Science.gov

Sample records for acids including lysine

  1. Adipic acid increases plasma lysine but does not improve the efficiency of lysine utilization in swine.

    PubMed

    van Kempen, T A; van Heugten, E; Trottier, N L

    2001-09-01

    Adipic acid, upon catabolism, results in intermediates that bear a structural similarity to lysine degradation products. The objectives of this research were to determine whether adipic acid affects lysine concentrations in plasma and to evaluate whether adipic acid improves the efficiency of lysine utilization in pigs. In Exp. 1, nursery pigs (n = 14) were fed (for a period of 7 d) either a standard nursery diet or the same diet supplemented with 1% adipic acid to assess effects on plasma amino acid concentrations (plasma collected on d 7). In Exp. 2, nursery pigs (n = 56) were fed (for a period of 15 d) either a control diet or the same diet but deficient in either lysine, threonine, or tryptophan with or without supplemental adipic acid to assess the effects of adipic acid on the efficiency of amino acid utilization. The results from Exp. 1 showed that adipic acid increased plasma lysine (by 18%) but not alpha-amino adipic acid, an intermediate in lysine degradation. Experiment 2 demonstrated that adipic acid did not increase the efficiency of utilization of lysine, threonine, or tryptophan. The lack of effects on alpha-amino adipic acid in Exp. 1 and the lack of a positive effect on the efficiency of utilization of lysine, threonine, and tryptophan suggest that adipic acid does not inhibit the mitochondrial uptake of lysine and(or) its degradation in the mitochondrion. It is concluded that feeding adipic acid increases plasma lysine but does not improve the efficiency of lysine utilization.

  2. Available lysine and digestible amino acid contents of proteinaceous foods of India.

    PubMed

    Rutherfurd, Shane M; Bains, Kiran; Moughan, Paul J

    2012-08-01

    Cereals and legumes are staple foods in India and are limiting in lysine and sulphur amino acids, respectively. Available lysine loss, due to Maillard-type reactions that may occur during food preparation, exacerbates the problem of lysine deficiency particularly in cereals. Consequently, determining the contents of digestible essential amino acids, particularly lysine, is important. True ileal digestibilities of most amino acids (including total and reactive lysine) were determined for ten food ingredients and eleven foods commonly consumed in India. Semi-synthetic diets each containing either an ingredient or the prepared food as the sole protein source were formulated to contain 100 g kg(-1) protein (75 g kg(-1) for rice-based diets) and fed to growing rats. Titanium dioxide was included as an indigestible marker. Digesta were collected and the amino acid content (including reactive lysine) of diets and ileal digesta determined. Available (digestible reactive) lysine content ranged from 1·9-15·4 g kg(-1) and 1·8-12·7 g kg(-1) across the ingredients and prepared foods respectively. True ileal amino acid digestibility varied widely both across ingredients and prepared foods for each amino acid (on average 60-92 %) and across amino acids within each ingredient and prepared food (overall digestibility 31-96 %). Amino acid digestibility was low for many of the ingredients and prepared foods and consequently digestibility must be considered when assessing the protein quality of poorer quality foods. Given commonly encountered daily energy intakes for members of the Indian population, it is estimated that lysine is limiting for adults in many Indian diets.

  3. Amino acid nutrition beyond methionine and lysine for milk protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acids are involved in many important physiological processes affecting the production, health, and reproduction of high-producing dairy cows. Most research and recommendations for lactating dairy cows has focused on methionine and lysine for increasing milk protein yield. This is because these...

  4. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo.

    PubMed

    Lin, Hongqiao; Levison, Bruce S; Buffa, Jennifer A; Huang, Ying; Fu, Xiaoming; Wang, Zeneng; Gogonea, Valentin; DiDonato, Joseph A; Hazen, Stanley L

    2017-03-01

    Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H2O2/Cl(-) system of leukocytes. At low molar ratio of oxidant to target protein N(ε)-lysine moiety, 2-AAA is formed via an initial N(ε)-monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein N(ε)-lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine N(ε)-dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl

  5. Histidine-lysine peptides as carriers of nucleic acids.

    PubMed

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.

  6. Biomimetic niche for neural stem cell differentiation using poly-L-lysine/hyaluronic acid multilayer films.

    PubMed

    Lee, I-Chi; Wu, Yu-Chieh; Cheng, En-Ming; Yang, Wen-Ting

    2015-05-01

    Polyelectrolyte multilayer films have been suggested as tunable substrates with flexible surface properties that can modulate cell behavior. However, these films' biological effects on neural stem/progenitor cells have rarely been studied. Herein, biomimetic multilayer films composed of hyaluronic acid and poly-L-lysine were chosen to mimic the native extracellular matrix niche of brain tissue and were evaluated for their inductive effects, without the addition of chemical factors. Because neural stem/progenitor cells are sensitive to substrate properties, it is important that this system provides control over the surface charge, and slight stiffness variations are also possible. Both of these factors affect neural stem/progenitor cell differentiation. The results showed that neural stem/progenitor cells were induced to differentiate on the poly-L-lysine/hyaluronic acid multilayer films with 0.5-4 alternating layers. In addition, the neurite outgrowth length was regulated by the surface charge of the terminal layer but did not increase with the layer number. In contrast, the quantity of differentiated neurons was enhanced slightly as the number of layers increased but was not affected by the surface charge of the terminal layer. In sum, material pairs in the form of native poly-L-lysine/hyaluronic acid films achieved important targets for neural regenerative medicine, including enhancement of the neurite outgrowth length, regulation of neuron differentiation, and the formation of a network. These extracellular matrix-mimetic poly-L-lysine/hyaluronic acid multilayer films may provide a versatile platform that could be useful for surface modification for applications in neural engineering.

  7. Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-01-01

    Salmonella Typhimurium CECT 443 inactivation at pH 2.5 in Mineral Medium (MM) and MM supplemented with 0.01% (w/v) arginine, lysine or glutamic acid was studied using stationary-phase cells grown in buffered BHI pH 7.0 (non-acid adapted cells) and acidified BHI up to pH 4.5 with acetic, citric, lactic and hydrochloric acids (acid adapted cells). In all cases, acid adapted cells, with D-values ranging from 23.34 to 86.90 min, showed a significantly higher acid resistance than non-acid adapted cells, with D-values between 8.90 and 10.29 min. Whereas the conditions used for acid adaptation did not exert a significant effect on the acid resistance of the S. Typhimurium CECT 443 resulting cells, the inclusion of lysine and arginine in the challenge medium protected them against acid inactivation, reaching D-values of about 2 and 3 times higher, respectively, than those found in MM or MM supplemented with glutamic acid. None of these three amino acids significantly modified the acid resistance of non-acid adapted cells. The relative expression level of adiA (encoding the arginine decarboxylase), adiY (encoding the transcriptional activator of adiA), cadA (encoding the lysine decarboxylase) and cadB (encoding the lysine/cadaverine transport protein) was examined by quantitative PCR. Acid adapted cells showed higher relative expression levels for both systems, arginine decarboxylase and lysine decarboxylase, which demonstrates that the induction of specialized pH-homeostatic systems plays an important role in S. Typhimurium CECT 443 protection against acid stress. However, the increased acid resistance showed by acid adapted cells challenged in MM arginine or lysine free suggests the existence of other microbial survival strategies.

  8. [Protein utilization in lysine-supplemented barley protein and effectiveness of the limiting amino acid lysine in growing pigs].

    PubMed

    Wecke, C; Gebhardt, G

    1982-04-01

    In 57 N-balance experiments with castrated male pigs (20 ... 65 kg live weight) the influence of graded lysine supplements to crushed barley enriched with energy, minerals and vitamins on nitrogen metabolism and lysine effectiveness was tested. Close correlative relations between lysine concentration and the b-value, the NPU-value, N-balance and N-excretion in urine could be detected. In agreement with the law of minimum a constant lysine effectiveness could be observed within the limiting range. The supplemented synthetic lysine distinguished itself by the same effectiveness as the protein-bound barley lysine. When barley supplemented with lysine is used, an amount of lysine supplement should be chosen from the point of view of nutrition physiology which raises the total lysine content to a maximum level of 6.3 g/16 g N because lysine supplementation exceeding this value without the simultaneous supplementation of limiting threonine remains ineffective.

  9. Role of lysine and acidic amino acid residues on the insecticidal activity of Jackbean urease.

    PubMed

    Real-Guerra, Rafael; Carlini, Célia Regina; Stanisçuaski, Fernanda

    2013-09-01

    Canavalia ensiformis has three isoforms of urease: Jackbean urease (JBU), Jackbean urease II and canatoxin. These isoforms present several biological activities, independent from the enzymatic property, such as entomotoxicity and antifungal properties. The entomotoxic activity is a property of the whole protein, as well as of a 10 kDa peptide released by insect digestive enzymes. Here we have used chemical modification to observe the influence of lysines and acidic residues on JBU enzymatic and insecticidal activities. Chemical modification of lysine residues was performed with dimethylamine-borane complex and formaldehyde, and acidic residues were modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and ethylenediamine. Derivatized ureases, called JBU-Lys (lysine-modified) and JBU-Ac (acidic residues-modified), were assayed for their biochemical and insecticidal properties. Neither modification altered significantly the kinetic parameters analyzed, indicating that no residue critical for the enzyme activity was affected and that the modifications did not incur in any significant structural alteration. On the other hand, both modifications reduced the toxic activity of the native protein fed to Dysdercus peruvianus. The changes observed in the entomotoxic property of the derivatized proteins reflect alterations in different steps of JBU's toxicity towards insects. JBU-Ac is not susceptible to hydrolysis by insect digestive enzymes, hence impairing the release of toxic peptide(s), while JBU-Lys is processed as the native protein. On the other hand, the antidiuretic effect of JBU on Rhodnius prolixus is altered in JBU-Lys, but not in JBU-Ac. Altogether, these data emphasize the role of lysine and acidic residues on the insecticidal properties of ureases.

  10. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance

    PubMed Central

    Yang, Qing-qing; Zhang, Chang-quan; Chan, Man-ling; Zhao, Dong-sheng; Chen, Jin-zhu; Wang, Qing; Li, Qian-feng; Yu, Heng-xiu; Gu, Ming-hong; Sun, Samuel Sai-ming; Liu, Qiao-quan

    2016-01-01

    Rice (Oryza sativa L.), a major staple crop worldwide, has limited levels of the essential amino acid lysine. We previously produced engineered rice with increased lysine content by expressing bacterial aspartate kinase and dihydrodipicolinate synthase and inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase activity. However, the grain quality, field performance, and integration patterns of the transgenes in these lysine-enriched lines remain unclear. In the present study, we selected several elite transgenic lines with endosperm-specific or constitutive regulation of the above key enzymes but lacking the selectable marker gene. All target transgenes were integrated into the intragenic region in the rice genome. Two pyramid transgenic lines (High Free Lysine; HFL1 and HFL2) with free lysine levels in seeds up to 25-fold that of wild type were obtained via a combination of the above two transgenic events. We observed a dramatic increase in total free amino acids and a slight increase in total protein content in both pyramid lines. Moreover, the general physicochemical properties were improved in pyramid transgenic rice, but the starch composition was not affected. Field trials indicated that the growth of HFL transgenic rice was normal, except for a slight difference in plant height and grain colour. Taken together, these findings will be useful for the potential commercialization of high-lysine transgenic rice. PMID:27252467

  11. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance.

    PubMed

    Yang, Qing-Qing; Zhang, Chang-Quan; Chan, Man-Ling; Zhao, Dong-Sheng; Chen, Jin-Zhu; Wang, Qing; Li, Qian-Feng; Yu, Heng-Xiu; Gu, Ming-Hong; Sun, Samuel Sai-Ming; Liu, Qiao-Quan

    2016-07-01

    Rice (Oryza sativa L.), a major staple crop worldwide, has limited levels of the essential amino acid lysine. We previously produced engineered rice with increased lysine content by expressing bacterial aspartate kinase and dihydrodipicolinate synthase and inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase activity. However, the grain quality, field performance, and integration patterns of the transgenes in these lysine-enriched lines remain unclear. In the present study, we selected several elite transgenic lines with endosperm-specific or constitutive regulation of the above key enzymes but lacking the selectable marker gene. All target transgenes were integrated into the intragenic region in the rice genome. Two pyramid transgenic lines (High Free Lysine; HFL1 and HFL2) with free lysine levels in seeds up to 25-fold that of wild type were obtained via a combination of the above two transgenic events. We observed a dramatic increase in total free amino acids and a slight increase in total protein content in both pyramid lines. Moreover, the general physicochemical properties were improved in pyramid transgenic rice, but the starch composition was not affected. Field trials indicated that the growth of HFL transgenic rice was normal, except for a slight difference in plant height and grain colour. Taken together, these findings will be useful for the potential commercialization of high-lysine transgenic rice.

  12. Characterization and detection of lysine-arginine cross-links derived from dehydroascorbic acid.

    PubMed

    Reihl, Oliver; Lederer, Markus O; Schwack, Wolfgang

    2004-02-25

    Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. L-dehydroascorbic acid (DHA, 5), the oxidation product of L-ascorbic acid (vitamin C), is known as a potent glycation agent. Identification is reported for the lysine-arginine cross-links N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(2-hydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (9), N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(1,2-dihydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (11), and N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2S)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (13). The formation pathways could be established starting from dehydroascorbic acid (5), the degradation products 1,3,4-trihydroxybutan-2-one (7, L-erythrulose), 3,4-dihydroxy-2-oxobutanal (10, L-threosone), and L-threo-pentos-2-ulose (12, L-xylosone) were proven as precursors of the lysine-arginine cross-links 9, 11, and 13. Products 9 and 11 were synthesized starting from DHA 5, compound N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2R)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (16) via the precursor D-erythro-pentos-2-ulose (15). The present study revealed that the modification of lysine and arginine side chains by DHA 5 is a complex process and could involve a number of reactive carbonyl species.

  13. Modulation of benzodiazepine by lysine and pipecolic acid on pentylenetetrazol-induced seizures

    SciTech Connect

    Chang, Y.F.; Hargest, V.; Chen, J.S.

    1988-01-01

    L-lysine and its metabolite pipecolic acid (PA) have been studied for their effects on pentylenetetrazol (PTZ)-induced seizures in mice. L-Lysine of L-Pa i.p. significantly increased clonic and tonic latencies in a dose-dependent manner against 90 mg/kg PTZ-induced seizures. L-Lysine but not L-Pa enhanced the anticonvulsant effect of diazepam (DZ). L-Pa i.c.v. showed a slight decrease in clonic latency; it did not enhance the antiseizure activity of DZ; it caused seizures at 0.6 mmol/kg. D-PA i.c.v. displayed an opposite effect compared to its L-isomer. The anticonvulsant effect of L-lysine in terms of increase in seizure latency and survival was even more amplified when tested with a submaximal PTZ concentration. L-Lysine showed an enhancement of specific /sup 3/H-flunitrazepam(FZ) binding to mouse brain membranes both in vitro an din vivo. The possibility of L-lysine acting as a modulator for the GABA/benzodiazepine receptors was demonstrated. Since L-PA showed enhancement of /sup 3/H-FZ binding only in vitro but not in vivo, the anticonvulsant effect of L-PA may not be linked to the GABA/benzodiazepine receptor.

  14. SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids.

    PubMed

    López, Yosvany; Dehzangi, Abdollah; Lal, Sunil Pranit; Taherzadeh, Ghazaleh; Michaelson, Jacob; Sattar, Abdul; Tsunoda, Tatsuhiko; Sharma, Alok

    2017-03-28

    Post-Translational Modification (PTM) is a biological reaction which contributes to diversify the proteome. Despite many modifications with important roles in the cellular activity, lysine succinylation has recently emerged as an important PTM mark. It alters the chemical structure of lysines, leading to remarkable changes in the structure and function of proteins. Given the huge amount of proteins being sequenced in the post-genome era, the experimental detection of succinylated residues remains expensive, inefficient and time-consuming. Therefore, the development of computational tools for accurately predicting succinylated lysines is an urgent necessity. To date, several approaches have been proposed but their sensitivity has been reportedly poor. In this paper, we propose an approach that utilizes structural features of amino acids to improve lysine succinylation prediction. Succinylated and non-succinylated lysines were first retrieved from 670 proteins and characteristics such as accessible surface area, backbone torsion angles, and local structure conformations were incorporated. We used the k-nearest neighbors cleaning for dealing with class imbalance and designed a pruned decision tree for classification. Our predictor, referred as SucStruct (Succinylation using Structural features), proved to significantly improve performance when compared to previous predictors, with sensitivity, accuracy and Mathew's correlation coefficient equal to 0.7334-0.7946, 0.7444-0.7608 and 0.4884-0.5240, respectively.

  15. Pyridoxal 5'-phosphate inactivates DNA topoisomerase IB by modifying the lysine general acid.

    PubMed

    Vermeersch, Jacqueline J; Christmann-Franck, Serge; Karabashyan, Leon V; Fermandjian, Serge; Mirambeau, Gilles; Der Garabedian, P Arsène

    2004-01-01

    The present results demonstrate that pyridoxal, pyridoxal 5'-phosphate (PLP) and pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP) inhibit Candida guilliermondii and human DNA topoisomerases I in forming an aldimine with the epsilon-amino group of an active site lysine. PLP acts as a competitive inhibitor of C.guilliermondii topoisomerase I (K(i) = 40 microM) that blocks the cleavable complex formation. Chemical reduction of PLP-treated enzyme reveals incorporation of 1 mol of PLP per mol of protein. The limited trypsic proteolysis releases a 17 residue peptide bearing a lysine-bound PLP (KPPNTVIFDFLGK*DSIR). Targeted lysine (K*) in C.guilliermondii topoisomerase I corresponds to that found in topoisomerase I of Homo sapiens (K532), Candida albicans (K468), Saccharomyces cerevisiae (K458) and Schizosaccharomyces pombe (K505). In the human enzyme, K532, belonging to the active site acts as a general acid catalyst and is therefore essential for activity. The spatial orientation of K532-PLP within the active site was approached by molecular modeling using available crystallographic data. The PLP moiety was found at close proximity of several active residues. PLP could be involved in the cellular control of topoisomerases IB. It constitutes an efficient tool to explore topoisomerase IB dynamics during catalysis and is also a lead for new drugs that trap the lysine general acid.

  16. Reversible lysine modification on proteins by using functionalized boronic acids.

    PubMed

    Cal, Pedro M S D; Frade, Raquel F M; Cordeiro, Carlos; Gois, Pedro M P

    2015-05-26

    Iminoboronates have been utilized to successfully install azide and alkyne bioorthogonal functions on proteins, which may then be further reacted with their bioorthogonal counterparts. These constructs were also used to add polyethylene glycol (PEG) to insulin, a modification which has been shown to be reversible in the presence of fructose. Finally, iminoboronates were used to assemble a folic acid/paclitaxel small-molecule/drug conjugate in situ with an IC50  value of 20.7 nM against NCI-H460 cancer cells and negligible cytotoxicity against the CRL-1502 noncancer cells.

  17. Linkages in thermal copolymers of lysine

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Suzuki, F.

    1976-01-01

    The thermal copolymerization of lysine with other alpha-amino acids has been studied further. The identity of the second amino acid influences various properties of the polymer obtained, including the proportion of alpha and epsilon linkages of lysine. A review of linkages in proteinoids indicates alpha and beta linkages for aspartic acid, alpha and gamma linkages for glutamic acid, alpha and epsilon linkages for lysine, and alpha linkages for other amino acids. Thermal proteinoids are thus more complex in types of linkage than are proteins

  18. Linkages in thermal copolymers of lysine

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Suzuki, F.

    1975-01-01

    The thermal copolymerization of lysine with other alpha-amino acids was studied. The identity of the second amino acid influences various properties of the polymer obtained, including the proportion of alpha and epsilon linkages of lysine. A review of linkages in proteinoids indicates alpha and beta linkages for aspartic acid, alpha and gamma linkages for glutamic acid, alpha and epsilon linkages for lysine, and alpha linkages for other amino acids. Thermal proteinoids are thus more complex in types of linkage than are proteins.

  19. Contribution of gut microbial lysine to liver and milk amino acids in lactating does.

    PubMed

    Abecia, Leticia; Balcells, Joaquím; Fondevila, Manuel; Belenguer, Alvaro; Holtrop, Grietje; Lobley, Gerald E

    2008-11-01

    The contribution of microbial amino acids through caecotrophy to tissue protein metabolism was investigated in lactating does. Attempts were made to vary microbial supply through a dietary antibiotic, Zn bacitracin, and to vary tissue demand through manipulation of litter size. Three groups of eight New Zealand does were fed different experimental diets from day 28 of pregnancy to day 26 of lactation. The control group received the basal diet formulated to meet requirements with grass hay, wheat, soybean meal and barley grain. The second (no antibiotic) group and the third (bacitracin; BAC) group ingested the basal diet supplemented with ammonium sulfate (5 g/kg), initially unlabelled (day 1 to day 8) then labelled with 15N (day 9 to day 30), while the BAC diet was also supplemented throughout with antibiotic (Zn bacitracin; 100 mg/kg). From just after birth each group of does was subdivided into two groups, each of four females, with the litter size either five (LS5) or nine (LS9) pups. The 15N enrichment in liver, milk and caecal bacteria amino acids was determined by GC-combustion-isotope ratio MS. All amino acids in bacterial protein were enriched with the (15 NH 4)2SO4 treatment, with lysine 15N enrichment significantly greater in caecal bacteria (0.23 (SE 0.0063) atom % excess (ape)) than in liver (0.04 (SE 0.0004) ape) or milk protein (0.05 (SE 0.0018) ape), confirming the double origin (bacterial and dietary) of tissue lysine. The contribution of microbes to tissue lysine was 0.23 (SE 0.006) when milk protein was used as reference.

  20. Isolation and characterization of a new advanced glycation endproduct of dehydroascorbic acid and lysine.

    PubMed

    Argirov, Ognyan K; Lin, Bin; Olesen, Paul; Ortwerth, Beryl J

    2003-03-17

    Proteins are subject of posttranslational modification by sugars and their degradation products in vivo. The process is often referred as glycation. L-Dehydroascorbic acid (DHA), an oxidation product of L-ascorbic acid (vitamin C), is known as a potent glycation agent. A new product of modification of lysine epsilon -amino group by DHA was discovered as a result of the interaction between Boc-Lys and dehydroascorbic acid. The chromatographic and spectral analyses revealed that the structure of the product was 1-(5-ammonio-5-carboxypentyl)-3-oxido-4-(hydroxymethyl)pyridinium. The same compound was isolated from DHA modified calf lens protein after hydrolysis and chromatographic separation. The study confirmed that L-erythrulose is an important intermediate of modification of proteins by DHA. The structure of the reported product and in vitro experiments suggested that L-erythrulose could further transform to L-threose, L-erythrose and glycolaldehyde under conditions similar to physiological. The present study revealed that the modification of epsilon -amino groups of lysine residues by DHA is a complex process and could involve a number of reactive carbonyl species.

  1. Lysine requirements of pre-lay broiler breeder pullets: determination by indicator amino acid oxidation.

    PubMed

    Coleman, Russell A; Bertolo, Robert F; Moehn, Soenke; Leslie, Michael A; Ball, Ronald O; Korver, Doug R

    2003-09-01

    The indicator amino acid oxidation (IAAO) method allows the determination of amino acid requirements under conditions of low growth rate as found in pre-laying broiler breeder pullets. Cobb 500 breeder pullets (20 wk old; 2290 +/- 280 g, n = 4) were adapted (6 d) to a pelleted, purified control diet containing all nutrients at >or=110% of NRC recommendations. After recovery from surgery for implantation of a jugular catheter, each bird was fed, in random order, test diets containing one of nine levels of lysine (0.48, 0.96, 1.92, 2.88, 3.84, 4.80, 7.68, 9.60 and 14.40 g/kg of diet). Indicator oxidation was determined during 4-h primed (74 kBq/kg body), constant infusions (44 kBq x h(-1). kg body(-1)) of L-[1-(14)C]phenylalanine. Using the breakpoint of a one-slope broken-line model, the lysine requirement was determined to be 4.88 +/- 0.96 g/kg of diet or 366 +/- 72 mg x hen(-1) x d(-1) with an upper 95% CI of 6.40 g/kg of diet or 480 mg x hen(-1) x d(-1). IAAO allows determination of individual bird amino acid requirements for specific ages and types of birds over short periods of time and enables more accurate broiler breeder pullet diet formulation.

  2. Effect of dietary lysine on hepatic lysine catabolism in broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lysine is frequently a first- or second-limiting amino acid in poultry diets. Improving the efficiency of lysine use for protein synthesis would effectively lower the lysine requirement and decrease feed costs. Understanding how lysine is degraded and how the degradation is regulated would identif...

  3. Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells.

    PubMed Central

    Maruyama, K; MacLennan, D H

    1988-01-01

    Full-length cDNAs encoding neonatal and adult isoforms of the Ca2+-ATPase of rabbit fast-twitch skeletal muscle sarcoplasmic reticulum were expressed transiently in COS-1 cells. The microsomal fraction isolated from transfected COS-1 cells contained immunoreactive Ca2+-ATPase and catalyzed Ca2+ transport at rates at least 15-fold above controls. No differences were observed in either the rates or Ca2+ dependency of Ca2+ transport catalyzed by the two isoforms. Aspartic acid-351, the site of formation of the catalytic acyl phosphate in the enzyme, was mutated to asparagine, glutamic acid, serine, threonine, histidine, or alanine. In every case, Ca2+ transport activity and Ca2+-dependent phosphorylation were eliminated. Ca2+ transport was also eliminated by mutation of lysine-352 to arginine, glutamine, or glutamic acid or by mutation of Asp351-Lys352 to Lys351-Asp352. Mutation of lysine-515, the site of fluorescein isothiocyanate modification in the enzyme, resulted in diminished Ca2+ transport activity as follows: arginine, 60%; glutamine, 25%; glutamic acid, 5%. These results demonstrate the absolute requirement of acylphosphate formation for the Ca2+ transport function and define a residue important for ATP binding. They also demonstrate the feasibility of a thorough analysis of active sites in the Ca2+-ATPase by expression and site-specific mutagenesis. Images PMID:2966962

  4. Synthesis of peptides from amino acids and ATP with lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1980-01-01

    The paper examines the synthesis of peptides from aminoacids and ATP with a lysine-rich protenoid. The latter in aqueous solution catalyzes the formation of peptides from free amino acids and ATP; this catalytic activity is not found in acidic protenoids, even though the latter contain a basic aminoacid. The pH optimum for the synthesis is about 11, but it is appreciable below 8 and above 13. Temperature data indicate an optimum at 20 C or above, with little increase in rate up to 60 C. Pyrophosphate can be used instead of ATP, but the yields are lower. The ATP-aided syntheses of peptides in aqueous solution occur with several types of proteinous aminoacids.

  5. L-lysine-L-tartaric acid: New molecular complex with nonlinear optical properties. Structure, vibrational spectra and phase transitions

    SciTech Connect

    Debrus, S.; Marchewka, M.K. . E-mail: mkm@int.pan.wroc.pl; Baran, J.; Drozd, M.; Czopnik, R.; Pietraszko, A.; Ratajczak, H.

    2005-09-15

    The first X-ray diffraction and vibrational spectroscopic analysis of a novel complex between L-lysine and L-tartaric acid is reported. The structure was solved in two temperatures (320 and 260 K) showing incommensurate phase between them. Room-temperature powder infrared and Raman measurements for the L-lysine-L-tartaric acid molecular complex (1:1) were carried out. DSC measurements on powder samples indicate two phase transitions points at about 295, 300 and 293, 300 K, for heating and cooling, respectively, with noticeable temperature interval between them. Second harmonic generation efficiency d {sub eff}=0.35 d {sub eff} (KDP)

  6. The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes.

    PubMed

    Arrighi, Jean-François; Barre, Annick; Ben Amor, Besma; Bersoult, Anne; Soriano, Lidia Campos; Mirabella, Rossana; de Carvalho-Niebel, Fernanda; Journet, Etienne-Pascal; Ghérardi, Michèle; Huguet, Thierry; Geurts, René; Dénarié, Jean; Rougé, Pierre; Gough, Clare

    2006-09-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysin [corrected] motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known.

  7. The effect of glutamic acid side chain on acidity constant of lysine in beta-sheet: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Sargolzaei, M.; Afshar, M.; Sadeghi, M. S.; Kavee, M.

    2014-07-01

    In this work, the possibility of proton transfer between side chain of lysine and glutamic acid in peptide of Glu--Ala-Lys+ was demonstrated using density functional theory (DFT). We have shown that the proton transfer takes place between side chain of glutamic and lysine residues through the hydrogen bond formation. The structures of transition state for proton transfer reaction were detected in gas and solution phases. Our kinetic studies show that the proton transfer reaction rate in gas phase is higher than solution phase. The ionization constant (p K a) value of lysine residue in peptide was estimated 1.039 which is lower than intrinsic p K a of lysine amino acid.

  8. X-ray studies of crystalline complexes involving amino acids and peptides. XLIII. Adipic acid complexes of L- and DL-lysine.

    PubMed

    Sharma, Alok; Thamotharan, S; Roy, Siddhartha; Vijayan, M

    2006-03-01

    The asymmetric unit of the DL-lysine complex of adipic acid [bis(DL-lysinium) adipate], 2C6H15N2O2+.C6H8O(4)2-, contains a zwitterionic singly charged lysinium cation and half a doubly charged adipate anion (the complete anion has inversion symmetry). That of the L-lysine complex (lysinium hydrogen adipate), C6H15N2O2+.C6H9O4-, consists of a lysinium cation and a singly charged hydrogen adipate anion. In both structures, the lysinium cations organize into layers interconnected by adipate or hydrogen adipate anions. However, the arrangement of the molecular ions in the layer is profoundly different in the DL- and L-lysine complexes. The hydrogen adipate anions in the L-lysine complex form linear arrays in which adjacent ions are interconnected by a symmetric O...H...O hydrogen bond.

  9. Heterologous Production of Cyanobacterial Mycosporine-Like Amino Acids Mycosporine-Ornithine and Mycosporine-Lysine in Escherichia coli

    PubMed Central

    Katoch, Meenu; Mazmouz, Rabia; Chau, Rocky; Pearson, Leanne A.; Pickford, Russell

    2016-01-01

    ABSTRACT Mycosporine-like amino acids (MAAs) are an important class of secondary metabolites known for their protection against UV radiation and other stress factors. Cyanobacteria produce a variety of MAAs, including shinorine, the active ingredient in many sunscreen creams. Bioinformatic analysis of the genome of the soil-dwelling cyanobacterium Cylindrospermum stagnale PCC 7417 revealed a new gene cluster with homology to MAA synthase from Nostoc punctiforme. This newly identified gene cluster is unusual because it has five biosynthesis genes (mylA to mylE), compared to the four found in other MAA gene clusters. Heterologous expression of mylA to mylE in Escherichia coli resulted in the production of mycosporine-lysine and the novel compound mycosporine-ornithine. To our knowledge, this is the first time these compounds have been heterologously produced in E. coli and structurally characterized via direct spectral guidance. This study offers insight into the diversity, biosynthesis, and structure of cyanobacterial MAAs and highlights their amenability to heterologous production methods. IMPORTANCE Mycosporine-like amino acids (MAAs) are significant from an environmental microbiological perspective as they offer microbes protection against a variety of stress factors, including UV radiation. The heterologous expression of MAAs in E. coli is also significant from a biotechnological perspective as MAAs are the active ingredient in next-generation sunscreens. PMID:27520810

  10. Effect of amino acids lysine and arginine on fracture healing in rabbits: A radiological and histomorphological analysis

    PubMed Central

    Sinha, Shivam; Goel, Satish Chandra

    2009-01-01

    Background: Amino acids like arginine and lysine have been suggested to hasten the process of fracture healing by improving the local blood supply, supplementing growth factors, and improving collagen synthesis. We studied the role of lysine and arginine in the fracture repair process with regard to the rate of healing, probable mechanisms involved in the process, and mutual synergism between these agents. Materials and Methods: In an experimental study, 40 rabbits were subjected to ulnar osteotomy. They were distributed in control (14) and test groups (26). Twenty-six animals in the test group were fed with a diet rich in lysine and arginine. Both the groups were followed radiologically and histologically till union. Results: There was better healing of osteotomy in terms of better vascularization, callus formation, and mineralization in the test group. The time of healing in the test group was reduced by a period of 2 weeks. Conclusion: We conclude that amino acids like arginine and lysine may hasten fracture healing. PMID:19838381

  11. Nucleotide sequence of a lysine transfer ribonucleic Acid from bakers' yeast.

    PubMed

    Madison, J T; Boguslawski, S J; Teetor, G H

    1972-05-12

    The nucleotide sequence of one of the two major lysine transfer RNA's from bakers' yeast has been determined. Its structure is compared to that of a lysine tRNA from a haploid yeast. A total of 21 nucleotides differ in the two molecules. Only the T-psi-C-G (thymidine-pseudouridine-cytidine-guanosine) loop and its supporting stem are identical.

  12. Simultaneous Detection of Dopamine and Uric Acid Using a Poly(l-lysine)/Graphene Oxide Modified Electrode

    PubMed Central

    Zhang, Yuehua; Lei, Wu; Xu, Yujuan; Xia, Xifeng; Hao, Qingli

    2016-01-01

    A novel, simple and selective electrochemical method was investigated for the simultaneous detection of dopamine (DA) and uric acid (UA) on a poly(l-lysine)/graphene oxide (GO) modified glassy carbon electrode (PLL/GO/GCE) by differential pulse voltammetry (DPV). The electrochemically prepared PLL/GO sensory platform toward the oxidation of UA and DA exhibited several advantages, including high effective surface area, more active sites and enhanced electrochemical activity. Compared to the PLL-modified GCE (PLL/GCE), GO-modified GCE and bare GCE, the PLL/GO/GCE exhibited an increase in the anodic potential difference and a remarkable enhancement in the current responses for both UA and DA. For the simultaneous detection of DA and UA, the detection limits of 0.021 and 0.074 μM were obtained, while 0.031 and 0.018 μM were obtained as the detection limits for the selective detection of UA and DA, using DPV in the linear concentration ranges of 0.5 to 20.0 and 0.5 to 35 μM, respectively. In addition, the PLL/GO/GCE demonstrated good reproducibility, long-term stability, excellent selectivity and negligible interference of ascorbic acid (AA). The proposed modified electrode was successfully implemented in the simultaneous detection of DA and UA in human blood serum, urine and dopamine hydrochloride injection with satisfactory results.

  13. Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation.

    PubMed

    Struys, Eduard A; Jakobs, Cornelis

    2010-01-04

    The mammalian degradation of lysine is believed to proceed via two distinct routes, the saccharopine and the pipecolic acid routes, that ultimately converge at the level of alpha-aminoadipic semialdehyde (alpha-AASA). alpha-AASA dehydrogenase-deficient fibroblasts were grown in cell culture medium supplemented with either L-[alpha-(15)N]lysine or L-[epsilon-(15)N]lysine to explore the exact route of lysine degradation. L-[alpha-(15)N]lysine was catabolised into [(15)N]saccharopine, [(15)N]alpha-AASA, [(15)N]Delta(1)-piperideine-6-carboxylate, and surprisingly in [(15)N]pipecolic acid, whereas L-[epsilon-(15)N]lysine resulted only in the formation of [(15)N]saccharopine. These results imply that lysine is exclusively degraded in fibroblasts via the saccharopine branch, and pipecolic acid originates from an alternative precursor. We hypothesize that pipecolic acid derives from Delta(1)-piperideine-6-carboxylate by the action of Delta(1)-pyrroline-5-carboxylic acid reductase, an enzyme involved in proline metabolism.

  14. Identification of Structural and Catalytic Classes of Highly Conserved Amino Acid Residues in Lysine 2,3-Aminomutase †

    PubMed Central

    Chen, Dawei; Frey, Perry A.; Lepore, Bryan W.; Ringe, Dagmar; Ruzicka, Frank J.

    2008-01-01

    Lysine 2,3-aminomutase (LAM) from Clostridium subterminale SB4 catalyzes the interconversion of (S)-lysine and (S)-β-lysine by a radical mechanism involving coenzymatic actions of S-adenosylmethionine (SAM), a [4Fe-4S] cluster, and pyridoxal-5′-phosphate (PLP). The enzyme contains a number of conserved acidic residues and a cysteine and arginine-rich motif, that binds iron and sulfide in the [4Fe–4S] cluster. The results of activity and iron, sulfide, and PLP analysis of variants resulting from site-specific mutations of the conserved acidic residues and the arginine residues in the iron-sulfide binding motif indicate two classes of conserved residues of each type. Mutation of the conserved residues Arg134, Asp293, and Asp330 abolish all enzymatic activity. Based on the x-ray crystal structure, these residues bind the ε-aminium and α-carboxylate groups of (S)-lysine. However, among these residues only Asp293 appears to be important for stabilizing the [4Fe–4S] cluster. Members of a second group of conserved residues appear to stabilize the structure of LAM. Mutations of arginine residues 130, 135, and 136 and acidic residues Glu86, Asp165, Glu236, and Asp172 dramatically decrease iron and sulfide contents in the purified variants. Mutation of Asp96 significantly decreases iron and sulfide content. Variants in Arg130 or Asp172 display no detectable activity, whereas variants in the other positions display low to very low activities. Structural roles are assigned to this latter class of conserved amino acids. In particular, a network of hydrogen bonded interactions of Arg130, Glu86, Arg135 and the main chain carbonyl groups of Cys132 and Leu55 appears to stabilize the [4Fe–4S] cluster. PMID:17042481

  15. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum.

    PubMed

    Schneider, Jens; Niermann, Karin; Wendisch, Volker F

    2011-07-10

    Amino acid production processes with Corynebacterium glutamicum are based on media containing glucose from starch hydrolysis or fructose and sucrose as present in molasses. Simultaneous utilization of various carbon sources, including glucose, fructose and sucrose, in blends is a typical characteristic of this bacterium. The renewable non-food carbon source arabinose, which is present in hemicellulosic hydrolysates, cannot be utilized by most C. glutamicum strains. Heterologous expression of the araBAD operon from Escherichia coli in the wild-type and in an l-lysine producing strain of C. glutamicum was shown to enable production of l-glutamate and l-lysine, respectively, from arabinose as sole carbon source. l-Ornithine and l-arginine producing strains were constructed and shown to produce l-ornithine and l-arginine from arabinose when araBAD from E. coli was expressed. Moreover, the recombinant strains produced l-glutamate, l-lysine, l-ornithine and l-arginine respectively, from arabinose also when glucose-arabinose blends were used as carbon sources.

  16. Heterologous Production of Cyanobacterial Mycosporine-Like Amino Acids Mycosporine-Ornithine and Mycosporine-Lysine in Escherichia coli.

    PubMed

    Katoch, Meenu; Mazmouz, Rabia; Chau, Rocky; Pearson, Leanne A; Pickford, Russell; Neilan, Brett A

    2016-10-15

    Mycosporine-like amino acids (MAAs) are an important class of secondary metabolites known for their protection against UV radiation and other stress factors. Cyanobacteria produce a variety of MAAs, including shinorine, the active ingredient in many sunscreen creams. Bioinformatic analysis of the genome of the soil-dwelling cyanobacterium Cylindrospermum stagnale PCC 7417 revealed a new gene cluster with homology to MAA synthase from Nostoc punctiforme This newly identified gene cluster is unusual because it has five biosynthesis genes (mylA to mylE), compared to the four found in other MAA gene clusters. Heterologous expression of mylA to mylE in Escherichia coli resulted in the production of mycosporine-lysine and the novel compound mycosporine-ornithine. To our knowledge, this is the first time these compounds have been heterologously produced in E. coli and structurally characterized via direct spectral guidance. This study offers insight into the diversity, biosynthesis, and structure of cyanobacterial MAAs and highlights their amenability to heterologous production methods.

  17. Synthesis of stereoarray isotope labeled (SAIL) lysine via the "head-to-tail" conversion of SAIL glutamic acid.

    PubMed

    Terauchi, Tsutomu; Kamikawai, Tomoe; Vinogradov, Maxim G; Starodubtseva, Eugenia V; Takeda, Mitsuhiro; Kainosho, Masatsune

    2011-01-07

    A stereoarray isotope labeled (SAIL) lysine, (2S,3R,4R,5S,6R)-[3,4,5,6-(2)H(4);1,2,3,4,5,6-(13)C(6);2,6-(15)N(2)]lysine, was synthesized by the "head-to-tail" conversion of SAIL-Glu, (2S,3S,4R)-[3,4-(2)H(2);1,2,3,4,5-(13)C(5);2-(15)N]glutamic acid, with high stereospecificities for all five chiral centers. With the SAIL-Lys in hand, the unambiguous simultaneous stereospecific assignments were able to be established for each of the prochiral protons within the four methylene groups of the Lys side chains in proteins.

  18. Use of the guanidination reaction for determining reactive lysine, bioavailable lysine and gut endogenous lysine.

    PubMed

    Rutherfurd, Shane M

    2015-09-01

    Determining the bioavailability of lysine in foods and feedstuffs is important since lysine is often the first limiting indispensable amino acid in diets for intensively farmed livestock (pigs and poultry) and also in many cereal-based diets consumed by humans. When foods or feedstuffs are heat processed, lysine can undergo Maillard reactions to produce nutritionally unavailable products. The guanidination reaction, the reaction of O-methylisourea with the side chain amino group of lysine that produces homoarginine, has been used to determine the unmodified lysine (reactive lysine) in processed foods and feedstuffs and also true ileal digestible reactive lysine (bioavailable lysine). The advantages of the guanidination method in comparison with other reactive lysine methods such as the fluorodinitrobenzene, trinitrobenzenesulphonic acid and dye-binding methods are that it is very specific for reactive lysine and also that the method is relatively straightforward to conduct. The specificity of the guanidination reaction for the lysine side chain amino group is particularly important, since ileal digesta will contain N-terminal groups in the form of free amino acids and peptides. The main disadvantage is that complete conversion of lysine to homoarginine is required, yet it is not straightforward to test for complete guanidination in processed foods and feedstuffs. Another disadvantage is that the guanidination reaction conditions may vary for different food types and sometimes within the same food type. Consequently, food-specific guanidination reaction conditions may be required and more work is needed to optimise the reaction conditions across different foods and feedstuffs.

  19. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  20. Oral delivery of zoledronic acid by non-covalent conjugation with lysine-deoxycholic acid: In vitro characterization and in vivo anti-osteoporotic efficacy in ovariectomized rats.

    PubMed

    Jeon, Ok-Cheol; Seo, Dong-Hyun; Kim, Han-Sung; Byun, Youngro; Park, Jin Woo

    2016-01-20

    We assessed the possibility of changing the route of administration of zoledronic acid to an oral dosage form and its therapeutic efficacy in an estrogen-deficient osteoporosis rat model. To enhance oral bioavailability, we formed an ionic complex by electrostatic conjugation of zoledronic acid with lysine-linked deoxycholic acid (Lys-DOCA, an oral absorption enhancer). After forming the complex, the characteristic crystalline features of pure zoledronic acid disappeared completely in the powder X-ray diffractogram and differential scanning calorimetry thermogram, indicating that zoledronic acid existed in an amorphous form in the complex. In vitro permeabilities of zoledronic acid/Lys-DOCA (1:1) (ZD1) and zoledronic acid/Lys-DOCA (1:2) (ZD2) complex across Caco-2 cell monolayers were 2.47- and 4.74-fold higher than that of zoledronic acid, respectively. Upon intra-jejunal administration to rats, the intestinal absorption of zoledronic acid was increased significantly and the resulting oral bioavailability of the ZD2 complex was determined to be 6.76±2.59% (0.548±0.161% for zoledronic acid). Ovariectomized (OVX) rats showed 122% increased bone mineral density versus the OVX control at 12weeks after treatment with once weekly oral administration of ZD2 complex (16μg/kg of zoledronic acid). Furthermore, rats treated with ZD2 complex orally showed significant improvement in the parameters of trabecular microarchitecture and bone strength: 149% higher bone volume fraction (BV/TV), 115% higher trabecular number (Tb.N), and 56% higher mean maximum load (Fmax) than in the OVX group. The trabecular microstructure and bone mechanical properties in the oral zoledronic acid group were not significantly changed compared with the OVX control. Thus, the oral ZD2 complex inhibited osteoporosis progression effectively by promoting osteogenesis and trabecular connectivity. The oral ZD2 complex would be expected to improve patient compliance by replacing the conventional

  1. Comparative analysis of some essential amino acids and available lysine in Acacia colei and A. tumida seeds using chemical methods and an amino acid analyzer.

    PubMed

    Falade, Olumuyiwa S; Adewusi, Steve R A

    2013-01-01

    Methionine, cysteine, tryptophan, and available lysine were determined in Acacia colei and A. tumida seeds and some cereals using chemical methods, and the results were compared to those obtained using an amino acid analyzer. Ba(OH)2 hydrolysis gave the best result of the three methods of hydrolysis (acid, base, and enzyme) tried. Oxidized methionine, cysteine, and tryptophan were not detected, but S-carboxyethylcysteine was estimated as cysteine by the chemical methods, thus overestimating cysteine's content in Acacia seeds. Tryptophan and methionine were higher in cereals than in Acacia seeds, while the level of cysteine and available lysine was higher in Acacia seeds than in cereals. These results agreed with values obtained using the amino acid analyzer and could therefore be used in low budget laboratories.

  2. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

    PubMed Central

    Kaur, Randeep; Chitanda, Jackson M; Michel, Deborah; Maley, Jason; Borondics, Ferenc; Yang, Peng; Verrall, Ronald E; Badea, Ildiko

    2012-01-01

    Purpose: Detonation nanodiamonds (NDs) are carbon-based nanomaterials that, because of their size (4–5 nm), stable inert core, alterable surface chemistry, fluorescence, and biocompatibility, are emerging as bioimaging agents and promising tools for the delivery of biochemical molecules into cellular systems. However, diamond particles possess a strong propensity to aggregate in liquid formulation media, restricting their applicability in biomedical sciences. Here, the authors describe the covalent functionalization of NDs with lysine in an attempt to develop nanoparticles able to act as suitable nonviral vectors for transferring genetic materials across cellular membranes. Methods: NDs were oxidized and functionalized by binding lysine moieties attached to a three-carbon-length linker (1,3-diaminopropane) to their surfaces through amide bonds. Raman and Fourier transform infrared spectroscopy, zeta potential measurement, dynamic light scattering, atomic force microscopic imaging, and thermogravimetric analysis were used to characterize the lysine-functionalized NDs. Finally, the ability of the functionalized diamonds to bind plasmid DNA and small interfering RNA was investigated by gel electrophoresis assay and through size and zeta potential measurements. Results: NDs were successfully functionalized with the lysine linker, producing surface loading of 1.7 mmol g−1 of ND. These modified NDs formed highly stable aqueous dispersions with a zeta potential of 49 mV and particle size of approximately 20 nm. The functionalized NDs were found to be able to bind plasmid DNA and small interfering RNA by forming nanosized “diamoplexes”. Conclusion: The lysine-substituted ND particles generated in this study exhibit stable aqueous formulations and show potential for use as carriers for genetic materials. PMID:22904623

  3. Novel sirtuin inhibitory warheads derived from the N(ε)-acetyl-lysine analog L-2-amino-7-carboxamidoheptanoic acid.

    PubMed

    He, Yanhua; Yan, Lingling; Zang, Wenwen; Zheng, Weiping

    2015-11-14

    Built upon the catalytic mechanism-based pan-SIRT1/2/3 inhibitory warhead L-2-amino-7-carboxamidoheptanoic acid (L-ACAH, a close structural analog of N(ε)-acetyl-lysine) that our laboratory discovered recently, in the current study, its carboxamide NH2-ethylated analog was found to be a ∼2.4-6.6-fold stronger SIRT1/2/3 inhibitory warhead than L-ACAH. Carboxamide NH2-dodecylated and carboxymethylated analogs of L-ACAH were also identified as potent SIRT6 and SIRT5 inhibitory warheads, respectively.

  4. Investigation of nonfouling polypeptides of poly(glutamic acid) with lysine side chains synthesized by EDC·HCl/HOBt chemistry.

    PubMed

    Yang, Qinghua; Li, Wenchen; Wang, Longgang; Wang, Guangzhi; Wang, Zhen; Liu, Lingyun; Chen, Shengfu

    2014-01-01

    Nonfouling polypeptides with homogenous alternating charges draw peoples' attentions for their potential capability in biodegradation. Homogenous glutamic acid (E) and lysine (K) polypeptides were proposed and synthesized before. In this work, a new polypeptide formed by poly(glutamic acid) with lysine side chains (poly(E)-K) was synthesized by facile EDC·HCl/HOBt chemistry and investigated. Results show that these polypeptides also have good nonspecific protein resistance determined by enzyme-linked immunosorbent assay. The lowest nonspecific adsorption of the model proteins, anti-IgG and fibrinogen (Fg), on the self-assembling monolayers (SAMs) surface of poly(E)-K was only 3.3 ± 1.8 and 4.4 ± 1.6%, respectively, when protein adsorption on tissue culture polystyrene surface was set as 100%. And, the relative nonspecific protein adsorption increases when the polypeptide molecular weight increases due to the repression of low density polymer brushes. Moreover, almost no obvious cytotoxicity and hemolytic activity in vitro were detected. This work suggests that polypeptides with various formats of homogenous balanced charges could achieve excellent nonspecific protein resistance, which might be the intrinsic reason for the coexistence of high concentration serum proteins in blood.

  5. THE BASIS OF STABILITY IN LYSINE AND ARGININE SALTS OF UNSATURATED FATTY ACIDS.

    DTIC Science & Technology

    LINOLEIC ACID , STABILIZATION), (* FATTY ACIDS , STABILITY), (*AMINO ACIDS , SALTS), (*ANTIOXIDANTS, AMINO ACIDS ), DEHYDRATED FOODS, ADDITIVES...PRESERVATION, COMPLEX COMPOUNDS, ELECTRICAL CONDUCTIVITY, INFRARED SPECTRA, NUCLEAR MAGNETIC RESONANCE, CHROMATOGRAPHIC ANALYSIS, X RAY DIFFRACTION, CRYSTAL LATTICES, MOLECULAR ISOMERISM, FATTY ACID ESTERS

  6. Infrared and Raman spectroscopy and DFT calculations of DL amino acids: Valine and lysine hydrochloride

    NASA Astrophysics Data System (ADS)

    Paiva, F. M.; Batista, J. C.; Rêgo, F. S. C.; Lima, J. A.; Freire, P. T. C.; Melo, F. E. A.; Mendes Filho, J.; de Menezes, A. S.; Nogueira, C. E. S.

    2017-01-01

    Single crystals of DL-valine and DL-lysine hydrochloride were grown by slow evaporation method and the crystallographic structure were confirmed by X-ray diffraction experiment and Rietveld method. These two crystals have been studied by Raman spectroscopy in the 25-3600 cm-1 spectral range and by infrared spectroscopy through the interval 375-4000 cm-1 at room temperature. Experimental and theoretical vibrational spectra were compared and a complete analysis of the modes was done in terms of the Potential Energy Distribution (PED).

  7. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels.

    PubMed

    Cui, Ning; Qian, Junmin; Xu, Weijun; Xu, Minghui; Zhao, Na; Liu, Ting; Wang, Hongjie

    2016-01-20

    In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications.

  8. A novel transdermal fomulation of 18β-glycyrrhetic acid with lysine for improving bioavailability and efficacy.

    PubMed

    Li, S; Qiu, Y Q; Zhang, S H; Gao, Y H

    2012-01-01

    The aim of this study was to develop a novel topical liposomal system entrapping 18β-glycyrrhetic acid (GA) for the treatment of chronic allergic dermatitis. A novel liposomal system with molar ratios of GA to lysine from 1:1 to 1:3 was prepared by high-pressure homogenization. The liposomes at the optimized molar ratio of GA to lysine of 1:2 significantly improved GA loading (1.2%) and penetration in vitro. Liposomal gels containing GA 0.3, 0.6 and 0.9% were prepared to investigate the dosage effect on transdermal delivery and anti-inflammatory activity. In vivo pharmacokinetic studies were carried out by nonocclusive application of GA liposomal gels to ICR mouse ears. GA concentrations in skin and plasma increased proportionally with dose over the dose range of 0.3-0.9%. A 2,4-dinitrofluorobenzene-induced contact dermatitis mouse model was made up to evaluate the pharmacodynamics of GA liposomal gels. The liposomal gel with GA 0.9% showed a stronger anti-inflammatory activity than triamcinolone acetonide and econazole nitrate cream, while few side effects were observed in the present model. The topical administration of gel containing novel elastic liposomes of GA was safe and effective in the treatment of chronic allergic dermatitis.

  9. Inhibition of corneal neovascularization with a nutrient mixture containing lysine, proline, ascorbic acid, and green tea extract.

    PubMed

    Shakiba, Yadollah; Mostafaie, Ali

    2007-10-01

    Corneal neovascularization is a significant, sight-threatening complication of many ocular surface disorders. Various growth factors and proteinases are involved in corneal neovascularization. The data supporting a causal role for vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are extensive. Inhibition of VEGF and MMPs is a main strategy for treating corneal neovascularization. Several findings have shown that corneal neovascularization can be reduced by using anti-VEGF and anti-MMPs agents. Efficacy of a nutrient mixture (NM) containing lysine, proline, ascorbic acid, and green tea extract has been demonstrated for reducing VEGF and MMPs secretion by various cells. Moreover, NM can inhibit endothelial cell migration and capillary tube formation. We herein note that topical application of NM is potentially useful for inhibiting corneal neovascularization and restoration of corneal clarity. Further investigations in animal models are needed to place NM alongside corneal neovascularization therapeutics.

