significance level, the differences between the values obtained for the different fatty acids were within the experimental error.

  4. Glycine receptors mediate excitation of subplate neurons in neonatal rat cerebral cortex.

    PubMed

    Kilb, W; Hanganu, I L; Okabe, A; Sava, B A; Shimizu-Okabe, C; Fukuda, A; Luhmann, H J

    2008-08-01

    The development of the cerebral cortex depends on genetic factors and early electrical activity patterns that form immature neuronal networks. Subplate neurons (SPn) are involved in the construction of thalamocortical innervation, generation of oscillatory network activity, and in the proper formation of the cortical columnar architecture. Because glycine receptors play an important role during early corticogenesis, we analyzed the functional consequences of glycine receptor activation in visually identified SPn in neocortical slices from postnatal day 0 (P0) to P4 rats using whole cell and perforated patch-clamp recordings. In all SPn the glycinergic agonists glycine, beta-alanine, and taurine induced dose-dependent inward currents with the affinity for glycine being higher than that for beta-alanine and taurine. Glycine-induced responses were blocked by the glycinergic antagonist strychnine, but were unaffected by either the GABAergic antagonist gabazine, the N-methyl-d-aspartate-receptor antagonist d-2-amino-5-phosphonopentanoic acid, or picrotoxin and cyanotriphenylborate, antagonists of alpha-homomeric and alpha1-subunit-containing glycine receptors, respectively. Under perforated-patch conditions, glycine induced membrane depolarizations that were sufficient to trigger action potentials (APs) in most cells. Furthermore, glycine and taurine decreased the injection currents as well as the synaptic stimulation strength required to elicit APs, indicating that glycine receptors have a consistent excitatory effect on SPn. Inhibition of taurine transport and application of hypoosmolar solutions induced strychnine-sensitive inward currents, suggesting that taurine can act as a possible endogenous agonist on SPn. In summary, these results demonstrate that SPn express glycine receptors that mediate robust excitatory membrane responses during early postnatal development.

  5. Developmental stability of taurine's activation on glycine receptors in cultured neurons of rat auditory cortex.

    PubMed

    Tang, Zheng-Quan; Lu, Yun-Gang; Chen, Lin

    2008-01-03

    Taurine is an endogenous amino acid that can activate glycine and/or gamma-aminobutyric acid type A (GABA(A)) receptors in the central nervous system. During natural development, taurine's receptor target undergoes a shift from glycine receptors to GABA(A) receptors in cortical neurons. Here, we demonstrate that taurine's receptor target in cortical neurons remains stable during in vitro development. With whole-cell patch-clamp recordings, we found that taurine always activated glycine receptors, rather than GABA(A) receptors, in neurons of rat auditory cortex cultured for 5-22 days. Our results suggest that the functional sensitivity of glycine and GABA(A) receptors to taurine is critically regulated by their developmental environments.

  6. Soft x-ray ionization induced fragmentation of glycine

    NASA Astrophysics Data System (ADS)

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-01

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C-Cα bond and the presence of the CNH_2^+ fragment.

  7. Soft x-ray ionization induced fragmentation of glycine.

    PubMed

    Itälä, E; Kooser, K; Rachlew, E; Huels, M A; Kukk, E

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C-Cα bond and the presence of the CNH(2)(+) fragment.

  8. Soft x-ray ionization induced fragmentation of glycine

    SciTech Connect

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C–C{sub α} bond and the presence of the CNH{sub 2}{sup +} fragment.

  9. Development of the Ireland-Claisen rearrangement of alkoxy- and aryloxy-substituted allyl glycinates.

    PubMed

    Tellam, James P; Carbery, David R

    2010-11-19

    The Ireland-Claisen rearrangement of 3-alkoxy- and 3-aryloxy-substituted allyl glycinates is presented. This [3,3]-sigmatropic rearrangement route offers direct access to syn β-alkoxy and β-aryloxy α-amino acid systems. In particular, N,N-diboc glycine esters rearrange with excellent diastereoselectivities (dr > 25:1). The synthesis of substrates, rearrangement optimization, and a discussion of stereoselection are presented.

  10. Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association.

    PubMed Central

    Javadpour, M M; Eilers, M; Groesbeek, M; Smith, S O

    1999-01-01

    The nature and distribution of amino acids in the helix interfaces of four polytopic membrane proteins (cytochrome c oxidase, bacteriorhodopsin, the photosynthetic reaction center of Rhodobacter sphaeroides, and the potassium channel of Streptomyces lividans) are studied to address the role of glycine in transmembrane helix packing. In contrast to soluble proteins where glycine is a noted helix breaker, the backbone dihedral angles of glycine in transmembrane helices largely fall in the standard alpha-helical region of a Ramachandran plot. An analysis of helix packing reveals that glycine residues in the transmembrane region of these proteins are predominantly oriented toward helix-helix interfaces and have a high occurrence at helix crossing points. Moreover, packing voids are generally not formed at the position of glycine in folded protein structures. This suggests that transmembrane glycine residues mediate helix-helix interactions in polytopic membrane proteins in a fashion similar to that seen in oligomers of membrane proteins with single membrane-spanning helices. The picture that emerges is one where glycine residues serve as molecular notches for orienting multiple helices in a folded protein complex. PMID:10465772

  11. Impact of hedonic evaluation on consumers' preferences for beef attributes including its enrichment with n-3 and CLA fatty acids.

    PubMed

    Baba, Yasmina; Kallas, Zein; Costa-Font, Montserrat; Gil, José María; Realini, Carolina E

    2016-01-01

    The impact of hedonic evaluation on consumers' preferences for beef attributes was evaluated (origin, animal diet, fat content, color, price) including its enrichment with omega-3 (n-3) and conjugated linoleic acid (CLA) fatty acids. One group of consumers (n=325) received information about n-3 and CLA, while the other group (n=322) received no information. Consumers conducted a Discrete Choice Experiment (DCE), using the recently developed Generalized Multinomial Logit model; followed by a blind hedonic evaluation of beef samples, which were identified after tasting, and finally repeated the DCE. Results showed that hedonic evaluation had a significant impact on consumers' preferences, which were similar after tasting for all consumers, with less emphasis on the fat content, color, and origin attributes and greater emphasis on animal diet. Preference for n-3 enriched beef increased, while preference for CLA enriched beef was still not significant after tasting. The information provided had a significant effect on consumers' beef preferences, but no significant impact on beef liking scores.

  12. Pharmacology of intracisternal or intrathecal glycine, muscimol, and baclofen in strychnine-induced thermal hyperalgesia of mice.

    PubMed

    Lee, Il Ok; Son, Jin Kook; Lim, Eui-Sung; Kim, Yeon-Soo

    2011-10-01

    Glycine and γ-aminobutyric acid (GABA) are localized and released by the same interneurons in the spinal cord. Although the effects of glycine and GABA on analgesia are well known, little is known about the effect of GABA in strychnine-induced hyperalgesia. To investigate the effect of GABA and the role of the glycine receptor in thermal hyperalgesia, we designed an experiment involving the injection of muscimol (a GABA(A) receptor agonist), baclofen (a GABA(B) receptor agonist) or glycine with strychnine (strychnine sensitive glycine receptor antagonist). Glycine, muscimol, or baclofen with strychnine was injected into the cisterna magna or lumbar subarachnoidal spaces of mice. The effects of treatment on strychnine-induced heat hyperalgesia were observed using the pain threshold index via the hot plate test. The dosages of experimental drugs and strychnine we chose had no effects on motor behavior in conscious mice. Intracisternal or intrathecal administration of strychnine produced thermal hyperalgesia in mice. Glycine antagonize the effects of strychnine, whereas, muscimol or baclofen does not. Our results indicate that glycine has anti-thermal hyperalgesic properties in vivo; and GABA receptor agonists may lack the binding abilities of glycine receptor antagonists with their sites in the central nervous system.

  13. Activation-induced structural change in the GluN1/GluN3A excitatory glycine receptor

    SciTech Connect

    Balasuriya, Dilshan; Takahashi, Hirohide; Srivats, Shyam; Edwardson, J. Michael

    2014-08-08

    Highlights: • We studied the response of the GluN1/GluN3A excitatory glycine receptor to activation. • GluN1 and GluN3A subunits interacted within transfected cells. • The GluN1/GluN3A receptor was functionally active. • Glycine or D-serine caused a ∼1 nm height reduction in bilayer-integrated receptors. • This height reduction was abolished by the glycine antagonist DCKA. - Abstract: Unlike GluN2-containing N-methyl-D-aspartate (NMDA) receptors, which require both glycine and glutamate for activation, receptors composed of GluN1 and GluN3 subunits are activated by glycine alone. Here, we used atomic force microscopy (AFM) imaging to examine the response to activation of the GluN1/GluN3A excitatory glycine receptor. GluN1 and GluN3A subunits were shown to interact intimately within transfected tsA 201 cells. Isolated GluN1/GluN3A receptors integrated into lipid bilayers responded to addition of either glycine or D-serine, but not glutamate, with a ∼1 nm reduction in height of the extracellular domain. The height reduction in response to glycine was abolished by the glycine antagonist 5,7-dichlorokynurenic acid. Our results represent the first demonstration of the effect of activation on the conformation of this receptor.

  14. Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms.

    PubMed

    Sumiyoshi, Tomiki; Anil, A Elif; Jin, Dai; Jayathilake, Karu; Lee, Myung; Meltzer, Herbert Y

    2004-03-01

    Previous studies have suggested decreased N-methyl-D-aspartate (NMDA)-type glutamate receptor function may contribute to increased negative symptoms in patients with schizophrenia. Consistent with this hypothesis, glycine, a co-agonist at NMDA receptors, has been reported to improve negative symptoms associated with the illness. This study was performed to determine if plasma levels of glycine or its ratio to serine, a precursor of glycine, are decreased in patients with schizophrenia compared to normal control subjects or patients with major depression. We also tested the hypothesis that these amino acids were correlated with negative symptoms in subjects with schizophrenia. Plasma levels of glycine, serine, and their ratio, were compared in 144 patients with schizophrenia, 44 patients with major depression, and 49 normal control subjects. All subjects were medication-free. Psychopathology was evaluated using the Brief Psychiatric Rating Scale (BPRS). Plasma glycine levels and glycine/serine ratios were decreased in patients with schizophrenia relative to control subjects and patients with major depression. By contrast, serine levels were increased in patients with schizophrenia compared to normal subjects but not compared to major depression. Patients with major depression also had increased plasma serine levels and decreased glycine/serine ratios compared to normal controls, but glycine levels were not different from those of normal controls. In subjects with schizophrenia, glycine levels predicted the Withdrawal-Retardation score (BPRS), whereas no such correlation was found in subjects with major depression. These results provide additional evidence that decreased availability of glycine may be related to the pathophysiology of negative symptoms. The decreases in plasma glycine levels support the evidence for an abnormality in the glutamatergic system in schizophrenia, and provide additional support for efforts to improve negative symptoms by augmentation of

  15. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat.

  16. A Sensitive VLA Search for Small-Scale Glycine Emission Toward OMC-1

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Pedelty, J. A.; Snyder, L. E.; Jewell, P. R.; Lovas, F. J.; Palmer, Patrick; Liu, S.-Y.

    2002-01-01

    We have conducted a deep Q-band (lambda-7 mm) search with the Very Large Array (VLA) toward OMC-1 for the lowest energy conformation (conformer I) of glycine (NH2CH2COOH) in four rotational transitions: the 6(sub 15)- 5(sub 14), 6(sub 24)-5(sub 23), 7(sub 17- 6(sub 16), and 7(sub 07)-6(sub 06). Our VLA observations sample the smallest-scale structures to date in the search for glycine toward OMC-1. No glycine emission features were detected. Thus if glycine exists in OMC-1, either it is below our detection limit, or it is more spatially extended than other large molecules in this source, or it is primarily in its high energy form (conformer II). Our VLA glycine fractional abundance limits in OMC-1 are comparable to those determined from previous IRAM 30m measurements -- somewhat better or worse depending on the specific source model -- and the entire approximately 1 foot primary beam of the VLA was searched while sensitive to an areal spatial scale approximately 150 times smaller than the 24 inch beam of the IRAM single-element telescope. In the course of this work, we detected and imaged the 4(sub 14)-3(sub 13) A and E transitions of methyl formate (HCOOCH3) and also the 2(sub 02) - 1(sub 01) transition of formic acid (HCOOH). Since formic acid is a possible precursor to glycine, our glycine limits and formic acid results provide a constraint on this potential formation chemistry route for glycine in OMC-1.

  17. Quantitative Field Testing Heterodera glycines from Metagenomic DNA Samples Isolated Directly from Soil under Agronomic Production

    PubMed Central

    Li, Yan; Lawrence, Gary W.; Lu, Shien; Balbalian, Clarissa; Klink, Vincent P.

    2014-01-01

    A quantitative PCR procedure targeting the Heterodera glycines ortholog of the Caenorhabditis elegans uncoordinated-78 gene was developed. The procedure estimated the quantity of H. glycines from metagenomic DNA samples isolated directly from field soil under agronomic production. The estimation of H. glycines quantity was determined in soil samples having other soil dwelling plant parasitic nematodes including Hoplolaimus, predatory nematodes including Mononchus, free-living nematodes and biomass. The methodology provides a framework for molecular diagnostics of nematodes from metagenomic DNA isolated directly from field soil. PMID:24587100

  18. Glycine prevents metabolic steatohepatitis in diabetic KK-Ay mice through modulation of hepatic innate immunity.

    PubMed

    Takashima, Shiori; Ikejima, Kenichi; Arai, Kumiko; Yokokawa, Junko; Kon, Kazuyoshi; Yamashina, Shunhei; Watanabe, Sumio

    2016-12-01

    Strategies for prevention and treatment of nonalcoholic steatohepatitis remain to be established. We evaluated the effect of glycine on metabolic steatohepatitis in genetically obese, diabetic KK-A(y) mice. Male KK-A(y) mice were fed a diet containing 5% glycine for 4 wk, and liver pathology was evaluated. Hepatic mRNA levels for lipid-regulating molecules, cytokines/chemokines, and macrophage M1/M2 markers were determined by real-time RT-PCR. Hepatic expression of natural killer (NK) T cells was analyzed by flow cytometry. Body weight gain was significantly blunted and development of hepatic steatosis and inflammatory infiltration were remarkably prevented in mice fed the glycine-containing diet compared with controls. Indeed, hepatic induction levels of molecules related to lipogenesis were largely blunted in the glycine diet-fed mice. Elevations of hepatic mRNA levels for TNFα and chemokine (C-C motif) ligand 2 were also remarkably blunted in the glycine diet-fed mice. Furthermore, suppression of hepatic NK T cells was reversed in glycine diet-fed KK-A(y) mice, and basal hepatic expression levels of NK T cell-derived cytokines, such as IL-4 and IL-13, were increased. Moreover, hepatic mRNA levels of arginase-1, a marker of macrophage M2 transformation, were significantly increased in glycine diet-fed mice. In addition, dietary glycine improved glucose tolerance and hyperinsulinemia in KK-A(y) mice. These observations clearly indicate that glycine prevents maturity-onset obesity and metabolic steatohepatitis in genetically diabetic KK-A(y) mice. The underlying mechanisms most likely include normalization of hepatic innate immune responses involving NK T cells and M2 transformation of Kupffer cells. It is proposed that glycine is a promising immunonutrient for prevention and treatment of metabolic syndrome-related nonalcoholic steatohepatitis.

  19. Glycine, a simple physiological compound protecting by yet puzzling mechanism(s) against ischaemia–reperfusion injury: current knowledge

    PubMed Central

    Petrat, Frank; Boengler, Kerstin; Schulz, Rainer; de Groot, Herbert

    2012-01-01

    Ischaemia is amongst the leading causes of death. Despite this importance, there are only a few therapeutic approaches to protect from ischaemia–reperfusion injury (IRI). In experimental studies, the amino acid glycine effectively protected from IRI. In the prevention of IRI by glycine in cells and isolated perfused or cold-stored organs (tissues), direct cytoprotection plays a crucial role, most likely by prevention of the formation of pathological plasma membrane pores. Under in vivo conditions, the mechanism of protection by glycine is less clear, partly due to the physiological presence of the amino acid. Here, inhibition of the inflammatory response in the injured tissue is considered to contribute decisively to the glycine-induced reduction of IRI. However, attenuation of IRI recently achieved in experimental animals by low-dose glycine treatment regimens suggests additional/other (unknown) protective mechanisms. Despite the convincing experimental evidence and the large therapeutic width of glycine, there are only a few clinical trials on the protection from IRI by glycine with ambivalent results. Thus, both the mechanism(s) behind the protection of glycine against IRI in vivo and its true clinical potential remain to be addressed in future experimental studies/clinical trials. PMID:22044190

  20. Glycine Transporter 1 is a Target for the Treatment of Epilepsy

    PubMed Central

    Shen, Hai-Ying; van Vliet, Erwin; Bright, Kerry-Ann; Hanthorn, Marissa; Lytle, Nikki; Gorter, Jan; Aronica, Eleonora; Boison, Detlev

    2015-01-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the synaptic availability of glycine is largely under control of glycine transporter 1 (GlyT1). Since epilepsy is a disorder of disrupted network homeostasis affecting the equilibrium of various neurotransmitters and neuromodulators, we hypothesized that changes in hippocampal GlyT1 expression and resulting disruption of glycine homeostasis might be implicated in the pathophysiology of epilepsy. Using two different rodent models of temporal lobe epilepsy (TLE) – the intrahippocampal kainic acid model of TLE in mice, and the rat model of tetanic stimulation-induced TLE – we first demonstrated robust overexpression of GlyT1 in the hippocampal formation, suggesting dysfunctional glycine signaling in epilepsy. Overexpression of GlyT1 in the hippocampal formation was corroborated in human TLE samples by quantitative real time PCR. In support of a role of dysfunctional glycine signaling in the pathophysiology of epilepsy, both the genetic deletion of GlyT1 in hippocampus and the GlyT1 inhibitor LY2365109 increased seizure thresholds in mice. Importantly, chronic seizures in the mouse model of TLE were robustly suppressed by systemic administration of the GlyT1 inhibitor LY2365109. We conclude that GlyT1 overexpression in the epileptic brain constitutes a new target for therapeutic intervention, and that GlyT1 inhibitors constitute a new class of antiictogenic drugs. These findings are of translational value since GlyT1 inhibitors are already in clinical development to treat cognitive symptoms in schizophrenia. PMID:26302655

  1. The Formation of Glycine in Hot Cores: New Gas-grain Chemical Simulations of Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Garrod, Robin

    2012-07-01

    Organic molecules of increasing complexity have been detected in the warm envelopes of star-forming cores, commonly referred to as "hot cores". Spectroscopic searches at mm/sub-mm wavelengths have uncovered both amines and carboxylic acids in these regions, as well as a range of other compounds including alcohols, ethers, esters, and nitriles. However, the simplest amino acid, glycine (NH2CH2COOH), has not yet been reliably detected in the ISM. There has been much interest in this molecule, due to its importance to the formation of proteins, and to life, while the positive identification of interstellar molecules of similar or greater complexity suggests that its existence in star-forming regions is plausible. I will present the results of recent models of hot-core chemistry that simulate the formation of both simple and complex molecules on the surfaces or within the ice mantles of dust grains. I will also present results from the first gas-grain astrochemical model to approach the question of amino-acid formation in hot cores. The formation of glycine in moderate abundance is found to be as efficient as that for similarly complex species, while its sublimation from the grains occurs at somewhat higher temperatures. However, simulated emission spectra based on the model results show that the degree of compactness of high-abundance regions, and the density and temperature profiles of the cores may be the key variables affecting the future detection of glycine, as well as other amino acids, and may explain its non-detection to date.

  2. Glycine in an electronically excited state: ab initio electronic structure and dynamical calculations.

    PubMed

    Muchová, Eva; Slavícek, Petr; Sobolewski, Andrzej L; Hobza, Pavel

    2007-06-21

    The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid. The first channel (connected to the presence of amino group) results in ultrafast decay, while the channels characteristic for the carboxylic group occur on a longer time scale. Dynamical calculations provided the branching ratio for these channels. We also addressed the question whether conformationally dependent photochemistry can be observed for glycine. While electronic structure calculations favor this possibility, the ab initio multiple spawning (AIMS) calculations showed only minor relevance of the reaction path resulting in conformationally dependent dynamics.

  3. Intracellular Accumulation of Glycine in Polyphosphate-Accumulating Organisms in Activated Sludge, a Novel Storage Mechanism under Dynamic Anaerobic-Aerobic Conditions

    PubMed Central

    Nguyen, Hien Thi Thu; Kristiansen, Rikke; Vestergaard, Mette; Wimmer, Reinhard

    2015-01-01

    Dynamic anaerobic-aerobic feast-famine conditions are applied to wastewater treatment plants to select polyphosphate-accumulating organisms to carry out enhanced biological phosphorus removal. Acetate is a well-known substrate to stimulate this process, and here we show that different amino acids also are suitable substrates, with glycine as the most promising. 13C-labeled glycine and nuclear magnetic resonance (NMR) were applied to investigate uptake and potential storage products when activated sludge was fed with glycine under anaerobic conditions. Glycine was consumed by the biomass, and the majority was stored intracellularly as free glycine and fermentation products. Subsequently, in the aerobic phase without addition of external substrate, the stored glycine was consumed. The uptake of glycine and oxidation of intracellular metabolites took place along with a release and uptake of orthophosphate, respectively. Fluorescence in situ hybridization combined with microautoradiography using 3H-labeled glycine revealed uncultured actinobacterial Tetrasphaera as a dominant glycine consumer. Experiments with Tetrasphaera elongata as representative of uncultured Tetrasphaera showed that under anaerobic conditions it was able to take up labeled glycine and accumulate this and other labeled metabolites to an intracellular concentration of approximately 4 mM. All components were consumed under subsequent aerobic conditions. Intracellular accumulation of amino acids seems to be a novel storage strategy for polyphosphate-accumulating bacteria under dynamic anaerobic-aerobic feast-famine conditions. PMID:25956769

  4. 76 FR 8771 - Glycine From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... COMMISSION Glycine From China AGENCY: United States International Trade Commission. ACTION: Notice of... concerning the antidumping duty order on glycine from China. SUMMARY: The Commission hereby gives notice that... China would be likely to lead to continuation or recurrence of material injury within a...

  5. 75 FR 62141 - Glycine From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... COMMISSION Glycine From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on glycine from China. SUMMARY: The Commission... from China would be likely to lead to continuation or recurrence of material injury. Pursuant...

  6. 21 CFR 172.812 - Glycine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.812 Glycine. The food additive glycine may be safely used for technological purposes in food in accordance with the following prescribed conditions: (a) The additive complies with...

  7. Dissociation of gaseous zwitterion glycine-betaine by slow electrons

    NASA Astrophysics Data System (ADS)

    Kopyra, J.; Abdoul-Carime, H.

    2010-05-01

    In this work, we investigate dissociation processes induced by low-energy electrons to gas phase N,N,N-trimethylglycine [glycine-betaine, (CH3)3N+CH2COO-] molecules. Glycine-betaine represents a model system for zwitterions. All negative fragments are observed to be produced only at subelectronic excitation energies (<4 eV). With the exception of the loss of a neutral H atom that could arise from any CH bond breaking, we tentatively suggest that the zwitterion dissociates exclusively from the fragmentation of the cation site of the molecule, subsequent to the attachment of the excess electron. Within the context of radiation induced damage to biological systems, the present findings contribute to a more complete description of the fragmentation mechanism occurring to amino acids, peptides, and proteins since they adopt usually a zwitterion structure.

  8. Glycine: an important potential component of spinal shock.

    PubMed

    Simpson, R K; Robertson, C S; Goodman, J C

    1993-08-01

    Amino acid neurotransmitters (AANTs) play a major role in maintenance of muscle tone. Abnormal AANT concentrations are associated with hyper- or hypotonic states. Flaccidity from spinal shock commonly occurs after spinal cord injury (SCI) and may be associated with changes in AANT concentrations. Ischemic SCIs created in the lumbar region of rabbits by intraaortic balloon occlusion produced spastic or flaccid injuries. Microdialysis sampling of AANTs from the injured segmental structures was done 3 days after SCI. Evoked potentials were used to monitor spinal cord stability. No significant changes in AANT levels occurred in the spastic or flaccid group after 4 hour sampling. However, flaccid animals had baseline glycine levels 2-3 times higher (p < 0.001) than spastic animals or controls. High concentrations of the inhibitory AANT glycine is associated with flaccidity following SCI, or spinal shock, but not spasticity. Glycinergic compounds directed toward suppression of excess muscle tone deserve further study.

  9. Bioaccumulation of perfluoroalkyl acids including the isomers of perfluorooctane sulfonate in carp (Cyprinus carpio) in a sediment/water microcosm.

    PubMed

    Fang, Shuhong; Zhang, Yifeng; Zhao, Shuyan; Qiang, Liwen; Chen, Meng; Zhu, Lingyan

    2016-12-01

    Carp (Cyprinus carpio) were exposed to perfluoroalkyl acids (PFAAs) including perfluorooctane sulfonate (PFOS) isomers in an artificially contaminated sediment/water microcosm. The uptake constant of PFAAs increased with increasing carbon chain length, whereas the elimination coefficient displayed the opposite trend, suggesting that carbon chain length plays an important role in the bioaccumulation of PFAAs. When the contribution of suspended particulate matter was taken into account, the bioaccumulation factors (BAFs) became lower (3.61-600 L/kg) compared with BAFs derived from only considering the absorption from free PFAAs in water (3.85-97000 L/kg). The results indicate that suspended particulate matter in water constitutes an important source of exposure for aquatic organisms to long-chain PFAAs. Linear (n-)PFOS was preferentially accumulated compared with branched isomers in carp. Among the branched isomers, 1m-PFOS displayed the greatest bioaccumulation, whereas m2 -PFOS had the lowest. Linear PFOS displayed greater partitioning ability from blood to other tissues over branched PFOS (br-PFOS) isomers, leading to a relatively lower n-PFOS proportion in blood. In summary, suspended particulate matter made a contribution to the accumulation of long-chain PFAAs in aquatic organisms, and n-PFOS was preferentially accumulated compared with br-PFOS isomers. Environ Toxicol Chem 2016;35:3005-3013. © 2016 SETAC.

  10. Chemical Cues which Include Amino Acids Mediate Species-Specific Feeding Behavior in Invasive Filter-Feeding Bigheaded Carps.

    PubMed

    Claus, Aaron W; Sorensen, Peter W

    2017-03-15

    This study tested whether and how dissolved chemicals might assist food recognition in two filter-feeding fishes, the silver (Hypophthalmichthys molitrix) and the bighead carp (H. nobilis). These species evolved in Asia, are now invasive in the Mississippi River, and feed voraciously on microparticles including plankton. The food habits and biology of these carps are broadly similar to many filter-feeding fish, none of whose chemical ecology has been examined. We conducted five experiments. First, we demonstrated that buccal-pharngeal pumping (BPP), a behavior in which fish pump water into their buccal cavities, is responsible for sampling food: BPP activity in both silver and bighead carps was low and increased nearly 25-fold after exposure to a filtrate of a planktonic food mixture (P < 0.01) and over 35-fold when planktonic food was added (P < 0.001). Next, we showed that of nine food filtrates, the one containing chemicals released by spirulina, a type of cyanobacterium, was the most potent planktonic component for both species. The potency of filtrates varied between species in ways that reflected their different chemical compositions. While L-amino acids could explain about half of the activity of food filtrate, other unknown chemical stimuli were also implicated. Finally, occlusion experiments showed the olfactory sense has a very important, but not exclusive, role in bigheaded carp feeding behaviors and this might be exploited in both their control and culture.

  11. Quantitative analysis of urinary glycine conjugates by high performance liquid chromatography: excretion of hippuric acid and methylhippuric acids in the urine of subjects exposed to vapours of toluene and xylenes.

    PubMed

    Ogata, M; Taguchi, T

    1986-01-01

    A new method for the direct determination of hippuric acid (HA) and o-, m- and p-methylhippuric acids (MHAs) in the urine, metabolites of toluene and o-, m- and p-xylenes by high performance liquid chromatography (HPLC) is described. A stainless-steel column packed with silica gel having dinitrophenyl residue and a mixed solution of methanol/water/acetic acid (80/20/0.2) containing tetra-n-butylammonium bromide (0.2% w/v) as mobile phase was used. Concentrations of HA and MHAs were estimated from their peak height at a wave length of 225 nm. Urine can be analyzed directly without solvent extraction or pretreatment to obtain complete separation of HA and o-, m- and p-MHAs. Urine samples from male workers exposed to toluene or xylenes were analyzed for HA or MHAs. The urinary levels of HA and MHAs increased by exposure to toluene and xylenes in proportion to the environmental concentrations of the solvents, although there is a considerable variation in metabolite concentrations. The slope of regression line between toluene and HA and that between m-xylene and m-MHA were similar. The urinary concentrations of HA and MHAs corresponding to 100 ppm (TLV) of toluene was 2.35 g/g creatinine and that of m-MHA corresponding to 100 ppm (TLV) of m-xylene was 2.05 g/g creatinine. The warning levels of the urinary metabolite concentrations of a group of workers and that of an individual worker corresponding to TLV of organic solvent concentration is discussed.

  12. Silyl imine electrophiles in enantioselective catalysis: a Rosetta Stone for peptide homologation, enabling diverse N-protected aryl glycines from aldehydes in three steps.

    PubMed

    Makley, Dawn M; Johnston, Jeffrey N

    2014-06-06

    We report that N-(trimethylsilyl)imines serve in the Bis(AMidine)-catalyzed addition of bromonitromethane with a high degree of enantioselection. This allows for the production of a range of protected α-bromo nitroalkane donors (including Fmoc) for use in Umpolung Amide Synthesis (UmAS). Hence, peptide homologation with nonnatural aryl glycine amino acids is achieved in three steps from aromatic aldehydes, which are plentiful and inexpensive. Epimerization during the homologation step is circumvented by avoiding an α-amino acid intermediate.

  13. Silyl Imine Electrophiles in Enantioselective Catalysis: A Rosetta Stone for Peptide Homologation, Enabling Diverse N-Protected Aryl Glycines from Aldehydes in Three Steps

    PubMed Central

    2015-01-01

    We report that N-(trimethylsilyl)imines serve in the Bis(AMidine)-catalyzed addition of bromonitromethane with a high degree of enantioselection. This allows for the production of a range of protected α-bromo nitroalkane donors (including Fmoc) for use in Umpolung Amide Synthesis (UmAS). Hence, peptide homologation with nonnatural aryl glycine amino acids is achieved in three steps from aromatic aldehydes, which are plentiful and inexpensive. Epimerization during the homologation step is circumvented by avoiding an α-amino acid intermediate. PMID:24828455

  14. Influence of Heterodera glycines on Interspecific and Intraspecific Competition Associated with Glycine max and Chenopodium album.

    PubMed

    Chen, J; Bird, G W; Renner, K A

    1995-03-01

    The influence of Heterodera glycines (soybean cyst nematode) on the interspecific and intraspecific competition associated with Glycine max (soybean) and Chenopodium album (common lambsquarters) was studied in 1988 and 1989 in three de Wit replacement series experiments in growth chambers and microplots. Glycine max was grown alone (1 plant/experimental unit), in intraspecific competition (2 plants/experimental unit), in interspecific competition with C. album, and in presence or absence of H. glycines. No significant effects of H. glycines and C. album on G. max growth were observed 14 days after planting. By 42 days after planting, both H. glycines and C. album had a negative (P = 0.05) influence on the growth of G. max. Relative crowding coefficients for G. max were lower and deviated (P = 0.05 and P = 0.001) from 1.0 in the presence of H. glycines, compared to that of C. album and early emerged C. album in the absence of the nematode, respectively. Glycine max, therefore, became less competitive than C. album. There was a trend that the presence of H. glycines decreased the competitiveness of G. max on measures of the aggressivity and relative mixture response. Heterodera glycines decreased the aggressivity of G. max (ca. 150-350%) and increased the relative effects of intraspecific interference on G. max (ca. 10-50%) and interspecific interference (ca. 60-350%) after 42 days of plant growth, compared with plants grown in the absence of H. glycines. No H. glycines x C. album interactions were detected. Observations showed that H. glycines and early emerged C. album inhibited the growth of G. max 5-13%, as measured by plant dry weight.

  15. Unique Immunogenic Proteins in Heterodera glycines Eggshells

    PubMed Central

    Kennedy, M. J.; Schoelz, J. E.; Donald, P. A.; Niblack, T. L.

    1997-01-01

    Polyclonal antibodies were raised against Heterodera glycines eggshells to determine the feasibility of developing an immunoassay for H. glycines eggs. An indirect enzyme-linked immunosorbent assay (ELISA) was developed from anfisera collected 10 weeks after the initial injection. From serial dilutions of sonicated eggshells or whole eggs, a sensitivity of detection to 5 ng/ml sonicated eggshells or 1 egg of H. glycines was determined. The method of eggshell preparation had no effect on the antibodies produced; however, the antibodies cross-reacted with sonicated J2 of H. glycines and eggs of Meloidogyne incognita and H. schachtii. Most of the proteins in both life stages of H. glycines and eggs of M. incognita and H. schachtii had similar migration properties when separated on SDS-PAGE gels and stained with Coomassie blue. Western blot analysis, with antisera adsorbed with homogenized J2 of H. glycines, showed proteins that were specifically localized to eggshells of H. glycines. Monoclonal antibodies might provide a useful immunoassay where polyclonal antibodies lack sufficient specificity. PMID:19274159

  16. Interaction between taurine and GABA(A)/glycine receptors in neurons of the rat anteroventral cochlear nucleus.

    PubMed

    Song, Ning-Ying; Shi, Hai-Bo; Li, Chun-Yan; Yin, Shan-Kai

    2012-09-07

    Taurine, one of the most abundant endogenous amino acids in the mammalian central nervous system (CNS), is involved in neural development and many physiological functions. In this study, the interaction between taurine and GABA(A)/glycine receptors was investigated in young rat (P13-P15) anteroventral cochlear nucleus (AVCN) neurons using the whole-cell patch-clamp method. We found that taurine at low (0.1mM) and high (1mM) concentrations activated both GABA(A) and glycine receptors, but not AMPA and NMDA receptors. The reversal potentials of taurine-, GABA- or glycine-evoked currents were close to the expected chloride equilibrium potential, indicating that receptors activated by these agonists were mediating chloride conductance. Moreover, our results showed that the currents activated by co-application of GABA and glycine were cross-inhibitive. Sequential application of GABA and glycine or vice versa also reduced the glycine or GABA evoked currents. There was no cross-inhibition when taurine and GABA or taurine and glycine were applied simultaneously, but the response was larger than that evoked by GABA or glycine alone. These results suggest that taurine can serve as a neuromodulator to strengthen GABAergic and glycinergic neurotransmission in the rat AVCN.

  17. Relative hydrophobicity between the phases and partition of cytochrome-c in glycine ionic liquids aqueous two-phase systems.

    PubMed

    Wu, Changzeng; Wang, Jianji; Li, Zhiyong; Jing, Jun; Wang, Huiyong

    2013-08-30

    In this work, glycine ionic liquids tetramethylammonium glycine ([N1111][Gly]), tetraethylammonium glycine ([N2222][Gly]), tetra-n-butylammonium glycine ([N4444][Gly]), tetra-n-butylphosphonium glycine ([P4444][Gly]) and tetra-n-pentylammonium glycine ([N5555][Gly]) were synthesized and used to prepare aqueous two-phase systems (ATPSs) in the presence of K2HPO4. Binodal curves of such ATPSs and partition coefficients of a series of dinitrophenylated (DNP) amino acids in these ATPSs were determined at 298.15K to understand the effect of cationic structure of the ionic liquids on the phase-forming ability of glycine ionic liquids, relative hydrophobicity between the phases in the ionic liquids ATPSs, and polarity of the ionic liquids-rich phases. With the attempt to correlate the relative hydrophobicity of the phases in the ATPSs with their extraction capability for proteins, partition coefficients of cytochrome-c in the ATPSs were also determined. It was shown that partition coefficients of cytochrome-c were in the range from 2.83 to 20.7 under the studied pH conditions. Then, hydrophobic interactions between cytochrome-c and the ionic liquid are suggested to be the main driving force for the preferential partition of cytochrome-c in the glycine ionic liquid-rich phases of the ATPSs. Result derived from polarity of the ionic liquids-rich phases supports this mechanism.

  18. Evaluation of protein extraction methods suitable for two-dimensional gel electrophoresis of the soybean cyst nematode (Heterodera glycines)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cyst nematode (Heterodera glycines, SCN) is the most destructive pathogen of soybean (Glycine max (L.) Merr.) worldwide. In this study, three different protein extraction methods including phenol/ammonium acetate (phenol method), thiourea/urea solublization (lysis method) and trichloroaceti...

  19. Isolation and identification of microorganisms including lactic acid bacteria and their use in microbial deacidification of wines from domestic vineyards.

    PubMed

    Drozdz, Iwona; Makarewicz, Malgorzata; Tuszyński, Tadeusz

    2013-01-01

    The aim of this study was to identify various bacteria isolated from grapes and their wines. Additionally we investigated the capacity of lactic acid bacteria for microbiological deacidification of wines produced in Poland. We have identified Oenococcus oeni, Lactobacillus acidophilus and Lactobacillus delbrueckii. During the microbial deacidification process, we observed decreases of total acidity and increases of volatile acidity, with statistically significant changes noted for O. oeni in Marechal Foch and Seyval Blanc, and for Lb. acidophilus in Frontenac. On the other hand, a statistically significant increase in pH was observed in Marechal Foch and Seyval Blanc following deacidification by O. oeni.

  20. FDG-PET scan shows increased cerebral blood flow in rat after sublingual glycine application

    NASA Astrophysics Data System (ADS)

    Blagosklonov, Oleg; Podoprigora, Guennady I.; Davani, Siamak; Nartsissov, Yaroslav R.; Comas, Laurent; Boulahdour, Hatem; Cardot, Jean-Claude

    2007-02-01

    Positron emission tomography (PET) with [18F]-2-fluoro-deoxy-D-glucose (FDG) is being increasingly used in research. Isotope studies may be of help in an assessment of vasoactive potential of newly developed therapeutic preparations, including natural metabolites, like glycine. As a medicine, glycine was recently shown to have a positive therapeutic effect in the treatment of patients with neurological disorders based on vascular disturbances. By previous direct biomicroscopic investigations of pial microvessels in laboratory rats, an expressed vasodilatory effect of topically applied glycine was proved. The aim of this study was to evaluate the influence of glycine on the rat cerebral blood flow (CBF) using FDG-PET scan. A baseline study was started immediately after intravenous injection of 19 MBq of FDG in anesthetized rat. The PET images were acquired twice, one by one during 20 min. Two hours later, after sublingual application of glycine and the second FDG injection, the pair of PET scan was performed during 20 min as well. Finally, 4 days after the first studies, we repeated the PET scans in the same conditions after sublingual application of glycine. The quantitative analysis of FDG volume concentration (Bq/ml) in the rat brain demonstrated that in both studies after glycine administration, the FDG uptake increased at least 1.5 times in comparison with the baseline data. Moreover, the peak of the concentration was coming in more rapidly. These results confirm the enhancing effect of glycine on the rat CBF possibly because of its vasodilatory effect on brain microvessels. Therefore, FDG-PET technique contributes to better understanding of glycine pharmacokinetics.

  1. Allosteric modulation of glycine receptors is more efficacious for partial rather than full agonists.

    PubMed

    Bíró, Tímea; Maksay, Gábor

    2004-06-01

    Allosteric modulation of [3H]strychnine binding to glycine receptors (GlyRs) was examined in synaptosomal membranes of rat spinal cord. An allosteric model enabled us to determine the cooperativity factors of the allosteric agents with [3H]strychnine and glycine bindings (alpha and beta, respectively). We modified the allosteric model with a slope factor because the slope values of the displacement curves of partial agonists (beta-alanine, taurine and gamma-aminobutyric acid) were beyond unity. The slope factor was reduced only by 100 microM propofol. Further, propofol showed positive cooperativity (beta < 1) stronger with taurine than with glycine. The extent of the positive cooperativity of propofol was nearly independent from the potencies and structures of partial agonists. The steroidal alphaxalone and minaxolone also potentiated taurine better than glycine. Alphaxalone exerted weak negative cooperativity with [3H]strychnine binding. Displacement by taurine is attenuated by granisetron and m-chlorophenylbiguanide representing negative cooperativity (beta > 1) greater than with glycine. The results suggest a developmental role of elevated perinatal levels of taurine and neurosteroids as well as a better allosteric modulation of decreased agonist efficacies for impaired glycine receptor-ionophores.

  2. NMDA receptor coagonist glycine site: evidence for a role in lateral hypothalamic stimulation of feeding.

    PubMed

    Stanley, B G; Butterfield, B S; Grewal, R S

    1997-08-01

    To investigate the role of the glycine coagonist binding site on the N-methyl-D-aspartate (NMDA) receptor in feeding control, we injected the glycine site antagonist 7-chlorokynurenic acid (7-CK) into the lateral hypothalamus (LH) of satiated rats before LH injection of NMDA, 7-CK (10-44 nmol) blocked the 6- to 10-g eating response elicited by NMDA. This block was reversed by LH pretreatment with glycine, arguing for a specific action at the glycine site. In contrast to the suppression produced by high doses, 7-CK at 0.1 nmol enhanced NMDA-elicited eating. For examination of behavioral specificity, 7-CK was injected into the LH before kainic acid (KA) or DL-alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA). 7-CK at a dose of 0.1 nmol suppressed feeding elicited by KA or AMPA, but at 10 nmol it suppressed eating elicited by AMPA while enhancing eating elicited by KA. Finally, bilateral LH injection of 7-CK effectively suppressed eating produced by fasting. These findings support a role for the NMDA receptor coagonist glycine site in LH regulation of eating behavior.

  3. GABA and glycine are protective to mature but toxic to immature rat cortical neurons under hypoxia.

    PubMed

    Zhao, Peng; Qian, Hong; Xia, Ying

    2005-07-01

    Although recent studies suggest that gamma-aminobutyric acid (GABA) and glycine may be 'inhibitory' to mature neurons, but 'excitatory' to immature neurons under normoxia, it is unknown whether inhibitory neurotransmitters are differentially involved in neuronal response to hypoxia in immature and mature neurons. In the present study, we exposed rat cortical neurons to hypoxia (1% O2) and examined the effects of three major inhibitory neurotransmitters (GABA, glycine and taurine) on the hypoxic neurons at different neuronal ages [days in vitro (DIV)4-20]. Our data showed that the cortical neurons expressed both GABA(A) and glycine receptors with differential developmental profiles. GABA (10-2000 microm) was neuroprotective to hypoxic neurons of DIV20, but enhanced hypoxic injury in neurons of Glycine at low concentrations (10-100 microm) exhibited a similar pattern to GABA. However, higher concentrations of glycine (1000-2000 microm) for long-term exposure (48-72 h) displayed neuroprotection at all ages (DIV4-20). Taurine (10-2000 microm), unlike GABA and glycine, displayed protection only in DIV4 neurons, and was slightly toxic to neurons>DIV4. In comparison with delta-opioid receptor (DOR)-induced protection in DIV20 neurons exposed to 72 h of hypoxia, glycine-induced protection was weaker than that of DOR but stronger than that of GABA and taurine. These data suggest that the effects of the inhibitory neurotransmitters on hypoxic cortical neurons are age-dependent, with GABA and glycine being neurotoxic to immature neurons and neuroprotective to mature neurons.

  4. Differential cytoprotection by glycine against oxidant damage to proximal tubule cells.

    PubMed

    Sogabe, K; Roeser, N F; Venkatachalam, M A; Weinberg, J M

    1996-09-01

    Tert-butyl hydroperoxide (tBHP) injured freshly isolated proximal tubules in an Fe-dependent fashion that was ameliorated by a lipophilic antioxidant, diphenyl-p-phenylenediamine (DPPD), but was only minimally affected by glycine. Menadione-induced injury was Fe-independent and was unaffected by DPPD, but was strongly blocked by glycine. Fe was highly toxic when intracellular loading was facilitated by concomitant treatment with hydroxyquinoline (HQ). This toxicity was blocked by DPPD or chelating the Fe, but not by glycine. All of the lesions were characterized by severe depletion of glutathione and other soluble thiols. Menadione induced large increases in protein associated with the Triton-insoluble cytoskeleton and decreases in protein thiol content, consistent with extensive cross linking, but did not increase thiobarbituric acid reactive substances (TBARS). tBHP and HQ + Fe had either no effect or only moderate, delayed effects on cytoskeletal proteins, but induced substantial increases of TBARS. Glycine did not the alter changes in cytoskeletal proteins, thiols, or TBARS produced by any of the agents. Protection against tBHP toxicity by deferoxamine and DPPD was accompanied by substantial suppression of TBARS accumulation. Superimposition of hypoxia during tBHP exposure reduced TBARS accumulation and restored cytoprotective activity to glycine. Thus, in contrast to its consistently strong cytoprotection against a number of other insults, glycine is only variably cytoprotective against oxidant lesions in freshly isolated proximal tubules. Extensive oxidative crosslinking of proteins is compatible with maintenance of glycine cytoprotection against lethal membrane damage. Fe-induced injury to proximal tubules associated with lipid peroxidation as manifested by TBARS formation is a relatively glycine-insensitive insult.

  5. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    NASA Astrophysics Data System (ADS)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  6. Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis.

    PubMed

    Tsepilov, R N; Beloded, A V

    2015-09-01

    Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed.

  7. Rapid identification of triterpenoid sulfates and hydroxy fatty acids including two new constituents from Tydemania expeditionis by LC-MS

    PubMed Central

    Zhang, Jian-Long; Kubanek, Julia; Hay, Mark E.; Aalbersberg, William; Ye, Wen-Cai; Jiang, Ren-Wang

    2011-01-01

    Tydemania expeditionis Weber-van Bosse (Udoteaceae) is a weakly calcified green alga. In the present paper, liquid chromatography coupled with photodiode array detection and electrospray mass spectrometry was developed to identify the fingerprint components. A total of four triterpenoid sulfates and three hydroxy fatty acids in the ethyl acetate fraction of the crude extract were structurally characterized on the basis of retention time, online UV spectrum and mass fragmentation pattern. Furthermore, detailed LC-MS analysis revealed two new hydroxy fatty acids, which were then prepared and characterized by extensive NMR analyses. The proposed method provides a scientific and technical platform for the rapid identification of triterpenoid sulfates and hydroxy fatty acids in similar marine algae and terrestrial plants. PMID:21915955

  8. A Didactic Experience of Statistical Analysis for the Determination of Glycine in a Nonaqueous Medium Using ANOVA and a Computer Program

    ERIC Educational Resources Information Center

    Santos-Delgado, M. J.; Larrea-Tarruella, L.

    2004-01-01

    The back-titration methods are compared statistically to establish glycine in a nonaqueous medium of acetic acid. Important variations in the mean values of glycine are observed due to the interaction effects between the analysis of variance (ANOVA) technique and a statistical study through a computer software.

  9. Effect of polynucleotides on the dimerization of glycine. [abiological protein synthesis in primitive earth conditions

    NASA Technical Reports Server (NTRS)

    Mizutani, H.; Ponnamperuma, C.

    1981-01-01

    Results from experiments to determine the effect of polynucleotides on abiological formation of peptide bonds are reported. The reaction between glycine molecules in an aqueous phase in the presence of a condensing agent was chosen as a model, with polyphosphates being selected as the condensing agent for biologically relevant peptide formation. Four types of polynucleotides were used: polygluanic acid (G), polyuridic acid (U), polyadenylic acid (A), and polycytidylic acid (C); the effects of small anions, acetate, chloride, and phosphate, were also studied. Procedures are given, including concentrations, pH, and incubation time, and the type of amino acid analyzer. The diglycine yields were, in order of most to least: G, C, A, U, and are diagrammed as a function of time; rate of formation followed the same order of magnitude as the final yields. Anion presence displayed no discernible effect. The results are taken to indicate that polynucleotides do have an effect on the formation of peptide bonds, an effect significant in the understanding of chemical evolution.

  10. Quantitative Method to Investigate the Balance between Metabolism and Proteome Biomass: Starting from Glycine.

    PubMed

    Gu, Haiwei; Carroll, Patrick A; Du, Jianhai; Zhu, Jiangjiang; Neto, Fausto Carnevale; Eisenman, Robert N; Raftery, Daniel

    2016-12-12

    The balance between metabolism and biomass is very important in biological systems; however, to date there has been no quantitative method to characterize the balance. In this methodological study, we propose to use the distribution of amino acids in different domains to investigate this balance. It is well known that endogenous or exogenous amino acids in a biological system are either metabolized or incorporated into free amino acids (FAAs) or proteome amino acids (PAAs). Using glycine (Gly) as an example, we demonstrate a novel method to accurately determine the amounts of amino acids in various domains using serum, urine, and cell samples. As expected, serum and urine had very different distributions of FAA- and PAA-Gly. Using Tet21N human neuroblastoma cells, we also found that Myc(oncogene)-induced metabolic reprogramming included a higher rate of metabolizing Gly, which provides additional evidence that the metabolism of proliferating cells is adapted to facilitate producing new cells. It is therefore anticipated that our method will be very valuable for further studies of the metabolism and biomass balance that will lead to a better understanding of human cancers.

  11. A novel treatment of global cerebral ischaemia with a glycine partial agonist.

    PubMed

    Von Lubitz, D K; Lin, R C; McKenzie, R J; Devlin, T M; McCabe, R T; Skolnick, P

    1992-08-14

    Chronic treatment of gerbils with 1-aminocyclopropanecarboxylic acid (a high affinity, partial agonist at strychnine-insensitive glycine receptors) resulted in a 3-fold increase in survival, a significant improvement in neurological status, and an extensive protection of vulnerable brain regions following severe forebrain ischaemia. A bolus of 1-aminocyclopropanecarboxylic acid 30 min prior to ischaemia did not further improve outcome compared to gerbils receiving their last injection 24 h prior to ischaemia. These findings are consistent with the hypothesis that chronic treatment with a glycine partial agonist desensitizes the N-methyl-D-aspartate receptor complex. Pharmacological intervention at the strychnine-insensitive glycine receptor may be an effective means of ameliorating the consequences of neuronal degeneration caused by excitotoxic phenomena.

  12. Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses.

    PubMed

    Lerma, J; Zukin, R S; Bennett, M V

    1990-03-01

    In Xenopus oocytes injected with rat brain mRNA, as in neurons, glycine greatly potentiated responses of the N-methyl-D-aspartate (NMDA) type of excitatory amino acid receptor. Injected oocytes generated a partially desensitizing inward current in response to NMDA with 30 nM added glycine. As the added glycine concentration was increased from 30 nM to 1 microM, the NMDA response was increased and exhibited less desensitization. The relationship between the NMDA peak response and added glycine concentration indicated a single component response with apparent affinity of 0.29 microM and a Hill coefficient of 0.77. The desensitized response was also fit by the Hill relation with a lower affinity but similar coefficient. The time course of desensitization at 500 microM NMDA was exponential with a time constant (350 msec) that was independent of glycine concentration between 0.03 and 0.3 microM. At higher glycine concentration a slower component of decay (tau = 1.4 sec) was observed. This component was enhanced by increasing the extracellular Ca2+. NMDA without added glycine evoked a small transient response. However this response was suppressed completely by prewashing with the glycine antagonist 7-chlorokynurenic acid, suggesting that it may have been due to glycine contamination. The dose-response relation for low concentrations of glycine indicated that the measured level of glycine contamination accounted for these responses. These results indicate that glycine has at least two actions at the NMDA receptor: it enables channel opening by the agonist and decreases desensitization.

  13. Glycine exists mainly as monomers, not dimers, in supersaturated aqueous solutions: implications for understanding its crystallization and polymorphism.

    PubMed

    Huang, Jun; Stringfellow, Thomas C; Yu, Lian

    2008-10-22

    Glycine, the simplest amino acid, is described as existing as hydrogen-bonded cyclic dimers in supersaturated aqueous solutions and, as a result, crystallizing in a centrosymmetric polymorph (polymorph alpha) for which the dimer can be viewed as the building unit, in favor of other polymorphs of polar structures. In exhibiting this relation between polymorphic selectivity and self-association in solution, glycine is thought to illustrate a general principle. We measured the freezing-point depression of glycine-water up to 30% supersaturation and found that glycine exists mainly as monomers, not dimers, and that the dimer stability constant K D is smaller than 0.1 kg of H 2O/mol if the observed osmotic abnormality is attributed to dimerization. We also revisited a report cited as evidence for glycine dimerization: the slowdown of glycine diffusion with solution age. Pulsed gradient spin-echo NMR spectroscopy was used in place of the previous method of Gouy interferometry to avoid perturbations to sloution structure caused by the interdiffusion between two solutions of different concentrations. No aging effect was observed on glycine diffusion up to 24% supersaturation after five days. The solute size calculated from diffusivity, viscosity, and the Stokes-Einstein relation showed no increase with concentration or solution age. We conclude that glycine exists in supersaturated aqueous solutions mainly as monomers, not dimers, and remains so upon aging. This result does not invalidate the theories of how pH and additives affect glycine's polymorphic preference, because they begin with the assumption that alpha glycine is the preferred polymorph under normal conditions, but requires a new explanation for that assumption itself.

  14. Computation of energy interaction parameters as well as electric dipole intensity parameters for the absorption spectral study of the interaction of Pr(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents

    NASA Astrophysics Data System (ADS)

    Moaienla, T.; Singh, Th. David; Singh, N. Rajmuhon; Devi, M. Indira

    2009-10-01

    Studying the absorption difference and comparative absorption spectra of the interaction of Pr(III) and Nd(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents, various energy interaction parameters like Slater-Condon ( FK), Racah ( Ek), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding ( b1/2), percentage-covalency ( δ) have been evaluated applying partial and multiple regression analysis. The values of oscillator strength ( P) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been computed. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( P) and Tλ values reveal the mode of binding with different ligands.

  15. N-[[(Mercaptoacetyl)amino]benzoyl]glycines as mucolytic agents.

    PubMed

    Martin, T A; Comer, W T

    1985-07-01

    m- and p-aminobenzoic acids were converted to the title compounds by sequential use of ClCH2COCl, SOCl2, glycine methyl or ethyl ester, AcSK, and hydrolysis. The title compounds and a number of salts were compared for mucolytic activity, toxicity, stability, and hygroscopicity. When compared to N-acetyl-L-cysteine (NAC), the compounds exhibit several times the in vitro mucolytic activity of NAC on a molar basis. The most promising candidate appears to be the sodium salt 3.5H2O 2 of the meta series.

  16. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    PubMed

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  17. Health information impact on the relative importance of beef attributes including its enrichment with polyunsaturated fatty acids (omega-3 and conjugated linoleic acid).

    PubMed

    Kallas, Zein; Realini, Carolina E; Gil, José Maria

    2014-08-01

    This paper uses Choice Experiments (CE) to investigate Spanish consumers' preferences towards beef meat enriched with polyunsaturated fatty acids (omega-3 and conjugated linoleic acid). Data were gathered from self-completed questionnaires in a controlled environment with two different samples (320 and 322 consumers) differentiated by the information received. The surveys were carried out in three main Spanish cities (Barcelona, Zaragoza and Pamplona), representing the average consumer. A variation of the "Dual Response Choice Experiments" (DRCE) design was used due to its ability to emphasize the purchase context. Results showed that consumers who received information attach higher preference for enriched meat with polyunsaturated fatty acids. The utility associated with the higher content of fat increase for informed consumers, showing a substitute effect. Informed consumers are willing to accept meat with a higher amount of visible fat if it is enriched with beneficial fatty acids.

  18. Organic foliar Milstop shows efficacy against soybean aphid (Aphis glycines) on soybean (Glycine max)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) has been produced in the United States since 1765. Soybean aphids (Aphis glycines Matsumura) were first detected on soybean in the United States in 2000 and now cause an estimated yield loss of up to US$4.9 billion annually. Organic soybean producers have few insecti...

  19. Changes in Heterodera glycines Egg Population Density in Continuous Glycine max over Four Years

    PubMed Central

    Donald, P. A.; Donald, W. W.; Keaster, A. J.; Kremer, R. J.; Kendig, J. A.; Sims, B. S.; Mihail, J. D.

    1999-01-01

    Soybean cyst nematode, Heterodera glycines, is found throughout soybean production areas of the United States, but the nematode's distribution is not uniform within states, counties, and individual fields. The goal of this research was to determine the spatial pattern of H. glycines population density in a field in southeastern Missouri and whether it changed over time in the absence of management practices. Geostatistical methods were used to describe and map the distribution of H. glycines over 4 years in a soybean (Glycine max) field in southeastern Missouri. Semivariograms and kriging, an interpolation method, were used to prepare isoarithmic contour maps and associated error maps. In the field studied, fall H. glycines population density (Pf) was poorly related to density the following spring (Pi). The distribution of peak H. glycines population density within the field changed from year to year, although high densities were often detected in the same general region of the field. The patchiness of H. glycines distribution within a field was verified. Yield was not related to H. glycines egg population density at planting, indicating that unmeasured variables were also reducing yield. PMID:19270874

  20. Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring.

    PubMed

    Lu, Yonghai; Lam, Honming; Pi, Erxu; Zhan, Qinglei; Tsai, Sauna; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming

    2013-09-11

    Metabolomics is developing as an important functional genomics tool for understanding plant systems' response to genetic and environmental changes. Here, we characterized the metabolic changes of cultivated soybean C08 (Glycine max L. Merr) and wild soybean W05 (Glycine soja Sieb.et Zucc.) under salt stress using MS-based metabolomics, in order to reveal the phenotypes of their eight hybrid offspring (9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590). Total small molecule extracts of soybean seedling leaves were profiled by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-Fourier transform mass spectrometry (LC-FT/MS). We found that wild soybean contained higher amounts of disaccharides, sugar alcohols, and acetylated amino acids than cultivated soybean, but with lower amounts of monosaccharides, carboxylic acids, and unsaturated fatty acids. Further investigations demonstrated that the ability of soybean to tolerate salt was mainly based on synthesis of compatible solutes, induction of reactive oxygen species (ROS) scavengers, cell membrane modifications, and induction of plant hormones. On the basis of metabolic phenotype, the salt-tolerance abilities of 9H0086, 9H0124, 9H0391, 9H0736, 9H0380, 9H0400, 9H0434, and 9H0590 were discriminated. Our results demonstrated that MS-based metabolomics provides a fast and powerful approach to discriminate the salt-tolerance characteristics of soybeans.

  1. Probing the modulation of acute ethanol intoxication by pharmacological manipulation of the NMDAR glycine coagonist site

    PubMed Central

    Debrouse, Lauren; Hurd, Benita; Kiselycznyk, Carly; Plitt, Aaron; Todaro, Alyssa; Mishina, Masayoshi; Grant, Seth; Camp, Marguerite; Gunduz-Cinar, Ozge; Holmes, Andrew

    2012-01-01

    BACKGROUND Stimulating the glycineB binding site on the N-methyl-D-aspartate receptor (NMDAR) has been proposed as a novel mechanism for modulating behavioral effects of ethanol (EtOH) that are mediated via the NMDAR, including acute intoxication. Here, we pharmacologically interrogated this hypothesis in mice. METHODS Effects of systemic injection of the glycineB agonist, D-serine, the GlyT-1 glycine transporter inhibitor, ALX-5407, and the glycineB antagonist, L-701,324, were tested for effects on EtOH-induced ataxia, hypothermia, loss of righting reflex duration (LORR) in C57BL/6J (B6) and 129S1/SvImJ (S1) inbred mice. Effects of the glycineB partial agonist, D-cycloserine, the GlyT-1 inhibitor, NFPS, and the glycineB antagonist, DCKA, on EtOH-induced LORR duration were also tested. Interaction effects on EtOH-induced LORR duration were examined via combined treatment with D-serine and ALX-5407, D-serine and MK-801, D-serine and L-701,324, as well as L-701,324 and ALX-5407, in B6 mice, as D-serine in GluN2A and PSD-95 KO mice. The effect of dietary depletion of Magnesium (Mg), an element which interacts the glycineB site, was also tested. RESULTS Neither D-serine, D-cycloserine, ALX-5407, nor NFPS significantly affected EtOH intoxication on any of the measures or strains studied. L-701,324, but not DCKA, dose-dependently potentiated the ataxia-inducing effects of EtOH and increased EtOH-induced (but not pentobarbital-induced) LORR duration. D-serine did not have interactive effects on EtOH-induced LORR duration when combined with ALX-5407. The EtOH-potentiating effects of L-701,324, but not MK-801, on LORR duration were prevented by D-serine, but not ALX-5407. Mg depletion potentiated LORR duration in B6 mice and was lethal in a large proportion of S1 mice. CONCLUSIONS GlycineB site activation failed to produce the hypothesized reduction in EtOH intoxication across a range of measures and genetic strains, but blockade of the glycineB site potentiated Et

  2. Molecular cloning and characterization of a glycine-like receptor gene from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    PubMed

    Flores-Fernández, José Miguel; Gutiérrez-Ortega, Abel; Padilla-Camberos, Eduardo; Rosario-Cruz, Rodrigo; Hernández-Gutiérrez, Rodolfo; Martínez-Velázquez, Moisés

    2014-01-01

    The cattle tick Rhipicephalus (Boophilus) microplus is the most economically important ectoparasite affecting the cattle industry in tropical and subtropical areas around the world. The principal method of tick control has relied mainly on the use of chemical acaricides, including ivermectin; however, cattle tick populations resistant to ivermectin have recently been reported in Brazil, Mexico, and Uruguay. Currently, the molecular basis for ivermectin susceptibility and resistance are not well understood in R. microplus. This prompted us to search for potential molecular targets for ivermectin. Here, we report the cloning and molecular characterization of a R. microplus glycine-like receptor (RmGlyR) gene. The characterized mRNA encodes for a 464-amino acid polypeptide, which contains features common to ligand-gated ion channels, such as a large N-terminal extracellular domain, four transmembrane domains, a large intracellular loop and a short C-terminal extracellular domain. The deduced amino acid sequence showed around 30% identity to GlyRs from some invertebrate and vertebrate organisms. The polypeptide also contains the PAR motif, which is important for forming anion channels, and a conserved glycine residue at the third transmembrane domain, which is essential for high ivermectin sensitivity. PCR analyses showed that RmGlyR is expressed at egg, larval and adult developmental stages. Our findings suggest that the deduced receptor is an additional molecular target to ivermectin and it might be involved in ivermectin resistance in R. microplus.

  3. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice

    PubMed Central

    Pai, Yun Jin; Leung, Kit-Yi; Savery, Dawn; Hutchin, Tim; Prunty, Helen; Heales, Simon; Brosnan, Margaret E.; Brosnan, John T.; Copp, Andrew J.; Greene, Nicholas D.E.

    2015-01-01

    Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced expression of Gldc in mice suppresses glycine cleavage system activity and causes two distinct disease phenotypes. Mutant embryos develop partially penetrant NTDs while surviving mice exhibit post-natal features of NKH including glycine accumulation, early lethality and hydrocephalus. In addition to elevated glycine, Gldc disruption also results in abnormal tissue folate profiles, with depletion of one-carbon-carrying folates, as well as growth retardation and reduced cellular proliferation. Formate treatment normalizes the folate profile, restores embryonic growth and prevents NTDs, suggesting that Gldc deficiency causes NTDs through limiting supply of one-carbon units from mitochondrial folate metabolism. PMID:25736695

  4. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes

    PubMed Central

    Carvajal-González, Alexander; Leite, M. Isabel; Waters, Patrick; Woodhall, Mark; Coutinho, Ester; Balint, Bettina; Lang, Bethan; Pettingill, Philippa; Carr, Aisling; Sheerin, Una-Marie; Press, Raomand; Lunn, Michael P.; Lim, Ming; Maddison, Paul; Meinck, H.-M.; Vandenberghe, Wim

    2014-01-01

    The clinical associations of glycine receptor antibodies have not yet been described fully. We identified prospectively 52 antibody-positive patients and collated their clinical features, investigations and immunotherapy responses. Serum glycine receptor antibody endpoint titres ranged from 1:20 to 1:60 000. In 11 paired samples, serum levels were higher than (n = 10) or equal to (n = 1) cerebrospinal fluid levels; there was intrathecal synthesis of glycine receptor antibodies in each of the six pairs available for detailed study. Four patients also had high glutamic acid decarboxylase antibodies (>1000 U/ml), and one had high voltage-gated potassium channel-complex antibody (2442 pM). Seven patients with very low titres (<1:50) and unknown or alternative diagnoses were excluded from further study. Three of the remaining 45 patients had newly-identified thymomas and one had a lymphoma. Thirty-three patients were classified as progressive encephalomyelitis with rigidity and myoclonus, and two as stiff person syndrome; five had a limbic encephalitis or epileptic encephalopathy, two had brainstem features mainly, two had demyelinating optic neuropathies and one had an unclear diagnosis. Four patients (9%) died during the acute disease, but most showed marked improvement with immunotherapies. At most recent follow-up, (2–7 years, median 3 years, since first antibody detection), the median modified Rankin scale scores (excluding the four deaths) decreased from 5 at maximal severity to 1 (P < 0.0001), but relapses have occurred in five patients and a proportion are on reducing steroids or other maintenance immunotherapies as well as symptomatic treatments. The glycine receptor antibodies activated complement on glycine receptor-transfected human embryonic kidney cells at room temperature, and caused internalization and lysosomal degradation of the glycine receptors at 37°C. Immunoglobulin G antibodies bound to rodent spinal cord and brainstem co-localizing with

  5. Meat texture and antioxidant status are improved when carnosic acid is included in the diet of fattening lambs.

    PubMed

    Morán, Lara; Andrés, Sonia; Bodas, Raúl; Prieto, Nuria; Giráldez, F Javier

    2012-08-01

    Thirty-two Merino lambs fed barley straw and a concentrate alone (CONTROL group) or enriched with carnosic acid [0.6 g kg(-1) dry matter (DM), CARN006 group; 1.2 g kg(-1) DM, CARN012 group] or vitamin E (0.6 g kg(-1) DM, VITE006 group) were used to assess the effect of these antioxidant compounds on meat quality. After being fed the experimental diets for at least 5 weeks, the animals were slaughtered with the 25 kg intended body weight and the different muscles (longissimus lumborum; LL, gluteus medius; GM) were sliced and kept refrigerated under modified atmosphere packaging during 0, 7 and 14 days. The results indicate that carnosic acid seemed to be useful to delay lipid peroxidation in a medium colour-stable muscle such as GM, but this effect was lower than that observed when vitamin E was supplemented to fattening lambs. On the contrary, meat texture and protection against cholesterol oxidation were equally improved with both compounds.

  6. Mutation of glycine receptor subunit creates beta-alanine receptor responsive to GABA.

    PubMed

    Schmieden, V; Kuhse, J; Betz, H

    1993-10-08

    The amino acid at position 160 of the ligand-binding subunit, alpha 1, is an important determinant of agonist and antagonist binding to the glycine receptor. Exchange of the neighboring residues, phenylalanine at position 159 and tyrosine at position 161, increased the efficacy of amino acid agonists. Whereas wild-type alpha 1 channels expressed in Xenopus oocytes required 0.7 millimolar beta-alanine for a half-maximal response, the doubly mutated (F159Y,Y161F) alpha 1 subunit had an affinity for beta-alanine (which was more potent than glycine) that was 110-fold that of the wild type. Also, gamma-aminobutyric acid and D-serine, amino acids that do not activate wild-type alpha 1 receptors, efficiently gated the mutant channel. Thus, aromatic hydroxyl groups are crucial for ligand discrimination at inhibitory amino acid receptors.