  10. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH)

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Tang, Yao-Hua; Li, Kai-Long; Yang, Lu; Fu, Qiang; Li, Guo-Qing

    2015-01-01

    Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens. PMID:26000452

  11. 47 CRYOPRESERVATION OF BOVINE GERM CELL USING ANTIFREEZE POLYAMINO-ACID (CARBOXYLATED POLY-L-LYSINE).

    PubMed

    Fujikawa, T; Kubota, C; Ando, T; Imamura, S; Tokumaru, M; Yamakuchi, H; Gen, Y; Hyon, S-H

    2016-01-01

    Carboxylated poly-l-lysine (CPLL) is an ampholytic polymer compound, and it is obtained by converting 65% amino groups to carboxyl groups after synthesising ε-poly-l-lysine aqueous solution and succinic anhydride. CPLL has cryoprotective property similar to antifreeze protein, and addition of CPLL into cryopreservation medium improves the post-thaw survival rate of cells and embryos. In this research, we examined the effectiveness of CPLL as a bovine germ cell cryoprotective material. In experiment 1 (in sperm), the conventional cryopreservation medium used for control group was consisted of 6.5% (vol/vol) glycerin, and the cryopreservation medium used for CPLL group was consisted of 3.25% (vol/vol) glycerin and 0.5% CPLL (wt/vol). The post-thaw survival and motility were assessed by using Sperm Motility Analysis System (DITECT Corp., Tokyo, Japan). There was no significant difference for post-thaw survival rate and motility (control v. CPLL; 98.8% v. 96.6% and 69.7% v. 62.2%, respectively). Artificial insemination was carried out in 65 cows (control v. CPLL; 34v. 31), and the conception rate of the CPLL group was higher than that of the control group (80.6% v. 67.6%; P=0.23). In experiment 2 (embryos), the conventional cryopreservation medium used for control group was consisted of 5% (vol/vol) ethylene glycol and 6% (vol/vol) propylene glycol in PBS. In the CPLL group, 7% (wt/vol) CPLL was added to the conventional medium. In vitro fertilization embryos were cryopreserved at Day 7 and Day 8. There was no significant difference in survival rate at 0, 24, and 48h and hatched rate until 72h after thawing (control v. CPLL: 93.6% v. 93.2%, 69.0% v. 64.7%, 56.1% v. 56.3%, 12.9% v. 10.2%, respectively). Embryos obtained by superovulation treatment and in vivo fertilization at Day 7 were cryopreserved using above 2 media, and transferred non-surgically into synchronized recipient cows (1 embryo per animal). Embryo transfer (ET) was carried out in 81 cows (control v

  12. Contribution of the net charge to the regulatory effects of amino acids and epsilon-poly(L-lysine) on the gelatinization behavior of potato starch granules.

    PubMed

    Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Takahashi, Koji

    2006-01-01

    The effects of lysine (Lys), monosodium glutamate (GluNa), glycine, alanine and epsilon-poly(L-lysine) (PL) with different degrees of polymerization on the gelatinization behavior of potato starch granules were investigated by DSC, viscosity and swelling measurements, microscopic observation, and measurement of the retained amino acid amount to clarify the contribution of the net charge to their regulatory effects on the gelatinization behavior. The amino acids and PL each contributed to an increase in the gelatinization temperature, and a decrease in the peak viscosity and swelling. These effects strongly depended on the absolute value of their net charge. The disappearance of a negative or positive net charge by adjusting the pH value weakened the contribution. The swelling index and size of the potato starch granules changed according to replacement of the swelling medium. The amino acids and PL were easily retained by the swollen potato starch granules according to replacement of the outer solution of the starch granules.

  13. Solubility Behavior of Cyanophycin Depending on Lysine Content

    PubMed Central

    Wiefel, Lars

    2014-01-01

    Study of the synthesis of cyanophycin (CGP) in recombinant organisms focused for a long time mostly on the insoluble form of CGP, due to its easy purification and its putative use as a precursor for biodegradable chemicals. Recently, another form of CGP, which, in contrast to the insoluble form, was soluble at neutral pH, became interesting due to its high lysine content, which was also assumed to be the reason for the solubility of the polymer. In this study, we demonstrate that lysine incorporated into insoluble CGP affected the solubility of the polymer in relation to its lysine content. Insoluble CGP can be separated along a temperature gradient of 90°C to 30°C, where CGP showed an increasing lysine content corresponding to a decreasing temperature needed for solubilization. CGP with less than 3 to 4 mol% lysine did not become soluble even at 90°C, while CGP with 31 mol% lysine was soluble at 30°C. In lysine fractions at higher than 31 mol%, CGP was soluble. The temperature separation will be suitable for improving the downstream processing of CGP synthesized in large-scale fermentations, including faster and more efficient purification of CGP, as well as enrichment and separation of dipeptides and CGP with specific amino acid compositions. PMID:24271185

  14. Acetylation dictates the morphology of nanophase biosilica precipitated by a 14-amino acid leucine-lysine peptide.

    PubMed

    Lutz, Helmut; Jaeger, Vance; Bonn, Mischa; Pfaendtner, Jim; Weidner, Tobias

    2017-02-01

    N-terminal acetylation is a commonly used modification technique for synthetic peptides, mostly applied for reasons of enhanced stability, and in many cases regarded as inconsequential. In engineered biosilification - the controlled deposition of silica for nanotechnology applications by designed peptides - charged groups often play a deciding role. Here we report that changing the charge by acetylation of a 14-amino acid leucine-lysine (LK) peptide dramatically changes the morphology of precipitated biosilica; acetylated LK peptides produce nano-spheres, whereas nano-wires are precipitated by the same peptide in a non-acetylated form. By using interface-specific vibrational spectroscopy and coarse-grained molecular simulations, we show that this change in morphology is not the result of modified peptide-silica interactions, but rather caused by the stabilization of the hydrophobic core of peptide aggregates created by the removal of a peptide charge upon acetylation. These results should raise awareness of the potential impact of N-terminal modifications in peptide applications. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  15. Cyclen Grafted with poly[(Aspartic acid)-co-Lysine]: Preparation, Assembly with Plasmid DNA, and in Vitro Transfection Studies.

    PubMed

    Ma, Chunying; Zhang, Jin; Guo, Liwen; Du, Changguo; Song, Ping; Zhao, Baojing; Li, Ling; Li, Chao; Qiao, Renzhong

    2016-01-04

    Development of safe and effective gene carriers is the key to the success of gene therapy. Nowadays, it is still required to develop new methods to improve nonviral gene delivery efficiency. Herein, copolymers of poly[(aspartic acid)-co-lysine] grafted with cyclen (cyclen-pAL) were designed and evaluated for efficient gene delivery. Two copolymers with different Asp/Lys block ratios were prepared and characterized by NMR and gel permeation chromatography analysis. Agarose gel retardation, circular dichroism, and fluorescent quenching assays showed the strong DNA-binding and protection ability for the title compounds. Atomic force microscopy studies clearly delineated uniform DNA globules with a diameter around 100 nm, induced by cyclen-pAL. By grafting cyclen on Asp, relatively high gene delivery efficiency and low cytotoxicity of the modified copolymers were achieved compared with their parent compounds. The present work might help to develop strategies for design and modification of polypeptide copolymers, which may also be applied to favorable gene expression and delivery.

  16. Isoxazole‐Derived Amino Acids are Bromodomain‐Binding Acetyl‐Lysine Mimics: Incorporation into Histone H4 Peptides and Histone H3

    PubMed Central

    Sekirnik (née Measures), Angelina R.; Hewings, David S.; Theodoulou, Natalie H.; Jursins, Lukass; Lewendon, Katie R.; Jennings, Laura E.; Rooney, Timothy P. C.; Heightman, Tom D.

    2016-01-01

    Abstract A range of isoxazole‐containing amino acids was synthesized that displaced acetyl‐lysine‐containing peptides from the BAZ2A, BRD4(1), and BRD9 bromodomains. Three of these amino acids were incorporated into a histone H4‐mimicking peptide and their affinity for BRD4(1) was assessed. Affinities of the isoxazole‐containing peptides are comparable to those of a hyperacetylated histone H4‐mimicking cognate peptide, and demonstrated a dependence on the position at which the unnatural residue was incorporated. An isoxazole‐based alkylating agent was developed to selectively alkylate cysteine residues in situ. Selective monoalkylation of a histone H4‐mimicking peptide, containing a lysine to cysteine residue substitution (K12C), resulted in acetyl‐lysine mimic incorporation, with high affinity for the BRD4 bromodomain. The same technology was used to alkylate a K18C mutant of histone H3. PMID:27264992

  17. A study of the protein and amino acid requirements of the growing New Zealand White rabbit with emphasis on lysine and the sulphur-containing amino acids.

    PubMed

    Spreadbury, D

    1978-05-01

    1. New Zealand White (NZW) rabbits were given, between 4 and 8 weeks of age, a range of diets, based on oats and fish meal, containing from 104 to 255 g crude protein (nitrogen x 6.25; CP)/kg to establish the level of CP below which growth was retarded. 2. In three experiments each diet was fed to four animals and food intake, growth and N balance were measured over 4 weeks. Body analysis was also carried out after two of the experiments. 3. The rates of food intake and growth of animals increased with dietary CP concentration until a CP concentration of approximately 150 g/kg diet had been reached. Beyond this there was little further improvement. N balance studies showed that once this dietary concentration of CP had been reached, there was a reduced rate of N retention. 4. Good agreement was found between N retention measured by balance methods and by body analysis: body composition showed a tendency towards an increase 5. Microbial protein produced in the caecum and eaten during coprophagy, was found to supplement the dietary protein by approximately 2 g CP/d, or by only 0.1 of a normal dietary intake of CP. 6. In the second part of the study NZW rabbits were offered, between 5 and 8 weeks of age, diets based on oats containing 150 g CP/kg. The protein supplied by oats was supplemented with maize gluten, gelatin, groundnut meal, casein, soya-bean meal or fish meal. 7. Rabbits offered diets containing casein, soya-bean meal and fish meal gained 40-50 g/d similar, to animals given a well-balanced control diet, while those given diets containing maize gluten, gelatin or groundnut meal gained approximately 30 g/d. This indicated that amino acid balance in dietary protein was important to the growing rabbit. 8. In later experiments, diets based on cereals and groundnut meal supplemented with varying amounts of lysine and methionine were offered during a 3-week-post-weaning period in order to assess requirements for those limiting amino acids. 9. The addition of both

  18. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    PubMed

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  19. Quantum Computational Calculations of the Ionization Energies of Acidic and Basic Amino Acids: Aspartate, Glutamate, Arginine, Lysine, and Histidine

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.

    An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.

  20. The regulatory effect of citric acid on the co-production of poly(ε-lysine) and poly(L-diaminopropionic acid) in Streptomyces albulus PD-1.

    PubMed

    Xia, Jun; Xu, Zhaoxian; Xu, Hong; Feng, Xiaohai; Bo, Fangfang

    2014-10-01

    Streptomyces albulus PD-1 can co-produce antimicrobial homo-polymers poly(ε-lysine) (ε-PL) and poly(L-diaminopropionic acid) (PDAP). In this study, a novel feeding strategy of citric acid coupled with glucose-(NH4)2SO4 feeding was employed to S. albulus PD-1. When the pH of the culture broth dropped to 4.0, the feeding solution was added continuously to maintain the concentrations of glucose and citric acid at 10 and 4 g L(-1), respectively. As a result, the final concentration of ε-PL increased from 21.7 to 29.7 g L(-1) and the final concentration of PDAP decreased from 4.8 to 3.2 g L(-1). Assays on intracellular nucleotide levels and key enzyme activities were performed to elucidate the underlying regulation mechanism. The addition of citric acid increased NADH/NAD(+) ratio and decreased intracellular ATP level; meanwhile, the activities of pyruvate kinase, citrate synthase and isocitrate dehydrogenase decreased while aspartate aminotransferase activity increased. Therefore, we deduced that citric acid feeding resulted in metabolic flux redistribution at the node of phosphoenolpyruvate; the metabolic pathway from phosphoenolpyruvate directed into tricarboxylic acid cycle was weakened and thus PDAP production was inhibited. On the other hand, the metabolic pathway from phosphoenolpyruvate directed into oxaloacetate and L-aspartate was enhanced, thereby improving ε-PL production. This fermentation strategy may be potentially useful in ε-PL production because it can effectively inhibit the formation of by-products, such as PDAP.

  1. Efficacy of a Complex of 5-Aminolevulinic Acid and Glycyl-Histidyl-Lysine Peptide on Hair Growth

    PubMed Central

    Sim, Hyun Bo; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won; Yim, Soon-Ho

    2016-01-01

    Background Pattern hair loss is a very common problem. Although effective therapeutics for the treatment of pattern hair loss have been used, novel therapeutic modalities are still required to enhance hair growth. Objective We investigated the efficacy and safety of a complex (ALAVAX) of 5-aminolevulinic acid (5-ALA) and glycyl-histidyl-lysine (GHK) peptide for the treatment of pattern hair loss. Methods Forty-five patients with male pattern hair loss were treated with ALAVAX 100 mg/ml (group A), ALAVAX 50 mg/ml (group B) or placebo (group C) once a day for 6 months. Total hair count, hair length, hair thickness, patient's assessment and adverse events were evaluated at month 1, 3, and 6. Results An increase in hair count for 6 months was 52.6 (p<0.05) in group A, 71.5 (p<0.05) in group B, and 9.6 in group C. The ratio of changes in hair count between group B (2.38) and group C (1.21) at 6 months showed a statistically significant difference (p<0.05). The proportion above good satisfaction was higher in group A (26.7%) than in the other groups (group B: 14.3%, group C: 7.1%). There was no statistically significant difference in hair length and hair thickness among 3 groups at 6 months. There was no adverse event in 3 groups. Conclusion Our study showed that a complex of 5-ALA and GHK peptide may be considered as one of the complementary agents for the treatment of male pattern hair loss. PMID:27489425

  2. Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation*

    PubMed Central

    Colak, Gozde; Pougovkina, Olga; Dai, Lunzhi; Tan, Minjia; te Brinke, Heleen; Huang, He; Cheng, Zhongyi; Park, Jeongsoon; Wan, Xuelian; Liu, Xiaojing; Yue, Wyatt W.; Wanders, Ronald J. A.; Locasale, Jason W.; Lombard, David B.; de Boer, Vincent C. J.; Zhao, Yingming

    2015-01-01

    The protein substrates of sirtuin 5-regulated lysine malonylation (Kmal) remain unknown, hindering its functional analysis. In this study, we carried out proteomic screening, which identified 4042 Kmal sites on 1426 proteins in mouse liver and 4943 Kmal sites on 1822 proteins in human fibroblasts. Increased malonyl-CoA levels in malonyl-CoA decarboxylase (MCD)-deficient cells induces Kmal levels in substrate proteins. We identified 461 Kmal sites showing more than a 2-fold increase in response to MCD deficiency as well as 1452 Kmal sites detected only in MCD−/− fibroblast but not MCD+/+ cells, suggesting a pathogenic role of Kmal in MCD deficiency. Cells with increased lysine malonylation displayed impaired mitochondrial function and fatty acid oxidation, suggesting that lysine malonylation plays a role in pathophysiology of malonic aciduria. Our study establishes an association between Kmal and a genetic disease and offers a rich resource for elucidating the contribution of the Kmal pathway and malonyl-CoA to cellular physiology and human diseases. PMID:26320211

  3. Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Zhang, Dongdong; Li, Lingzhi; Ma, Weina; Chen, Xia; Zhang, Yanmin

    2017-01-01

    This paper demonstrates a novel strategy for the construction of a graphene hybrid composites film, which was fabricated by electrodeposited reduced graphene oxide (ERGO) incorporating polymerization of l-lysine (PLL) onto glassy carbon electrode (GCE). Here we show that graphene films can be prepared on electrodes directly from GO dispersions by one-step electrodeposition technique based on electropolymerized PLL as a positively charged polymer interface to adsorb negatively charged GO nanosheets through electrostatic attraction. The thickness of graphene film can be easily controlled by using the electrodeposition technique, a distinct advantage over previously developed methods. The electrochemically reduced process of GO and electropolymerization of l-lysine were investigated by cyclic voltammetry with a wide potential range. The surface morphology of the modified electrode was characterized by scanning electron microscopy. The ERGO/PLL/GCE shows conducive to electron transfer kinetics for Fe(CN)6(3-)/Fe(CN)6(4-) redox probes, compared with bare GCE, PLL/GCE and ERGO/GCE. The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) at ERGO/PLL/GCE were investigated by cyclic voltammetry, and the results suggest that the modified electrode exhibits enhanced electrocatalytic activity toward these important molecules. Under physiological condition and in the co-existence system of AA, DA and UA, the ERGO/PLL/GCE showed linear voltammetric responses in the concentration of 100μM-1200μM for AA, 2.0μM-60μM for DA and 20μM-200μM for UA, and with the detection limits (S/N=3) of 2.0μM, 0.10μM and 0.15μM for AA, DA and UA, respectively. The developed method has been applied to simultaneous determination of AA, DA and UA in human urine with satisfactory recoveries of 104.2%, 95.4% and 99.9%, respectively. This work demonstrates that the attractive features of ERGO/PLL provide promising applications in simultaneous determination of AA, DA

  4. The same substitution, glutamic acid----lysine at position 501, occurs in three alloalbumins of Asiatic origin: albumins Vancouver, Birmingham, and Adana.

    PubMed Central

    Huss, K; Madison, J; Ishioka, N; Takahashi, N; Arai, K; Putnam, F W

    1988-01-01

    A strategy is described for identifying structural changes in genetic variants of human serum albumin (alloalbumins). By use of this strategy we have determined an amino acid substitution in three alloalbumins of Asiatic origin. The same amino acid exchange, glutamic acid----lysine at position 501, occurs in albumins Vancouver and Birmingham, both from families that migrated from northern India, and also in albumin Adana from Turkey. This exchange corresponds to a single base mutation in the codon GAG to AAG and accords with the slow mobility of the three albumins at pH 8.6. Each of the three alloalbumins had been reported to be a new variant, yet they have the same substitution. These results emphasize the need for structural study of genetic variants that have been differentiated only by nonspecific physical criteria such as dye binding and electrophoretic mobility. We know of no other description of the substitution involved in an alloalbumin originating from the Indian subcontinent. However, the same change of glutamic acid----lysine at position 501 may be present in several other named variants reported for populations in north India and the surrounding regions. Images PMID:2901102

  5. Adding a Lysine Mimic in the Design of Potent Inhibitors of Histone Lysine Methyltransferases

    SciTech Connect

    Chang, Yanqi; Ganesh, Thota; Horton, John R.; Spannhoff, Astrid; Liu, Jin; Sun, Aiming; Zhang, Xing; Bedford, Mark T.; Shinkai, Yoichi; Snyder, James P.; Cheng, Xiaodong

    2010-07-19

    Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the histone code. One common feature of these activities is the recognition of lysines in methylated and unmethylated states, whether they are substrates, reaction products, or binding partners. We applied the concept of adding a lysine mimic to an established inhibitor (BIX-01294) of histone H3 lysine 9 methyltransferases G9a and G9a-like protein by including a 5-aminopentyloxy moiety, which is inserted into the target lysine-binding channel and becomes methylated by G9a-like protein, albeit slowly. The compound enhances its potency in vitro and reduces cell toxicity in vivo. We suggest that adding a lysine or methyl-lysine mimic should be considered in the design of small-molecule inhibitors for other methyl-lysine writers, erasers, and readers.

  6. Global Analysis of Lysine Acetylation Suggests the Involvement of Protein Acetylation in Diverse Biological Processes in Rice (Oryza sativa)

    PubMed Central

    Zhong, Xiaoxian; Tan, Feng; Mujahid, Hana; Zhang, Jian; Nanduri, Bindu; Peng, Zhaohua

    2014-01-01

    Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions. PMID:24586658

  7. Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum.

    PubMed

    García-Estrada, Carlos; Ullán, Ricardo V; Velasco-Conde, Tania; Godio, Ramiro P; Teijeira, Fernando; Vaca, Inmaculada; Feltrer, Raúl; Kosalková, Katarina; Mauriz, Elba; Martín, Juan F

    2008-10-15

    NRPSs (non-ribosomal peptide synthetases) and PKSs (polyketide synthases) require post-translational phosphopantetheinylation to become active. This reaction is catalysed by a PPTase (4'-phosphopantetheinyl transferase). The ppt gene of Penicillium chrysogenum, encoding a protein that shares 50% similarity with the stand-alone large PPTases, has been cloned. This gene is present as a single copy in the genome of the wild-type and high-penicillin-producing strains (containing multiple copies of the penicillin gene cluster). Amplification of the ppt gene produced increases in isopenicillin N and benzylpenicillin biosynthesis. A PPTase-defective mutant (Wis54-PPT(-)) was obtained. It required lysine and lacked pigment and penicillin production, but it still synthesized normal levels of roquefortine. The biosynthesis of roquefortine does not appear to involve PPTase-mediated modification of the synthesizing enzymes. The PPT(-) mutant did not require fatty acids, which indicates that activation of the fatty acid synthase is performed by a different PPTase. Complementation of Wis54-PPT(-) with the ppt gene restored lysine biosynthesis, pigmentation and penicillin production, which demonstrates the wide range of processes controlled by this gene.

  8. Extraterrestrial Amino Acids in Ureilites Including Almahata Sitta

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.

    2011-01-01

    Ureilites are a class of meteorites that lack chondrules (achondrites) but have relatively high carbon abundances, averaging approx.3 wt %. Using highly sensitive liquid chromatography coupled with UV fluorescence and time-of-flight mass spectrometry (LC-FD/ToF-MS), it was recently determined that there are amino acids in. fragment 94 of the Almahata Sitta ureilite[l]. Based on the presence of amino acids that are rare in the Earth's biosphere, as well as the near-racemic enantiomeric ratios of marry of the more common amino acids, it was concluded that most of the detected amino acids were indigenous to the meteorite. Although the composition of the Almahata Sitta ureilite appears to be unlike other recovered ureilites, the discovery of amino acids in this meteorite raises the question of whether other ureilites rnav also contain amino acids. Herein we present the results of LC-FDlTo.F-MS analyses of: a sand sample from the Almahata Sitta strewn held, Almahata Sitta fragments 425 (an ordinary H5 chondrite) and 427 (ureilite), as well as an Antarctic ureilite (Allan lulls, ALHA 77257).

  9. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    PubMed Central

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2008-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymers under mild coupling conditions has been achieved utilising the coupling reagent O-benzotriazolyl-N,N,N′,N′-tetramethyluronium hexafluorophosphate to promote formation of the biodegradable amide bond. Even though the parent antineoplastic ferrocene and phthalocyanine derivatives are themselves insoluble in water at pH < 7, the new carrier-drug conjugates that were obtained are well water-soluble. PMID:18288243

  10. Effects of lysine-induced acute renal failure in dogs.

    PubMed

    Asanuma, Kentaro; Adachi, Kenji; Sugimoto, Tetsuro; Chiba, Shuichi

    2006-05-01

    This study investigates the effects of lysine-induced acute renal failure. Female dogs received a lysine hydrochloride (lysine) of 4500 mg/kg/day (3.75 ml/kg/hr) for 3 consecutive days. The dogs were observed for clinical signs. Body weights were recorded, food consumption and water consumption calculated, and urinalysis and blood biochemistry were performed daily. Plasma samples for amino acid determinations were obtained from all dogs, which were necropsied on Day 3. Histopathological examinations were done on all test animals. Compound-related findings include the following. Blood biochemistry results showed increases in ammonia, blood urea nitrogen, blood urea nitrogen/creatinine ratio, and creatinine. Urinary changes consisted of increases in urine volume, total protein, albumin, gamma-glutamyl transpeptidase, and N-acetyl-beta-D-glucosaminidase. In addition, macroscopic findings consisted of pale, congested capsule; microscopic findings consisted of hypertrophy of proximal convoluted tubule (mainly S1 segment), and degeneration/desquamation of urinary tubule (mainly S3 segment with hyaline casts) in the kidney. From these findings, it can be concluded that lysine is nephrotoxic in dogs. Nephrotoxicity of lysine may relate to direct tubular toxicity and to tubular obstruction.

  11. Lysine Fermentation: History and Genome Breeding.

    PubMed

    Ikeda, Masato

    2016-11-11

    Lysine fermentation by Corynebacterium glutamicum was developed in 1958 by Kyowa Hakko Kogyo Co. Ltd. (current Kyowa Hakko Bio Co. Ltd.) and is the second oldest amino acid fermentation process after glutamate fermentation. The fundamental mechanism of lysine production, discovered in the early stages of the process's history, gave birth to the concept known as "metabolic regulatory fermentation," which is now widely applied to metabolite production. After the development of rational metabolic engineering, research on lysine production first highlighted the need for engineering of the central metabolism from the viewpoints of precursor supply and NADPH regeneration. Furthermore, the existence of active export systems for amino acids was first demonstrated for lysine in C. glutamicum, and this discovery has resulted in the current recognition of such exporters as an important consideration in metabolite production. Lysine fermentation is also notable as the first process to which genomics was successfully applied to improve amino acid production. The first global "genome breeding" strategy was developed using a lysine producer as a model; this has since led to new lysine producers that are more efficient than classical industrial producers. These advances in strain development technology, combined with recent systems-level approaches, have almost achieved the optimization of entire cellular systems as cell factories for lysine production. In parallel, the continuous improvement of the process has resulted not only in fermentation processes with reduced load on downstream processing but also in commercialization of various product forms according to their intended uses. Nowadays lysine fermentation underpins a giant lysine demand of more than 2 million metric tons per year.

  12. CPLM: a database of protein lysine modifications

    PubMed Central

    Liu, Zexian; Wang, Yongbo; Gao, Tianshun; Pan, Zhicheng; Cheng, Han; Yang, Qing; Cheng, Zhongyi; Guo, Anyuan; Ren, Jian; Xue, Yu

    2014-01-01

    We reported an integrated database of Compendium of Protein Lysine Modifications (CPLM; http://cplm.biocuckoo.org) for protein lysine modifications (PLMs), which occur at active ε-amino groups of specific lysine residues in proteins and are critical for orchestrating various biological processes. The CPLM database was updated from our previously developed database of Compendium of Protein Lysine Acetylation (CPLA), which contained 7151 lysine acetylation sites in 3311 proteins. Here, we manually collected experimentally identified substrates and sites for 12 types of PLMs, including acetylation, ubiquitination, sumoylation, methylation, butyrylation, crotonylation, glycation, malonylation, phosphoglycerylation, propionylation, succinylation and pupylation. In total, the CPLM database contained 203 972 modification events on 189 919 modified lysines in 45 748 proteins for 122 species. With the dataset, we totally identified 76 types of co-occurrences of various PLMs on the same lysine residues, and the most abundant PLM crosstalk is between acetylation and ubiquitination. Up to 53.5% of acetylation and 33.1% of ubiquitination events co-occur at 10 746 lysine sites. Thus, the various PLM crosstalks suggested that a considerable proportion of lysines were competitively and dynamically regulated in a complicated manner. Taken together, the CPLM database can serve as a useful resource for further research of PLMs. PMID:24214993

  13. Lysine catabolism in Rhizoctonia leguminicola and related fungi.

    PubMed Central

    Guengerich, F P; Broquist, H P

    1976-01-01

    The catabolism of lysine was studied in several yeasts and fungi. Results with cell-free extracts of Rhizoctonia leguminicola support a proposed pathway involving (D- and L-) EPSILON-N-acetyllysine, alpha-keto-epsilon-acetamidohexanoic acid, delta-acetamidovaleric acid, and delta-aminovaleric acid in the conversion of L-lysine to shortchain organic acids. Label from radioactive L-lysine was found to accumulate in D- and L-epsilon-N-acetyllysine, delta-acetamidovaleric acid, delta-aminovaleric acid, and glutaric acid in cultures of R. leguminicola, Neurospora crassa, Saccharomyces cerevisiae, and Hansenula saturnus, suggesting that the proposed omega-acetyl pathway of lysine catabolism is generalized among yeasts and fungi. In N. crassa, as is the case in R. leguminicola, the major precursor of L-pipecolic acid was the L-isomer of lysine; 15N experiments were consistent with delta1-piperideine-2-carboxylic acid as an intermediate in the transformation. PMID:131119

  14. Lysine catabolism in Rhizoctonia leguminicola and related fungi.

    PubMed

    Guengerich, F P; Broquist, H P

    1976-04-01

    The catabolism of lysine was studied in several yeasts and fungi. Results with cell-free extracts of Rhizoctonia leguminicola support a proposed pathway involving (D- and L-) EPSILON-N-acetyllysine, alpha-keto-epsilon-acetamidohexanoic acid, delta-acetamidovaleric acid, and delta-aminovaleric acid in the conversion of L-lysine to shortchain organic acids. Label from radioactive L-lysine was found to accumulate in D- and L-epsilon-N-acetyllysine, delta-acetamidovaleric acid, delta-aminovaleric acid, and glutaric acid in cultures of R. leguminicola, Neurospora crassa, Saccharomyces cerevisiae, and Hansenula saturnus, suggesting that the proposed omega-acetyl pathway of lysine catabolism is generalized among yeasts and fungi. In N. crassa, as is the case in R. leguminicola, the major precursor of L-pipecolic acid was the L-isomer of lysine; 15N experiments were consistent with delta1-piperideine-2-carboxylic acid as an intermediate in the transformation.

  15. Efficiency of lysine or threonine retention in growing rats fed diets limiting in either lysine or threonine.

    PubMed

    Gahl, M J; Finke, M D; Crenshaw, T D; Benevenga, N J

    1996-12-01

    Over a 21-d experiment, the efficiency of lysine and threonine retention was determined in 80 male Sprague-Dawley rats (65.9 +/- 0.3 g, means +/- SE) fed purified diets containing an amino acid mix limiting in either lysine or threonine. With additional increments of the first limiting amino acid, lysine concentration in total body protein (g/16 g N) increased (P < 0.01) in rats fed lysine-limiting diets but, when fed threonine-limiting diets, lysine concentration in body protein first increased and then decreased (P < 0.01). As increments of the first limiting amino acid were added, the threonine concentration in total body protein increased then decreased when both lysine- (P < 0.01) and threonine- (P < 0.06) limiting diets were fed. Lysine and threonine retention were calculated based on comparative slaughter. Sixteen rats were killed on d 0 to estimate the grams of amino acid in the body. Retention responses were analyzed using a logistic equation in which lysine or threonine intake was used to predict retention. The maximum marginal efficiency (dr/dI, retention/intake) was observed at <40% of maximum retention. For lysine retention, it was 81% when lysine was limiting and 70% when threonine was limiting. For threonine retention, it was 58% when threonine was limiting and 49% when lysine was limiting. The maximum cumulative efficiency (retention adjusted for maintenance relative to cumulative intake) for lysine retention was 62% when lysine was limiting or 58% when threonine was limiting. For threonine retention, it was 51% when threonine was limiting and 35% when lysine was limiting. Thus, amino acid concentration in body protein is not constant, and amino acids are used with higher efficiency when first limiting.

  16. The lysP gene encodes the lysine-specific permease.

    PubMed Central

    Steffes, C; Ellis, J; Wu, J; Rosen, B P

    1992-01-01

    Escherichia coli transports lysine by two distinct systems, one of which is specific for lysine (LysP) and the other of which is inhibited by arginine ornithine. The activity of the lysine-specific system increases with growth in acidic medium, anaerobiosis, and high concentrations of lysine. It is inhibited by the lysine analog S-(beta-aminoethyl)-L-cysteine (thiosine). Thiosine-resistant (Tsr) mutants were isolated by using transpositional mutagenesis with TnphoA. A Tsr mutant expressing alkaline phosphatase activity in intact cells was found to lack lysine-specific transport. This lysP mutation was mapped to about 46.5 min on the E. coli chromosome. The lysP-phoA fusion was cloned and used as a probe to clone the wild-type lysP gene. The nucleotide sequence of the 2.7-kb BamHI fragment was determined. An open reading frame from nucleotides 522 to 1989 was observed. The translation product of this open reading frame is predicted to be a hydrophobic protein of 489 residues. The lysP gene product exhibits sequence similarity to a family of amino acid transport proteins found in both prokaryotes and eukaryotes, including the aromatic amino acid permease of E. coli (aroP) and the arginine permease of Saccharomyces cerevisiae (CAN1). Cells carrying a plasmid with the lysP gene exhibited a 10- to 20-fold increase in the rate of lysine uptake above wild-type levels. These results demonstrate that the lysP gene encodes the lysine-specific permease. Images PMID:1315732

  17. Adaptation of human immunodeficiency virus type 1 to cells expressing a binding-deficient CD4 mutant (lysine 46 to aspartic acid).

    PubMed Central

    Choe, H R; Sodroski, J

    1995-01-01

    Human immunodeficiency virus (HIV-1) was adapted to replicate efficiently in cells expressing an altered form of the CD4 viral receptor. The mutant CD4 (46 K/D) contained a single amino acid change (lysine 46 to aspartic acid) in the CDR2 loop of domain 1, which results in a 15-fold reduction in affinity for the viral gp120 glycoprotein. The ability of the adapted virus to replicate in CD4 46 K/D-expressing cells was independently enhanced by single amino acid changes in the V2 variable loop, the V3 variable loop, and the fourth conserved (C4) region of the gp120 glycoprotein. Combinations of these amino acids in the same envelope glycoprotein resulted in additive enhancement of virus replication in cells expressing the CD4 46 K/D molecule. In cells expressing the wild-type CD4 glycoproteins, the same V2 and V3 residue changes also increased the efficiency of replication of a virus exhibiting decreased receptor-binding ability due to an amino acid change (aspartic acid 368 to glutamic acid) in the gp120 glycoprotein. In neither instance did the adaptive changes restore the binding ability of the monomeric gp120 glycoprotein or the oligomeric envelope glycoprotein complex for the mutant or wild-type CD4 glycoproteins, respectively. Thus, particular conformations of the gp120 V2 and V3 variable loops and of the C4 region allow postreceptor binding events in the membrane fusion process to occur in the context of less than optimal receptor binding. These results suggest that the fusion-related functions of the V2, V3, and C4 regions of gp120 are modulated by CD4 binding. PMID:7707502

  18. Economic process to co-produce poly(ε-l-lysine) and poly(l-diaminopropionic acid) by a pH and dissolved oxygen control strategy.

    PubMed

    Xu, Zhaoxian; Feng, Xiaohai; Sun, Zhuzhen; Cao, Changhong; Li, Sha; Xu, Zheng; Xu, Zongqi; Bo, Fangfang; Xu, Hong

    2015-01-01

    This study tended to apply biorefinery of indigenous microbes to the fermentation of target-product generation through a novel control strategy. A novel strategy for co-producing two valuable homopoly(amino acid)s, poly(ε-l-lysine) (ε-PL) and poly(l-diaminopropionic acid) (PDAP), was developed by controlling pH and dissolved oxygen concentrations in Streptomyces albulus PD-1 fermentation. The production of ε-PL and PDAP got 29.4 and 9.6gL(-1), respectively, via fed-batch cultivation in a 5L bioreactor. What is more, the highest production yield (21.8%) of similar production systems was achieved by using this novel strategy. To consider the economic-feasibility, large-scale production in a 1t fermentor was also implemented, which would increase the gross profit of 54,243.5USD from one fed-batch bioprocess. This type of fermentation, which produces multiple commercial products from a unified process is attractive, because it will improve the utilization rate of raw materials, enhance production value and enrich product variety.

  19. A pH-responsive drug nanovehicle constructed by reversible attachment of cholesterol to PEGylated poly(l-lysine) via catechol-boronic acid ester formation.

    PubMed

    Yang, Bin; Lv, Yin; Zhu, Jing-Yi; Han, Yun-Tao; Jia, Hui-Zhen; Chen, Wei-Hai; Feng, Jun; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2014-08-01

    The present work reports the construction of a drug delivery nanovehicle via a pH-sensitive assembly strategy for improved cellular internalization and intracellular drug liberation. Through spontaneous formation of boronate linkage in physiological conditions, phenylboronic acid-modified cholesterol was able to attach onto catechol-pending methoxypoly(ethylene glycol)-block-poly(l-lysine). This comb-type polymer can self-organize into a micellar nanoconstruction that is able to effectively encapsulate poorly water-soluble agents. The blank micelles exhibited negligible in vitro cytotoxicity, yet doxorubicin (DOX)-loaded micelles could effectively induce cell death at a level comparable to free DOX. Owing to the acid-labile feature of the boronate linkage, a reduction in environmental pH from pH 7.4 to 5.0 could trigger the dissociation of the nanoconstruction, which in turn could accelerate the liberation of entrapped drugs. Importantly, the blockage of endosomal acidification in HeLa cells by NH4Cl treatment significantly decreased the nuclear uptake efficiency and cell-killing effect mediated by the DOX-loaded nanoassembly, suggesting that acid-triggered destruction of the nanoconstruction is of significant importance in enhanced drug efficacy. Moreover, confocal fluorescence microscopy and flow cytometry assay revealed the effective internalization of the nanoassemblies, and their cellular uptake exhibited a cholesterol dose-dependent profile, indicating the contribution of introduced cholesterol functionality to the transmembrane process of the nanoassembly.

  20. Economical production of poly(ε-l-lysine) and poly(l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1.

    PubMed

    Xia, Jun; Xu, Zhaoxian; Xu, Hong; Liang, Jinfeng; Li, Sha; Feng, Xiaohai

    2014-07-01

    Poly(ε-L-lysine) (ε-PL) and poly(L-diaminopropionic acid) (PDAP) co-production by Streptomyces albulus PD-1 from cane molasses and hydrolysate of strepyomyces cells (HSC) was investigated for the first time in this study. The optimal initial total sugar concentration of the cane molasses pretreated with sulfuric acid was determined to be 20 g L(-1), and HSC could substitute for yeast extract for ε-PL and PDAP co-production. When fed-batch fermentation was performed in 1t fermentor with pretreated cane molasses and HSC, 20.6 ± 0.5 g L(-1) of ε-PL and 5.2 ± 0.6 g L(-1) of PDAP were obtained. The amount of strepyomyces cells obtained in one fed-batch fermentation is sufficient to prepare the HSC to satisfy the demand of subsequent fermentations, thus the self-cycling of organic nitrogen source becomes available. These results suggest that the low-cost cane molasses and HSC can be used for the economical production of ε-PL and PDAP by S. albulus PD-1.

  1. Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea

    PubMed Central

    Lv, Binna; Yang, Qianqian; Li, Delong; Liang, Wenxing; Song, Limin

    2016-01-01

    Lysine acetylation is a dynamic and reversible post-translational modification that plays an important role in diverse cellular processes. Botrytis cinerea is the most thoroughly studied necrotrophic species due to its broad host range and huge economic impact. However, to date, little is known about the functions of lysine acetylation in this plant pathogen. In this study, we determined the lysine acetylome of B. cinerea through the combination of affinity enrichment and high-resolution LC-MS/MS analysis. Overall, 1582 lysine acetylation sites in 954 proteins were identified. Bioinformatics analysis shows that the acetylated proteins are involved in diverse biological functions and show multiple cellular localizations. Several particular amino acids preferred near acetylation sites, including KacY, KacH, Kac***R, KacF, FKac and Kac***K, were identified in this organism. Protein interaction network analysis demonstrates that a variety of interactions are modulated by protein acetylation. Interestingly, 6 proteins involved in virulence of B. cinerea, including 3 key components of the high-osmolarity glycerol pathway, were found to be acetylated, suggesting that lysine acetylation plays regulatory roles in pathogenesis. These data provides the first comprehensive view of the acetylome of B. cinerea and serves as a rich resource for functional analysis of lysine acetylation in this plant pathogen. PMID:27381557

  2. Probing the role of lysine 16 in ras p[sup 21] protein with unnatural amino acids

    SciTech Connect

    Chung, H.H.; Benson, D.R.; Schultz, P.G. )

    1993-07-14

    Mamalian proteins encoded by the ras gene are thought to function as regulators of various signal transduction processes involved in cell growth and differentiation. The chemical basis for the regulation is cycling of the protein between the inactive guanosine diphosphate (GDP)-bound state and the active guanosine triphophate (GTP)-bound state. Loop 1 of ras contains the GXXXXGK(S/T) motif (residues 10-17), which is found in all ras-related proteins, G proteins, and other nucleotide-binding proteins. Structural and biochemical studies have suggested that Lys 16 of loop 1 is critical for substrate binding and catalysis. The [epsilon]-amino group is involved in ion pair interactions with the [Beta]-and [gamma]-phosphates of GTP and forms hydrogen bonds with the main-chain oxygens of Gly 10 and Ala 11. In order to better understand the role of the key residue in ras function, we have replaced Lys 16 with a number of unnatural amino acid analogues, including (aminoethyl)cysteine, (hydroxyethyl)cysteine, (aminoethyl)homocysteine, and ornithine. We were surprised to find that the [open quotes]unnatural[close quotes] mutant ras proteins retained high levels of GAP-stimulated GTPase activity and GTP dissociation rates comparable to that of wild-type ras. These results may indicate that, in the GAP-activated form, Lys 16 is not involved in transition-state stabilization or GTP binding. However, replacement of Lys 16 with the isosteric uncharged Lys analogue, (hydroxyethyl)cysteine, led to a complete loss of GAP-stimulated GTPase activity, demonstrating the importance of the charged ammonium side chain. 22 refs., 1 fig., 1 tab.

  3. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  4. [Nutrient composition of some newly bred high-protein and/or high-lysine cereal strains and digestibility by growing pigs. 2. Protein quality and digestibility of the amino acids].

    PubMed

    Bock, H D; Wünsche, J; Meinl, M; Hennig, U; Völker, T

    1982-05-01

    After a first report on the nutrient composition and the digestibility of some newly bred varieties of cereals, information on the apparent digestibility of the amino acids in growing female pigs ascertained with the same test material is given. These data serve the evaluation of the quality of such cultivation products and the completion of the data in of feedstuffs tables and tables of the amino acid content. The newly bred barleystrains meet the requirement of digestible protein of pigs, wheat exceeds it whereas the maize samples fall short of it. The content of digestible lysine in the newly bred barleystrain approximate the requirement of growing pigs. There is ample digestible methionine + cystine in all samples. This again proves that newly cultivated barley and wheat rich in protein and lysine if accordingly supplemented with the limiting amino acid lysine can be used as sole feed for fattening pigs. Moreover, it becomes again obvious that the apparent digestibility of the amino acids can, for practical purposes, be sufficiently exactly evaluated with the help of the apparent digestibility of the crude protein of the respective feedstuff.

  5. Factors affecting lysine degradation by ruminal fusobacteria.

    PubMed

    Russell, James B

    2006-04-01

    Fusobacterium necrophorum can readily be enriched from the rumen with lysine, and its deamination rate is very rapid. The addition of F. necrophorum JB2 to mixed ruminal bacteria significantly increased lysine degradation, but only if the ratio of ruminal fluid to basal medium was less than 25%. If more ruminal fluid (pH 6.1) was added, ammonia production decreased by as much as 80%. Clarified, autoclaved ruminal fluid was also inhibitory. When F. necrophorum JB2 was grown in a lysine-limited continuous culture (0.1 h(-1) dilution rate) and pH was decreased using HCl, optical density decreased linearly, and the culture washed out at pH 5.6. Batch cultures of F. necrophorum JB2 deaminated as much lysine at pH 6.1 as at pH 6.6, but only if fermentation acids were not present. Sodium acetate (100 mM) had little effect at pH 6.6, but the same concentration inhibited ammonia production by 80% at pH 6.1. The idea that fermentation acids could prevent the enrichment of fusobacteria in vivo was supported by the observation that dietary lysine supplementation did not enhance the lysine deamination rate of the mixed ruminal bacteria.

  6. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  7. Extended amino acid sequences around the active-site lysine residue of class-I fructose 1,6-bisphosphate aldolases from rabbit muscle, sturgeon muscle, trout muscle and ox liver.

    PubMed Central

    Benfield, P A; Forcina, B G; Gibbons, I; Perham, R N

    1979-01-01

    1. Amino acid sequences covering the region between residues 173 and 248 [adopting the numbering system proposed by Lai, Nakai & Chang (1974) Science 183, 1204-1206] were derived for trout (Salmo trutta) muscle aldolase and for ox liver aldolase. A comparable sequence was derived for residues 180-248 of sturgeon (Acipenser transmontanus) muscle aldolase. The close homology with the rabbit muscle enzyme was used to align the peptides of the other aldolases from which the sequences were derived. The results also allowed a partial sequence for the N-terminal 39 residues for the ox liver enzyme to be deduced. 2. In the light of the strong homology evinced for these enzymes, a re-investigation of the amino acid sequence of rabbit muscle aldolase between residues 181 and 185 was undertaken. This indicated the presence of a hitherto unsuspected -Ile-Val-sequence between residues 181 and 182 and the need to invert the sequence -Glu-Val- to -Val-Glx- at positions 184 and 185. 3. Comparison of the available amino acid sequences of these enzymes suggested an early evolutionary divergence of the genes for muscle and liver aldolases. It was also consistent with other evidence that the central region of the primary structure of these enzymes (which includes the active-site lysine-227) forms part of a conserved folding domain in the protein subunit. 4. Detailed evidence for the amino acid sequences proposed has been deposited as Suy Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1978) 169, 5. PMID:534504

  8. Gas chromatographic analysis of infant formulas for total fatty acids, including trans fatty acids.

    PubMed

    Satchithanandam, Subramaniam; Fritsche, Jan; Rader, Jeanne I

    2002-01-01

    Twelve powdered and 13 liquid infant formulas were analyzed by using an extension of AOAC Official Method 996.01 for fat analysis in cereal products. Samples were hydrolyzed with 8 N HCl and extracted with ethyl and petroleum ethers. Fatty acid methyl esters were prepared by refluxing the mixed ether extracts with methanolic sodium hydroxide in the presence of 14% boron trifluoride in methanol. The extracts were analyzed by gas chromatography. In powdered formulas, saturated fatty acid (SFA) content (mean +/- SD; n = 12) was 41.05 +/- 3.94%, monounsaturated fatty acid (MUFA) content was 36.97 +/- 3.38%, polyunsaturated fatty acid (PUFA) content was 20.07 +/- 3.08%, and total trans fatty acid content was 1.30 +/- 1.27%. In liquid formulas, SFA content (mean +/- SD; n = 13) was 42.29 +/- 2.98%, MUFA content was 36.05 +/- 2.47%, PUFA content was 20.65 +/- 2.40%, and total trans fatty acid content was 0.88 +/- 0.54%. Total fat content in powdered formulas ranged from 4.4 to 5.5 g/100 kcal and linoleic acid content ranged from 868 to 1166 mg/100 kcal. In liquid formulas, total fat content ranged from 4.1 to 5.1 g/100 kcal and linoleic acid content ranged from 820 to 1100 mg/100 kcal. There were no significant differences between powdered and liquid infant formulas in concentrations of total fat, SFA, MUFA, PUFA, or trans fatty acids.

  9. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.

    PubMed

    Kumar, Vidya Prasanna; Thomas, Leonard M; Bobyk, Kostyantyn D; Andi, Babak; Cook, Paul F; West, Ann H

    2012-01-31

    Saccharopine dehydrogenase (SDH) catalyzes the final reaction in the α-aminoadipate pathway, the conversion of l-saccharopine to l-lysine (Lys) and α-ketoglutarate (α-kg) using NAD⁺ as an oxidant. The enzyme utilizes a general acid-base mechanism to conduct its reaction with a base proposed to accept a proton from the secondary amine of saccharopine in the oxidation step and a group proposed to activate water to hydrolyze the resulting imine. Crystal structures of an open apo form and a closed form of the enzyme with saccharopine and NADH bound have been determined at 2.0 and 2.2 Å resolution, respectively. In the ternary complex, a significant movement of domain I relative to domain II that closes the active site cleft between the two domains and brings H96 and K77 into the proximity of the substrate binding site is observed. The hydride transfer distance is 3.6 Å, and the side chains of H96 and K77 are properly positioned to act as acid-base catalysts. Preparation of the K77M and H96Q single-mutant and K77M/H96Q double-mutant enzymes provides data consistent with their role as the general acid-base catalysts in the SDH reaction. The side chain of K77 initially accepts a proton from the ε-amine of the substrate Lys and eventually donates it to the imino nitrogen as it is reduced to a secondary amine in the hydride transfer step, and H96 protonates the carbonyl oxygen as the carbinolamine is formed. The K77M, H976Q, and K77M/H96Q mutant enzymes give 145-, 28-, and 700-fold decreases in V/E(t) and >10³-fold increases in V₂/K(Lys)E(t) and V₂/K(α-kg)E(t) (the double mutation gives >10⁵-fold decreases in the second-order rate constants). In addition, the K77M mutant enzyme exhibits a primary deuterium kinetic isotope effect of 2.0 and an inverse solvent deuterium isotope effect of 0.77 on V₂/K(Lys). A value of 2.0 was also observed for (D)(V₂/K(Lys))(D₂O) when the primary deuterium kinetic isotope effect was repeated in D₂O, consistent with a

  10. Effects of zinc and sodium monensin on ruminal degradation of lysine-HCl and liquid 2-hydroxy-4-methylthiobutanoic acid.

    PubMed

    Bateman, H G; Williams, C C; Gantt, D T; Chung, Y H; Beem, A E; Stanley, C C; Goodier, G E; Hoyt, P G; Ward, J D; Bunting, L D

    2004-08-01

    Four nonlactating, mature, Holstein cows were fitted with ruminal cannula and used in a 4 x 4 Latin square-designed experiment to evaluate the impact of supplemental Zn and monensin on ruminal degradation of Lys and liquid 2-hydroxy-4-methylthiobutanoic acid (HMB). Cows were fed 4.54 kg (as fed) of alfalfa hay top-dressed with 4.54 kg (as fed) concentrate once daily. Concentrates were formulated to provide 0 or 500 mg/kg of Zn as ZnSO4 and 0 or 40 mg/kg of monensin in the total diet. Zinc supplementation provided approximately 22-fold greater dietary Zn than estimated by NRC requirements. On d 14 of each period, cows were dosed via the rumen cannula with 50 g of HMB and 100 g of Lys-HCl, and the concentrations of Lys and HMB were monitored every 0.5 h for 8 h. Supplemental Zn tended to decrease the proportion of acetate in ruminal fluid postfeeding and increased the proportion of propionate in ruminal fluid postfeeding. Supplemental Zn increased mean fluid passage rate from the rumen. Monensin decreased the proportion of acetate and increased the mean proportion of propionate in ruminal fluid, resulting in a decrease in the ratio of acetate to propionate. Monensin also increased the mean fluid passage rate from the rumen. Neither Zn nor monensin affected the apparent rate of ruminal disappearance of HMB or Lys. However, Zn and monensin interacted to alter the ruminal degradability of free Lys but not HMB. These data indicate that Zn and monensin may interact to alter ruminal degradability of free amino acids.

  11. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz [Livermore, CA

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  12. Enhancement of ε-poly-L-lysine production coupled with precursor L-lysine feeding in glucose-glycerol co-fermentation by Streptomyces sp. M-Z18.

    PubMed

    Chen, Xu-Sheng; Ren, Xi-Dong; Zeng, Xin; Zhao, Fu-Lin; Tang, Lei; Zhang, Hong-Jian; Zhang, Jian-Hua; Mao, Zhong-Gui

    2013-12-01

    ε-Poly-L-lysine (ε-PL), one of the only two homo-poly amino acids known in nature, is used as a preservative. In this study, strategies of feeding precursor L-lysine into 5 L laboratory scale fermenters, including optimization of L-lysine concentration and time, was investigated to optimize the production of ε-PL by Streptomyces sp. M-Z18. The optimized strategy was then used in ε-PL fed-batch fermentation in which glucose and glycerol served as mixed carbon sources. In this way, a novel ε-PL production strategy involving precursor L-lysine coupled with glucose-glycerol co-fermentation was developed. Under optimal conditions, ε-PL production reached 37.6 g/l, which was 6.2 % greater than in a previous study in which glucose and glycerol co-fermentation was performed without added L-lysine (35.14 g/l). To the best of our knowledge, this is the first report of the enhancement of ε-PL production through L-lysine feeding to evaluate the use of fermenters. Meanwhile, the role of L-lysine in the promotion of ε-PL production, participating ε-PL synthesis as a whole, was first determined using the L-[U-(13)C] lysine labeling method. It has been suggested that the bottleneck of ε-PL synthesis in Streptomyces sp. M-Z18 is in the biosynthesis of precursor L-lysine. The information obtained in the present work may facilitate strain improvement and efficient large-scale ε-PL production.

  13. Histone lysine methylation and chromatin replication.

    PubMed

    Rivera, Carlos; Gurard-Levin, Zachary A; Almouzni, Geneviève; Loyola, Alejandra

    2014-12-01

    In eukaryotic organisms, the replication of the DNA sequence and its organization into chromatin are critical to maintain genome integrity. Chromatin components, such as histone variants and histone post-translational modifications, along with the higher-order chromatin structure, impact several DNA metabolic processes, including replication, transcription, and repair. In this review we focus on lysine methylation and the relationships between this histone mark and chromatin replication. We first describe studies implicating lysine methylation in regulating early steps in the replication process. We then discuss chromatin reassembly following replication fork passage, where the incorporation of a combination of newly synthesized histones and parental histones can impact the inheritance of lysine methylation marks on the daughter strands. Finally, we elaborate on how the inheritance of lysine methylation can impact maintenance of the chromatin landscape, using heterochromatin as a model chromatin domain, and we discuss the potential mechanisms involved in this process.