  7. Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA)

    NASA Astrophysics Data System (ADS)

    Pudjiastuti, Lily; Susianto, Altway, Ali; IC, Maria Hestia; Arsi, Kartika

    2015-12-01

    In industry, especially petrochemical, oil and natural gas industry, required separation process of CO2 gas which is a corrosive gas (acid gas). This characteristic can damage the plant utility and piping systems as well as reducing the caloric value of natural gas. Corrosive characteristic of CO2 will appear in areas where there is a decrease in temperature and pressure, such as at the elbow pipe, tubing, cooler and injector turbine. From disadvantages as described above, then it is important to do separation process in the CO2 gas stream, one of the method for remove CO2 from the gas stream is reactive absorption using alkanolamine based solution with promotor. Therefore, this study is done to determine the kinetics constant of CO2 absorption in diethanolamine (DEA) solution using a glycine promoter. Glycine is chosen as a promoter because glycine is a primary amine compound which is reactive, moreover, glycine has resistance to high temperatures so it will not easy to degradable and suitable for application in industry. The method used in this study is absorption using laboratory scale wetted wall column equipment at atmospheric of pressure. This study will to provide the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that rising temperatures from 303,15 - 328,15 K and the increase of concentration of glycine from 1% - 3% weight will increase the absorption rate of carbon dioxide in DEA promoted with glycine by 24,2% and 59,764% respectively, also the reaction kinetic constant is 1.419 × 1012 exp (-3634/T) (m3/kmol.s). This result show that the addition of glycine as a promoter can increase absorption rate of carbon dioxide in diethanolamine solution and cover the weaknesses of diethanolamine solution.

  8. Induction of CYP1A and cyp2-mediated arachidonic acid epoxygenation and suppression of 20-hydroxyeicosatetraenoic acid by imidazole derivatives including the aromatase inhibitor vorozole.

    PubMed

    Diani-Moore, Silvia; Papachristou, Fotini; Labitzke, Erin; Rifkind, Arleen B

    2006-08-01

    Cytochrome P450 (P450) enzymes metabolize the membrane lipid arachidonic acid to stable biologically active epoxides [eicosatrienoic acids (EETs)] and 20-hydroxyeicosatetraenoic acid (20-HETE). These products have cardiovascular activity, primarily acting as vasodilators and vasoconstrictors, respectively. EET formation can be increased by the prototype CYP1A or CYP2 inducers, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or phenobarbital (PB), respectively. We report here that imidazole derivative drugs: the anthelminthics, albendazole and thiabendazole; the proton pump inhibitor, omeprazole; the thromboxane synthase inhibitor, benzylimidazole; and the aromatase (CYP19) inhibitor vorozole (R76713, racemate; and R83842, (+) enantiomer) increased hepatic microsomal EET formation in a chick embryo model. Albendazole increased EETs by transcriptional induction of CYP1A5 and the others by combined induction of CYP1A5 and CYP2H, the avian orthologs of mammalian CYP1A2 and CYP2B, respectively. All inducers increased formation of the four EET regioisomers, but TCDD and albendazole had preference for 5,6-EET and PB and omeprazole for 14,15-EET. Vorozole, benzylimidazole, and TCDD also suppressed 20-HETE formation. Vorozole was a remarkably effective and potent inducer of multiple hepatic P450s at a dose range which overlapped its inhibition of ovarian aromatase. Increased CYP1A activity in mouse Hepa 1-6 and human HepG2 cells by vorozole and other imidazole derivatives demonstrated applicability of the findings to mammalian cells. The findings suggest that changes in P450-dependent arachidonic acid metabolism may be a new source of side effects for drugs that induce CYP1A or CYP2. They demonstrate further that in vivo induction of multiple hepatic P450s produces additive increases in arachidonic acid epoxygenase activity and can occur concurrently with inhibition of ovarian aromatase activity.

  9. Growth and development of the arborescent cactus Stenocereus queretaroensis in a subtropical semiarid environment, including effects of gibberellic acid.

    PubMed

    Pimienta, Eulogio; Hernandez, Gerardo; Domingues, Alejandro; Nobel, Park S.

    1998-01-01

    In Stenocereus queretaroensis (Weber) Buxbaum, an arborescent cactus cultivated in Jalisco, Mexico, for its fruits but studied here in wild populations, stem extension occurred in the autumn at the beginning of the dry season, flowering and fruiting occurred in the spring at the end of the dry season, and new roots grew in the summer during the wet season. The asynchrony of vegetative and reproductive growth reduces competitive sink effects, which may be advantageous for wild populations growing in infertile rocky soils. Seasonal patterns of sugars in the roots and especially the stems of S. queretaroensis were closely related to the main phenological stages, becoming lower in concentration during periods of major stem extension. Cessation of stem extension occurred in 100-year-old plants for which injection of GA(3) reinitiated such growth. Isolated chlorenchyma cylinders had maximum extension in a bathing solution containing 0.1 &mgr;M gibberellic acid.

  10. On the abiotic formation of amino acids. I - HCN as a precursor of amino acids detected in extracts of lunar samples. II - Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples

    NASA Technical Reports Server (NTRS)

    Yuasa, S.; Flory, D.; Basile, B.; Oro, J.

    1984-01-01

    Two studies on the abiotic formation of amino acids are presented. The first study demonstrates the role of hydrogen cyanide as a precursor of amino acids detected in extracts of lunar samples. The formation of several amino acids, including glycine, alanine, aspartic acid, and glutamic acid, under conditions similar to those used for the analysis of lunar samples is demonstrated. The second study investigates the formation of hydrogen cyanide as well as amino acids from lunar-sample gas mixtures under electrical discharge conditions. These results extend the possibility of synthesis of amino acids to planetary bodies with primordial atmospheres less reducing than a mixture of methane, ammonia, hydrogen and water.

  11. A Rigorous Attempt to Verify Interstellar Glycine

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Lovas, F. J.; Hollis, J. M.; Friedel, D. N.; Jewell, P. R.; Remijan, A.; Ilyushin, V. V.; Alekseev, E. A.; Dyubko, S. F.

    2004-01-01

    In 2003, Kuan, Charnley, and co-workers reported the detection of interstellar glycine (NH2CH2COOH) based on observations of 27 lines in 19 different spectral bands in one or more of the sources Sgr BP(N-LMH), Orion KL, and W51 e1/e2. They supported their detection report with rotational temperature diagrams for all three sources. In this paper, we present essential criteria which can be used in a straightforward analysis technique to confirm the identity of an interstellar asymmetric rotor such as glycine. We use new laboratory measurements of glycine as a basis for applying this analysis technique, both to our previously unpublished 12 m telescope data and to the previously published SEST data of Nummelin and colleagues. We conclude that key lines necessary for an interstellar glycine identification have not yet been found. We identify several common molecular candidates that should be examined further as more likely carriers of the lines reported as glycine. Finally, we illustrate that rotational temperature diagrams used without the support of correct spectroscopic assignments are not a reliable tool for the identification of interstellar molecules. Subject headings: ISM: abundances - ISM: clouds - ISM: individual (Sagittarius B2[N-

  12. Comparison of Small RNA Profiles of Glycine max and Glycine soja at Early Developmental Stages

    PubMed Central

    Sun, Yuzhe; Mui, Zeta; Liu, Xuan; Yim, Aldrin Kay-Yuen; Qin, Hao; Wong, Fuk-Ling; Chan, Ting-Fung; Yiu, Siu-Ming; Lam, Hon-Ming; Lim, Boon Leong

    2016-01-01

    Small RNAs, including microRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs; from PHAS loci), play key roles in plant development. Cultivated soybean, Glycine max, contributes a great deal to food production, but, compared to its wild kin, Glycine soja, it may lose some genetic information during domestication. In this work, we analyzed the sRNA profiles of different tissues in both cultivated (C08) and wild soybeans (W05) at three stages of development. A total of 443 known miRNAs and 15 novel miRNAs showed varying abundances between different samples, but the miRNA profiles were generally similar in both accessions. Based on a sliding window analysis workflow that we developed, 50 PHAS loci generating 55 21-nucleotide phasiRNAs were identified in C08, and 46 phasiRNAs from 41 PHAS loci were identified in W05. In germinated seedlings, phasiRNAs were more abundant in C08 than in W05. Disease resistant TIR-NB-LRR genes constitute a very large family of PHAS loci. PhasiRNAs were also generated from several loci that encode for NAC transcription factors, Dicer-like 2 (DCL2), Pentatricopeptide Repeat (PPR), and Auxin Signaling F-box 3 (AFB3) proteins. To investigate the possible involvement of miRNAs in initiating the PHAS-phasiRNA pathway, miRNA target predictions were performed and 17 C08 miRNAs and 15 W05 miRNAs were predicted to trigger phasiRNAs biogenesis. In summary, we provide a comprehensive description of the sRNA profiles of wild versus cultivated soybeans, and discuss the possible roles of sRNAs during soybean germination. PMID:27929436

  13. Comparison of Small RNA Profiles of Glycine max and Glycine soja at Early Developmental Stages.

    PubMed

    Sun, Yuzhe; Mui, Zeta; Liu, Xuan; Yim, Aldrin Kay-Yuen; Qin, Hao; Wong, Fuk-Ling; Chan, Ting-Fung; Yiu, Siu-Ming; Lam, Hon-Ming; Lim, Boon Leong

    2016-12-06

    Small RNAs, including microRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs; from PHAS loci), play key roles in plant development. Cultivated soybean, Glycine max, contributes a great deal to food production, but, compared to its wild kin, Glycine soja, it may lose some genetic information during domestication. In this work, we analyzed the sRNA profiles of different tissues in both cultivated (C08) and wild soybeans (W05) at three stages of development. A total of 443 known miRNAs and 15 novel miRNAs showed varying abundances between different samples, but the miRNA profiles were generally similar in both accessions. Based on a sliding window analysis workflow that we developed, 50 PHAS loci generating 55 21-nucleotide phasiRNAs were identified in C08, and 46 phasiRNAs from 41 PHAS loci were identified in W05. In germinated seedlings, phasiRNAs were more abundant in C08 than in W05. Disease resistant TIR-NB-LRR genes constitute a very large family of PHAS loci. PhasiRNAs were also generated from several loci that encode for NAC transcription factors, Dicer-like 2 (DCL2), Pentatricopeptide Repeat (PPR), and Auxin Signaling F-box 3 (AFB3) proteins. To investigate the possible involvement of miRNAs in initiating the PHAS-phasiRNA pathway, miRNA target predictions were performed and 17 C08 miRNAs and 15 W05 miRNAs were predicted to trigger phasiRNAs biogenesis. In summary, we provide a comprehensive description of the sRNA profiles of wild versus cultivated soybeans, and discuss the possible roles of sRNAs during soybean germination.

  14. Isolation, sequence identification and tissue expression profile of two novel soybean (glycine max) genes-vestitone reductase and chalcone reductase.

    PubMed

    Liu, G Y

    2009-09-01

    The complete mRNA sequences of two soybean (glycine max) genes-vestitone reductase and chalcone reductase, were amplified using the rapid amplification of cDNA ends methods. The sequence analysis of these two genes revealed that soybean vestitone reductase gene encodes a protein of 327 amino acids which has high homology with the vestitone reductase of Medicago sativa (77%). The soybean chalcone reductase gene encodes a protein of 314 amino acids that has high homology with the chalcone reductase of kudzu vine (88%) and medicago sativa (83%). The expression profiles of the soybean vestitone reductase and chalcone reductase genes were studied and the results indicated that these two soybean genes were differentially expressed in detected soybean tissues including leaves, stems, roots, inflorescences, embryos and endosperm. Our experiment established the foundation for further research on these two soybean genes.

  15. Development of 2′-substituted (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine analogues as potent N-methyl-d-aspartic acid receptor agonists

    PubMed Central

    Risgaard, Rune; Nielsen, Simon D.; Hansen, Kasper B.; Jensen, Christina M.; Nielsen, Birgitte; Traynelis, Stephen F.; Clausen, Rasmus P.

    2013-01-01

    A series of 2′-substituted analogues of the selective NMDA receptor ligand (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine ((S)-CCG-IV) have been designed, synthesized and pharmacologically characterized. The design was based on a docking study hypothesizing that substituents in the 2′-position would protrude into a region where differences among the NMDA receptor GluN2 subunits exist. Various synthetic routes were explored, and two different routes provided a series of alkyl-substituted analogues. Pharmacological characterization revealed that these compounds are NMDA receptor agonists and that potency decreases with increasing size of the alkyl groups. Variations in agonist activity are observed at the different recombinant NMDA receptor subtypes. This study demonstrates that it is possible to introduce substituents in the 2′-position of (S)-CCG-IV while maintaining agonist activity and that variation among NMDA receptor subtypes may be achieved by probing this region of the receptor. PMID:23614571

  16. Effects of isosmotic and hyperosmotic glycine solutions on the fluid balance in conscious sheep.

    PubMed

    Hahn, R; Hjelmqvist, H; Rundgren, M

    1989-01-01

    Glycine 0.55 g.kg-1 was given as an isosmotic (285 mosmol.kg-1) and a hyperosmotic (approx. 3,000 mosmol.kg-1) solution by intravenous infusion during 30 min to six euhydrated ewes. Urine and blood samples were collected, and the distribution of the administered water between the intra- and extracellular fluids (ICF and ECF) was calculated for up to 150 min after the infusions. Both solutions produced an osmotic diuresis with a marked increase of the urinary excretion of sodium, potassium, and amino acids. A paradoxical increase of the plasma vasopressin concentration occurred from the isosmotic but not from the hyperosmotic glycine solution. At the end of the follow-up period, the isosmotic glycine solution had resulted in hyperhydration of the ICF and the hyperosmotic solution in dehydration of the ICF, whereas with both fluids, the ECF resumed the same volume as before the experiments.

  17. Modulation of calcium channels by taurine acting via a metabotropic-like glycine receptor.

    PubMed

    Albiñana, E; Sacristán, S; Martín del Río, R; Solís, J M; Hernández-Guijo, J M

    2010-11-01

    Taurine is one of the most abundant free amino acids in the central nervous system, where it displays several functions. However, its molecular targets remain unknown. It is well known that taurine can activate GABA-A and strychnine-sensitive glycine receptors, which increases a chloride conductance. In this study, we describe that acute application of taurine induces a dose-dependent inhibition of voltage-dependent calcium channels in chromaffin cells from bovine adrenal medullae. This taurine effect was not explained by the activation of either GABA-A, GABA-B or strychnine-sensitive glycine receptors. Interestingly, glycine mimicked the modulatory action exerted by taurine on calcium channels, although the acute application of glycine did not elicit any ionic current in these cells. Additionally, the modulation of calcium channels exerted by both taurine and glycine was prevented by the intracellular dialysis of GDP-β-S. Thus, the modulation of voltage-dependent calcium channels by taurine seems to be mediated by a metabotropic-like glycinergic receptor coupled to G-protein activation in a membrane delimited pathway.

  18. Positron and electron scattering by glycine and alanine: Shape resonances and methylation effect

    NASA Astrophysics Data System (ADS)

    Nunes, Fernanda B.; Bettega, Márcio H. F.; Sanchez, Sergio d'Almeida

    2016-12-01

    We report integral cross sections (ICSs) for both positron and electron scattering by glycine and alanine amino acids. These molecules differ only by a methyl group. We computed the scattering cross sections using the Schwinger multichannel method for both glycine and alanine in different levels of approximation for both projectiles. The alanine ICSs are greater in magnitude than the glycine ICSs for both positron and electron scattering, probably due to the larger size of the molecule. In electron scattering calculations, we found two resonances for each molecule. Glycine presents one at 1.8 eV, and another centered at around 8.5 eV, in the static-exchange plus polarization (SEP) approximation. The ICS for alanine shows one resonance at 2.5 eV and another at around 9.5 eV, also in SEP approximation. The results are in good agreement with most of the data present in the literature. The comparison of the electron scattering ICSs for both molecules indicates that the methylation of glycine destabilizes the resonances, shifting them to higher energies.

  19. Glycine as a regulator of tryptophan-dependent pigment synthesis in Malassezia furfur.

    PubMed

    Barchmann, Thorsten; Hort, Wiebke; Krämer, Hans-Joachim; Mayser, Peter

    2011-01-01

    The effects of the addition of different amino nitrogens on growth, morphology and secondary metabolism of Malassezia furfur were investigated. After primary culture on Dixon agar, M. furfur CBS 1878 was transferred into a fluid medium together with the nitrogen sources, glycine (Gly) or tryptophan (Trp), or a combination of both. Growth was measured by means of a direct cell counting method and pigment synthesis was photometrically assessed. Addition of glycine resulted in an exponential increase in biomass, but not in pigment production. Tryptophan as the sole nitrogen source caused distinct brown staining of the medium, without increasing biomass. Simultaneous equimolar addition of both amino acids resulted in an initial increase in biomass as a sign of preferential metabolism of glycine, followed by a growth plateau and pigment production which, caused by higher biomass, occurred more rapidly than after addition of tryptophan alone. The yeast-cell morphology changed from round to oval. Addition of glycine to the tryptophan-containing liquid culture stopped pigment formation with simultaneous growth induction. These in vitro on-off phenomena depending on the nitrogen source might be significant in the pathogenesis of pityriasis versicolor: hyperhidrosis followed by preferential consumption of individual nitrogen sources such as glycine with exponential growth and thereafter transamination of tryptophan and TRP-dependent pigment synthesis.

  20. Multi-species nitrifying biofilm model (MSNBM) including free ammonia and free nitrous acid inhibition and oxygen limitation.

    PubMed

    Park, Seongjun; Bae, Wookeun; Rittmann, Bruce E

    2010-04-15

    A multi-species nitrifying biofilm model (MSNBM) is developed to describe nitrite accumulation by simultaneous free ammonia (FA) and free nitrous acid (FNA) inhibition, direct pH inhibition, and oxygen limitation in a biofilm. The MSNBM addresses the spatial gradient of pH with biofilm depth and how it induces changes of FA and FNA speciation and inhibition. Simulations using the MSNBM in a completely mixed biofilm reactor show that influent total ammonia nitrogen (TAN) concentration, bulk dissolved oxygen (DO) concentration, and buffer concentration exert significant control on the suppression of nitrite-oxidizing bacteria (NOB) and shortcut biological nitrogen removal (SBNR), but the pH in the bulk liquid has a weaker influence. Ammonium oxidation increases the nitrite concentration and decreases the pH, which together can increase FNA inhibition of NOB in the biofilm. Thus, a low buffer concentration can accentuate SBNR. DO and influent TAN concentrations are efficient means to enhance DO limitation, which affects NOB more than ammonia-oxidizing bacteria (AOB) inside the biofilm. With high influent TAN concentration, FA inhibition is dominant at an early phase, but finally DO limitation becomes more important as TAN degradation and biofilm growth proceed. MSNBM results indicate that oxygen depletion and FNA inhibition throughout the biofilm continuously suppress the growth of NOB, which helps achieve SBNR with a lower TAN concentration than in systems without concentration gradients.

  1. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE1[OPEN

    PubMed Central

    Van de Wouwer, Dorien; Decou, Raphaël; Audenaert, Dominique; Nguyen, Long

    2016-01-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  2. Antidepressants modulate glycine action in rat hippocampus.

    PubMed

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-12-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current.

  3. Antidepressants modulate glycine action in rat hippocampus

    PubMed Central

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-01-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  4. Thermal effects of carbonated hydroxyapatite modified by glycine and albumin

    NASA Astrophysics Data System (ADS)

    Gerk, S. A.; Golovanova, O. A.; Kuimova, M. V.

    2017-01-01

    In this work calcium phosphate powders were obtained by precipitation method from simulated solutions of synovial fluid containing glycine and albumin. X-ray diffraction and IR spectroscopy determined that all samples are single-phase and are presented by carbonate containing hydroxyapatite (CHA). The thermograms of solid phases of CHA were obtained and analyzed; five stages of transformation in the temperature range of 25-1000°C were marked. It is shown that in this temperature range dehydration, decarboxylation and thermal degradation of amino acid and protein connected to the surface of solid phase occur. The tendency of temperature lowering of the decomposition of powders synthesized from a medium containing organic substances was determined. Results demonstrate a direct dependence between the concentration of the amino acid in a model solution and its content in the solid phase.

  5. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    PubMed Central

    Ortega-Amaro, María A.; Rodríguez-Hernández, Aída A.; Rodríguez-Kessler, Margarita; Hernández-Lucero, Eloísa; Rosales-Mendoza, Sergio; Ibáñez-Salazar, Alejandro; Delgado-Sánchez, Pablo; Jiménez-Bremont, Juan F.

    2015-01-01

    Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif (RRM). AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8, and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling. PMID:25653657

  6. Influence of Ca2+ on the plasma membrane potential and electrogenic uptake of glycine by myeloma cells. Involvement of a Ca2+-activated K+ channel.

    PubMed

    Pershadsingh, H A; Stubbs, E B; Noteboom, W D; Vorbeck, M L; Martin, A P

    1985-12-19

    The involvement of Ca2+-activated K+ channels in the regulation of the plasma membrane potential and electrogenic uptake of glycine in SP 2/0-AG14 lymphocytes was investigated using the potentiometric indicator 3,3'-diethylthiodicarbocyanine iodide. The resting membrane potential was estimated to be -57 +/- 6 mV (n = 4), a value similar to that of normal lymphocytes. The magnitude of the membrane potential and the electrogenic uptake of glycine were dependent on the extracellular K+ concentration, [K+]o, and were significantly enhanced by exogenous calcium. The apparent Vmax of Na+-dependent glycine uptake was doubled in the presence of calcium, whereas the K0.5 was not affected. Ouabain had no influence on the membrane potential under the conditions employed. Additional criteria used to demonstrate the presence of Ca2+-activated K+ channels included the following: (1) addition of EGTA to calcium supplemented cells elicited a rapid depolarization of the membrane potential that was dependent on [K+]o; (2) the calmodulin antagonist, trifluoperazine, depolarized the membrane potential in a dose-dependent and saturable manner with an IC50 of 9.4 microM; and (3) cells treated with the Ca2+-activated K+ channel antagonist, quinine, demonstrated an elevated membrane potential and depressed electrogenic glycine uptake. Results from the present study provide evidence for Ca2+-activated K+ channels in SP 2/0-AG14 lymphocytes, and that their involvement regulates the plasma membrane potential and thereby the electrogenic uptake of Na+-dependent amino acids.

  7. Simultaneous optimization of monolayer formation factors, including temperature, to significantly improve nucleic acid hybridization efficiency on gold substrates.

    PubMed

    Pris, Andrew D; Ostrowski, Sara G; Garaas, Sarah D

    2010-04-20

    Past literature investigations have optimized various single factors used in the formation of thiolated, single stranded DNA (ss-DNA) monolayers on gold. In this study a more comprehensive approach is taken, where a design of experiment (DOE) is employed to simultaneously optimize all of the factors involved in construction of the capture monolayer used in a fluorescence-based hybridization assay. Statistical analysis of the fluorescent intensities resulting from the DOE provides empirical evidence for the importance and the optimal levels of traditional and novel factors included in this investigation. We report on the statistical importance of a novel factor, temperature of the system during monolayer formation of the capture molecule and lateral spacer molecule, and how proper usage of this temperature factor increased the hybridization signal 50%. An initial theory of how the physical factor of heat is mechanistically supplementing the function of the lateral spacer molecule is provided.

  8. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD.

    PubMed Central

    Kappes, R M; Kempf, B; Bremer, E

    1996-01-01

    The accumulation of the osmoprotectant glycine betaine from exogenous sources provides a high degree of osmotic tolerance to Bacillus subtilis. We have identified, through functional complementation of an Escherichia coli mutant defective in glycine betaine uptake, a new glycine betaine transport system from B. subtilis. The DNA sequence of a 2,310-bp segment of the cloned region revealed a single gene (opuD) whose product (OpuD) was essential for glycine betaine uptake and osmoprotection in E. coli. The opuD gene encodes a hydrophobic 56.13-kDa protein (512 amino acid residues). OpuD shows a significant degree of sequence identity to the choline transporter BetT and the carnitine transporter CaiT from E. coli and a BetT-like protein from Haemophilus influenzae. These membrane proteins form a family of transporters involved in the uptake of trimethylammonium compounds. The OpuD-mediated glycine betaine transport activity in B. subtilis is controlled by the environmental osmolarity. High osmolarity stimulates de novo synthesis of OpuD and activates preexisting OpuD proteins to achieve maximal glycine betaine uptake activity. An opuD mutant was constructed by marker replacement, and the OpuD-mediated glycine betaine uptake activity was compared with that of the previously identified multicomponent OpuA and OpuC (ProU) glycine betaine uptake systems. In addition, a set of mutants was constructed, each of which synthesized only one of the three glycine betaine uptake systems. These mutants were used to determine the kinetic parameters for glycine betaine transport through OpuA, OpuC, and OpuD. Each of these uptake systems shows high substrate affinity, with Km values in the low micromolar range, which should allow B. subtilis to efficiently acquire the osmoprotectant from the environment. The systems differed in their contribution to the overall glycine betaine accumulation and osmoprotection. A triple opuA, opuC, and opuD mutant strain was isolated, and it showed no

  9. Rapid crystallization of glycine using metal-assisted and microwave-accelerated evaporative crystallization: the effect of engineered surfaces and sample volume

    PubMed Central

    Grell, Tsehai A.J.; Pinard, Melissa A.; Pettis, Danielle; Aslan, Kadir

    2012-01-01

    Metal-Assisted and Microwave-Accelerated Evaporative Crystallization (MA-MAEC), is a new approach to crystallization of drug compounds, amino acids, DNA and proteins. In this work, we report our additional findings on the effect of engineered surfaces and sample volume on the rapid crystallization of glycine. With the use of hydrophilic functionalized surfaces and the MA-MAEC technique, glycine crystals ~1 mm in size were grown in 35 seconds with 100% selectivity for the α-form.The use of moderately hydrophobic surfaces resulted in the growth of glycine crystals only at room temperature. An increase in volume of initial glycine solution (5-100 μL) resulted in an increase in crystal size without a significant increase in total crystallization time. Raman spectroscopy and powder X-ray diffraction results demonstrated that the glycine crystals grown on engineered surfaces were structurally identical to those grown using conventional evaporative crystallization. PMID:23336084

  10. Engineering and characterization of fluorogenic glycine riboswitches

    PubMed Central

    Ketterer, Simon; Gladis, Lukas; Kozica, Adnan; Meier, Matthias

    2016-01-01

    A set of 12 fluorogenic glycine riboswitches with different thermodynamic and kinetic response properties was engineered. For the design of functional riboswitches, a three-part RNA approach was applied based on the idea of linking a RNA sensor, transmitter and actuator part together. For the RNA sensor and actuator part, we used the tandem glycine aptamer structure from Bacillus subtillis, and fluorogenic aptamer Spinach, respectively. To achieve optimal signal transduction from the sensor to the actuator, a riboswitch library with variable transmitter was screened with a microfluidic large-scale integration chip. This allowed us to establish the complete thermodynamic binding profiles of the riboswitch library. Glycine dissociation constants of the 12 strong fluorescence response riboswitches varied between 99.7 and 570 μM. Furthermore, the kinetic glycine binding (kon), and dissociation (koff) rates, and corresponding energy barriers of the 10 strongest fluorescence response riboswitches were determined with the same chip platform. kon and koff were in the order of 10−3s−1 and 10−2s−1, respectively. Conclusively, we demonstrate that systematic screening of synthetic and natural linked RNA parts with microfluidic chip technology is an effective approach to rapidly generate fluorogenic metabolite riboswitches with a broad range of biophysical response properties. PMID:27220466

  11. Identification of Rotylenchulus reniformis resistant Glycine lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the Mid South. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen....

  12. Pressure Effects on the Abiotic Polymerization of Glycine

    NASA Astrophysics Data System (ADS)

    Ohara, Shohei; Kakegawa, Takeshi; Nakazawa, Hiromoto

    2007-06-01

    Polymerization experiments were performed using dry glycine under various pressures of 5 100 MPa at 150°C for 1 32 days. The series of experiments was carried out under the assumption that the pore space of deep sediments was adequate for dehydration polymerization of pre-biotic molecules. The products show various colors ranging from dark brown to light yellow, depending on the pressure. Visible and infrared spectroscopy reveal that the coloring is the result of formation of melanoidins at lower pressures. High-performance liquid chromatography and mass spectrometry analyses of the products show that: (1) glycine in all the experimental runs oligomerizes from 2-mer to 10-mer; (2) the yields are dependent on pressure up to 25 MPa and decrease slightly thereafter; and (3) polymerization progressed for the first 8 days, while the amounts of oligomers remained constant for longer-duration runs of up to 32 days. These results suggest that pressure inhibits the decomposition of amino acids and encourages polymerization in the absence of a catalyst. Our results further imply that abiotic polymerization could have occurred during diagenesis in deep sediments rather than in oceans.

  13. Oral glycine administration increases brain glycine/creatine ratios in men: a proton magnetic resonance spectroscopy study

    PubMed Central

    Kaufman, Marc J.; Prescot, Andrew P.; Ongur, Dost; Evins, A. Eden; Barros, Tanya L.; Medeiros, Carissa L.; Covell, Julie; Wang, Liqun; Fava, Maurizio; Renshaw, Perry F.

    2009-01-01

    Oral high-dose glycine administration has been used as an adjuvant treatment for schizophrenia to enhance glutamate neurotransmission and mitigate glutamate system hypofunction thought to contribute to the disorder. Prior studies in schizophrenia subjects documented clinical improvements after 2 weeks of oral glycine administration, suggesting that brain glycine levels are sufficiently elevated to evoke a clinical response within that time frame. However, no human study has reported on brain glycine changes induced by its administration. We utilized a noninvasive proton magnetic resonance spectroscopy (1H-MRS) technique termed echo time-averaged (TEAV) 1H-MRS, which permits noninvasive quantification of brain glycine in vivo, to determine whether 2 weeks of oral glycine administration (peak dose of 0.8g/kg/day) increased brain glycine/creatine (Gly/Cr) ratios in 11 healthy adult men. In scans obtained 17 hours after the last glycine dose, brain (Gly/Cr) ratios were significantly increased. The data indicate that it is possible to measure brain glycine changes with proton spectroscopy. Developing a more comprehensive understanding of human brain glycine dynamics may lead to optimized use of glycine site agonists and glycine transporter inhibitors to treat schizophrenia, and possibly to treat other disorders associated with glutamate system dysfunction. PMID:19556112

  14. Sorption of Cu(II) complexes with ligands tartrate, glycine and quadrol by chitosan.

    PubMed

    Gyliene, Ona; Binkiene, Rima; Butkiene, Rita

    2009-11-15

    The sorption by chitosan in Cu(II) solutions containing tartrate, glycine (amino acetic acid) and quadrol (N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine) as ligands has been investigated. The degree of sorbate removal strongly depends on pH. In solutions containing tartrate almost complete sorption of both Cu(II) and tartrate proceeds in mildly acidic and neutral solutions. The sorption of Cu(II) is also complete in alkaline solutions containing glycine; meanwhile a substantial sorption of glycine proceeds at pH approximately 6. The Cu(II) sorption in solutions containing quadrol is insignificant. Any sorption of quadrol does not proceed in the whole range of pH investigated. The investigations under equilibrium conditions showed that the Cu(II) sorption from tartrate containing solutions obeys Freundlich equation and in solutions containing glycine and quadrol it fits Langmuir equation. Supposedly, Cu(II) sorption onto chitosan proceeds with formation of amino complexes onto the surface of chitosan; the sorption of tartrate proceeds as electrostatic as well as with formation of amide bonds. Applying of electrolysis enables a complete removal of sorbed Cu(II) and ligands without changes in physical and chemical properties of chitosan. This is confirmed by sorption ability of regenerated chitosan, measurements of its molecular weight, the deacetylation degree and FT-IR spectra.

  15. Core-level electronic structure of solid-phase glycine, glycyl-glycine, diglycyl-glycine, and polyglycine: X-ray photoemission analysis and Hartree-Fock calculations of their zwitterions.

    PubMed

    Chatterjee, Avisek; Zhao, Liyan; Zhang, Lei; Pradhan, Debabrata; Zhou, Xiaojing; Leung, K T

    2008-09-14

    X-ray photoelectron spectroscopy (XPS) has been used to investigate the core-level electronic structures of glycine (G) and its peptides, including glycyl-glycine (GG), diglycyl-glycine (GGG), and polyglycine (poly-G), in their powder forms. Increasing the number of G units in the peptides does not change the locations of the respective C 1s, N 1s, and O 1s features corresponding to different functional groups: -COO(-), -NH(3)(+), >CH(2), and -CONH-. The electronic structures of the zwitterions of these molecules have been calculated as isolated molecules and as molecules in an aqueous environment under the periodic boundary conditions by quantum-mechanical and molecular mechanics methods. In the case of glycine zwitterion, the binding energies of the C 1s, N 1s, and O 1s XPS features are found to be in reasonable accord with the respective orbital energies obtained by Hartree-Fock self-consistent-field calculations, within the context of Koopmans' approximation. However, considerably worse agreement in the binding energies is found for the larger zwitterions (with the specific conformations considered in this work), indicating the need for higher-level calculations. The present work shows that optimizing the zwitterion in an aqueous environment under the periodic boundary conditions by molecular mechanics could be a very cost-effective approach for calculating the electronic structures of large, complex biomolecular systems.

  16. Activation of glycine receptor phase-shifts the circadian rhythm in neuronal activity in the mouse suprachiasmatic nucleus

    PubMed Central

    Mordel, Jérôme; Karnas, Diana; Inyushkin, Alexey; Challet, Etienne; Pévet, Paul; Meissl, Hilmar

    2011-01-01

    Abstract In mammals, the master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is composed of numerous synchronized oscillating cells that drive daily behavioural and physiological processes. Several entrainment pathways, afferent inputs to the SCN with their neurotransmitter and neuromodulator systems, can reset the circadian system regularly and also modulate neuronal activity within the SCN. In the present study, we investigated the function of the inhibitory neurotransmitter glycine on neuronal activity in the mouse SCN and on resetting of the circadian clock. The effects of glycine on the electrical activity of SCN cells from C57Bl/6 mice were studied either by patch-clamp recordings from acute brain slices or by long-term recordings from organotypic brain slices using multi-microelectrode arrays (MEA). Voltage-clamp recordings confirmed the existence of glycine-induced, chloride-selective currents in SCN neurons. These currents were reversibly suppressed by strychnine, phenylbenzene ω-phosphono-α-amino acid (PMBA) or ginkgolide B, selective blockers of glycine receptors (GlyRs). Long-term recordings of the spontaneous activity of SCN neurons revealed that glycine application induces a phase advance during the subjective day and a phase delay during the early subjective night. Both effects were suppressed by strychnine or by PMBA. These results suggest that glycine is able to modulate circadian activity by acting directly on its specific receptors in SCN neurons. PMID:21486797

  17. Inhibitors of Glycine Transporter-1: Potential Therapeutics for the Treatment of CNS Disorders.

    PubMed

    Cioffi, Christopher L; Guzzo, Peter R

    2016-01-01

    Glycine acts as an inhibitory neurotransmitter at glycine receptor (GlyR)-enriched synapses and as an obligatory co-agonist at the N-methyl-D-aspartate (NMDA) receptor, where it facilitates neuronal excitation. Two high-affinity and substrate selective transporters, glycine transporter-1 and glycine transporter-2 (GlyT-1 and GlyT-2), regulate extracellular glycine concentrations within the CNS and as such, play critical roles in maintaining a balance between inhibitory and excitatory neurotransmission. GlyT-1 inhibition has been extensively examined as a potential means by which to treat several CNS disorders that include schizophrenia, depression, anxiety, obsessive compulsive disorder (OCD), and addiction. More recently, preclinical studies have emerged that indicate the approach may also promote neuroprotection, provide a pharmacotherapeutic strategy for autism spectrum disorders (ASDs), and treat symptomology associated with pain, Parkinson's disease, and epilepsy. This review examines the pharmacological aspects of GlyT-1 inhibition and describes drug discovery and development efforts toward the identification of novel inhibitors.

  18. Glycine increases preimplantation development of mouse oocytes following vitrification at the germinal vesicle stage

    PubMed Central

    Cao, Xin-Yan; Rose, Jack; Wang, Shi-Yong; Liu, Yong; Zhao, Meng; Xing, Ming-Jie; Chang, Tong; Xu, Baozeng

    2016-01-01

    Ice-free cryopreservation, referred to as vitrification, is receiving increased attention in the human and animal assisted reproduction. However, it introduces the detrimental osmotic stress by adding and removing high contents of cryoprotectants. In this study, we evaluated the effects of normalizing cell volume regulation by adding glycine, an organic osmolyte, during vitrification of mouse germinal vesicle stage oocyte and/or subsequent maturation on its development. The data showed that glycine supplementation in either vitrification/thawing or maturation medium significantly improved the cytoplasmic maturation of MII oocytes manifested by spindle assembly, chromosomal alignment, mitochondrial distribution, euploidy rate, and blastocyst development following fertilization in vitro, compared to the control without glycine treatment. Furthermore, glycine addition during both vitrification/thawing and maturation further enhanced the oocyte quality demonstrated by various markers, including ATP contents and embryo development. Lastly, the effect of anti-apoptosis was also observed when glycine was added during vitrification. Our result suggests that reducing osmotic stress induced by vitrification could improve the development of vitrified mouse oocyte. PMID:27845423

  19. Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes.

    PubMed

    Xie, Weijia; Wood, Andrew R; Lyssenko, Valeriya; Weedon, Michael N; Knowles, Joshua W; Alkayyali, Sami; Assimes, Themistocles L; Quertermous, Thomas; Abbasi, Fahim; Paananen, Jussi; Häring, Hans; Hansen, Torben; Pedersen, Oluf; Smith, Ulf; Laakso, Markku; Dekker, Jacqueline M; Nolan, John J; Groop, Leif; Ferrannini, Ele; Adam, Klaus-Peter; Gall, Walter E; Frayling, Timothy M; Walker, Mark

    2013-06-01

    Circulating metabolites associated with insulin sensitivity may represent useful biomarkers, but their causal role in insulin sensitivity and diabetes is less certain. We previously identified novel metabolites correlated with insulin sensitivity measured by the hyperinsulinemic-euglycemic clamp. The top-ranking metabolites were in the glutathione and glycine biosynthesis pathways. We aimed to identify common genetic variants associated with metabolites in these pathways and test their role in insulin sensitivity and type 2 diabetes. With 1,004 nondiabetic individuals from the RISC study, we performed a genome-wide association study (GWAS) of 14 insulin sensitivity-related metabolites and one metabolite ratio. We replicated our results in the Botnia study (n = 342). We assessed the association of these variants with diabetes-related traits in GWAS meta-analyses (GENESIS [including RISC, EUGENE2, and Stanford], MAGIC, and DIAGRAM). We identified four associations with three metabolites-glycine (rs715 at CPS1), serine (rs478093 at PHGDH), and betaine (rs499368 at SLC6A12; rs17823642 at BHMT)-and one association signal with glycine-to-serine ratio (rs1107366 at ALDH1L1). There was no robust evidence for association between these variants and insulin resistance or diabetes. Genetic variants associated with genes in the glycine biosynthesis pathways do not provide consistent evidence for a role of glycine in diabetes-related traits.

  20. Density-Dependent Yield of Heterodera glycines-Resistant and -Susceptible Cultivars

    PubMed Central

    Koenning, S. R.

    2000-01-01

    Yield of the soybean (Glycine max) cultivar Hartwig with resistance to all races of Heterodera glycines was compared to that of the susceptible cultivar, Deltapine 105, in a field infested with race 2 of this pathogen. The field had previously been in a cropping sequence experiment that provided a range of H. glycines population densities affording the opportunity to evaluate yield potential of resistant and susceptible cultivars in the presence of different levels of soybean cyst nematode in 1992. Plots were planted again in 1993 with the two cultivars in sequences that included Hartwig following Hartwig or Deltapine 105, and Deltapine 105 following Hartwig or Deltapine 105. The yield of Hartwig was inferior to Deltapine 105 at low population densities of H. glycines, but Hartwig yielded more than Deltapine 105 at high population densities. Hartwig was effective in suppressing H. glycines population density compared to susceptible Deltapine 105. The seed yield of Hartwig following Deltapine 105 or Hartwig, and Deltapine 105 following Hartwig yielded more than Deltapine 105 grown for 2 years. PMID:19271001

  1. Increased plasma concentrations of aspartate, glutamate and glycine in Parkinson's disease.

    PubMed

    Iwasaki, Y; Ikeda, K; Shiojima, T; Kinoshita, M

    1992-10-12

    We measured fasting plasma amino acids in 20 patients with Parkinson's disease (PD) and 20 controls matched for age and sex. PD patients had significant elevations in plasma levels of aspartate, glutamate and glycine. The levels of other amino acids were not significantly different from those found in controls. No correlation was noted between PD severity and the degree of abnormality of plasma amino acids. We conclude that excitatory amino acids may be altered in patients with PD, and raise the possibility that neuroexcitotoxic mechanisms may be involved in the neurodegeneration of PD.

  2. Glycine supplementation in vitro enhances porcine preimplantation embryo cell number and decreases apoptosis but does not lead to live births

    PubMed Central

    Redel, Bethany K.; Spate, Lee D.; Lee, Kiho; Mao, Jiude; Whitworth, Kristin M.

    2016-01-01

    SUMMARY Most in vitro culture conditions are less‐than‐optimal for embryo development. Here, we used a transcriptional‐profiling database to identify culture‐induced differences in gene expression in porcine blastocysts compared to in vivo‐produced counterparts. Genes involved in glycine transport (SLC6A9), glycine metabolism (GLDC, GCSH, DLD, and AMT), and serine metabolism (PSAT1, PSPH, and PHGDH) were differentially expressed. Addition of 10 mM glycine to the culture medium (currently containing 0.1 mM) reduced the abundance of SLC6A9 transcript and increased total cell number, primarily in the trophectoderm lineage (P = 0.003); this was likely by decreasing the percentage of apoptotic nuclei. As serine and glycine can be reversibly metabolized by serine hydroxymethyltransferase 2 (SHMT2), we assessed the abundance of SHMT2 transcript as well as its functional role by inhibiting it with aminomethylphosphonic acid (AMPA), a glycine analog, during in vitro culture. Both AMPA supplementation and elevated glycine decreased the mRNA abundance of SHMT2 and tumor protein p53 (TP53), which is activated in response to cellular stress, compared to controls (P ≤ 0.02). On the other hand, mitochondrial activity of blastocysts, mtDNA copy number, and abundance of mitochondria‐related transcripts did not differ between control and 10 mM glycine culture conditions. Despite improvements to these metrics of blastocyst quality, transfer of embryos cultured in 10 mM glycine did not result in pregnancy whereas the transfer of in vitro‐produced embryos cultured in control medium yielded live births. Mol. Reprod. Dev. 83: 246–258, 2016. © 2016 The Authors. PMID:26824641

  3. Cytoprotection of kidney epithelial cells by compounds that target amino acid gated chloride channels.

    PubMed

    Venkatachalam, M A; Weinberg, J M; Patel, Y; Saikumar, P; Dong, Z

    1996-02-01

    Glycine, strychnine and certain chloride channel blockers were reported to protect cells against lethal cell injury. These effects have been attributed to interactions with membrane proteins related to CNS glycine gated chloride channel receptors. We have investigated the pharmacology of these actions. Madin-Darby canine kidney (MDCK) epithelial cells were depleted of adenosine triphosphate (ATP) by incubation in glucose free medium containing a mitochondrial uncoupler. Medium Ca2+ was adjusted to 100 nM in the presence of an ionophore such that intracellular Ca2+ did not increase, and Ca(2+)-related injury mechanisms were inhibited. This permitted more sensitive quantitation of protection against cell injury attributable to glycine or other agents whose actions might be related to those of the amino acid. Two classes of compounds showed cytoprotective activity in this system: (1) ligands at chloride channel receptors, such as glycine, strychnine and avermectin B1a; (2) chloride channel blockers, including cyanotriphenylboron and niflumic acid, both of which are known to bind to channel domains of CNS glycine receptors. Morphological and functional studies showed that the compounds preserved plasma membrane integrity, but permitted cell swelling. Substitution of medium chloride by gluconate, or chloride salts by sucrose, did not substantially modify lethal damage or its prevention by glycine or other drugs. The compounds did not modify ATP declines. At least for some compounds, cytoprotection appeared to be specific to structural features on the molecules. These observations are consistent with the hypothesis that a plasma membrane protein related to glycine-gated chloride channel receptors plays a significant role in cell injury, but indicate that the mechanisms of injury and protection by compounds active in this system are not related to chloride fluxes.

  4. Individual ((f,t) A)- and ((f,t) C)-Fullerene-Based Nickel(II) Glycinates: Protected Chiral Amino Acids Directly Linked to a Chiral π-Electron System.

    PubMed

    Levitskiy, Oleg A; Grishin, Yuri K; Semivrazhskaya, Olesya O; Ambartsumyan, Asmik A; Kochetkov, Konstantin A; Magdesieva, Tatiana V

    2017-03-01

    Stereoselective electrosynthesis of the first individual ((f,t) A)- and ((f,t) C)-1,4-fullerene derivatives with a non-inherently chiral functionalization pattern is described, as well as the first example of an optically pure protected primary amino acid directly linked to the fullerene through only the chiral α-amino-acid carbon atom. An application of an auxiliary chiral nickel-Schiff base moiety as derivatizing agent allowed separation of ((f,t) A)- and ((f,t) C)-1,4-fullerene derivatives using an achiral stationary phase, a separation which has never been done before.

  5. Degradation of glycine and alanine on irradiated quartz.

    PubMed

    Pawlikowski, Maciej; Benko, Aleksandra; Wróbel, Tomasz P

    2013-04-01

    Recent researches suggest participation of minerals in the formation of life under primordial conditions. Among all of the minerals, quartz seems to be one of the most probable to take part in such processes. However, an external source of energy is needed, e.g. electric discharge. A device simulating the proposed conditions was designed and was used to simulate prebiotic conditions. Investigation of processes occurring during the stimulation of quartz with electric discharge was studied by means of Ultraviolet-visible (UV-VIS) spectroscopy, in order to monitor the generation kinetics of free radicals. Additionally, infrared spectroscopy was applied to identify chemical reaction products created in a solution of alanine or glycine, in the presence of quartz treated with electric discharge. Formation of increased amounts of free radicals, compared to experiments performed without quartz and/or amino acid, is reported, along with identification of possible degradation products of alanine. No synthetic reactions were observed.

  6. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord.

    PubMed

    Berki, A C; O'Donovan, M J; Antal, M

    1995-11-27

    The development of immunoreactivity for the putative inhibitory amino acid neurotransmitter glycine was investigated in the embryonic and posthatched chick lumbosacral spinal cord by using postembedding immunocytochemical methods. Glycine immunoreactive perikarya were first observed at embryonic day 8 (E8) both in the dorsal and ventral gray matters. The number of immunostained neurons sharply increased by E10 and was gradually augmented further at later developmental stages. The general pattern of glycine immunoreactivity characteristic of mature animals had been achieved by E12 and was only slightly altered afterward. Most of the immunostained neurons were located in the presumptive deep dorsal horn (laminae IV-VI) and lamina VII, although glycine-immunoreactive neurons were scattered throughout the entire extent of the spinal gray matter. By using some of our previously obtained and published data concerning the development of gamma-aminobutyric acid (GABA)-ergic neurons in the embryonic chick lumbosacral spinal cord, we have compared the numbers, sizes, and distribution of glycine- and GABA-immunoreactive spinal neurons at various developmental stages and found the following marked differences in the developmental characteristics of these two populations of putative inhibitory interneurons. (i) GABA immunoreactivity was expressed very early (E4), whereas immunoreactivity for glycine appeared relatively late (E8) in embryonic development. (ii) In the ventral horn, GABA immunoreactivity declined, whereas immunoreactivity for glycine gradually increased from E8 onward in such a manner that the sum of glycinergic and GABAergic perikarya remained constant during the second half of embryonic development. (iii) Glycinergic and GABAergic neurons showed different distribution patterns in the spinal gray matter throughout the entire course of embryogenesis as well as in the posthatched animal. When investigating the colocalization of glycine and GABA immunoreactivities

  7. Targeted mutation of Δ12 and Δ15 desaturase genes in hemp produce major alterations in seed fatty acid composition including a high oleic hemp oil.

    PubMed

    Bielecka, Monika; Kaminski, Filip; Adams, Ian; Poulson, Helen; Sloan, Raymond; Li, Yi; Larson, Tony R; Winzer, Thilo; Graham, Ian A

    2014-06-01

    We used expressed sequence tag library and whole genome sequence mining to identify a suite of putative desaturase genes representing the four main activities required for production of polyunsaturated fatty acids in hemp seed oil. Phylogenetic-based classification and developing seed transcriptome analysis informed selection for further analysis of one of seven Δ12 desaturases and one of three Δ15 desaturases that we designate CSFAD2A and CSFAD3A, respectively. Heterologous expression of corresponding cDNAs in Saccharomyces cerevisiae showed CSFAD2A to have Δx+3 activity, while CSFAD3A activity was exclusively at the Δ15 position. TILLING of an ethyl methane sulphonate mutagenized population identified multiple alleles including non-sense mutations in both genes and fatty acid composition of seed oil confirmed these to be the major Δ12 and Δ15 desaturases in developing hemp seed. Following four backcrosses and sibling crosses to achieve homozygosity, csfad2a-1 was grown in the field and found to produce a 70 molar per cent high oleic acid (18:1(Δ9) ) oil at yields similar to wild type. Cold-pressed high oleic oil produced fewer volatiles and had a sevenfold increase in shelf life compared to wild type. Two low abundance octadecadienoic acids, 18:2(Δ6,9) and 18:2(Δ9,15), were identified in the high oleic oil, and their presence suggests remaining endogenous desaturase activities utilize the increased levels of oleic acid as substrate. Consistent with this, CSFAD3A produces 18:2(Δ9,15) from endogenous 18:1(Δ9) when expressed in S. cerevisiae. This work lays the foundation for the development of additional novel oil varieties in this multipurpose low input crop.

  8. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity.

    PubMed

    Peskin, Alexander V; Midwinter, Robyn G; Harwood, David T; Winterbourn, Christine C

    2005-02-01

    Hypochlorous acid formed by activated neutrophils reacts with amines to produce chloramines. Chloramines vary in stability, reactivity, and cell permeability. We have examined whether chloramine exchange occurs between physiologically important amines or amino acids and if this affects interactions of chloramines with cells. We have demonstrated transchlorination reactions between histamine, glycine, and taurine chloramines by measuring chloramine decay rates with mixtures as well as by mass spectrometry. Kinetic analysis suggested the formation of an intermediate complex with a high Km. Apparent second-order rate constants, determined for concentrations glycine chloramine (Gly-Cl) and taurine, Gly-Cl and histamine, histamine chloramine and glycine, and taurine chloramine (Tau-Cl) and glycine, respectively. Thus with 10 mM amine concentrations, half-lives for chloramine exchange are of the order of a few minutes. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity in cells was measured as an indicator of permeability of the chloramines. When endothelial or Jurkat cells were treated in Hanks' buffer, Gly-Cl inhibited GAPDH, whereas Tau-Cl, which does not penetrate the cells, did not. Adding glycine to Tau-Cl brought about inhibition, whereas taurine mitigated the effect of Gly-Cl. For cells in full medium, high chloramine concentrations were needed to inhibit GAPDH because of scavenging by methionine and other constituents. In methionine-free medium, chlorine exchange resulted in GAPDH inhibition by Tau-Cl, whereas Gly-Cl was less effective than in Hanks' buffer. Thus interchange between chloramines occurs readily and modulates their cellular effects.

  9. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity.

    PubMed

    Peskin, Alexander V; Midwinter, Robyn G; Harwood, David T; Winterbourn, Christine C

    2004-11-15

    Hypochlorous acid formed by activated neutrophils reacts with amines to produce chloramines. Chloramines vary in stability, reactivity, and cell permeability. We have examined whether chloramine exchange occurs between physiologically important amines or amino acids and if this affects interactions of chloramines with cells. We have demonstrated transchlorination reactions between histamine, glycine, and taurine chloramines by measuring chloramine decay rates with mixtures as well as by mass spectrometry. Kinetic analysis suggested the formation of an intermediate complex with a high K(m). Apparent second-order rate constants, determined for concentrations glycine chloramine (Gly-Cl) and taurine, Gly-Cl and histamine, histamine chloramine and glycine, and taurine chloramine (Tau-Cl) and glycine, respectively. Thus with 10 mM amine concentrations, half-lives for chloramine exchange are on the order of a few minutes. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity in cells was measured as an indicator of permeability of the chloramines. When endothelial or Jurkat cells were treated in Hanks' buffer, Gly-Cl inhibited GAPDH, whereas Tau-Cl, which does not penetrate the cells, did not. Adding glycine to Tau-Cl brought about inhibition, whereas taurine mitigated the effect of Gly-Cl. For cells in full medium, high chloramine concentrations were needed to inhibit GAPDH because of scavenging by methionine and other constituents. In methionine-free medium, chlorine exchange resulted in GAPDH inhibition by Tau-Cl, whereas Gly-Cl was less effective than in Hanks' buffer. Thus interchange between chloramines occurs readily and modulates their cellular effects.

  10. Glycine post-synthetic modification of MIL-53(Fe) metal-organic framework with enhanced and stable peroxidase-like activity for sensitive glucose biosensing.

    PubMed

    Dong, Wenfei; Yang, Liaoyuan; Huang, Yuming

    2017-05-15

    A facile and rapid post-synthetic strategy was proposed to prepare a glycine functionalized MIL-53(Fe), namely glycine-MIL-53(Fe), by a simple mixing of water dispersible MIL-53(Fe) and glycine. The FT-IR, SEM, XRD and zeta potential were used to characterize the glycine-MIL-53(Fe). The result showed that glycine post-synthetic modification of MIL-53(Fe) did not change in the morphology and crystal structure of MIL-53(Fe). Interestingly, compared with MIL-53(Fe), the glycine-MIL-53(Fe) exhibits an enhanced peroxidase-like activity, which could catalyze the oxidation of TMB by H2O2 to produce an intensive color reaction. Kinetic analysis indicated that the Km of glycine-MIL-53(Fe) for TMB was one-tenth of that of MIL-53(Fe). The glycine-MIL-53(Fe) as peroxidase mimetic displays better stability under alkaline or acidic conditions than MIL-53(Fe). The good performance of glycine-MIL-53(Fe) over MIL-53(Fe) may be attributed to the increase of affinity between TMB and the glycine-MIL-53(Fe). With these characteristics, a simple and sensitive method was developed for the detection of H2O2 and glucose. The linear detection range for H2O2 is 0.10-10μM with a detection limit of 49nM, and glucose could be linearly detected in the range from 0.25 to 10μM with a detection limit of 0.13μM. The proposed method was successfully used for glucose detection in human serum samples.

  11. Decontamination of solutions containing Cu(II) and ligands tartrate, glycine and quadrol using metallic iron.

    PubMed

    Gyliene, Ona; Vengris, Tomas; Nivinskiene, Ona; Binkiene, Rima

    2010-03-15

    Decontamination of solutions containing Cu(II) complexes with tartrate, glycine and quadrol (N,N,N'N'-tetrakis(2-hydroxypropyl)ethylenediamine) using metallic iron depends on pH and proceeds best in mildly acidic solutions. Cu(II) is completely removed from all solutions containing the ligands investigated. The degree of ligand removal from solutions considerably differs. Tartrate is relatively rapidly and completely removed from solutions. A complete removal of glycine is prolonged. The removal of quadrol from solutions using metallic iron is negligible. Electrochemical investigations showed that tartrate and glycine have inhibitory influence on anodic dissolution of iron at pH 2 and enhance it at pH 4. Quadrol does not exhibit any significant influence on iron dissolution. Chemical analysis and FT-IR investigations have shown that the content of organic compounds is the greatest in the precipitate formed in solutions containing tartrate, while it is considerably lower in glycine containing solutions. The precipitate formed in quadrol-containing solutions during the treatment with metallic iron contains only negligible amount of organics.

  12. Taurine acts as a glycine receptor agonist in slices of rat inferior colliculus.

    PubMed

    Xu, Han; Wang, Wei; Tang, Zheng-Quan; Xu, Tian-Le; Chen, Lin

    2006-10-01

    Taurine is an important endogenous amino acid for neural development and for many physiological functions, but little is known about its functional role in the central auditory system. We investigated in young rats (P10-P14) the effects of taurine on the neuronal responses and synaptic transmissions in the central nucleus of the inferior colliculus (ICC) with a brain slice preparation and with whole-cell patch-clamp recordings. Perfusion of taurine at 1mM reliably evoked a current across the membrane and decreased the input resistance in neurons of the ICC. Taurine also depressed the spontaneous and current-evoked firing of ICC neurons. All these effects were reversible after washout and could be blocked by 3 microM strychnine, an antagonist of glycine receptors, but not by 10 microM bicuculline, an antagonist of GABA(A) receptors. When the inhibitory receptors were not pharmacologically blocked, taurine reversibly reduced the postsynaptic currents/potentials evoked by electrically stimulating the commissure of the inferior colliculus or the ipsilateral lateral lemniscus. The results demonstrate that taurine reduces the neuronal excitability and depresses the synaptic transmission in the ICC by activating glycine-gated chloride channels. Our findings suggest that taurine acts as a ligand of glycine receptors in the ICC and can be involved in the information processing of the central auditory system similarly like the neurotransmitter glycine.

  13. Characterization of strychnine-sensitive glycine receptors in acutely isolated adult rat basolateral amygdala neurons.

    PubMed

    McCool, B A; Botting, S K

    2000-03-24

    Large concentrations of the beta-amino acid, taurine, can be found in many forebrain areas such as the basolateral amygdala, a portion of the limbic forebrain intimately associated with the regulation of fear/anxiety-like behaviors. In addition to its cytoprotective and osmoregulatory roles, taurine may also serve as an agonist at GABA(A)- and strychnine-sensitive glycine receptors. In this latter context, the present study demonstrates that application of taurine to acutely isolated neurons from the basolateral amygdala of adult rats causes significant alterations in resting membrane current, as measured by whole-cell patch clamp electrophysiology. Using standard pharmacological approaches, we find that currents gated by concentrations of taurine glycine receptors expressed in brainstem and spinal cord. While amygdala glycine receptors can be distinguished from GABA(A) receptors expressed by the same neurons, these two chloride channels are functionally expressed at comparable levels. Given that a number of clinically relevant compounds are associated with the regulation of GABA(A) receptors in this brain region, the presence of both strychnine-sensitive glycine receptors and their agonist, taurine, in the basolateral amygdala may suggest an important role for these receptors in the limbic forebrain of adult rats.

  14. Binding of glycine and L-cysteine on Si(111)-7 x 7.

    PubMed

    Huang, Jing Yan; Ning, Yue Sheng; Yong, Kian Soon; Cai, Ying Hui; Tang, Hai Hua; Shao, Yan Xia; Alshahateet, Solhe F; Sun, Yue Ming; Xu, Guo Qin

    2007-05-22

    The adsorption of glycine and l-cysteine on Si(111)-7 x 7 was investigated using high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS). The observation of the characteristic vibrational modes and electronic structures of NH3+ and COO- groups for physisorbed glycine (l-cysteine) demonstrates the formation of zwitterionic species in multilayers. For chemisorbed molecules, the appearance of nu(Si-H), nu(Si-O), and nu(C=Omicron) and the absence of nu(O-H) clearly indicate that glycine and l-cysteine dissociate to produce monodentate carboxylate adducts on Si(111)-7 x 7. XPS results further verified the coexistence of two chemisorption states for each amino acid, corresponding to a Si-NH-CH2-COO-Si [Si-NHCH(CH2SH)COO-Si] species with new sigma-linkages of Si-N and Si-O, and a NH2-CH2-COO-Si [NH2CH(CH2SH)COO-Si] product through the cleavage of the O-H bond, respectively. Glycine/Si(111)-7 x 7 and l-cysteine/Si(111)-7 x 7 can be viewed as model systems for further modification of Si surfaces with biological molecules.

  15. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.

    PubMed

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-23

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  16. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  17. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss.

    PubMed

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH.

  18. The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.

    2010-01-01

    The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…

  19. Synthesis of glycine-containing complexes in impacts of comets on early Earth.

    PubMed

    Goldman, Nir; Reed, Evan J; Fried, Laurence E; William Kuo, I-F; Maiti, Amitesh

    2010-11-01

    Delivery of prebiotic compounds to early Earth from an impacting comet is thought to be an unlikely mechanism for the origins of life because of unfavourable chemical conditions on the planet and the high heat from impact. In contrast, we find that impact-induced shock compression of cometary ices followed by expansion to ambient conditions can produce complexes that resemble the amino acid glycine. Our ab initio molecular dynamics simulations show that shock waves drive the synthesis of transient C-N bonded oligomers at extreme pressures and temperatures. On post impact quenching to lower pressures, the oligomers break apart to form a metastable glycine-containing complex. We show that impact from cometary ice could possibly yield amino acids by a synthetic route independent of the pre-existing atmospheric conditions and materials on the planet.

  20. The Prodrug 4-Chlorokynurenine Causes Ketamine-Like Antidepressant Effects, but Not Side Effects, by NMDA/GlycineB-Site Inhibition

    PubMed Central

    Zanos, Panos; Piantadosi, Sean C.; Wu, Hui-Qiu; Pribut, Heather J.; Dell, Matthew J.; Can, Adem; Snodgrass, H. Ralph; Zarate, Carlos A.; Schwarcz, Robert

    2015-01-01

    Currently approved antidepressant drug treatment typically takes several weeks to be effective. The noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has shown efficacy as a rapid-acting treatment of depression, but its use is associated with significant side effects. We assessed effects following blockade of the glycineB co-agonist site of the NMDA receptor, located on the GluN1 subunit, by the selective full antagonist 7-chloro-kynurenic acid (7-Cl-KYNA), delivered by systemic administration of its brain-penetrant prodrug 4-chlorokynurenine (4-Cl-KYN) in mice. Following administration of 4-Cl-KYN, 7-Cl-KYNA was promptly recovered extracellularly in hippocampal microdialysate of freely moving animals. The behavioral responses of the animals were assessed using measures of ketamine-sensitive antidepressant efficacy (including the 24-hour forced swim test, learned helplessness test, and novelty-suppressed feeding test). In these tests, distinct from fluoxetine, and similar to ketamine, 4-Cl-KYN administration resulted in rapid, dose-dependent and persistent antidepressant-like effects following a single treatment. The antidepressant effects of 4-Cl-KYN were prevented by pretreatment with glycine or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX). 4-Cl-KYN administration was not associated with the rewarding and psychotomimetic effects of ketamine, and did not induce locomotor sensitization or stereotypic behaviors. Our results provide further support for antagonism of the glycineB site for the rapid treatment of treatment-resistant depression without the negative side effects seen with ketamine or other channel-blocking NMDA receptor antagonists. PMID:26265321

  1. Asymmetric Synthesis, Structure, and Reactivity of Unexpectedly Stable Spiroepoxy-β-Lactones Including Facile Conversion to Tetronic Acids: Application to (+)-Maculalactone A

    PubMed Central

    Duffy, Richard J.; Morris, Kay A.; Vallakati, Ravikrishna; Zhang, Wei; Romo, Daniel

    2009-01-01

    A novel class of small spirocyclic heterocycles, spiroepoxy-β-lactones (1,4-dioxaspiro[2.3]-hexan-5-ones), is described that exhibit a number of interesting reactivity patterns. These spiroheterocycles, including an optically active series, are readily synthesized by epoxidation of ketene dimers (4-alkylidene-2-oxetanones) available from homo- or heteroketene dimerization. An analysis of bond lengths in these systems by X-ray crystallography and comparison to data for known spirocycles and those determined computationally, suggest that anomeric effects in these systems may be more pronounced due to their rigidity and may contribute to their surprising stability. The synthetic utility of spiroepoxy-β-lactones was explored and one facile rearrangement identified under several conditions provides a 3-step route from acid chlorides to optically active tetronic acids, ubiquitous heterocycles in bioactive natural products. The addition of various nucleophiles to these spirocycles leads primarily to addition at C5 and C2. The utility of an optically active spiroepoxy-β-lactone was demonstrated in the concise, enantioselective synthesis of the anti-fouling agent, (+)-maculalactone A, which proceeds in 5 steps from hydrocinnamoyl chloride by way of a tetronic acid intermediate. PMID:19453152

  2. Cysteamine inhibition of (/sup 15/N)-glycine turnover in cystinosis and of glycine cleavage system in vitro

    SciTech Connect

    Yudkoff, M.; Nissim, I.; Schneider, A.; Segal, S.

    1981-01-01

    In order to clarify the hyperglycinemic effect of cysteamine treatment in children with nephropathic cystinosis, we measured (/sup 15/N)-glycine turnover in three affected patients. Administration of cysteamine lowered the glycine flux and the glycine metabolic clearance rate but did not alter the glycine pool size. Formation of (/sup 15/N)-serine from (/sup 15/N)-glycine was lower in untreated patients than in control subjects and was reduced still further by cysteamine. Studies in vitro with isolated rat liver mitochondria and acetone extracts of mitochondria indicated that even low cysteamine concentrations (0.1 mM) inhibited the glycine cleavage system in both the direction of glycine oxidation and glycine synthesis. Cysteamine was a more potent inhibitor of the glycine cleavage system than any other sulfhydryl containing compound. Although no ill effects of cysteamine treatment were immediately apparent, patients receiving cysteamine should be monitored carefully for the appearance of any neurologic symptoms which might be referable to inhibition of the glycine cleavage system.

  3. The Soybean Rhg1 Locus for Resistance to the Soybean Cyst Nematode Heterodera glycines Regulates the Expression of a Large Number of Stress- and Defense-Related Genes in Degenerating Feeding Cells1[C][W][OA

    PubMed Central

    Kandoth, Pramod Kaitheri; Ithal, Nagabhushana; Recknor, Justin; Maier, Tom; Nettleton, Dan; Baum, Thomas J.; Mitchum, Melissa G.

    2011-01-01

    To gain new insights into the mechanism of soybean (Glycine max) resistance to the soybean cyst nematode (Heterodera glycines), we compared gene expression profiles of developing syncytia in soybean near-isogenic lines differing at Rhg1 (for resistance to Heterodera glycines), a major quantitative trait locus for resistance, by coupling laser capture microdissection with microarray analysis. Gene expression profiling revealed that 1,447 genes were differentially expressed between the two lines. Of these, 241 (16.8%) were stress- and defense-related genes. Several stress-related genes were up-regulated in the resistant line, including those encoding homologs of enzymes that lead to increased levels of reactive oxygen species and proteins associated with the unfolded protein response. These results indicate that syncytia induced in the resistant line are undergoing severe oxidative stress and imbalanced endoplasmic reticulum homeostasis, both of which likely contribute to the resistance reaction. Defense-related genes up-regulated within syncytia of the resistant line included those predominantly involved in apoptotic cell death, the plant hypersensitive response, and salicylic acid-mediated defense signaling; many of these genes were either partially suppressed or not induced to the same level by a virulent soybean cyst nematode population for successful nematode reproduction and development on the resistant line. Our study demonstrates that a network of molecular events take place during Rhg1-mediated resistance, leading to a highly complex defense response against a root pathogen. PMID:21335526

  4. The Soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells.

    PubMed

    Kandoth, Pramod Kaitheri; Ithal, Nagabhushana; Recknor, Justin; Maier, Tom; Nettleton, Dan; Baum, Thomas J; Mitchum, Melissa G

    2011-04-01

    To gain new insights into the mechanism of soybean (Glycine max) resistance to the soybean cyst nematode (Heterodera glycines), we compared gene expression profiles of developing syncytia in soybean near-isogenic lines differing at Rhg1 (for resistance to Heterodera glycines), a major quantitative trait locus for resistance, by coupling laser capture microdissection with microarray analysis. Gene expression profiling revealed that 1,447 genes were differentially expressed between the two lines. Of these, 241 (16.8%) were stress- and defense-related genes. Several stress-related genes were up-regulated in the resistant line, including those encoding homologs of enzymes that lead to increased levels of reactive oxygen species and proteins associated with the unfolded protein response. These results indicate that syncytia induced in the resistant line are undergoing severe oxidative stress and imbalanced endoplasmic reticulum homeostasis, both of which likely contribute to the resistance reaction. Defense-related genes up-regulated within syncytia of the resistant line included those predominantly involved in apoptotic cell death, the plant hypersensitive response, and salicylic acid-mediated defense signaling; many of these genes were either partially suppressed or not induced to the same level by a virulent soybean cyst nematode population for successful nematode reproduction and development on the resistant line. Our study demonstrates that a network of molecular events take place during Rhg1-mediated resistance, leading to a highly complex defense response against a root pathogen.