  14. Effect of L-lysine on expression of selected genes, serum concentration of amino acids, muscle growth and performance of growing pigs.

    PubMed

    Morales, A; García, H; Arce, N; Cota, M; Zijlstra, R T; Araiza, B A; Cervantes, M

    2015-08-01

    Lysine (Lys) is the first limiting amino acid (AA) in most feed formulations for pigs and most abundant, along with leucine, in muscle proteins. An experiment was conducted with 17 pigs (17.7 ± 0.05 kg initial BW) to identify a role of dietary Lys in the control of protein synthesis in pigs. Fourteen pigs were randomly assigned to one of the two wheat-based dietary treatments: Lys-deficient, 3.0 g/kg (DEF) and Lys-adequate, 10.8 g/kg (ADE). Samples from jejunum mucosa, liver, Longissumus and Semitendinosus muscles, and blood were collected. The other three pigs were sacrificed at the beginning of the trial to measure basal carcass composition. Weight gain, gain:feed ratio, Lys intake and loin eye area were greater in ADE than in DEF pigs (p < 0.01). Muscle-related carcass characteristics were better, and myosin heavy chain IIb expression (MyHC IIb) in Semitendinosus was higher in ADE than in DEF pigs. Expression of AA transporters CAT-1 was lower (p < 0.05), serum Lys was higher and serum Val was lower in pigs fed the ADE diet. The higher muscularity, MyHC IIb expression in Semitendinosus muscle and Lys serum of pigs fed the ADE diet suggest that Lys increases growth rate not only by functioning as protein construction unit but also as potential control of the protein synthesis process.

  15. N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage.

    PubMed

    Jiang, Tao; Zhou, Xinfeng; Taghizadeh, Koli; Dong, Min; Dedon, Peter C

    2007-01-02

    The posttranslational modification of histone and other chromatin proteins has a well recognized but poorly defined role in the physiology of gene expression. With implications for interfering with these epigenetic mechanisms, we now report the existence of a relatively abundant secondary modification of chromatin proteins, the N(6)-formylation of lysine that appears to be uniquely associated with histone and other nuclear proteins. Using both radiolabeling and sensitive bioanalytical methods, we demonstrate that the formyl moiety of 3'-formylphosphate residues arising from 5'-oxidation of deoxyribose in DNA, caused by the enediyne neocarzinostatin, for example, acylate the N(6)-amino groups of lysine side chains. A liquid chromatography (LC)-tandem mass spectrometry (MS) method was developed to quantify the resulting N(6)-formyl-lysine residues, which were observed to be present in unperturbed cells and all sources of histone proteins to the extent of 0.04-0.1% of all lysines in acid-soluble chromatin proteins including histones. Cells treated with neocarzinostatin showed a clear dose-response relationship for the formation of N(6)-formyl-lysine, with this nucleosome linker-selective DNA-cleaving agent causing selective N(6)-formylation of the linker histone H1. The N(6)-formyl-lysine residue appears to represent an endogenous histone secondary modification, one that bears chemical similarity to lysine N(6)-acetylation recognized as an important determinant of gene expression in mammalian cells. The N(6)-formyl modification of lysine may interfere with the signaling functions of lysine acetylation and methylation and thus contribute to the pathophysiology of oxidative and nitrosative stress.

  16. Supplemental safflower oil affects the fatty acid profile, including conjugated linoleic acid, of lamb.

    PubMed

    Boles, J A; Kott, R W; Hatfield, P G; Bergman, J W; Flynn, C R

    2005-09-01

    The objective of this study was to determine whether increasing levels of dietary safflower oil would alter unsaturated fat (especially CLA) and tocopherol content of lamb, animal performance, carcass characteristics, or color stability of lamb muscle tissue. Targhee x Rambouillet wethers (n = 60) were assigned to one of three diets (four pens per treatment with five lambs per pen) in a completely random design. Diets were formulated with supplemental safflower oil at 0 (control), 3, or 6% (as-fed basis) of the diet. Diets containing approximately 80% concentrate and 20% roughage were formulated, on a DM basis, to be isocaloric and isonitrogenous and to meet or exceed NRC requirements for Ca, P, and other nutrients. A subsample of 12 wethers per treatment was selected based on average BW (54 kg) and slaughtered. Carcass data (LM area, fat thickness, and internal fat content) and wholesale cut weight (leg, loin, rack, shoulder, breast, and foreshank), along with fatty acid, tocopherol, and color analysis, were determined on each carcass. The LM and infraspinatus were sampled for fatty acid profile. Increasing safflower oil supplementation from 0 to 3 or 6% increased the proportion of linoleic acid in the diet from 49.93 to 55.32 to 62.38%, respectively, whereas the percentage of oleic acid decreased from 27.94 to 23.80 to 20.73%, respectively. The percentage of oil in the diet did not (P > or = 0.11) alter the growth and carcass characteristics of lambs, nor did it alter the tocopherol content or color stability of meat. Increasing levels of safflower oil in lamb diets decreased (P < 0.01) the weight percentage of oleic acid in the infraspinatus and LM, and increased linoleic acid (P < 0.01). Oil supplementation increased (P < 0.01) the weight percentage of various isomers of CLA in muscle, with the greatest change in the cis-9,trans-11 isomer. Supplementation of sheep diets with safflower oil, up to 6% of the diet, resulted in increasing levels of unsaturated fatty

  17. Amino acid and energy interrelationships in growing beef steers: II. Effects of energy intake and metabolizable lysine supply on growth.

    PubMed

    Ludden, P A; Kerley, M S

    1998-12-01

    We conducted three experiments to determine the optimal metabolizable Lys:net energy ratio for growth of beef calves. The single basal diet fed contained corn (56.1%), soybean hulls (18%), cottonseed hulls (15%), animal fat (4.25%), and corn gluten meal (5.6%). In Exp. 1, 54 steers were individually fed the basal diet at 1.5, 2.25, and 3.0 times NEm requirement; rations were top-dressed with 3.4 g of rumen-stable (RS) Met and either 0, 2, 4, 6, 8, or 12 g of RS-Lys daily. An additional 18 steers were fed the same three levels of energy and supplemented with 125 g of blood meal per steer. In Exp. 2, 68 crossbred steers were subjected to the same experimental protocol, with the exception that only the two highest levels of energy were used. Of these steers, 48 were fed individually and received the RS-Lys treatments; the remaining 20 steers received 125 g of blood meal per steer. No interaction (P > .10) was detected between level of supplemental Lys and energy intake in Exp. 1 or 2. Supplementation with RS-Lys improved (P < .01) ADG in Exp. 1, but it had no effect (P > .10) on growth in Exp. 2. The Lys requirement estimates were 44.3 and 51.3 g/d, corresponding to maximal growth rates of 1.21 and 1.64 kg/d for the 2.25 and 3.0 times maintenance treatments, respectively. Comparing the growth rates of steers fed supplemental Lys with those of steers fed blood meal in Exp. 1 and 2 revealed an ADG advantage (P < .03) with blood meal supplementation. To confirm the blood meal response, Exp. 3 used 75 crossbred steers fed the basal diet at 3.0 times NEm requirement plus either 3.4 g RS-Met, 3.4 g RS-Met and 12 g RS-Lys, or 125 g of blood meal per steer. Blood meal supplementation improved (P < .01) growth of steers over those fed supplemental Met or Met plus Lys. Although a distinct relationship between amino acid requirements and energy supply may exist, Lys and Met were not first-limiting in these experiments, or selective supplementation with undegradable protein may

  18. The Safety and Efficacy of Lysine Analogues in Cancer Patients: A Systematic Review and Meta-Analysis.

    PubMed

    Montroy, Joshua; Fergusson, Nicholas A; Hutton, Brian; Lavallée, Luke T; Morash, Chris; Cagiannos, Ilias; Cnossen, Sonya; Fergusson, Dean A; Breau, Rodney H

    2017-03-22

    Lysine analogues are effective agents used for the reduction of blood loss and transfusion. However, the safety of lysine analogues in cancer patients remains in question due to a potential risk of venous thromboembolism (VTE). The objective of our review is to investigate safety and efficacy of lysine analogue administration in the patients with cancer. Medline, Embase, and The Cochrane Library were searched from inception to June, 2016. Reference lists of retrieved studies were searched to identify additional publications. We included randomized clinical trials in adult cancer patients for which a lysine analogue was administered for the purpose of blood loss reduction. Abstract and full-text selection as well as data extraction and risk of bias assessment was done by 2 independent reviewers. The primary outcome was venous thromboembolic events. Secondary outcomes were other adverse events, blood transfusion, and blood loss. Overall, 11studies involving 1177 patients evaluated at least one of the primary or secondary outcomes. Nine studies evaluated the effects of tranexamic acid, one study evaluated the effects of aminocaproic acid and one study examined both agents. No increased risk of venous thromboembolism was observed for patients who received lysine analogues compared to control (Peto OR 0.58; 95% CI 0.26-1.28). The administration of a lysine analogue significantly decreased both transfusion risk (pooled RR 0.52, 95% CI 0.34-0.80) and blood loss (SMD -1.57, 95% CI -2.21 to -0.92). Among 3 eligible studies, no increased risk was observed for mortality (Peto OR 1.01; 95% CI 0.14-7.18) or infection (OR 0.58; 95% CI 0.27-1.27). The safety of lysine analogues in cancer patients has not been extensively studied. Based on the available literature, lysine analogue use has not been associated with increased risk of venous thromboembolism or other adverse events, while being effective in reducing blood loss and subsequent transfusion.

  19. Simple method for the simultaneous analysis of pipecolic acid and lysine by high-performance liquid chromatography and its application to rumen liquor and plasma of ruminants.

    PubMed

    Hussain-Yusuf, H; Onodera, R; Nasser, M E; Sato, H

    1999-11-26

    A high-performance liquid chromatography method for the simultaneous determination of pipecolic acid (Pip) and lysine (Lys), a precursor of Pip, in the rumen liquor and plasma of ruminant animals was established. Samples of rumen liquor and plasma were deproteinized with 50% acetonitrile and derivatized with a fluorescent agent 9-fluorenylmethyloxy carbonyl chloride (Fmoc-Cl). Chromatographic separation was achieved on a TSK gel ODS-80TM column using a reversed-phase gradient elution system. For the gradient elution, two mobile phases, A and B, were needed, both commonly consisted of: 5 mM L-proline, 2.5 mM cupric sulfate and 6.5 mM ammonium acetate. Mobile phase B additionally contains 50% (v/v) acetonitrile. The pH of both mobile phases was adjusted to 7.0. Derivatized Pip and Lys were detected on a fluorescent detector at excitation and emission wavelengths of 260 and 313 nm, respectively. The calibration curves were linear within the range 0 to 1 mM (r>0.999). The average recoveries for Pip and Lys were 95.9+/-1.8 and 93.2+/-2.5% in rumen liquor and 98.3+/-1.4 and 97.5+/-1.3% in plasma, respectively. The limits of detection for Pip and Lys were 0.6 and 0.7 microM in rumen liquor and 0.01 and 0.05 microM in plasma. The assay has acceptable precision, relative standard deviation (RSD) for reproducibility (within-day and day-to-day variation) were less than 5.2% for aqueous (5.0 microM Pip and Lys), MB9 (5.0 microM Pip and Lys), plasma (7.1 microM Pip and 85.6 microM Lys) and rumen liquor (28.4 microM Pip and 10.2 microM Lys) samples. The levels of Pip and Lys in faunated goats, determined from three animals over a period of two days sampling, were found to be 36.8+/-18.1 and 14.6+/-2.8 microM in rumen liquor, and 7.3+/-2.5 and 137.3+/-38.0 microM in plasma at 1 h after feeding. This is the first report on the normal levels of Pip in the rumen liquor and plasma of faunated goat.

  20. Oxidation of apolipoprotein(a) inhibits kringle-associated lysine binding: the loss of intrinsic protein fluorescence suggests a role for tryptophan residues in the lysine binding site.

    PubMed Central

    Hermann, A.; Laws, W. R.; Harpel, P. C.

    1997-01-01

    Lipoprotein(a) [Lp(a)] is a low-density lipoprotein complex consisting of apolipoprotein(a) [apo(a)] disulfide-linked to apolipoprotein B-100. Lp(a) has been implicated in atherogenesis and thrombosis through the lysine binding site (LBS) affinity of its kringle domains. We have examined the oxidative effect of 2,2'-azobis-(amidinopropane) HCl (AAPH), a mild hydrophilic free radical initiator, upon the ability of Lp(a) and recombinant apo(a), r-apo(a), to bind through their LBS domains. AAPH treatment caused a time-dependent decrease in the number of functional Lp(a) or r-apo(a) molecules capable of binding to fibrin or lysine-Sepharose and in the intrinsic protein fluorescence of both Lp(a) and r-apo(a). The presence of a lysine analogue during the reaction prevented the loss of lysine binding and provided a partial protection from the loss of tryptophan fluorescence. The partial protection of fluorescence by lysine analogues was observed in other kringle-containing proteins, but not in proteins lacking kringles. No significant aggregation, fragmentation, or change in conformation of Lp(a) or r-apo(a) was observed as assessed by native or SDS-PAGE, light scattering, retention of antigenicity, and protein fluorescence emission spectra. Our results suggest that AAPH destroys amino acids in the kringles of apo(a) that are essential for lysine binding, including one or more tryptophan residues. The present study, therefore, raises the possibility that the biological roles of Lp(a) may be mediated by its state of oxidation, especially in light of our previous study showing that the reductive properties of sulfhydryl-containing compounds increase the LBS affinity of Lp(a) for fibrin. PMID:9385634

  1. In vitro degradation of lysine by ruminal fluid-based fermentations and by Fusobacterium necrophorum.

    PubMed

    Elwakeel, E A; Amachawadi, R G; Nour, A M; Nasser, M E A; Nagaraja, T G; Titgemeyer, E C

    2013-01-01

    The objective of these studies was to characterize some factors affecting lysine degradation by mixed ruminal bacteria and by ruminal Fusobacterium necrophorum. Mixed ruminal bacteria degraded lysine, and addition of pure cultures of F. necrophorum did not increase lysine degradation. Addition of acetic or propionic acid strikingly reduced NH(3) production from lysine by mixed ruminal bacteria at pH 6, but not at pH 7. Although typical ruminal environments with acidic pH and normal concentrations of volatile fatty acids might inhibit lysine degradation by F. necrophorum, ruminal fluid contained enough bacteria with a lysine-degrading capacity to ferment 50 mM lysine in vitro. Of 7 strains of ruminal F. necrophorum tested, all grew on both lactate and lysine as the primary energy source. Both subspecies of ruminal F. necrophorum (necrophorum and funduliforme) used lysine as a primary C and energy source. Lysine and glutamic acid were effectively fermented by F. necrophorum, but alanine and tryptophan were not, and histidine and methionine were fermented only to a minor extent. The end products of lactate fermentation by F. necrophorum were propionate and acetate, and those of lysine degradation were butyrate and acetate. Fermentation of glutamic acid by F. necrophorum yielded acetate and butyrate in a ratio near to 2:1. The minimum inhibitory concentration of tylosin for F. necrophorum was not dependent on whether bacteria were grown with lactate or lysine, but F. necrophorum was more susceptible to monensin when grown on lysine than on lactate. Although F. necrophorum is generally resistant to monensin, the ionophore may reduce lysine degradation by F. necrophorum in the rumen. The essential oil components limonene, at 20 or 100 μg/mL, and thymol, at 100 μg/mL, inhibited F. necrophorum growth, whereas eugenol, guaiacol, and vanillin had no effect. Our findings may lead to ways to minimize ruminal lysine degradation and thus increase its availability to the animal.

  2. Metabolic Regulation by Lysine Malonylation, Succinylation, and Glutarylation*

    PubMed Central

    Hirschey, Matthew D.; Zhao, Yingming

    2015-01-01

    Protein acetylation is a well-studied regulatory mechanism for several cellular processes, ranging from gene expression to metabolism. Recent discoveries of new post-translational modifications, including malonylation, succinylation, and glutarylation, have expanded our understanding of the types of modifications found on proteins. These three acidic lysine modifications are structurally similar but have the potential to regulate different proteins in different pathways. The deacylase sirtuin 5 (SIRT5) catalyzes the removal of these modifications from a wide range of proteins in different subcellular compartments. Here, we review these new modifications, their regulation by SIRT5, and their emerging role in cellular regulation and diseases. PMID:25717114

  3. Lysine requirement of broiler chicks as affected by protein source and method of statistical evaluation.

    PubMed

    Barbour, G; Latshaw, J D; Bishop, B

    1993-09-01

    1. An experiment was designed to test if the lysine requirement, expressed as g lysine/kg CP, was the same for several protein sources. 2. Groundnut meal, groundnut meal adjusted with indispensable amino acids or sesame meal supplied the dietary CP at 180 g/kg diet. Increments of lysine (1.5 g/kg diet) were added to each of these diets. 3. The gain, food intake and food efficiency responses of broiler chicks were analysed using a quadratic equation and a two-slope method. An estimate of lysine requirements was also obtained from a survey of college students. 4. The different methods produced widely different estimates of lysine requirement. 5. The average lysine requirement was estimated at 50.1 g lysine/kg CP for groundnut meal, 61.7 for adjusted groundnut meal and 54.9 for sesame meal. 6. Reasons for the effect of statistical analysis and protein source on lysine requirement are discussed.

  4. Effect of omega-3 fatty acids on the modification of erythrocyte membrane fatty acid content including oleic acid in peritoneal dialysis patients.

    PubMed

    An, W S; Lee, S M; Son, Y K; Kim, S E; Kim, K H; Han, J Y; Bae, H R; Park, Y

    2012-01-01

    Erythrocyte membrane fatty acids (FA), such as oleic acid, are related to acute coronary syndrome. There is no report about the effect of omega-3 FA on oleic acid in peritoneal dialysis (PD) patients. We hypothesized that omega-3 FA can modify erythrocyte membrane FA, including oleic acid, in PD patients. In a double-blind, randomized, placebo-controlled study, 18 patients who were treated with PD for at least 6 months were randomized to treatment for 12 weeks with omega-3 FA or placebo. Erythrocyte membrane FA content was measured by gas chromatography at baseline and after 12 weeks. The erythrocyte membrane content of eicosapentaenoic acid and docosahexaenoic acid was significantly increased and saturated FA and oleic acid were significantly decreased in the omega-3 FA supplementation group after 12 weeks compared to baseline. In conclusion, erythrocyte membrane FA content, including oleic acid, was significantly modified by omega-3 FA supplementation for 12 weeks in PD patients.

  5. A gene encoding lysine 6-aminotransferase, which forms the beta-lactam precursor alpha-aminoadipic acid, is located in the cluster of cephamycin biosynthetic genes in Nocardia lactamdurans.

    PubMed Central

    Coque, J J; Liras, P; Laiz, L; Martín, J F

    1991-01-01

    A gene (lat) encoding lysine 6-aminotransferase was found upstream of the pcbAB (encoding alpha-aminoadipylcysteinyl-valine synthetase) and pcbC (encoding isopenicillin N synthase) genes in the cluster of early cephamycin biosynthetic genes in Nocardia lactamdurans. The lat gene was separated by a small intergenic region of 64 bp from the 5' end of the pcbAB gene. The lat gene contained an open reading frame of 1,353 nucleotides (71.4% G + C) encoding a protein of 450 amino acids with a deduced molecular mass of 48,811 Da. Expression of DNA fragments carrying the lat gene in Streptomyces lividans led to a high lysine 6-aminotransferase activity which was absent from untransformed S. lividans. The enzyme was partially purified from S. lividans(pULBS8) and showed a molecular mass of 52,800 Da as calculated by Sephadex gel filtration and polyacrylamide gel electrophoresis. DNA sequences which hybridized strongly with the lat gene of N. lactamdurans were found in four cephamycin-producing Streptomyces species but not in four other actinomycetes which are not known to produce beta-lactams, suggesting that the gene is specific for beta-lactam biosynthesis and is not involved in general lysine catabolism. The protein encoded by the lat gene showed similarity to ornithine-5-aminotransferases and N-acetylornithine-5-aminotransferases and contained a pyridoxal phosphate-binding consensus amino acid sequence around Lys-300 of the protein. The evolutionary implications of the lat gene as a true beta-lactam biosynthetic gene are discussed. Images PMID:1917857

  6. Global analysis of lysine acetylation in strawberry leaves

    PubMed Central

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  7. Proline and lysine residues provide modulatory switches in amyloid formation: Insights from prion protein.

    PubMed

    Kraus, Allison

    2016-01-01

    Amyloidogenic proteins have an increased propensity to reorganize into the highly structured, β sheet rich structures that characterize amyloid. The probability of attaining these highly structured assemblies is influenced by multiple factors, including amino acid composition and environmental conditions. Evolutionary selection for amino acid sequences that prevent amyloid formation could further modulate amyloid-forming propensity. Indeed, we have recently identified specific proline and lysine residues, contained within a highly conserved central region of prion protein (PrP), that impede PrP amyloid formation in vitro. These prolines are mutated in certain forms of the human familial genetic disease, Gerstmann-Straüssler-Schneiker (GSS) syndrome. Here, I discuss the influence of these proline and lysine residues on PrP amyloid formation and how such anti-amyloidogenic primary amino acid sequences might be modulated to influence protein amyloidogenicity.

  8. Assignment of the Perfluoropropionic Acid-Formic Acid Complex and the Difficulties of Including High K_a Transitions.

    NASA Astrophysics Data System (ADS)

    Obenchain, Daniel A.; Lin, Wei; Novick, Stewart E.; Cooke, S. A.

    2016-06-01

    We recently began an investigation into the perfluoropropionic acid\\cdotsformic acid complex using broadband microwave spectroscopy. This study aims to examine the possible double proton transfer between the two interacting carboxcyclic acid groups. The spectrum presented as a doubled set of lines, with spacing between transitions of < 1 MHz. Transitions appeared to be a-type, R branch transitions for an asymmetric top. Assignment of all K_a=1,0 transitions yields decent fits to a standard rotational Hamiltonian. Treatment of the doubling as either a two state system (presumably with a double proton transfer) or as two distinct, but nearly identical conformations of the complex produce fits of similar quality. Including higher K_a transitions for the a-type, R-branch lines greatly increases the error of these fits. A previous study involving the trifluoroacetic acid\\cdotsformic acid complex published observed similar high K_a transitions, but did not include them in the published fit. We hope to shed more light on this conundrum. Similarities to other double-well potential minimum systems will be discussed. Martinache, L.; Kresa, W.; Wegener, M.;, Vonmont, U.; and Bauder, A. Chem. Phys. 148 (1990) 129-140.

  9. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata).

    PubMed

    Azizi, Sheida; Nematollahi, Mohammad Ali; Mojazi Amiri, Bagher; Vélez, Emilio J; Lutfi, Esmail; Navarro, Isabel; Capilla, Encarnación; Gutiérrez, Joaquim

    2016-01-01

    Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA) to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs). This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs), MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates the importance of

  10. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata)

    PubMed Central

    Azizi, Sheida; Nematollahi, Mohammad Ali; Mojazi Amiri, Bagher; Vélez, Emilio J.; Lutfi, Esmail; Navarro, Isabel; Capilla, Encarnación; Gutiérrez, Joaquim

    2016-01-01

    Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA) to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs). This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs), MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates the importance of

  11. Conformation of Lysine Vasopressin: A Comparison with Oxytocin

    PubMed Central

    Walter, Roderich; Glickson, J. D.; Schwartz, I. L.; Havran, R. T.; Meienhofer, Johannes; Urry, D. W.

    1972-01-01

    Starting with assignments of proton nuclear magnetic resonance previously made for oxytocin in deuterated dimethylsulfoxide at 220 MHz, we have assigned resonances for the mammalian antidiuretic hormone, lysine vasopressin. The results demonstrate that spectral assignments of neurohypophyseal hormones and their congeners can, within certain limits, be derived from each other. Comparison of the spectra of lysine vasopressin and oxytocin suggests that the gross backbone conformations of their 20-membered ring components are for the most part similar in deuterated dimethylsulfoxide, whereas the C-terminal acyclic amino-acid sequence of lysine vasopressin is more flexible than that of oxytocin. PMID:4505670

  12. Mutants of Saccharomycopsis lipolytica defective in lysine catabolism.

    PubMed Central

    Gaillardin, C; Fournier, P; Sylvestre, G; Heslot, H

    1976-01-01

    Wild-type strains of Saccharomycopsis lipolytica are able to use lysine as a carbon or a nitrogen source, but not as a unique source for both. Mutants were selected that could not use lysine either as a nitrogen or as a carbon source. Some of them, however, utilized N-6-acetyllysine or 5-aminovaleric acid. Many of the mutants appeared to be blocked in both utilizations, suggesting a unique pathway for lysine degradation (either as a carbon or as a nitrogen source). Genetic characterization of these mutants was achieved by complementation and recombination tests. PMID:1245461

  13. Microbial production of amino acids in Japan.

    PubMed

    Kumagai, H

    2000-01-01

    The microbial biotechnology of amino acids production which was developed and industrialized in Japan have been summarized. The amino acids include L-glutamic acid, L-lysine, L-threonine, L-aspartic acid, L-alanine, L-cysteine, L-dihydroxyphenylalanine, D-p-hydroxyphenyl-glycine, and hydroxy-L-proline.

  14. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics.

    PubMed

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L; Huber, Steven C; Zhao, Youfu

    2013-02-21

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence.

  15. A Chemical Proteomics Approach for Global Analysis of Lysine Monomethylome Profiling*

    PubMed Central

    Wu, Zhixiang; Cheng, Zhongyi; Sun, Mingwei; Wan, Xuelian; Liu, Ping; He, Tieming; Tan, Minjia; Zhao, Yingming

    2015-01-01

    Methylation of lysine residues on histone proteins is known to play an important role in chromatin structure and function. However, non-histone protein substrates of this modification remain largely unknown. An effective approach for system-wide analysis of protein lysine methylation, particularly lysine monomethylation, is lacking. Here we describe a chemical proteomics approach for global screening for monomethyllysine substrates, involving chemical propionylation of monomethylated lysine, affinity enrichment of the modified monomethylated peptides, and HPLC/MS/MS analysis. Using this approach, we identified with high confidence 446 lysine monomethylation sites in 398 proteins, including three previously unknown histone monomethylation marks, representing the largest data set of protein lysine monomethylation described to date. Our data not only confirms previously discovered lysine methylation substrates in the nucleus and spliceosome, but also reveals new substrates associated with diverse biological processes. This method hence offers a powerful approach for dynamic study of protein lysine monomethylation under diverse cellular conditions and in human diseases. PMID:25505155

  16. Arginine and Lysine Transporters Are Essential for Trypanosoma brucei

    PubMed Central

    Hürlimann, Daniel; Wirdnam, Corina; Haindrich, Alexander C.; Suter Grotemeyer, Marianne; González-Salgado, Amaia; Schmidt, Remo S.; Inbar, Ehud; Mäser, Pascal; Bütikofer, Peter; Zilberstein, Dan; Rentsch, Doris

    2017-01-01

    For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (Km 3.6 ± 0.4 μM) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arginine-β-naphthylamide, while lysine was inhibitory only at 100-times excess, and histidine or ornithine did not reduce arginine uptake rates significantly. TbAAT16-1 is a high affinity (Km 4.3 ± 0.5 μM) and highly selective L-lysine transporter and of the compounds tested, only L-lysine and thialysine were competing for L-lysine uptake. TbAAT5-3 and TbAAT16-1 are expressed in both procyclic and bloodstream form T. brucei and cMyc-tagged proteins indicate localization at the plasma membrane. RNAi-mediated down-regulation of TbAAT5 and TbAAT16 in bloodstream form trypanosomes resulted in growth arrest, demonstrating that TbAAT5-mediated arginine and TbAAT16-mediated lysine transport are essential for T. brucei. Growth of induced RNAi lines could partially be rescued by supplementing a surplus of arginine or lysine, respectively, while addition of both amino acids was less efficient. Single and double RNAi lines indicate that additional low affinity uptake systems for arginine and lysine are present in T. brucei. PMID:28045943

  17. Impact of improving dietary amino acid balance for lactating sows on efficiency of dietary amino acid utilization and transcript abundance of genes encoding lysine transporters in mammary tissue.

    PubMed

    Huber, L; de Lange, C F M; Ernst, C W; Krogh, U; Trottier, N L

    2016-11-01

    mobilization. Transcript abundance of several genes involved in Lys transport in mammary tissue did not differ between sows fed the LCP and HCP diets. Feeding lactating sows low-CP diets supplemented with CAA increases the efficiency of utilizing dietary Lys, Thr, Trp, and Val for milk protein production but is unrelated to abundance in mRNA of genes encoding Lys transport proteins in the mammary gland. Dietary Lys utilization for milk protein production in lactating sows appears to be optimized when crystalline Lys is included at a minimum of 0.10% in a diet containing 15.70% CP.

  18. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    PubMed

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  19. A novel potentiometric biosensor for determination of L-lysine in commercial pharmaceutical L-lysine tablet and capsule.

    PubMed

    Yarar, Saniye; Karakuş, Emine

    2016-01-01

    The construction of an L-lysine biosensor on ammonium-selective poly(vinylchloride) (PVC) membrane electrode is described in this study. The construction procedure occurs in two stages: (I) the preparation of ammonium-selective poly(vinylchloride) (PVC) membrane electrode and (II) the chemical immobilization of lysine oxidase on this ammonium-selective electrode by using glutaraldehyde. The ammonium ions produced after enzymatic reaction were determined potentiometrically. The sensitivity of the lysine biosensor against ammonium ions and lysine were studied. The response time, linear working range, reproducibility and life time of the biosensor were also determined. The interfering effect of other amino acids on the biosensor performance was also studied and potentiometric selectivity coefficients were calculated. Although the biosensor responded mainly against tyrosine, a lot of amino acids and ascorbic acid that can be present in some real samples did not show any important interference. Additionally, lysine assay in commercial pharmaceutical lysine tablets and capsules was also successfully carried out. The results were in good agreement with previously reported values.

  20. Lysine conservation and context in TGFbeta and Wnt signaling suggest new targets and general themes for posttranslational modification.

    PubMed

    Konikoff, Charlotte E; Wisotzkey, Robert G; Newfeld, Stuart J

    2008-10-01

    TGFbeta and Wnt pathways play important roles in the development of animals from sponges to humans. In both pathways posttranslational modification as a means of regulating their function, such as lysine modification by ubiquitination and sumoylation, has been observed. However, a gap exists between the immunological observation of posttranslational modification and the identification of the target lysine. To fill this gap, we conducted a phylogenetic analysis of lysine conservation and context in TGFbeta and Wnt pathway receptors and signal transducers and suggest numerous high-probability candidates for posttranslational modification. Further comparison of results from both pathways suggests two general features for biochemical regulation of intercellular signaling: receptors are less frequent targets for modification than signal transduction agonists, and a lysine adjacent to an upstream hydrophobic residue may be a preferred context for modification. Overall the results suggest numerous applications for an evolutionary approach to the biochemical regulation of developmental pathways, including (1) streamlining of the identification of the target lysine, (2) determination of when members of a multigene family acquire distinct activities, (3) application to any conserved protein family, and (4) application to any modification of a specific amino acid.

  1. Lysine Conservation and Context in TGFβ and Wnt Signaling Suggest New Targets and General Themes for Posttranslational Modification

    PubMed Central

    Konikoff, Charlotte E.; Wisotzkey, Robert G.; Newfeld, Stuart J.

    2009-01-01

    TGFβ and Wnt pathways play important roles in the development of animals from sponges to humans. In both pathways posttranslational modification as a means of regulating their function, such as lysine modification by ubiquitination and sumoylation, has been observed. However, a gap exists between the immunological observation of posttranslational modification and the identification of the target lysine. To fill this gap, we conducted a phylogenetic analysis of lysine conservation and context in TGFβ and Wnt pathway receptors and signal transducers and suggest numerous high-probability candidates for posttranslational modification. Further comparison of results from both pathways suggests two general features for biochemical regulation of intercellular signaling: receptors are less frequent targets for modification than signal transduction agonists, and a lysine adjacent to an upstream hydrophobic residue may be a preferred context for modification. Overall the results suggest numerous applications for an evolutionary approach to the biochemical regulation of developmental pathways, including (1) streamlining of the identification of the target lysine, (2) determination of when members of a multigene family acquire distinct activities, (3) application to any conserved protein family, and (4) application to any modification of a specific amino acid. PMID:18797952

  2. Amino acid composition, including key derivatives of eccrine sweat: potential biomarkers of certain atopic skin conditions.

    PubMed

    Mark, Harker; Harding, Clive R

    2013-04-01

    The free amino acid (AA) composition of eccrine sweat is different from other biological fluids, for reasons which are not properly understood. We undertook the detailed analysis of the AA composition of freshly isolated pure human eccrine sweat, including some of the key derivatives of AA metabolism, to better understand the key biological mechanisms governing its composition. Eccrine sweat was collected from the axillae of 12 healthy subjects immediately upon formation. Free AA analysis was performed using an automatic AA analyser after ninhydrin derivatization. Pyrrolidine-5-carboxylic acid (PCA) and urocanic acid (UCA) levels were determined using GC/MS. The free AA composition of sweat was dominated by the presence of serine accounting for just over one-fifth of the total free AA composition. Glycine was the next most abundant followed by PCA, alanine, citrulline and threonine, respectively. The data obtained indicate that the AA content of sweat bears a remarkable similarity to the AA composition of the epidermal protein profilaggrin. This protein is the key source of free AAs and their derivatives that form a major part of the natural moisturizing factor (NMF) within the stratum corneum (SC) and plays a major role in maintaining the barrier integrity of human skin. As perturbations in the production of NMF can lead to abnormal barrier function and can arise as a consequence of filaggrin genotype, we propose the quantification of AAs in sweat may serve as a non-invasive diagnostic biomarker for certain atopic skin conditions, that is, atopic dermatitis (AD).

  3. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    SciTech Connect

    Dwyer, B.P. )

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  4. Biofortification of rice with lysine using endogenous histones.

    PubMed

    Wong, H W; Liu, Q; Sun, S S M

    2015-02-01

    Rice is the most consumed cereal grain in the world, but deficient in the essential amino acid lysine. Therefore, people in developing countries with limited food diversity who rely on rice as their major food source may suffer from malnutrition. Biofortification of stable crops by genetic engineering provides a fast and sustainable method to solve this problem. In this study, two endogenous rice lysine-rich histone proteins, RLRH1 and RLRH2, were over-expressed in rice seeds to achieve lysine biofortification. Their protein sequences passed an allergic sequence-based homology test. Their accumulations in rice seeds were raised to a moderate level by the use of a modified rice glutelin 1 promoter with lowered expression strength to avoid the occurrence of physiological abnormalities like unfolded protein response. The expressed proteins were further targeted to protein storage vacuoles for stable storage using a glutelin 1 signal peptide. The lysine content in the transgenic rice seeds was enhanced by up to 35 %, while other essential amino acids remained balanced, meeting the nutritional standards of the World Health Organization. No obvious unfolded protein response was detected. Different degrees of chalkiness, however, were detected in the transgenic seeds, and were positively correlated with both the levels of accumulated protein and lysine enhancement. This study offered a solution to the lysine deficiency in rice, while at the same time addressing concerns about food safety and physiological abnormalities in biofortified crops.

  5. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2-deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  6. Molecular Basis for Lysine Specificity in the Yeast Ubiquitin-Conjugating Enzyme Cdc34 ▿

    PubMed Central

    Sadowski, Martin; Suryadinata, Randy; Lai, Xianning; Heierhorst, Jörg; Sarcevic, Boris

    2010-01-01

    Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination. PMID:20194622

  7. Structure-function validation of high lysine analogs of alpha-hordothionin designed by protein modeling.

    PubMed

    Rao, A G; Hassan, M; Hempel, J C

    1994-12-01

    Cereal grains and legume seeds, which are key protein sources for the vegetarian diet, are generally deficient in essential amino acids. Maize, in particular, is deficient in lysine. The inherent lack of lysine-rich proteins in maize has necessitated the search for heterologous proteins enriched in this amino acid, the isolation of the corresponding gene and its ultimate introduction into maize through plant transformation techniques. However, a rate-limiting step to this strategy has been the availability of plant-derived lysine-rich proteins. An appealing solution to the problem is to artificially increase the lysine content of a given protein by mutating appropriate residues to lysine. Here, we expound this strategy, starting with the protein alpha-hordothionin that is derived from barley seeds and consists of five lysine residues in a total of 45 amino acids (11% lysine). To facilitate rational substitutions, the 3-D structure of the protein has been determined by homology modeling with crambin. Based on this model, we have identified surface residues amenable to substitution with lysine. Furthermore, the acceptability of the mutations has been validated through the synthesis and characterization of the derivatives. To this end, our approach has permitted the creation of a modified alpha-hordothionin protein that has a lysine content of approximately 27% and retains the antifungal activity of the wild-type protein.

  8. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks.

    PubMed

    Rardin, Matthew J; He, Wenjuan; Nishida, Yuya; Newman, John C; Carrico, Chris; Danielson, Steven R; Guo, Ailan; Gut, Philipp; Sahu, Alexandria K; Li, Biao; Uppala, Radha; Fitch, Mark; Riiff, Timothy; Zhu, Lei; Zhou, Jing; Mulhern, Daniel; Stevens, Robert D; Ilkayeva, Olga R; Newgard, Christopher B; Jacobson, Matthew P; Hellerstein, Marc; Goetzman, Eric S; Gibson, Bradford W; Verdin, Eric

    2013-12-03

    Reversible posttranslational modifications are emerging as critical regulators of mitochondrial proteins and metabolism. Here, we use a label-free quantitative proteomic approach to characterize the lysine succinylome in liver mitochondria and its regulation by the desuccinylase SIRT5. A total of 1,190 unique sites were identified as succinylated, and 386 sites across 140 proteins representing several metabolic pathways including β-oxidation and ketogenesis were significantly hypersuccinylated in Sirt5(-/-) animals. Loss of SIRT5 leads to accumulation of medium- and long-chain acylcarnitines and decreased β-hydroxybutyrate production in vivo. In addition, we demonstrate that SIRT5 regulates succinylation of the rate-limiting ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) both in vivo and in vitro. Finally, mutation of hypersuccinylated residues K83 and K310 on HMGCS2 to glutamic acid strongly inhibits enzymatic activity. Taken together, these findings establish SIRT5 as a global regulator of lysine succinylation in mitochondria and present a mechanism for inhibition of ketogenesis through HMGCS2.

  9. Fatty acid composition including cis-9, trans-11 CLA of cooked ground lamb

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is available on effect of cooking on beneficial fatty acids such as conjugated linoleic acid (CLA) and n-3 polyunsaturated fatty acids (PUFA). The objective of this study was to examine impact of cooking on the FA composition of ground lamb of two different muscles. Samples were p...

  10. [Antiinflammatory therapy in ostheoarthritis including omega 3 and omega 6 fatty acids].

    PubMed

    Dzielska-Olczak, Małgorzata; Nowak, Jerzy Z

    2012-05-01

    Osteoarthritis (ostheoarthrosis, OA) is characterized by progressive destruction of articular cartilage, remodeling of the periarticular bone and inflammation of the synovial membrane. In patients occur joints pain, impaired joints motion and disability. The results of many studies indicate an inflammation as foundation of this disease. The management of OA include a combination of pharmacological treatments and nonpharmacological interventions. Pharmacological treatments include used paracetamol, nonsteroidal anti-inflammatory drugs (NSAIDs) and chondroprotectives (glucosamine, chondroitin sulfate and so on). NSAIDs long-term use associated with serious adverse effects. OA symptoms are effectively reduced by nutrients such omega 3 and omega 6 fatty acids (PUFAs as EPA, DHA), which decrease the need for non-steroidal drugs and may less adverse events. They exerts, particularly EPA, anti-inflammatory effect, inhibit catabolic processes, stimulate the anabolic process in the cartilage in the joint. Many different evidence validate that omega 3 alleviate the progression of osteoarthritis and have exciting therapeutic potential for preventing cartilage degradation associated with chronic inflammatory in joints.

  11. Characterization of a second lysine decarboxylase isolated from Escherichia coli.

    PubMed Central

    Kikuchi, Y; Kojima, H; Tanaka, T; Takatsuka, Y; Kamio, Y

    1997-01-01

    We report here on the existence of a new gene for lysine decarboxylase in Escherichia coli K-12. The hybridization experiments with a cadA probe at low stringency showed that the homologous region of cadA was located in lambda Kohara phage clone 6F5 at 4.7 min on the E. coli chromosome. We cloned the 5.0-kb HindIII fragment of this phage clone and sequenced the homologous region of cadA. This region contained a 2,139-nucleotide open reading frame encoding a 713-amino-acid protein with a calculated molecular weight of 80,589. Overexpression of the protein and determination of its N-terminal amino acid sequence defined the translational start site of this gene. The deduced amino acid sequence showed 69.4% identity to that of lysine decarboxylase encoded by cadA at 93.7 min on the E. coli chromosome. In addition, the level of lysine decarboxylase activity increased in strains carrying multiple copies of the gene. Therefore, the gene encoding this lysine decarboxylase was designated Idc. Analysis of the lysine decarboxylase activity of strains containing cadA, ldc, or cadA ldc mutations indicated that ldc was weakly expressed under various conditions but is a functional gene in E. coli. PMID:9226257

  12. Basis for the equilibrium constant in the interconversion of l-lysine and l-beta-lysine by lysine 2,3-aminomutase.

    PubMed

    Chen, Dawei; Tanem, Justinn; Frey, Perry A

    2007-02-01

    l-beta-lysine and beta-glutamate are produced by the actions of lysine 2,3-aminomutase and glutamate 2,3-aminomutase, respectively. The pK(a) values have been titrimetrically measured and are for l-beta-lysine: pK(1)=3.25 (carboxyl), pK(2)=9.30 (beta-aminium), and pK(3)=10.5 (epsilon-aminium). For beta-glutamate the values are pK(1)=3.13 (carboxyl), pK(2)=3.73 (carboxyl), and pK(3)=10.1 (beta-aminium). The equilibrium constants for reactions of 2,3-aminomutases favor the beta-isomers. The pH and temperature dependencies of K(eq) have been measured for the reaction of lysine 2,3-aminomutase to determine the basis for preferential formation of beta-lysine. The value of K(eq) (8.5 at 37 degrees C) is independent of pH between pH 6 and pH 11; ruling out differences in pK-values as the basis for the equilibrium constant. The K(eq)-value is temperature-dependent and ranges from 10.9 at 4 degrees C to 6.8 at 65 degrees C. The linear van't Hoff plot shows the reaction to be enthalpy-driven, with DeltaH degrees =-1.4 kcal mol(-1) and DeltaS degrees =-0.25 cal deg(-1) mol(-1). Exothermicity is attributed to the greater strength of the bond C(beta)-N(beta) in l-beta-lysine than C(alpha)-N(alpha) in l-lysine, and this should hold for other amino acids.

  13. l-lysine production by Bacillus methanolicus: Genome-based mutational analysis and l-lysine secretion engineering.

    PubMed

    Nærdal, Ingemar; Netzer, Roman; Irla, Marta; Krog, Anne; Heggeset, Tonje Marita Bjerkan; Wendisch, Volker F; Brautaset, Trygve

    2017-02-20

    Bacillus methanolicus is a methylotrophic bacterium with an increasing interest in academic research and for biotechnological applications. This bacterium was previously applied for methanol-based production of l-glutamate, l-lysine and the five-carbon diamine cadaverine by wild type, classical mutant and recombinant strains. The genomes of two different l-lysine secreting B. methanolicus classical mutant strains, NOA2#13A52-8A66 and M168-20, were sequenced. We focused on mutational mapping in genes present in l-lysine and other relevant amino acid biosynthetic pathways, as well as in the primary cell metabolism important for precursor supply. In addition to mutations in the aspartate pathway genes dapG, lysA and hom-1, new mutational target genes like alr, proA, proB1, leuC, odhA and pdhD were identified. Surprisingly, no mutations were found in the putative l-lysine transporter gene lysE(MGA3). Inspection of the wild type B. methanolicus strain PB1 genome sequence identified two homologous putative l-lysine transporter genes, lysE(PB1) and lysE2(PB1). The biological role of these putative l-lysine transporter genes, together with the heterologous l-lysine exporter gene lysE(Cg) from Corynebacterium glutamicum, were therefore investigated. Our results demonstrated that the titer of secreted l-lysine in B. methanolicus was significantly increased by overexpression of lysE(Cg) while overexpression of lysE(MGA3), lysE(PB1) and lysE2(PB1) had no measurable effect.

  14. Effects of rumen-undegradable protein sources and supplemental 2-hydroxy-4-(methylthio)-butanoic acid and lysine-HCl on lactation performance in dairy cows.

    PubMed

    Johnson-VanWieringen, L M; Harrison, J H; Davidson, D; Swift, M L; von Keyserlingk, M A G; Vazquez-Anon, M; Wright, D; Chalupa, W

    2007-11-01

    One hundred primiparous and multiparous Holstein cows were used in an experiment to evaluate the effect of supplementing diets with either a plant- or an animal-based source of rumen-undegradable protein (RUP), with or without AA supplementation, during the transition period and early lactation on milk production response. The experimental design was a randomized block design with approximately one-third of the cows being primiparous. Cows were assigned to 1 of 4 prepartum diets introduced 3 wk before the expected calving date and switched to the corresponding postpartum diet at calving. Diets 1 (AMI) and 2 (AMI+) included a vegetable RUP source (heat- and lignosulfonate-treated canola meal), with diet 2 containing supplemental Lys x HCl and Met hydroxy analog sources [D,L-2 hydroxy-4-(methylthio)-butanoic acid; Alimet feed supplement]. Diets 3 (PRO) and 4 (PRO+) consisted of a blend of animal RUP sources (blood meal, fish meal, feather meal, and porcine meat and bone meal), with diet 4 containing supplemental Lys x HCl and Met hydroxy analog sources [D,L-2 hydroxy-4-(methylthio)-butanoic acid; Alimet]. During the first 4 wk of lactation, dry matter intake was less when synthetic Lys x HCl and Alimet were supplemented, but this effect was no longer evident in wk 5 to 9 of the experiment. Interestingly, despite the initial decrease in dry matter intake in the cows fed AA-supplemented diets, there was no effect of treatment on milk production or the ratio of fat-corrected milk to dry matter intake throughout the 17 wk of the study. Undegradable protein source (vegetable vs. animal) did not affect dry matter intake, milk production, or 3.5% fat-corrected milk production for the first 17 wk of lactation. The results of this study indicate that heat- and lignosulfonate-treated canola meal can be used as a source of undegradable protein in place of high-quality rumen-undegradable animal protein sources without negative effects on milk production when diets are equivalent

  15. Acidity constant determination of novel drug precursor benzothiazolon derivatives including acyl and piperazine moieties

    NASA Astrophysics Data System (ADS)

    Sıdır, İsa; Gülseven Sıdır, Yadigar; Berber, Halil

    2013-07-01

    In this study, protonation and deprotonation behaviors of eight new drug precursor benzothiazolon derivatives in all of acidic and basic scale (super acidic, pH, super basic regions) are analyzed by using UV-visible spectrophotometric technique. Acidity constants (pKa), elucidation of the structure and protonation mechanisms of the studied molecules are obtained. Substituent effect on acidity constant values is discussed. These molecules are protonated from oxygen atom of acetamide group in the keto form. The protonation is found to be considerably contributed by the keto form.

  16. Influence of Fatty Acid Precursors, Including Food Preservatives, on the Growth and Fatty Acid Composition of Listeria monocytogenes at 37 and 10°C ▿

    PubMed Central

    Julotok, Mudcharee; Singh, Atul K.; Gatto, Craig; Wilkinson, Brian J.

    2010-01-01

    Listeria monocytogenes is a food-borne pathogen that grows at refrigeration temperatures and increases its content of anteiso-C15:0 fatty acid, which is believed to be a homeoviscous adaptation to ensure membrane fluidity, at these temperatures. As a possible novel approach for control of the growth of the organism, the influences of various fatty acid precursors, including branched-chain amino acids and branched- and straight-chain carboxylic acids, some of which are also well-established food preservatives, on the growth and fatty acid composition of the organism at 37°C and 10°C were studied in order to investigate whether the organism could be made to synthesize fatty acids that would result in impaired growth at low temperatures. The results indicate that the fatty acid composition of L. monocytogenes could be modulated by the feeding of branched-chain amino acid, C4, C5, and C6 branched-chain carboxylic acid, and C3 and C4 straight-chain carboxylic acid fatty acid precursors, but the growth-inhibitory effects of several preservatives were independent of effects on fatty acid composition, which were minor in the case of preservatives metabolized via acetyl coenzyme A. The ability of a precursor to modify fatty acid composition was probably a reflection of the substrate specificities of the first enzyme, FabH, in the condensation of primers of fatty acid biosynthesis with malonyl acyl carrier protein. PMID:20048057

  17. Complexation des acides aminés basiques arginine, histidine et lysine avec l'ADN plasmidique en solution aqueuse : participation à la capture de radicaux sous irradiation X à 1,5 keV

    NASA Astrophysics Data System (ADS)

    Tariq Khalil, Talat; Taillefumier, Baptiste; Boulanouar, Omar; Mavon, Christophe; Fromm, Michel

    2016-09-01

    L'environnement chimique de l'ADN en situation biologique est complexe notam-ment en raison de la présence d'histones, protéines nucléaires, associées en quantité approximativement égales à l'ADN pour former la chromatine. Les histones possèdent de nombreux radicaux basiques arginine et lysine chargés positivement et dont la majorité se trouve sur les chaînes émergentes, l'ADN présente quant à lui des charges négatives sur ses groupements phosphates localisés tout au long de la double hélice. Dans cette étude, la complexité de la structure de la chromatine nucléaire est dans un premier temps mimée en solution aqueuse par la formation de complexes entre un ADN plasmidique sonde et les trois acides aminés basiques, Arg, His, Lys, qui, mis à part His, sont protonés au pH physiologique. Ces acides aminés libres en solution sont réputés être des capteurs efficaces de radicaux libres, notamment pour le radical hydroxyle, conférant ainsi un pouvoir protecteur vis-à-vis des effets indirects sur l'ADN en situation d'exposition aux rayonnements ionisants. A concentration fixée, les capacités de capture des acides aminés libres, σ, pour le radical hydroxyle sont typiquement les suivantes σHis ≈σArg > σLys (σLys ≈ 0,1 × σArg). Nous avons mesuré les taux de cassures simple brin par plasmide et par Gray (χ) lors d'expositions de solutions aqueuses de complexes [acide aminé - ADN plasmidique] aux rayons X ultra-mous (1,5 keV). A concentrations égales, les trois acides aminés complexés et présents en large excès ne manifestent pas une capacité de protection de l'ADN proportionnelle à leur capacité de capture libre et en solution ; on trouve en effet des taux de cassures dans l'ordre suivant χHis > χArg > χLys (χLys ≈ 0,01 χArg). Après avoir détaillé le mode opératoire de ces mesures, nous analyserons sur des bases bibliographiques, les modes spécifiques d'interaction des acides aminés basiques avec l'ADN. La sp

  18. The borohydride-reducible compounds of human aortic elastin. Demonstration of a new cyclic amino acid in alkali hydrolysate, and changes with age and in patients with annulo-aortic ectasia including one with Marfan syndrome.

    PubMed Central

    Halme, T; Jutila, M; Vihersaari, T; Oksman, P; Light, N D; Penttinen, R

    1985-01-01

    Human aortic elastin reduced with [3H]borohydride was analysed by ion-exchange chromatography after alkali or acid hydrolysis. Alkali hydrolysates of elastins contained a radioactive peak that was eluted between proline and leucine. This peak was not present in foetal elastin, but its proportion increased steadily during aging. Aortic samples from patients with annulo-aortic ectasia (aneurysm of the ascending aorta), including one with classical Marfan syndrome, contained less elastin (CNBr-insoluble material) than did the age-matched controls. The proportion of radioactivity in the new peak of all these aortas was low when compared with age-matched controls. Gas-chromatographic/mass-spectrometric analysis suggested that it contained a cyclic derivative of a hydrated aldol-condensation product. The concentration of the cross-link precursors, lysine aldehyde and aldol-condensation product (estimated from the acid-hydrolysis product 6-chloronorleucine and the acid-degradation product of reduced aldol-condensation product) was high in very young aortas but remained quite stable after childhood. No differences were observed in cross-link profiles of acid hydrolysates between pathological and control aortas. A low proportion of radioactivity in the new peak may indicate the presence of young or immature elastin in the pathological aortas. PMID:4084226

  19. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase

    PubMed Central

    Sahonero-Canavesi, Diana X.; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M.; Geiger, Otto

    2016-01-01

    Summary Phospholipids are well known for their membrane forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth. PMID:25711932

  20. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    PubMed

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.

  1. Real-time monitoring of matrix acidizing including the effects of diverting agents

    SciTech Connect

    Hill, A.D.; Zhu, D.

    1996-05-01

    Real-time monitoring of the injection rate and pressure during matrix acidizing provides operators with a way to determine the changing skin factor as stimulation proceeds. Current methods are based either on the assumption of steady-state flow in the region around the wellbore affected by acid injection or on computer solution of the transient flow equations describing the unsteady reservoir flow process occurring during acidizing. In this paper, a new method for real-time monitoring of matrix acidizing, the inverse injectivity vs. superposition time function plot, is presented. This new method can be applied with a spreadsheet computer program or a programmable calculator and accounts for the transient flow effects occurring during matrix acidizing at multiple rates and injection pressures. The evolving skin factor during a matrix treatment is readily obtained from the diagnostic plot. Hypothetical examples show how the inverse injectivity plot can be used to assess the efficiency of stimulation and diversion. Comparisons with previously presented field cases show the new method to be a simple and accurate means of monitoring the evolving skin factor during matrix acidizing.

  2. Lysine metabolism in antisense C-hordein barley grains.

    PubMed

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A; Medici, Leonardo O; Vincze, Eva; Kozak, Marcin; Lea, Peter J; Azevedo, Ricardo A

    2015-02-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with increased lysine, methionine and threonine contents. The objective of the study was to investigate the possible changes in the regulation of key enzymes of the aspartate metabolic pathway and the contents of aspartate-derived amino acids in the nontransgenic line (Hordeum vulgare L. cv. Golden Promise) and five antisense C-hordein transgenic barley lines. Considering the amounts of soluble and protein-bound aspartate-derived amino acids together with the analysis of key enzymes of aspartate metabolic pathway, we suggest that the C-hordein suppression did not only alter the metabolism of at least one aspartate-derived amino acid (threonine), but major changes were also detected in the metabolism of lysine and methionine. Modifications in the activities and regulation of aspartate kinase, dihydrodipicolinate synthase and homoserine dehydrogenase were observed in most transgenic lines. Furthermore the activities of lysine α-ketoglutarate reductase and saccharopine dehydrogenase were also altered, although the extent varied among the transgenic lines.

  3. Controlled expression and structural organization of a Lactococcus lactis bacteriophage lysin encoded by two overlapping genes.

    PubMed Central

    Shearman, C A; Jury, K L; Gasson, M J

    1994-01-01

    The phi vML3 bacteriophage lysin is specific for lactococci and could be used to promote enzyme release during cheese manufacture. The level of lysin expression from the cloned gene using its own upstream sequences is very low. Expression in Escherichia coli by using a synthetic hybrid lysin gene and a series of BAL 31 deletions of the original cloned DNA fragment suggested that the start of the gene had previously been incorrectly assigned. Reevaluation of homology between the lysin and Bacillus subtilis PZA protein 15 led to the identification of a new potential ribosome binding site (RBS). A 0.72-kb PCR-generated fragment including this RBS and the complete lysin gene was expressed and inducibly controlled. The translational start of the lysin gene was identified as an isoleucine codon, and this may lead to a low translation rate. During the analysis of the BAL 31 deletion fragments, two proteins of 20 and 8 kDa were shown to be expressed from the originally defined lysin gene. The DNA sequence has a second open reading frame with a good RBS and two potential start methionines. The smaller lysin protein was isolated, and the N terminus was sequenced, confirming that one methionine codon acted as the start of a second gene. The larger lysin protein has homology with lysozymes. The smaller lysin protein has some features resembling those of a holin. The possible roles of these two proteins in lysis of lactococci are discussed. Images PMID:7944354

  4. Exploration of the binding modes of buffalo PGRP1 receptor complexed with meso-diaminopimelic acid and lysine-type peptidoglycans by molecular dynamics simulation and free energy calculation.

    PubMed

    Sahoo, Bikash Ranjan; Dubey, Praveen Kumar; Goyal, Shubham; Bhoi, Gopal Krushna; Lenka, Santosh Kumar; Maharana, Jitendra; Pradhan, Sukanta Kumar; Kataria, Ranjit Singh

    2014-09-05

    The peptidoglycan recognition proteins (PGRPs) are the key components of innate-immunity, and are highly specific for the recognition of bacterial peptidoglycans (PGN). Among different mammalian PGRPs, the PGRP1 binds to murein PGN of Gram-positive bacteria (lysine-type) and also have bactericidal activity towards Gram-negative bacteria (diaminopimelic acid or Dap-type). Buffaloes are the major sources of milk and meat in Asian sub-continents and are highly exposed to bacterial infections. The PGRP activates the innate-immune signaling, but their studies has been confined to limited species due to lack of structural and functional information. So, to understand the structural constituents, 3D model of buffalo PGRP1 (bfPGRP1) was constructed and conformational and dynamics properties of bfPGRP1 was studied. The bfPGRP1 model highly resembled human and camel PGRP structure, and shared a highly flexible N-terminus and centrally placed L-shaped cleft. Docking simulation of muramyl-tripeptide, tetrapeptide, pentapeptide-Dap-(MTP-Dap, MTrP-Dap and MPP-Dap) and lysine-type (MTP-Lys, MTrP-Lys and MPP-Lys) in AutoDock 4.2 and ArgusLab 4.0.1 anticipated β1, α2, α4, β4, and loops connecting β1-α2, α2-β2, β3-β4 and α4-α5 as the key interacting domains. The bfPGRP1-ligand complex molecular dynamics simulation followed by free binding energy (BE) computation conceded BE values of -18.30, -35.53, -41.80, -25.03, -24.62 and -22.30 kJ mol(-1) for MTP-Dap, MTrP-Dap, MPP-Dap, MTP-Lys, MTrP-Lys and MPP-Lys, respectively. The groove-surface and key binding residues involved in PGN-Dap and Lys-type interaction intended by the molecular docking, and were also accompanied by significant BE values directed their importance in pharmacogenomics, and warrants further in vivo studies for drug targeting and immune signaling pathways exploration.

  5. Sugar Substrates for l-Lysine Fermentation by Ustilago maydis

    PubMed Central

    Sánchez-Marroquín, A.; Ledezma, M.; Carreño, R.

    1970-01-01

    The extracellular production of l-lysine in media with cane sugar, blackstrap molasses, or clarified sugar-cane juice by a previously obtained mutant of Ustilago maydis was studied. Enzymatically inverted clarified juice (medium J-3) gave 2.9 g of lysine per liter under the following conditions: inoculum, 5%; pH 5.8; temperature, 30 C; KLa in the fermentors, 0.41 mmoles of O2 per liter per min; fermentation time, 72 hr. The concentrate, obtained by direct evaporation and drying of the fermentation broth, could be used as a possible feed supplement because of its amino-acid and vitamin content. PMID:5485081

  6. Case Studies in Systems Chemistry. Final Report. [Includes Complete Case Study, Carboxylic Acid Equilibria

    ERIC Educational Resources Information Center

    Fleck, George

    This publication was produced as a teaching tool for college chemistry. The book is a text for a computer-based unit on the chemistry of acid-base titrations, and is designed for use with FORTRAN or BASIC computer systems, and with a programmable electronic calculator, in a variety of educational settings. The text attempts to present computer…

  7. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    PubMed

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.

  8. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G).

    PubMed

    Han, Ruizhi; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian

    2013-07-01

    In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of L-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.97 g/l, which was 64.2% higher than that (1.20 g/l) produced by the wild-type CGTase. The reaction kinetics analysis confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, the four mutants had relatively lower cyclization activities and higher disproportionation activities, which was favorable for AA-2G synthesis. The mechanism responsible for the enhanced substrate specificity was further explored by structure modeling and it was indicated that the enhancement of maltodextrin specificity may be due to the short residue chain and the removal of hydrogen bonding interactions between the side chain of residue 47 and the sugar at -3 subsite. Here the obtained mutant CGTases, especially the K47L, has a great potential in the production of AA-2G with maltodextrin as a cheap and easily soluble substrate.

  9. Novel Engineered Peptides of a Phage Lysin as Effective Antimicrobials against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Thandar, Mya; Lood, Rolf; Winer, Benjamin Y.; Deutsch, Douglas R.; Euler, Chad W.

    2016-01-01

    Acinetobacter baumannii is a Gram-negative bacterial pathogen responsible for a range of nosocomial infections. The recent rise and spread of multidrug-resistant A. baumannii clones has fueled a search for alternative therapies, including bacteriophage endolysins with potent antibacterial activities. A common feature of these lysins is the presence of a highly positively charged C-terminal domain with a likely role in promoting outer membrane penetration. In the present study, we show that the C-terminal amino acids 108 to 138 of phage lysin PlyF307, named P307, alone were sufficient to kill A. baumannii (>3 logs). Furthermore, P307 could be engineered for improved activity, the most active derivative being P307SQ-8C (>5-log kill). Both P307 and P307SQ-8C showed high in vitro activity against A. baumannii in biofilms. Moreover, P307SQ-8C exhibited MICs comparable to those of levofloxacin and ceftazidime and acted synergistically with polymyxin B. Although the peptides were shown to kill by disrupting the bacterial cytoplasmic membrane, they did not lyse human red blood cells or B cells; however, serum was found to be inhibitory to lytic activity. In a murine model of A. baumannii skin infection, P307SQ-8C reduced the bacterial burden by ∼2 logs in 2 h. This study demonstrates the prospect of using peptide derivatives from bacteriophage lysins to treat topical infections and remove biofilms caused by Gram-negative pathogens. PMID:26856847

  10. Export of aquatic productivity, including highly unsaturated fatty acids, to terrestrial ecosystems via Odonata.

    PubMed

    Popova, Olga N; Haritonov, Anatoly Y; Sushchik, Nadezhda N; Makhutova, Olesia N; Kalachova, Galina S; Kolmakova, Anzhelika A; Gladyshev, Michail I

    2017-03-01

    Based on 31-year field study of the abundance and biomass of 18 species of odonates in the Barabinsk Forest-Steppe (Western Siberia, Russia), we quantified the contribution of odonates to the export of aquatic productivity to surrounding terrestrial landscape. Emergence varied from 0.8 to 4.9g of wet biomass per m(2) of land area per year. Average export of organic carbon was estimated to be 0.30g·m(-2)·year(-1), which is comparable with the average production of herbivorous terrestrial insects in temperate grasslands. Moreover, in contrast to terrestrial insects, emerging odonates contained high quantities of highly unsaturated fatty acids (HUFA), namely eicosapentaenoic acid (20:5n-3, EPA), and docosahexaenoic acid (22:6n-3, DHA), which are known to be essential for many terrestrial animals, especially for birds. The export of EPA+DHA by odonates was found to be 1.92-11.76mg·m(-2)·year(-1), which is equal to an average general estimation of the export of HUFA by emerging aquatic insects. Therefore, odonates appeared to be a quantitatively and qualitatively important conduit of aquatic productivity to forest-steppe ecosystem.

  11. Formation and inhibition of Nε-(carboxymethyl)lysine in saccharide-lysine model systems during microwave heating.

    PubMed

    Li, Lin; Han, Lipeng; Fu, Quanyi; Li, Yuting; Liang, Zhili; Su, Jianyu; Li, Bing

    2012-10-31

    N(ε)-(carboxymethyl) lysine (CML) is the most abundant advanced glycation end product (AGE), and frequently selected as an AGEs marker in laboratory studies. In this paper, the formation and inhibition of N(ε)-(carboxymethyl)lysine in saccharide-lysine model systems during microwave heating have been studied. The microwave heating treatment significantly promoted the formation of CML during Maillard reactions, which was related to the reaction temperature, time and type of saccharide. The order of CML formation for different saccharides was lactose > glucose > sucrose. Then, the inhibition effect on CML by five inhibitors was further examined. According to the results, ascorbic acid and tocopherol did not affect inhibition of CML, in contrast, thiamin, rutin and quercetin inhibited CML formation, and the inhibitory effects were concentration dependent.

  12. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.

    PubMed

    Rardin, Matthew J; Newman, John C; Held, Jason M; Cusack, Michael P; Sorensen, Dylan J; Li, Biao; Schilling, Birgit; Mooney, Sean D; Kahn, C Ronald; Verdin, Eric; Gibson, Bradford W

    2013-04-16

    Large-scale proteomic approaches have identified numerous mitochondrial acetylated proteins; however in most cases, their regulation by acetyltransferases and deacetylases remains unclear. Sirtuin 3 (SIRT3) is an NAD(+)-dependent mitochondrial protein deacetylase that has been shown to regulate a limited number of enzymes in key metabolic pathways. Here, we use a rigorous label-free quantitative MS approach (called MS1 Filtering) to analyze changes in lysine acetylation from mouse liver mitochondria in the absence of SIRT3. Among 483 proteins, a total of 2,187 unique sites of lysine acetylation were identified after affinity enrichment. MS1 Filtering revealed that lysine acetylation of 283 sites in 136 proteins was significantly increased in the absence of SIRT3 (at least twofold). A subset of these sites was independently validated using selected reaction monitoring MS. These data show that SIRT3 regulates acetylation on multiple proteins, often at multiple sites, across several metabolic pathways including fatty acid oxidation, ketogenesis, amino acid catabolism, and the urea and tricarboxylic acid cycles, as well as mitochondrial regulatory proteins. The widespread modification of key metabolic pathways greatly expands the number of known substrates and sites that are targeted by SIRT3 and establishes SIRT3 as a global regulator of mitochondrial protein acetylation with the capability of coordinating cellular responses to nutrient status and energy homeostasis.

  13. Protection of folic acid through encapsulation in mesoporous silica particles included in fruit juices.

    PubMed

    Ruiz-Rico, María; Pérez-Esteve, Édgar; Lerma-García, María J; Marcos, María D; Martínez-Máñez, Ramón; Barat, José M

    2017-03-01

    Folic acid (FA) is a synthetic vitamin commonly used for food fortification. However, its vulnerability to processing and storage implies loss of efficiency, which would induce over-fortification by processors to obtain a minimum dose upon consumption. Recent studies have indicated potential adverse effects of FA overdoses, and FA protection during processing and storage could lead to more accurate fortification. In addition, sustained vitamin release after consumption would help improve its metabolism. The objective of this work was to study controlled FA delivery and stability in fruit juices to reduce potential over-fortification risks by using gated mesoporous silica particles (MSPs). The obtained results indicated that FA encapsulation in MSPs significantly improved its stability and contributed to controlled release after consumption by modifying vitamin bioaccessibility. These results confirmed the suitability of MSPs as support for controlled release and protection of bioactive molecules in food matrices in different food production and storage stages.

  14. Rumen-protected methionine and lysine: effects on milk production and plasma amino acids of dairy cows with reference to metabolisable protein status.

    PubMed

    Awawdeh, Mofleh S

    2016-05-01

    Two experiments were conducted to study the effects of rumen-protected Met (RPM) alone or with rumen-protected Lys (RPL) on milk yield and plasma amino acids of dairy cows. In experiment 1, 24 multiparous Holstein cows (154 DIM) were assigned to one of 3 groups where each cow received 0 g/d of RPM and RPL (C), 30 g/d of RPM (M), or 30 g/d of RPM plus 25 g of RPL (ML). The study lasted for 8 weeks where milk yield and composition were determined weekly. Daily milk yield averaged 28·0, 27·8, and 29·7 kg/cow for the C, M, and ML groups, respectively. Dietary treatments had no effects (P ≥ 0·54) on milk contents of fat, lactose, solid non-fat or total solids. Milk protein content in the ML group was greater (P < 0·05) than the C and M groups. Plasma levels of all AA were not significantly (P ≥ 0·09) affected by supplemental RPL and/or RPM. In experiment 2, 30 multiparous Holstein cows (100 DIM) were assigned to one of 3 groups where each cow received 0 g/d of RPM and RPL (C), 50 g/d of RPM (M), or 50 g/d of RPM plus 25 g/d of RPL (ML). The study lasted for 5 weeks. Cows in the M (30·5 kg) and ML (31·4 kg) groups produced (P < 0·05) more milk than those of the C group (29·1 kg). Under conditions of this study, RPM plus RPL improved milk yield and protein contents of dairy cows and was better than supplying RPM alone. Response in milk yield to RPM and RPL was affected by the MP status of cows which deserves further investigation.

  15. Increased Lysine Content Is the Main Characteristic of the Soluble Form of the Polyamide Cyanophycin Synthesized by Recombinant Escherichia coli

    PubMed Central

    Frommeyer, Maja

    2013-01-01

    Cyanophycin, a polyamide of cyanobacterial or noncyanobacterial origin consisting of aspartate, arginine, and lysine, was synthesized in different recombinant strains of Escherichia coli expressing cphA from Synechocystis sp. strain PCC 6308 or PCC 6803, Anabaena sp. strain PCC 7120, or Acinetobacter calcoaceticus ADP1. The molar aspartate/arginine/lysine ratio of the water-soluble form isolated from a recombinant strain expressing CphA6308 was 1:0.5:0.5, with a lysine content higher than any ever described before. The water-insoluble form consisted instead of mainly aspartate and arginine residues and had a lower proportion of lysine, amounting to a maximum of only 5 mol%. It could be confirmed that the synthesis of soluble cyanobacterial granule polypeptide (CGP) is independent of the origin of cphA. Soluble CGP isolated from all recombinant strains contained a least 17 mol% lysine. The total CGP portion of cell dry matter synthesized by CphA6308 from recombinant E. coli was about 30% (wt/wt), including 23% (wt/wt) soluble CGP, by using terrific broth complex medium for cultivation at 30°C for 72 h. Enhanced production of soluble CGP instead of its insoluble form is interesting for further application and makes recombinant E. coli more attractive as a suitable source for the production of polyaspartic acid or dipeptides. In addition, a new low-cost, time-saving, effective, and common isolation procedure for mainly soluble CGP, suitable for large-scale application, was established in this study. PMID:23686266

  16. Fate of N-nitrosodimethylamine, trihalomethane and haloacetic acid precursors in tertiary treatment including biofiltration.

    PubMed

    Farré, Maria José; Reungoat, Julien; Argaud, Francois Xavier; Rattier, Maxime; Keller, Jürg; Gernjak, Wolfgang

    2011-11-01

    The presence of disinfection by-products (DBPs) such as trihalomethanes (THMs), haloacetic acids (HAAs) and N-nitrosamines in water is of great concern due to their adverse effects on human health. In this work, the removal of N-nitrosodimethylamine (NDMA), total THM and five HAA precursors from secondary effluent by biological activated carbon (BAC) is investigated at full and pilot scale. In the pilot plant two filter media, sand and granular activated carbon, are tested. In addition, we evaluate the influence of ozonation prior to BAC filtration on its performance. Among the bulk of NDMA precursors, the fate of four pharmaceuticals containing a dimethylamino moiety in the chemical structure are individually investigated. Both NDMA formation potential and each of the studied pharmaceuticals are dramatically reduced by the BAC even in the absence of main ozonation prior to the filtration. The low removal of NDMA precursors at the sand filtration in comparison to the removal of NDMA precursors at the BAC suggests that adsorption may play an important role on the removal of NDMA precursors by BAC. Contrary, the precursors for THM and HAA formation are reduced in both sand filtration and BAC indicating that the precursors for the formation of these DBPs are to some extent biodegradable.

  17. Amperometric biosensor based on diamond paste for the enantioanalysis of L-lysine.

    PubMed

    Stefan-van Staden, Raluca-Ioana; Nejem, R'afat Mahmoud; van Staden, Jacobus Frederick; Aboul-Enein, Hassan Y

    2012-05-15

    An amperometric biosensor was proposed for the enantioanalysis of L-lysine. The biosensor is based on the impregnation of L-lysine oxidase in diamond paste. The potential used for the determination of l-lysine was 650 mV. The biosensor exhibited a linear concentration range between 1 and 100 nmol/L with a limit of detection of 4 pmol/L. The selectivity of the biosensor is high over other amino acids, such as L-serine, L-leucine, L-aspartic acid, L-glutamic acid, histamine, glycine. The proposed biosensor can be applied for the determination of L-lysine in serum samples and pharmaceutical compounds.

  18. Lysine malonylation is elevated in type 2 diabetic mouse models and enriched in metabolic associated proteins.

    PubMed

    Du, Yipeng; Cai, Tanxi; Li, Tingting; Xue, Peng; Zhou, Bo; He, Xiaolong; Wei, Peng; Liu, Pingsheng; Yang, Fuquan; Wei, Taotao

    2015-01-01

    Protein lysine malonylation, a newly identified protein post-translational modification (PTM), has been proved to be evolutionarily conserved and is present in both eukaryotic and prokaryotic cells. However, its potential roles associated with human diseases remain largely unknown. In the present study, we observed an elevated lysine malonylation in a screening of seven lysine acylations in liver tissues of db/db mice, which is a typical model of type 2 diabetes. We also detected an elevated lysine malonylation in ob/ob mice, which is another model of type 2 diabetes. We then performed affinity enrichment coupled with proteomic analysis on liver tissues of both wild-type (wt) and db/db mice and identified a total of 573 malonylated lysine sites from 268 proteins. There were more malonylated lysine sites and proteins in db/db than in wt mice. Five proteins with elevated malonylation were verified by immunoprecipitation coupled with Western blot analysis. Bioinformatic analysis of the proteomic results revealed the enrichment of malonylated proteins in metabolic pathways, especially those involved in glucose and fatty acid metabolism. In addition, the biological role of lysine malonylation was validated in an enzyme of the glycolysis pathway. Together, our findings support a potential role of protein lysine malonylation in type 2 diabetes with possible implications for its therapy in the future.

  19. Lysine Malonylation Is Elevated in Type 2 Diabetic Mouse Models and Enriched in Metabolic Associated Proteins*

    PubMed Central

    Du, Yipeng; Cai, Tanxi; Li, Tingting; Xue, Peng; Zhou, Bo; He, Xiaolong; Wei, Peng; Liu, Pingsheng; Yang, Fuquan; Wei, Taotao

    2015-01-01

    Protein lysine malonylation, a newly identified protein post-translational modification (PTM), has been proved to be evolutionarily conserved and is present in both eukaryotic and prokaryotic cells. However, its potential roles associated with human diseases remain largely unknown. In the present study, we observed an elevated lysine malonylation in a screening of seven lysine acylations in liver tissues of db/db mice, which is a typical model of type 2 diabetes. We also detected an elevated lysine malonylation in ob/ob mice, which is another model of type 2 diabetes. We then performed affinity enrichment coupled with proteomic analysis on liver tissues of both wild-type (wt) and db/db mice and identified a total of 573 malonylated lysine sites from 268 proteins. There were more malonylated lysine sites and proteins in db/db than in wt mice. Five proteins with elevated malonylation were verified by immunoprecipitation coupled with Western blot analysis. Bioinformatic analysis of the proteomic results revealed the enrichment of malonylated proteins in metabolic pathways, especially those involved in glucose and fatty acid metabolism. In addition, the biological role of lysine malonylation was validated in an enzyme of the glycolysis pathway. Together, our findings support a potential role of protein lysine malonylation in type 2 diabetes with possible implications for its therapy in the future. PMID:25418362

  20. Lysine-overproducing mutants of Saccharomyces cerevisiae baker's yeast isolated in continuous culture.

    PubMed Central

    Gasent-Ramírez, J M; Benítez, T

    1997-01-01

    Saccharomyces cerevisiae baker's yeast mutants which produce 3 to 17 times as much lysine as the wild type, depending on the nitrogen source, have been selected. The baker's yeast strain was growth in a pH-regulated chemostat in minimal medium with proline as the nitrogen source, supplemented with increasing concentrations of the toxic analog of the lysine S-2-aminoethyl-L-cysteine (AEC). The lysine-overproducing mutants, which were isolated as AEC-resistant mutants, were also resistant to high external concentrations of lysine and to alpha-aminoadipate and seemed to be affected in the lysine biosynthetic pathway but not in the biosynthetic pathways of other amino acids. Lysine overproduction by one of the mutants seemed to be due to, at least, the loss of repression of the homocitrate synthase encoded by the LYS20 gene. The mutant grew slower than the wild type, and its dough-raising capacity was reduced in in vitro assays, probably due to the toxic effects of lysine accumulation or of an intermediate produced in the pathway. This mutant can be added as a food supplement to enrich the nutritive qualities of bakery products, and its resistance to alpha-aminoadipate, AEC, and lysine can be used as a dominant marker. PMID:9406398

  1. Reconfiguration of Transcriptional Control of Lysine Biosynthesis in Candida albicans Involves a Central Role for the Gcn4 Transcriptional Activator

    PubMed Central

    Priyadarshini, Yumnam

    2016-01-01

    ABSTRACT Evolution of transcriptional control is essential for organisms to cope with diversification into a spectrum of environments, including environments with limited nutrients. Lysine biosynthesis in fungi occurs in eight enzymatic steps. In Saccharomyces cerevisiae, amino acid starvation elicits the induction of LYS gene expression, mediated by the master regulator Gcn4 and the pathway-specific transcriptional regulator Lys14. Here, we have shown that the activation of LYS gene expression in the human fungal pathogen Candida albicans is predominantly controlled by Gcn4 under amino acid starvation conditions. Multiple lines of study showed that the four C. albicans LYS14-like genes have no role in the regulation of lysine biosynthesis. Whereas Gcn4 is dispensable for the growth of S. cerevisiae under lysine deprivation conditions, it is an essential regulator required for the growth of C. albicans under these conditions, as gcn4 deletion caused lysine auxotrophy. Gcn4 is required for the induction of increased LYS2 and LYS9 mRNA but not for the induction of increased LYS4 mRNA. Under lysine or isoleucine-valine deprivation conditions, Gcn4 recruitment to LYS2 and LYS9 promoters was induced in C. albicans. Indeed, in contrast to the S. cerevisiae LYS gene promoters, all LYS gene promoters in C. albicans harbored a Gcn4 binding site but not all harbored the S. cerevisiae Lys14 binding site, indicating the evolutionary divergence of cis-regulatory motifs. Thus, the transcriptional rewiring of the lysine biosynthetic pathway in C. albicans involves not only neofunctionalization of the four LYS14-like genes but the attendant strengthening of control by Gcn4, indicating a coordinated response with a much broader scope for control of amino acid biosynthesis in this human pathogen. IMPORTANCE Microbes evolve rapidly so as to reconfigure their gene expression to adapt to the metabolic demands in diverse environmental niches. Here, we explored how conditions

  2. Daily variations in dietary lysine content alter the expression of genes related to proteolysis in chicken pectoralis major muscle.

    PubMed

    Tesseraud, Sophie; Bouvarel, Isabelle; Collin, Anne; Audouin, Estelle; Crochet, Sabine; Seiliez, Iban; Leterrier, Christine

    2009-01-01

    Amino acids are known to be anabolic factors that affect protein metabolism, but the response of animals to daily amino acid changes is little understood. We aimed to test the effects of feeding birds with alternations of diets varying in lysine content on the expression of genes related to proteolysis in chicken muscle. Cyclic feeding programs with 2 diets, each given for 24 h during 48-h cycles, were carried out from 10 d of age. Three programs were used: 1) control treatment with continuous distribution of a complete diet containing standard medium lysine level (ML; 11.9 g/kg); 2) alternation of diets with high (HL) and low (LL) lysine levels; 3) alternation of ML and LL diets, where LL = 70%, ML = 100%, HL = 130% of standard lysine level. The Pectoralis major muscles were sampled after 2 wk of cyclic feeding. Measurements included the expression patterns of 6 genes involved in proteolysis, and mammalian target of rapamycin and Forkhead box-O transcription factor (FoxO) signaling. Cathepsin B, m-calpain, and E3 ubiquitin ligases Muscle Ring Finger-1 and Muscle Atrophy F box were significantly overexpressed in chickens transiently fed the LL diet, whereas the mRNA levels of 20S proteasome C2 subunit and ubiquitin remained unchanged. Modifications of E3 ubiquitin ligase expression can be partly explained by significant changes in FoxO phosphorylation with cyclic dietary treatments. Our results suggest timing-sensitive regulation of proteolysis in chicken muscle according to dietary treatment and a high metabolism capacity to compensate for changes in amino acid supply, which might be used for nutritional purposes.

  3. Longitudinal distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling

    NASA Astrophysics Data System (ADS)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka

    2016-03-01

    Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.

  4. Liver protective effect of ursodeoxycholic acid includes regulation of ADAM17 activity

    PubMed Central

    2013-01-01

    Background Ursodeoxycholic acid (UDCA) is used to treat primary biliary cirrhosis, intrahepatic cholestasis, and other cholestatic conditions. Although much has been learned about the molecular basis of the disease pathophysiology, our understanding of the effects of UDCA remains unclear. Possibly underlying its cytoprotective, anti-apoptotic, anti-oxidative effects, UDCA was reported to regulate the expression of TNFα and other inflammatory cytokines. However, it is not known if this effect involves also modulation of ADAM family of metalloproteinases, which are responsible for release of ectodomains of inflammatory cytokines from the cell surface. We hypothesized that UDCA modulates ADAM17 activity, resulting in amelioration of cholestasis in a murine model of bile duct ligation (BDL). Methods The effect of UDCA on ADAM17 activity was studied using the human liver hepatocellular carcinoma cell line HepG2. Untransfected cells or cells ectopically expressing human ADAM17 were cultured with or without UDCA and further activated using phorbol-12-myristate-13-acetate (PMA). The expression and release of ADAM17 substrates, TNFα, TGFα, and c-Met receptor (or its soluble form, sMet) were evaluated using ELISA and quantitative real-time (qRT) PCR. Immunoblotting analyses were conducted to evaluate expression and activation of ADAM17 as well as the level of ERK1/2 phosphorylation after UDCA treatment. The regulation of tissue inhibitor of metalloproteinases-1 (TIMP-1) by UDCA was studied using zymography and qRT-PCR. A mouse model of acute cholestasis was induced by common BDL technique, during which mice received daily orogastric gavage with either UDCA or vehicle only. Liver injury was quantified using alkaline phosphatase (ALP), relative liver weight, and confirmed by histological analysis. ADAM17 substrates in sera were assessed using a bead multiplex assay. Results UDCA decreases amount of shed TNFα, TGFα, and sMet in cell culture media and the phosphorylation of

  5. Lysine fortification reduces anxiety and lessens stress in family members in economically weak communities in Northwest Syria.

    PubMed

    Smriga, Miro; Ghosh, Shibani; Mouneimne, Youssef; Pellett, Peter L; Scrimshaw, Nevin S

    2004-06-01

    Lysine is a limiting amino acid in diets based on wheat as the staple. In experimental animals, prolonged dietary lysine inadequacy increases stress-induced anxiety. If observed in humans, such a result would have a strong implication for the relationship between nutrition and communal quality of life and mental health. As part of a 3-month randomized double-blind study, we tested whether lysine fortification of wheat reduces anxiety and stress response in family members in poor Syrian communities consuming wheat as a staple food. In the lysine-fortified group, the plasma cortisol response to the blood drawing as a cause of stress was reduced in females, as was sympathetic arousal in males as measured by skin conductance. Lysine fortification also significantly reduced chronic anxiety as measured by the trait anxiety inventory in males. These results suggest that some stress responses in economically weak populations consuming cereal-based diets can be improved with lysine fortification.

  6. The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids

    NASA Astrophysics Data System (ADS)

    Ault, Addison

    2004-03-01

    Examples of the industrial synthesis of pure amino acids are presented. The emphasis is on the synthesis of ( S )-glutamic acid and, to a lesser extent, ( S )-lysine and ( R,S )-methionine. These amino acids account for about 90% of the total world production of amino acids, ( S )-glutamic acid being used as a flavor-enhancing additive (MSG) for the human diet, and ( S )-lysine and ( R,S )-methionine as supplements for the feeding of domestic animals. Examples include chemical, enzymatic, and fermentation synthesis, and two clever continuous processes for the resolution of enantiomers. See Featured Molecules .

  7. Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea.

    PubMed

    Zhou, Qi-Jia; Wang, Jun; Liu, Min; Qiao, Ying; Hong, Wan-Shu; Su, Yong-Quan; Han, Kun-Huang; Ke, Qiao-Zhen; Zheng, Wei-Qiang

    2016-08-01

    As fundamental immunologic mechanism, the innate immunity system is more important than the specific immunity system in teleost fishes during pathogens infection. Antimicrobial peptides are integral parts of the innate immune system, and play significant roles against pathogens infection. NK-lysin, the compounds of the natural killer cells and cytotoxic T cells, are potent and effective antimicrobial peptides widely distributed in animals. In this study, we reported the sequence characteristics, expression profiles and antibacterial activities of a NK-lysin gene (Lc-NK-lysin) from a commercially important marine fish, the large yellow croaker (Larimichthys crocea). The open reading frame of Lc-NK-lysin cDNA sequence was 447 bp in length, coding 148 amino acids. The genomic DNA of Lc-NK-lysin has the common features of NK-lysin family, consisting of five exons and four introns, and in its deduced mature peptide, there are six well-conserved cysteine residues and a Saposin B domain. Lc-NK-lysin was expressed in all tested tissues (skin, muscle, gill, brain, head kidney, heart, liver, spleen, stomach and intestine) with different expression patterns. In pathogens infection the expression profiles of Lc-NK-lysin varied significantly in gill, head kidney, spleen and liver, indicating its role in immune response. Two peptides (Lc-NK-lysin-1 and Lc-NK-lysin-2) divided from the core region of the Lc-NK-lysin mature polypeptide were chemically synthesized and their antibacterial activities were examined; the potential function on the inhibition of bacteria propagation was revealed. Our results suggested that Lc-NK-lysin is a typical member of the NK-lysin family and as an immune-related gene it involves in the immune response when pathogens invasion.

  8. NOVEL ANTI-MICROBIAL PEPTIDE, NK-LYSIN, IS PRODUCED LOCALLY IN THE GUT OF EIMERIA-INFECTED HOST

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NK-lysin is an anti-microbial and anti-tumor protein produced by NK cells and T lymphocytes in mammals and is considered to be an important component of the local innate immune response to pathogens. Chicken NK-lysin consists of an 868 bp DNA sequence with an ORF of 140 amino acids with a predicted ...

  9. Evaluation of the number of ionogenic groups of inulinase by acid-base titration.

    PubMed

    Kovaleva, T A; Holyavka, M G; Rezvan, S G; Kozhedub, S V

    2008-06-01

    Acid base titration showed that Aspergillus awamori inulinase includes 178 asparaginic and glutamic acid residues, 20 histidine, 10 serine, and 34 lysine and tyrosine residues. Denaturation temperature for this enzyme was calculated using analysis of the proportion of stabilizing and destabilizing amino acids in the molecule.

  10. Coacervate-like microspheres from lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Rohlfing, D. L.

    1975-01-01

    Microspheres form isothermally from lysine-rich proteinoid when the ionic strength of the solution is increased with NaCl or other salts. Studies with different monovalent anions and with polymers of different amino acid composition indicate that charge neutralization and hydrophobic bonding contribute to microsphere formation. The particles also form in sea water, especially if heated or made slightly alkaline. The microspheres differ from those made from acidic proteinoid but resemble coacervate droplets in some ways (isothermal formation, limited stability, stabilization by quinone, uptake of dyes). Because the constituent lysine-rich proteinoid is of simulated prebiotic origin, the study is interpreted to add emphasis to and suggest an evolutionary continuity for coacervation phenomena.

  11. Global Proteomics Analysis of Protein Lysine Methylation

    PubMed Central

    Cao, Xing-Jun; Garcia, Benjamin A.

    2017-01-01

    Lysine methylation is a common protein post-translational modification dynamically mediated by protein lysine methyltransferases (PKMTs) and demethylases (PKDMs). Beyond histone proteins, lysine methylation on non-histone proteins play substantial roles in a variety of functions in cells, and is closely associated with diseases such as cancer. A large body of evidence indicates that the dysregulation of some PKMTs lead to tumorigenesis via their non-histone substrates. However, more studies on other PKMTs have made slow progress owing to the lack of the approaches for extensive screening of lysine methylation sites. Recently a series of publications to perform large-scale analysis of protein lysine methylation have emerged. In this unit, we introduce a protocol for the global analysis of protein lysine methylation in cells by means of immunoaffinity enrichment and mass spectrometry. PMID:27801517

  12. Effect of inhibitor compounds on Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) formation in model foods.

    PubMed

    Srey, Chou; Hull, George L J; Connolly, Lisa; Elliott, Christopher T; del Castillo, M Dolores; Ames, Jennifer M

    2010-11-24

    The possible adverse effects on health of diet-derived advanced glycation endproducts (AGEs) and advanced lipoxidation endproducts (ALEs) is of current interest. This study had the objective of determining the effects of the addition of AGE/ALE inhibitors and different types of sugar and cooking oil on Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) formation in model foods (sponge cakes). The cake baked using glucose produced the highest level of CML (2.07±0.24 mmol/mol lysine), whereas the cake baked using fructose produced the highest concentration of CEL (25.1±0.15 mmol/mol lysine). There were no significant differences between CML concentrations formed in the cakes prepared using different types of cooking oil, but significant differences (P<0.001) were observed between the cakes prepared using different proportions of cooking oil. The cakes containing oil generated greater concentrations of CML than sucrose. α-Tocopherol and rutin did not inhibit CML and CEL formation. In contrast, ferulic acid and thiamin, thiamin monophosphate, and thiamin pyrophosphate reduced CML and CEL formation.

  13. Identification and characterization of lysine-methylated sites on histones and non-histone proteins.

    PubMed

    Lee, Tzong-Yi; Chang, Cheng-Wei; Lu, Cheng-Tzung; Cheng, Tzu-Hsiu; Chang, Tzu-Hao

    2014-06-01

    Protein methylation is a kind of post-translational modification (PTM), and typically takes place on lysine and arginine amino acid residues. Protein methylation is involved in many important biological processes, and most recent studies focused on lysine methylation of histones due to its critical roles in regulating transcriptional repression and activation. Histones possess highly conserved sequences and are homologous in most species. However, there is much less sequence conservation among non-histone proteins. Therefore, mechanisms for identifying lysine-methylated sites may greatly differ between histones and non-histone proteins. Nevertheless, this point of view was not considered in previous studies. Here we constructed two support vector machine (SVM) models by using lysine-methylated data from histones and non-histone proteins for predictions of lysine-methylated sites. Numerous features, such as the amino acid composition (AAC) and accessible surface area (ASA), were used in the SVM models, and the predictive performance was evaluated using five-fold cross-validations. For histones, the predictive sensitivity was 85.62% and specificity was 80.32%. For non-histone proteins, the predictive sensitivity was 69.1% and specificity was 88.72%. Results showed that our model significantly improved the predictive accuracy of histones compared to previous approaches. In addition, features of the flanking region of lysine-methylated sites on histones and non-histone proteins were also characterized and are discussed. A gene ontology functional analysis of lysine-methylated proteins and correlations of lysine-methylated sites with other PTMs in histones were also analyzed in detail. Finally, a web server, MethyK, was constructed to identify lysine-methylated sites. MethK now is available at http://csb.cse.yzu.edu.tw/MethK/.

  14. Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch?

    PubMed

    Rodionov, Dmitry A; Vitreschak, Alexey G; Mironov, Andrey A; Gelfand, Mikhail S

    2003-12-01

    Comparative analysis of genes, operons and regulatory elements was applied to the lysine biosynthetic pathway in available bacterial genomes. We report identification of a lysine-specific RNA element, named the LYS element, in the regulatory regions of bacterial genes involved in biosynthesis and transport of lysine. Similarly to the previously described RNA regulatory elements for three vitamins (riboflavin, thiamin and cobalamin), purine and methionine regulons, this regulatory RNA structure is highly conserved on the sequence and structural levels. The LYS element includes regions of lysine-constitutive mutations previously identified in Escherichia coli and Bacillus subtilis. A possible mechanism of the lysine-specific riboswitch is similar to the previously defined mechanisms for the other metabolite-specific riboswitches and involves either transcriptional or translational attenuation in various groups of bacteria. Identification of LYS elements in Gram-negative gamma-proteobacteria, Gram-positive bacteria from the Bacillus/Clostridium group, and Thermotogales resulted in description of the previously uncharacterized lysine regulon in these bacterial species. Positional analysis of LYS elements led to identification of a number of new candidate lysine transporters, namely LysW, YvsH and LysXY. Finally, the most likely candidates for genes of lysine biosynthesis missing in Gram- positive bacteria were identified using the genome context analysis.

  15. Druggability of methyl-lysine binding sites

    NASA Astrophysics Data System (ADS)

    Santiago, C.; Nguyen, K.; Schapira, M.

    2011-12-01

    Structural modules that specifically recognize—or read—methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions.

  16. Selected nutrient contents, fatty acid composition, including conjugated linoleic acid, and retention values in separable lean from lamb rib loins as affected by external fat and cooking method.

    PubMed

    Badiani, Anna; Montellato, Lara; Bochicchio, Davide; Anfossi, Paola; Zanardi, Emanuela; Maranesi, Magda

    2004-08-11

    Proximate composition and fatty acid profile, conjugated linoleic acid (CLA) isomers included, were determined in separable lean of raw and cooked lamb rib loins. The cooking methods compared, which were also investigated for cooking yields and true nutrient retention values, were dry heating of fat-on cuts and moist heating of fat-off cuts; the latter method was tested as a sort of dietetic approach against the more traditional former type. With significantly (P < 0.05) lower cooking losses, dry heating of fat-on rib-loins produced slightly (although only rarely significantly) higher retention values for all of the nutrients considered, including CLA isomers. On the basis of the retention values obtained, both techniques led to a minimum migration of lipids into the separable lean, which was higher (P < 0.05) in dry heating than in moist heating, and was characterized by the prevalence of saturated and monounsaturated fatty acids. On the whole, the response to cooking of the class of CLA isomers (including that of the nutritionally most important isomer cis-9,trans-11) was more similar to that of the monounsaturated than the polyunsaturated fatty acids.

  17. Hemoglobin Labeled by Radioactive Lysine

    DOE R&D Accomplishments Database

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  18. Separation of lacquer polysaccharides and interaction with poly-L-lysine.

    PubMed

    Bai, Yuting; Yoshida, Takashi

    2013-10-15

    A naturally occurring acidic lacquer polysaccharide with glucuronic acid at the terminals of the complex branches has specific biological activities including promotion of blood coagulation and antitumor activities. The polysaccharide has two molecular weight fractions M¯n=10×10(4) and M¯n=3.0×10(4). In the present work, two pure fractions were isolated for the first time by Sephadex G-100 column chromatography. Then, each fraction was treated with diluted alkaline solution to decrease the molecular weights to M¯n=3.0×10(4) and M¯n=1.4×10(4), respectively. The NMR and IR spectra and specific rotations of the fractionated and original lacquer polysaccharides were almost identical, suggesting that the lacquer polysaccharides are an associated structure with several low molecular weight polysaccharides of M¯n=1.4×10(4). Interactions between each lacquer polysaccharide and poly-L-lysine, a model compound of proteins and peptides with positively-charged amino groups, were investigated by surface plasmon resonance (SPR) to elucidate the biological mechanism. The apparent dissociation-rate (kd), association-rate (ka), and dissociation constant (KD) obtained by SPR indicate that the lacquer polysaccharides had weaker interactions with poly-L-lysine than sulfated polysaccharides and that the interaction depended on the molecular weight. These SPR results suggest that the specific biological activities of lacquer polysaccharides originate from electrostatic interaction.

  19. Genome-Wide Analysis of the Lysine Biosynthesis Pathway Network during Maize Seed Development

    PubMed Central

    Liu, Yuwei; Xie, Shaojun; Yu, Jingjuan

    2016-01-01

    Lysine is one of the most limiting essential amino acids for humans and livestock. The nutritional value of maize (Zea mays L.) is reduced by its poor lysine content. To better understand the lysine biosynthesis pathway in maize seed, we conducted a genome-wide analysis of the genes involved in lysine biosynthesis. We identified lysine biosynthesis pathway genes (LBPGs) and investigated whether a diaminopimelate pathway variant exists in maize. We analyzed two genes encoding the key enzyme dihydrodipicolinate synthase, and determined that they contribute differently to lysine synthesis during maize seed development. A coexpression network of LBPGs was constructed using RNA-sequencing data from 21 developmental stages of B73 maize seed. We found a large set of genes encoding ribosomal proteins, elongation factors and zein proteins that were coexpressed with LBPGs. The coexpressed genes were enriched in cellular metabolism terms and protein related terms. A phylogenetic analysis of the LBPGs from different plant species revealed different relationships. Additionally, six transcription factor (TF) families containing 13 TFs were identified as the Hub TFs of the LBPGs modules. Several expression quantitative trait loci of LBPGs were also identified. Our results should help to elucidate the lysine biosynthesis pathway network in maize seed. PMID:26829553

  20. Synthesis and Characterization of L-Lysine Conjugated Silver Nanoparticles Smaller Than 10 nM

    PubMed Central

    Bonor, Jeremy; Reddy, Vandhana; Akkiraju, Hemanth; Dhurjati, Prasad; Nohe, Anja

    2015-01-01

    A rapid and convenient batch method for synthesizing lysine-conjugated silver nanoparticles of approximately 5 nm of size was developed. Nanoparticles of size less than 100 nm exhibit significant medical potential. L-Lysine demonstrates potential for therapeutic applications and silver nanoparticles are an optimal choice for drug delivery because of its intrinsic anti-platelet, anti-bacterial and anti-inflammatory capabilities. Current synthesis protocols for Lysine-capped particles under 10 nm are time consuming and tedious and allow only for the sythesis of small quantities of particles. The synthesis of Lysin-capped silver nanoparticles was based on the reaction in which AgNO3 was reduced by excess NaBH4. L-Lysine, a known essential amino acid, served as the capping agent to minimize initial aggregation. The particles were then separated by size chromatography. Capping occurred through the amide bond on L-Lysine as determined by FT-IR. The conjugation of the particle to the amide bond is important, since this leaves the amino group of Lysine open to further modifications. The particles were further characterized in regards to their shape, size and stability. Finally we demonstrated that the synthesized particles exhibit limited to no toxicity in cells, using HEK 293 cell line as a model system. Our sythesis protocol can be successfully used for scale-up and synthesis of high quantities of nanoparticles. PMID:26478827

  1. Structural Basis for l-Lysine Feedback Inhibition of Homocitrate Synthase

    SciTech Connect

    Bulfer, Stacie L.; Scott, Erin M.; Pillus, Lorraine; Trievel, Raymond C.

    2010-09-02

    The {alpha}-aminoadipate pathway of lysine biosynthesis is modulated at the transcriptional and biochemical levels by feedback inhibition. The first enzyme in the {alpha}-aminoadipate pathway, homocitrate synthase (HCS), is the target of the feedback regulation and is strongly inhibited by L-lysine. Here we report the structure of Schizosaccharomyces pombe HCS (SpHCS) in complex with L-lysine. The structure illustrates that the amino acid directly competes with the substrate 2-oxoglutarate for binding within the active site of HCS. Differential recognition of the substrate and inhibitor is achieved via a switch position within the ({alpha}/{beta}){sub 8} TIM barrel of the enzyme that can distinguish between the C5-carboxylate group of 2-oxoglutarate and the {epsilon}-ammonium group of L-lysine. In vitro and in vivo assays demonstrate that mutations of the switch residues, which interact with the L-lysine {epsilon}-ammonium group, abrogate feedback inhibition, as do substitutions of residues within the C-terminal domain that were identified in a previous study of L-lysine-insensitive HCS mutants in Saccharomyces cerevisiae. Together, these results yield new insights into the mechanism of feedback regulation of an enzyme central to lysine biosynthesis.

  2. Plasma ω-3 fatty acid levels negatively and ω-6 fatty acid levels positively associated with other cardiovascular risk factors including homocysteine in severe obese subjects.

    PubMed

    Mehmetoglu, Idris; Yerlikaya, F Hümeyra; Kurban, Sevil; Polat, Hakkı

    2012-01-01

    Obesity and homocysteine (tHcy) are important risk factors for cardiovascular diseases (CVD). Plasma omega-3 fatty acids (ω-3 FAs) and omega-6 fatty acids (ω-6 FAs) are essential fatty acids with diverse biological effects in human health and disease. We have investigated the relation of plasma ω-3 FAs and ω-6 FAs levels with other cardiovascular risk factors including tHcy in severe obese subjects. This study was performed on 96 severe obese and 65 normal weight subjects. Plasma fatty acid composition was measured by GC/MS and serum tHcy level was measured by HPLC methods. There were no differences between groups in terms of concentrations of serum tHcy, plasma ω-3 FAs, ω-6 FAs and ω-3/ω-6 ratio, whereas serum vitamin B-12 (p<0.01) and folic acid (p<0.05) levels were lower than those of the normal weight subjects. Homocysteine positively correlated with ω-6 FAs and negatively correlated with ω-3 FAs in severe obese and normal weight subjects. Serum vitamin B-12 positively correlated with ω-3 FAs (p<0.01) and ω-3/ω-6 ratio (p<0.01) and negatively correlated with ω-6 FAs (p<0.05) in severe obese subjects. Serum folic acid positively correlated with ω-3 FAs (p<0.01) in severe obese subjects. Our results suggest an association between the plasma ω-3 FAs and ω-6 FAs and serum tHcy concentrations in severe obese and normal weight subjects. Low levels vitamin B-12 and folic acid may have been responsible for the elevated tHcy levels in severe obese subjects, increasing the risk for future development of cardiovascular diseases.

  3. Transcriptional upregulation of four genes of the lysine biosynthetic pathway by homocitrate accumulation in Penicillium chrysogenum: homocitrate as a sensor of lysine-pathway distress.

    PubMed

    Teves, Franco; Lamas-Maceiras, Mónica; García-Estrada, Carlos; Casqueiro, Javier; Naranjo, Leopoldo; Ullán, Ricardo V; Scervino, José-Martín; Wu, Xiaobin; Velasco-Conde, Tania; Martín, Juan F

    2009-12-01

    The lysine biosynthetic pathway has to supply large amounts of alpha-aminoadipic acid for penicillin biosynthesis in Penicillium chrysogenum. In this study, we have characterized the P. chrysogenum L2 mutant, a lysine auxotroph that shows highly increased expression of several lysine biosynthesis genes (lys1, lys2, lys3, lys7). The L2 mutant was found to be deficient in homoaconitase activity since it was complemented by the Aspergillus nidulans lysF gene. We have cloned a gene (named lys3) that complements the L2 mutation by transformation with a P. chrysogenum genomic library, constructed in an autonomous replicating plasmid. The lys3-encoded protein showed high identity to homoaconitases. In addition, we cloned the mutant lys3 allele from the L2 strain that showed a G(1534) to A(1534) point mutation resulting in a Gly(495) to Asp(495) substitution. This mutation is located in a highly conserved region adjacent to two of the three cysteine residues that act as ligands to bind the iron-sulfur cluster required for homoaconitase activity. The L2 mutant accumulates homocitrate. Deletion of the lys1 gene (homocitrate synthase) in the L2 strain prevented homocitrate accumulation and reverted expression levels of the four lysine biosynthesis genes tested to those of the parental prototrophic strain. Homocitrate accumulation seems to act as a sensor of lysine-pathway distress, triggering overexpression of four of the lysine biosynthesis genes.

  4. A new glycation product ‘norpronyl-lysine,’ and direct characterization of cross linking and other glycation adducts: NMR of model compounds and collagen

    PubMed Central

    Bullock, Peter T. B.; Reid, David G.; Ying Chow, W.; Lau, Wendy P. W.; Duer, Melinda J.

    2014-01-01

    NMR is ideal for characterizing non-enzymatic protein glycation, including AGEs (advanced glycation endproducts) underlying tissue pathologies in diabetes and ageing. Ribose, R5P (ribose-5-phosphate) and ADPR (ADP-ribose), could be significant and underinvestigated biological glycating agents especially in chronic inflammation. Using [U-13C]ribose we have identified a novel glycoxidation adduct, 5-deoxy-5-desmethylpronyl-lysine, ‘norpronyl-lysine’, as well as numerous free ketones, acids and amino group reaction products. Glycation by R5P and ADPR proceeds rapidly with R5P generating a brown precipitate with PLL (poly-L-lysine) within hours. ssNMR (solid-state NMR) 13C–13C COSY identifies several crosslinking adducts such as the newly identified norpronyl-lysine, in situ, from the glycating reaction of 13C5-ribose with collagen. The same adducts are also identifiable after reaction of collagen with R5P. We also demonstrate for the first time bio-amine (spermidine, N-acetyl lysine, PLL) catalysed ribose 2-epimerization to arabinose at physiological pH. This work raises the prospect of advancing understanding of the mechanisms and consequences of glycation in actual tissues, in vitro or even ex vivo, using NMR isotope-labelled glycating agents, without analyses requiring chemical or enzymatic degradations, or prior assumptions about glycation products. PMID:27919030

  5. Dietary L-lysine prevents arterial calcification in adenine-induced uremic rats.

    PubMed

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Isaka, Yoshitaka; Rakugi, Hiromi

    2014-09-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC.

  6. Dietary l-Lysine Prevents Arterial Calcification in Adenine-Induced Uremic Rats

    PubMed Central

    Shimomura, Akihiro; Matsui, Isao; Hamano, Takayuki; Ishimoto, Takuya; Katou, Yumiko; Takehana, Kenji; Inoue, Kazunori; Kusunoki, Yasuo; Mori, Daisuke; Nakano, Chikako; Obi, Yoshitsugu; Fujii, Naohiko; Takabatake, Yoshitsugu; Nakano, Takayoshi; Tsubakihara, Yoshiharu; Rakugi, Hiromi

    2014-01-01

    Vascular calcification (VC) is a life-threatening complication of CKD. Severe protein restriction causes a shortage of essential amino acids, and exacerbates VC in rats. Therefore, we investigated the effects of dietary l-lysine, the first-limiting amino acid of cereal grains, on VC. Male Sprague-Dawley rats at age 13 weeks were divided randomly into four groups: low-protein (LP) diet (group LP), LP diet+adenine (group Ade), LP diet+adenine+glycine (group Gly) as a control amino acid group, and LP diet+adenine+l-lysine·HCl (group Lys). At age 18 weeks, group LP had no VC, whereas groups Ade and Gly had comparable levels of severe VC. l-Lysine supplementation almost completely ameliorated VC. Physical parameters and serum creatinine, urea nitrogen, and phosphate did not differ among groups Ade, Gly, and Lys. Notably, serum calcium in group Lys was slightly but significantly higher than in groups Ade and Gly. Dietary l-lysine strongly suppressed plasma intact parathyroid hormone in adenine rats and supported a proper bone-vascular axis. The conserved orientation of the femoral apatite in group Lys also evidenced the bone-protective effects of l-lysine. Dietary l-lysine elevated plasma alanine, proline, arginine, and homoarginine but not lysine. Analyses in vitro demonstrated that alanine and proline inhibit apoptosis of cultured vascular smooth muscle cells, and that arginine and homoarginine attenuate mineral precipitations in a supersaturated calcium/phosphate solution. In conclusion, dietary supplementation of l-lysine ameliorated VC by modifying key pathways that exacerbate VC. PMID:24652795

  7. The Saccharomyces cerevisiae poly(A)-binding protein is subject to multiple post-translational modifications, including the methylation of glutamic acid.