  5. Metabolism of glycine- and hydroxyproline-containing peptides by the isolated perfused rat kidney.

    PubMed

    Lowry, M; Hall, D E; Brosnan, J T

    1985-07-15

    Isolated perfused rat kidneys removed considerable quantities of glycyltyrosine, glycylhydroxyproline, tetraglycine and prolylhydroxyproline from the perfusate. The component amino acids are released into the perfusate and, in the case of the glycine-containing peptides, there is increased synthesis of serine. Removal of peptides was more than could be accounted for on the basis of filtration, so antiluminal metabolism is indicated. Metabolism of such peptides by the kidney may contribute to renal serine synthesis in vivo.

  6. Metabolism of glycine- and hydroxyproline-containing peptides by the isolated perfused rat kidney.

    PubMed Central

    Lowry, M; Hall, D E; Brosnan, J T

    1985-01-01

    Isolated perfused rat kidneys removed considerable quantities of glycyltyrosine, glycylhydroxyproline, tetraglycine and prolylhydroxyproline from the perfusate. The component amino acids are released into the perfusate and, in the case of the glycine-containing peptides, there is increased synthesis of serine. Removal of peptides was more than could be accounted for on the basis of filtration, so antiluminal metabolism is indicated. Metabolism of such peptides by the kidney may contribute to renal serine synthesis in vivo. PMID:4038280

  7. Conformational properties of surfactant-like peptides with variable glycine tails

    NASA Astrophysics Data System (ADS)

    Arkın, Handan

    2010-01-01

    The three-dimensional structures of surfactant-like peptides containing 4-10 glycines as the components of the hydrophobic tails and aspartic acids as the hydrophilic heads (G 4D 2, G 6D 2, G 8D 2, G 10D 2) are investigated by using the multicanonical simulation procedure. The thermodynamically most stable low energy structures of the sequences are determined. Ramachandran plots are prepared and analyzed to predict the secondary structure motifs of the molecules.

  8. Spectrophotometric Determination of Iron(III)-Glycine Formation Constant in Aqueous Medium Using Competitive Ligand Binding

    ERIC Educational Resources Information Center

    Prasad, Rajendra; Prasad, Surendra

    2009-01-01

    The formation constant of iron(III) complex with glycine (Gly) ligand in aqueous acidic medium (0.2 M HNO[subscript 3], I = 0.2 M at 28 plus or minus 1 degree C) was determined spectrophotometrically in which a competing color reaction between Fe(III) and SCN[superscript -] was used as an indicator reaction. Under the specified conditions Fe(III)…

  9. Association of amino acids embedded in helium droplets detected by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lalanne, Matthieu R.; Achazi, Georg; Reichwald, Sebastian; Lindinger, Albrecht

    2015-12-01

    Amino acids were embedded in helium droplets. The electron impact ionization allows for detecting positively charged glycine, valine, histidine, tryptophan and their principal fragments. Monomers and polymers with up to four amino acids are reported. Heterodimers of tryptophan and valine or histidine are observed as well as heterodimers of included fragments. The ability of these associations of molecules to form complexes with water is examined.

  10. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication.

    PubMed Central

    Koonin, E V

    1993-01-01

    A new superfamily of (putative) DNA-dependent ATPases is described that includes the ATPase domains of prokaryotic NtrC-related transcription regulators, MCM proteins involved in the initiation of eukaryotic DNA replication, and a group of uncharacterized bacterial and chloroplast proteins. MCM proteins are shown to contain a modified form of the ATP-binding motif and are predicted to mediate ATP-dependent opening of double-stranded DNA in the replication origins. In a second line of investigation, it is demonstrated that the products of unidentified open reading frames from Marchantia mitochondria and from yeast, and a domain of a baculovirus protein involved in viral DNA replication are related to the superfamily III of DNA and RNA helicases that previously has been known to include only proteins of small viruses. Comparison of the multiple alignments showed that the proteins of the NtrC superfamily and the helicases of superfamily III share three related sequence motifs tightly packed in the ATPase domain that consists of 100-150 amino acid residues. A similar array of conserved motifs is found in the family of DnaA-related ATPases. It is hypothesized that the three large groups of nucleic acid-dependent ATPases have similar structure of the core ATPase domain and have evolved from a common ancestor. PMID:8332451

  11. Synthesis, characterization, quantum chemical calculations and evaluation of antioxidant properties of 1,3,4-thiadiazole derivatives including 2- and 3-methoxy cinnamic acids

    NASA Astrophysics Data System (ADS)

    Gür, Mahmut; Muğlu, Halit; Çavuş, M. Serdar; Güder, Aytaç; Sayıner, Hakan S.; Kandemirli, Fatma

    2017-04-01

    A series of 1,3,4-thiadiazole derivatives including 2- and 3-methoxy cinnamic acids were synthesized, and their structures were elucidated by the UV, IR, 1H NMR, 13C NMR spectroscopies and elemental analysis. The UV and IR calculations of the molecules were performed by using B3LYP, HF and MP2 methods with selected 6-311++G(2d,2p), 6-311++G(3df,3pd) and cc-pvtz basis sets. Dipole moment, polarizability, chemical hardness/softness and electronegativity were also calculated and analyzed. Experimental FT-IR spectra and UV-Vis spectrum of the compounds were compared with theoretical data. Furthermore, antioxidant activities of the compounds were practised via different test methods such as 2,2-diphenyl-1-picryl-hydrazyl (DPPHrad), N,N-dimethyl-p-phenylenediamine (DMPDrad +), and 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTSrad +) scavenging activity assays. When compared with standards (BHA-Butylated hydroxyanisole, RUT-Rutin, and TRO-Trolox), it was observed that especially XIII and XIV which include methoxy groups at the o- and m-positions, respectively, had effective activities.

  12. Evaluation of mechanical properties of some glycine complexes

    SciTech Connect

    Nagaraju, D.; Raja Shekar, P. V.; Chandra, Ch. Sateesh; Rao, K. Kishan; Krishna, N. Gopi

    2014-04-24

    The variation of Vickers hardness with load for (101) glycine zinc chloride (GZC), (001) glycine lithium sulphate (GLS), (001) triglycine sulphate (TGS) and (010) glycine phosphite (GPI) crystals was studied. From the cracks initiated along the corners of the indentation impression, crack lengths were measured and the fracture toughness value and brittle index number were determined. The hardness related parameters viz. yield strength and Young’s modulus were also estimated. The anisotropic nature of the crystals was studied using Knoop indentation technique.

  13. A cDNA encoding a cold-induced glycine-rich RNA binding protein from Prunus avium expressed in embryonic axes.

    PubMed

    Stephen, John R; Dent, Katherine C; Finch-Savage, William E

    2003-11-27

    A cDNA clone encoding a presumed full-length glycine-rich ribonucleic acid (RNA) binding protein was isolated from a lambda-ZAP Express cDNA library generated from primarily nondormant Prunus avium (wild cherry) embryonic axes. The cDNA, designated Pa-RRM-GRP1 (Prunus avium RNA recognition motif glycine-rich protein 1), contains a single N-terminal RNA recognition motif (RRM) and single C-terminal glycine-rich domain. The glycine-rich domain is unusually long at 91 amino acids, 58 of which are glycines. The 534-base pair (bp) open reading frame (ORF) of this clone encodes a 178-amino-acid polypeptide with a predicted molecular weight of 17.33 kDa and pI of 7.84. Comparative sequence alignment of Pa-RRM-GRP1 reveals extensive homology to known and presumed glycine-rich RNA binding proteins from angiosperms and gymnosperms. Genomic Southern blot analysis suggests that this gene exists as a single copy in P. avium. Expression of this gene in P. avium embryonic axes during low-temperature dormancy-breaking treatments was studied and found to be induced by cold (3 degrees C) using real-time PCR of total cDNA supported by Northern blot analysis of total RNA. Expression dropped during prolonged storage at 3 degrees C and was reduced to control levels by interruption of cold treatment by warming to 20 degrees C.

  14. Synthesis and in vivo evaluation of gallium-68-labeled glycine and hippurate conjugates for positron emission tomography renography.

    PubMed

    Pathuri, Gopal; Hedrick, Andria F; January, Spenser E; Galbraith, Wendy K; Awasthi, Vibhudutta; Arnold, Charles D; Cowley, Benjamin D; Gali, Hariprasad

    2015-01-01

    The objective of this study was to evaluate four new (68) Ga-labeled 1,4,7,10-cyclododeca-1,4,7,10-tetraacetic acid (DOTA)/1,4,7-triazacyclononane-1,4,7-triacetic acid derived (NODAGA)-glycine/hippurate conjugates and select a lead candidate for potential application in positron emission tomography (PET) renography. The non-metallated conjugates were synthesized by a solid phase peptide synthesis method. The (68) Ga labeling was achieved by reacting an excess of the non-metallated conjugate with (68) GaCl4 (-) at pH -4.5 and 10-min incubation either at room temperature for NODAGA or 90 °C for DOTA. Radiochemical purity of all (68) Ga conjugates was found to be >98%. (68) Ga-NODAGA-glycine displayed the lowest serum protein binding (0.4%) in vitro among the four (68) Ga conjugates. Biodistribution of (68) Ga conjugates in healthy Sprague Dawley rats at 1-h post-injection revealed an efficient clearance from circulation primarily through the renal-urinary pathway with <0.2% of injected dose per gram remaining in the blood. The kidney/blood and kidney/muscle ratios of (68) Ga-NODAGA-glycine were significantly higher than other (68) Ga conjugates. On the basis of these results, (68) Ga-NODAGA-glycine was selected as the lead candidate. (68) Ga-NODAGA-glycine PET renograms obtained in healthy rats suggest (68) Ga-NODAGA-glycine as a PET alternate of (99m) Tc-Diethylenetriaminepentaacetic acid (DTPA).

  15. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be...

  16. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be...

  17. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be...

  18. 21 CFR 176.160 - Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Chromium (Cr III) complex of N-ethyl-N... § 176.160 Chromium (Cr III) complex of N-ethyl-N-heptadecylfluoro-octane sulfonyl glycine. The chromium... by weight of the chromium (Cr III) complex of heptadecylfluoro-octane sulfonic acid may be...

  19. Isolation of a mRNA encoding a glycine-proline-rich beta-keratin expressed in the regenerating epidermis of lizard.

    PubMed

    Dalla Valle, Luisa; Toffolo, Vania; Belvedere, Paola; Alibardi, Lorenzo

    2005-12-01

    During scale regeneration in lizard tail, an active differentiation of beta-keratin synthesizing cells occurs. The cDNA and amino acid sequence of a lizard beta-keratin has been obtained from mRNA isolated from regenerating epidermis. Degenerate oligonucleotides, selected from the translated amino acid sequence of a lizard claw protein, were used to amplify a specific lizard keratin cDNA fragment from the mRNA after reverse transcription with poly dT primer and subsequent polymerase chain reaction (3'-rapid amplification of cDNA ends analysis, 3'-RACE). The new sequence was used to design specific primers to obtain the complete cDNA sequence by 5'-RACE. The 835-nucleotide cDNA sequence encodes a glycine-proline-rich protein containing 163 amino acids with a molecular mass of 15.5 kDa; 4.3% of its amino acids is represented by cysteine, 4.9% by tyrosine, 8.0% by proline, and 29.4% by glycine. Tyrosine is linked to glycine, and proline is present mainly in the central region of the protein. Repeated glycine-glycine-X and glycine-X amino acid sequences are localized near the N-amino and C-terminal regions. The protein has the central amino acid region similar to that of claw-feather, whereas the head and tail regions are similar to glycine-tyrosine-rich proteins of mammalian hairs. In situ hybridization analysis at light and electron microscope reveals that the corresponding mRNA is expressed in cells of the differentiating beta-layers of the regenerating scales. The synthesis of beta-keratin from its mRNA occurs among ribosomes or is associated with the surface of beta-keratin filaments.

  20. Activation of a glycine transporter on spinal cord neurons causes enhanced glutamate release in a mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Raiteri, Luca; Paolucci, Egle; Prisco, Simona; Raiteri, Maurizio; Bonanno, Giambattista

    2003-01-01

    The release of [3H]D-aspartate ([3H]D-ASP) or [3H]GABA evoked by glycine from spinal cord synaptosomes was compared in mice expressing mutant human SOD1 with a Gly93 Ala substitution ([SOD1-G93A(+)]), a transgenic model of amyotrophic lateral sclerosis, and in control mice. Mice expressing mutated SOD1 were killed at the advanced phase of the pathology, when they showed signs of ingestion disability, because of paralysis of the posterior limbs. In control mice glycine concentration-dependently evoked [3H]D-ASP and [3H]GABA release. Potentiation of the spontaneous release of both amino acids is likely to be mediated by activation of a glycine transporter, since the effects of glycine were counteracted by the glycine transporter blocker glycyldodecylamide but not by the glycine receptor antagonists strychnine and 5,7-dichlorokynurenate. The glycine-evoked release of [3H]D-ASP, but not that of [3H]GABA, was significantly more pronounced in SOD1-G93A(+) than in control animals. PMID:12684256

  1. Multi-Biomarkers for Early Detection of Type 2 Diabetes, Including 10- and 12-(Z,E)-Hydroxyoctadecadienoic Acids, Insulin, Leptin, and Adiponectin.

    PubMed

    Umeno, Aya; Yoshino, Kohzoh; Hashimoto, Yoshiko; Shichiri, Mototada; Kataoka, Masatoshi; Yoshida, Yasukazu

    2015-01-01

    We have previously found that fasting plasma levels of totally assessed 10- and 12-(Z,E)-hydroxyoctadecadienoic acid (HODE) correlated well with levels of glycated hemoglobin (HbA1c) and glucose during oral glucose tolerance tests (OGTT); these levels were determined via liquid chromatography-mass spectrometry after reduction and saponification. However, 10- and 12-(Z,E)-HODE alone cannot perfectly detect early impaired glucose tolerance (IGT) and/or insulin resistance, which ultimately lead to diabetes. In this study, we randomly recruited healthy volunteers (n = 57) who had no known history of any diseases, and who were evaluated using the OGTT, the HODE biomarkers, and several additional proposed biomarkers, including retinol binding protein 4 (RBP4), adiponectin, leptin, insulin, glycoalbumin, and high sensitivity-C-reactive protein. The OGTT revealed that our volunteers included normal individuals (n = 44; Group N), "high-normal" individuals (fasting plasma glucose 100-109 mg/dL) with IGT (n = 11; Group HN+IGT), and diabetic individuals (n = 2; Group D). We then used these groups to evaluate the potential biomarkers for the early detection of type 2 diabetes. Plasma levels of RBP4 and glycoalbumin were higher in Group HN+IGT, compared to those in Group N, and fasting levels of 10- and 12-(Z,E)-HODE/linoleic acids were significantly correlated with levels of RBP4 (p = 0.003, r = 0.380) and glycoalbumin (p = 0.006, r = 0.316). Furthermore, we developed a stepwise multiple linear regression models to predict the individuals' insulin resistance index (the Matsuda Index 3). Fasting plasma levels of 10- and 12-(Z,E)-HODE/linoleic acids, glucose, insulin, and leptin/adiponectin were selected as the explanatory variables for the models. The risks of type 2 diabetes, early IGT, and insulin resistance were perfectly predicted by comparing fasting glucose levels to the estimated Matsuda Index 3 (fasting levels of 10- and 12-(Z,E)-HODE/linoleic acids, insulin, and leptin/adiponectin).

  2. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    PubMed Central

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-01-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally valuable information related to amino acid depletion. Seq2logo aims at resolving these issues allowing the user to include sequence weighting to correct for data redundancy, pseudo counts to correct for low number of observations and different logotype representations each capturing different aspects related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein of interest. The output from the server is a sequence logo and a PSSM. Seq2Logo is available at http://www.cbs.dtu.dk/biotools/Seq2Logo (14 May 2012, date last accessed). PMID:22638583

  3. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion.

    PubMed

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-07-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally valuable information related to amino acid depletion. Seq2logo aims at resolving these issues allowing the user to include sequence weighting to correct for data redundancy, pseudo counts to correct for low number of observations and different logotype representations each capturing different aspects related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein of interest. The output from the server is a sequence logo and a PSSM. Seq2Logo is available at http://www.cbs.dtu.dk/biotools/Seq2Logo (14 May 2012, date last accessed).

  4. Glycine-coated photoluminescent silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Kravets, Vira V.; Culhane, Kyle; Dmitruk, Igor M.; Pinchuk, Anatoliy O.

    2012-03-01

    We present experimental results on the multicolor (blue and green) photoluminescence from glycine-coated silver nanoclusters and small nanoparticles which can be used as novel probes for bio-imaging. Glycine-coated silver nanoclusters and nanoparticles were synthesized using thermal reduction of silver nitrate in a glycine matrix, according to a modified procedure described in literature. The size characterization with mass spectrometry, scanning electron microscopy and dynamic light scattering showed that the diameters of luminescent silver nanoclusters and small nanoparticles vary from 0.5 nm to 17 nm. Extinction spectroscopy revealed that the absorption band of the luminescent nanoclusters and nanoparticles was blue-shifted as compared to the nonluminescent larger silver nanoparticles. This effect indicated the well-known size dependence of the surface plasmon resonance in silver. The most pronounced photoluminescence peak was observed around 410 nm (characteristic SPR wavelength for silver) which strongly suggests the enhancement of the photoluminescence from silver nanoparticles by the SPR. The relative quantum yield of the photoluminescence of silver nanoclusters and nanoparticles was evaluated to be 0.09. In terms of their small size, brightness and photostability, noble metal nanoclusters and nanoparticles hold the most promise as candidates for biological cell imaging, competing with commonly used semiconductor quantum dots, fluorescent proteins and organic dyes. When applied to the problem of intracellular imaging, metal nanoclusters and small nanoparticles offer advantages over their much larger sized semiconductor counterparts in terms of ease of biological delivery. In addition, noble metal nanoparticles and nanoclusters are photostable. The high quantum yield (QY) of the photoluminescence emission signal enables the isolation of their photoluminescence from the cellular autofluorescence in cell imaging, improving the image contrast.

  5. Evaluating Progeny of Glycine max by Glycine tomentella for Novel Disease Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization with wild relatives of crops is an important tool for improving traits such as disease resistance and our objective is to expand the use of wild relatives for disease resistance in soybean. Glycine tomentella (2n=78) is a wild, perennial species in the tertiary gene pool of soybean (G....

  6. Acute copper toxicity following copper glycinate injection.

    PubMed

    Oon, S; Yap, C-H; Ihle, B U

    2006-11-01

    We present a patient who developed multi-organ failure due to severe copper toxicity following attempted suicide by s.c. injection of copper glycinate. Acute copper toxicity is rare in the developed world, although it occurs more frequently in developing world countries, where it is a common mode of suicide. Acute toxicity usually results from oral ingestion and there are several local and systemic effects. Specific management can be difficult as there is little evidence regarding the efficacy of chelating agents in acute toxicity.

  7. Silencing of Gm FAD3 gene by siRNA leads to low a-linolenic acids (18:3) of fad3 -mutant phenotype in soybean [Glycine max (Merr.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference (RNAi) has been recently employed as a powerful experimental tool for both basic and applied biological studies in various organisms including plants. RNAi deploys small RNAs, either small interfering RNAs (siRNAs) or microRNAs (miRNAs), to mediate the degradation or translational r...

  8. Barrier-free intermolecular proton transfer in the uracil-glycine complex induced by excess electron attachment

    NASA Astrophysics Data System (ADS)

    Gutowski, M.; Dąbkowska, I.; Rak, J.; Xu, S.; Nilles, J. M.; Radisic, D.; Bowen, K. H., Jr.

    2002-09-01

    The photoelectron spectra (PES) of anions of uracil-glycine and uracil-phenylalanine complexes reveal broad features with maxima at 1.8 and 2.0 eV. The results of ab initio density functional B3LYP and second order Møller-Plesset theory calculations indicate that the excess electron occupies a π^* orbital localized on uracil. The excess electron attachment to the complex can induce a barrier-free proton transfer (BFPT) from the carboxylic group of glycine to the O8 atom of uracil. As a result, the four most stable structures of the anion of uracil-glycine complex can be characterized as the neutral radical of hydrogenated uracil solvated by the anion of deprotonated glycine. The similarity between the PES spectra for the uracil complexes with glycine and phenylalanine suggests that the BFPT is also operative in the case of the latter anionic species. The BFPT to the O8 atom of uracil may be related to the damage of nucleic acid bases by low energy electrons because the O8 atom is involved in a hydrogen bond with adenine in the standard Watson-Crick pairing scheme.

  9. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective.

    PubMed Central

    Schell, Michael J

    2004-01-01

    The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics. PMID:15306409

  10. Effect of bromide ion on the reaction pathway between hydroxyl radical and glycine.

    PubMed

    Ying, Liwen; Dong, Wenbo; Yuan, Haixia; Liu, Yan; Ma, Luming

    2015-06-01

    Br(-) and nitrogen-containing organic pollutants, such as amino acids, protein, etc., were often detected in water and wastewater treatment plants using advanced oxidation technologies. All these technologies have one common characteristic, that is, the removal processes involve ·OH. Therefore, it is necessary to study the different reaction pathways among ·OH, Br(-), and amino acids. In this research, glycine was chosen as the representative of amino acids and H2O2 was selected as ·OH precursor. Results showed that Br(-) had a shielding effect on [Formula: see text] of α-carbon in glycine, when it was abstracted by ·OH. The main reaction pathway in the system containing Br(-) was the abstraction of H from amino group in glycine by ·OH, contributing 85 % of total abstracted H. This system had a prominent phenomenon of decarboxylation and performed as alkali production dominating. However, in the system not containing Br(-), the main reaction pathway was the abstraction of H from α-carbon in glycine by ·OH, contributing 97 % of total abstracted H. This system performed as acid production dominating. By laser flash photolysis, the second-order rate constants of abstraction of H from both α-carbon and amino group in glycine by ·OH were obtained as (3.3 ± 0.5) × 10(7) M(-1)·s(-1) and (8.2 ± 0.8) × 10(8) M(-1)·s(-1), respectively. The second-order rate constants of the reaction between [Formula: see text], HṄCH2COO(-) and H2O2 were (1.5 ± 1.1) × 10(7) M(-1)·s(-1) and (4.4 ± 0.3) × 10(7) M(-1)·s(-1), respectively. In addition, Br(-) was found to play a catalytic role in the decomposition of H2O2 under UV radiation. The results mentioned above were significant for the application of advanced oxidation technologies for water containing both amino acids and Br(-) in water and wastewater treatment plants.

  11. Arginine-glycine-aspartic acid- and fibrinogen gamma-chain carboxyterminal peptides inhibit platelet adherence to arterial subendothelium at high wall shear rates. An effect dissociable from interference with adhesive protein binding.

    PubMed Central

    Lawrence, J B; Kramer, W S; McKeown, L P; Williams, S B; Gralnick, H R

    1990-01-01

    Arg-Gly-Asp (RGD)- and fibrinogen gamma-chain carboxyterminal (GQQHHLGGAKQAGDV) peptides inhibit fibrinogen, fibronectin (Fn), vitronectin, and von Willebrand factor (vWF) binding to the platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa). GP IIb-IIIa, vWF, and Fn are essential for normal platelet adherence to subendothelium. We added peptides to normal citrated whole blood before perfusion over human umbilical artery subendothelium and evaluated platelet adherence morphometrically at high (2,600 s-1) and low (800 s-1) wall shear rates. We also examined the effects of the peptides on platelet adhesion to collagen in a static system. At the high wall shear rate, RGDS and GQQHHLGGAKQAGDV caused dose-dependent reduction in the surface coverage with spread and adherent platelets. Amino acid transposition and conservative substitutions of RGD peptides and the AGDV peptide significantly inhibited platelet adherence at 2,600 s-1. By contrast, the modified RGD peptides and AGDV do not affect adhesive protein binding to platelets. None of the native or modified RGD- or fibrinogen gamma-chain peptides significantly inhibited either platelet adherence to subendothelium at 800 s-1 or platelet adhesion to collagen. Our findings demonstrate that peptides that interfere with adhesive protein binding to GP IIb-IIIa inhibit platelet adherence to vascular subendothelium with flowing blood only at high wall shear rates. Platelet adherence to subendothelium at high wall shear rates appears to be mediated by different recognition specificities from those required for fluid-phase adhesive protein binding or static platelet adhesion. PMID:2243140

  12. COMPUTATIONAL STUDY OF INTERSTELLAR GLYCINE FORMATION OCCURRING AT RADICAL SURFACES OF WATER-ICE DUST PARTICLES

    SciTech Connect

    Rimola, Albert; Sodupe, Mariona; Ugliengo, Piero

    2012-07-20

    Glycine is the simplest amino acid, and due to the significant astrobiological implications that suppose its detection, the search for it in the interstellar medium (ISM), meteorites, and comets is intensively investigated. In the present work, quantum mechanical calculations based on density functional theory have been used to model the glycine formation on water-ice clusters present in the ISM. The removal of either one H atom or one electron from the water-ice cluster has been considered to simulate the effect of photolytic radiation and of ionizing particles, respectively, which lead to the formation of OH{sup .} radical and H{sub 3}O{sup +} surface defects. The coupling of incoming CO molecules with the surface OH{sup .} radicals on the ice clusters yields the formation of the COOH{sup .} radicals via ZPE-corrected energy barriers and reaction energies of about 4-5 kcal mol{sup -1} and -22 kcal mol{sup -1}, respectively. The COOH{sup .} radicals couple with incoming NH=CH{sub 2} molecules (experimentally detected in the ISM) to form the NHCH{sub 2}COOH{sup .} radical glycine through energy barriers of 12 kcal mol{sup -1}, exceedingly high at ISM cryogenic temperatures. Nonetheless, when H{sub 3}O{sup +} is present, one proton may be barrierless transferred to NH=CH{sub 2} to give NH{sub 2}=CH{sub 2}{sup +}. This latter may react with the COOH{sup .} radical to give the NH{sub 2}CH{sub 2}COOH{sup +.} glycine radical cation which can then be transformed into the NH{sub 2}CHC(OH){sub 2}{sup +.} species (the most stable form of glycine in its radical cation state) or into the NH{sub 2}CHCOOH{sup .} neutral radical glycine. Estimated rate constants of these events suggest that they are kinetically feasible at temperatures of 100-200 K, which indicate that their occurrence may take place in hot molecular cores or in comets exposed to warmer regions of solar systems. Present results provide quantum chemical evidence that defects formed on water ices due to the harsh

  13. Functional characterization of a member of alanine or glycine: cation symporter family in halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Bualuang, Aporn; Kageyama, Hakuto; Tanaka, Yoshito; Incharoensakdi, Aran; Takabe, Teruhiro

    2015-01-01

    Membrane proteins of amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play important roles in the regulation of cellular processes. The alanine or glycine: cation symporter (AGCS) family belongs to APC superfamily and is found in prokaryotes, but its substrate specificity remains to be clarified. In this study, we found that a halotolerant cyanobacterium, Aphanothece halophytica has two putative ApagcS genes. The deduced amino acid sequence of one of genes, ApagcS1, exhibited high homology to Pseudomonas AgcS. The ApagcS1 gene was expressed in Escherichia coli JW4166 which is deficient in glycine uptake. Kinetics studies in JW4166 revealed that ApAgcS1 is a sodium-dependent glycine transporter. Competition experiments showed the significant inhibition by glutamine, asparagine, and glycine. The level of mRNA for ApagcS1 was induced by NaCl and nitrogen-deficient stresses. Uptake of glutamine by ApAgcS1 was also observed. Based on these data, the physiological role of ApAgcS1 was discussed.

  14. Molecular lock regulates binding of glycine to a primitive NMDA receptor

    PubMed Central

    Yu, Alvin; Alberstein, Robert; Thomas, Alecia; Zimmet, Austin; Grey, Richard; Mayer, Mark L.; Lau, Albert Y.

    2016-01-01

    The earliest metazoan ancestors of humans include the ctenophore Mnemiopsis leidyi. The genome of this comb jelly encodes homologs of vertebrate ionotropic glutamate receptors (iGluRs) that are distantly related to glycine-activated NMDA receptors and that bind glycine with unusually high affinity. Using ligand-binding domain (LBD) mutants for electrophysiological analysis, we demonstrate that perturbing a ctenophore-specific interdomain Arg-Glu salt bridge that is notably absent from vertebrate AMPA, kainate, and NMDA iGluRs greatly increases the rate of recovery from desensitization, while biochemical analysis reveals a large decrease in affinity for glycine. X-ray crystallographic analysis details rearrangements in the binding pocket stemming from the mutations, and molecular dynamics simulations suggest that the interdomain salt bridge acts as a steric barrier regulating ligand binding and that the free energy required to access open conformations in the glycine-bound LBD is largely responsible for differences in ligand affinity among the LBD variants. PMID:27791085

  15. Occurrence of glycine in the core oligosaccharides of Hafnia alvei lipopolysaccharides--identification of disubstituted glycoform.

    PubMed

    Gozdziewicz, Tomasz K; Man-Kupisinska, Aleksandra; Lugowski, Czesław; Lukasiewicz, Jolanta

    2015-05-18

    Endotoxins (lipopolysaccharides, LPS) are the main surface antigens and virulence factors of Gram-negative bacteria involved for example in the development of nosocomial infections and sepsis. They consist of three main regions: O-specific polysaccharide, core oligosaccharide, and lipid A. Bacteria modify LPS structure to escape the immune defence, but also to adapt to environmental conditions. LPS's structures are highly diversified in the O-specific polysaccharide region to evade bactericidal factors of immune system, but retain some common epitopes that are potential candidates for therapeutic strategies against bacterial infections. Common occurrence of glycine within the structure of LPS is a known phenomenon and was previously reported for variety of species. Since glycine residue substitutes mainly core oligosaccharide of LPS, especially inner core region, it was also considered as a part of common epitope for broad-reactive antimicrobial antibodies. Herein, we used multiple-stage electrospray ionisation mass spectrometry to identify glycine substitution in core oligosaccharide type characteristic for Hafnia alvei LPS, and isolated from five strains of different O-serotypes: 32, PCM 1190, PCM 1192, PCM 1200, and PCM 1209. The location of glycine in core oligosaccharide was determined in detail for LPS 1190 using ESI-MS(n). Three glycoforms were identified, including two mono-glycinylated and one diglycinylated core oligosaccharides.

  16. Molecular lock regulates binding of glycine to a primitive NMDA receptor.

    PubMed

    Yu, Alvin; Alberstein, Robert; Thomas, Alecia; Zimmet, Austin; Grey, Richard; Mayer, Mark L; Lau, Albert Y

    2016-11-01

    The earliest metazoan ancestors of humans include the ctenophore Mnemiopsis leidyi The genome of this comb jelly encodes homologs of vertebrate ionotropic glutamate receptors (iGluRs) that are distantly related to glycine-activated NMDA receptors and that bind glycine with unusually high affinity. Using ligand-binding domain (LBD) mutants for electrophysiological analysis, we demonstrate that perturbing a ctenophore-specific interdomain Arg-Glu salt bridge that is notably absent from vertebrate AMPA, kainate, and NMDA iGluRs greatly increases the rate of recovery from desensitization, while biochemical analysis reveals a large decrease in affinity for glycine. X-ray crystallographic analysis details rearrangements in the binding pocket stemming from the mutations, and molecular dynamics simulations suggest that the interdomain salt bridge acts as a steric barrier regulating ligand binding and that the free energy required to access open conformations in the glycine-bound LBD is largely responsible for differences in ligand affinity among the LBD variants.

  17. Effects of glycine, beta-alanine and diazepam upon morphine-tolerant-dependent mice.

    PubMed

    Contreras, E; Tamayo, L

    1980-05-01

    The effects in mice of glycine, beta-alanine and diazepam on the analgesic response to morphine, on the intensity of tolerance and on the physical dependence on the analgesic have been examined. The two amino acids increased the analgesic response to morphine in a dose-related manner. However, both compounds were ineffective in the analgesic test (hot plate) when administered without morphine. Diazepam was ineffective in the analgesic test and it did not alter morphine analgesia, except when administered in a high dose which decreased and analgesic response. Glycine, either in single or repeated doses, did not modify tolerance to morphine, whereas beta-alanine induced a dose-related partial antagonism, which promptly reached a plateau. Diazepam induced a small decrease in the intensity of tolerance to the analgesic. The abstinence syndrome to morphine, induced by naloxone administration to primed mice, was reduced by single doses of glycine or beta-alanine. Diazepam behaved as a weak inhibitor of the abstinence syndrome when administered at a high dose. The potentiation of morphine analgesia and the antagonism of the abstinence syndrome induced by the amino acids may be related to their hyperpolarizing action in the c.n. system. The effects of beta-alanine on morphine tolerance cannot be explained by the same mechanism.

  18. Glyphosate and AMPA inhibit cancer cell growth through inhibiting intracellular glycine synthesis.

    PubMed

    Li, Qingli; Lambrechts, Mark J; Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Yin, Rutie; Xi, Mingrong; You, Zongbing

    2013-01-01

    Glycine is a nonessential amino acid that is reversibly converted from serine intracellularly by serine hydroxymethyltransferase. Glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), are analogs to glycine, thus they may inhibit serine hydroxymethyltransferase to decrease intracellular glycine synthesis. In this study, we found that glyphosate and AMPA inhibited cell growth in eight human cancer cell lines but not in two immortalized human normal prostatic epithelial cell lines. AMPA arrested C4-2B and PC-3 cancer cells in the G1/G0 phase and inhibited entry into the S phase of the cell cycle. AMPA also promoted apoptosis in C4-2B and PC-3 cancer cell lines. AMPA upregulated p53 and p21 protein levels as well as procaspase 9 protein levels in C4-2B cells, whereas it downregulated cyclin D3 protein levels. AMPA also activated caspase 3 and induced cleavage of poly (adenosine diphosphate [ADP]-ribose) polymerase. This study provides the first evidence that glyphosate and AMPA can inhibit proliferation and promote apoptosis of cancer cells but not normal cells, suggesting that they have potentials to be developed into a new anticancer therapy.

  19. An update on potato crisps contents of moisture, fat, salt and fatty acids (including trans-fatty acids) with special emphasis on new oils/fats used for frying.

    PubMed

    Gonçalves Albuquerque, Tânia; Sanches-Silva, Ana; Santos, Lèlita; Costa, Helena S

    2012-09-01

    Eighteen brands of potato crisps, frequently consumed, were analyzed to establish their nutritional value in relation to salt, fat and fatty acid (FA) composition. The purpose of the present study was to determine moisture, total fat, salt contents and FA profiles (including trans-FAs), and to identify the oil/fat used for frying of the 18 brands of potato crisps. Our results show that salt content ranged from 0.127 to 2.77 g/100 g and total fat content of potato crisps varied between 20.0 and 42.8 g/100 g. With respect to FAs analysis, palmitic acid (C16:0), oleic acid (C18:1) and linoleic acid (C18:2) were the major FAs found in the analyzed potato crisps. It is clear from our work that nowadays most potato crisps are currently produced using oils with high contents in unsaturated FAs, which can be considered as healthier from a nutritional point of view. Nevertheless, some brands of potato crisps still use palm oil or a blend of palm oil and other fats/oils, which are very rich in saturated FAs.

  20. Taurine and beta-alanine act on both GABA and glycine receptors in Xenopus oocyte injected with mouse brain messenger RNA.

    PubMed

    Horikoshi, T; Asanuma, A; Yanagisawa, K; Anzai, K; Goto, S

    1988-09-01

    The responding pathway (process from agonist binding to channel opening) of taurine and beta-alanine was investigated in Xenopus oocytes injected with mouse brain poly(A)+ RNA. Responses to gamma-aminobutyric acid (GABA), glycine, taurine and beta-alanine were induced in oocytes injected with poly(A)+ RNA extracted from 3 regions, cerebrum, cerebellum and brainstem of the mouse brain. From comparison, responses to these 4 inhibitory amino acids in each regional poly(A)+ RNA-injected oocytes were categorized into at least 3 groups: (1) GABA, (2) glycine, and (3) taurine and beta-alanine. No cross-desensitization was observed between GABA response and glycine response, but taurine and beta-alanine responses cross-desensitized both the GABA and glycine responses. Taurine and beta-alanine responses were partially inhibited by the GABA antagonist, bicuculline, and also by the glycine antagonist, strychnine. The results suggest that the taurine or the beta-alanine response in the brain is caused through both the GABA receptor and the glycine receptor.

  1. The Radiolytic Destruction of Glycine Diluted in H2O and CO2 Ice: Implications for Mars and Other Planetary Environments

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, R. L.

    2013-10-01

    Future missions to Mars and other planetary surfaces will probe under the surfaces of these worlds for signs of organic chemistry. In previous studies we have shown that glycine and other amino acids have radiolytic destruction rates that depend on temperature and on dilution within an H2O ice matrix (Gerakines et al., 2012; Gerakines and Hudson 2013). In the new work presented here, we have examined the destruction of glycine diluted in CO2 ice at various concentrations and irradiated with protons at 0.8 MeV, typical of cosmic rays and solar energetic particles. Destruction rates for glycine were measured by infrared spectroscopy in situ, without removing or warming the ice samples. New results on the half life of glycine in solid CO2 will be compared to those found in H2O ice matrices. The survivability of glycine in icy planetary surfaces rich in H2O and CO2 ice will be discussed, and the implications for planetary science missions will be considered. References: Gerakines, P. A., Hudson, R. L., Moore, M. H., and Bell, J-L. (2012). In-situ Measurements of the Radiation Stability of Amino Acids at 15 - 140 K. Icarus, 220, 647-659. Gerakines, P. A. and Hudson, R. L. (2013). Glycine's Radiolytic Destruction in Ices: First in situ Laboratory Measurements for Mars. Astrobiology, 13, 647-655.

  2. Thinking outside the synapse: glycine at extrasynaptic NMDA receptors.

    PubMed

    Gray, John A; Nicoll, Roger A

    2012-08-03

    In this issue, Papouin et al. show that glycine is the endogenous coagonist for extrasynaptic NMDA receptors (NMDARs), unlike at synapses where the coagonist is d-serine. By enzymatically degrading endogenous glycine, they begin to address the enigmatic physiological and pathological roles for extrasynaptic NMDARs.

  3. Molecular dynamics simulation of aqueous solutions of glycine betaine

    NASA Astrophysics Data System (ADS)

    Civera, Monica; Fornili, Arianna; Sironi, Maurizio; Fornili, Sandro L.

    2003-01-01

    Molecular dynamics simulation is used to investigate hydration properties of glycine betaine in a large range of solute concentrations. Statistical analyses of the system trajectories evidence microscopic details suggesting an interpretation of experimental results recently obtained for aqueous solutions of trimethylamine- N-oxide, a bioprotectant closely related to glycine betaine.

  4. New soybean accessions evaluated for reaction to Heterodera glycines populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean Cyst Nematode (SCN, Heterodera glycines Ichinohe) is a serious pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. Annual yield losses in the USA are estimated to be over $1 billion. These losses have remained stable with the use of resistant cultivars but over time nematode...

  5. New soybean accessions identified with resistance to Heterodera glycines populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean Cyst Nematode (SCN, Heterodera glycines Ichinohe) is a serious root-parasite of soybean [Glycine max (L.) Merr.], in USA and worldwide. Annual yield losses in USA are estimated to be nearly $1 billion. These losses have remained stable at current levels with the use of resistant cultivars bu...

  6. Population genetic structure of the soybean aphid, Aphis glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid (Aphis glycines Matsumura) is an invasive pest of cultivated soybean [Glycine max (L.)] in North America. After the initial invasion in 2000, the aphid has quickly spread across most of the U.S. and Canada, suggesting large scale dispersals and rapid adaptations to new environment...

  7. Role of Conserved Glycines in pH Gating of Kir1.1 (ROMK)

    PubMed Central

    Sackin, Henry; Nanazashvili, Mikheil; Palmer, Lawrence G.; Li, Hui

    2006-01-01

    Gating of inward rectifier Kir1.1 potassium channels by internal pH is believed to occur when large hydrophobic leucines, on each of the four subunits, obstruct the permeation path at the cytoplasmic end of the inner transmembrane helices (TM2). In this study, we examined whether closure of the channel at this point involves bending of the inner helix at one or both of two highly conserved glycine residues (corresponding to G134 and G143 in KirBac1.1) that have been proposed as putative “gating hinges” for potassium channels. Replacement of these conserved inner helical glycines by less flexible alanines did not abolish gating but shifted the apparent pKa from 6.6 ± 0.01 (wild-type) to 7.1 ± 0.01 for G157A-Kir1.1b, and to 7.3 ± 0.01 for G148A-Kir1.1b. When both glycines were mutated the effect was additive, shifting the pKa by 1.2 pH units to 7.8 ± 0.04 for the double mutant: G157A+G148A. At this pKa, the double mutant would remain completely closed under physiological conditions. In contrast, when the glycine at G148 was replaced by a proline, the pKa was shifted in the opposite direction from 6.6 ± 0.01 (wild-type) to 5.7 ± 0.01 for G148P. Although conserved glycines at G148 and G157 made it significantly easier to open the channel, they were not an absolute requirement for pH gating in Kir1.1. In addition, none of the glycine mutants produced more than small changes in either the cell-attached or excised single-channel kinetics which, in this channel, argues against changes in the selectivity filter. The putative pH sensor at K61-Kir1.1b, (equivalent to K80-Kir1.1a) was also examined. Mutation of this lysine to an untitratable methionine did not abolish pH gating, but shifted the pKa into an acid range from 6.6 ± 0.01 to 5.4 ± 0.04, similar to pH gating in Kir2.1. Hence K61-Kir1.1b cannot function as the exclusive pH sensor for the channel, although it may act as one of multiple pH sensors, or as a link between a cytoplasmic sensor and the channel

  8. Uptake and utilization of dissolved free amino acids by the brittlestar Microphiopholis gracillima (Say, 1852) (Echinodermata: Ophiuroidea) during disc regeneration

    SciTech Connect

    Clements, L.A.J.

    1988-01-01

    Dissolved organic material (DOM) may be especially important to marine organisms unable to feed due to lack of a digestive system, injury or autotomy. Disc autotomy by the brittlestar Microphiopholis gracillima includes loss of the gut and gonads, and precludes ingestion of particulate food by the animal until gut regeneration is complete. The influence of DOM on the rate of disc regeneration by autotomized M. gracillima was tested by incubating animals in artificial seawater containing different concentrations of amino acids. Rates of uptake of amino acids and excretion of amino acids, ammonia and urea by intact and regenerating M. gracillima individuals were quantified using high performance liquid chromatography. Uptake and catabolism of leucine and glycine were examined using radioisotopic techniques. Both intact and regenerating M. gracillima increased their uptake of {sup 14}C-glycine with starvation, but rates of uptake were higher for intact animals. Catabolism of leucine and glycine, as evidenced by release of labeled CO{sub 2}, was highest among intact animals indicating that the amino acids were being used as energy sources during starvation. However, regenerating animals catabolized less than 2% of the labeled glycine acquired from seawater.

  9. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification

    PubMed Central

    2010-01-01

    Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum PMID:21143837

  10. Glycine toxicity and unexpected intra-operative death.

    PubMed

    Byard, R W; Harrison, R; Wells, R; Gilbert, J D

    2001-09-01

    A rare complication of the use of glycine irrigation fluid during prostatic surgery in a 69-year-old man is described. Following cystolithopexy and transurethral resection of the prostate for benign prostatomegaly, abdominal distension developed with increasing ventilatory pressures. Despite retroperitoneal fluid evacuation at subsequent urgent laparotomy, cardiac arrest occurred that was not amenable to resuscitation. At autopsy a traumatic defect in the posterior bladder wall filled with calculus debris was confirmed that did not communicate with the peritoneal cavity. Hyponatremia with markedly elevated levels of blood, urine, and body fluid glycine were demonstrated. Death was, therefore, attributed to glycine toxicity following tracking of glycine through a surgical defect in the posterior bladder wall. Careful dissection of surgical sites is required in such cases to demonstrate any additional trauma that may be associated with the fatal episode. Analysis of body fluids for glycine and electrolytes is also necessary to assist in the determination of possible mechanisms of death.

  11. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    SciTech Connect

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  12. Discovery of Objects Richest in CH3NH2, Candidates for Future Glycine Surveys

    NASA Astrophysics Data System (ADS)

    Ohishi, Masatoshi

    2015-08-01

    It is widely accepted that prebiotic chemical evolution from small to large and complex molecules would have resulted in the Origin of Life. If amino acids are formed in interstellar clouds, significant amount of amino acids may be delivered to planets. Thus detection of amino acids would accelerate the discussion concerning the universality of “life”.So far, many trials to detect the simplest amino acid, glycine (NH2CH2COOH), were made towards Sgr B2 and other high-mass forming regions, but none of them were successful. One idea to overcome this situation would be to search for precursors to glycine. Although the chemical evolution of interstellar N-bearing COMs is poorly known, methylamine (CH3NH2) is proposed as one precursor to glycine. CH3NH2 can be formed from abundant species, CH4 and NH3, on icy dust surface. Further methyleneimine (CH2NH) would be related to CH3NH2 (Holtom et al., 2005; Kim & Kaiser et al., 2011). Another possible route to form CH3NH2 is hydrogenation to HCN on dust surface : HCN → CH2NH→ CH3NH2 (Theule et al., 2011).In the past CH2NH was reported only in Sgr B2, W51, Orion KL, and G34.3+0.15 (Dickens et al., 1997). In April 2013, we extended this survey by using the Nobeyama 45 m radio telescope towards CH3OH-rich sources. We succeeded to detect four new CH2NH sources. The derived fractional abundances of CH2NH relative to H2 are as high as 6x10-8, implying that CH2NH may exist widely in the ISM.If this is the case, further hydrogenation would efficiently produce CH3NH2. Based on this idea we conducted a survey of CH3NH2 towards CH2NH-rich sources in spring of 2014, and succeeded to detect CH3NH2 towards two sources. The estimated fractional abundance of CH3NH2 to H2 was ~ 10-8, about 10 times higher than that reported towards SgrB2(N).Since it is well known that CO2 exists in most of molecular clouds, CH3NH2 could be a direct precursor candidate to glycine - the simplest amino acid— , CH3NH2-rich sources would turn into

  13. Glycine phases formed from frozen aqueous solutions: Revisited

    NASA Astrophysics Data System (ADS)

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Drebushchak, V. A.; Manakov, A. Yu.; Ancharov, A. I.; Yunoshev, A. S.; Boldyreva, E. V.

    2012-08-01

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice Ih was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into β-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice Ih and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into β-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, β = 113.12°); the formation of "X-phase" from the glycine glassy phase and its transformation into β-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  14. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cysts nematode heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  15. Characterization of GABA- and glycine-induced currents of solitary rodent retinal ganglion cells in culture.

    PubMed

    Tauck, D L; Frosch, M P; Lipton, S A

    1988-10-01

    Ganglion cells were fluorescently labeled, dissociated from 7- to 11-day-old rodent retinas, and placed in tissue culture. Whole-cell recordings with patch electrodes were obtained from solitary cells lacking processes, which permitted a high-quality space clamp. Both GABA (1-200 microM) and glycine (10-300 microM) produced large increases in membrane conductance in virtually every ganglion cell tested, including ganglion cells from different size classes in both rats and mice. Taurine evoked responses similar to those of glycine, but considerably greater concentrations of taurine (150-300 microM) were necessary to observe any effect. Since 20 microM GABA produced approximately the same response as 100 microM glycine, the effects of these two concentrations were compared under various conditions. When recording with chloride distributed equally across the membrane, the reversal potential of the agonist-induced currents was approximately 0 mV. When the internal chloride was reduced by substitution with aspartate, the reversal potential shifted in a negative direction by about 42 mV, indicating that the current was carried mainly by chloride ions. Strychnine (1-5 microM) completely and reversibly blocked the actions of glycine (100 microM) but not those of GABA (20 microM); however, higher concentrations of strychnine (20 microM) nearly totally inhibited the current elicited by GABA (20 microM). The responses to glycine (100 microM) were not affected by bicuculline methiodide (20 microM) or picrotoxinin (20 microM). In contrast, bicuculline methiodide (10 microM) and picrotoxinin (10 microM) reversibly blocked the current evoked by GABA (20 microM); d-tubocurarine (100 microM) only slightly decreased the response to GABA (20 microM). The antagonists were effective over a wide range of holding potentials (-90 mV to +30 mV). The responses to a steady application of both GABA and glycine decayed in a few seconds when recorded under conditions of both symmetric and

  16. Microinjection of glycine into the ventral tegmental area selectively decreases ethanol consumption.

    PubMed

    Li, Jing; Nie, Hong; Bian, Weiliang; Dave, Vaidehi; Janak, Patricia H; Ye, Jiang-Hong

    2012-04-01

    The mechanisms of ethanol addiction are not completely understood. The mesolimbic dopaminergic system is involved in many drug-related behaviors, including ethanol self-administration. The dopaminergic neurons in this system originate in the ventral tegmental area (VTA) and are under the control of GABAergic transmission. Our previous in vitro electrophysiological data indicate that glycine receptors (GlyRs) exist on the GABAergic terminals, which make synapses on VTA dopaminergic neurons, and activation of these GlyRs reduces GABAergic transmission and increases the activity of VTA dopaminergic neurons. In the current study, we tested the hypothesis that the activation of the presynaptic GlyRs in the VTA might interfere with ethanol self-administration. Glycine and strychnine, the selective antagonist of GlyRs, were injected, either alone or in combination, into the VTA of rats. Ethanol self-administration by rats was evaluated by using three different drinking models: intermittent access, continuous access, and operant self-administration. We found that the infusion of glycine into the VTA selectively reduced the intake of ethanol but not sucrose or water in rats chronically exposed to ethanol under the intermittent-access and continuous-access procedures and decreased lever-press responding for ethanol under an operant self-administration procedure. The effects of glycine probably were mediated by strychnine-sensitive GlyRs, because the coinjection of glycine and strychnine reduced neither ethanol intake in the home cages nor lever-press responding for ethanol in the operant chambers. Thus, GlyRs in the VTA may play a critical role in ethanol self-administration in animals chronically exposed to ethanol. Therefore, drugs targeting GlyRs may be beneficial for alcoholics.

  17. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice

    PubMed Central

    Aiba, Yuji; Nakano, Yasuhiro; Koga, Yasuhiro; Takahashi, Kenji; Komatsu, Yasuhiko

    2015-01-01

    A novel strain of Lactobacillus johnsonii No. 1088 was isolated from the gastric juice of a healthy Japanese male volunteer, and characterized for its effectiveness in the stomach environment. Lactobacillus johnsonii No. 1088 was found to have the strongest acid resistance among several lactobacilli examined (>10% of cells survived at pH 1.0 after 2 h), and such a high acid resistance property was a specific characteristic of this strain of L. johnsonii. When cultured with various virulent bacteria, L. johnsonii No. 1088 inhibited the growth of Helicobacter pylori,Escherichia coli O-157, Salmonella Typhimurium, and Clostridium difficile, in which case its effectiveness was more potent than that of a type strain of L. johnsonii,JCM2012. In addition to its effect in vitro, L. johnsonii No. 1088 inhibited the growth of H. pylori in human intestinal microbiota-associated mice in both its live and lyophilized forms. Moreover, L. johnsonii No. 1088 suppressed gastric acid secretion in mice via decreasing the number of gastrin-positive cells in the stomach. These results taken together suggest that L. johnsonii No. 1088 is a unique lactobacillus having properties beneficial for supporting H. pylori eradication by triple therapy including the use of a proton pump inhibitor (PPI) and also for prophylaxis of gastroesophageal reflux disease possibly caused after H. pylori eradication as a side effect of PPI. PMID:25771812

  18. Changes in free amino acid content and activities of amination and transamination enzymes in yeasts grown on different inorganic nitrogen sources, including hydroxylamine.

    PubMed

    Norkrans, B; Tunblad-Johansson, I

    1981-01-01

    This study concerns inter- and intraspecific differences between yeasts at assimilation of different nitrogen sources. Alterations in the content of free amino acids in cells and media as well as in the related enzyme activities during growth were studied. The hydroxylamine (HA)-tolerant Endomycopsis lipolytica was examined and compared with the nitrate-reducing Cryptococcus albidus, and Saccharomyces cerevisiae, requiring fully reduced nitrogen for growth. Special attention was paid to alanine, aspartic acid, and glutamic acid, the amino acids closely related to the Krebs cycle keto acids. The amino acids were analyzed as their n-propyl N-acetyl esters by gas-liquid chromatography (GLC). The composition of the amino acid pool was similar for the three yeasts. Glutamic acid was predominant; in early log-phase cells of E. lipolytica contents of 200-234 micromol . g(-1) dry weight were found. A positive correlation between the specific growth rate and the size of the amino acid pool was observed. The assimilation of ammonia was mediated by glutamate dehydrogenase (GDH). The NADP-GDH was the dominating enzyme in all three yeasts showing the highest specific activity in Cr. albidus grown on nitrate (6980 nmol . (min(-1)).(mg protein(-1)). Glutamine synthetase (GS) displayed a high specific activity in S. cerevisiae, which also had a high amount of glutamine. The assimilation of HA did not differ greatly from the assimilation of ammonium in E. lipolytica. The existing differences could rather be explained as provoked by the concentration of available nitrogen.

  19. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA).

    PubMed

    Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S; Harlow, Mark L

    2015-10-08

    Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5' ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission.

  20. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA)

    PubMed Central

    Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S.; Harlow, Mark L.

    2015-01-01

    Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5′ ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission. PMID:26446566

  1. [Properties of glycyrrhizin in Kampo extracts including licorice root and changes in the blood concentration of glycyrrhetic acid after oral administration of Kampo extracts].

    PubMed

    Miyamura, M; Ono, M; Kyotani, S; Nishioka, Y

    1996-03-01

    We investigated in vitro the properties of glycyrrhizin (GL), such as dissolution, absorption and resolution, using a Sho-Seiryu-To extract, a Sho-Saiko-To extract, both including a licorice root, and licorice extract. The dissolution of GL differed with the pH of the solvent. The absorption (partition coefficient) of GL decreased with an increase in pH, and increased in the presence of other active constituents, such as baicalin, baicalein, and ephedrine. In the case of the Sho-Saiko-To extract, the conversion from GL to glycyrrhetic acid (GA) by beta-glucuronidase originated from E. coli occurred slowly. It was also suppressed by adding baicalin. We determined in vivo the pharmacokinetics of GA after oral administration of Kampo extracts in healthy volunteers. In each Kampo extract, the time of administration had no influence on the mean maximum blood concentration (Cmax) and the area under the blood concentration-time curve (AUC). Tmax was delayed in the case of the administration after meal (p < 0.05).

  2. Positive Modulation of the Glycine Receptor by Means of Glycine Receptor–Binding Aptamers

    PubMed Central

    Aneiros, Eduardo; Blank, Michael; Mueller, Johan; Nyman, Eva; Blind, Michael; Dabrowski, Michael A.; Andersson, Christin V.; Sandberg, Kristian

    2015-01-01

    According to the gate control theory of pain, the glycine receptors (GlyRs) are putative targets for development of therapeutic analgesics. A possible approach for novel analgesics is to develop a positive modulator of the glycine-activated Cl− channels. Unfortunately, there has been limited success in developing drug-like small molecules to study the impact of agonists or positive modulators on GlyRs. Eight RNA aptamers with low nanomolar affinity to GlyRα1 were generated, and their pharmacological properties analyzed. Cytochemistry using fluorescein-labeled aptamers demonstrated GlyRα1-dependent binding to the plasma membrane but also intracellular binding. Using a fluorescent membrane potential assay, we could identify five aptamers to be positive modulators. The positive modulation of one of the aptamers was confirmed by patch-clamp electrophysiology on L(tk) cells expressing GlyRα1 and/or GlyRα1β. This aptamer potentiated whole-cell Cl− currents in the presence of low concentrations of glycine. To our knowledge, this is the first demonstration ever of RNA aptamers acting as positive modulators for an ion channel. We believe that these aptamers are unique and valuable tools for further studies of GlyR biology and possibly also as tools for assay development in identifying small-molecule agonists and positive modulators. PMID:26071243

  3. [Changes of polyamines level in Glycine soja and Glycine max seedlings under NaCl stress].

    PubMed

    Yu, Bingjun; Ji, Xiaojia; Liu, Jun; Liu, Youliang

    2004-07-01

    With internationally common-used Glycine max (the salt-tolerant Lee68) and Glycine soja (the salt-sensitive N23232) as reference, this paper studied the polyamines (PAs) contents and polyamine oxidase (PAO) activities in the highly salt-tolerant BB52 (Glycine soja) seedlings, which showed that under 150mmol x L(-1) NaCl stress for 2d, the decrease of Put and Spd contents was more significant, but that of Spd content was less significant in roots of BB52 than in those of Lee68 and N23232. For leaves, the decrease of Put and increase of Spd contents were markedly observed in BB52. The ascent of (Spm + Spd)/Put ratios and descent of Put/PAs ratios showed a positive relation to their salt tolerance. The PAO activity in roots and leaves was all increased, and most obvious in N23232. The relationship between PAs levels in BB52 and its salt tolerance was also discussed.

  4. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation

    PubMed Central

    Wilkins, Megan E.; Caley, Alex; Gielen, Marc C.; Harvey, Robert J.

    2016-01-01

    Key points Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission.Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem.A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs.These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact.Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease. Abstract Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, β‐alanine and taurine by 9‐, 6‐ and 3‐fold respectively, and that of the competitive antagonist strychnine by 15‐fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co‐mutating N61, located on a neighbouring β loop to N46, rescued the wild‐type phenotype depending on the amino acid charge. Single‐channel recording identified that burst length for the N46K mutant was reduced and fast agonist application

  5. Glycine input induces the synaptic facilitation in salamander rod photoreceptors.

    PubMed

    Shen, Wen; Jiang, Zheng; Li, Baoqin

    2008-11-01

    Glycinergic synapses in photoreceptors are made by centrifugal feedback neurons in the network, but the function of the synapses is largely unknown. Here we report that glycinergic input enhances photoreceptor synapses in amphibian retinas. Using specific antibodies against a glycine transporter (GlyT2) and glycine receptor beta subunit, we identified the morphology of glycinergic input in photoreceptor terminals. Electrophysiological recordings indicated that 10 muM glycine depolarized rods and activated voltage-gated Ca(2+) channels in the neurons. The effects facilitated glutamate vesicle release in photoreceptors, meanwhile increased the spontaneous excitatory postsynaptic currents in Off-bipolar cells. Endogenous glycine feedback also enhanced glutamate transmission in photoreceptors. Additionally, inhibition of a Cl(-) uptake transporter NKCC1 with bumetanid effectively eliminated glycine-evoked a weak depolarization in rods, suggesting that NKCC1 maintains a high Cl(-) level in rods, which causes to depolarize in responding to glycine input. This study reveals a new function of glycine in retinal synaptic transmission.

  6. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: An analysis of data from the National Health and Nutrition Examination Survey indicated that in older adults exposed to folic acid fortification, the combination of low serum vitamin B-12 and elevated folate is associated with higher concentrations of homocysteine and methylmalonic acid ...

  7. Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO 2 and drought

    NASA Astrophysics Data System (ADS)

    Andresen, Louise C.; Michelsen, Anders; Jonasson, Sven; Beier, Claus; Ambus, Per

    2009-11-01

    Temperate terrestrial ecosystems are currently exposed to climatic and air quality changes with increased atmospheric CO 2, increased temperature and prolonged droughts. The responses of natural ecosystems to these changes are focus for research, due to the potential feedbacks to the climate. We here present results from a field experiment in which the effects of these three climate change factors are investigated solely and in all combinations at a temperate heath dominated by heather ( Calluna vulgaris) and wavy hair-grass ( Deschampsia flexuosa). Climate induced increases in plant production may increase plant root exudation of dissolved organic compounds such as amino acids, and the release of amino acids during decomposition of organic matter. Such free amino acids in soil serve as substrates for soil microorganisms and are also acquired as nutrients directly by plants. We investigated the magnitude of the response to the potential climate change treatments on uptake of organic nitrogen in an in situ pulse labelling experiment with 15N 13C 2-labelled glycine (amino acid) injected into the soil. In situ root nitrogen acquisition by grasses responded significantly to the climate change treatments, with larger 15N uptake in response to warming and elevated CO 2 but not additively when the treatments were combined. Also, a larger grass leaf biomass in the combined T and CO 2 treatment than in individual treatments suggest that responses to combined climate change factors cannot be predicted from the responses to single factors treatments. The soil microbes were superior to plants in the short-term competition for the added glycine, as indicated by an 18 times larger 15N recovery in the microbial biomass compared to the plant biomass. The soil microbes acquired glycine largely as an intact compound (87%), with no effects of the multi factorial climate change treatment through one year.

  8. The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis.

    PubMed Central

    Okoniewska, M; Tanaka, T; Yada, R Y

    2000-01-01

    Glycine residues are known to contribute to conformational flexibility of polypeptide chains, and have been found to contribute to flexibility of some loops associated with enzymic catalysis. A comparison of porcine pepsin in zymogen, mature and inhibited forms revealed that a loop (a flap), consisting of residues 71--80, located near the active site changed its position upon substrate binding. The loop residue, glycine-76, has been implicated in the catalytic process and thought to participate in a hydrogen-bond network aligning the substrate. This study investigated the role of glycine-76 using site-directed mutagenesis. Three mutants, G76A, G76V and G76S, were constructed to increase conformational restriction of a polypeptide chain. In addition, the serine mutant introduced a hydrogen-bonding potential at position 76 similar to that observed in human renin. All the mutants, regardless of amino acid size and polarity, had lower catalytic efficiency and activated more slowly than the wild-type enzyme. The slower activation process was associated directly with altered proteolytic activity. Consequently, it was proposed that a proteolytic cleavage represents a limiting step of the activation process. Lower catalytic efficiency of the mutants was explained as a decrease in the flap flexibility and, therefore, a different pattern of hydrogen bonds responsible for substrate alignment and flap conformation. The results demonstrated that flap flexibility is essential for efficient catalytic and activation processes. PMID:10861225

  9. Surface modification of ultrafiltration membranes by grafting glycine-functionalized PVA based on polydopamine coatings

    NASA Astrophysics Data System (ADS)

    Li, Fang; Ye, Jianfeng; Yang, Linming; Deng, Chunhua; Tian, Qing; Yang, Bo

    2015-08-01

    Due to the ease of processing and stability during filtration, polydopamine (PD) coatings with grafted hydrophilic polymers have recently received significant attention. In this study, glycine-functionalized PVA was synthesized and grafted to a PD-coated ultrafiltration (UF) membrane to improve its performance during wastewater filtration. The membranes were modified by grafting PD with glycine-functionalized PVA (PD-g-PVA), and the resultant materials were characterized using surface morphology analyses, contact angle measurements, flux, oil/water emulsion separation tests, and grafted layer stability tests. The performance of the PD-g-PVA membrane was compared to that of the membrane modified with PD-g-polyethylene glycol (PEG). After grafting the PD-g-PVA, the surface roughness of the membranes decreased significantly. The grafted PVA layer, which was stable under acidic and alkaline conditions, protected the PD layer. The filtration experiments with an oil/water emulsion indicated that modifying the glycine-functionalized PVA by grafting can significantly improve the antifouling ability of membranes.

  10. Poly(gamma-glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells.

    PubMed Central

    Jackson, P J; Unkefer, C J; Doolen, J A; Watt, K; Robinson, N J

    1987-01-01

    Angiosperms can be selected for the ability to grow in the presence of normally toxic concentrations of certain trace metal ions. Addition of Cd and Cu to Cd-resistant Datura innoxia cell cultures results in the rapid synthesis and accumulation of sulfur-rich, metal-binding polypeptides. The structure of these compounds was determined using amino acid analysis, 13C NMR, and site-specific enzymic digestion. These compounds are poly(gamma-glutamylcysteinyl)glycines. Greater than 80% of the cellular Cd is bound to the bis and tris forms in Cd-resistant cells. There is a direct correlation between the maximum accumulation of the metal-binding polypeptides and the concentration of toxic ions to which the cells are resistant. In the presence of metal ions, the polypeptides form multimeric aggregates that can be resolved by gel chromatography. Cd binds to both the high and low molecular weight aggregates, whereas Cu preferentially binds to the higher molecular weight forms. The presence of gamma-carboxamide linkages between glutamyl and adjacent cysteinyl residues indicates that these polypeptides are products of biosynthetic pathways. Poly(gamma-glutamylcysteinyl)glycines bind metals and, in this respect, appear to be functional analogs of the protein metallothionein. However, in the absence of supraoptimal concentrations of trace metal ions, the functions of metallothionein in animals and microorganisms and poly(gamma-glutamylcysteinyl)glycines in plants may differ. PMID:3477793

  11. Molecular and functional characterization of a unique sucrose hydrolase from Xanthomonas axonopodis pv. glycines.

    PubMed

    Kim, Hong-Suk; Park, Hyoung-Joon; Heu, Sunggi; Jung, Jin

    2004-01-01

    A novel sucrose hydrolase (SUH) from Xanthomonas axonopodis pv. glycines, a causative agent of bacterial pustule disease on soybeans, was studied at the functional and molecular levels. SUH was shown to act rather specifically on sucrose (K(m) = 2.5 mM) but not on sucrose-6-phosphate. Protein analysis of purified SUH revealed that, in this monomeric enzyme with an estimated molecular mass of 70,223 +/- 12 Da, amino acid sequences determined for several segments have corresponding nucleotide sequences in XAC3490, a protein-coding gene found in the genome of X. axonopodis pv. citri. Based on this information, the SUH gene, consisting of an open reading frame of 1,935 bp, was cloned by screening a genomic library of X. axonopodis pv. glycines 8ra. Database searches and sequence comparison revealed that SUH has significant homology to some family 13 enzymes, with all of the crucial invariant residues involved in the catalytic mechanism conserved, but it shows no similarity to known invertases belonging to family 32. suh expression in X. axonopodis pv. glycines requires sucrose induction, and insertional mutagenesis resulted in an absence of sucrose-inducible sucrose hydrolase activity in crude protein extracts and a sucrose-negative phenotype. Recombinant SUH, overproduced in Escherichia coli and purified, was shown to have the same enzymatic characteristics in terms of kinetic parameters.

  12. Deficit in acoustic signal-in-noise detection in glycine receptor α3 subunit knockout mice.

    PubMed

    Tziridis, Konstantin; Buerbank, Stefanie; Eulenburg, Volker; Dlugaiczyk, Julia; Schulze, Holger

    2017-02-01

    Hearing is an essential sense for communication in animals and humans. Normal function of the cochlea of higher vertebrates relies on a fine-tuned interplay of afferent and efferent innervation of both inner and outer hair cells. Efferent inhibition is controlled via olivocochlear feedback loops, mediated mainly by acetylcholine, γ-aminobutyric acid (GABA) and glycine, and is one of the first sites affected by synapto- and neuropathy in the development of hearing loss. While the functions of acetylcholine, GABA and other inhibitory transmitters within these feedback loops are at least partially understood, especially the function of glycine still remains elusive. To address this question, we investigated hearing in glycine receptor (GlyR) α3 knockout (KO) and wildtype (WT) mice. We found no differences in pure tone hearing thresholds at 11.3 and 16 kHz between the two groups as assessed by auditory brainstem response (ABR) measurements. Detailed analysis of the ABR waves at 11.3 kHz, however, revealed a latency decrease of wave III and an amplitude increase of wave IV in KO compared to WT animals. GlyRα3 KO animals showed significantly impaired prepulse inhibition of the auditory startle response in a noisy environment, indicating that GlyRα3-mediated glycinergic inhibition is important for signal-in-noise detection.

  13. Cyanide Formation from Oxidation of Glycine by a Pseudomonas Species

    PubMed Central

    Wissing, Frode

    1974-01-01

    With whole cells of a hydrogen cyanide-producing bacterium strain C, of the genus Pseudomonas, it was found that the oxygen necessary for the oxidation of glycine to cyanide could be replaced by various artificial electron acceptors. The order of reactivity was: oxygen > phenazine methosulphate > methylene blue > 2,6-dichlorophenolindophenol > ferricyanide. Cyanide production was inhibited by pyrrolnitrin, a well-known inhibitor of many flavine enzymes. The molar ratio of added glycine to cyanide produced was found to be 1.09. With whole bacteria the apparent Km (glycine) for the cyanide production was found to be 5.0 × 10−4 M. PMID:4813896

  14. Cyanide formation from oxidation of glycine of Pseudomonas species.

    PubMed

    Wissing, F

    1974-03-01

    With whole cells of a hydrogen cyanide-producing bacterium strain C, of the genus Pseudomonas, it was found that the oxygen necessary for the oxidation of glycine to cyanide could be replaced by various artificial electron acceptors. The order of reactivity was: oxygen > phenazine methosulphate > methylene blue > 2,6-dichlorophenolindophenol > ferricyanide. Cyanide production was inhibited by pyrrolnitrin, a well-known inhibitor of many flavine enzymes. The molar ratio of added glycine to cyanide produced was found to be 1.09. With whole bacteria the apparent K(m) (glycine) for the cyanide production was found to be 5.0 x 10(-4) M.