    PubMed

    Low, Jason K K; Hart-Smith, Gene; Erce, Melissa A; Wilkins, Marc R

    2014-01-10

    Poly(A)-binding protein in mouse and man was recently found to be highly post-translationally modified. Here we analysed an ortholog of this protein, Pab1 from Saccharomyces cerevisiae, to assess the conservation and thus likely importance of these modifications. Pab1 showed the presence of six sites of methylated glutamate, five sites of lysine acetylation, and one phosphorylation of serine. Many modifications on Pab1 showed either complete conservation with those on human or mouse PABPC1, were present on nearby residues and/or were present in the same domain(s). The conservation of methylated glutamate, an unusual modification, was of particular note and suggests a conserved function. Comparison of methylated glutamate sites in human, mouse and yeast poly(A)-binding protein, along with methylation sites catalysed by CheR L-glutamyl protein methyltransferase from Salmonella typhimurium, revealed that the methylation of glutamate preferentially occurs in EE and DE motifs or other small regions of acidic amino acids. The conservation of methylated glutamate in the same protein between mouse, man and yeast suggests the presence of a eukaryotic l-glutamyl protein methyltransferase and that the modification is of functional significance.

  8. Lysine Transport across Isolated Rabbit Ileum

    PubMed Central

    Munck, B. G.; Schultz, Stanley G.

    1969-01-01

    Lysine transport by in vitro distal rabbit ileum has been investigated by determining (a) transmural fluxes across short-circuited segments of the tissue; (b) accumulation by mucosal strips; and (c) influx from the mucosal solution across the brush border into the epithelium. Net transmural flux of lysine is considerably smaller than that of alanine. However, lysine influx across the brush border and lysine accumulation by mucosal strips are quantitatively comparable to alanine influx and accumulation. Evidence is presented that the "low transport capacity" of rabbit ileum for lysine is due to: (a) a carrier-mediated process responsible for efflux of lysine out of the cell across the serosal and/or lateral membranes that is characterized by a low maximal velocity; and (b) a high "backflux" of lysine out of the cell across the mucosal membrane. A possible explanation for the latter observation is discussed with reference to the relatively low Na dependence of lysine transport across the intestinal brush border. PMID:5764744

  9. FT-midIR determination of fatty acid profiles, including trans fatty acids, in bakery products after focused microwave-assisted Soxhlet extraction.

    PubMed

    Ruiz-Jiménez, J; Priego-Capote, F; Luque de Castro, M D

    2006-08-01

    A study of the feasibility of Fourier transform medium infrared spectroscopy (FT-midIR) for analytical determination of fatty acid profiles, including trans fatty acids, is presented. The training and validation sets-75% (102 samples) and 25% (36 samples) of the samples once the spectral outliers have been removed-to develop FT-midIR general equations, were built with samples from 140 commercial and home-made bakery products. The concentration of the analytes in the samples used for this study is within the typical range found in these kinds of products. Both sets were independent; thus, the validation set was only used for testing the equations. The criterion used for the selection of the validation set was samples with the highest number of neighbours and the most separation between them (H<0.6). Partial least squares regression and cross validation were used for multivariate calibration. The FT-midIR method does not require post-extraction manipulation and gives information about the fatty acid profile in two min. The 14:0, 16:0, 18:0, 18:1 and 18:2 fatty acids can be determined with excellent precision and other fatty acids with good precision according to the Shenk criteria, R (2)>/=0.90, SEP=1-1.5 SEL and R (2)=0.70-0.89, SEP=2-3 SEL, respectively. The results obtained with the proposed method were compared with those provided by the conventional method based on GC-MS. At 95% significance level, the differences between the values obtained for the different fatty acids were within the experimental error.

  10. MYST protein acetyltransferase activity requires active site lysine autoacetylation.

    PubMed

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-04

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.

  11. MYST protein acetyltransferase activity requires active site lysine autoacetylation

    PubMed Central

    Yuan, Hua; Rossetto, Dorine; Mellert, Hestia; Dang, Weiwei; Srinivasan, Madhusudan; Johnson, Jamel; Hodawadekar, Santosh; Ding, Emily C; Speicher, Kaye; Abshiru, Nebiyu; Perry, Rocco; Wu, Jiang; Yang, Chao; Zheng, Y George; Speicher, David W; Thibault, Pierre; Verreault, Alain; Johnson, F Bradley; Berger, Shelley L; Sternglanz, Rolf; McMahon, Steven B; Côté, Jacques; Marmorstein, Ronen

    2012-01-01

    The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases. PMID:22020126

  12. Investigating antimicrobial activity in Rheinheimera sp. due to hydrogen peroxide generated by l-lysine oxidase activity.

    PubMed

    Chen, Wen Ming; Lin, Chang Yi; Sheu, Shih Yi

    2010-05-05

    A greenish yellow pigmented bacterial strain, designated GR5, was recently isolated from a freshwater culture pond for a soft-shell turtle. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain GR5 belongs to the genus Rheinheimera and its only closest neighbor is the type strain of Rheinheimera texasensis (98.2%). Based on the antibiogram assay, strain GR5 possesses a broad spectrum of antimicrobial activity including Gram-positive and Gram-negative bacteria, yeast, algae, and strain GR5 itself. Strain GR5 can synthesize a macromolecule with antimicrobial activity due to the generation of hydrogen peroxide and this antimicrobial effect can be inhibited by catalase. This antimicrobial activity is active only in complex culture media or chemically defined culture media containing l-lysine. This antimicrobial macromolecule in strain GR5 is shown to be a monomeric protein with a molecular mass of 71kDa and isoelectric point of approximately 3.68. Liquid chromatography-tandem mass spectrometry analyses reveal close similarity of a 19-amino acid fragment derived from this protein to the antibacterial protein, AlpP from the marine bacterium Pseudoalteromonas tunicata D2, and to the antibacterial protein, marinocine, from the marine bacterium Marinomonas mediterranea. This study explores the nature of antimicrobial macromolecule such as l-lysine oxidase. This is the first report on a freshwater bacterium producing antimicrobial activity by generating hydrogen peroxide through its enzymatic activity of l-lysine oxidase.

  13. Amino Acid Transport into Cultured Tobacco Cells

    PubMed Central

    Harrington, H. Michael; Henke, Randolph R.

    1981-01-01

    Lysine transport into suspension-cultured Wisconsin-38 tobacco cells was observed. Uptake was linear (up to 90 minutes) with respect to time and amount of tissue only after 4 to 6 hours preincubation in calcium-containing medium. The observed cellular accumulation of lysine was against a concentration gradient and not due to exchange diffusion. Transport was stimulated by low pH and characterized by a biphasic uptake isotherm with two Km values for lysine. System I (Km ≃ 5 × 10−6 molar; Vmax ≃ 180 nanomoles per gram fresh weight per hour) and system II (Km ≃ 10−4 molar; Vmax ≃ 1900 nanomoles per gram fresh weight per hour) were inhibited by N-ethylmaleimide and a variety of respiratory inhibitors. This inhibition was not due to increased efflux. In antagonism experiments, system I was inhibited most effectively by basic amino acids, followed by the sulfur amino acids. System I was only slightly inhibited by the neutral and aromatic amino acids and was not inhibited by the acidic amino acids aspartic and glutamic acids. Transport by system II was inhibited by all of the tested amino acids (including aspartic and glutamic acids) and analogs; however, this system was not inhibited by d-arginine. Neither system was strongly inhibited by d-lysine or the lysine analog S-2-aminoethyl-l-cysteine. Arginine was shown to be a competitive inhibitor of both systems with values for Ki similar to the respective Km values. These studies suggest the presence of at least two amino acid permeases in W-38 tobacco cells. PMID:16661678

  14. The Construction and Expression of Lysine-Rich Gene in the Mammary Gland of Transgenic Mice

    PubMed Central

    Ma, Xin; Zhang, Peng; Song, Guangqi; Chen, Yue; Wang, Zhongwei; Yin, Yupeng; Kong, Delong; Zhang, Sheng; Zhao, Zhihui; Ouyang, Hongsheng

    2012-01-01

    Lysine is the limiting amino acid in cereal grains, which represent a major source of human food and animal feed worldwide, and is considered the most important of the essential amino acids. In this study, β-casein, αS2-casein, and lactotransferrin cDNA clone fragments encoding lysine-rich peptides were fused together to generate a lysine-rich (LR) gene and the mammary gland-specific expression vector pBC1-LR-NEOr was constructed. Transgenic mice were generated by pronuclear microinjection of the linearized expression vectors harboring the LR transgene. The transgenic mice and their offspring were examined using multiplex polymerase chain reaction (PCR), Southern blotting, reverse transcriptase–PCR, in situ hybridization, and Western blotting techniques. Our results showed that the LR gene was successfully integrated into the mouse genome and was transmitted stably. The specific LR gene expression was restricted to the mammary gland, active alveoli of the transgenic female mice during lactation. The lysine level of the two transgenic lines was significantly higher than that of nontransgenic controls (p<0.05). In addition, the growth performance of transgenic pups was enhanced by directly feeding them the LR protein-enriched transgenic milk. Our results demonstrated that lysine-rich gene was successfully constructed and expressed in mammary gland of transgenic mice. This study will provide a better understanding of how mammary gland expression systems that increase the lysine content of milk can be applied to other mammals, such as cows. PMID:22577831

  15. Na/sup +/-dependent transport of /sup 14/C-L-lysine across bullfrog alveolar epithelium

    SciTech Connect

    Kim, K.J.; Crandall, E.D.

    1986-03-01

    Transepithelial transport of the basic amino acid L-lysine has been studied utilizing the isolated intact bullfrog lung mounted in the Ussing chamber. Lungs were excised from doubly pithed bullfrogs and sandwiched between two hemichambers. /sup 14/C-(U)-L-lysine was added to the upstream reservoir of amphibian Ringer solution, while the tissue was short-circuited. Two lungs from the same animal were used simultaneously to determine the two opposite unidirectional fluxes. Downstream and upstream radioactivities were assayed and used to estimate the apparent permeability (P) of the labeled lysine. Results indicate that the apparent P of /sup 14/C-L-lysine measured in the alveolar (M) to the pleural (S) direction is 19.06 (+- 2.84) x 10/sup -7/ cm/s and P in the S to M direction is 3.29 (+- 0.02) x 10/sup -7/ cm/s. When the 100 mM NaCl in the bath was replaced by 110 mM choline chloride, the flux of /sup 14/C-L-lysine from the alveolar to the pleural side decreased to the same value as that in the opposite direction. The flux from the pleural to the alveolar direction in the absence of Na/sup +/ did not change. These results suggest that the alveolar epithelium exhibits Na/sup +/-dependent amino acid (L-lysine) transport in the M->S, but not in the S->M, direction.

  16. The construction and expression of lysine-rich gene in the mammary gland of transgenic mice.

    PubMed

    Ma, Xin; Zhang, Peng; Song, Guangqi; Chen, Yue; Wang, Zhongwei; Yin, Yupeng; Kong, Delong; Zhang, Sheng; Zhao, Zhihui; Ouyang, Hongsheng; Tang, Bo; Li, Ziyi

    2012-08-01

    Lysine is the limiting amino acid in cereal grains, which represent a major source of human food and animal feed worldwide, and is considered the most important of the essential amino acids. In this study, β-casein, αS2-casein, and lactotransferrin cDNA clone fragments encoding lysine-rich peptides were fused together to generate a lysine-rich (LR) gene and the mammary gland-specific expression vector pBC1-LR-NEO(r) was constructed. Transgenic mice were generated by pronuclear microinjection of the linearized expression vectors harboring the LR transgene. The transgenic mice and their offspring were examined using multiplex polymerase chain reaction (PCR), Southern blotting, reverse transcriptase-PCR, in situ hybridization, and Western blotting techniques. Our results showed that the LR gene was successfully integrated into the mouse genome and was transmitted stably. The specific LR gene expression was restricted to the mammary gland, active alveoli of the transgenic female mice during lactation. The lysine level of the two transgenic lines was significantly higher than that of nontransgenic controls (p<0.05). In addition, the growth performance of transgenic pups was enhanced by directly feeding them the LR protein-enriched transgenic milk. Our results demonstrated that lysine-rich gene was successfully constructed and expressed in mammary gland of transgenic mice. This study will provide a better understanding of how mammary gland expression systems that increase the lysine content of milk can be applied to other mammals, such as cows.

  17. Wall Teichoic Acids Are Involved in the Medium-Induced Loss of Function of the Autolysin CD11 against Clostridium difficile

    PubMed Central

    Wu, Xia; Paskaleva, Elena E.; Mehta, Krunal K.; Dordick, Jonathan S.; Kane, Ravi S.

    2016-01-01

    Bacterial lysins are potent antibacterial enzymes with potential applications in the treatment of bacterial infections. Some lysins lose activity in the growth media of target bacteria, and the underlying mechanism remains unclear. Here we use CD11, an autolysin of Clostridium difficile, as a model lysin to demonstrate that the inability of this enzyme to kill C. difficile in growth medium is not associated with inhibition of the enzyme activity by medium, or the modification of the cell wall peptidoglycan. Rather, wall teichoic acids (WTAs) appear to prevent the enzyme from binding to the cells and cleaving the cell wall peptidoglycan. By partially blocking the biosynthetic pathway of WTAs with tunicamycin, cell binding improved and the lytic efficacy of CD11 was significantly enhanced. This is the first report of the mechanism of lysin inactivation in growth medium, and provides insights into understanding the behavior of lysins in complex environments, including the gastrointestinal tract. PMID:27759081

  18. Lysine acetylation and cancer: A proteomics perspective.

    PubMed

    Gil, Jeovanis; Ramírez-Torres, Alberto; Encarnación-Guevara, Sergio

    2017-01-06

    Lysine acetylation is a reversible modification controlled by two groups of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Acetylated lysine residues are recognized by bromodomains, a family of evolutionarily conserved domains. The use of high-resolution mass spectrometry-based proteomics, in combination with the enrichment of acetylated peptides through immunoprecipitation with anti-acetyl-lysine antibodies, has expanded the number of acetylated proteins from histones and a few nuclear proteins to more than 2000 human proteins. Because acetylation targets almost all cellular processes, this modification has been associated with cancer. Several KATs, KDACs and bromodomain-containing proteins have been linked to cancer development. Many small molecules targeting some of these proteins have been or are being tested as potential cancer therapies. The stoichiometry of lysine acetylation has not been explored in cancer, representing a promising field in which to increase our knowledge of how this modification is affected in cancer. In this review, we will focus on the strategies that can be used to go deeper in the characterization of the protein lysine acetylation emphasizing in cancer research.

  19. Impact of hedonic evaluation on consumers' preferences for beef attributes including its enrichment with n-3 and CLA fatty acids.

    PubMed

    Baba, Yasmina; Kallas, Zein; Costa-Font, Montserrat; Gil, José María; Realini, Carolina E

    2016-01-01

    The impact of hedonic evaluation on consumers' preferences for beef attributes was evaluated (origin, animal diet, fat content, color, price) including its enrichment with omega-3 (n-3) and conjugated linoleic acid (CLA) fatty acids. One group of consumers (n=325) received information about n-3 and CLA, while the other group (n=322) received no information. Consumers conducted a Discrete Choice Experiment (DCE), using the recently developed Generalized Multinomial Logit model; followed by a blind hedonic evaluation of beef samples, which were identified after tasting, and finally repeated the DCE. Results showed that hedonic evaluation had a significant impact on consumers' preferences, which were similar after tasting for all consumers, with less emphasis on the fat content, color, and origin attributes and greater emphasis on animal diet. Preference for n-3 enriched beef increased, while preference for CLA enriched beef was still not significant after tasting. The information provided had a significant effect on consumers' beef preferences, but no significant impact on beef liking scores.

  20. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat.

  1. Characterization of a pyridoxal-5'-phosphate-dependent l-lysine decarboxylase/oxidase from Burkholderia sp. AIU 395.

    PubMed

    Sugawara, Asami; Matsui, Daisuke; Takahashi, Narumi; Yamada, Miwa; Asano, Yasuhisa; Isobe, Kimiyasu

    2014-11-01

    A novel enzyme, which catalyzed decarboxylation of l-lysine into cadaverine with release of carbon dioxide and oxidative deamination of l-lysine into l-2-aminoadipic 5-semialdehyde with release of ammonia and hydrogen peroxide, was found from a newly isolated Burkholderia sp. AIU 395. The enzyme was specific to l-lysine and did not exhibit enzyme activities for other l-amino acids, l-lysine derivatives, d-amino acids, and amines. The apparent Km values for l-lysine in the oxidation and decarboxylation reactions were estimated to be 0.44 mM and 0.84 mM, respectively. The molecular mass was estimated to be 150 kDa, which was composed of two identical subunits with molecular mass of 76.5 kDa. The enzyme contained one mol of pyridoxal 5'-phosphate per subunit as a prosthetic group. The enzyme exhibiting decarboxylase and oxidase activities for l-lysine was first reported here, while the deduced amino acid sequence was homologous to that of putative lysine decarboxylases from the genus Burkholderia.

  2. Lysine biosynthesis and nitrogen metabolism in quinoa (Chenopodium quinoa): study of enzymes and nitrogen-containing compounds.

    PubMed

    Varisi, Vanderlei A; Camargos, Liliane S; Aguiar, Leandro F; Christofoleti, Renata M; Medici, Leonardo O; Azevedo, Ricardo A

    2008-01-01

    Aspartate kinase (AK, EC 2.7.2.4), homoserine dehydrogenase (HSDH, EC 1.1.1.3) and dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) were isolated and partially purified from immature Chenopodium quinoa Willd seeds. Enzyme activities were studied in the presence of the aspartate-derived amino acids lysine, threonine and methionine and also the lysine analogue S-2-aminoethyl-l-cysteine (AEC), at 1 mM and 5 mM. The results confirmed the existence of, at least, two AK isoenzymes, one inhibited by lysine and the other inhibited by threonine, the latter being predominant in quinoa seeds. HSDH activity was also shown to be partially inhibited by threonine, whereas some of the activity was resistant to the inhibitory effect, indicating the presence of two isoenzymes, one resistant and another sensitive to threonine inhibition. Only one DHDPS isoenzyme highly sensitive to lysine inhibition was detected. The results suggest that the high concentration of lysine observed in quinoa seeds is possibly due to a combined effect of increased lysine synthesis and accumulation in the soluble form and/or as protein lysine. Nitrogen assimilation was also investigated and based on nitrate content, nitrate reductase activity, amino acid distribution and ureide content, the leaves were identified as the predominant site of nitrate reduction in this plant species. The amino acid profile analysis in leaves and roots also indicated an important role of soluble glutamine as a nitrogen transporting compound.

  3. Application of biodegradable dendrigraft poly-l-lysine to a small interfering RNA delivery system.

    PubMed

    Kodama, Yukinobu; Kuramoto, Haruka; Mieda, Yukari; Muro, Takahiro; Nakagawa, Hiroo; Kurosaki, Tomoaki; Sakaguchi, Miako; Nakamura, Tadahiro; Kitahara, Takashi; Sasaki, Hitoshi

    2017-01-01

    Dendrigraft poly-l-lysine (DGL), including its central core, consists entirely of lysine, hence it is completely biodegradable. We applied DGL in a small interfering RNA (siRNA) delivery system. Binary complexes with siRNA and DGL had particle sizes of 23-73 nm and ζ-potentials of 34-42 mV. The siRNA-DGL complexes showed significant silencing effects in a mouse colon carcinoma cell line expressing luciferase (Colon26/Luc cells). The siRNA-DGL complexes induced slight cytotoxicity and hematological toxicity at a high charge ratio of DGL to siRNA, probably because of their cationic charges. Therefore, we recharged the siRNA-DGL complexes with γ-polyglutamic acid (γ-PGA), a biodegradable anionic compound, which was reported to reduce the cytotoxicity of cationic complexes. The ternary complexes showed particle sizes of 35-47 nm at a charge ratio of greater than 14 to siRNA with negative charges. Strong silencing effects of the ternary complexes were observed in Colon26/Luc cells without cytotoxicity or hematological toxicity. The cellular uptake and degradation of the binary and ternary complexes were confirmed by fluorescence microscopy. The ternary complexes suppressed luciferase activity in the tumor after direct injection into the tumors of mice bearing Colon26/Luc cells. Thus, a potentially important siRNA delivery system was constructed using biodegradable DGL.

  4. Dehomocysteinylation is catalysed by the sirtuin-2-like bacterial lysine deacetylase CobB.

    PubMed

    Mei, Xin-Yu; He, Xia-Di; Huang, Lei; Qi, Da-Shi; Nie, Ji; Li, Yang; Si, Wen; Zhao, Shi-Min

    2016-11-01

    Hyperhomocysteinemia, which is characterized by elevated blood levels of the non-protein amino acid homocysteine (Hcy), is an independent risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases and birth defects. The incorporation of homocysteine into proteins, known as protein N-homocysteinylation, has been considered a major mechanism that contributes to hyperhomocysteinemia. However, the process of dehomocysteinylation, the N-homocysteinylation substrates and the regulatory enzyme(s) remain largely unknown. In this study, we observed that the dehomocysteinylation reaction is a spontaneous process that can be inhibited by blocking -SH groups, which have been demonstrated to be critical for non-enzymatic dehomocysteinylation reactions. We also report that CobB, a known Sir2-like bacterial lysine deacetylase, catalyzes lysine dehomocysteinylation reactions both in vitro and in vivo. Our work provides insight into how this non-enzymatic modification might be removed from affected proteins, supplies potential targets for developing identification methods for N-homocysteine proteins, and identifies CobB as the first prokaryotic dehomocysteinylation enzyme.

  5. Lysine fortification of wheat flour improves selected indices of the nutritional status of predominantly cereal-eating families in Pakistan.

    PubMed

    Hussain, Tajammal; Abbas, Shaid; Khan, Mushtaq A; Scrimshaw, Nevin S

    2004-06-01

    Wheat provides more than 50% of the protein and calorie intake of the population of Pakistan. Legumes and animal protein that could complement the amino acid pattern of wheat, in which lysine is the first limiting amino acid for utilization of protein, are not affordable by members of lower socioeconomic groups in developing countries. The purpose of the study was to determine whether lysine fortification of wheat flour would have a positive impact on populations consuming a predominantly wheat-based diet. A double-blind study was carried out for three months on the outskirts of Peshawar, Pakistan. Forty families received wheat flour fortified with lysine, and 40 families received wheat flour without lysine. Wheat provided 59% of the protein for men, 65% for women, and 58% for children. The weight and height of the children in both groups increased during the study, but the increase was significantly greater in the lysine group. Hemoglobin increased significantly in the women receiving lysine-fortified flour. Transferrin levels increased significantly in men, women, and children in the lysine group as compared with those in the control group. Prealbumin increased significantly in adults receiving additional lysine but decreased in children. Men, women, and children in the lysine-supplemented families had significant increases in CD4, CD8, and complement C3 as compared with controls. These results indicate that lysine fortification of wheat flour can significantly improve sensitive indicators of nutritional status in a population consuming a diet in which 58% to 65% of the protein, depending on age and sex, is supplied by wheat.

  6. Proteome-wide enrichment of proteins modified by lysine methylation

    PubMed Central

    Carlson, Scott M; Moore, Kaitlyn E; Green, Erin M; Martín, Glòria Mas; Gozani, Or

    2015-01-01

    We present a protocol for using the triple malignant brain tumor domains of L3MBTL1 (3×MBT), which bind to mono- and di-methylated lysine with minimal sequence specificity, in order to enrich for such methylated lysine from cell lysates. Cells in culture are grown with amino acids containing light or heavy stable isotopic labels. Methylated proteins are enriched by incubating cell lysates with 3×MBT, or with the binding-null D355N mutant as a negative control. Quantitative liquid chromatography and tandem mass spectrometry (LC-MS/MS) are then used to identify proteins that are specifically enriched by 3×MBT pull-down. The addition of a third isotopic label allows the comparison of protein lysine methylation between different biological conditions. Unlike most approaches, our strategy does not require a prior hypothesis of candidate methylated proteins, and it recognizes a wider range of methylated proteins than any available method using antibodies. Cells are prepared by growing in isotopic labeling medium for about 7 d; the process of enriching methylated proteins takes 3 d and analysis by LC-MS/MS takes another 1–2 d. PMID:24309976

  7. Nε-lysine acetylation determines dissociation from GAP junctions and lateralization of connexin 43 in normal and dystrophic heart

    PubMed Central

    Colussi, Claudia; Rosati, Jessica; Straino, Stefania; Spallotta, Francesco; Berni, Roberta; Stilli, Donatella; Rossi, Stefano; Musso, Ezio; Macchi, Emilio; Mai, Antonello; Sbardella, Gianluca; Castellano, Sabrina; Chimenti, Cristina; Frustaci, Andrea; Nebbioso, Angela; Altucci, Lucia; Capogrossi, Maurizio C.; Gaetano, Carlo

    2011-01-01

    Wanting to explore the epigenetic basis of Duchenne cardiomyopathy, we found that global histone acetylase activity was abnormally elevated and the acetylase P300/CBP-associated factor (PCAF) coimmunoprecipitated with connexin 43 (Cx43), which was Nε-lysine acetylated and lateralized in mdx heart. This observation was paralleled by Cx43 dissociation from N-cadherin and zonula occludens 1, whereas pp60-c-Src association was unaltered. In vivo treatment of mdx with the pan-histone acetylase inhibitor anacardic acid significantly reduced Cx43 Nε-lysine acetylation and restored its association to GAP junctions (GJs) at intercalated discs. Noteworthy, in normal as well as mdx mice, the class IIa histone deacetylases 4 and 5 constitutively colocalized with Cx43 either at GJs or in the lateralized compartments. The class I histone deacetylase 3 was also part of the complex. Treatment of normal controls with the histone deacetylase pan-inhibitor suberoylanilide hydroxamic acid (MC1568) or the class IIa-selective inhibitor 3-{4-[3-(3-fluorophenyl)-3-oxo-1-propen-1-yl]-1-methyl-1H-pyrrol-2-yl}-N-hydroxy-2-propenamide (MC1568) determined Cx43 hyperacetylation, dissociation from GJs, and distribution along the long axis of ventricular cardiomyocytes. Consistently, the histone acetylase activator pentadecylidenemalonate 1b (SPV106) hyperacetylated cardiac proteins, including Cx43, which assumed a lateralized position that partly reproduced the dystrophic phenotype. In the presence of suberoylanilide hydroxamic acid, cell to cell permeability was significantly diminished, which is in agreement with a Cx43 close conformation in the consequence of hyperacetylation. Additional experiments, performed with Cx43 acetylation mutants, revealed, for the acetylated form of the molecule, a significant reduction in plasma membrane localization and a tendency to nuclear accumulation. These results suggest that Cx43 Nε-lysine acetylation may have physiopathological consequences for cell to

  8. Accessibility and mobility of lysine residues in. beta. -lactoglobulin

    SciTech Connect

    Brown, E.M.; Pfeffer, P.E.; Kumosinski, T.F.; Greenberg, R.

    1988-07-26

    N/sup epsilon/-(/sup 2/H/sub 6/)Isopropyllysyl-..beta..-lactoglobulin was prepared by reductive alkylation of ..beta..-lactoglobulin with (/sup 2/H/sub 6/)acetone and NaBH/sub 4/ to provide a /sup 2/H (NMR) probe for the study of lysine involvement in lipid-protein interactions. Amino acid analysis showed 80% of the protein's 15 lysine residues to be labeled. Unmodified lysine residues were located through peptide maps produced from CNBr, tryptic, and chymotryptic digests of the labeled protein. Average correlation times calculated from /sup 2/H NMR spectra were 20 and 320 ps for 8.7 and 3.3 residues, respectively, in 6 M guanidine hydrochloride; in nondenaturing solution, values of 70 and 320 ps were obtained for 6.5 and 3.2 residues, respectively, with the remaining 2.3 modified residues not observed, suggesting that side chains of lysine residues in unordered or flexible regions were more mobile than those in stable periodic structures. /sup 2/H NMR spectra of the protein complexed with dipalmitoylphosphatidylcholine confirmed the extrinsic membrane protein type behavior of ..beta..-lactoglobulin previously reported from /sup 31/P NMR studies of the phospholipids complexed with ..beta..-lactoglobulin. Although no physiological function has yet been identified, comparison of these results with the X-ray structure supports the hypothesis that residues not accessible for modification may help to stabilize the cone-shaped ..beta..-barrel thought to contain binding sites for small lipid-soluble molecules.

  9. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy.

    PubMed

    Yuzyuk, Tatiana; Thomas, Amanda; Viau, Krista; Liu, Aiping; De Biase, Irene; Botto, Lorenzo D; Pasquali, Marzia; Longo, Nicola

    2016-07-01

    Pyridoxine-Dependent Epilepsy (PDE) is a recessive disorder caused by deficiency of α-aminoadipic semialdehyde dehydrogenase in the catabolic pathway of lysine. It is characterized by intractable seizures controlled by the administration of pharmacological doses of vitamin B6. Despite seizure control with pyridoxine, intellectual disability and developmental delays are still observed in some patients with PDE, likely due to the accumulation of toxic intermediates in the lysine catabolic pathway: alpha-aminoadipic semialdehyde (AASA), delta-1-piperideine-6-carboxylate (P6C), and pipecolic acid. Here we evaluate biochemical and clinical parameters in two PDE patients treated with a lysine-restricted diet and arginine supplementation (100-150mg/kg), aimed at reducing the levels of PDE biomarkers. Lysine restriction resulted in decreased accumulation of PDE biomarkers and improved development. Plasma lysine but not plasma arginine, directly correlated with plasma levels of AASA-P6C (p<0.001, r(2)=0.640) and pipecolic acid (p<0.01, r(2)=0.484). In addition, plasma threonine strongly correlated with the levels of AASA-P6C (p<0.0001, r(2)=0.732) and pipecolic acid (p<0.005, r(2)=0.527), suggesting extreme sensitivity of threonine catabolism to pyridoxine availability. Our results further support the use of dietary therapies in combination with pyridoxine for the treatment of PDE.

  10. Effect of supplementation of crystalline lysine on the performance of WL layers in tropics during summer.

    PubMed

    Kumari, K Naga Raja; Reddy, V Ravinder; Preetham, V Chinni; Kumar, D Srinivas; Sen, Arup Ratan; Rao, S Venkata Rama

    2016-04-01

    A trial was conducted to evaluate the effect of lysine concentration in the diet of WL layers with constant ratio of other essential amino acids to lysine. Pullets (528) aged 25 to 36 weeks were fed with test diet containing two protein levels (13.36 and 15.78%) each with 5% concentration of lysine (0.50, 0.55, 0.60, 0.65, and 0.70) and a control with 17% CP and 0.70%, lysine. Each test diet was fed ad libitum to six replicates of eight birds for a period of 12 weeks. Egg production (EP), egg weight (EW), egg mass (EM), feed efficiency (g/g) (FE), body weight gain (BWG), Haugh unit (HU) and yolk colour (YC) were measured. Increased (P ≤ 0.05) EP, EW, EM, FE and BWG were obtained with increasing lysine concentration in diets. Whereas, feed intake/h/day, feed intake/egg, egg shell defects (ESD), mortality and shell thickness were not affected (P ≥ 0.05) by the concentration of lysine in diet. However, higher (P ≤ 0.05) HU score and YC were noticed at low lysine (0.50 %) concentrations. Based on this, it was concluded that WL layers (25-36 weeks) reared in open-sided houses in the tropics require approximately 0.70 % lysine (597.90 vs. 584.39 mg/h/day) in low (13.36% CP) and high (15.78% CP) protein groups in diets containing approximately 2700 kcal of ME/kg in summer.

  11. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation. PMID:27600229

  12. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  13. Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2'-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents

    PubMed Central

    Torres, Adrian G.; Threlfall, Richard N.

    2011-01-01

    Efficient cell delivery of antisense oligonucleotides (ONs) is a key issue for their potential therapeutic use. It has been shown recently that some ONs can be delivered into cells without the use of transfection agents (gymnosis), but this generally requires cell incubation over several days and high amounts of ONs (micromolar concentrations). Here we have targeted microRNA 122 (miR-122), a small non-coding RNA involved in regulation of lipid metabolism and in the replication of hepatitis C virus, with ONs of different chemistries (anti-miRs) by gymnotic delivery in cell culture. Using a sensitive dual-luciferase reporter assay, anti-miRs were screened for their ability to enter liver cells gymnotically and inhibit miR-122 activity. Efficient miR-122 inhibition was obtained with cationic PNAs and 2'-O-methyl (OMe) and Locked Nucleic Acids (LNA)/OMe mixmers containing either phosphodiester (PO) or phosphorothioate (PS) linkages at sub-micromolar concentrations when incubated with cells for just 4 hours. Furthermore, PNA and PS-containing anti-miRs were able to sustain miR-122 inhibitory effects for at least 4 days. LNA/OMe PS anti-miRs were the most potent anti-miR chemistry tested in this study, an ON chemistry that has been little exploited so far as anti-miR agents towards therapeutics. PMID:22567190

  14. PR Domain-containing Protein 7 (PRDM7) Is a Histone 3 Lysine 4 Trimethyltransferase.

    PubMed

    Blazer, Levi L; Lima-Fernandes, Evelyne; Gibson, Elisa; Eram, Mohammad S; Loppnau, Peter; Arrowsmith, Cheryl H; Schapira, Matthieu; Vedadi, Masoud

    2016-06-24

    PR domain-containing protein 7 (PRDM7) is a primate-specific histone methyltransferase that is the result of a recent gene duplication of PRDM9. The two proteins are highly homologous, especially in the catalytic PR/SET domain, where they differ by only three amino acid residues. Here we report that PRDM7 is an efficient methyltransferase that selectively catalyzes the trimethylation of H3 lysine 4 (H3K4) both in vitro and in cells. Through selective mutagenesis we have dissected the functional roles of each of the three divergent residues between the PR domains of PRDM7 and PRDM9. These studies indicate that after a single serine to tyrosine mutation at residue 357 (S357Y), PRDM7 regains the substrate specificities and catalytic activities similar to its evolutionary predecessor, including the ability to efficiently methylate H3K36.

  15. PR Domain-containing Protein 7 (PRDM7) Is a Histone 3 Lysine 4 Trimethyltransferase*

    PubMed Central

    Blazer, Levi L.; Lima-Fernandes, Evelyne; Gibson, Elisa; Eram, Mohammad S.; Loppnau, Peter; Arrowsmith, Cheryl H.; Schapira, Matthieu; Vedadi, Masoud

    2016-01-01

    PR domain-containing protein 7 (PRDM7) is a primate-specific histone methyltransferase that is the result of a recent gene duplication of PRDM9. The two proteins are highly homologous, especially in the catalytic PR/SET domain, where they differ by only three amino acid residues. Here we report that PRDM7 is an efficient methyltransferase that selectively catalyzes the trimethylation of H3 lysine 4 (H3K4) both in vitro and in cells. Through selective mutagenesis we have dissected the functional roles of each of the three divergent residues between the PR domains of PRDM7 and PRDM9. These studies indicate that after a single serine to tyrosine mutation at residue 357 (S357Y), PRDM7 regains the substrate specificities and catalytic activities similar to its evolutionary predecessor, including the ability to efficiently methylate H3K36. PMID:27129774

  16. Bioaccumulation of perfluoroalkyl acids including the isomers of perfluorooctane sulfonate in carp (Cyprinus carpio) in a sediment/water microcosm.

    PubMed

    Fang, Shuhong; Zhang, Yifeng; Zhao, Shuyan; Qiang, Liwen; Chen, Meng; Zhu, Lingyan

    2016-12-01

    Carp (Cyprinus carpio) were exposed to perfluoroalkyl acids (PFAAs) including perfluorooctane sulfonate (PFOS) isomers in an artificially contaminated sediment/water microcosm. The uptake constant of PFAAs increased with increasing carbon chain length, whereas the elimination coefficient displayed the opposite trend, suggesting that carbon chain length plays an important role in the bioaccumulation of PFAAs. When the contribution of suspended particulate matter was taken into account, the bioaccumulation factors (BAFs) became lower (3.61-600 L/kg) compared with BAFs derived from only considering the absorption from free PFAAs in water (3.85-97000 L/kg). The results indicate that suspended particulate matter in water constitutes an important source of exposure for aquatic organisms to long-chain PFAAs. Linear (n-)PFOS was preferentially accumulated compared with branched isomers in carp. Among the branched isomers, 1m-PFOS displayed the greatest bioaccumulation, whereas m2 -PFOS had the lowest. Linear PFOS displayed greater partitioning ability from blood to other tissues over branched PFOS (br-PFOS) isomers, leading to a relatively lower n-PFOS proportion in blood. In summary, suspended particulate matter made a contribution to the accumulation of long-chain PFAAs in aquatic organisms, and n-PFOS was preferentially accumulated compared with br-PFOS isomers. Environ Toxicol Chem 2016;35:3005-3013. © 2016 SETAC.

  17. Chemical Cues which Include Amino Acids Mediate Species-Specific Feeding Behavior in Invasive Filter-Feeding Bigheaded Carps.

    PubMed

    Claus, Aaron W; Sorensen, Peter W

    2017-03-15

    This study tested whether and how dissolved chemicals might assist food recognition in two filter-feeding fishes, the silver (Hypophthalmichthys molitrix) and the bighead carp (H. nobilis). These species evolved in Asia, are now invasive in the Mississippi River, and feed voraciously on microparticles including plankton. The food habits and biology of these carps are broadly similar to many filter-feeding fish, none of whose chemical ecology has been examined. We conducted five experiments. First, we demonstrated that buccal-pharngeal pumping (BPP), a behavior in which fish pump water into their buccal cavities, is responsible for sampling food: BPP activity in both silver and bighead carps was low and increased nearly 25-fold after exposure to a filtrate of a planktonic food mixture (P < 0.01) and over 35-fold when planktonic food was added (P < 0.001). Next, we showed that of nine food filtrates, the one containing chemicals released by spirulina, a type of cyanobacterium, was the most potent planktonic component for both species. The potency of filtrates varied between species in ways that reflected their different chemical compositions. While L-amino acids could explain about half of the activity of food filtrate, other unknown chemical stimuli were also implicated. Finally, occlusion experiments showed the olfactory sense has a very important, but not exclusive, role in bigheaded carp feeding behaviors and this might be exploited in both their control and culture.

  18. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes

    PubMed Central

    Mulvey, J Justin; Feinberg, Evan N; Alidori, Simone; McDevitt, Michael R; Heller, Daniel A; Scheinberg, David A

    2014-01-01

    We aimed to create a more robust and more accessible standard for amine-modifying single-walled carbon nanotubes (SWCNTs). A 1,3-cycloaddition was developed using an azomethine ylide, generated by reacting paraformaldehyde and a side-chain-Boc (tert-Butyloxycarbonyl)-protected, lysine-derived alpha-amino acid, H-Lys(Boc)-OH, with purified SWCNT or C60. This cycloaddition and its lysine adduct provides the benefits of dense, covalent modification, ease of purification, commercial availability of reagents, and pH-dependent solubility of the product. Subsequently, SWCNTs functionalized with lysine amine handles were covalently conjugated to a radiometalated chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The 111In-labeled construct showed rapid renal clearance in a murine model and a favorable biodistribution, permitting utility in biomedical applications. Functionalized SWCNTs strongly wrapped small interfering RNA (siRNA). In the first disclosed deployment of thermophoresis with carbon nanotubes, the lysine-modified tubes showed a desirable, weak SWCNT-albumin binding constant. Thus, lysine-modified nanotubes are a favorable candidate for medicinal work. PMID:25228803

  19. Synthesis, pharmacokinetics, and biological use of lysine-modified single-walled carbon nanotubes.

    PubMed

    Mulvey, J Justin; Feinberg, Evan N; Alidori, Simone; McDevitt, Michael R; Heller, Daniel A; Scheinberg, David A

    2014-01-01

    We aimed to create a more robust and more accessible standard for amine-modifying single-walled carbon nanotubes (SWCNTs). A 1,3-cycloaddition was developed using an azomethine ylide, generated by reacting paraformaldehyde and a side-chain-Boc (tert-Butyloxycarbonyl)-protected, lysine-derived alpha-amino acid, H-Lys(Boc)-OH, with purified SWCNT or C60. This cycloaddition and its lysine adduct provides the benefits of dense, covalent modification, ease of purification, commercial availability of reagents, and pH-dependent solubility of the product. Subsequently, SWCNTs functionalized with lysine amine handles were covalently conjugated to a radiometalated chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). The (111)In-labeled construct showed rapid renal clearance in a murine model and a favorable biodistribution, permitting utility in biomedical applications. Functionalized SWCNTs strongly wrapped small interfering RNA (siRNA). In the first disclosed deployment of thermophoresis with carbon nanotubes, the lysine-modified tubes showed a desirable, weak SWCNT-albumin binding constant. Thus, lysine-modified nanotubes are a favorable candidate for medicinal work.

  20. L-lysine as adjunctive treatment in patients with schizophrenia: a single-blinded, randomized, cross-over pilot study

    PubMed Central

    2011-01-01

    Background Accumulating evidence suggests that the brain's nitric oxide (NO) signalling system may be involved in the pathophysiology of schizophrenia and could thus constitute a novel treatment target. The study was designed to investigate the benefit of L-lysine, an amino acid that interferes with NO production, as an add-on treatment for schizophrenia. Methods L-lysine, 6 g/day, was administered to 10 patients with schizophrenia as an adjunctive to their conventional antipsychotic medication. The study was designed as a single-blinded, cross-over study where patients were randomly assigned to initial treatment with either L-lysine or placebo and screened at baseline, after four weeks when treatment was crossed over, and after eight weeks. Results L-lysine treatment caused a significant increase in blood concentration of L-lysine and was well tolerated. A significant decrease in positive symptom severity, measured by the Positive And Negative Syndrome Scale (PANSS), was detected. A certain decrease in score was also observed during placebo treatment and the effects on PANSS could not unequivocally be assigned to the L-lysine treatment. Furthermore, performance on the Wisconsin Card Sorting Test was significantly improved compared to baseline, an effect probably biased by training. Subjective reports from three of the patients indicated decreased symptom severity and enhanced cognitive functioning. Conclusions Four-week L-lysine treatment of 6 g/day caused a significant increase in blood concentration of L-lysine that was well tolerated. Patients showed a significant decrease in positive symptoms as assessed by PANSS in addition to self-reported symptom improvement by three patients. The NO-signalling pathway is an interesting, potentially new treatment target for schizophrenia; however, the effects of L-lysine need further evaluation to decide the amino acid's potentially beneficial effects on symptom severity in schizophrenia. Trial registration NCT00996242 PMID

  1. Isolation and identification of microorganisms including lactic acid bacteria and their use in microbial deacidification of wines from domestic vineyards.

    PubMed

    Drozdz, Iwona; Makarewicz, Malgorzata; Tuszyński, Tadeusz

    2013-01-01

    The aim of this study was to identify various bacteria isolated from grapes and their wines. Additionally we investigated the capacity of lactic acid bacteria for microbiological deacidification of wines produced in Poland. We have identified Oenococcus oeni, Lactobacillus acidophilus and Lactobacillus delbrueckii. During the microbial deacidification process, we observed decreases of total acidity and increases of volatile acidity, with statistically significant changes noted for O. oeni in Marechal Foch and Seyval Blanc, and for Lb. acidophilus in Frontenac. On the other hand, a statistically significant increase in pH was observed in Marechal Foch and Seyval Blanc following deacidification by O. oeni.

  2. Simultaneous analysis of Nε-(carboxymethyl)lysine, reducing sugars, and lysine during the dairy thermal process.

    PubMed

    Xu, Xian-Bing; Ma, Fei; Yu, Shu-Juan; Guan, Yong-Guang

    2013-09-01

    A new analytical method allowing the simultaneous quantification of Nε-(carboxymethyl)lysine (CML), lysine, and reducing sugars (glucose, lactose, and galactose) is described. It is based on high performance anion-exchange chromatography with pulsed amperometric electrochemical detection. This method demonstrated a low limit of quantification (0.385 to 0.866 mg/L), excellent linear correlation (R(2)>0.997), and desired calibration range (3.125 to 25 mg/L). In addition, lactose-lysine solutions containing sulfite (4 to 400 mmol/L) were heated at 110°C for 2h. The results showed that sulfite inhibited the formation of CML and promoted the consumption of reducing sugars and lysine in the Maillard reaction model. The method proved to be useful for simultaneous analysis of CML, lysine, and reducing sugars (glucose, galactose, and lactose) in the Maillard reaction system. Moreover, sulfite was an effective inhibitor of CML formation.

  3. SMYD3-mediated lysine methylation in the PH domain is critical for activation of AKT1

    PubMed Central

    Yoshioka, Yuichiro; Suzuki, Takehiro; Matsuo, Yo; Nakakido, Makoto; Tsurita, Giichiro; Simone, Cristiano; Watanabe, Toshiaki; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2016-01-01

    AKT1 is a cytosolic serine/threonine kinase that is overexpressed in various types of cancer and has a central role in human tumorigenesis. Although it is known that AKT1 is post-translationally modified in various ways including phosphorylation and ubiquitination, methylation has not been reported so far. Here we demonstrate that the protein lysine methyltransferase SMYD3 methylates lysine 14 in the PH domain of AKT1 both in vitro and in vivo. Lysine 14-substituted AKT1 shows significantly lower levels of phosphorylation at threonine 308 than wild-type AKT1, and knockdown of SMYD3 as well as treatment with a SMYD3 inhibitor significantly attenuates this phosphorylation in cancer cells. Furthermore, substitution of lysine 14 diminishes the plasma membrane accumulation of AKT1, and cancer cells overexpressing lysine 14-substiuted AKT1 shows lower growth rate than those overexpressing wild-type AKT1. These results imply that SMYD3-mediated methylation of AKT1 at lysine 14 is essential for AKT1 activation and that SMYD3-mediated AKT1 methylation appears to be a good target for development of anti-cancer therapy. PMID:27626683

  4. Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila

    PubMed Central

    1995-01-01

    In Tetrahymena, at least 17 distinct microtubule structures are assembled from a single primary sequence type of alpha- and beta- tubulin heterodimer, precluding distinctions among microtubular systems based on tubulin primary sequence isotypes. Tetrahymena tubulins also are modified by several types of posttranslational reactions including acetylation of alpha-tubulin at lysine 40, a modification found in most eukaryotes. In Tetrahymena, axonemal alpha-tubulin and numerous other microtubules are acetylated. We completely replaced the single type of alpha-tubulin gene in the macronucleus with a version encoding arginine instead of lysine 40 and therefore cannot be acetylated at this position. No acetylated tubulin was detectable in these transformants using a monoclonal antibody specific for acetylated lysine 40. Surprisingly, mutants lacking detectable acetylated tubulin are indistinguishable from wild-type cells. Thus, acetylation of alpha- tubulin at lysine 40 is non-essential in Tetrahymena. In addition, isoelectric focusing gel analysis of axonemal tubulin from cells unable to acetylate alpha-tubulin leads us to conclude that: (a) most or all ciliary alpha-tubulin is acetylated, (b) other lysines cannot be acetylated to compensate for loss of acetylation at lysine 40, and (c) acetylated alpha-tubulin molecules in wild-type cells contain one or more additional charge-altering modifications. PMID:7775576

  5. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGES

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; ...

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  6. Analysis of arginine and lysine methylation utilizing peptide separations at neutral pH and electron transfer dissociation mass spectrometry.

    PubMed

    Snijders, Ambrosius P L; Hung, Ming-Lung; Wilson, Stuart A; Dickman, Mark J

    2010-01-01

    Arginine and lysine methylation are widespread protein post-translational modifications. Peptides containing these modifications are difficult to retain using traditional reversed-phase liquid chromatography because they are intrinsically basic/hydrophilic and often fragment poorly during collision induced fragmentation (CID). Therefore, they are difficult to analyze using standard proteomic workflows. To overcome these caveats, we performed peptide separations at neutral pH, resulting in increased retention of the hydrophilic/basic methylated peptides before identification using MS/MS. Alternatively trifluoroacetic acid (TFA) was used for increased trapping of methylated peptides. Electron-transfer dissociation (ETD) mass spectrometry was then used to identify and characterize methylated residues. In contrast to previous reports utilizing ETD for arginine methylation, we observed significant amount of side-chain fragmentation. Using heavy methyl stable isotope labeling with amino acids in cell culture it was shown that, similar to CID, a loss of monomethylamine or dimethylamine from the arginine methylated side-chain during ETD can be used as a diagnostic to determine the type of arginine methylation. CID of lysine methylated peptides does not lead to significant neutral losses, but ETD is still beneficial because of the high charge states of such peptides. The developed LC MS/MS methods were successfully applied to tryptic digests of a number of methylated proteins, including splicing factor proline-glutamine-rich protein (SFPQ), RNA and export factor-binding protein 2 (REF2-I) and Sul7D, demonstrating significant advantages over traditional LC MS/MS approaches.

  7. Recent advances in the biotechnological production of microbial poly(ɛ-L-lysine) and understanding of its biosynthetic mechanism.

    PubMed

    Xu, Zhaoxian; Xu, Zheng; Feng, Xiaohai; Xu, Delei; Liang, Jinfeng; Xu, Hong

    2016-08-01

    Poly(ɛ-L-lysine) (ɛ-PL) is an unusual biopolymer composed of L-lysine connected between α-carboxyl and ɛ-amino groups. It has been used as a preservative in food and cosmetics industries, drug carrier in medicines, and gene carrier in gene therapy. Modern biotechnology has significantly improved the synthetic efficiency of this novel homopoly(amino acid) on an industrial scale and has expanded its industrial applications. In the latest years, studies have focused on the biotechnological production and understanding the biosynthetic mechanism of microbial ɛ-PL. Herein, this review focuses on the current trends and future perspectives of microbial ɛ-PL. Information on the screening of ɛ-PL-producing strains, fermentative production of ɛ-PL, breeding of high-ɛ-PL-producing strains, genomic data of ɛ-PL-producing strains, biosynthetic mechanism of microbial ɛ-PL, and the control of molecular weight of microbial ɛ-PL is included. This review will contribute to the development of this novel homopoly(amino acid) and serve as a basis of studies on other biopolymers.

  8. Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis.

    PubMed

    Tsepilov, R N; Beloded, A V

    2015-09-01

    Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed.

  9. Dendronized nanoconjugates of lysine and folate for treatment of cancer.

    PubMed

    Jain, Keerti; Gupta, Umesh; Jain, Narendra K

    2014-08-01

    Poly-L-lysine (PLL) dendrimers are currently being investigated as antiangiogenic agent for therapy of cancer. In this study, we report folate conjugated poly-l-lysine dendrimers (FPLL) as an efficient carrier for model anticancer drug, doxorubicin hydrochloride (Dox); for pH sensitive drug release, selective targeting to cancer cells, anticancer activity and antiangiogenic activity. This nanoconjugate of Dox showed initial rapid in vitro release followed by gradual slow release, and the drug release was found to be pH sensitive with greater release at acidic pH. In the CAM assay and tubule formation assay with HUVEC, Dox-FPLL formulation showed the significant antiangiogenic activity confirming that activity of PLL was not compromised by the presence of Dox and folic acid. The ex vivo investigations with human breast cancer cell lines MCF-7 showed enhanced cytotoxicity of Dox-FPLL with significantly enhanced intracellular uptake (p<0.001). The in vivo therapeutic potential of nanoconjugate was determined in MCF-7 breast cancer xenograft model in tumor-bearing mice. Dox-FPLL increased the concentration of Dox in tumor by 121.5-fold after 24 h in comparison with free Dox formulation. The folate conjugated dendrimeric Dox showed superior anti-tumor activity in tumor xenograft model with significantly prolonged survival determined by Kaplan Meier survival analysis (p<0.001).

  10. Rapid identification of triterpenoid sulfates and hydroxy fatty acids including two new constituents from Tydemania expeditionis by LC-MS

    PubMed Central

    Zhang, Jian-Long; Kubanek, Julia; Hay, Mark E.; Aalbersberg, William; Ye, Wen-Cai; Jiang, Ren-Wang

    2011-01-01

    Tydemania expeditionis Weber-van Bosse (Udoteaceae) is a weakly calcified green alga. In the present paper, liquid chromatography coupled with photodiode array detection and electrospray mass spectrometry was developed to identify the fingerprint components. A total of four triterpenoid sulfates and three hydroxy fatty acids in the ethyl acetate fraction of the crude extract were structurally characterized on the basis of retention time, online UV spectrum and mass fragmentation pattern. Furthermore, detailed LC-MS analysis revealed two new hydroxy fatty acids, which were then prepared and characterized by extensive NMR analyses. The proposed method provides a scientific and technical platform for the rapid identification of triterpenoid sulfates and hydroxy fatty acids in similar marine algae and terrestrial plants. PMID:21915955

  11. Lysine221 is the general base residue of the isochorismate synthase from Pseudomonas aeruginosa (PchA) in a reaction that is diffusion limited

    PubMed Central

    Meneely, Kathleen M.; Luo, Qianyi; Dhar, Prajnaparamita; Lamb, Audrey L.

    2013-01-01

    The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from E. coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid – general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid – general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step. PMID:23942051

  12. Lysine221 is the general base residue of the isochorismate synthase from Pseudomonas aeruginosa (PchA) in a reaction that is diffusion limited.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Dhar, Prajnaparamita; Lamb, Audrey L

    2013-10-01

    The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from Escherichia coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid-general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid-general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step.

  13. Elongation factor 1 alpha concentration is highly correlated with the lysine content of maize endosperm.

    PubMed Central

    Habben, J E; Moro, G L; Hunter, B G; Hamaker, B R; Larkins, B A

    1995-01-01

    Lysine is the most limiting essential amino acid in cereals, and for many years plant breeders have attempted to increase its concentration to improve the nutritional quality of these grains. The opaque2 mutation in maize doubles the lysine content in the endosperm, but the mechanism by which this occurs is unknown. We show that elongation factor 1 alpha (EF-1 alpha) is overexpressed in opaque2 endosperm compared with its normal counterpart and that there is a highly significant correlation between EF-1 alpha concentration and the total lysine content of the endosperm. This relationship is also true for two other cereals, sorghum and barley. It appears that genetic selection for genotypes with a high concentration of EF-1 alpha can significantly improve the nutritional quality of maize and other cereals. Images Fig. 1 Fig. 2 PMID:7567989

  14. A System for Enzymatic Lysine Methylation in a Desired Sequence Context

    PubMed Central

    2017-01-01

    A number of lysine-specific methyltransferases (KMTs) are responsible for the post-translational modification of cellular proteins on lysine residues. Most KMTs typically recognize specific motifs in unstructured, short peptide sequences. However, we have recently discovered a novel KMT that appeared to have a more relaxed sequence specificity, namely, valosin-containing protein (VCP)-KMT, which trimethylates Lys-315 in the molecular chaperone VCP. On the basis of this, here, we explored the possibility of using the VCP-KMT/VCP system to obtain specific lysine methylation of desired sequences grafted onto a VCP-derived scaffold. We generated VCP-derived proteins in which three amino acid residues on each side of Lys-315 had been replaced by various sequences representing lysine methylation sites in histone H3. We found that all of these chimeric proteins were subject to efficient VCP-KMT-mediated methylation in vitro, and methylation was also observed in mammalian cells. Thus, we here describe a versatile system for introducing lysine methylation into a desired peptide sequence, and the approach should be readily expandable for generating combinatorial libraries of methylated sequences. PMID:28357416

  15. Crystal structure of Mycobacterium tuberculosis diaminopimelate decarboxylase, an essential enzyme in bacterial lysine biosynthesis.

    PubMed

    Gokulan, Kuppan; Rupp, Bernhard; Pavelka, Martin S; Jacobs, William R; Sacchettini, James C

    2003-05-16

    The Mycobacterium tuberculosis lysA gene encodes the enzyme meso-diaminopimelate decarboxylase (DAPDC), a pyridoxal-5'-phosphate (PLP)-dependent enzyme. The enzyme catalyzes the final step in the lysine biosynthetic pathway converting meso-diaminopimelic acid (DAP) to l-lysine. The lysA gene of M. tuberculosis H37Rv has been established as essential for bacterial survival in immunocompromised mice, demonstrating that de novo biosynthesis of lysine is essential for in vivo viability. Drugs targeted against DAPDC could be efficient anti-tuberculosis drugs, and the three-dimensional structure of DAPDC from M. tuberculosis complexed with reaction product lysine and the ternary complex with PLP and lysine in the active site has been determined. The first structure of a DAPDC confirms its classification as a fold type III PLP-dependent enzyme. The structure shows a stable 2-fold dimer in head-to-tail arrangement of a triose-phosphate isomerase (TIM) barrel-like alpha/beta domain and a C-terminal beta sheet domain, similar to the ornithine decarboxylase (ODC) fold family. PLP is covalently bound via an internal aldimine, and residues from both domains and both subunits contribute to the binding pocket. Comparison of the structure with eukaryotic ODCs, in particular with a di-fluoromethyl ornithine (DMFO)-bound ODC from Trypanosoma bruceii, indicates that corresponding DAP-analogues might be potential inhibitors for mycobacterial DAPDCs.

  16. The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in Cryptococcus neoformans.

    PubMed

    Do, Eunsoo; Park, Minji; Hu, Guanggan; Caza, Mélissa; Kronstad, James W; Jung, Won Hee

    2016-09-02

    The lysine biosynthesis pathway via α-aminoadipate in fungi is considered an attractive target for antifungal drugs due to its absence in mammalian hosts. The iron-sulfur cluster-containing enzyme homoaconitase converts homocitrate to homoisocitrate in the lysine biosynthetic pathway, and is encoded by LYS4 in the model yeast Saccharomyces cerevisiae. In this study, we identified the ortholog of LYS4 in the human fungal pathogen, Cryptococcus neoformans, and found that LYS4 expression is regulated by iron levels and by the iron-related transcription factors Hap3 and HapX. Deletion of the LYS4 gene resulted in lysine auxotrophy suggesting that Lys4 is essential for lysine biosynthesis. Our study also revealed that lysine uptake was mediated by two amino acid permeases, Aap2 and Aap3, and influenced by nitrogen catabolite repression (NCR). Furthermore, the lys4 mutant showed increased sensitivity to oxidative stress, agents that challenge cell wall/membrane integrity, and azole antifungal drugs. We showed that these phenotypes were due in part to impaired mitochondrial function as a result of LYS4 deletion, which we propose disrupts iron homeostasis in the organelle. The combination of defects are consistent with our observation that the lys4 mutant was attenuated virulence in a mouse inhalation model of cryptococcosis.

  17. Effect of irradiation on Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine formation in cooked meat products during storage

    NASA Astrophysics Data System (ADS)

    Yu, Ligang; He, Zhiyong; Zeng, Maomao; Zheng, Zongping; Chen, Jie

    2016-03-01

    This study investigated the effects of irradiation on Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL) formation in cooked red and white meats during storage. The results showed that irradiation did not affect CML/CEL formation (0 weeks). After 6 weeks, CML/CEL contents in the irradiated samples exhibited a higher growth rate than the non-irradiated samples, especially the red meat. The results of electron spin resonance spectrometry and 2-Thiobarbituric acid-reactive substances suggested irradiation had induced free-radical reactions and accelerated lipid oxidation during storage. A linear correlation (r=0.810-0.906, p<0.01) was found between the loss of polyunsaturated fatty acids content and increase of CML/CEL content in the irradiated samples after 0 and 6 weeks of storage. The results indicate that irradiation-induced lipid oxidation promotes CML/CEL formation, and CML/CEL formation by the lipid oxidation pathways may be an important pathway for CML/CEL accumulation in irradiated meat products during storage.

  18. Abundance and functional roles of intrinsic disorder in the antimicrobial peptides of the NK-lysin family.

    PubMed

    Yacoub, Haitham A; Al-Maghrabi, Omar A; Ahmed, Ekram S; Uversky, Vladimir N

    2017-03-01

    NK-lysins are antimicrobial peptides (AMPs) that participate in the innate immune response and also have several pivotal roles in various biological processes. Such multifunctionality is commonly found among intrinsically disordered proteins. However, NK-lysins have never been systematically analyzed for intrinsic disorder. To fill this gap, the amino acid sequences of NK-lysins from various species were collected from UniProt and used for the comprehensive computational analysis to evaluate the propensity of these proteins for intrinsic disorder and to investigate the potential roles of disordered regions in NK-lysin functions. We analyzed abundance and peculiarities of intrinsic disorder distribution in all-known NK-lysins and showed that many NK-lysins are expected to have substantial levels of intrinsic disorder. Curiously, high level of intrinsic disorder was also found even in two proteins with known 3D-strucutres (NK-lysin from pig and human granulysin). Many of the identified disordered regions can be involved in protein-protein interactions. In fact, NK-lysins are shown to contain three to eight molecular recognition features; i.e. short structure-prone segments which are located within the long disordered regions and have a potential to undergo a disorder-to-order transition upon binding to a partner. Furthermore, these disordered regions are expected to have several sites of various posttranslational modifications. Our study shows that NK-lysins, which are AMPs with a set of prominent roles in the innate immune response, are expected to abundantly possess intrinsically disordered regions that might be related to multifunctionality of these proteins in the signal transduction pathways controlling the host response to pathogenic agents.

  19. Health information impact on the relative importance of beef attributes including its enrichment with polyunsaturated fatty acids (omega-3 and conjugated linoleic acid).

    PubMed

    Kallas, Zein; Realini, Carolina E; Gil, José Maria

    2014-08-01

    This paper uses Choice Experiments (CE) to investigate Spanish consumers' preferences towards beef meat enriched with polyunsaturated fatty acids (omega-3 and conjugated linoleic acid). Data were gathered from self-completed questionnaires in a controlled environment with two different samples (320 and 322 consumers) differentiated by the information received. The surveys were carried out in three main Spanish cities (Barcelona, Zaragoza and Pamplona), representing the average consumer. A variation of the "Dual Response Choice Experiments" (DRCE) design was used due to its ability to emphasize the purchase context. Results showed that consumers who received information attach higher preference for enriched meat with polyunsaturated fatty acids. The utility associated with the higher content of fat increase for informed consumers, showing a substitute effect. Informed consumers are willing to accept meat with a higher amount of visible fat if it is enriched with beneficial fatty acids.

  20. Uptake of L-lysine by a double mutant of Saccharomyces cerevisiae.

    PubMed

    García, J C; Kotyk, A

    1988-01-01

    A gap1 can1 mutant of Saccharomyces cerevisiae with a single lysine transport system remaining was used to study detailed kinetics of this transport. Its half-saturation constant was 78 mumol per litre, its maximum rate of transport was 0.29 mumol L-lysine per g dry matter per minute, both parameters being lower by more than an order of magnitude in comparison with the GAP system. The pH optimum lay at very acid values of about 3, the temperature dependence without any transition point showed an activation energy of 48 kJ/mol. The transport was inhibited by common metabolic inhibitors (3'-chlorophenylhydrazonomalononitrile, antimycin, 2-deoxy-D-glucose, sodium arsenate) as well as by a membrane-active one (uranyl nitrate). The specificity of the system was extremely high, none of the natural amino acids acting as competitor to L-lysine. The maximum accumulation ratio attained (at about 5 mg dry matter per mL) was 100: 1-120: 1, in agreement with the measured protonmotive force under the assumption of 1 H+ ion being transported with 1 lysine molecule. The ratio decreased with increasing external concentration of lysine to as little as 4: 1 at 1 mmol lysine per litre. It also decreased with increasing suspension density and it was at extremely low suspension densities (0.2 mg dry matter per mL) that ratios of as much as 500: 1 were reached. Application of group-specific inhibitors showed that the active site of the carrier contains an essential histidine residue.

  1. N. sup. var epsilon. -acetyl-. beta. -lysine: An osmolyte synthesized by mothanogenic archaebacteria

    SciTech Connect

    Sowers, K.R.; Gunsalus, R.P. ); Robertson, D.E.; Noll, D.; Roberts, M.F. )

    1990-12-01

    Methanosarcina thermophila, a nonmarine methanogenic archaebacterium, can grow in a range of saline concentrations. At less than 0.4 M NaCl, Ms. thermophila accumulated glutamate in response to increasing osmotic stress. At greater than 0.4 M NaCl, this organism synthesized a modified {beta}-amino acid that was identified as N{sup {var epsilon}}-acetyl-{beta}-lysine by NMR spectroscopy and ion-exchange HPLC. This {beta}-amino acid derivative accumulated to high intracellular concentrations (up to 0.6 M) in Ms. thermophila and in another methanogen examined - Methanogenium cariaci, a marine species. The compound has features that are characteristic of a compatible solute: it is neutrally charged at physiological pH and it is highly soluble. When the cells were grown in the presence of exogenous glycine betaine, a physiological pH and it is highly soluble. When the cells were grown in the presence of exogenous glycine betaine, a physiological compatible solute, N{sup {var epsilon}}-acetyl-{beta}-lysine synthesis was repressed and glycine betaine was accumulated. N{sup {var epsilon}}-Acetyl-{beta}-lysine was synthesized by species from three phylogenetic families when grown in high solute concentrations, suggesting that it may be ubiquitous among the methanogens. The ability to control the biosynthesis of N{sup {var epsilon}}-acetyl-{beta}-lysine in response to extracellular solute concentration indicates that the methanogenic archaebacteria have a unique {beta}-amino acid biosynthetic pathway that is osmotically regulated.

  2. Lauryl-poly-L-lysine: A New Antimicrobial Agent?

    PubMed Central

    Thuault, Véronique; Mangas, Arturo; Thienpont, Anne; Geffard, Michel

    2014-01-01

    The development of multiple antibiotic resistance is a global problem. It is necessary to find new tools whose mechanisms of action differ from those of currently used antibiotics. It is known that fatty acids and cationic polypeptides are able to fight bacteria. Here, we describe the synthesis of fatty acids linked to a polypeptide with antibacterial activity. The linkage of fatty acids to a polypeptide is reported to increase the antibacterial effect of the linked fatty acid in comparison with free fatty acids (FA) or free poly-L-lysine (PLL) or a mixture of both (FA free + PLL free). A number of C6–C18 fatty acids were linked to PLL to obtain new synthetic products. These compounds were assessed in vitro to evaluate their antibacterial activity. Some fatty acid-PLLs showed a good ability to fight bacteria. Their bactericidal activity was evaluated, and, lauryl linked to PLL was found to be the most active product against both Gram-positive and Gram-negative bacteria. This new active component showed a good degree of specificity and reproducibility and its minimum inhibitory concentration (MIC) was comparatively good. The antibacterial activity of the lauryl-PLL compound suggests that it is a new and promising antimicrobial agent. PMID:24660058

  3. A Novel Staphylococcus Podophage Encodes a Unique Lysin with Unusual Modular Design

    PubMed Central

    Cater, Katie; Dandu, Vidya Sree; Bari, S. M. Nayeemul; Lackey, Kim; Everett, Gabriel F. K.

    2017-01-01

    and community settings, underscoring the urgent need for new strategies to combat staphylococcal infections. Bacterial viruses (phages) and the enzymes that they use to degrade bacterial cell walls (lysins) show promise as alternative antimicrobials; however, only a limited variety of staphylococcal phages and their lysins have yet been identified. Here, we report the discovery and characterization of a novel staphylococcal phage, Andhra. We show that Andhra encodes two lysins (Andhra_gp10 and Andhra_gp14) that inhibit growth and degrade the cell walls of diverse staphylococci, including S. aureus and S. epidermidis strains. Andhra and its unique lysins add to the arsenal of antimicrobials with potential for therapeutic use. PMID:28357414

  4. Human 14-3-3 Paralogs Differences Uncovered by Cross-Talk of Phosphorylation and Lysine Acetylation

    PubMed Central

    Uhart, Marina; Bustos, Diego M.

    2013-01-01

    The 14-3-3 protein family interacts with more than 700 different proteins in mammals, in part as a result of its specific phospho-serine/phospho-threonine binding activity. Upon binding to 14-3-3, the stability, subcellular localization and/or catalytic activity of the ligands are modified. Seven paralogs are strictly conserved in mammalian species. Although initially thought as redundant, the number of studies showing specialization is growing. We created a protein-protein interaction network for 14-3-3, kinases and their substrates signaling in human cells. We included information of phosphorylation, acetylation and other PTM sites, obtaining a complete representation of the 14-3-3 binding partners and their modifications. Using a computational system approach we found that networks of each 14-3-3 isoform are statistically different. It was remarkable to find that Tyr was the most phosphorylatable amino acid in domains of 14-3-3 epsilon partners. This, together with the over-representation of SH3 and Tyr_Kinase domains, suggest that epsilon could be involved in growth factors receptors signaling pathways particularly. We also found that within zeta’s network, the number of acetylated partners (and the number of modify lysines) is significantly higher compared with each of the other isoforms. Our results imply previously unreported hidden differences of the 14-3-3 isoforms interaction networks. The phosphoproteome and lysine acetylome within each network revealed post-transcriptional regulation intertwining phosphorylation and lysine acetylation. A global understanding of these networks will contribute to predict what could occur when regulatory circuits become dysfunctional or are modified in response to external stimuli. PMID:23418452

  5. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  6. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  7. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  8. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  9. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  10. Radioactive Lysine in Protein Metabolism Studies

    DOE R&D Accomplishments Database

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  11. A luminol chemiluminescence method for sensing histidine and lysine using enzyme reactions.

    PubMed

    Kugimiya, Akimitsu; Fukada, Rie; Funamoto, Daiki

    2013-12-01

    The analysis of free amino acids in urine and plasma is useful for estimating disease status in clinical diagnoses. Changes in the concentration of free amino acids in foods are also useful markers of freshness, nutrition, and taste. In this study, the specific interaction between aminoacyl-tRNA synthetase (aaRS) and its corresponding amino acid was used to measure amino acid concentrations. Pyrophosphate released by the amino acid-aaRS binding reaction was detected by luminol chemiluminescence; the method provided selective quantitation of 1.0-30 μM histidine and 1.0-60 μM lysine.

  12. Lysine-poly(2-hydroxyethyl methacrylate) modified polyurethane surface with high lysine density and fibrinolytic activity.

    PubMed

    Li, Dan; Chen, Hong; Wang, Shasha; Wu, Zhaoqiang; Brash, John L

    2011-03-01

    We have developed a potentially fibrinolytic surface in which a bioinert polymer is used as a spacer to immobilize lysine such that the ε-amino group is free to capture plasminogen when in contact with blood. Adsorbed plasminogen can be activated to plasmin and potentially dissolve nascent clots formed on the surface. In previous work lysine was immobilized through a poly(ethylene glycol) (PEG) spacer; however, the graft density of PEG was limited and the resulting adsorbed quantity of plasminogen was insufficient to dissolve clots efficiently. The aim of the present work was to optimize the surface using graft-polymerized poly(2-hydroxyethyl methacrylate) (poly(HEMA)) as a spacer to increase the grafting density of lysine. Such a poly(HEMA)-lysine modified polyurethane (PU) surface is expected to have increased plasminogen binding capacity and clot lysing efficiency compared with PEG-lysine modified PU. A lysine density of 2.81 nmol cm(-2) was measured on the PU-poly(HEMA)-Lys surface vs. 0.76 nmol cm(-2) on a comparable PU-PEG-Lys surface reported previously. The poly(HEMA)-lysine-modified surface was shown to reduce non-specific (fibrinogen) adsorption while binding plasminogen from plasma with high affinity. With increased plasminogen binding capacity these surfaces showed more rapid clot lysis (20 min) in a standard in vitro assay than the corresponding PEG-lysine system (40 min). The data suggest that poly(HEMA) is superior to PEG when used as a spacer in the immobilization of bioactive molecules at high density. This method of modification may also provide a generic approach for preparing bioactive PU surfaces of high activity and low non-specific adsorption of proteins.

  13. Meat texture and antioxidant status are improved when carnosic acid is included in the diet of fattening lambs.

    PubMed

    Morán, Lara; Andrés, Sonia; Bodas, Raúl; Prieto, Nuria; Giráldez, F Javier

    2012-08-01

    Thirty-two Merino lambs fed barley straw and a concentrate alone (CONTROL group) or enriched with carnosic acid [0.6 g kg(-1) dry matter (DM), CARN006 group; 1.2 g kg(-1) DM, CARN012 group] or vitamin E (0.6 g kg(-1) DM, VITE006 group) were used to assess the effect of these antioxidant compounds on meat quality. After being fed the experimental diets for at least 5 weeks, the animals were slaughtered with the 25 kg intended body weight and the different muscles (longissimus lumborum; LL, gluteus medius; GM) were sliced and kept refrigerated under modified atmosphere packaging during 0, 7 and 14 days. The results indicate that carnosic acid seemed to be useful to delay lipid peroxidation in a medium colour-stable muscle such as GM, but this effect was lower than that observed when vitamin E was supplemented to fattening lambs. On the contrary, meat texture and protection against cholesterol oxidation were equally improved with both compounds.

  14. Dietary lysine affected the expression of genes related to lipid metabolism in skeletal muscle of finishing pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been reported that some amino acids can function as signaling molecules to regulate skeletal muscle growth in mammals. This study was conducted to identify those genes that may be regulated by amino acid lysine and responsible for muscle growth and meat quality of pigs. Nine crossbred barrows...

  15. Acetylproteomic analysis reveals functional implications of lysine acetylation in human spermatozoa (sperm).

    PubMed

    Yu, Heguo; Diao, Hua; Wang, Chunmei; Lin, Yan; Yu, Fudong; Lu, Hui; Xu, Wei; Li, Zheng; Shi, Huijuan; Zhao, Shimin; Zhou, Yuchuan; Zhang, Yonglian

    2015-04-01

    Male infertility is a medical condition that has been on the rise globally. Lysine acetylation of human sperm, an essential posttranslational modification involved in the etiology of sperm abnormality, is not fully understood. Therefore, we first generated a qualified pan-anti-acetyllysine monoclonal antibody to characterize the global lysine acetylation of uncapacitated normal human sperm with a proteomics approach. With high enrichment ratios that were up to 31%, 973 lysine-acetylated sites that matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 205 novel lysine-acetylated proteins, were identified. These proteins exhibited conserved motifs XXXKYXXX, XXXKFXXX, and XXXKHXXX, were annotated to function in multiple metabolic processes, and were localized predominantly in the mitochondrion and cytoplasmic fractions. Between the uncapacitated and capacitated sperm, different acetylation profiles in regard to functional proteins involved in sperm capacitation, sperm-egg recognition, sperm-egg plasma fusion, and fertilization were observed, indicating that acetylation of functional proteins may be required during sperm capacitation. Bioinformatics analysis revealed association of acetylated proteins with diseases and drugs. Novel acetylation of voltage-dependent anion channel proteins was also found. With clinical sperm samples, we observed differed lysine acetyltransferases and lysine deacetylases expression between normal sperm and abnormal sperm of asthenospermia or necrospermia. Furthermore, with sperm samples impaired by epigallocatechin gallate to mimic asthenospermia, we observed that inhibition of sperm motility was partly through the blockade of voltage-dependent anion channel 2 Lys-74 acetylation combined with reduced ATP levels and mitochondrial membrane potential. Taken together, we obtained a qualified pan-anti-acetyllysine monoclonal antibody, analyzed the acetylproteome of uncapacitated human sperm, and revealed

  16. Induction of CYP1A and cyp2-mediated arachidonic acid epoxygenation and suppression of 20-hydroxyeicosatetraenoic acid by imidazole derivatives including the aromatase inhibitor vorozole.

    PubMed

    Diani-Moore, Silvia; Papachristou, Fotini; Labitzke, Erin; Rifkind, Arleen B

    2006-08-01

    Cytochrome P450 (P450) enzymes metabolize the membrane lipid arachidonic acid to stable biologically active epoxides [eicosatrienoic acids (EETs)] and 20-hydroxyeicosatetraenoic acid (20-HETE). These products have cardiovascular activity, primarily acting as vasodilators and vasoconstrictors, respectively. EET formation can be increased by the prototype CYP1A or CYP2 inducers, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or phenobarbital (PB), respectively. We report here that imidazole derivative drugs: the anthelminthics, albendazole and thiabendazole; the proton pump inhibitor, omeprazole; the thromboxane synthase inhibitor, benzylimidazole; and the aromatase (CYP19) inhibitor vorozole (R76713, racemate; and R83842, (+) enantiomer) increased hepatic microsomal EET formation in a chick embryo model. Albendazole increased EETs by transcriptional induction of CYP1A5 and the others by combined induction of CYP1A5 and CYP2H, the avian orthologs of mammalian CYP1A2 and CYP2B, respectively. All inducers increased formation of the four EET regioisomers, but TCDD and albendazole had preference for 5,6-EET and PB and omeprazole for 14,15-EET. Vorozole, benzylimidazole, and TCDD also suppressed 20-HETE formation. Vorozole was a remarkably effective and potent inducer of multiple hepatic P450s at a dose range which overlapped its inhibition of ovarian aromatase. Increased CYP1A activity in mouse Hepa 1-6 and human HepG2 cells by vorozole and other imidazole derivatives demonstrated applicability of the findings to mammalian cells. The findings suggest that changes in P450-dependent arachidonic acid metabolism may be a new source of side effects for drugs that induce CYP1A or CYP2. They demonstrate further that in vivo induction of multiple hepatic P450s produces additive increases in arachidonic acid epoxygenase activity and can occur concurrently with inhibition of ovarian aromatase activity.

  17. Growth and development of the arborescent cactus Stenocereus queretaroensis in a subtropical semiarid environment, including effects of gibberellic acid.

    PubMed

    Pimienta, Eulogio; Hernandez, Gerardo; Domingues, Alejandro; Nobel, Park S.

    1998-01-01

    In Stenocereus queretaroensis (Weber) Buxbaum, an arborescent cactus cultivated in Jalisco, Mexico, for its fruits but studied here in wild populations, stem extension occurred in the autumn at the beginning of the dry season, flowering and fruiting occurred in the spring at the end of the dry season, and new roots grew in the summer during the wet season. The asynchrony of vegetative and reproductive growth reduces competitive sink effects, which may be advantageous for wild populations growing in infertile rocky soils. Seasonal patterns of sugars in the roots and especially the stems of S. queretaroensis were closely related to the main phenological stages, becoming lower in concentration during periods of major stem extension. Cessation of stem extension occurred in 100-year-old plants for which injection of GA(3) reinitiated such growth. Isolated chlorenchyma cylinders had maximum extension in a bathing solution containing 0.1 &mgr;M gibberellic acid.

  18. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome*

    PubMed Central

    Tatham, Michael H.; Cole, Christian; Scullion, Paul; Wilkie, Ross; Westwood, Nicholas J.; Stark, Lesley A.; Hay, Ronald T.

    2017-01-01

    Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet unexplained drug actions or side-effects. Using isotopically labeled aspirin-d3, in combination with acetylated lysine purification and LC-MS/MS, we identified over 12000 sites of lysine acetylation from cultured human cells. Although aspirin amplifies endogenous acetylation signals at the majority of detectable endogenous sites, cells tolerate aspirin mediated acetylation very well unless cellular deacetylases are inhibited. Although most endogenous acetylations are amplified by orders of magnitude, lysine acetylation site occupancies remain very low even after high doses of aspirin. This work shows that while aspirin has enormous potential to alter protein function, in the majority of cases aspirin-mediated acetylations do not accumulate to levels likely to elicit biological effects. These findings are consistent with an emerging model for cellular acetylation whereby stoichiometry correlates with biological relevance, and deacetylases act to minimize the biological consequences of nonspecific chemical acetylations. PMID:27913581

  19. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome.

    PubMed

    Tatham, Michael H; Cole, Christian; Scullion, Paul; Wilkie, Ross; Westwood, Nicholas J; Stark, Lesley A; Hay, Ronald T

    2017-02-01

    Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet unexplained drug actions or side-effects. Using isotopically labeled aspirin-d3, in combination with acetylated lysine purification and LC-MS/MS, we identified over 12000 sites of lysine acetylation from cultured human cells. Although aspirin amplifies endogenous acetylation signals at the majority of detectable endogenous sites, cells tolerate aspirin mediated acetylation very well unless cellular deacetylases are inhibited. Although most endogenous acetylations are amplified by orders of magnitude, lysine acetylation site occupancies remain very low even after high doses of aspirin. This work shows that while aspirin has enormous potential to alter protein function, in the majority of cases aspirin-mediated acetylations do not accumulate to levels likely to elicit biological effects. These findings are consistent with an emerging model for cellular acetylation whereby stoichiometry correlates with biological relevance, and deacetylases act to minimize the biological consequences of nonspecific chemical acetylations.

  20. Characterisation of the First Enzymes Committed to Lysine Biosynthesis in Arabidopsis thaliana

    PubMed Central

    Griffin, Michael D. W.; Billakanti, Jagan M.; Wason, Akshita; Keller, Sabrina; Mertens, Haydyn D. T.; Atkinson, Sarah C.; Dobson, Renwick C. J.; Perugini, Matthew A.; Gerrard, Juliet A.; Pearce, Frederick Grant

    2012-01-01

    In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS) and dihydrodipicolinate reductase (DHDPR) catalyse the first two committed steps of lysine biosynthesis. Here, we carry out for the first time a comprehensive characterisation of the structure and activity of both DHDPS and DHDPR from Arabidopsis thaliana. The A. thaliana DHDPS enzyme (At-DHDPS2) has similar activity to the bacterial form of the enzyme, but is more strongly allosterically inhibited by (S)-lysine. Structural studies of At-DHDPS2 show (S)-lysine bound at a cleft between two monomers, highlighting the allosteric site; however, unlike previous studies, binding is not accompanied by conformational changes, suggesting that binding may cause changes in protein dynamics rather than large conformation changes. DHDPR from A. thaliana (At-DHDPR2) has similar specificity for both NADH and NADPH during catalysis, and has tighter binding of substrate than has previously been reported. While all known bacterial DHDPR enzymes have a tetrameric structure, analytical ultracentrifugation, and scattering data unequivocally show that At-DHDPR2 exists as a dimer in solution. The exact arrangement of the dimeric protein is as yet unknown, but ab initio modelling of x-ray scattering data is consistent with an elongated structure in solution, which does not correspond to any of the possible dimeric pairings observed in the X-ray crystal structure of DHDPR from other organisms. This increased knowledge of the structure and function of plant lysine biosynthetic enzymes will aid future work aimed at improving primary production. PMID:22792278

  1. Multi-species nitrifying biofilm model (MSNBM) including free ammonia and free nitrous acid inhibition and oxygen limitation.

    PubMed

    Park, Seongjun; Bae, Wookeun; Rittmann, Bruce E

    2010-04-15

    A multi-species nitrifying biofilm model (MSNBM) is developed to describe nitrite accumulation by simultaneous free ammonia (FA) and free nitrous acid (FNA) inhibition, direct pH inhibition, and oxygen limitation in a biofilm. The MSNBM addresses the spatial gradient of pH with biofilm depth and how it induces changes of FA and FNA speciation and inhibition. Simulations using the MSNBM in a completely mixed biofilm reactor show that influent total ammonia nitrogen (TAN) concentration, bulk dissolved oxygen (DO) concentration, and buffer concentration exert significant control on the suppression of nitrite-oxidizing bacteria (NOB) and shortcut biological nitrogen removal (SBNR), but the pH in the bulk liquid has a weaker influence. Ammonium oxidation increases the nitrite concentration and decreases the pH, which together can increase FNA inhibition of NOB in the biofilm. Thus, a low buffer concentration can accentuate SBNR. DO and influent TAN concentrations are efficient means to enhance DO limitation, which affects NOB more than ammonia-oxidizing bacteria (AOB) inside the biofilm. With high influent TAN concentration, FA inhibition is dominant at an early phase, but finally DO limitation becomes more important as TAN degradation and biofilm growth proceed. MSNBM results indicate that oxygen depletion and FNA inhibition throughout the biofilm continuously suppress the growth of NOB, which helps achieve SBNR with a lower TAN concentration than in systems without concentration gradients.

  2. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE1[OPEN

    PubMed Central

    Van de Wouwer, Dorien; Decou, Raphaël; Audenaert, Dominique; Nguyen, Long

    2016-01-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  3. Gastroprotective effects of L-lysine salification of ketoprofen in ethanol-injured gastric mucosa.

    PubMed

    Cimini, Annamaria; Brandolini, Laura; Gentile, Roberta; Cristiano, Loredana; Menghini, Paola; Fidoamore, Alessia; Antonosante, Andrea; Benedetti, Elisabetta; Giordano, Antonio; Allegretti, Marcello

    2015-04-01

    Ketoprofen L-lysine salt (KLS), a NSAID, is widely used for its analgesic efficacy and tolerability. L-lysine salification was reported to increase the solubility and the gastric absorption and tolerance of ketoprofen. Since the management of NSAIDs gastrotoxicity still represents a major limitation in prolonged therapies, mainly when gastric lesions are present, this study investigated the gastro-protective activity of L-lysine by using a well-established model of gastric mucosa injury, the ethanol-gastric injury model. Several evidences show that the damaging action of ethanol could be attributed to the increase of ROS, which plays a key role in the increase of lipid peroxidation products, including malonyldialdehyde and 4-hydroxy-2-nonenal. With the aim to unravel the mechanism of L-lysine gastroprotection, cellular MDA levels and 4-HNE protein adducts as markers of lipid peroxidation and a panel of key endogenous gastro-protective proteins were assayed. The data obtained indicate a gastroprotective effect of L-lysine on gastric mucosa integrity.

  4. Expression of the Bovine NK-Lysin Gene Family and Activity against Respiratory Pathogens

    PubMed Central

    Chen, Junfeng; Yang, Chingyuan; Tizioto, Polyana C.; Huang, Huan; Lee, Mi O. K.; Payne, Harold R.; Lawhon, Sara D.; Schroeder, Friedhelm; Taylor, Jeremy F.; Womack, James E.

    2016-01-01

    Unlike the genomes of many mammals that have a single NK-lysin gene, the cattle genome contains a family of four genes, one of which is expressed preferentially in the lung. In this study, we compared the expression of the four bovine NK-lysin genes in healthy animals to animals challenged with pathogens known to be associated with bovine respiratory disease (BRD) using transcriptome sequencing (RNA-seq). The expression of several NK-lysins, especially NK2C, was elevated in challenged relative to control animals. The effects of synthetic peptides corresponding to functional region helices 2 and 3 of each gene product were tested on both model membranes and bio-membranes. Circular dichroism spectroscopy indicated that these peptides adopted a more helical secondary structure upon binding to an anionic model membrane and liposome leakage assays suggested that these peptides disrupt membranes. Bacterial killing assays further confirmed the antimicrobial effects of these peptides on BRD-associated bacteria, including both Pasteurella multocida and Mannhemia haemolytica and an ultrastructural examination of NK-lysin-treated P. multocida cells by transmission electron microscopy revealed the lysis of target membranes. These studies demonstrate that the expanded bovine NK-lysin gene family is potentially important in host defense against pathogens involved in bovine respiratory disease. PMID:27409794

  5. Oxidative damage of DNA induced by the reaction of methylglyoxal with lysine in the presence of ferritin

    PubMed Central

    An, Sung Ho; Kang, Jung Hoon

    2013-01-01

    Methylglyoxal (MG) is an endogenous metabolite which is present in increased concentrations in diabetics and reacts with amino acids to form advanced glycation end products. In this study, we investigated whether ferritin enhances DNA cleavage by the reaction of MG with lysine. When plasmid DNA was incubated with MG and lysine in the presence of ferritin, DNA strand breakage was increased in a dose-dependent manner. The ferritin/MG/lysine system-mediated DNA cleavage was significantly inhibited by reactive oxygen species (ROS) scavengers. These results indicated that ROS might participate in the ferritin/MG/lysine system-mediated DNA cleavage. Incubation of ferritin with MG and lysine resulted in a time-dependent release of iron ions from the protein molecules. Our data suggest that DNA cleavage caused by the ferritin/MG/lysine system via the generation of ROS by the Fenton-like reaction of free iron ions released from oxidatively damaged ferritin. [BMB Reports 2013; 46(4): 225-229] PMID:23615265

  6. Preparation and evaluation of a lysine-bonded silica monolith as polar stationary phase for hydrophilic interaction pressurized capillary electrochromatography.

    PubMed

    Huang, Guihua; Lian, Qiuyan; Zeng, Wencan; Xie, Zenghong

    2008-09-01

    A silica-based monolith as polar stationary phase was described for hydrophilic interaction pressurized capillary electrochromatography (HI-pCEC). The polar monolithic column was prepared by on-column reaction of lysine with epoxy groups on a gamma-glycidoxypropyltrimethosysilane-modified silica monolith. The stationary phase yielded strong hydrophilic interaction due to the slightly polar hydroxyl groups, and the strong polar lysine ligand with amino groups and carboxylic groups contained on the surface of the monolith. In order to evaluate the hydrophilic character of lysine ligand, the chromatographic behaviors of epoxy monolith (before lysine bonded) and diol monolith (hydroxyl groups contained) were also investigated. Two groups of comparative experiment were developed in terms of the separation of typical neutral non-polar and polar compounds performed in a mobile phase of aqueous-acetonitrile solution. Results showed that the lysine monolith was much more hydrophilic than the diol monolith, which presented less hydrophobic than the epoxy monolith. For further study on its hydrophilic character, the lysine monolith was demonstrated in the HI-pCEC mode for the separations of various polar compounds such as phenols, nucleic acid bases and nucleosides.

  7. Optimization of Direct Lysine Decarboxylase Biotransformation for Cadaverine Production with Whole-Cell Biocatalysts at High Lysine Concentration.

    PubMed

    Kim, Hyun Joong; Kim, Yong Hyun; Shin, Ji-Hyun; Bhatia, Shashi Kant; Sathiyanarayanan, Ganesan; Seo, Hyung-Min; Choi, Kwon Young; Yang, Yung-Hun; Park, Kyungmoon

    2015-07-01

    Cadaverine (1,5-diaminopentane) is an important industrial chemical with a wide range of applications. Although there have been many efforts to produce cadaverine through fermentation, there are not many reports of the direct cadaverine production from lysine using biotransformation. Whole-cell reactions were examined using a recombinant Escherichia coli strain overexpressing the E. coli MG1655 cadA gene, and various parameters were investigated for the whole-cell bioconversion of lysine to cadaverine. A high concentration of lysine resulted in the synthesis of pyridoxal-5'-phosphate (PLP) and it was found to be a critical control factor for the biotransformation of lysine to cadaverine. When 0.025 mM PLP and 1.75 M lysine in 500 mM sodium acetate buffer (pH6) were used, consumption of 91% lysine and conversion of about 80% lysine to cadaverine were successfully achieved.

  8. Unexpected Trypsin Cleavage at Ubiquitinated Lysines

    PubMed Central

    2015-01-01

    Unexpected tryptic cleavage has been characterized at modified K48 residues in polyubiquitins. In particular, the tryptic products of all seven of the lysine-linked dimers of ubiquitin and of three trimers—linear Ub–48Ub–48Ub, linear Ub–63Ub–63Ub, and the branched trimer [Ub]2–6,48Ub—have been analyzed. In addition to the peptide products expected under commonly used tryptic conditions, we observe that peptides are formed with an unexpected ε-glycinylglycinyl-Lys carboxyl terminus when the site of linkage is Lys48. Trypsin from three different commercial sources exhibited this aberration. Initial cleavage at R74 is proposed in a distal ubiquitin to produce a glycinylglycinyl-lysine residue which is bound by trypsin. PMID:26182167

  9. Motility-indole-lysine-sulfide medium.

    PubMed

    Ederer, G M; Lund, M E; Blazevic, D J; Reller, L B; Mirrett, S

    1975-09-01

    A medium designed for the detection of motility, indole, lysine decarboxylase and deaminase reactions, and H2S production was devised and evaluated. Results, using 157 strains of enteric pathogens, were in agreement with reference methods. When 300 isolates from fecal cultures were screened using this medium, Shigella was easily differentiated from Escherichia and more of the Proteus species, especially P. morganii, could be eliminated from further study.

  10. Ionized trilysine: a model system for understanding the nonrandom structure of poly-L-lysine and lysine-containing motifs in proteins.

    PubMed

    Verbaro, Daniel J; Mathieu, Daniel; Toal, Siobhan E; Schwalbe, Harald; Schweitzer-Stenner, Reinhard

    2012-07-19

    It is now well-established that different amino acid residues can exhibit different conformational distributions in the unfolded state of peptides and proteins. These conformational propensities can be modulated by nearest neighbors. In the current study, we combined vibrational and NMR spectroscopy to determine the conformational distributions of the central and C-terminal residues in trilysine peptides in aqueous solution. The study was motivated by earlier observations suggesting that interactions between ionized nearest neighbor residues can substantially change conformational propensities. We found that the central lysine residue predominantly adopts conformations that are located at the upper border of the upper left quadrant of the Ramachandran plot and the left border of the polyproline II region. We term this type of conformation deformed polyproline II (pPII(d)). The structures of less populated subensembles of trilysine resemble are comparable with structures at the i + 1 position of type I and type II β-turns. For the C-terminal residue, however, we obtained a mixture of polyproline II, β-strand, and right-handed helical conformations, which is typical for lysine residues in alanine- and glycine-based peptides. Our data thus indicate that the terminal lysines modify and restrict the conformational distribution of the central lysine residue. DFT calculations for ionized trilysine and lysyllysyllysylglycine in vacuo indicate that the pPII(d) is stabilized by a rather strong hydrogen bond between the NH3(+) group of the central lysine and the carbonyl group of the C-terminal peptide. This intramolecular hydrogen bonding induces optical activity in the C-terminal CO stretching vibration, which leads to an unusual and relatively intense positive Cotton band. Additionally, we analyzed the amide I' band profile of ionized triornithine in water. Ornithine is structurally similar to lysine in that its side chain is terminated with an amino group; however, the

  11. Simultaneous optimization of monolayer formation factors, including temperature, to significantly improve nucleic acid hybridization efficiency on gold substrates.

    PubMed

    Pris, Andrew D; Ostrowski, Sara G; Garaas, Sarah D

    2010-04-20

    Past literature investigations have optimized various single factors used in the formation of thiolated, single stranded DNA (ss-DNA) monolayers on gold. In this study a more comprehensive approach is taken, where a design of experiment (DOE) is employed to simultaneously optimize all of the factors involved in construction of the capture monolayer used in a fluorescence-based hybridization assay. Statistical analysis of the fluorescent intensities resulting from the DOE provides empirical evidence for the importance and the optimal levels of traditional and novel factors included in this investigation. We report on the statistical importance of a novel factor, temperature of the system during monolayer formation of the capture molecule and lateral spacer molecule, and how proper usage of this temperature factor increased the hybridization signal 50%. An initial theory of how the physical factor of heat is mechanistically supplementing the function of the lateral spacer molecule is provided.

  12. Guanidination of Soluble Lysine-Rich Cyanophycin Yields a Homoarginine-Containing Polyamide

    PubMed Central

    Frommeyer, Maja; Bergander, Klaus

    2014-01-01

    Soluble cyanobacterial granule polypeptide (CGP), especially that isolated from recombinant Escherichia coli strains, consists of aspartic acid, arginine, and a greater amount of lysine than that in insoluble CGP isolated from cyanobacteria or various other recombinant bacteria. In vitro guanidination of lysine side chains of soluble CGP with o-methylisourea (OMIU) yielded the nonproteinogenic amino acid homoarginine. The modified soluble CGP consisted of 51 mol% aspartate, 14 mol% arginine, and 35 mol% homoarginine. The complete conversion of lysine residues to homoarginine was confirmed by (i) nuclear magnetic resonance spectrometry, (ii) coupled liquid chromatography-mass spectrometry, and (iii) high-performance liquid chromatography. Unlike soluble CGP, this new homoarginine-containing polyamide was soluble only under acidic or alkaline conditions and was insoluble in water or at a neutral pH. Thus, it showed solubility behavior similar to that of the natural insoluble polymer isolated from cyanobacteria, consisting of aspartic acid and arginine only. Polyacrylamide gel electrophoresis revealed similar degrees of polymerization of the native (12- to 40-kDa) and modified (10- to 35-kDa) polymers. This study showed that the chemical structure and properties of a biopolymer could be changed by in vitro introduction of a new functional group after biosynthesis of the native polymer. In addition, the modified CGP could be digested in vitro using the cyanophycinase from Pseudomonas alcaligenes strain DIP1, yielding a new dipeptide consisting of aspartate and homoarginine. PMID:24509932

  13. Guanidination of soluble lysine-rich cyanophycin yields a homoarginine-containing polyamide.

    PubMed

    Frommeyer, Maja; Bergander, Klaus; Steinbüchel, Alexander

    2014-04-01

    Soluble cyanobacterial granule polypeptide (CGP), especially that isolated from recombinant Escherichia coli strains, consists of aspartic acid, arginine, and a greater amount of lysine than that in insoluble CGP isolated from cyanobacteria or various other recombinant bacteria. In vitro guanidination of lysine side chains of soluble CGP with o-methylisourea (OMIU) yielded the nonproteinogenic amino acid homoarginine. The modified soluble CGP consisted of 51 mol% aspartate, 14 mol% arginine, and 35 mol% homoarginine. The complete conversion of lysine residues to homoarginine was confirmed by (i) nuclear magnetic resonance spectrometry, (ii) coupled liquid chromatography-mass spectrometry, and (iii) high-performance liquid chromatography. Unlike soluble CGP, this new homoarginine-containing polyamide was soluble only under acidic or alkaline conditions and was insoluble in water or at a neutral pH. Thus, it showed solubility behavior similar to that of the natural insoluble polymer isolated from cyanobacteria, consisting of aspartic acid and arginine only. Polyacrylamide gel electrophoresis revealed similar degrees of polymerization of the native (12- to 40-kDa) and modified (10- to 35-kDa) polymers. This study showed that the chemical structure and properties of a biopolymer could be changed by in vitro introduction of a new functional group after biosynthesis of the native polymer. In addition, the modified CGP could be digested in vitro using the cyanophycinase from Pseudomonas alcaligenes strain DIP1, yielding a new dipeptide consisting of aspartate and homoarginine.

  14. Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate.

    PubMed

    Kitak, Teja; Dumičić, Aleksandra; Planinšek, Odon; Šibanc, Rok; Srčič, Stanko

    2015-12-03

    In recent years there has been a growing interest in formulating solid dispersions, which purposes mainly include solubility enhancement, sustained drug release and taste masking. The most notable problem by these dispersions is drug-carrier (in)solubility. Here we focus on solubility parameters as a tool for predicting the solubility of a drug in certain carriers. Solubility parameters were determined in two different ways: solely by using calculation methods, and by experimental approaches. Six different calculation methods were applied in order to calculate the solubility parameters of the drug ibuprofen and several excipients. However, we were not able to do so in the case of ibuprofen lysinate, as calculation models for salts are still not defined. Therefore, the extended Hansen's approach and inverse gas chromatography (IGC) were used for evaluating of solubility parameters for ibuprofen lysinate. The obtained values of the total solubility parameter did not differ much between the two methods: by the extended Hansen's approach it was δt = 31.15 MPa(0.5) and with IGC it was δt = 35.17 MPa(0.5). However, the values of partial solubility parameters, i.e., δd, δp and δh, did differ from each other, what might be due to the complex behaviour of a salt in the presence of various solvents.

  15. Formation of N epsilon-(gamma-glutamyl)-lysine isodipeptide in Chinese-hamster ovary cells.

    PubMed Central

    Fesus, L; Tarcsa, E

    1989-01-01

    N epsilon-(gamma-Glutamyl)-lysine isodipeptide was detected in a protein-free fraction of Chinese-hamster ovary cells and their culture fluid by using radioactive lysine as a tracer. The identity of the isodipeptide was established by its separation on ion-exchange chromatography, analysis by h.p.l.c. after derivatization, recovery of lysine after acidic hydrolysis or after cleavage by a specific enzyme, namely gamma-glutamylamine cyclotransferase. The amount of isodipeptide was raised (460 pmol/10(7) cells and 61 pmol/ml of culture fluid were observed as highest values) as the cell density increased. Effects of inhibitors of intracellular protein degradation have shown that the isodipeptide derives from cross-linking N epsilon-(gamma-glutamyl)-lysine bonds formed by tissue transglutaminase. Estimated half-life values of cross-linked proteins were about 3 h. gamma-Glutamylamine cyclotransferase, which may split the isodipeptide formed during the continuous turnover of cross-linked proteins, was also found in Chinese-hamster ovary cells. Isodipeptide may have been accumulated when either its generated amount is beyond the capacity of gamma-glutamylamine cyclotransferase or it is generated in cell compartments where this enzyme is not present. PMID:2574570

  16. Lysine and arginine biosyntheses mediated by a common carrier protein in Sulfolobus.

    PubMed

    Ouchi, Takuya; Tomita, Takeo; Horie, Akira; Yoshida, Ayako; Takahashi, Kento; Nishida, Hiromi; Lassak, Kerstin; Taka, Hikari; Mineki, Reiko; Fujimura, Tsutomu; Kosono, Saori; Nishiyama, Chiharu; Masui, Ryoji; Kuramitsu, Seiki; Albers, Sonja-Verena; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2013-04-01

    LysW has been identified as a carrier protein in the lysine biosynthetic pathway that is active through the conversion of α-aminoadipate (AAA) to lysine. In this study, we found that the hyperthermophilic archaeon, Sulfolobus acidocaldarius, not only biosynthesizes lysine through LysW-mediated protection of AAA but also uses LysW to protect the amino group of glutamate in arginine biosynthesis. In this archaeon, after LysW modification, AAA and glutamate are converted to lysine and ornithine, respectively, by a single set of enzymes with dual functions. The crystal structure of ArgX, the enzyme responsible for modification and protection of the amino moiety of glutamate with LysW, was determined in complex with LysW. Structural comparison and enzymatic characterization using Sulfolobus LysX, Sulfolobus ArgX and Thermus LysX identify the amino acid motif responsible for substrate discrimination between AAA and glutamate. Phylogenetic analysis reveals that gene duplication events at different stages of evolution led to ArgX and LysX.

  17. Effect of lysine addition on growth of black iguana (Ctenosaura pectinata).

    PubMed

    Guzmán, Juan José Ortiz; Luis, Arcos-García José; Martínez, Germán D Mendoza; Pérez, Fernando Xicoténcatl Plata; Mascorro, Gisela Fuentes; Inzunza, Gabriela Ruelas

    2013-01-01

    The effects of the addition of lysine to commercial feed given to captive black iguana (Ctenosaura pectinata) were evaluated in terms of growth and feed digestibility. Twenty-eight-day-old black iguana with an initial weight of 5.5 ± 0.3 g were housed individually in cages measuring 45 × 45 × 45 cm. The experiment lasted 150 days. The ambient temperature ranged from 28 to 35°C with a relative humidity of 60 to 95%. Treatments consisted of the addition of different percentages of lysine to the feed (0.0, 0.1, 0.2, and 0.3%, dry matter [DM] base). There was a linear response (P < 0.01) in daily gain (68, 112, 118, and 151 mg/d) and daily intake (251, 289, 297, and 337 mg/d) for levels from 0 to 0.3%, respectively, as well in the growth in head size, snout-vent length, and total length. The digestibility of DM, neutral detergent fiber, and acid detergent fiber were reduced linearly (P < 0.01) as lysine levels increased. Intake and digestibility were negatively correlated (r = -0.74; P < 0.001). It is concluded that the addition of lysine to the black iguana diet in the first months of life is important to stimulate growth and intake.

  18. The topology of lysine-containing amphipathic peptides in bilayers by circular dichroism, solid-state NMR, and molecular modeling.

    PubMed Central

    Vogt, B; Ducarme, P; Schinzel, S; Brasseur, R; Bechinger, B

    2000-01-01

    In order to better understand the driving forces that determine the alignment of amphipathic helical polypeptides with respect to the surface of phospholipid bilayers, lysine-containing peptide sequences were designed, prepared by solid-phase chemical synthesis, and reconstituted into membranes. CD spectroscopy indicates that all peptides exhibit a high degree of helicity in the presence of SDS micelles or POPC small unilamellar vesicles. Proton-decoupled (31)P-NMR solid-state NMR spectroscopy demonstrates that in the presence of peptides liquid crystalline phosphatidylcholine membranes orient well along glass surfaces. The orientational distribution and dynamics of peptides labeled with (15)N at selected sites were investigated by proton-decoupled (15)N solid-state NMR spectroscopy. Polypeptides with a single lysine residue adopt a transmembrane orientation, thereby locating this polar amino acid within the core region of the bilayer. In contrast, peptides with > or = 3 lysines reside along the surface of the membrane. With 2 lysines in the center of an otherwise hydrophobic amino acid sequence the peptides assume a broad orientational distribution. The energy of lysine discharge, hydrophobic, polar, and all other interactions are estimated to quantitatively describe the polypeptide topologies observed. Furthermore, a molecular modeling algorithm based on the hydrophobicities of atoms in a continuous hydrophilic-hydrophobic-hydrophilic potential describes the experimentally observed peptide topologies well. PMID:11053137

  19. Effect of mutation of lysine-128 of the large subunit of ribulose bisphosphate carboxylase/oxygenase from Anacystis nidulans.

    PubMed

    Bainbridge, G; Anralojc, P J; Madgwick, P J; Pitts, J E; Parry, M A

    1998-12-01

    The contribution of lysine-128 within the active site of Anacystis nidulans d-ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) was investigated by the characterization of mutants in which lysine-128 was replaced with arginine, glycine, glutamine, histidine or aspartic acid. Mutated genes encoding the Rubisco large subunit were expressed in Escherichia coli and the resultant polypeptides assembled into active complexes. All of the mutant enzymes had a lower affinity for ribulose 1,5-bisphosphate (RuBP) and lower rates of carboxylation. Substitution of lysine-128 with glutamine, histidine or aspartic acid decreased the specificity factor and led to the production of an additional monophosphate reaction product. We show that this product results from the loss of the phosphate from C-1 of RuBP, most probably by beta-elimination from the 2,3-enediolate derivative of RuBP. The results confirm that lysine-128 is important in determining the position of the essential epsilon-amino group of lysine-334 within the active site and in loop dynamics. This further demonstrates that residues remote from the active site can be manipulated to modify catalytic function.

  20. Pyrroloquinoline quinone nutritional status alters lysine metabolism and modulates mitochondrial DNA content in the mouse and rat.