  15. Glycine receptor heterogeneity in rat spinal cord during postnatal development.

    PubMed Central

    Becker, C M; Hoch, W; Betz, H

    1988-01-01

    Two different isoforms of the inhibitory glycine receptor were identified during postnatal development of rat spinal cord. A neonatal form characterized by low strychnine binding affinity, altered antigenicity, and a ligand binding subunit differing in mol. wt (49 kd) from that of the adult receptor (48 kd) predominates at birth (70% of the total receptor protein). Separation from the adult form could be achieved by either use of a selective antibody or glycine gradient elution of 2-aminostrychnine affinity columns. Both isoforms co-purify with the mol. wt 93 kd peripheral membrane protein of the postsynaptic glycine receptor complex. Images PMID:2850172

  16. An automated and efficient conformational search of glycine and a glycine-water heterodimer both in vacuum and in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kishimoto, Naoki

    2017-01-01

    Stable conformers and the conformational isomerization pathways of glycine and the glycine-H2O heterodimer were explored using an efficient automated conformational searching method. The Gibbs energies of the conformers and transition structures of glycine and a glycine-H2O heterodimer at 400, 298, and 150 K were also calculated. In addition, estimated ratios of conformers, assuming thermodynamic equilibrium, were calculated and compared with the results of spectroscopic experiments. Solvent effects were introduced into the exploration process using the polarizable continuum model (PCM), and conversion (tautomerization) pathways from neutral to zwitterionic states for both glycine and a glycine-H2O heterodimer in aqueous solution were compared.

  17. Proline and Glycine Betaine Influence Protein Solvation 1

    PubMed Central

    Paleg, Leslie G.; Stewart, George R.; Bradbeer, Joseph W.

    1984-01-01

    Glutamine synthetase from barley (Hordeum distichum L.) is precipitated by polyethylene glycol (PEG). Proline, in a concentration-dependent manner, reduces the amount of enzyme precipitated by PEG, although the effect of the imino acid can be counteracted by raising the level of PEG. The effect of PEG is a function of mer number and concentration and the influence of both elements can be ameliorated by proline. PEG-induced enzyme precipitation is a function of pH, as is its interaction with both proline and betaine in the reaction. The lack of effect of amount of enzyme on the proline and PEG effects supports the conclusion that, in this system, proline and PEG do not function through interaction with the protein. Other compounds, such as glycine, glucose, and sucrose, can decrease the PEG-induced precipitation of the enzyme, although glycerol was not active under the conditions employed. The results are consistent with the proposition that a protein-containing system in which high concentrations of proline and/or betaine are present, is better `protected' against the biologically unfavorable consequences of dehydration-induced thermodynamic perturbation. PMID:16663771

  18. A novel liquid chromatography/tandem mass spectrometry method for the quantification of glycine as biomarker in brain microdialysis and cerebrospinal fluid samples within 5min.

    PubMed

    Voehringer, Patrizia; Fuertig, René; Ferger, Boris

    2013-11-15

    Glycine is an important amino acid neurotransmitter in the central nervous system (CNS) and a useful biomarker to indicate biological activity of drugs such as glycine reuptake inhibitors (GRI) in the brain. Here, we report how a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the fast and reliable analysis of glycine in brain microdialysates and cerebrospinal fluid (CSF) samples has been established. Additionally, we compare this method with the conventional approach of high performance liquid chromatography (HPLC) coupled to fluorescence detection (FD). The present LC-MS/MS method did not require any derivatisation step. Fifteen microliters of sample were injected for analysis. Glycine was detected by a triple quadrupole mass spectrometer in the positive electrospray ionisation (ESI) mode. The total running time was 5min. The limit of quantitation (LOQ) was determined as 100nM, while linearity was given in the range from 100nM to 100μM. In order to demonstrate the feasibility of the LC-MS/MS method, we measured glycine levels in striatal in vivo microdialysates and CSF of rats after administration of the commercially available glycine transporter 1 (GlyT1) inhibitor LY 2365109 (10mg/kg, p.o.). LY 2365109 produced 2-fold and 3-fold elevated glycine concentrations from 1.52μM to 3.6μM in striatal microdialysates and from 10.38μM to 36μM in CSF, respectively. In conclusion, we established a fast and reliable LC-MS/MS method, which can be used for the quantification of glycine in brain microdialysis and CSF samples in biomarker studies.

  19. Glycine Transporter Inhibitor Attenuates the Psychotomimetic Effects of Ketamine in Healthy Males: Preliminary Evidence

    PubMed Central

    D'Souza, Deepak Cyril; Singh, Nagendra; Elander, Jacqueline; Carbuto, Michelle; Pittman, Brian; de Haes, Joanna Udo; Sjogren, Magnus; Peeters, Pierre; Ranganathan, Mohini; Schipper, Jacques

    2012-01-01

    Enhancing glutamate function by stimulating the glycine site of the NMDA receptor with glycine, -serine, or with drugs that inhibit glycine reuptake may have therapeutic potential in schizophrenia. The effects of a single oral dose of cis-N-methyl-N-(6-methoxy-1-phenyl-1,2,3,4-tetrahydronaphthalen-2-ylmethyl) amino-methylcarboxylic acid hydrochloride (Org 25935), a glycine transporter-1 (GlyT1) inhibitor, and placebo pretreatment on ketamine-induced schizophrenia-like psychotic symptoms, perceptual alterations, and subjective effects were evaluated in 12 healthy male subjects in a randomized, counter-balanced, within-subjects, crossover design. At 2.5 h after administration of the Org 25935 or placebo, subjects received a ketamine bolus and constant infusion lasting 100 min. Psychotic symptoms, perceptual, and a number of subjective effects were assessed repeatedly before, several times during, and after completion of ketamine administration. A cognitive battery was administered once per test day. Ketamine produced behavioral, subjective, and cognitive effects consistent with its known effects. Org 25935 reduced the ketamine-induced increases in measures of psychosis (Positive and Negative Syndrome Scale (PANSS)) and perceptual alterations (Clinician Administered Dissociative Symptoms Scale (CADSS)). The magnitude of the effect of Org 25935 on ketamine-induced increases in Total PANSS and CADSS Clinician-rated scores was 0.71 and 0.98 (SD units), respectively. None of the behavioral effects of ketamine were increased by Org 25935 pretreatment. Org 25935 worsened some aspects of learning and delayed recall, and trended to improve choice reaction time. This study demonstrates for the first time in humans that a GlyT1 inhibitor reduces the effects induced by NMDA receptor antagonism. These findings provide preliminary support for further study of the antipsychotic potential of GlyT1 inhibitors. PMID:22113087

  20. 77 FR 21532 - Glycine From the People's Republic of China: Preliminary Partial Affirmative Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... that certain Chinese glycine further processed in India did not change the country of origin of such... determine whether U.S. imports of glycine exported by AICO and Paras, and made from Chinese- origin glycine... from companies in China, processing and/or repackaging the Chinese-origin glycine, and then...

  1. Meiofaunal Richness in Highly Acidic Hot Springs in Unzen-Amakusa National Park, Japan, Including the First Rediscovery Attempt for Mesotardigrada.

    PubMed

    Suzuki, Atsushi C; Kagoshima, Hiroshi; Chilton, Glen; Grothman, Gary T; Johansson, Carl; Tsujimoto, Megumu

    2017-02-01

    Extreme environments sometimes support surprisingly high meiofaunal diversity. We sampled runoff from the acidic hot springs of Unzen, Japan. This is the type locality of Thermozodium esakii Rahm, 1937, the only tardigrade in the class Mesotardigrada, which remains contentious in the absence of corroboration or supporting specimens. Our sampling revealed at least three species of arthropods, four rotifers, and five nematodes living in the hot (ca. 40°C) and acidic (ca. pH 2.5) water, but no tardigrades.

  2. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  3. GC/MS-based metabolomic studies reveal key roles of glycine in regulating silk synthesis in silkworm, Bombyx mori.

    PubMed

    Chen, Quanmei; Liu, Xinyu; Zhao, Ping; Sun, Yanhui; Zhao, Xinjie; Xiong, Ying; Xu, Guowang; Xia, Qingyou

    2015-02-01

    Metabolic profiling of silkworm, especially the factors that affect silk synthesis at the metabolic level, is little known. Herein, metabolomic method based on gas chromatography-mass spectrometry was applied to identify key metabolic changes in silk synthesis deficient silkworms. Forty-six differential metabolites were identified in Nd group with the defect of silk synthesis. Significant changes in the levels of glycine and uric acid (up-regulation), carbohydrates and free fatty acids (down-regulation) were observed. The further metabolomics of silk synthesis deficient silkworms by decreasing silk proteins synthesis using knocking out fibroin heavy chain gene or extirpating silk glands operation showed that the changes of the metabolites were almost consistent with those of the Nd group. Furthermore, the increased silk yields by supplying more glycine or its related metabolite confirmed that glycine is a key metabolite to regulate silk synthesis. These findings provide important insights into the regulation between metabolic profiling and silk synthesis.

  4. Spectral Luminescent Properties of the Glycine Molecule in a Gas Discharge

    NASA Astrophysics Data System (ADS)

    General, A. A.; Migovich, M. I.; Kelman, V. A.; Zhmenyak, Yu. V.; Zvenigorodsky, V. V.

    2016-01-01

    We have experimentally studied the luminescence spectra of glycine powder in the plasma of a repetitively pulsed longitudinal discharge in argon-glycine and helium-glycine mixtures. We have identified the main fragments of the glycine molecule emitting in the 200-1000 nm region. The emitting molecules due to fragmentation of glycine and dissociation of the carboxyl (-COOH) and amino (-NH2) groups are nitrogen, carbon monoxide, and cyanogen molecules.

  5. Effects of gassericins A and T, bacteriocins produced by Lactobacillus gasseri, with glycine on custard cream preservation.

    PubMed

    Arakawa, K; Kawai, Y; Iioka, H; Tanioka, M; Nishimura, J; Kitazawa, H; Tsurumi, K; Saito, T

    2009-06-01

    Lactobacillus gasseri LA39 and LA158 isolated from human-infant feces produce bacteriocins named gassericins A and T, respectively. Both gassericins have high heat stability (121 degrees C, 10 min), good pH tolerance (pH 2-11), and strong bactericidality against many gram-positive bacteria, especially lactic acid bacteria, and thus are expected to be effective food preservatives. A microwell plate assay against 12 strains of custard cream spoilage bacteria showed that the gassericins had broader antibacterial spectra than nisin A. Although the gassericins allowed gram-negative isolates to grow, they successfully inhibited the growth of all tested bacterial strains in microwells with the addition of glycine. Glycine was bacteriostatic against many strains except lactic acid bacteria. For practical use, gassericin A was efficiently produced by cultivation in a food-grade medium improved using cheese whey, nourishing proteose peptone, and surfactant yolk lecithin. The practical preservative effect of gassericin A and glycine was verified from the viability of 4 isolated strains, Bacillus cereus, Lactococcus lactis ssp. lactis, Achromobacter denitrificans, and Pseudomonas fluorescens, in custard creams. Custard cream containing 123 arbitrary units of gassericin A per milliliter entirely growth-inhibited the 2 gram-positive strains. In custard cream containing an insufficient amount of gassericin A (49 arbitrary units/mL), the gram-positive strains gradually grew but were completely inhibited by the addition of 0.5% (wt/wt) glycine. The 2 gram-negative strains did not multiply even in the additive-free custard cream, probably because of the unsuitable growth environment. This is the first report showing the combined effect of bacteriocin and glycine and their application for food preservation, which may be helpful for future use in the food industry.

  6. The effects of glycine, L-threonine, and L-cystine supplementation to a 9% casein diet on the conversions of L-tryptophan to nicotinamide and to serotonin in rats.

    PubMed

    Shibata, Katsumi; Imai, Shoko; Nakata, Chifumi; Fukuwatari, Tsutomu

    2013-01-01

    Nicotinamide and serotonin are synthesized from L-tryptophan in mammals. It is important to know the nutritional factors affecting the synthesis of nicotinamide and serotonin. We investigated the effects of amino acid composition. Young adult rats were fed ad libitum for 21 d a low-protein (9% casein) diet([1] control), or one of the low protein diets supplemented with following amino acids: [2] glycine, L-threonine, and L-cystine, [3] L-threonine and L-cystine, [4] glycine and L-cystine, and [5] glycine and L-threonine. The amounts of glycine, L-threonine and L-cystine supplementations were 2%, 0.078%, and 0.2%, respectively, and the amino acid contents of all diet were adjusted with supplementation of L-glutamic acid. The body weight gain, food efficiency ratio, and the amino acid nutrition biomarker, which is the urinary excretion ratio of (N(1)-methyl-2-pyridone-5-carboxamide+N(1)-methyl-4-pyridone-3-carboxamide)/N(1)-methylnicotinamide, improved by adding the amino acids glycine, L-threonine and L-cystine to a 9% casein diet. The conversion percentage of L-tryptophan to nicotinamide decreased with the addition of the amino acids glycine, L-threonine and L-cystine to a 9% casein diet, while the concentrations of serotonin in the brain, stomach and small intestine were not affected at all. The effects of each amino acid on body weight gain and the conversion ratios were also investigated. Glycine did not affect these variables. L-Cystine improved the body weight gain, the food efficiency ratio and the urine ratio, and decreased the conversion percentage. L-Threonine did not affect body weight gain or food efficiency ratio; however, it improved the urine ratio and decreased the conversion percentage.

  7. Self-Assembly of Glycine on Cu (001): The tale of Temperature and Polarity

    NASA Astrophysics Data System (ADS)

    Xu, Lifang; Xu, Jing; Lin, Zheshuai; Meng, Sheng; Wang, Enge

    Glycine on Cu(001) is used as an example to illustrate the critical role of molecular polarity and finite temperature effect in self-assembly of bio-molecules at a metal surface. A unified picture for glycine self-assembly on Cu(001) is derived based on full polarity compensation considerations. Temperature plays a non-trivial role: the ground-state structure at 0 K is absent at room temperature, where intermolecular hydrogen bonding overweighs competing molecule-substrate interactions. The unique p(2×4) structure predicted as the most stable structure was confirmed by ab initio molecular dynamics simulations, whose scanning tunneling microscopy images and anisotropic free-electron-like dispersion are in excellent agreement with experiments. Moreover, the rich self-assembling patterns including the heterochiral and homochiral phases, and their interrelationships are entirely governed by the same mechanism.

  8. Growth of gamma glycine crystal and its characterisation.

    PubMed

    Peter, M Esthaku; Ramasamy, P

    2010-05-01

    Single crystal of gamma-glycine, an organic nonlinear optical material, has been grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and potassium nitrate, lithium nitrate at room temperature. Gamma glycine crystals have been grown up to the dimension of 20mmx15mmx12mm. Powder X-ray diffraction of the grown crystal was recorded and indexed. Single crystal X-ray diffraction studies were carried out and the unit cell parameters were compared with the literature values. The gamma-phase of glycine is confirmed by single crystal XRD and FTIR spectral analysis. The crystals were characterised by UV-vis-NIR transmission spectrum in the range 200-1100nm. The second harmonic generation conversion efficiency of gamma-glycine crystal was twice the efficiency of KDP crystal. Thermal characteristics of gamma-glycine crystals were determined by thermogravimetric analysis (TGA) and differential thermal analysis, which shows the thermal stability of the grown crystals. Dielectric constant and dielectric loss measurements were carried out at different temperatures and frequencies. The microhardness of the grown crystals has been studied using Vicker's microhardness tester.

  9. Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum.

    PubMed Central

    Farwick, M; Siewe, R M; Krämer, R

    1995-01-01

    Osmoregulatory uptake of glycine betaine in whole cells of Corynebacterium glutamicum ATCC 13032 (wild type) was studied. The cells actively take up glycine betaine when they are osmotically shocked. The total accumulation and uptake rate were dependent on the osmotic strength of the medium. Kinetic analysis revealed a high-affinity transport system (Km, 8.6 +/- 0.4 microM) with high maximum velocity (110 nmol.min-1.mg [dry weight]-1). Glycine betaine functioned as a compatible solute when added to the medium and allowed growth at an otherwise inhibitory osmotic strength of 1.5 M NaCl. Proline and ectoine could also be used as osmoprotectants. Glycine betaine is neither synthesized nor metabolized by C. glutamicum. The glycine betaine transport system is constitutively expressed at a basal level of activity. It can be induced up to eightfold by osmotic stress and is strongly regulated at the level of activity. The transport system is highly specific and has its pH optimum in the slightly alkaline range at about pH 8. The uptake of the zwitterionic glycine betaine is mediated by a secondary symport system coupled to cotransport of at least two Na+ ions. It is thus driven both by the membrane potential and the Na+ gradient. An extremely high accumulation (internal/external) ratio of up to 4 x 10(6) was measured, which represents the highest accumulation ratio observed for any transport system. PMID:7642496

  10. Effect of temperature and pressure on the protonation of glycine

    PubMed Central

    Izatt, R. M.; Oscarson, J. L.; Gillespie, S. E.; Grimsrud, H.; Renuncio, J. A. R.; Pando, C.

    1992-01-01

    Flow calorimetry has been used to study the interaction of glycine with protons in water at temperatures of 298.15, 323.15, and 348.15 K and pressures up to 12.50 MPa. By combining the measured heat for glycine solutions titrated with NaOH with the heat of ionization for water, the enthalpy of protonation of glycine is obtained. The reaction is exothermic at all temperatures and pressures studied. The effect of pressure on the enthalpy of reaction is very small. The experimental heat data are analyzed to yield equilibrium constant (K), enthalpy change (ΔH), and entropy change (ΔS) values for the protonation reaction as a function of temperature. These values are compared with those reported previously at 298.15 K. The ΔH and ΔS values increase (become more positive), whereas log K values decrease, as temperature increases. The trends for ΔH and ΔS with temperature are opposite to those reported previously for the protonation of several alkanolamines. However, log K values for proton interaction with both glycine and the alkanolamines decrease with increasing temperature. The effect of the nitrogen atom substituent on log K for protonation of glycine and alkanolamines is discussed in terms of changes in long-range and short-range solvent effects. These effects are used to explain the difference in ΔH and ΔS trends between glycine protonation and those found earlier for alkanolamine protonation. PMID:19431832

  11. The effects of excitatory amino acids and their antagonists on the generation of motor activity in the isolated chick spinal cord.

    PubMed

    Barry, M J; O'Donovan, M J

    1987-12-01

    We have investigated the action of excitatory amino acids and their antagonists on spontaneous motor activity produced by an isolated preparation of the chick lumbosacral cord. Bath application of N-methyl-DL-aspartic acid (NMDA) or D-glutamate increased the occurrence and duration of spontaneous episodes of motor activity. Both NMDA-induced and spontaneous activity were reversibly inhibited by several excitatory amino acid antagonists including 2-amino-5-phosphono valeric acid and gamma-D-glutamyl glycine in a dose-dependent manner. These results suggest that motor activity in the chick spinal cord may be regulated by the release of endogenous excitatory amino acids from spinal interneurons.

  12. Comprehensive Profiling of Amino Acid Response Uncovers Unique Methionine-Deprived Response Dependent on Intact Creatine Biosynthesis

    PubMed Central

    Tang, Xiaohu; Keenan, Melissa M.; Wu, Jianli; Lin, Chih-An; Dubois, Laura; Thompson, J. Will; Freedland, Stephen J.; Murphy, Susan K.; Chi, Jen-Tsan

    2015-01-01

    Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine/glycine

  13. Comprehensive profiling of amino acid response uncovers unique methionine-deprived response dependent on intact creatine biosynthesis.

    PubMed

    Tang, Xiaohu; Keenan, Melissa M; Wu, Jianli; Lin, Chih-An; Dubois, Laura; Thompson, J Will; Freedland, Stephen J; Murphy, Susan K; Chi, Jen-Tsan

    2015-04-01

    Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine/glycine

  14. Efficacy and safety of ferrous asparto glycinate in the management of iron deficiency anaemia in pregnant women.

    PubMed

    Kamdi, S P; Palkar, P J

    2015-01-01

    The aim of the present investigation was to compare the efficacy and safety of oral ferrous asparto glycinate and ferrous ascorbate in pregnant women with iron deficiency anaemia (IDA). We performed a double blind, prospective, randomised, multicentre, parallel group comparative clinical study at three different centres in India. A total of 73 pregnant women at 12-26 weeks' gestation were divided into two arms. While one group received ferrous ascorbate, another group was treated with ferrous asparto glycinate for a period of 28 days. The mean rise in haemoglobin and ferritin levels on day 14 and 28 was evaluated. At both time points, significantly higher levels of haemoglobin and ferritin were noticed with ferrous asparto glycinate treatment as compared with ferrous ascorbate. Our results showed that ferrous asparto glycinate is an effective iron-amino acid chelate in the management of IDA in pregnant women as compared with ferrous ascorbate. Nevertheless, additional large scale prospective, randomised trials are warranted to confirm the findings of the present efficacy trial, and also to find out the anaemia eradication rate.

  15. UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota

    PubMed Central

    Campbell, James H.; O’Donoghue, Patrick; Campbell, Alisha G.; Schwientek, Patrick; Sczyrba, Alexander; Woyke, Tanja; Söll, Dieter; Podar, Mircea

    2013-01-01

    The composition of the human microbiota is recognized as an important factor in human health and disease. Many of our cohabitating microbes belong to phylum-level divisions for which there are no cultivated representatives and are only represented by small subunit rRNA sequences. For one such taxon (SR1), which includes bacteria with elevated abundance in periodontitis, we provide a single-cell genome sequence from a healthy oral sample. SR1 bacteria use a unique genetic code. In-frame TGA (opal) codons are found in most genes (85%), often at loci normally encoding conserved glycine residues. UGA appears not to function as a stop codon and is in equilibrium with the canonical GGN glycine codons, displaying strain-specific variation across the human population. SR1 encodes a divergent tRNAGlyUCA with an opal-decoding anticodon. SR1 glycyl-tRNA synthetase acylates tRNAGlyUCA with glycine in vitro with similar activity compared with normal tRNAGlyUCC. Coexpression of SR1 glycyl-tRNA synthetase and tRNAGlyUCA in Escherichia coli yields significant β-galactosidase activity in vivo from a lacZ gene containing an in-frame TGA codon. Comparative genomic analysis with Human Microbiome Project data revealed that the human body harbors a striking diversity of SR1 bacteria. This is a surprising finding because SR1 is most closely related to bacteria that live in anoxic and thermal environments. Some of these bacteria share common genetic and metabolic features with SR1, including UGA to glycine reassignment and an archaeal-type ribulose-1,5-bisphosphate carboxylase (RubisCO) involved in AMP recycling. UGA codon reassignment renders SR1 genes untranslatable by other bacteria, which impacts horizontal gene transfer within the human microbiota. PMID:23509275

  16. Dopamine receptor antagonist blocks the release of glycine, GABA, and taurine produced by amphetamine.

    PubMed

    Porras, A; Mora, F

    1993-01-01

    The effects of systemic injections of amphetamine sulfate on the extracellular levels of glycine, GABA, and taurine in the neostriatum of awake rats were studied using a push-pull perfusion system. Amphetamine produced a dose-related increase in glycine levels. Amphetamine also produced an enhancement on GABA and taurine levels, although these increases did not follow a dose-related curve. The percentage increase of amino acids produced by the highest dose of amphetamine (5 mg/kg) at the peak effect was: GLY 235.9%; GABA 218%, and TAU 177%. All these effects were blocked by the D1-D2 dopamine receptor antagonist, haloperidol. It is suggested that dopamine, released by amphetamine, induces the release of inhibitory amino acid neurotransmitters in the neostriatum. These results are consistent with the hypothesis of dopamine playing a role of an amplifier of the activity of different neurochemical circuits. The results are also in accord with the idea that dopamine could mediate the neurotoxic effects produced by amphetamines through an interplay between excitatory and inhibitory amino acids.

  17. Temporal trends of perfluoroalkane sulfonic acids and their sulfonamide-based precursors in herring from the Swedish west coast 1991-2011 including isomer-specific considerations.

    PubMed

    Ullah, Shahid; Huber, Sandra; Bignert, Anders; Berger, Urs

    2014-04-01

    A method was developed for simultaneous analysis of perfluoroalkane sulfonic acids (PFSAs) and their sulfonamide-based precursors (perfluoroalkane sulfonamidoacetic acids (FASAAs), sulfonamides (FASAs), and sulfonamidoethanols (FASEs)) in fish muscle. Extraction was performed with acetonitrile followed by a clean-up and fractionation step and instrumental analysis by UPLC/MS/MS and GC/MS. Time trends of PFSAs and their precursors in herring muscle samples originating from the Kattegat at the west coast of Sweden were investigated covering the years 1991-2011. The following analytes were detected, all with decreasing or unchanged trends between 1991 and 2011: Perfluorobutane sulfonic acid (PFBS, below the method detection limit (acid (PFHxS, 9-38pg/g), perfluorooctane sulfonic acid (PFOS, 240-930pg/g), perfluorodecane sulfonic acid (PFDS, acid (MeFOSAA and EtFOSAA, 2-39 and 2-31pg/g, respectively) and perfluorooctane sulfonamide (FOSA, 78-920pg/g). The highest concentrations were found for PFOS and FOSA around the turn of the century. Shorter disappearance half-lives were observed for precursors compared to PFSAs. Assuming that these trend differences are representative for fish consumed by the general Swedish population, this observation suggests that the relative contribution of precursors to total human exposure to PFOS via fish intake has decreased in Sweden over the study period. PFOS precursors in fish may have constituted a significant indirect exposure pathway for PFOS in the 1990s. Isomer-specific analysis of PFOS and FOSA revealed <10% relative contributions of branched isomers to total PFOS and total FOSA. Furthermore, the percentage branched isomers decreased over time for both compounds. These findings are contrary to patterns and temporal trends of PFOS isomers commonly found in human serum. In combination with literature data on isomer patterns

  18. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens.

    PubMed

    Yang, Zonglin; Peng, Hanyong; Lu, Xiufen; Liu, Qingqing; Huang, Rongfu; Hu, Bin; Kachanoski, Gary; Zuidhof, Martin J; Le, X Chris

    2016-07-05

    The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.

  19. Inoculation Method for Studying Early Responses of Glycine max to Heterodera glycines

    PubMed Central

    Mahalingam, R.; Knap, H. T.; Lewis, S. A.

    1998-01-01

    An inoculation technique was developed for studying molecular responses of soybean to the soybean cyst nematode (Heterodera glycines). Effect of inoculum age (0-7 days after eggs were released from cysts) and inoculation site (meristem, elongation, or differentiation zone) on infection were tested on four soybean genotypes. Two genotypes (PI 437654 and cv. Peking) were resistant and two (cv. Essex and cv. Hutcheson) were susceptible to race 3 of H. glycines. Inoculum consisting of second-stage juveniles (J2) was prepared by gently agitating nematode eggs at 75 revolutions per minute at 28 °C for various intervals. Infection rates were monitored cytologically. The most consistent infection rate was obtained with 48-hour-old inoculum containing more than 80% J2. More than 100 juveniles/root were observed after inoculation with the 48-hour-old inoculum placed at the root elongation zone, in both resistant and susceptible soybeans. Horizontal orientation of roots during inoculation, the use of concentrated J2 inoculurn (500 J2 in 125 μl/root), and restriction of inoculum to the root elongation zone facilitated synchronous root infection. PMID:19274216

  20. [Relationship between chloride tolerance and polyamine accumulation in Glycine max, Glycine soja, and their hybrid seedlings].

    PubMed

    Chen, Xuan-Qin; Yu, Bing-Jun; Liu, You-Liang

    2007-02-01

    The seedlings of the F4 hybrid strain 'JB185' selected for salt tolerance generation by generation, their parents Glycine max cv. Jackson and Glycine soja population 'BB52' were treated with different NaCl concentrations and iso-osmotic (-0.53 MPa) PEG-6000, NaCl, Na+ (without Cl-) and Cl- (without Na+) solutions for 6 d. The results showed that: (1) The relative electrolyte leakage and malondialdehyde (MDA) content in leaves of the above three soybean seedlings showed an increase trend when the NaCl concentration was elevated, but chlorophyll contents decreased except the significant increase in 'BB52' and 'JB185' under NaCl 50 mmol/L stress. The change in 'JB185' was between its parents. (2) Under different iso-osmotic stresses, the relative electrolyte leakage and MDA contents in leaves of three soybean seedlings also increased mostly, the changes in 'BB52' and 'JB185' under Na+ (without Cl-) stress were more than those under Cl- (without Na+) stress. The free and bound Put, Spd and Spm contents in leaves all increased when compared with the control, the ratios of free (Spd+Spm)/Put and total bound polyamines in 'BB52' and 'JB185' seedlings under Na+ (without Cl-) treatment were the lowest one among three iso-osmotic salt stresses. The results indicate that the F4 hybrid strain 'JB185' is more sensitive to Na+ than Cl- as its wild parent 'BB52' population.

  1. The syntaxin 31-induced gene, LESION SIMULATING DISEASE1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines.

    PubMed

    Pant, Shankar R; Krishnavajhala, Aparna; McNeece, Brant T; Lawrence, Gary W; Klink, Vincent P

    2015-01-01

    Experiments show the membrane fusion genes α soluble NSF attachment protein (α-SNAP) and syntaxin 31 (Gm-SYP38) contribute to the ability of Glycine max to defend itself from infection by the plant parasitic nematode Heterodera glycines. Accompanying their expression is the transcriptional activation of the defense genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and NONEXPRESSOR OF PR1 (NPR1) that function in salicylic acid (SA) signaling. These results implicate the added involvement of the antiapoptotic, environmental response gene LESION SIMULATING DISEASE1 (LSD1) in defense. Roots engineered to overexpress the G. max defense genes Gm-α-SNAP, SYP38, EDS1, NPR1, BOTRYTIS INDUCED KINASE1 (BIK1) and xyloglucan endotransglycosylase/hydrolase (XTH) in the susceptible genotype G. max[Williams 82/PI 518671] have induced Gm-LSD1 (Gm-LSD1-2) transcriptional activity. In reciprocal experiments, roots engineered to overexpress Gm-LSD1-2 in the susceptible genotype G. max[Williams 82/PI 518671] have induced levels of SYP38, EDS1, NPR1, BIK1 and XTH, but not α-SNAP prior to infection. In tests examining the role of Gm-LSD1-2 in defense, its overexpression results in ∼52 to 68% reduction in nematode parasitism. In contrast, RNA interference (RNAi) of Gm-LSD1-2 in the resistant genotype G. max[Peking/PI 548402] results in an 3.24-10.42 fold increased ability of H. glycines to parasitize. The results identify that Gm-LSD1-2 functions in the defense response of G. max to H. glycines parasitism. It is proposed that LSD1, as an antiapoptotic protein, may establish an environment whereby the protected, living plant cell could secrete materials in the vicinity of the parasitizing nematode to disarm it. After the targeted incapacitation of the nematode the parasitized cell succumbs to its targeted demise as the infected root region is becoming fortified.

  2. Purification to homogeneity and partial amino acid sequence of a fragment which includes the methyl acceptor site of the human DNA repair protein for O6-methylguanine.

    PubMed

    Major, G N; Gardner, E J; Carne, A F; Lawley, P D

    1990-03-25

    DNA repair by O6-methylguanine-DNA methyltransferase (O6-MT) is accomplished by removal by the enzyme of the methyl group from premutagenic O6-methylguanine-DNA, thereby restoring native guanine in DNA. The methyl group is transferred to an acceptor site cysteine thiol group in the enzyme, which causes the irreversible inactivation of O6-MT. We detected a variety of different forms of the methylated, inactivated enzyme in crude extracts of human spleen of molecular weights higher and lower than the usually observed 21-24kDa for the human O6-MT. Several apparent fragments of the methylated form of the protein were purified to homogeneity following reaction of partially-purified extract enzyme with O6-[3H-CH3]methylguanine-DNA substrate. One of these fragments yielded amino acid sequence information spanning fifteen residues, which was identified as probably belonging to human methyltransferase by virtue of both its significant sequence homology to three procaryote forms of O6-MT encoded by the ada, ogt (both from E. coli) and dat (B. subtilis) genes, and sequence position of the radiolabelled methyl group which matched the position of the conserved procaryote methyl acceptor site cysteine residue. Statistical prediction of secondary structure indicated good homologies between the human fragment and corresponding regions of the constitutive form of O6-MT in procaryotes (ogt and dat gene products), but not with the inducible ada protein, indicating the possibility that we had obtained partial amino acid sequence for a non-inducible form of the human enzyme. The identity of the fragment sequence as belonging to human methyltransferase was more recently confirmed by comparison with cDNA-derived amino acid sequence from the cloned human O6-MT gene from HeLa cells (1). The two sequences compared well, with only three out of fifteen amino acids being different (and two of them by only one nucleotide in each codon).

  3. Glycine receptor antibodies are detected in progressive encephalomyelitis with rigidity and myoclonus (PERM) but not in saccadic oscillations.

    PubMed

    Iizuka, Takahiro; Leite, Maria I; Lang, Bethan; Waters, Patrick; Urano, Yoshiaki; Miyakawa, Saori; Hamada, Junichi; Sakai, Fumihiko; Mochizuki, Hideki; Vincent, Angela

    2012-08-01

    Glycine receptor (GlyR) antibodies were recently identified in a few patients with progressive encephalomyelitis with rigidity and myoclonus (PERM); none of these patients had antibodies against glutamic acid decarboxylase (GAD). An inhibitory glycinergic transmission defect has also been implicated in the mechanism underlying saccadic oscillations, including ocular flutter or opsoclonus; GlyR antibodies have not been reported in these patients. The purpose was to determine whether GlyR antibodies are found in patients with PERM, ocular flutter syndrome (OFS), and opsoclonus-myoclonus syndrome (OMS). GlyR antibodies were first measured in archived sera and CSF from five patients, including one patient with GAD antibody-positive PERM, two patients with OFS, and two patients with OMS. GlyR antibodies were also measured in archived sera from nine other adult patients with OMS. GlyR antibodies and GAD antibodies were both found at high titers in the serum and CSF of the patient with PERM, and their levels paralleled disease activity over time. GlyR antibodies were not found at significant levels in 13 patients with saccadic oscillations. GlyR and GAD antibodies can co-exist in PERM and follow the clinical course. Although saccadic oscillations are a feature of this condition, GlyR antibodies are not commonly found in patients with isolated saccadic oscillations.