    PubMed

    Bauerly, K A; Storms, D H; Harris, C B; Hajizadeh, S; Sun, M Y; Cheung, C P; Satre, M A; Fascetti, A J; Tchaparian, E; Rucker, R B

    2006-11-01

    Pyrroloquinoline quinone (PQQ) added to purified diets devoid of PQQ improves indices of perinatal development in rats and mice. Herein, PQQ nutritional status and lysine metabolism are described, prompted by a report that PQQ functions as a vitamin-like enzymatic cofactor important in lysine metabolism (Nature 422 [2003] 832). Alternatively, we propose that PQQ influences lysine metabolism, but by mechanisms that more likely involve changes in mitochondrial content. PQQ deprivation in both rats and mice resulted in a decrease in mitochondrial content. In rats, alpha-aminoadipic acid (alphaAA), which is derived from alpha-aminoadipic semialdehyde (alphaAAS) and made from lysine in mitochondria, and the plasma levels of amino acids known to be oxidized in mitochondria (e.g., Thr, Ser, and Gly) were correlated with changes in the liver mitochondrial content of PQQ-deprived rats, but not PQQ-supplemented rats. In contrast, the levels of NAD dependent alpha-aminoadipate-delta-semialdehyde dehydrogenase (AASDH), a cytosolic enzyme important to alphaAA production from alphaAAS, was not influenced by PQQ dietary status. Moreover, the levels of U26 mRNA were not significantly changed even when diets differed markedly in PQQ and dietary lysine content. U26 mRNA levels were measured, because of U26's proposed, albeit questionable role as a PQQ-dependent enzyme involved in alphaAA formation.

  1. Influence of lysine content and pH on the stability of alanine-based copolypeptides.

    PubMed

    Vila, J A; Ripoll, D R; Scheraga, H A

    2001-03-01

    To account for the relative contributions of lysine and alanine residues to the stability of alpha-helices of copolymers of these two residues, conformational energy calculations were carried out for several hexadecapeptides at several pHs. All the calculations considered explicitly the coupling between the conformation of the molecule and the ionization equilibria as a function of pH. The total free energy function used in these calculations included terms that account for the solvation free energy and free energy of ionization. These terms were evaluated by means of a fast multigrid boundary element method. Reasonable agreement with experimental values was obtained for the helix contents and vicinal coupling constants ((3)J(HNalpha)). The helix contents were found to depend strongly on the lysine content, in agreement with recent experimental results of Williams et al. (Journal of the American Chemical Society, 1998, Vol. 120, pp. 11033-11043) In the lowest energy conformation computed for a hexadecapeptide containing 3 lysine residues at pH 6, the lysine side chains are preferentially hydrated; this decreases the hydration of the backbone CO and NH groups, thereby forcing the latter to form hydrogen bonds with each other in the helical conformation. The lowest energy conformation computed for a hexadecapeptide containing 6 lysine residues at pH 6 shows a close proximity between the NH3(+) groups of the lysine side chains, a feature that was previously observed in calculations of short alanine-based oligopeptides. The calculation on a blocked 16-mer of alanine shows a 7% helix content based on the Boltzmann averaged vicinal coupling constants computed from the dihedral angles phi, consistent with previous experimental evidence on triblock copolymers containing a central block of alanines, and with earlier theoretical calculations.

  2. Enzymatic characterization of a lysin encoded by bacteriophage EL.

    PubMed

    Tafoya, Diana A; Hildenbrand, Zacariah L; Herrera, Nadia; Molugu, Sudheer K; Mesyanzhinov, Vadim V; Miroshnikov, Konstantin A; Bernal, Ricardo A

    2013-04-01

    The bacteriophage EL is a virus that specifically attacks the human pathogen Pseudomonas aeruginosa. This phage carries a large genome that encodes for its own chaperonin which presumably facilitates the proper folding of phage proteins independently of the host chaperonin system. EL also encodes a lysin enzyme, a critical component of the lytic cycle that is responsible for digesting the peptidoglycan layer of the host cell wall. Previously, this lysin was believed to be a substrate of the chaperonin encoded by phage EL. In order to characterize the activity of the EL lysin, and to determine whether lysin activity is contingent on chaperonin-mediated folding, a series of peptidoglycan hydrolysis activity assays were performed. Results indicate that the EL-encoded lysin has similar enzymatic activity to that of the Gallus gallus lysozyme and that the EL lysin folds into a functional enzyme in the absence of phage chaperonin and should not be considered a substrate.

  3. 6th Amino Acid Assessment Workshop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The focus of the 6th workshop is on lysine, arginine, and related amino acids. Functions, metabolic pathways, clinical uses, and upper tolerance intakes are emphasized in the articles that follow. Lysine is arguably the most deficient amino acid in the food supply of countries where poverty exists, ...

  4. Three-Component Lysine/Ornithine Decarboxylation System in Lactobacillus saerimneri 30a

    PubMed Central

    Romano, Andrea; Trip, Hein; Lolkema, Juke S.

    2013-01-01

    Lactic acid bacteria play a pivotal role in many food fermentations and sometimes represent a health threat due to the ability of some strains to produce biogenic amines that accumulate in foods and cause trouble following ingestion. These strains carry specific enzymatic systems catalyzing the uptake of amino acid precursors (e.g., ornithine and lysine), the decarboxylation inside the cell, and the release of the resulting biogenic amines (e.g., putrescine and cadaverine). This study aimed to identify the system involved in production of cadaverine from lysine, which has not been described to date for lactic acid bacteria. Strain Lactobacillus saerimneri 30a (formerly called Lactobacillus sp. 30a) produces both putrescine and cadaverine. The sequencing of its genome showed that the previously described ornithine decarboxylase gene was not associated with the gene encoding an ornithine/putrescine exchanger as in other bacteria. A new hypothetical decarboxylation system was detected in the proximity of the ornithine decarboxylase gene. It consisted of two genes encoding a putative decarboxylase sharing sequence similarities with ornithine decarboxylases and a putative amino acid transporter resembling the ornithine/putrescine exchangers. The two decarboxylases were produced in Escherichia coli, purified, and characterized in vitro, whereas the transporter was heterologously expressed in Lactococcus lactis and functionally characterized in vivo. The overall data led to the conclusion that the two decarboxylases and the transporter form a three-component decarboxylation system, with the new decarboxylase being a specific lysine decarboxylase and the transporter catalyzing both lysine/cadaverine and ornithine/putrescine exchange. To our knowledge, this is an unprecedented observation of a bacterial three-component decarboxylation system. PMID:23316036

  5. Extension of a PBPK model for ethylene glycol and glycolic acid to include the competitive formation and clearance of metabolites associated with kidney toxicity in rats and humans

    SciTech Connect

    Corley, R.A.; Saghir, S.A.; Bartels, M.J.; Hansen, S.C.; Creim, J.; McMartin, K.E.; Snellings, W.M.

    2011-02-01

    A previously developed PBPK model for ethylene glycol and glycolic acid was extended to include glyoxylic acid, oxalic acid, and the precipitation of calcium oxalate that is associated with kidney toxicity in rats and humans. The development and evaluation of the PBPK model was based upon previously published pharmacokinetic studies coupled with measured blood and tissue partition coefficients and rates of in vitro metabolism of glyoxylic acid to oxalic acid, glycine and other metabolites using primary hepatocytes isolated from male Wistar rats and humans. Precipitation of oxalic acid with calcium in the kidneys was assumed to occur only at concentrations exceeding the thermodynamic solubility product for calcium oxalate. This solubility product can be affected by local concentrations of calcium and other ions that are expressed in the model using an ion activity product estimated from toxicity studies such that calcium oxalate precipitation would be minimal at dietary exposures below the NOAEL for kidney toxicity in the sensitive male Wistar rat. The resulting integrated PBPK predicts that bolus oral or dietary exposures to ethylene glycol would result in typically 1.4-1.6-fold higher peak oxalate levels and 1.6-2-fold higher AUC's for calcium oxalate in kidneys of humans as compared with comparably exposed male Wistar rats over a dose range of 1-1000 mg/kg. The converse (male Wistar rats predicted to have greater oxalate levels in the kidneys than humans) was found for inhalation exposures although no accumulation of calcium oxalate is predicted to occur until exposures are well in excess of the theoretical saturated vapor concentration of 200 mg/m{sup 3}. While the current model is capable of such cross-species, dose, and route-of-exposure comparisons, it also highlights several areas of potential research that will improve confidence in such predictions, especially at low doses relevant for most human exposures.

  6. Biophysical probes reveal a "compromise" nature of the methyl-lysine binding pocket in L3MBTL1.

    PubMed

    Gao, Cen; Herold, J Martin; Kireev, Dmitri; Wigle, Tim; Norris, Jacqueline L; Frye, Stephen

    2011-04-13

    Histone lysine methylation (Kme) encodes essential information modulating many biological processes including gene expression and transcriptional regulation. However, the atomic-level recognition mechanisms of methylated histones by their respective adaptor proteins are still elusive. For instance, it is unclear how L3MBTL1, a methyl-lysine histone code reader, recognizes equally well both mono- and dimethyl marks but ignores unmodified and trimethylated lysine residues. We made use of molecular dynamics (MD) and free energy perturbation (FEP) techniques in order to investigate the energetics and dynamics of the methyl-lysine recognition. Isothermal titration calorimetry (ITC) was employed to experimentally validate the computational findings. Both computational and experimental methods were applied to a set of designed "biophysical" probes that mimic the shape of a single lysine residue and reproduce the binding affinities of cognate histone peptides. Our results suggest that, besides forming favorable interactions, the L3MBTL1 binding pocket energetically penalizes both methylation states and has most probably evolved as a "compromise" that nonoptimally fits to both mono- and dimethyl-lysine marks.

  7. NQR in Alanine and Lysine Iodates

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. M.; Burbelo, V. M.; Tamazyan, R. A.; Karapetyan, H. A.; Sukiasyan, R. P.

    2000-02-01

    The structure o f iodates of α- and β-alanine ( Ala) (2(β-Ala • HIO3) • H2O , β-Ala-2HIO3 , D L-Ala• HIO3 • 2H2O, L-Ala • HIO3) and L-lysine (L-Lys) (L-Lys • HIO3, L-Lys • 2HIO3,L-Lys • 3HIO3, L-Lys • 6HIO3) have been investigated by means of iodine-127 NQR, IR spectroscopy and X-ray diffraction

  8. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat

    PubMed Central

    Zhang, Yumei; Song, Limin; Liang, Wenxing; Mu, Ping; Wang, Shu; Lin, Qi

    2016-01-01

    Lysine acetylation of proteins, a dynamic and reversible post-translational modification, plays a critical regulatory role in both eukaryotes and prokaryotes. Several researches have been carried out on acetylproteome in plants. However, until now, there have been no data on common wheat, the major cereal crop in the world. In this study, we performed a global acetylproteome analysis of common wheat variety (Triticum aestivum L.), Chinese Spring. In total, 416 lysine modification sites were identified on 277 proteins, which are involved in a wide variety of biological processes. Consistent with previous studies, a large proportion of the acetylated proteins are involved in metabolic process. Interestingly, according to the functional enrichment analysis, 26 acetylated proteins are involved in photosynthesis and Calvin cycle, suggesting an important role of lysine acetylation in these processes. Moreover, protein interaction network analysis reveals that diverse interactions are modulated by protein acetylation. These data represent the first report of acetylome in common wheat and serve as an important resource for exploring the physiological role of lysine acetylation in this organism and likely in all plants. PMID:26875666

  9. Bacteriophage phi11 lysin: physicochemical characterization and comparison with phage phi80a lysin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phage lytic enzymes are promising antimicrobial agents. Lysins of phage phi11 (LysPhi11) and phi80a (LysPhi80a) can lyse (destroy) biofilms and cells of antibiotic-resistant strains of Staphylococcus aureus. Stability of enzymes is one of the parameters making their practical use possible. The obj...

  10. Splanchnic first pass disappearance of threonine and lysine do not differ in healthy men in the fed state.

    PubMed

    Chapman, Karen P; Elango, Rajavel; Ball, Ronald O; Pencharz, Paul B

    2013-03-01

    We previously showed that the splanchnic bed of neonates takes up a significantly higher amount (43%) of threonine in contrast to lysine (12%). We questioned whether this same pattern applied in adult humans and found no information in the literature. Therefore, our objective in the current study was to determine the difference in splanchnic first pass disappearance of threonine and lysine in adult humans during the fed state. During two 5-d study periods, 6 healthy men received l-[1-(13)C]threonine or l-[1-(13)C]lysine enterally or parenterally randomized to either study d 3 or 5, respectively. The diets were in the form of an amino acid mixture providing a protein intake of 1 g · kg(-1) · d(-1) and an energy intake of 1.5 times the resting energy expenditure. Blood and breath samples were collected at baseline and plateau for amino acid and 11CO(2) enrichment. Splanchnic disappearances in adult males were similar for threonine and lysine. The splanchnic disappearance of threonine as a percentage of intake was 17.9% (8.4 mg · kg(-1) · d(-1)) in the healthy men compared with 18.5% (11.2 mg · kg(-1) · d(-1)) for lysine. We conclude that the threonine requirement of the gut of healthy men consuming a liquid formula diet based on free amino acids is similar to the lysine requirement, which is in contrast to our previous findings for neonates.

  11. Proteome-wide Lysine Glutarylation Profiling of the Mycobacterium tuberculosis H37Rv.

    PubMed

    Xie, Longxiang; Wang, Guirong; Yu, Zhaoxiao; Zhou, Mingliang; Li, Qiming; Huang, Hairong; Xie, Jianping

    2016-04-01

    Lysine glutarylation, a new protein posttranslational modification (PTM), was recently identified and characterized in both prokaryotic and eukaryotic cells. To explore the distribution of lysine glutarylation in Mycobacterium tuberculsosis, by using a comprehensive method combining the immune affinity peptide enrichment by the glutaryl-lysine antibody with LC-MS, we finally identified 41 glutarylation sites in 24 glutarylated proteins from M. tuberculosis. These glutarylated proteins are involved in various cellular functions such as translation and metabolism and exhibit diverse subcellular localizations. Three common glutarylated proteins including 50S ribosomal protein L7/L12, elongation factor Tu, and dihydrolipoamide succinyltransferase are shared between Escherichia coli and M. tuberculosis. Moreover, comparison with other PTMs characterized in M. tuberculosis, 15 glutarylated proteins, are found to be both acetylated and succinylated. Notably, several stress-response-associated proteins including HspX are glutarylated. Our data provide the first analysis of M. tuberculosis lysine glutarylated proteins. Further studies on the role of the glutarylated proteins will unveil the molecular mechanisms of glutarylation underlying M. tuberculosis physiology and pathogenesis.

  12. A Study on the Effect of Surface Lysine to Arginine Mutagenesis on Protein Stability and Structure Using Green Fluorescent Protein

    PubMed Central

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering. PMID:22792305

  13. A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein.

    PubMed

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering.

  14. Targeted mutation of Δ12 and Δ15 desaturase genes in hemp produce major alterations in seed fatty acid composition including a high oleic hemp oil.

    PubMed

    Bielecka, Monika; Kaminski, Filip; Adams, Ian; Poulson, Helen; Sloan, Raymond; Li, Yi; Larson, Tony R; Winzer, Thilo; Graham, Ian A

    2014-06-01

    We used expressed sequence tag library and whole genome sequence mining to identify a suite of putative desaturase genes representing the four main activities required for production of polyunsaturated fatty acids in hemp seed oil. Phylogenetic-based classification and developing seed transcriptome analysis informed selection for further analysis of one of seven Δ12 desaturases and one of three Δ15 desaturases that we designate CSFAD2A and CSFAD3A, respectively. Heterologous expression of corresponding cDNAs in Saccharomyces cerevisiae showed CSFAD2A to have Δx+3 activity, while CSFAD3A activity was exclusively at the Δ15 position. TILLING of an ethyl methane sulphonate mutagenized population identified multiple alleles including non-sense mutations in both genes and fatty acid composition of seed oil confirmed these to be the major Δ12 and Δ15 desaturases in developing hemp seed. Following four backcrosses and sibling crosses to achieve homozygosity, csfad2a-1 was grown in the field and found to produce a 70 molar per cent high oleic acid (18:1(Δ9) ) oil at yields similar to wild type. Cold-pressed high oleic oil produced fewer volatiles and had a sevenfold increase in shelf life compared to wild type. Two low abundance octadecadienoic acids, 18:2(Δ6,9) and 18:2(Δ9,15), were identified in the high oleic oil, and their presence suggests remaining endogenous desaturase activities utilize the increased levels of oleic acid as substrate. Consistent with this, CSFAD3A produces 18:2(Δ9,15) from endogenous 18:1(Δ9) when expressed in S. cerevisiae. This work lays the foundation for the development of additional novel oil varieties in this multipurpose low input crop.

  15. Short communication: Supplementing lysine and methionine in a lactation diet containing a high concentration of wet corn gluten feed did not alter milk protein yield.

    PubMed

    Mullins, C R; Weber, D; Block, E; Smith, J F; Brouk, M J; Bradford, B J

    2013-08-01

    Primiparous (n=33) and multiparous (n=63) lactating Holstein cows (186±51 d in milk) were used to evaluate the effects of supplementing metabolizable amino acids using lysine in a matrix of Ca salts of fatty acids (Megamine-L, Arm & Hammer Animal Nutrition, Princeton, NJ) and the isopropyl ester of 2-hydroxy-4-(methylthio) butanoic acid (MetaSmart, Adisseo Inc., Antony, France) in diets containing >26% wet corn gluten feed (dry matter basis). Cows were blocked by production level, parity, and pregnancy status, then randomly assigned to 1 of 8 pens and allowed a 7-d adaption period before receiving dietary treatments for 28 d. Pens were assigned randomly to either of 2 diets formulated to differ by metabolizable amino acid supply. Dry matter intake and production were monitored daily and milk components analyzed 3d/wk. Data were analyzed using mixed models with repeated measures. The original design of the study consisted of a control diet predicted to be deficient in lysine and methionine; however, after ingredient nutrients were analyzed and modeled with animal requirements at dry matter intake [26.6±0.35 kg/d (mean ± SEM)] and milk production levels achieved during the study (40.1±0.46 kg/d), only marginal deficiencies were predicted for the control (-8.1g/d for lysine; -1g/d for methionine) according to the National Research Council method, whereas the Cornell Net Carbohydrate and Protein System 5.0 and 6.1 models indicated positive balances for these amino acids (25.9 and 21.8 g/d for lysine, 14.7 and 18.9 g/d for methionine, respectively). Supplementing 30 g/d of metabolizable lysine in a Ca soap matrix and 2.4 g/d of metabolizable methionine as 2-hydroxy-4-(methylthio) butanoic acid led to positive predicted lysine and methionine balances by all 3 models, and predicted metabolizable lysine-to-methionine ratios ranging from 2.9 to 3.1. No treatment effects were observed for dry matter intake, milk yield, milk component concentrations or yields, or energy

  16. Methylation of histone H3 lysine 9 occurs during translation.

    PubMed

    Rivera, Carlos; Saavedra, Francisco; Alvarez, Francisca; Díaz-Celis, César; Ugalde, Valentina; Li, Jianhua; Forné, Ignasi; Gurard-Levin, Zachary A; Almouzni, Geneviève; Imhof, Axel; Loyola, Alejandra

    2015-10-30

    Histone post-translational modifications are key contributors to chromatin structure and function, and participate in the maintenance of genome stability. Understanding the establishment and maintenance of these marks, along with their misregulation in pathologies is thus a major focus in the field. While we have learned a great deal about the enzymes regulating histone modifications on nucleosomal histones, much less is known about the mechanisms establishing modifications on soluble newly synthesized histones. This includes methylation of lysine 9 on histone H3 (H3K9), a mark that primes the formation of heterochromatin, a critical chromatin landmark for genome stability. Here, we report that H3K9 mono- and dimethylation is imposed during translation by the methyltransferase SetDB1. We discuss the importance of these results in the context of heterochromatin establishment and maintenance and new therapeutic opportunities in pathologies where heterochromatin is perturbed.

  17. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases

    PubMed Central

    Chowdhury, Rasheduzzaman; Yeoh, Kar Kheng; Tian, Ya-Min; Hillringhaus, Lars; Bagg, Eleanor A; Rose, Nathan R; Leung, Ivanhoe K H; Li, Xuan S; Woon, Esther C Y; Yang, Ming; McDonough, Michael A; King, Oliver N; Clifton, Ian J; Klose, Robert J; Claridge, Timothy D W; Ratcliffe, Peter J; Schofield, Christopher J; Kawamura, Akane

    2011-01-01

    Mutations in isocitrate dehydrogenases (IDHs) have a gain-of-function effect leading to R(−)-2-hydroxyglutarate (R-2HG) accumulation. By using biochemical, structural and cellular assays, we show that either or both R- and S-2HG inhibit 2-oxoglutarate (2OG)-dependent oxygenases with varying potencies. Half-maximal inhibitory concentration (IC50) values for the R-form of 2HG varied from approximately 25 μM for the histone Nɛ-lysine demethylase JMJD2A to more than 5 mM for the hypoxia-inducible factor (HIF) prolyl hydroxylase. The results indicate that candidate oncogenic pathways in IDH-associated malignancy should include those that are regulated by other 2OG oxygenases than HIF hydroxylases, in particular those involving the regulation of histone methylation. PMID:21460794

  18. Methylation of histone H3 lysine 9 occurs during translation

    PubMed Central

    Rivera, Carlos; Saavedra, Francisco; Alvarez, Francisca; Díaz-Celis, César; Ugalde, Valentina; Li, Jianhua; Forné, Ignasi; Gurard-Levin, Zachary A.; Almouzni, Geneviève; Imhof, Axel; Loyola, Alejandra

    2015-01-01

    Histone post-translational modifications are key contributors to chromatin structure and function, and participate in the maintenance of genome stability. Understanding the establishment and maintenance of these marks, along with their misregulation in pathologies is thus a major focus in the field. While we have learned a great deal about the enzymes regulating histone modifications on nucleosomal histones, much less is known about the mechanisms establishing modifications on soluble newly synthesized histones. This includes methylation of lysine 9 on histone H3 (H3K9), a mark that primes the formation of heterochromatin, a critical chromatin landmark for genome stability. Here, we report that H3K9 mono- and dimethylation is imposed during translation by the methyltransferase SetDB1. We discuss the importance of these results in the context of heterochromatin establishment and maintenance and new therapeutic opportunities in pathologies where heterochromatin is perturbed. PMID:26405197

  19. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.

    PubMed

    Nie, Zuoming; Zhu, Honglin; Zhou, Yong; Wu, Chengcheng; Liu, Yue; Sheng, Qing; Lv, Zhengbing; Zhang, Wenping; Yu, Wei; Jiang, Caiying; Xie, Longfei; Zhang, Yaozhou; Yao, Juming

    2015-09-01

    Lysine acetylation in proteins is a dynamic and reversible PTM and plays an important role in diverse cellular processes. In this study, using lysine-acetylation (Kac) peptide enrichment coupled with nano HPLC/MS/MS, we initially identified the acetylome in the silkworms. Overall, a total of 342 acetylated proteins with 667 Kac sites were identified in silkworm. Sequence motifs analysis around Kac sites revealed an enrichment of Y, F, and H in the +1 position, and F was also enriched in the +2 and -2 positions, indicating the presences of preferred amino acids around Kac sites in the silkworm. Functional analysis showed the acetylated proteins were primarily involved in some specific biological processes. Furthermore, lots of nutrient-storage proteins, such as apolipophorin, vitellogenin, storage proteins, and 30 K proteins, were highly acetylated, indicating lysine acetylation may represent a common regulatory mechanism of nutrient utilization in the silkworm. Interestingly, Ser2 proteins, the coating proteins of larval silk, were found to contain many Kac sites, suggesting lysine acetylation may be involved in the regulation of larval silk synthesis. This study is the first to identify the acetylome in a lepidoptera insect, and expands greatly the catalog of lysine acetylation substrates and sites in insects.

  20. Lysine carboxylation: unveiling a spontaneous post-translational modification

    SciTech Connect

    Jimenez-Morales, David; Adamian, Larisa; Shi, Dashuang; Liang, Jie

    2014-01-01

    A computational method for the prediction of lysine carboxylation (KCX) in protein structures is described. The method accurately identifies misreported KCXs and predicts previously unknown KCX sites. The carboxylation of lysine residues is a post-translational modification (PTM) that plays a critical role in the catalytic mechanisms of several important enzymes. It occurs spontaneously under certain physicochemical conditions, but is difficult to detect experimentally. Its full impact is unknown. In this work, the signature microenvironment of lysine-carboxylation sites has been characterized. In addition, a computational method called Predictor of Lysine Carboxylation (PreLysCar) for the detection of lysine carboxylation in proteins with available three-dimensional structures has been developed. The likely prevalence of lysine carboxylation in the proteome was assessed through large-scale computations. The results suggest that about 1.3% of large proteins may contain a carboxylated lysine residue. This unexpected prevalence of lysine carboxylation implies an enrichment of reactions in which it may play functional roles. The results also suggest that by switching enzymes on and off under appropriate physicochemical conditions spontaneous PTMs may serve as an important and widely used efficient biological machinery for regulation.

  1. 40 CFR 721.10250 - Zirconium lysine complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zirconium lysine complex (generic... Specific Chemical Substances § 721.10250 Zirconium lysine complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  2. 40 CFR 721.10250 - Zirconium lysine complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zirconium lysine complex (generic... Specific Chemical Substances § 721.10250 Zirconium lysine complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  3. 40 CFR 721.10250 - Zirconium lysine complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zirconium lysine complex (generic... Specific Chemical Substances § 721.10250 Zirconium lysine complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  4. 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate (OP-lysine) is a newly identified advanced glycation end product in cataractous and aged human lenses.

    PubMed

    Argirov, Ognyan K; Lin, Bin; Ortwerth, Beryl J

    2004-02-20

    Post-translational modifications of proteins take place during the aging of human lens. The present study describes a newly isolated glycation product of lysine, which was found in the human lens. Cataractous and aged human lenses were hydrolyzed and fractionated using reverse-phase and ion-exchange high performance liquid chromatography (HPLC). One of the nonproteinogenic amino acid components of the hydrolysates was identified as a 3-hydroxypyridinium derivative of lysine, 2-ammonio-6-(3-oxidopyridinium-1-yl)hexanoate (OP-lysine). The compound was synthesized independently from 3-hydroxypyridine and methyl 2-[(tert-butoxycarbonyl)amino]-6-iodohexanoate. The spectral and chromatographic properties of the synthetic OP-lysine and the substance isolated from hydrolyzed lenses were identical. HPLC analysis showed that the amounts of OP-lysine were higher in water-insoluble compared with water-soluble proteins and was higher in a pool of cataractous lenses compared with normal aged lenses, reaching 500 pmol/mg protein. The model incubations showed that an anaerobic reaction mixture of Nalpha-tert-butoxycarbonyllysine, glycolaldehyde, and glyceraldehyde could produce the Nalpha-t-butoxycarbonyl derivative of OP-lysine. The irradiation of OP-lysine with UVA under anaerobic conditions in the presence of ascorbate led to a photochemical bleaching of this compound. Our results argue that OP-lysine is a newly identified glycation product of lysine in the lens. It is a marker of aging and pathology of the lens, and its formation could be considered as a potential cataract risk-factor based on its concentration and its photochemical properties.

  5. Proline cis-trans isomerization is influenced by local lysine acetylation-deacetylation

    PubMed Central

    Howe, Françoise S.; Mellor, Jane

    2014-01-01

    Acetylation of lysine residues has several characterised functions in chromatin. These include neutralization of the lysine’s positive charge to directly influence histone tail-DNA/internucleosomal interactions or indirect effects via bromodomain-containing effector proteins. Recently, we described a novel function of lysine acetylation to influence proline isomerization and thus local protein conformation. We found that acetylation of lysine 14 in the histone H3 N-terminal tail (H3K14ac), an intrinsically disordered domain, increased the proportion of neighbouring proline 16 (H3P16) in the trans conformation. This conformation of the tail was associated with reduced tri-methylation on histone H3 lysine 4 (H3K4me3) due to both decreased methylation by the Set1 methyltransferase (with the me3-specific subunit Spp1) and increased demethylation by the demethylase Jhd2. Interestingly, H3K4me3 on individual genes was differentially affected by substitution of H3K14 or H3P16, with ribosomal protein genes losing the least H3K4me3 and environmental stress-induced genes losing the most. PMID:28357218

  6. Global Lysine Acetylome Analysis of Desiccated Somatic Embryos of Picea asperata

    PubMed Central

    Xia, Yan; Jing, Danlong; Kong, Lisheng; Zhang, Jianwei; OuYang, Fangqun; Zhang, Hanguo; Wang, Junhui; Zhang, Shougong

    2016-01-01

    Partial desiccation treatment (PDT) promotes the germination capacity of conifer somatic embryos. Lysine acetylation (LysAc) is a dynamic and reversible post-translational modification that plays a key role in many biological processes including metabolic pathways and stress response. To investigate the functional impact of LysAc in the response of Picea asperata somatic embryos to PDT, we performed a global lysine acetylome analysis. Here, combining antibody-based affinity enrichment and high-resolution mass spectrometry, we identified and validated 1079 acetylation sites in 556 acetylated proteins from P. asperata somatic embryos during PDT. These data represent a novel large-scale dataset of lysine-acetylated proteins from the conifer family. Intensive bioinformatics analysis of the Gene Ontology of molecular functions demonstrated that lysine-acetylated proteins were mainly associated with binding, catalytic activities, and structural molecular activities. Functional characterization of the acetylated proteins revealed that in the desiccated somatic embryos, LysAc is mainly involved in the response to stress and central metabolism. Accordingly, the majority of these interacting proteins were also highly enriched in ribosome, proteasome, spliceosome, and carbon metabolism clusters. This work provides the most comprehensive profile of LysAc for a coniferous species obtained to date and facilitates the systematic study of the physiological role of LysAc in desiccated somatic embryos of P. asperata. PMID:28066480

  7. Asymmetric Synthesis, Structure, and Reactivity of Unexpectedly Stable Spiroepoxy-β-Lactones Including Facile Conversion to Tetronic Acids: Application to (+)-Maculalactone A

    PubMed Central

    Duffy, Richard J.; Morris, Kay A.; Vallakati, Ravikrishna; Zhang, Wei; Romo, Daniel

    2009-01-01

    A novel class of small spirocyclic heterocycles, spiroepoxy-β-lactones (1,4-dioxaspiro[2.3]-hexan-5-ones), is described that exhibit a number of interesting reactivity patterns. These spiroheterocycles, including an optically active series, are readily synthesized by epoxidation of ketene dimers (4-alkylidene-2-oxetanones) available from homo- or heteroketene dimerization. An analysis of bond lengths in these systems by X-ray crystallography and comparison to data for known spirocycles and those determined computationally, suggest that anomeric effects in these systems may be more pronounced due to their rigidity and may contribute to their surprising stability. The synthetic utility of spiroepoxy-β-lactones was explored and one facile rearrangement identified under several conditions provides a 3-step route from acid chlorides to optically active tetronic acids, ubiquitous heterocycles in bioactive natural products. The addition of various nucleophiles to these spirocycles leads primarily to addition at C5 and C2. The utility of an optically active spiroepoxy-β-lactone was demonstrated in the concise, enantioselective synthesis of the anti-fouling agent, (+)-maculalactone A, which proceeds in 5 steps from hydrocinnamoyl chloride by way of a tetronic acid intermediate. PMID:19453152

  8. Quantification of Nε-(2-Furoylmethyl)-L-lysine (furosine), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Wiltafsky, Markus; Fogliano, Vincenzo

    2015-12-01

    The control of Maillard reaction (MR) is a key point to ensure processed foods quality. Due to the presence of a primary amino group on its side chain, lysine is particularly prone to chemical modifications with the formation of Amadori products (AP), Nε-(Carboxymethyl)-L-lysine (CML), Nε-(Carboxyethyl)-L-lysine (CEL). A new analytical strategy was proposed which allowed to simultaneously quantify lysine, CML, CEL and the Nε-(2-Furoylmethyl)-L-lysine (furosine), the indirect marker of AP. The procedure is based on stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry. It showed high sensitivity and good reproducibility and repeatability in different foods. The limit of detection and the RSD% were lower than 5 ppb and below 8%, respectively. Results obtained with the new procedure not only improved the knowledge about the reliability of thermal treatment markers, but also defined new insights in the relationship between Maillard reaction products and their precursors.

  9. Structure-function relationship in the antifreeze activity of synthetic alanine-lysine antifreeze polypeptides.

    PubMed

    Wierzbicki, A; Knight, C A; Rutland, T J; Muccio, D D; Pybus, B S; Sikes, C S

    2000-01-01

    Recently antifreeze proteins (AFP) have been the subject of many structure-function relationship studies regarding their antifreeze activity. Attempts have been made to elucidate the structure-function relationship by various amino acid substitutions, but to our knowledge there has been no successful from first principles design of a polypeptide that would bind to designated ice planes along a specific direction. In this paper we show the results of our first attempt on an entirely de novo design of an alanine-lysine-rich antifreeze polypeptide. This 43 residue alanine-lysine peptide exhibits characteristic nonequilibrium freezing point depression and binds to the designated (210) planes of ice along the [122] vector. The structural and thermodynamic properties of this polypeptide were determined using circular dichroism spectroscopy and its nonequilibrium antifreeze properties were investigated using an ice-etching method and nanoliter osmometry.

  10. Influence of the foundation layer on the layer-by-layer assembly of poly-L-lysine and poly(styrenesulfonate) and its usage in the fabrication of 3D microscale features.

    PubMed

    Zhou, Dejian; Bruckbauer, Andreas; Batchelor, Matthew; Kang, Dae-Joon; Abell, Chris; Klenerman, David

    2004-10-12

    The layer-by-layer (LBL) assembly of a polypeptide, poly-L-lysine (PLL), with poly(styrenesulfonate) sodium salt (PSS) on flat template-stripped gold (TSG) surfaces precoated with a self-assembled monolayer of alkanethiols terminated with positive (pyridinium), negative (carboxylic acid), and neutral [hexa(ethylene glycol)] groups is investigated. Both the topography and the rate of film thickness growth are found to be strongly dependent on the initial surface foundation layer. LBL assembly of PLL and PSS on patterned TSG surfaces produced by micro contact printing leads to structurally distinct microscale features, including pillars, ridges, and wells, whose height can be controlled with nanometer precision.

  11. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication.

    PubMed Central

    Koonin, E V

    1993-01-01

    A new superfamily of (putative) DNA-dependent ATPases is described that includes the ATPase domains of prokaryotic NtrC-related transcription regulators, MCM proteins involved in the initiation of eukaryotic DNA replication, and a group of uncharacterized bacterial and chloroplast proteins. MCM proteins are shown to contain a modified form of the ATP-binding motif and are predicted to mediate ATP-dependent opening of double-stranded DNA in the replication origins. In a second line of investigation, it is demonstrated that the products of unidentified open reading frames from Marchantia mitochondria and from yeast, and a domain of a baculovirus protein involved in viral DNA replication are related to the superfamily III of DNA and RNA helicases that previously has been known to include only proteins of small viruses. Comparison of the multiple alignments showed that the proteins of the NtrC superfamily and the helicases of superfamily III share three related sequence motifs tightly packed in the ATPase domain that consists of 100-150 amino acid residues. A similar array of conserved motifs is found in the family of DnaA-related ATPases. It is hypothesized that the three large groups of nucleic acid-dependent ATPases have similar structure of the core ATPase domain and have evolved from a common ancestor. PMID:8332451

  12. Synthesis, characterization, quantum chemical calculations and evaluation of antioxidant properties of 1,3,4-thiadiazole derivatives including 2- and 3-methoxy cinnamic acids

    NASA Astrophysics Data System (ADS)

    Gür, Mahmut; Muğlu, Halit; Çavuş, M. Serdar; Güder, Aytaç; Sayıner, Hakan S.; Kandemirli, Fatma

    2017-04-01

    A series of 1,3,4-thiadiazole derivatives including 2- and 3-methoxy cinnamic acids were synthesized, and their structures were elucidated by the UV, IR, 1H NMR, 13C NMR spectroscopies and elemental analysis. The UV and IR calculations of the molecules were performed by using B3LYP, HF and MP2 methods with selected 6-311++G(2d,2p), 6-311++G(3df,3pd) and cc-pvtz basis sets. Dipole moment, polarizability, chemical hardness/softness and electronegativity were also calculated and analyzed. Experimental FT-IR spectra and UV-Vis spectrum of the compounds were compared with theoretical data. Furthermore, antioxidant activities of the compounds were practised via different test methods such as 2,2-diphenyl-1-picryl-hydrazyl (DPPHrad), N,N-dimethyl-p-phenylenediamine (DMPDrad +), and 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTSrad +) scavenging activity assays. When compared with standards (BHA-Butylated hydroxyanisole, RUT-Rutin, and TRO-Trolox), it was observed that especially XIII and XIV which include methoxy groups at the o- and m-positions, respectively, had effective activities.

  13. Lysine post-translational modification of glyceraldehyde-3-phosphate dehydrogenase regulates hepatic and systemic metabolism.

    PubMed

    Bond, Simon T; Howlett, Kirsten F; Kowalski, Greg M; Mason, Shaun; Connor, Timothy; Cooper, Adrian; Streltsov, Victor; Bruce, Clinton R; Walder, Ken R; McGee, Sean L

    2017-03-03

    Reciprocal regulation of hepatic glycolysis and gluconeogenesis contributes to systemic metabolic homeostasis. Recent evidence from lower order organisms has found that reversible post-translational modification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), particularly acetylation, contributes to the reciprocal regulation of glycolysis/gluconeogenesis. However, whether this occurs in mammalian hepatocytes in vitro or in vivo is unknown. Several proteomics studies have identified 4 lysine residues in critical regions of mammalian GAPDH that are altered by multiple post-translational modifications. In FAO hepatoma cells, mutation of all 4 lysine residues (4K-R GAPDH) to mimic their unmodified state reduced GAPDH glycolytic activity and glycolytic flux and increased gluconeogenic GAPDH activity and glucose production. Hepatic expression of 4K-R GAPDH in mice increased GAPDH gluconeogenic activity and the contribution of gluconeogenesis to endogenous glucose production in the unfed state. Consistent with the increased reliance on the energy-consuming gluconeogenic pathway, plasma free fatty acids and ketones were elevated in mice expressing 4K-R GAPDH, suggesting enhanced lipolysis and hepatic fatty acid oxidation. In normal mice, food withholding and refeeding, as well as hormonal regulators of reciprocal glycolysis/gluconeogenesis, such as insulin, glucagon, and norepinephrine, had no effect on global GAPDH acetylation. However, GAPDH acetylation was reduced in obese and type 2 diabetic db/db mice. These findings show that post-translational modification of GAPDH lysine residues regulates hepatic and systemic metabolism, revealing an unappreciated role for hepatic GAPDH in substrate selection and utilization.-Bond, S. T., Howlett, K. F., Kowalski, G. M., Mason, S., Connor, T., Cooper, A., Streltsov, V., Bruce, C. R., Walder, K. R., McGee, S. L. Lysine post-translational modification of glyceraldehyde-3-phosphate dehydrogenase regulates hepatic and systemic

  14. Improvement of mannitol lysine crystal violet brilliant green agar for the selective isolation of H2S-positive Salmonella.

    PubMed

    Kodaka, H; Mizuochi, S; Honda, T; Yamaguchi, K

    2000-12-01

    Mannitol lysine crystal violet brilliant green agar (MLCB) is widely used in Japan for Salmonella isolation because the medium has been commercially available. Colonies of Salmonella on MLCB appear colorless with black centers due to H2S gas production; however, most Citrobacter freundii also produce H2S gas. In order to distinguish H2S-positive Salmonella from C. freundii we have improved MLCB. To MLCB was added 1% lactose (L-MLCB). The relation for pH and black center colony formation was examined. The pH of MLCB and L-MLCB inoculated with Salmonella species was slightly acid after 7 h, but the pH of L-MLCB inoculated with C. freundii did not become acid for 24 h. The colony of C. freundii did not have a black center because the production of acid from lactose lowers the pH below 10 where it is needed for H2S to react with iron to produce black pigments. Of 99 Salmonella strains including 13 serotypes tested, all strains had the same colony morphologies on MLCB and L-MLCB. When MLCB and L-MLCB were evaluated with 36 C. freundii strains isolated from foods, only colonies on MLCB had black centers. We conclude that L-MLCB is useful for detection of nonlactose-fermenting, H2S-positive Salmonella in food samples.

  15. Multi-Biomarkers for Early Detection of Type 2 Diabetes, Including 10- and 12-(Z,E)-Hydroxyoctadecadienoic Acids, Insulin, Leptin, and Adiponectin.

    PubMed

    Umeno, Aya; Yoshino, Kohzoh; Hashimoto, Yoshiko; Shichiri, Mototada; Kataoka, Masatoshi; Yoshida, Yasukazu

    2015-01-01

    We have previously found that fasting plasma levels of totally assessed 10- and 12-(Z,E)-hydroxyoctadecadienoic acid (HODE) correlated well with levels of glycated hemoglobin (HbA1c) and glucose during oral glucose tolerance tests (OGTT); these levels were determined via liquid chromatography-mass spectrometry after reduction and saponification. However, 10- and 12-(Z,E)-HODE alone cannot perfectly detect early impaired glucose tolerance (IGT) and/or insulin resistance, which ultimately lead to diabetes. In this study, we randomly recruited healthy volunteers (n = 57) who had no known history of any diseases, and who were evaluated using the OGTT, the HODE biomarkers, and several additional proposed biomarkers, including retinol binding protein 4 (RBP4), adiponectin, leptin, insulin, glycoalbumin, and high sensitivity-C-reactive protein. The OGTT revealed that our volunteers included normal individuals (n = 44; Group N), "high-normal" individuals (fasting plasma glucose 100-109 mg/dL) with IGT (n = 11; Group HN+IGT), and diabetic individuals (n = 2; Group D). We then used these groups to evaluate the potential biomarkers for the early detection of type 2 diabetes. Plasma levels of RBP4 and glycoalbumin were higher in Group HN+IGT, compared to those in Group N, and fasting levels of 10- and 12-(Z,E)-HODE/linoleic acids were significantly correlated with levels of RBP4 (p = 0.003, r = 0.380) and glycoalbumin (p = 0.006, r = 0.316). Furthermore, we developed a stepwise multiple linear regression models to predict the individuals' insulin resistance index (the Matsuda Index 3). Fasting plasma levels of 10- and 12-(Z,E)-HODE/linoleic acids, glucose, insulin, and leptin/adiponectin were selected as the explanatory variables for the models. The risks of type 2 diabetes, early IGT, and insulin resistance were perfectly predicted by comparing fasting glucose levels to the estimated Matsuda Index 3 (fasting levels of 10- and 12-(Z,E)-HODE/linoleic acids, insulin, and leptin/adiponectin).

  16. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    PubMed Central

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-01-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally valuable information related to amino acid depletion. Seq2logo aims at resolving these issues allowing the user to include sequence weighting to correct for data redundancy, pseudo counts to correct for low number of observations and different logotype representations each capturing different aspects related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein of interest. The output from the server is a sequence logo and a PSSM. Seq2Logo is available at http://www.cbs.dtu.dk/biotools/Seq2Logo (14 May 2012, date last accessed). PMID:22638583

  17. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion.

    PubMed

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-07-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally valuable information related to amino acid depletion. Seq2logo aims at resolving these issues allowing the user to include sequence weighting to correct for data redundancy, pseudo counts to correct for low number of observations and different logotype representations each capturing different aspects related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein of interest. The output from the server is a sequence logo and a PSSM. Seq2Logo is available at http://www.cbs.dtu.dk/biotools/Seq2Logo (14 May 2012, date last accessed).

  18. Lysine supplementation of commercial fishmeal-free diet in hybrid striped bass Morone chrysops x M. saxatilis affects expression of growth related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent results in hybrid striped bass (HSB) concluded that ideal protein theory accurately predicts first-limiting amino acids in commercial diet formulations if accurate amino acid availability data are used and that appropriate levels of supplemental lysine are needed in order to improve fish ...

  19. NUTRITIONAL FACTORS STIMULATING THE FORMATION OF LYSINE DECARBOXYLASE IN ESCHERICHIA COLI

    PubMed Central

    Maretzki, Andrew; Mallette, M. F.

    1962-01-01

    Maretzki, Andrew (Pennsylvania State University, University Park) and M. F. Mallette. Nutritional factors stimulating the formation of lysine decarboxylase in Escherichia coli. J. Bacteriol. 83:720–726. 1962 — Inclusion of complex nitrogen sources in the induction medium was shown to be necessary for the synthesis of appreciable amounts of l-lysine decarboxylase by Escherichia coli B. Hy-case, a commercial acid hydrolyzate of casein, was especially effective in enzyme production, which was assayed manometrically after lysis of the bacteria from without by bacteriophage. Partial fractionation of the Hy-case, identification of the free amino acids, and addition of these amino acids to test media revealed stimulatory effects by methionine, threonine, proline, leucine, and tyrosine. A full complement of amino acids did not match the enzyme levels reached in the presence of Hy-case. Certain peptide fractions obtained from this mixture supplemented the effects of the amino acids in such a way as to suggest direct incorporation of peptide rather than transport or protective roles. Added purines, pyrimidines, iron, and water-soluble vitamins were without effect. Neither carbohydrates nor phosphorylated materials could be detected in the stimulatory fractions. PMID:14469751

  20. METHANOGENS WITH PSEUDOMUREIN USE DIAMINOPIMELATE AMINOTRANSFERASE IN LYSINE BIOSYNTHESIS

    PubMed Central

    Graham, David E.; Huse, Holly K.

    2008-01-01

    Methanothermobacter thermautotrophicus uses lysine for both protein synthesis and cross-linking pseudomurein in its cell wall. A diaminopimelate aminotransferase enzyme from this methanogen (MTH0052) converts tetrahydrodipicolinate to L,L-diaminopimelate, a lysine precursor. This gene complemented an Escherichia coli diaminopimelate auxotrophy, and the purified protein catalyzed the transamination of diaminopimelate to tetrahydrodipicolinate. Phylogenetic analysis indicated this gene was recruited from anaerobic Gram-positive bacteria. These results expand the family of diaminopimelate aminotransferases to a diverse set of plant, bacterial and archaeal homologs. In contrast marine methanogens from the Methanococcales, which lack pseudomurein, appear to use a different diaminopimelate pathway for lysine biosynthesis. PMID:18371309

  1. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  2. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages.

    PubMed

    Reddy, Samala Murali Mohan; Shanmugam, Ganesh; Duraipandy, Natarajan; Kiran, Manikantan Syamala; Mandal, Asit Baran

    2015-11-07

    In recent years, several fluorenylmethoxycarbonyl (Fmoc)-functionalized amino acids and peptides have been used to construct hydrogels, which find a wide range of applications. Although several hydrogels have been prepared from mono Fmoc-functionalized amino acids, herein, we demonstrate the importance of an additional Fmoc-moiety in the hydrogelation of double Fmoc-functionalized L-lysine [Fmoc(Nα)-L-lysine(NεFmoc)-OH, (Fmoc-K(Fmoc))] as a low molecular weight gelator (LMWG). Unlike other Fmoc-functionalized amino acid gelators, Fmoc-K(Fmoc) exhibits pH-controlled ambidextrous gelation (hydrogelation at different pH values as well as organogelation), which is significant among the gelators. Distinct fibrous morphologies were observed for Fmoc-K(Fmoc) hydrogels formed at different pH values, which are different from organogels in which Fmoc-K(Fmoc) showed bundles of long fibers. In both hydrogels and organogels, the self-assembly of Fmoc-K(Fmoc) was driven by aromatic π-π stacking and hydrogen bonding interactions, as evidenced from spectroscopic analyses. Characterization of Fmoc-K(Fmoc) gels using several biophysical methods indicates that Fmoc-K(Fmoc) has several advantages and significant importance as a LMWG. The advantages of Fmoc-K(Fmoc) include pH-controlled ambidextrous gelation, pH stimulus response, high thermal stability (∼100 °C) even at low minimum hydrogelation concentration (0.1 wt%), thixotropic property, high kinetic and mechanical stability, dye removal properties, cell viability to the selected cell type, and as a drug carrier. While single Fmoc-functionalized L-lysine amino acids failed to exhibit gelation under similar experimental conditions, the pH-controlled ambidextrous gelation of Fmoc-K(Fmoc) demonstrates the benefit of a second Fmoc moiety in inducing gelation in a LMWG. We thus strongly believe that the current findings provide a lead to construct or design various new synthetic Fmoc-based LMW organic gelators for several

  3. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2.

    PubMed

    Bheda, Poonam; Swatkoski, Stephen; Fiedler, Katherine L; Boeke, Jef D; Cotter, Robert J; Wolberger, Cynthia

    2012-04-17

    Although the biological roles of many members of the sirtuin family of lysine deacetylases have been well characterized, a broader understanding of their role in biology is limited by the challenges in identifying new substrates. We present here an in vitro method that combines biotinylation and mass spectrometry (MS) to identify substrates deacetylated by sirtuins. The method permits labeling of deacetylated residues with amine-reactive biotin on the ε-nitrogen of lysine. The biotin can be utilized to purify the substrate and identify the deacetylated lysine by MS. The biotinyl-lysine method was used to compare deacetylation of chemically acetylated histones by the yeast sirtuins, Sir2 and Hst2. Intriguingly, Sir2 preferentially deacetylates histone H3 lysine 79 as compared to Hst2. Although acetylation of K79 was not previously reported in Saccharomyces cerevisiae, we demonstrate that a minor population of this residue is indeed acetylated in vivo and show that Sir2, and not Hst2, regulates the acetylation state of H3 lysine 79. The in vitro biotinyl-lysine method combined with chemical acetylation made it possible to identify this previously unknown, low-abundance histone acetyl modification in vivo. This method has further potential to identify novel sirtuin deacetylation substrates in whole cell extracts, enabling large-scale screens for new deacetylase substrates.

  4. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5.

    PubMed

    Tan, Minjia; Peng, Chao; Anderson, Kristin A; Chhoy, Peter; Xie, Zhongyu; Dai, Lunzhi; Park, Jeongsoon; Chen, Yue; Huang, He; Zhang, Yi; Ro, Jennifer; Wagner, Gregory R; Green, Michelle F; Madsen, Andreas S; Schmiesing, Jessica; Peterson, Brett S; Xu, Guofeng; Ilkayeva, Olga R; Muehlbauer, Michael J; Braulke, Thomas; Mühlhausen, Chris; Backos, Donald S; Olsen, Christian A; McGuire, Peter J; Pletcher, Scott D; Lombard, David B; Hirschey, Matthew D; Zhao, Yingming

    2014-04-01

    We report the identification and characterization of a five-carbon protein posttranslational modification (PTM) called lysine glutarylation (Kglu). This protein modification was detected by immunoblot and mass spectrometry (MS), and then comprehensively validated by chemical and biochemical methods. We demonstrated that the previously annotated deacetylase, sirtuin 5 (SIRT5), is a lysine deglutarylase. Proteome-wide analysis identified 683 Kglu sites in 191 proteins and showed that Kglu is highly enriched on metabolic enzymes and mitochondrial proteins. We validated carbamoyl phosphate synthase 1 (CPS1), the rate-limiting enzyme in urea cycle, as a glutarylated protein and demonstrated that CPS1 is targeted by SIRT5 for deglutarylation. We further showed that glutarylation suppresses CPS1 enzymatic activity in cell lines, mice, and a model of glutaric acidemia type I disease, the last of which has elevated glutaric acid and glutaryl-CoA. This study expands the landscape of lysine acyl modifications and increases our understanding of the deacylase SIRT5.

  5. Utilization of potato starch processing wastes to produce animal feed with high lysine content.

    PubMed

    Li, Ying; Liu, Bingnan; Song, Jinzhu; Jiang, Cheng; Yang, Qian

    2015-02-01

    This work aims to utilize wastes from the potato starch industry to produce single-cell protein (SCP) with high lysine content as animal feed. In this work, S-(2-aminoethyl)-L-cysteine hydrochloride-resistant Bacillus pumilus E1 was used to produce SCP with high lysine content, whereas Aspergillus niger was used to degrade cellulose biomass and Candida utilis was used to improve the smell and palatability of the feed. An orthogonal design was used to optimize the process of fermentation for maximal lysine content. The optimum fermentation conditions were as follows: temperature of 40°C, substrate concentration of 3%, and natural pH of about 7.0. For unsterilized potato starch wastes, the microbial communities in the fermentation process were determined by terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes. Results showed that the dominant population was Bacillus sp. The protein quality as well as the amino acid profile of the final product was found to be significantly higher compared with the untreated waste product at day 0. Additionally, acute toxicity test showed that the SCP product was non-toxic, indicating that it can be used for commercial processing.

  6. Distance between two active-site lysines of ribulosebis-phosphate carboxylase/oxygenase

    SciTech Connect

    Lee, E.H.; Hartman, F.C.

    1986-05-01

    Previous affinity labeling studies and comparative sequence analyses have identified two different lysines at the active site of the title enzyme (Lys-166 and Lys-329 in the Rhodospirillum rubrum enzyme and Lys-175 and Lys-334 in the spinach enzyme). Because the two lysines are mutually exclusive to various reagents, they appear to be in proximity. To challenge this postulate, the authors have explored the reactions of the R. rubrum enzyme (a homodimer) with chemical cross-linking agents. 4,4'-Diisothiocyano-2,2'-disulfonate stilbene, which spans 12 A, rapidly inactivates the enzyme with protection afforded by the competitive inhibitor 2-carboxyribitol-1,5-bisphosphate. The inactivated enzyme was subjected to gel filtration in the presence of urea to remove material arising from intersubunit or intermolecular cross-linking. The monomeric fraction was digested with trypsin; inspection of the digest by HPLC revealed that over-half of the incorporated reagent was associated with a single peptide. This peptide was purified by successive ion-exchange chromatography and gel filtration. The amino acid composition and sequence of the purified peptide demonstrated that it is comprised of two chains, encompassing position 149-168 and 314-337 of the original protein subunit and connected by a cross-link between Lys-166 and Lys-329. Thus, the two active-site lysines can be juxtaposed only 12 A apart.