  4. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Devi, P Uma; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond.

  5. Effect of including carob pulp in the diet of fattening pigs on the fatty acid composition and oxidative stability of pork.

    PubMed

    Inserra, L; Luciano, G; Bella, M; Scerra, M; Cilione, C; Basile, P; Lanza, M; Priolo, A

    2015-02-01

    The effect of feeding pigs with carob pulp on meat quality was investigated. Nine pigs were finished on a conventional concentrate-based diet (control), while two groups received a diet comprising of the same ingredients with the inclusion of 8% or 15% carob pulp (Carob 8% and Carob 15%, respectively). Feeding carob-containing diets reduced the concentration of saturated fatty acids in the muscle, increased the concentration of monounsaturated fatty acids in meat (P < 0.01) and of n-3 polyunsaturated fatty acids (PUFAs) and reduced the n-6/n-3 PUFA ratio (P < 0.001). The meat underwent slow oxidative deterioration over 9 days of storage. However, the Carob 15% treatment increased meat susceptibility to lipid oxidation across storage (P = 0.03), while the dietary treatment did not affect meat colour stability. In conclusion, feeding pigs with carob pulp could represent a strategy,in the Mediterranean areas, to naturally improve meat nutritional value and to promote the exploitation of this local feed resource.

  6. A comparison of an optimised sequential extraction procedure and dilute acid leaching of elements in anoxic sediments, including the effects of oxidation on sediment metal partitioning.

    PubMed

    Larner, Bronwyn L; Palmer, Anne S; Seen, Andrew J; Townsend, Ashley T

    2008-02-11

    The effect of oxidation of anoxic sediment upon the extraction of 13 elements (Cd, Sn, Sb, Pb, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As) using the optimised Community Bureau of Reference of the European Commission (BCR) sequential extraction procedure and a dilute acid partial extraction procedure (4h, 1 molL(-1) HCl) was investigated. Elements commonly associated with the sulfidic phase, Cd, Cu, Pb, Zn and Fe exhibited the most significant changes under the BCR sequential extraction procedure. Cd, Cu, Zn, and to a lesser extent Pb, were redistributed into the weak acid extractable fraction upon oxidation of the anoxic sediment and Fe was redistributed into the reducible fraction as expected, but an increase was also observed in the residual Fe. For the HCl partial extraction, sediments with moderate acid volatile sulfide (AVS) levels (1-100 micromolg(-1)) showed no significant difference in element partitioning following oxidation, whilst sediments containing high AVS levels (>100 micromolg(-1)) were significantly different with elevated concentrations of Cu and Sn noted in the partial extract following oxidation of the sediment. Comparison of the labile metals released using the BCR sequential extraction procedure (SigmaSteps 1-3) to labile metals extracted using the dilute HCl partial extraction showed that no method was consistently more aggressive than the other, with the HCl partial extraction extracting more Sn and Sb from the anoxic sediment than the BCR procedure, whilst the BCR procedure extracted more Cr, Co, Cu and As than the HCl extraction.

  7. The Clinical Spectrum of Missense Mutations of the First Aspartic Acid of cbEGF-like Domains in Fibrillin-1 Including a Recessive Family

    PubMed Central

    Hilhorst-Hofstee, Yvonne; Rijlaarsdam, Marry EB; Scholte, Arthur JHA; Swart-van den Berg, Marietta; Versteegh, Michel IM; van der Schoot-van Velzen, Iris; Schäbitz, Hans-Joachim; Bijlsma, Emilia K; Baars, Marieke J; Kerstjens-Frederikse, Wilhelmina S; Giltay, Jacques C; Hamel, Ben C; Breuning, Martijn H; Pals, Gerard

    2010-01-01

    Marfan syndrome (MFS) is a dominant disorder with a recognizable phenotype. In most patients with the classical phenotype mutations are found in the fibrillin-1 gene (FBN1) on chromosome 15q21. It is thought that most mutations act in a dominant negative way or through haploinsufficiency. In 9 index cases referred for MFS we detected heterozygous missense mutations in FBN1 predicted to substitute the first aspartic acid of different calcium-binding Epidermal Growth Factor-like (cbEGF) fibrillin-1 domains. A similar mutation was found in homozygous state in 3 cases in a large consanguineous family. Heterozygous carriers of this mutation had no major skeletal, cardiovascular or ophthalmological features of MFS. In the literature 14 other heterozygous missense mutations are described leading to the substitution of the first aspartic acid of a cbEGF domain and resulting in a Marfan phenotype. Our data show that the phenotypic effect of aspartic acid substitutions in the first position of a cbEGF domain can range from asymptomatic to a severe neonatal phenotype. The recessive nature with reduced expression of FBN1 in one of the families suggests a threshold model combined with a mild functional defect of this specific mutation. © 2010 Wiley-Liss, Inc. PMID:20886638

  8. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  9. Evidence from glycine transfer RNA of a frozen accident at the dawn of the genetic code

    PubMed Central

    Bernhardt, Harold S; Tate, Warren P

    2008-01-01

    Background Transfer RNA (tRNA) is the means by which the cell translates DNA sequence into protein according to the rules of the genetic code. A credible proposition is that tRNA was formed from the duplication of an RNA hairpin half the length of the contemporary tRNA molecule, with the point at which the hairpins were joined marked by the canonical intron insertion position found today within tRNA genes. If these hairpins possessed a 3'-CCA terminus with different combinations of stem nucleotides (the ancestral operational RNA code), specific aminoacylation and perhaps participation in some form of noncoded protein synthesis might have occurred. However, the identity of the first tRNA and the initial steps in the origin of the genetic code remain elusive. Results Here we show evidence that glycine tRNA was the first tRNA, as revealed by a vestigial imprint in the anticodon loop sequences of contemporary descendents. This provides a plausible mechanism for the missing first step in the origin of the genetic code. In 448 of 466 glycine tRNA gene sequences from bacteria, archaea and eukaryote cytoplasm analyzed, CCA occurs immediately upstream of the canonical intron insertion position, suggesting the first anticodon (NCC for glycine) has been captured from the 3'-terminal CCA of one of the interacting hairpins as a result of an ancestral ligation. Conclusion That this imprint (including the second and third nucleotides of the glycine tRNA anticodon) has been retained through billions of years of evolution suggests Crick's 'frozen accident' hypothesis has validity for at least this very first step at the dawn of the genetic code. Reviewers This article was reviewed by Dr Eugene V. Koonin, Dr Rob Knight and Dr David H Ardell. PMID:19091122

  10. Comparative Transcriptome Analysis of Two Races of Heterodera glycines at Different Developmental Stages

    PubMed Central

    Wang, Gaofeng; Peng, Deliang; Gao, Bingli; Huang, Wenkun; Kong, Lingan; Long, Haibo; Peng, Huan; Jian, Heng

    2014-01-01

    The soybean cyst nematode, Heterodera glycines, is an important pest of soybeans. Although resistance is available against this nematode, selection for virulent races can occur, allowing the nematode to overcome the resistance of cultivars. There are abundant field populations, however, little is known about their genetic diversity. In order to elucidate the differences between races, we investigated the transcriptional diversity within race 3 and race 4 inbred lines during their compatible interactions with the soybean host Zhonghuang 13. Six different race-enriched cDNA libraries were constructed with limited nematode samples collected from the three sedentary stages, parasitic J2, J3 and J4 female, respectively. Among 689 putative race-enriched genes isolated from the six libraries with functional annotations, 92 were validated by quantitative RT-PCR (qRT-PCR), including eight putative effector encoding genes. Further race-enriched genes were validated within race 3 and race 4 during development in soybean roots. Gene Ontology (GO) analysis of all the race-enriched genes at J3 and J4 female stages showed that most of them functioned in metabolic processes. Relative transcript level analysis of 13 selected race-enriched genes at four developmental stages showed that the differences in their expression abundance took place at either one or more developmental stages. This is the first investigation into the transcript diversity of H. glycines races throughout their sedentary stages, increasing the understanding of the genetic diversity of H. glycines. PMID:24662955

  11. Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli.

    PubMed Central

    Garcia, G E; Stadtman, T C

    1992-01-01

    Gene grdA, which encodes selenoprotein A of the glycine reductase complex from Clostridium sticklandii, was identified and characterized. This gene encodes a protein of 158 amino acids with a calculated M(r) of 17,142. The known sequence of 15 amino acids around the selenocysteine residue and the known carboxy terminus of the protein are correctly predicted by the nucleotide sequence. An opal termination codon (TGA) corresponding to the location of the single selenocysteine residue in the polypeptide was found in frame at position 130. The C. sticklandii grdA gene was inserted behind the tac promotor of an Escherichia coli expression vector. An E. coli strain transformed with this vector produced an 18-kDa polypeptide that was not detected in extracts of nontransformed cells. Affinity-purified anti-C. sticklandii selenoprotein A immunoglobulin G reacted specifically with this polypeptide, which was indistinguishable from authentic C. sticklandii selenoprotein A by immunological analysis. Addition of the purified expressed protein to glycine reductase protein components B and C reconstituted the active glycine reductase complex. Although synthesis of enzymically active protein A depended on the presence of selenium in the growth medium, formation of immunologically reactive protein did not. Moreover, synthesis of enzymically active protein in a transformed E. coli selD mutant strain indicated that there is a nonspecific mechanism of selenocysteine incorporation. These findings imply that mRNA secondary structures of C. sticklandii grdA are not functional for UGA-directed selenocysteine insertion in the E. coli expression system. Images PMID:1429431

  12. Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli.

    PubMed

    Garcia, G E; Stadtman, T C

    1992-11-01

    Gene grdA, which encodes selenoprotein A of the glycine reductase complex from Clostridium sticklandii, was identified and characterized. This gene encodes a protein of 158 amino acids with a calculated M(r) of 17,142. The known sequence of 15 amino acids around the selenocysteine residue and the known carboxy terminus of the protein are correctly predicted by the nucleotide sequence. An opal termination codon (TGA) corresponding to the location of the single selenocysteine residue in the polypeptide was found in frame at position 130. The C. sticklandii grdA gene was inserted behind the tac promotor of an Escherichia coli expression vector. An E. coli strain transformed with this vector produced an 18-kDa polypeptide that was not detected in extracts of nontransformed cells. Affinity-purified anti-C. sticklandii selenoprotein A immunoglobulin G reacted specifically with this polypeptide, which was indistinguishable from authentic C. sticklandii selenoprotein A by immunological analysis. Addition of the purified expressed protein to glycine reductase protein components B and C reconstituted the active glycine reductase complex. Although synthesis of enzymically active protein A depended on the presence of selenium in the growth medium, formation of immunologically reactive protein did not. Moreover, synthesis of enzymically active protein in a transformed E. coli selD mutant strain indicated that there is a nonspecific mechanism of selenocysteine incorporation. These findings imply that mRNA secondary structures of C. sticklandii grdA are not functional for UGA-directed selenocysteine insertion in the E. coli expression system.

  13. Carbon Isotopic Measurements of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).

  14. Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2009-01-01

    NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).

  15. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max) Embryos

    PubMed Central

    Collakova, Eva; Aghamirzaie, Delasa; Fang, Yihui; Klumas, Curtis; Tabataba, Farzaneh; Kakumanu, Akshay; Myers, Elijah; Heath, Lenwood S.; Grene, Ruth

    2013-01-01

    Soybean (Glycine max) seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants. PMID:24957996

  16. Comparison of a neonatal versus general-purpose amino acid formulation in preterm neonates.

    PubMed

    Adamkin, D D; Radmacher, P; Rosen, P

    1995-01-01

    Twenty preterm infants were randomly assigned to receive either a general-purpose intravenous amino acid solution or a neonatal formula at 1.5 gm/kg/day with 50 nonprotein energy calories for 1 week. Both groups demonstrated similar rates of weight gain and similar liver function test results, but comparison of changes from baseline amino acid values disclosed significant intergroup differences for levels of plasma glycine, taurine, valine, and methionine after 7 days of infusion. Comparison of plasma aminograms of study patients with those of normally growing, enterally fed preterm infants showed that infants who received the neonatal solution had similar amino acid profiles, with the exception of low plasma concentrations of tyrosine and elevated concentrations of threonine. The general-purpose solution, as compared with findings in historic enteral controls, produced low plasma valine, tyrosine, and taurine levels, and elevated levels of glycine and methionine. Advantages with the neonatal amino acid solution include reductions in plasma glycine and methionine levels, plus the provision of taurine. Providing tyrosine remains a problem.

  17. Nitrosation of glycine ethyl ester and ethyl diazoacetate to give the alkylating agent and mutagen ethyl chloro(hydroximino)acetate.

    PubMed

    Zhou, Lin; Haorah, James; Chen, Sheng C; Wang, Xiaojie; Kolar, Carol; Lawson, Terence A; Mirvish, Sidney S

    2004-03-01

    Whereas nitrosation of secondary amines produces nitrosamines, amino acids with primary amino groups and glycine ethyl ester were reported to react with nitrite to give unidentified agents that alkylated 4-(p-nitrobenzyl)pyridine to produce purple dyes and be direct mutagens in the Ames test. We report here that treatment of glycine ethyl ester at 37 degrees C with excess nitrite acidified with HCl, followed by ether extraction, gave 30-40% yields of a product identified as ethyl chloro(hydroximino)acetate [ClC(=NOH)COOEt, ECHA] and a 9% yield of ethyl chloroacetate. The ECHA was identical to that synthesized by a known method from ethyl acetoacetate, strongly alkylated nitrobenzylpyridine, and may have arisen by N-nitrosation of glycine ethyl ester to give ethyl diazoacetate, which was C-nitrosated and reacted with chloride to give ECHA. Nitrosation of ethyl diazoacetate also yielded ECHA. Ethyl nitroacetate was not an intermediate as its nitrosation did not produce ECHA. ECHA reacted with aniline to give ethyl (hydroxamino)(phenylimino)acetate [PhN=C(NHOH)CO2Et]. This product was different from ethyl [(phenylamino)carbonyl]carbamate [PhNHC(=O)NHCO2Et], which was synthesized by reacting ethyl isocyanatoformate (OCN.CO2Et) with aniline. ECHA reacted with guanosine to give a derivative, which may have been a guanine-C(=NOH)CO2Et derivative. ECHA showed moderate toxicity and weak but significant mutagenicity without activation in Salmonella typhimurium TA-100 (mean, 1.31 x control value for 12-18 microg/plats) and for V79 mammalian cells (1.5-1.7 x control value for 60-100 microM). In conclusion, gastric nitrosation of glycine derivatives such as peptides with a N-terminal glycine might produce ECHA analogues that alkylate bases of gastric mucosal DNA and thereby initiate gastric cancer.

  18. Taurine activates strychnine-sensitive glycine receptors in neurons freshly isolated from nucleus accumbens of young rats.

    PubMed

    Jiang, Zhenglin; Krnjević, Kresimir; Wang, Fushun; Ye, Jiang Hong

    2004-01-01

    Although functional glycine receptors (GlyRs) are present in the mature nucleus accumbens (NAcc), an important area of the mesolimbic dopamine system involved in drug addiction, their role has been unclear because the NAcc contains little glycine. However, taurine, an agonist of GlyRs, is abundant throughout the brain, especially during early development. In the present study on freshly dissociated NAcc neurons from young Sprague-Dawley rats (12- to 21-day old), we found that both glycine and taurine can strongly depolarize NAcc neurons and modulate their excitability. In voltage-clamped NAcc neurons, glycine and taurine elicited chloride currents (IGly and ITau) with an EC50 of 0.12 and 1.25 mM, respectively. The reversal potential of IGly or ITau was 0 mV in conventional whole cell mode and -30 mV in gramicidin-perforated mode. At concentrations <1 mM, both glycine and taurine were very effectively antagonized by strychnine and by picrotoxin (with an IC50 of 60 nM and 36.5 microM for IGly, and 40 nM and 42.2 microM for ITau) but were insensitive to 10 microM bicuculline. The currents elicited by taurine (< or =1 mM) showed complete cross-desensitization with IGly, but none with gamma-aminobutyric acid (GABA)-induced currents (IGABA). However, ITau elicited by very concentrated taurine (10 mM) showed partial cross-desensitization with IGABA, and it was substantially antagonized by 10 microM bicuculline. These results indicate that taurine binds mainly to GlyRs in NAcc, but it could be a partial agonist of GABAA receptors. By activating GlyRs, taurine may play an important physiological role in the control of NAcc function, especially during development.

  19. Charge and geometry of residues in the loop 2 β hairpin differentially affect agonist and ethanol sensitivity in glycine receptors.

    PubMed

    Perkins, Daya I; Trudell, James R; Asatryan, Liana; Davies, Daryl L; Alkana, Ronald L

    2012-05-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC₅₀ but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC₅₀ while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC₅₀ and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs.

  20. The temperature effect on the glycine decomposition induced by 2 keV electron bombardment in space analog conditions

    NASA Astrophysics Data System (ADS)

    Pilling, Sergio; Nair, Binu G.; Escobar, Antonio; Fraser, Helen; Mason, Nigel

    2014-03-01

    Glycine is the simplest proteinaceous amino acid that has been extensively detected in carbonaceous meteorites and was recently observed in the cometary samples returned to Earth by NASA's Stardust spacecraft. In space, such species is exposed to several radiation fields at different temperatures. In aqueous solutions, this species appears mainly as zwitterionic glycine (+NH3CH2COO-) however, in solid phase, it may be found in amorphous or crystalline forms. Here, we present an experimental study on the destruction of two zwitterionic glycine crystals ( α- and β-form) at two different temperatures (300 K and 14 K) by 2 keV electrons in an attempt to test the behavior and stability of this molecular species in different space environments. The samples were analyzed in situ by Fourier transform infrared spectrometry at electron fluences. The experiments were carried out under ultra-high vacuum conditions at the Molecular Physics Laboratory at the Open University at Milton Keynes, UK. The dissociation cross section of glycine is approximately 5 times higher for the 14 K samples when compared to the 300 K samples. In contrast, no significant differences emerged between the dissociation cross sections of α- and β-forms of glycine for fixed temperature experiments. We therefore conclude that the destruction cross section is more heavily dependent on temperature than the phase of the condensed glycine material. This may be associated with the opening of additional reaction routes in the frozen samples involving the trapped daughter species (e.g. CO2 and CO). The half-life of studied samples extrapolated to space conditions shows that glycine molecules on the surface of interstellar grains has less survivability and they are highly sensitive to ambient radiations, however, they can survive extended period of time in the solar system like environments. Survivability increases by a factor of 5 if the samples are at 300 K when compared to low temperature experiments at 14

  1. A Role for Accumbal Glycine Receptors in Modulation of Dopamine Release by the Glycine Transporter-1 Inhibitor Org25935

    PubMed Central

    Lidö, Helga Höifödt; Ericson, Mia; Marston, Hugh; Söderpalm, Bo

    2010-01-01

    Accumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc) as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935–ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol's effects within this system. PMID:21556278

  2. The Saccharomyces cerevisiae poly(A)-binding protein is subject to multiple post-translational modifications, including the methylation of glutamic acid.

    PubMed

    Low, Jason K K; Hart-Smith, Gene; Erce, Melissa A; Wilkins, Marc R

    2014-01-10

    Poly(A)-binding protein in mouse and man was recently found to be highly post-translationally modified. Here we analysed an ortholog of this protein, Pab1 from Saccharomyces cerevisiae, to assess the conservation and thus likely importance of these modifications. Pab1 showed the presence of six sites of methylated glutamate, five sites of lysine acetylation, and one phosphorylation of serine. Many modifications on Pab1 showed either complete conservation with those on human or mouse PABPC1, were present on nearby residues and/or were present in the same domain(s). The conservation of methylated glutamate, an unusual modification, was of particular note and suggests a conserved function. Comparison of methylated glutamate sites in human, mouse and yeast poly(A)-binding protein, along with methylation sites catalysed by CheR L-glutamyl protein methyltransferase from Salmonella typhimurium, revealed that the methylation of glutamate preferentially occurs in EE and DE motifs or other small regions of acidic amino acids. The conservation of methylated glutamate in the same protein between mouse, man and yeast suggests the presence of a eukaryotic l-glutamyl protein methyltransferase and that the modification is of functional significance.

  3. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease.

    PubMed

    Morris, Gerwyn; Berk, Michael; Carvalho, Andre; Caso, Javier R; Sanz, Yolanda; Walder, Ken; Maes, Michael

    2016-06-27

    There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.

  4. Accumulation of 52 kDa glycine rich protein in auxin-deprived strawberry fruits and its role in fruit growth. [Fragaria ananassa

    SciTech Connect

    Reddy, A.S.N.; Poovaiah, B.W.

    1987-04-01

    Growth of strawberry (Fragaria ananassa Duch) receptacles can be stopped at any stage by deachening the fruits and can be resumed by exogenous application of auxin. In their earlier studies they demonstrated auxin regulated polypeptide changes at different stages of strawberry fruit development. Removal of achenes from fruits to deprive auxin resulted in the accumulation of 52 KDa polypeptide. This polypeptide is associated with cell wall and its concentration is increased in a time-dependent manner in auxin deprived receptacles. Incorporation studies with (/sup 35/S) methionine showed the promotion of labelling of 52 kDa polypeptide in the auxin-deprived receptacles within 12 h after removal of the achenes. Amino acid analysis revealed that the 52 KDa polypeptide is rich in glycine. Their studies, with normal and mutant strawberry receptacles, indicate that the synthesis and accumulation of this glycine rich protein correlates with cessation of receptacle growth. These results suggest a role for the glycine rich protein in growth.

  5. Hybridization between GM soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. et Zucc.) under field conditions in Japan.

    PubMed

    Mizuguti, Aki; Ohigashi, Kentaro; Yoshimura, Yasuyuki; Kaga, Akito; Kuroda, Yosuke; Matsuo, Kazuhito

    2010-01-01

    Accumulation of information about natural hybridization between GM soybean (Glycine max) and wild soybean (Glycine soja) is required for risk assessment evaluation and to establish biosafety regulations in Japan. This is particularly important in areas where wild relatives of cultivated soybean are grown (i.e. East Asia including Japan). To collect information on temporal and spatial factors affecting variation in hybridization between wild and GM soybean, a two year hybridization experiment was established that included one wild soybean and five GM soybean cultivars with different maturity dates. Hybridization frequencies ranged from 0 to 0.097%. The maximum hybridization frequency (0.097%) was obtained from wild soybean crossed with GM soybean cv. AG6702RR, which were adjacently cultivated with wild soybean, with 25 hybrids out of 25 741 seedlings tested. Cultivar AG6702RR had the most synchronous flowering period with wild soybean. Ten hybrids out of 25 741 were produced by crossing with cv. AG5905RR, which had the second most synchronous flowering period with wild soybean. Most hybrids were found where GM and wild soybeans were adjacently cultivated, whereas only one hybrid was detected from wild soybean plants at 2 m, 4 m and 6 m from a pollen source (GM soybean). Differences in flowering phenology, isolation distance and presence of buffer plants accounted for half of the variation in hybridization frequency in this study. Temporal and spatial isolation will be effective strategies to minimize hybridization between GM and wild soybean.

  6. Mutations in genes encoding the glycine cleavage system predispose to neural tube defects in mice and humans.

    PubMed

    Narisawa, Ayumi; Komatsuzaki, Shoko; Kikuchi, Atsuo; Niihori, Tetsuya; Aoki, Yoko; Fujiwara, Kazuko; Tanemura, Mitsuyo; Hata, Akira; Suzuki, Yoichi; Relton, Caroline L; Grinham, James; Leung, Kit-Yi; Partridge, Darren; Robinson, Alexis; Stone, Victoria; Gustavsson, Peter; Stanier, Philip; Copp, Andrew J; Greene, Nicholas D E; Tominaga, Teiji; Matsubara, Yoichi; Kure, Shigeo

    2012-04-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects of the central nervous system. The complex multigenic causation of human NTDs, together with the large number of possible candidate genes, has hampered efforts to delineate their molecular basis. Function of folate one-carbon metabolism (FOCM) has been implicated as a key determinant of susceptibility to NTDs. The glycine cleavage system (GCS) is a multi-enzyme component of mitochondrial folate metabolism, and GCS-encoding genes therefore represent candidates for involvement in NTDs. To investigate this possibility, we sequenced the coding regions of the GCS genes: AMT, GCSH and GLDC in NTD patients and controls. Two unique non-synonymous changes were identified in the AMT gene that were absent from controls. We also identified a splice acceptor site mutation and five different non-synonymous variants in GLDC, which were found to significantly impair enzymatic activity and represent putative causative mutations. In order to functionally test the requirement for GCS activity in neural tube closure, we generated mice that lack GCS activity, through mutation of AMT. Homozygous Amt(-/-) mice developed NTDs at high frequency. Although these NTDs were not preventable by supplemental folic acid, there was a partial rescue by methionine. Overall, our findings suggest that loss-of-function mutations in GCS genes predispose to NTDs in mice and humans. These data highlight the importance of adequate function of mitochondrial folate metabolism in neural tube closure.

  7. Glycine and GABA(A) ultra-sensitive ethanol receptors as novel tools for alcohol and brain research.

    PubMed

    Naito, Anna; Muchhala, Karan H; Asatryan, Liana; Trudell, James R; Homanics, Gregg E; Perkins, Daya I; Davies, Daryl L; Alkana, Ronald L

    2014-12-01

    A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABA(A)Rs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABA(A)Rs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol.

  8. Gas-phase interactions of organotin compounds with glycine.

    PubMed

    Latrous, Latifa; Tortajada, Jeanine; Haldys, Violette; Léon, Emmanuelle; Correia, Catarina; Salpin, Jean-Yves

    2013-07-01

    Gas-phase interactions of organotins with glycine have been studied by combining mass spectrometry experiments and quantum calculations. Positive-ion electrospray spectra show that the interaction of di- and tri-organotins with glycine results in the formation of [(R)2Sn(Gly)-H](+) and [(R)3Sn(Gly)](+) ions, respectively. Di-organotin complexes appear much more reactive than those involving tri-organotins. (MS/MS) spectra of the [(R)3Sn(Gly)](+) ions are indeed simple and only show elimination of intact glycine, generating the [(R)3Sn](+) carbocation. On the other hand, MS/MS spectra of [(R)2Sn(Gly)-H](+) complexes are characterized by numerous fragmentation processes. Six of them, associated with elimination of H2O, CO, H2O + CO and formation of [(R)2SnOH](+) (-57 u),[(R)2SnNH2](+) (-58 u) and [(R)2SnH](+) (-73 u), are systematically observed. Use of labeled glycines notably concludes that the hydrogen atoms eliminated in water and H2O + CO are labile hydrogens. A similar conclusion can be made for hydrogens of [(R2)SnOH](+) and [(R2)SnNH2](+) ions. Interestingly, formation [(R)2SnH](+) ions is characterized by a migration of one the α hydrogen of glycine onto the metallic center. Finally, several dissociation routes are observed and are characteristic of a given organic substituent. Calculations indicated that the interaction between organotins and glycine is mostly electrostatic. For [(R)2Sn(Gly)-H](+) complexes, a preferable bidentate interaction of the type η(2)-O,NH2 is observed, similar to that encountered for other metal ions. [(R)3Sn](+) ions strongly stabilize the zwitterionic form of glycine, which is practically degenerate with respect to neutral glycine. In addition, the interconversion between both forms is almost barrierless. Suitable mechanisms are proposed in order to account for the most relevant fragmentation processes.

  9. Alterations of amino Acid level in depressed rat brain.

    PubMed

    Yang, Pei; Li, Xuechun; Ni, Jian; Tian, Jingchen; Jing, Fu; Qu, Changhai; Lin, Longfei; Zhang, Hui

    2014-10-01

    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and γ-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-α-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant.

  10. cis-acting DNA regulatory elements, including the retinoic acid response element, are required for tissue specific laminin B1 promoter/lacZ expression in transgenic mice.

    PubMed

    Sharif, K A; Li, C; Gudas, L J

    2001-05-01

    The LAMB1 gene encodes the laminin beta1 subunit of laminin, an extracellular matrix protein. Using several transgenic mouse lines containing various lengths of the LAMB1 promoter driving lacZ reporter gene expression, regions of LAMB1 promoter that contain cis-acting DNA regulatory element(s) have been identified. The 3.9LAMB1betagal transgene is expressed in various tissues during development. LAMB1 transgene expression is observed in a selective set of nephrons of the neonatal and adult kidneys. The cis-acting DNA regulatory elements responsible for LAMB1 transgene expression in ovaries and in juvenile kidneys are present between -'1.4 and -0.7 kb relative to the transcription start site, while those of adult kidneys are located between -2.5 and -1.4 kb. The LAMB1 transgene is also expressed in the epididymis of 1 week old transgenic mice. Mutation of the retinoic acid response element (RARE) in the context of the 3.9LAMB1betagal transgene results in loss of LAMB1 transgene expression in all tissues. Thus, sequences between -2.5 and -0.7 kb plus the RARE are required for appropriate expression of the LAMB1 transgene in mice.

  11. Reduced glycine transporter type 1 expression leads to major changes in glutamatergic neurotransmission of CA1 hippocampal neurones in mice

    PubMed Central

    Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Tsai, Guochuan; Tiberi, Mario; Coyle, Joseph T; Bergeron, Richard

    2005-01-01

    To investigate the effects of persistent elevation of synaptic glycine at Schaffer collateral–CA1 synapses of the hippocampus, we studied the glutamatergic synaptic transmission in acute brain slices from mice with reduced expression of glycine transporter type 1 (GlyT1+/−) as compared to wild type (WT) littermates using whole-cell patch-clamp recordings of CA1 pyramidal cells. We observed faster decay kinetics, reduced ifenprodil sensitivity and increased zinc-induced antagonism in N-methyl-d-aspartate receptor (NMDAR) currents of GlyT1+/− mice. Moreover, the ratio α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR)/NMDAR was decreased in mutants compared to WT. Surprisingly, this change was associated with a reduction in the number of AMPARs expressed at the CA1 synapses in the mutants compared to WT. Overall, these findings highlight the importance of GlyT1 in regulating glutamatergic neurotransmission. PMID:15661817

  12. Glycine transporters type 1 inhibitor promotes brain preconditioning against NMDA-induced excitotoxicity.

    PubMed

    Pinto, Mauro Cunha Xavier; Lima, Isabel Vieira de Assis; da Costa, Flávia Lage Pessoa; Rosa, Daniela Valadão; Mendes-Goulart, Vânia Aparecida; Resende, Rodrigo Ribeiro; Romano-Silva, Marco Aurélio; de Oliveira, Antônio Carlos Pinheiro; Gomez, Marcus Vinícius; Gomez, Renato Santiago

    2015-02-01

    Brain preconditioning is a protective mechanism, which can be activated by sub-lethal stimulation of the NMDA receptors (NMDAR) and be used to achieve neuroprotection against stroke and neurodegenerative diseases models. Inhibitors of glycine transporters type 1 modulate glutamatergic neurotransmission through NMDAR, suggesting an alternative therapeutic strategy of brain preconditioning. The aim of this work was to evaluate the effects of brain preconditioning induced by NFPS, a GlyT1 inhibitor, against NMDA-induced excitotoxicity in mice hippocampus, as well as to study its neurochemical mechanisms. C57BL/6 mice (male, 10-weeks-old) were preconditioned by intraperitoneal injection of NFPS at doses of 1.25, 2.5 or 5.0 mg/kg, 24 h before intrahippocampal injection of NMDA. Neuronal death was evaluated by fluoro jade C staining and neurochemical parameters were evaluated by gas chromatography-mass spectrometry, scintillation spectrometry and western blot. We observed that NFPS preconditioning reduced neuronal death in CA1 region of hippocampus submitted to NMDA-induced excitotoxicity. The amino acids (glycine and glutamate) uptake and content were increased in hippocampus of animals treated with NFPS 5.0 mg/kg, which were associated to an increased expression of type-2 glycine transporter (GlyT2) and glutamate transporters (EAAT1, EAAT2 and EAAT3). The expression of GlyT1 was reduced in animals treated with NFPS. Interestingly, the preconditioning reduced expression of GluN2B subunits of NMDAR, whereas did not change the expression of GluN1 or GluN2A in all tested doses. Our study suggests that NFPS preconditioning induces resistance against excitotoxicity, which is associated with neurochemical changes and reduction of GluN2B-containing NMDAR expression.

  13. [Analysis and identification of Semen Glycines Nigrae and Semen Pharbitidis by infrared spectroscopy].

    PubMed

    Du, Juan; Peng, Xi-Yuan; Ma, Fang; Chen, Jian-Bo; Zhou, Qun; Jin, Zhe-Xiong; Sun, Su-Qin

    2014-09-01

    Semen Glycines Nigrae and Semen Pharbitidis containing a large amount of fats and proteins are commonly used in Chinese herbal medicine. Tri-step infrared spectroscopy was applied to fast analyze and identify the two samples. In the conventional infrared spectroscopy, the samples both have obvious characteristic absorption peaks at 1,745 cm(-1) assigned to the stretching mode of C==O in esters. Furthermore, the two kinds of herbs have the peaks at 1,656 and 1,547 cm(-1) assigned to the amide I and II bands of protein. Obviously, the infrared spectra of herbs demonstrate that protein and fat is the major component in two kinds of herbs, and the relative intensity of the peaks assigned to fat and protein indicate their relative content is different. And the result is consistent with the reported. In the second derivative spectra, Semen Pharbitidis has a peak at 1,712 cm(-1) assigned to the organic acid, however, Semen Glycines Nigrae has not this absorption peak. In addition, in the second derivative spectra, appeared more differences between the two samples in shape and intensity of the peaks. In two-dimensional correlation infrared spectra, the two samples were visually distinguished due to their signif