  7. Lysine Glutarylation Is a Protein Post-Translational Modification Regulated by SIRT5

    PubMed Central

    Tan, Minjia; Peng, Chao; Anderson, Kristin A.; Chhoy, Peter; Xie, Zhongyu; Dai, Lunzhi; Park, Jeong Soon; Chen, Yue; Huang, He; Zhang, Yi; Ro, Jennifer; Wagner, Gregory R.; Green, Michelle F.; Madsen, Andreas S.; Schmiesing, Jessica; Peterson, Brett S.; Xu, Guofeng; Ilkayeva, Olga R.; Muehlbauer, Michael J.; Braulke, Thomas; Mühlhausen, Chris; Backos, Donald S.; Olsen, Christian A.; McGuire, Peter J.; Pletcher, Scott D.; Lombard, David B.; Hirschey, Matthew D.; Zhao, Yingming

    2014-01-01

    We report the identification and characterization of a five-carbon protein post-translational modification (PTM) called lysine glutarylation (Kglu). This protein modification was detected by immunoblot and mass spectrometry (MS), and then comprehensively validated by chemical and biochemical methods. We demonstrated that the previously annotated deacetylase, sirtuin 5 (SIRT5), is a lysine deglutarylase. Proteome-wide analysis identified 683 Kglu sites in 191 proteins and showed Kglu is highly enriched on metabolic enzymes and mitochondrial proteins. We validated carbamoyl phosphate synthase 1 (CPS1), the rate-limiting enzyme in urea cycle, as a glutarylated protein and demonstrated that CPS1 is targeted by SIRT5 for deglutarylation. We further showed that glutarylation suppresses CPS1 enzymatic activity in cell lines, mice, and a model of glutaric academia type I disease, the last of which has elevated glutaric acid and glutaryl-CoA. This study expands the landscape of lysine acyl modifications and increases our understanding of the deacylase SIRT5. PMID:24703693

  8. An update on potato crisps contents of moisture, fat, salt and fatty acids (including trans-fatty acids) with special emphasis on new oils/fats used for frying.

    PubMed

    Gonçalves Albuquerque, Tânia; Sanches-Silva, Ana; Santos, Lèlita; Costa, Helena S

    2012-09-01

    Eighteen brands of potato crisps, frequently consumed, were analyzed to establish their nutritional value in relation to salt, fat and fatty acid (FA) composition. The purpose of the present study was to determine moisture, total fat, salt contents and FA profiles (including trans-FAs), and to identify the oil/fat used for frying of the 18 brands of potato crisps. Our results show that salt content ranged from 0.127 to 2.77 g/100 g and total fat content of potato crisps varied between 20.0 and 42.8 g/100 g. With respect to FAs analysis, palmitic acid (C16:0), oleic acid (C18:1) and linoleic acid (C18:2) were the major FAs found in the analyzed potato crisps. It is clear from our work that nowadays most potato crisps are currently produced using oils with high contents in unsaturated FAs, which can be considered as healthier from a nutritional point of view. Nevertheless, some brands of potato crisps still use palm oil or a blend of palm oil and other fats/oils, which are very rich in saturated FAs.

  9. Seed-Specific Expression of the Arabidopsis AtMAP18 Gene Increases both Lysine and Total Protein Content in Maize

    PubMed Central

    Chang, Yujie; Shen, Erli; Wen, Liuying; Yu, Jingjuan; Zhu, Dengyun; Zhao, Qian

    2015-01-01

    Lysine is the most limiting essential amino acid for animal nutrition in maize grains. Expression of naturally lysine-rich protein genes can increase the lysine and protein contents in maize seeds. AtMAP18 from Arabidopsis thaliana encoding a microtubule-associated protein with high-lysine content was introduced into the maize genome with the seed-specific promoter F128. The protein and lysine contents of different transgenic offspring were increased prominently in the six continuous generations investigated. Expression of AtMAP18 increased both zein and non-zein protein in the transgenic endosperm. Compared with the wild type, more protein bodies were observed in the endosperm of transgenic maize. These results implied that, as a cytoskeleton binding protein, AtMAP18 facilitated the formation of protein bodies, which led to accumulation of both zein and non-zein proteins in the transgenic maize grains. Furthermore, F1 hybrid lines with high lysine, high protein and excellent agronomic traits were obtained by hybridizing T6 transgenic offspring with other wild type inbred lines. This article provides evidence supporting the use of cytoskeleton-associated proteins to improve the nutritional value of maize. PMID:26580206

  10. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases

    PubMed Central

    Duncan, Anna L.

    2016-01-01

    The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme. PMID:27382158

  11. Malic acid or orthophosphoric acid-heat treatments for protecting sunflower (Helianthus annuus) meal proteins against ruminal degradation and increasing intestinal amino acid supply.

    PubMed

    Arroyo, J M; González, J; Ouarti, M; Silván, J M; Ruiz del Castillo, M L; de la Peña Moreno, F

    2013-02-01

    The protection of sunflower meal (SFM) proteins by treatments with solutions of malic acid (1 M) or orthophosphoric acid (0.67 M) and heat was studied in a 3 × 3 Latin-square design using three diets and three rumen and duodenum cannulated wethers. Acid solutions were applied to SFM at a rate of 400 ml/kg under continuous mixing. Subsequently, treated meals were dried in an oven at 150°C for 6 h. Diets (ingested at 75 g/kg BW0.75) were isoproteic and included 40% Italian ryegrass hay and 60% concentrate. The ratio of untreated to treated SFM in the concentrate was 100 : 0 in the control diet and around 40 : 60 in diets including acid-treated meals. The use of acid-treated meals did not alter either ruminal fermentation or composition of rumen contents and led to moderate reductions of the rumen outflow rates of untreated SFM particles, whereas it did not affect their comminution and mixing rate. In situ effective estimates of by-pass (BP) and its intestinal effective digestibility (IED) of dry matter (DM), CP and amino acids (AAs) were obtained considering both rates and correcting the particle microbial contamination in the rumen using 15N infusion techniques. Estimates of BP and IED decreased applying microbial correction, but these variations were low in agreement with the small contamination level. Protective treatments increased on average the BP of DM (48.5%) and CP (267%), mainly decreasing both the soluble fraction and the degradation rate but also increasing the undegradable fraction, which was higher using orthophosphoric acid. Protective treatments increased the IED of DM (108%) and CP, but this increase was lower using orthophosphoric acid (11.8%) than malic acid (20.7%). Concentrations of AA were similar among all meals, except for a reduction in lysine concentrations using malic acid (16.3%) or orthophosphoric acid (20.5%). Protective treatments also increased on average the BP of all AA, as well as the IED of most of them. Evidence of higher

  12. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification

    PubMed Central

    2010-01-01

    Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum PMID:21143837

  13. Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Kim, Hwanhee; Choi, Youngjin; Paik, Seung R.; Jung, Seunho

    2016-08-01

    Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine.

  14. Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine

    PubMed Central

    Cho, Eunae; Kim, Hwanhee; Choi, Youngjin; Paik, Seung R.; Jung, Seunho

    2016-01-01

    Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine. PMID:27502314

  15. Efficiency of lysine utilization by growing steers.

    PubMed

    Batista, E D; Hussein, A H; Detmann, E; Miesner, M D; Titgemeyer, E C

    2016-02-01

    This study evaluated the efficiency of Lys utilization by growing steers. Five ruminally cannulated Holstein steers (165 ± 8 kg) housed in metabolism crates were used in a 6 × 6 Latin square design; data from a sixth steer was excluded due to erratic feed intake. All steers were limit fed (2.46 kg DM/d), twice daily, diets low in RUP (81% soybean hulls, 8% wheat straw, 6% cane molasses, and 5% vitamins and minerals). Treatments were 0, 3, 6, 9, 12, and 15 g/d of Lys continuously abomasally infused. To prevent AA other than Lys from limiting performance, a mixture providing all essential AA to excess was continuously abomasally infused. Additional continuous infusions included 10 g urea/d, 200 g acetic acid/d, 200 g propionic acid/d, and 50 g butyric acid/d to the rumen and 300 g glucose/d to the abomasum. These infusions provided adequate ruminal ammonia and increased energy supply without increasing microbial protein supply. Each 6-d period included 2 d for adaptation and 4 d for total fecal and urinary collections for measuring N balance. Blood was collected on d 6 (10 h after feeding). Diet OM digestibility was not altered ( ≥ 0.66) by treatment and averaged 73.7%. Urinary N excretion was decreased from 32.3 to 24.3 g/d by increasing Lys supplementation to 9 g/d, with no further reduction when more than 9 g/d of Lys was supplied (linear and quadratic, < 0.01). Changes in total urinary N excretion predominantly were due to changes in urinary urea N. Increasing Lys supply from 0 to 9 g/d increased N retention from 21.4 to 30.7 g/d, with no further increase beyond 9 g/d of Lys (linear and quadratic, < 0.01). Break-point analysis estimated maximal N retention at 9 g/d supplemental Lys. Over the linear response surface of 0 to 9 g/d Lys, the efficiency of Lys utilization for protein deposition was 40%. Plasma urea N tended to be linearly decreased ( = 0.06) by Lys supplementation in agreement with the reduction in urinary urea N excretion. Plasma concentrations

  16. Data detailing the platelet acetyl-lysine proteome.

    PubMed

    Aslan, Joseph E; David, Larry L; McCarty, Owen J T

    2015-12-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification - mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332.

  17. Characteristics and antioxidant activity of Maillard reaction products from psicose-lysine and fructose-lysine model systems.

    PubMed

    Zeng, Yan; Zhang, Xiaoxi; Guan, Yuping; Sun, Yuanxia

    2011-04-01

    D-Psicose, an epimer of D-fructose isomerized at C-3 position, is a rare ketohexose that is thought to be beneficial for obese people and diabetic patients as a noncaloric sweetener. In the present study, model Maillard reaction products were obtained from D-psicose (or D-fructose) and L-lysine heating at 120 °C up to 8 h with the initial pH 9.0. The changes in pH, UV-vis absorbance, and free amino groups during the reaction were detected. Moreover, the antioxidant potential of the Maillard reaction products at different intervals was investigated. Although there was almost no difference in the oxygen radical absorbance capacity, the Maillard reaction products from psicose performed better than that from fructose in the radical-scavenging activity of 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and 1, 1,-diphenyl-2-picryl-hydrazyl. The reducing power of the Maillard reaction products from psicose was also stronger than that from fructose. These results indicated that psicose played an effective role in the Maillard reaction and its Maillard reaction products could act as potential antioxidants in food industry.

  18. Identification of structural determinants of NAD(P)H selectivity and lysine binding in lysine N(6)-monooxygenase.

    PubMed

    Abdelwahab, Heba; Robinson, Reeder; Rodriguez, Pedro; Adly, Camelia; El-Sohaimy, Sohby; Sobrado, Pablo

    2016-09-15

    l-lysine (l-Lys) N(6)-monooxygenase (NbtG), from Nocardia farcinica, is a flavin-dependent enzyme that catalyzes the hydroxylation of l-Lys in the presence of oxygen and NAD(P)H in the biosynthetic pathway of the siderophore nocobactin. NbtG displays only a 3-fold preference for NADPH over NADH, different from well-characterized related enzymes, which are highly selective for NADPH. The structure of NbtG with bound NAD(P)(+) or l-Lys is currently not available. Herein, we present a mutagenesis study targeting M239, R301, and E216. These amino acids are conserved and located in either the NAD(P)H binding domain or the l-Lys binding pocket. M239R resulted in high production of hydrogen peroxide and little hydroxylation with no change in coenzyme selectivity. R301A caused a 300-fold decrease on kcat/Km value with NADPH but no change with NADH. E216Q increased the Km value for l-Lys by 30-fold with very little change on the kcat value or in the binding of NAD(P)H. These results suggest that R301 plays a major role in NADPH selectivity by interacting with the 2'-phosphate of the adenine-ribose moiety of NADPH, while E216 plays a role in l-Lys binding.

  19. Influence of baking conditions and precursor supplementation on the amounts of the antioxidant pronyl-L-lysine in bakery products.

    PubMed

    Lindenmeier, Michael; Hofmann, Thomas

    2004-01-28

    The influence of baking conditions and dough supplements on the amounts of the antioxidant and Phase II-Enzyme modulating, protein-bound 2,4-dihydroxy-2,5-dimethyl-1-(5-acetamino-5-methoxycarbonyl-pentyl)-3-oxo-2H-pyrrol (pronyl-L-lysine) in bakery products was investigated in quantitative studies. These studies revealed high amounts of the antioxidant in bread crust, only low amounts in the crumb, and the absence of this compound in untreated flour. The amounts of pronyl-L-lysine were found to be strongly influenced by the intensity of the thermal treatment. For example, increasing the baking time from 70 to 210 min or increasing the baking temperature from 220 to 260 degrees C led to a 5- or 3-fold increase in the concentrations of this antioxidant in the crust, respectively. In addition, modifications in the recipe showed to have a major impact on pronyl-L-lysine formation. For example, substituting 5% of the flour with the lysine-rich protein casein or with 10% of glucose increased the amounts of the antioxidant by more than 200%. Quantitative analyses of commercial bread samples collected from German bakeries revealed the highest amount of 43 mg/kg for a full grain bread, followed by a rye/wheat bread, both of which have been sourdough fermented. A mixed-grain bread as well as pale wheat bread, both prepared without sourdough fermentation, contained significantly lower amounts of pronyl-L-lysine, and German pretzels, which are treated with a dilute sodium hydroxide solution prior to baking, contained only trace amounts of pronyl-L-lysine (e.g., less than 5 mg/kg were detectable in pretzels). Systematic studies revealed that the decrease of the pH value induced by microbial acid formation during sourdough fermentation is the clue for producing high amounts of pronyl-L-lysine in baking products. These data clearly demonstrate for the first time that the amounts of the antioxidant and chemopreventive compound pronyl-L-lysine in bakery products is strongly

  20. Antitumor effect of lysine-isopeptides

    PubMed Central

    Szende, B; Szökán, Gy; Tyihá, E; Pál, K; Gáborjányi, R; Almás, M; Khlafulla, A R

    2002-01-01

    Isopeptides (ε-peptides) of lysine, with a given Mw and low polydispersity (10–400 units), were synthesized to study the relationship between their chemical structure and biological effect. The designed compounds were of high purity, low polydispersity and high stereochemical purity. The effect of the compounds was tested on a human erythroleukemia cell line (K-562) and on four transplantable mouse tumors (L1210 lymphoid leukemia, P38 macrophage derived tumor, Ehrlich ascites carcinoma, Lewis lung tumor /LLT/). In case of the L1210 and P388 tumors and the Ehrlich carcinoma, survival of the animals was used as an indicator of the effect. In case of the Lewis lung tumor, the number and size of metastases in the lung and/or liver of treated and untreated mice were used as indicators. The polymers of polymerisation degree 80–120 (Mw 10.2–15.4 KD) showed the strongest antiproliferative effect both on K562 cells and the tumors growing in vivo. This effect was manifest with a significantly higher survival rate as compared to the control (L1210, P38, Ehrlich ascites), furthermore, by a decrease in the number and size of liver and lung metastases (LLT). PMID:12076354

  1. Water reuse in the l-lysine fermentation process

    SciTech Connect

    Hsiao, T.Y.; Glatz, C.E.

    1996-02-05

    L-Lysine is produced commercially by fermentation. As is typical for fermentation processes, a large amount of liquid waste is generated. To minimize the waste, which is mostly the broth effluent from the cation exchange column used for l-lysine recovery, the authors investigated a strategy of recycling a large fraction of this broth effluent to the subsequent fermentation. This was done on a lab-scale process with Corynebacterium glutamicum ATCC 21253 as the l-lysine-producing organisms. Broth effluent from a fermentation in a defined medium was able to replace 75% of the water for the subsequent batch; this recycle ratio was maintained for 3 sequential batches without affecting cell mass and l-lysine production. Broth effluent was recycled at 50% recycle ratio in a fermentation in a complex medium containing beet molasses. The first recycle batch had an 8% lower final l-lysine level, but 8% higher maximum cell mass. In addition to reducing the volume of liquid waste, this recycle strategy has the additional advantage of utilizing the ammonium desorbed from the ion-exchange column as a nitrogen source in the recycle fermentation. The major problem of recycling the effluent from the complex medium was in the cation-exchange operation, where column capacity was 17% lower for the recycle batch. The loss of column capacity probably results from the buildup of cations competing with l-lysine for binding.

  2. Relation Between Excreted Lipopolysaccharide Complexes and Surface Structures of a Lysine-Limited Culture of Escherichia coli

    PubMed Central

    Knox, K. W.; Vesk, Maret; Work, Elizabeth

    1966-01-01

    Knox, K. W. (Twyford Laboratories, London, England), Maret Vesk, and Elizabeth Work. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J. Bacteriol. 92:1206–1217. 1966.—The lysine-requiring mutant Escherichia coli 12408, when grown in 15 liters of defined medium containing a suboptimal amount of lysine, showed a biphasic type of growth. During a long stationary phase of 15 hr, there was a steady accumulation of diaminopimelic acid (DAP) and an antigenic complex of lipopolysaccharide (LPS) and lipoprotein; the accumulation continued unchanged until the end of the second growth phase. The rapid rate of DAP excretion suggested that it was the result of a derepressed state of a biosynthetic pathway. LPS excretion was such that the amount in the culture fluid was doubled during a period corresponding to the normal generation time for the organism; this suggested that the LPS-lipoprotein complex was a product of unbalanced growth. Surface defects were suggested by the action of lysozyme, which, in low concentrations (10 μg/ml), lysed the lysine-limited cells even in the absence of ethylenediaminetetraacetic acid, but had no effect at 10 μg/ml on cells grown with adequate lysine. Electron microscopy of cells excreting the LPS complex showed them to be surrounded by a mass of stacked leaflets and globules, some of which were bounded by triple membranes. Sections showed no lysis but changes in cell surfaces; outer layers of the walls had numerous blebs whose outer membranes were sometimes continuous with the outer triple membrane of the wall. LPS-lipoprotein probably originates from these blebs. Images PMID:4959044

  3. Tyrosine-phosphorylated Ehrlichia chaffeensis and Ehrlichia canis tandem repeat orthologs contain a major continuous cross-reactive antibody epitope in lysine-rich repeats.

    PubMed

    McBride, Jere W; Zhang, Xiaofeng; Wakeel, Abdul; Kuriakose, Jeeba A

    2011-08-01

    A small subset of major immunoreactive proteins have been identified in Ehrlichia chaffeensis and Ehrlichia canis, including three molecularly and immunologically characterized pairs of immunoreactive tandem repeat protein (TRP) orthologs with major continuous species-specific epitopes within acidic tandem repeats (TR) that stimulate strong antibody responses during infection. In this study, we identified a fourth major immunoreactive TR-containing ortholog pair and defined a major cross-reactive epitope in homologous nonidentical 24-amino-acid lysine-rich TRs. Antibodies from patients and dogs with ehrlichiosis reacted strongly with recombinant TR regions, and epitopes were mapped to the N-terminal TR region (18 amino acids) in E. chaffeensis and the complete TR (24 amino acids) in E. canis. Two less-dominant epitopes were mapped to adjacent glutamate/aspartate-rich and aspartate/tyrosine-rich regions in the acidic C terminus of E. canis TRP95 but not in E. chaffeensis TRP75. Major immunoreactive proteins in E. chaffeensis (75-kDa) and E. canis (95-kD) whole-cell lysates and supernatants were identified with TR-specific antibodies. Consistent with other ehrlichial TRPs, the TRPs identified in ehrlichial whole-cell lysates and the recombinant proteins migrated abnormally slow electrophoretically a characteristic that was demonstrated with the positively charged TR and negatively charged C-terminal domains. E. chaffeensis TRP75 and E. canis TRP95 were immunoprecipitated with anti-pTyr antibody, demonstrating that they are tyrosine phosphorylated during infection of the host cell.

  4. New insights into the interplay between the lysine transporter LysP and the pH sensor CadC in Escherichia coli.

    PubMed

    Rauschmeier, Martina; Schüppel, Valentina; Tetsch, Larissa; Jung, Kirsten

    2014-01-09

    The coordination of signal transduction and substrate transport represents a sophisticated way to integrate information on metabolite fluxes into transcriptional regulation. This widely distributed process involves protein-protein interactions between two integral membrane proteins. Here we report new insights into the molecular mechanism of the regulatory interplay between the lysine-specific permease LysP and the membrane-integrated pH sensor CadC, which together induce lysine-dependent adaptation of E. coli under acidic stress. In vivo analyses revealed that, in the absence of either stimulus, the two proteins form a stable association, which is modulated by lysine and low pH. In addition to its transmembrane helix, the periplasmic domain of CadC also participated in the interaction. Site-directed mutagenesis pinpointed Arg265 and Arg268 in CadC as well as Asp275 and Asp278 in LysP as potential periplasmic interaction sites. Moreover, a systematic analysis of 100 LysP variants with single-site replacements indicated that the lysine signal is transduced from co-sensor to sensor via lysine-dependent conformational changes (upon substrate binding and/or transport) of LysP. Our results suggest a scenario in which CadC is inhibited by LysP via intramembrane and periplasmic contacts under non-inducing conditions. Upon induction, lysine-dependent conformational changes in LysP transduce the lysine signal via a direct conformational coupling to CadC without resolving the interaction completely. Moreover, concomitant pH-dependent protonation of periplasmic amino acids in both proteins dissolves their electrostatic connections resulting in further destabilization of the CadC/LysP interaction.

  5. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice

    PubMed Central

    Aiba, Yuji; Nakano, Yasuhiro; Koga, Yasuhiro; Takahashi, Kenji; Komatsu, Yasuhiko

    2015-01-01

    A novel strain of Lactobacillus johnsonii No. 1088 was isolated from the gastric juice of a healthy Japanese male volunteer, and characterized for its effectiveness in the stomach environment. Lactobacillus johnsonii No. 1088 was found to have the strongest acid resistance among several lactobacilli examined (>10% of cells survived at pH 1.0 after 2 h), and such a high acid resistance property was a specific characteristic of this strain of L. johnsonii. When cultured with various virulent bacteria, L. johnsonii No. 1088 inhibited the growth of Helicobacter pylori,Escherichia coli O-157, Salmonella Typhimurium, and Clostridium difficile, in which case its effectiveness was more potent than that of a type strain of L. johnsonii,JCM2012. In addition to its effect in vitro, L. johnsonii No. 1088 inhibited the growth of H. pylori in human intestinal microbiota-associated mice in both its live and lyophilized forms. Moreover, L. johnsonii No. 1088 suppressed gastric acid secretion in mice via decreasing the number of gastrin-positive cells in the stomach. These results taken together suggest that L. johnsonii No. 1088 is a unique lactobacillus having properties beneficial for supporting H. pylori eradication by triple therapy including the use of a proton pump inhibitor (PPI) and also for prophylaxis of gastroesophageal reflux disease possibly caused after H. pylori eradication as a side effect of PPI. PMID:25771812

  6. Mass Spectrometry Analysis of Lysine Posttranslational Modifications of Tau Protein from Alzheimer's Disease Brain.

    PubMed

    Thomas, Stefani N; Yang, Austin J

    2017-01-01

    Recent advances in mass spectrometry (MS)-based proteomics have greatly facilitated the robust identification and quantification of posttranslational modifications (PTMs), including those that are present at substoichiometric site occupancies. The abnormal posttranslational modification and accumulation of the microtubule-associated protein tau has been implicated in the pathogenesis of Alzheimer's disease (AD), and it is thought that the primary mode of regulation of tau occurs through PTMs. Several studies have been published regarding tau phosphorylation; however, other tau PTMs such as ubiquitylation, acetylation, methylation, oxidation, sumoylation, nitration, and glycosylation have not been analyzed as extensively. The comprehensive detection and delineation of these PTMs is critical for drug target discovery and validation. Lysine-directed PTMs including ubiquitylation, acetylation, and methylation play key regulatory roles with respect to the rates of tau turnover and aggregation. MS-based analytical approaches have been used to gain insight into the tau lysine-directed PTM signature that is most closely associated with neurofibrillary lesion formation. This chapter provides details pertaining to the liquid chromatography tandem mass spectrometry (LC-MS/MS)-based analysis of the lysine-directed posttranslational modification of tau.

  7. Mass Spectrometry Analysis of Lysine Posttranslational Modifications of Tau Protein from Alzheimer’s Disease Brain

    PubMed Central

    Thomas, Stefani N.; Yang, Austin J.

    2017-01-01

    Recent advances in mass spectrometry (MS)-based proteomics have greatly facilitated the robust identification and quantification of posttranslational modifications (PTMs), including those that are present at substoichiometric site occupancies. The abnormal posttranslational modification and accumulation of the microtubule-associated protein tau has been implicated in the pathogenesis of Alzheimer’s disease (AD), and it is thought that the primary mode of regulation of tau occurs through PTMs. Several studies have been published regarding tau phosphorylation; however, other tau PTMs such as ubiquitylation, acetylation, methylation, oxidation, sumoylation, nitration, and glycosylation have not been analyzed as extensively. The comprehensive detection and delineation of these PTMs is critical for drug target discovery and validation. Lysine-directed PTMs including ubiquitylation, acetylation, and methylation play key regulatory roles with respect to the rates of tau turnover and aggregation. MS-based analytical approaches have been used to gain insight into the tau lysine-directed PTM signature that is most closely associated with neurofibrillary lesion formation. This chapter provides details pertaining to the liquid chromatography tandem mass spectrometry (LC-MS/MS)-based analysis of the lysine-directed posttranslational modification of tau. PMID:27975250

  8. Determination of N epsilon-(carboxymethyl)lysine in foods and related systems.

    PubMed

    Ames, Jennifer M

    2008-04-01

    The sensitive and specific determination of advanced glycation end products (AGEs) is of considerable interest because these compounds have been associated with pro-oxidative and proinflammatory effects in vivo. AGEs form when carbonyl compounds, such as glucose and its oxidation products, glyoxal and methylglyoxal, react with the epsilon-amino group of lysine and the guanidino group of arginine to give structures including N epsilon-(carboxymethyl)lysine (CML), N epsilon-(carboxyethyl)lysine, and hydroimidazolones. CML is frequently used as a marker for AGEs in general. It exists in both the free or peptide-bound forms. Analysis of CML involves its extraction from the food (including protein hydrolysis to release any peptide-bound adduct) and determination by immunochemical or instrumental means. Various factors must be considered at each step of the analysis. Extraction, hydrolysis, and sample clean-up are all less straight forward for food samples, compared to plasma and tissue. The immunochemical and instrumental methods all have their advantages and disadvantages, and no perfect method exists. Currently, different procedures are being used in different laboratories, and there is an urgent need to compare, improve, and validate methods.

  9. Changes in free amino acid content and activities of amination and transamination enzymes in yeasts grown on different inorganic nitrogen sources, including hydroxylamine.

    PubMed

    Norkrans, B; Tunblad-Johansson, I

    1981-01-01

    This study concerns inter- and intraspecific differences between yeasts at assimilation of different nitrogen sources. Alterations in the content of free amino acids in cells and media as well as in the related enzyme activities during growth were studied. The hydroxylamine (HA)-tolerant Endomycopsis lipolytica was examined and compared with the nitrate-reducing Cryptococcus albidus, and Saccharomyces cerevisiae, requiring fully reduced nitrogen for growth. Special attention was paid to alanine, aspartic acid, and glutamic acid, the amino acids closely related to the Krebs cycle keto acids. The amino acids were analyzed as their n-propyl N-acetyl esters by gas-liquid chromatography (GLC). The composition of the amino acid pool was similar for the three yeasts. Glutamic acid was predominant; in early log-phase cells of E. lipolytica contents of 200-234 micromol . g(-1) dry weight were found. A positive correlation between the specific growth rate and the size of the amino acid pool was observed. The assimilation of ammonia was mediated by glutamate dehydrogenase (GDH). The NADP-GDH was the dominating enzyme in all three yeasts showing the highest specific activity in Cr. albidus grown on nitrate (6980 nmol . (min(-1)).(mg protein(-1)). Glutamine synthetase (GS) displayed a high specific activity in S. cerevisiae, which also had a high amount of glutamine. The assimilation of HA did not differ greatly from the assimilation of ammonium in E. lipolytica. The existing differences could rather be explained as provoked by the concentration of available nitrogen.

  10. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA).

    PubMed

    Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S; Harlow, Mark L

    2015-10-08

    Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5' ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission.

  11. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA)

    PubMed Central

    Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S.; Harlow, Mark L.

    2015-01-01

    Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5′ ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission. PMID:26446566

  12. [Properties of glycyrrhizin in Kampo extracts including licorice root and changes in the blood concentration of glycyrrhetic acid after oral administration of Kampo extracts].

    PubMed

    Miyamura, M; Ono, M; Kyotani, S; Nishioka, Y

    1996-03-01

    We investigated in vitro the properties of glycyrrhizin (GL), such as dissolution, absorption and resolution, using a Sho-Seiryu-To extract, a Sho-Saiko-To extract, both including a licorice root, and licorice extract. The dissolution of GL differed with the pH of the solvent. The absorption (partition coefficient) of GL decreased with an increase in pH, and increased in the presence of other active constituents, such as baicalin, baicalein, and ephedrine. In the case of the Sho-Saiko-To extract, the conversion from GL to glycyrrhetic acid (GA) by beta-glucuronidase originated from E. coli occurred slowly. It was also suppressed by adding baicalin. We determined in vivo the pharmacokinetics of GA after oral administration of Kampo extracts in healthy volunteers. In each Kampo extract, the time of administration had no influence on the mean maximum blood concentration (Cmax) and the area under the blood concentration-time curve (AUC). Tmax was delayed in the case of the administration after meal (p < 0.05).

  13. Genetic Incorporation of ε-N-2-Hydroxyisobutyryl-lysine into Recombinant Histones

    PubMed Central

    Xiao, Han; Xuan, Weimin; Shao, Sida; Liu, Tao; Schultz, Peter G.

    2015-01-01

    Here we report the evolution of an orthogonal amber suppressor pyrrolysyl-tRNA synthetase (PylRS)/tRNACUAPyl pair that genetically encodes the post-translationally modified amino acid, ε-N-2-hydroxyisobutyryl-lysine (HibK), in bacteria and mammalian cells. HibK is a new type of histone mark that is widely distributed in histone proteins. The ability to site-specifically incorporate HibK into proteins provides a useful tool to probe the biological function of this newly identified post-translational modification. PMID:25909834

  14. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus.

    PubMed

    Jakobsen, Oyvind M; Brautaset, Trygve; Degnes, Kristin F; Heggeset, Tonje M B; Balzer, Simone; Flickinger, Michael C; Valla, Svein; Ellingsen, Trond E

    2009-02-01

    Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V(max) values (between 47 and 58 micromol/min/mg protein) and K(m) values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC(50)], 0.1 mM) and by l-lysine (IC(50), 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC(50), 4 mM) and by l-lysine (IC(50), 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.

  15. The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal.

    PubMed

    Sunil, Meeta; Hariharan, Arun K; Nayak, Soumya; Gupta, Saurabh; Nambisan, Suran R; Gupta, Ravi P; Panda, Binay; Choudhary, Bibha; Srinivasan, Subhashini

    2014-12-01

    Grain amaranths, edible C4 dicots, produce pseudo-cereals high in lysine. Lysine being one of the most limiting essential amino acids in cereals and C4 photosynthesis being one of the most sought-after phenotypes in protein-rich legume crops, the genome of one of the grain amaranths is likely to play a critical role in crop research. We have sequenced the genome and transcriptome of Amaranthus hypochondriacus, a diploid (2n = 32) belonging to the order Caryophyllales with an estimated genome size of 466 Mb. Of the 411 linkage single-nucleotide polymorphisms (SNPs) reported for grain amaranths, 355 SNPs (86%) are represented in the scaffolds and 74% of the 8.6 billion bases of the sequenced transcriptome map to the genomic scaffolds. The genome of A. hypochondriacus, codes for at least 24,829 proteins, shares the paleohexaploidy event with species under the superorders Rosids and Asterids, harbours 1 SNP in 1,000 bases, and contains 13.76% of repeat elements. Annotation of all the genes in the lysine biosynthetic pathway using comparative genomics and expression analysis offers insights into the high-lysine phenotype. As the first grain species under Caryophyllales and the first C4 dicot genome reported, the work presented here will be beneficial in improving crops and in expanding our understanding of angiosperm evolution.

  16. The Draft Genome and Transcriptome of Amaranthus hypochondriacus: A C4 Dicot Producing High-Lysine Edible Pseudo-Cereal

    PubMed Central

    Sunil, Meeta; Hariharan, Arun K.; Nayak, Soumya; Gupta, Saurabh; Nambisan, Suran R.; Gupta, Ravi P.; Panda, Binay; Choudhary, Bibha; Srinivasan, Subhashini

    2014-01-01

    Grain amaranths, edible C4 dicots, produce pseudo-cereals high in lysine. Lysine being one of the most limiting essential amino acids in cereals and C4 photosynthesis being one of the most sought-after phenotypes in protein-rich legume crops, the genome of one of the grain amaranths is likely to play a critical role in crop research. We have sequenced the genome and transcriptome of Amaranthus hypochondriacus, a diploid (2n = 32) belonging to the order Caryophyllales with an estimated genome size of 466 Mb. Of the 411 linkage single-nucleotide polymorphisms (SNPs) reported for grain amaranths, 355 SNPs (86%) are represented in the scaffolds and 74% of the 8.6 billion bases of the sequenced transcriptome map to the genomic scaffolds. The genome of A. hypochondriacus, codes for at least 24,829 proteins, shares the paleohexaploidy event with species under the superorders Rosids and Asterids, harbours 1 SNP in 1,000 bases, and contains 13.76% of repeat elements. Annotation of all the genes in the lysine biosynthetic pathway using comparative genomics and expression analysis offers insights into the high-lysine phenotype. As the first grain species under Caryophyllales and the first C4 dicot genome reported, the work presented here will be beneficial in improving crops and in expanding our understanding of angiosperm evolution. PMID:25071079

  17. Genome Sequence of Thermotolerant Bacillus methanolicus: Features and Regulation Related to Methylotrophy and Production of l-Lysine and l-Glutamate from Methanol

    PubMed Central

    Heggeset, Tonje M. B.; Krog, Anne; Balzer, Simone; Wentzel, Alexander; Ellingsen, Trond E.

    2012-01-01

    Bacillus methanolicus can utilize methanol as its sole carbon and energy source, and the scientific interest in this thermotolerant bacterium has focused largely on exploring its potential as a biocatalyst for the conversion of methanol into l-lysine and l-glutamate. We present here the genome sequences of the important B. methanolicus model strain MGA3 (ATCC 53907) and the alternative wild-type strain PB1 (NCIMB13113). The physiological diversity of these two strains was demonstrated by a comparative fed-batch methanol cultivation displaying highly different methanol consumption and respiration profiles, as well as major differences in their l-glutamate production levels (406 mmol liter−1 and 11 mmol liter−1, respectively). Both genomes are small (ca 3.4 Mbp) compared to those of other related bacilli, and MGA3 has two plasmids (pBM19 and pBM69), while PB1 has only one (pBM20). In particular, we focus here on genes representing biochemical pathways for methanol oxidation and concomitant formaldehyde assimilation and dissimilation, the important phosphoenol pyruvate/pyruvate anaplerotic node, the tricarboxylic acid cycle including the glyoxylate pathway, and the biosynthetic pathways for l-lysine and l-glutamate. Several unique findings were made, including the discovery of three different methanol dehydrogenase genes in each of the two B. methanolicus strains, and the genomic analyses were accompanied by gene expression studies. Our results provide new insight into a number of peculiar physiological and metabolic traits of B. methanolicus and open up possibilities for system-level metabolic engineering of this bacterium for the production of amino acids and other useful compounds from methanol. PMID:22610424

  18. Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.

    PubMed

    Heggeset, Tonje M B; Krog, Anne; Balzer, Simone; Wentzel, Alexander; Ellingsen, Trond E; Brautaset, Trygve

    2012-08-01

    Bacillus methanolicus can utilize methanol as its sole carbon and energy source, and the scientific interest in this thermotolerant bacterium has focused largely on exploring its potential as a biocatalyst for the conversion of methanol into L-lysine and L-glutamate. We present here the genome sequences of the important B. methanolicus model strain MGA3 (ATCC 53907) and the alternative wild-type strain PB1 (NCIMB13113). The physiological diversity of these two strains was demonstrated by a comparative fed-batch methanol cultivation displaying highly different methanol consumption and respiration profiles, as well as major differences in their L-glutamate production levels (406 mmol liter(-1) and 11 mmol liter(-1), respectively). Both genomes are small (ca 3.4 Mbp) compared to those of other related bacilli, and MGA3 has two plasmids (pBM19 and pBM69), while PB1 has only one (pBM20). In particular, we focus here on genes representing biochemical pathways for methanol oxidation and concomitant formaldehyde assimilation and dissimilation, the important phosphoenol pyruvate/pyruvate anaplerotic node, the tricarboxylic acid cycle including the glyoxylate pathway, and the biosynthetic pathways for L-lysine and L-glutamate. Several unique findings were made, including the discovery of three different methanol dehydrogenase genes in each of the two B. methanolicus strains, and the genomic analyses were accompanied by gene expression studies. Our results provide new insight into a number of peculiar physiological and metabolic traits of B. methanolicus and open up possibilities for system-level metabolic engineering of this bacterium for the production of amino acids and other useful compounds from methanol.

  19. Terrestrial evolution of polymerization of amino acids - Heat to ATP

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.

    1981-01-01

    Sets of amino acids containing sufficient trifunctional monomer are thermally polymerized at temperatures such as 65 deg; the amino acids order themselves. Various polymers have diverse catalytic activities. The polymers aggregate, in aqueous solution, to cell-like structures having those activities plus emergent properties, e.g. proliferatability. Polyamino acids containing sufficient lysine catalyze conversion of free amino acids, by ATP, to small peptides and a high molecular weight fraction. The lysine-rich proteinoid is active in solution, within suspensions of cell-like particles, or in other particles composed of lysine-rich proteinoid and homopolyribonucleotide. Selectivities are observed. An archaic polyamino acid prelude to coded protein synthesis is indicated.

  20. Neither arginine nor histidine can carry out the function of lysine-295 in the ATP-binding site of p60src.

    PubMed Central

    Kamps, M P; Sefton, B M

    1986-01-01

    All 15 protein kinases whose amino acid sequence is known contain a lysine residue at a position homologous to that of lysine-295 in p60src, the transforming protein of Rous sarcoma virus. The ATP analog p-fluorosulfonyl 5'-benzoyl adenosine inactivates both p60src and the catalytic subunit of the cyclic AMP-dependent protein kinase by modification of this lysine. We used oligonucleotide-directed mutagenesis to examine the possible functions of this residue. Lysine-295 in p60src was replaced with a glutamic acid, an arginine, or a histidine residue, and mutant p60src proteins were characterized in chicken cells infected by mutant viruses. None of these three mutant p60src proteins had tyrosine protein kinase activity in vitro, and none induced morphological transformation of infected cells. Since neither a histidine nor an arginine residue can replace the function of lysine-295, we suggest that it carries out the specialized function of proton transfer in the phosphotransferase reaction. All three mutant viruses underwent reversion to wild type during passage in tissue culture. Because the rate with which this occurred differed significantly among the mutants, reversion appears to have resulted from errors in transcription, rather than from recombination with the cellular src gene. Images PMID:2430174

  1. Determination of useful barley selections in an improvement program for increased lysine content by larvae of Tenebrio molitor L.

    PubMed

    Davis, G R; Sosulski, F W

    1977-12-01

    Larvae of the yellow mealworm, Tenebrio molitor L., Gembloux strain, race F, were reared for 4 weeks at 27 +/- 0.25 degrees C and 65 +/- 5% relative humidity. They were fed on each of 22 cultivars of barley, at the protein level occurring in harvested seed and at a protein level of 10% of dietary protein. Growth and body composition of the larvae were correlated positively and significantly with the concentrations of basic amino acids in the barleys and negatively and significantly with the concentrations of leucine. The percentage of crude protein in larval tissues can be used as a measure of available lysine in barley cultivars, and gains in fresh weight of larvae as indices of arginine concentrations. Differences were evident between the biological and chemical estimations of these amino acids. Several of the Saskatoon barley selections, derived from crosses with Hiproly, were equal to Hiproly or Risø varieties in the amounts of lysine available to the larvae.

  2. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: An analysis of data from the National Health and Nutrition Examination Survey indicated that in older adults exposed to folic acid fortification, the combination of low serum vitamin B-12 and elevated folate is associated with higher concentrations of homocysteine and methylmalonic acid ...

  3. Antifibrinolytics (lysine analogues) for the prevention of bleeding in people with haematological disorders

    PubMed Central

    Estcourt, Lise J; Desborough, Michael; Brunskill, Susan J; Doree, Carolyn; Hopewell, Sally; Murphy, Michael F; Stanworth, Simon J

    2016-01-01

    Background People with haematological disorders are frequently at risk of severe or life-threatening bleeding as a result of thrombocytopenia (reduced platelet count). This is despite the routine use of prophylactic platelet transfusions to prevent bleeding once the platelet count falls below a certain threshold. Platelet transfusions are not without risk and adverse events may be life-threatening. A possible adjunct to prophylactic platelet transfusions is the use of antifibrinolytics, specifically the lysine analogues tranexamic acid (TXA) and epsilon aminocaproic acid (EACA). This is an update of a Cochrane review first published in 2013. Objectives To determine the efficacy and safety of antifibrinolytics (lysine analogues) in preventing bleeding in people with haematological disorders. Search methods We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (The Cochrane Library 2016, Issue 3), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950) and ongoing trial databases to 07 March 2016. Selection criteria We included RCTs involving participants with haematological disorders, who would routinely require prophylactic platelet transfusions to prevent bleeding. We only included trials involving the use of the lysine analogues TXA and EACA. Data collection and analysis Two review authors independently screened all electronically-derived citations and abstracts of papers, identified by the review search strategy, for relevancy. Two review authors independently assessed the full text of all potentially relevant trials for eligibility, completed the data extraction and assessed the studies for risk of bias using The Cochrane Collaboration’s ‘Risk of bias’ tool. We requested missing data from one author but the data were no longer available. The outcomes are reported narratively: we performed no meta-analyses because of the heterogeneity of the available data

  4. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity

    PubMed Central

    Sartor, Gregory C.; Powell, Samuel K.; Brothers, Shaun P.

    2015-01-01

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic “reader” proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the “readout” of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and

  5. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    SciTech Connect

    Crosby, Heidi A; Pelletier, Dale A; Hurst, Gregory {Greg} B; Escalante-Semerena, Jorge C

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  6. Lysine Restriction and Pyridoxal Phosphate Administration in a NADK2 Patient.

    PubMed

    Tort, Frederic; Ugarteburu, Olatz; Torres, Maria Angeles; García-Villoria, Judit; Girós, Marisa; Ruiz, Angeles; Ribes, Antonia

    2016-11-01

    We report the case of a 10-year-old Spanish girl with mutations in NADK2 Prenatal central nervous system abnormalities showed ventriculomegaly, colpocephaly, and hypoplasia of the corpus callosum. At birth, axial hypotonia, uncoordinated movements, microcephaly, and generalized cerebellar atrophy were detected. Metabolic investigations revealed high lysine, lactate, and pipecolic acid levels in blood and cerebrospinal fluid. Pyruvate carboxylase and pyruvate dehydrogenase activity in fibroblasts were normal. Beginning at birth she received biotin, thiamine, and carnitine supplementation. A lysine-restricted diet was started when she was 1 month old. Because pipecolic acid was high, pyridoxine was added to treatment. At 3 years old, astatic myoclonic epilepsy appeared, with no response to levetiracetam. We switched pyridoxine to pyridoxal phosphate, with electroclinical improvement. Because the activity of mitochondrial respiratory chain complexes III and IV was slightly low in muscle, other cofactors such as ubidecarenone, idebenone, vitamin E, and creatine were added to the treatment. At 8 years old, plasma acylcarnitine testing was performed, and high levels of 2-trans, 4-cis-decadienoylcarnitine were found. Whole exome sequencing identified a homozygous splice site mutation in NADK2 (c.956+6T>C; p.Trp319Cysfs*21). This substitution generates exon skipping, leading to a truncated protein. In fact, NADK2 messenger RNA and the corresponding protein were almost absent. Now, at 10 years of age she presents with ataxia and incoordination. She has oromotor dysphasia but is able to understand fluid language and is a very friendly girl. We hypothesize that the patient's clinical improvement could be due to her lysine-restricted diet together with cofactors and pyridoxal phosphate administration.

  7. DNA damage during glycation of lysine by methylglyoxal: assessment of vitamins in preventing damage.

    PubMed

    Suji, G; Sivakami, S

    2007-11-01

    Amino acids react with methylglyoxal to form advanced glycation end products. This reaction is known to produce free radicals. In this study, cleavage to plasmid DNA was induced by the glycation of lysine with methylglyoxal in the presence of iron(III). This system was found to produce superoxide as well as hydroxyl radicals. The abilities of various vitamins to prevent damage to plasmid DNA were evaluated. Pyridoxal-5-phosphate showed maximum protection, while pyridoxamine showed no protection. The protective abilities could be directly correlated to inhibition of production of hydroxyl and superoxide radicals. Pyridoxal-5-phosphate exhibited low radical scavenging ability as evaluated by its TEAC, but showed maximum protection probably by interfering in free radical production. Pyridoxamine did not inhibit free radical production. Thiamine and thiamine pyrophosphate, both showed protective effects albeit to different extents. Tetrahydrofolic acid showed better antioxidant activity than folic acid but was found to damage DNA by itself probably by superoxide generation.

  8. A study regarding friction behaviour of lysine and isoleucine modified epoxy matrix

    NASA Astrophysics Data System (ADS)

    Bălan, I.; Bosoancă, R.; Căpăţină, A.; Graur, I.; Bria, V.; Ungureanu, C.

    2017-02-01

    The aim of this study is to point out the effect of L-lysine and L-isoleucine used as modifying agents for epoxy resins. The amino acids are largely used to turn the usual polymers in bio-compatible materials but they effect also other significant proprieties of formed materials. The general study developed in Polymer Composite Laboratory is focused on analysis of 14 amino acids used as modifying agents but the two above mentioned showed a special behaviour namely they re-crystalized during the polymerization of the matrix. The coefficient of friction was obtained through the calculation of friction torque measured with a loaded cell sensor. As far as we know, there is no report on the friction proprieties of amino acids modified epoxy resins.

  9. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.

    PubMed

    Nogueira, Daniele Rubert; Mitjans, Montserrat; Busquets, M Antonia; Pérez, Lourdes; Vinardell, M Pilar

    2012-08-14

    Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.

  10. Histone lysine crotonylation during acute kidney injury in mice

    PubMed Central

    Ruiz-Andres, Olga; Sanchez-Niño, Maria Dolores; Cannata-Ortiz, Pablo; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belen

    2016-01-01

    ABSTRACT Acute kidney injury (AKI) is a potentially lethal condition for which no therapy is available beyond replacement of renal function. Post-translational histone modifications modulate gene expression and kidney injury. Histone crotonylation is a recently described post-translational modification. We hypothesized that histone crotonylation might modulate kidney injury. Histone crotonylation was studied in cultured murine proximal tubular cells and in kidneys from mice with AKI induced by folic acid or cisplatin. Histone lysine crotonylation was observed in tubular cells from healthy murine and human kidney tissue. Kidney tissue histone crotonylation increased during AKI. This was reproduced by exposure to the protein TWEAK in cultured tubular cells. Specifically, ChIP-seq revealed enrichment of histone crotonylation at the genes encoding the mitochondrial biogenesis regulator PGC-1α and the sirtuin-3 decrotonylase in both TWEAK-stimulated tubular cells and in AKI kidney tissue. To assess the role of crotonylation in kidney injury, crotonate was used to increase histone crotonylation in cultured tubular cells or in the kidneys in vivo. Crotonate increased the expression of PGC-1α and sirtuin-3, and decreased CCL2 expression in cultured tubular cells and healthy kidneys. Systemic crotonate administration protected from experimental AKI, preventing the decrease in renal function and in kidney PGC-1α and sirtuin-3 levels as well as the increase in CCL2 expression. For the first time, we have identified factors such as cell stress and crotonate availability that increase histone crotonylation in vivo. Overall, increasing histone crotonylation might have a beneficial effect on AKI. This is the first observation of the in vivo potential of the therapeutic manipulation of histone crotonylation in a disease state. PMID:27125278

  11. Charge Stabilization and Entropy Reduction of Central Lysine Residues in

    SciTech Connect

    St-Jean, M.; Blonski, C; Sygusch, J

    2009-01-01

    Fructose-1,6-bisphosphate muscle aldolase is an essential glycolytic enzyme that catalyzes reversible carbon-carbon bond formation by cleaving fructose 1,6-bisphosphate to yield dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde phosphate. To elucidate the mechanistic role of conserved amino acid Asp-33, Asn-33 and Ser-33 mutants were examined by kinetic and structural analyses. The mutations significantly compromised enzymatic activity and carbanion oxidation in presence of DHAP. Detailed structural analysis demonstrated that, like native crystals, Asp-33 mutant crystals, soaked in DHAP solutions, trapped Schiff base-derived intermediates covalently attached to Lys-229. The mutant structures, however, exhibited an abridged conformational change with the helical region (34-65) flanking the active site as well as pK{sub a} reductions and increased side chain disorder by central lysine residues, Lys-107 and Lys-146. These changes directly affect their interaction with the C-terminal Tyr-363, consistent with the absence of active site binding by the C-terminal region in the presence of phosphate. Lys-146 pKa reduction and side chain disorder would further compromise charge stabilization during C-C bond cleavage and proton transfer during enamine formation. These mechanistic impediments explain diminished catalytic activity and a reduced level of carbanion oxidation and are consistent with rate-determining proton transfer observed in the Asn-33 mutant. Asp-33 reduces the entropic cost and augments the enthalpic gain during catalysis by rigidifying Lys-107 and Lys-146, stabilizing their protonated forms, and promoting a conformational change triggered by substrate or obligate product binding, which lower kinetic barriers in C-C bond cleavage and Schiff base-enamine interconversion.

  12. Meiofaunal Richness in Highly Acidic Hot Springs in Unzen-Amakusa National Park, Japan, Including the First Rediscovery Attempt for Mesotardigrada.

    PubMed

    Suzuki, Atsushi C; Kagoshima, Hiroshi; Chilton, Glen; Grothman, Gary T; Johansson, Carl; Tsujimoto, Megumu

    2017-02-01

    Extreme environments sometimes support surprisingly high meiofaunal diversity. We sampled runoff from the acidic hot springs of Unzen, Japan. This is the type locality of Thermozodium esakii Rahm, 1937, the only tardigrade in the class Mesotardigrada, which remains contentious in the absence of corroboration or supporting specimens. Our sampling revealed at least three species of arthropods, four rotifers, and five nematodes living in the hot (ca. 40°C) and acidic (ca. pH 2.5) water, but no tardigrades.

  13. Design of Highly Stabilized β-Hairpin Peptides through Cation-π interactions of Lysine and N-Methyl Lysine with an Aromatic Pocket‡

    PubMed Central

    Riemen, Alexander J.; Waters, Marcey L.

    2009-01-01

    Two tryptophan residues were incorporated on one face of a β-hairpin peptide to form an aromatic pocket that interacts with a lysine or N-methylated lysine via cation-π interactions. The two tryptophan residues were found to pack against the lysine side chain forming an aromatic pocket similar to those observed in trimethylated lysine receptor proteins. Thermal analysis of methylated lysine variant hairpin peptides revealed an increase in thermal stability as the degree of methylation was increased resulting in the most thermally stable β-hairpin reported to date. PMID:19191524

  14. L-lysine effectively blocks renal uptake of 125I- or 99mTc-labeled anti-Tac disulfide-stabilized Fv fragment.

    PubMed

    Kobayashi, H; Yoo, T M; Kim, I S; Kim, M K; Le, N; Webber, K O; Pastan, I; Paik, C H; Eckelman, W C; Carrasquillo, J A

    1996-08-15

    In this study, we investigated the ability of L-lysine to block renal uptake of 125I- or 99mTc- labeled Fv fragments. Anti-Tac disulfide-stabilized Fv fragment (dsFv) was derived from a murine monoclonal antibody that recognizes the alpha subunit of the interleukin-2 receptor (IL-2R alpha). The 125I- or 99mTc-labeled dsFv was injected i.v. into non-tumor-bearing nude mice or into nude mice bearing SP2/Tac (IL-2R alpha positive) and SP2/0 (IL-2R alpha negative) tumor. We then evaluated the pharmacokinetics of L-[3H]lysine and the effect of L-lysine dose, timing of administration, and route of delivery on catabolism and biodistribution of i.v. dsFv. Peak renal uptake of i.v. or i.p. injected L-[3H]lysine occurred within 5 and 15 min, respectively. The kidney uptake of L-lysine exhibited a dose-response effect. When L-lysine was coinfused or injected shortly before dsFv, renal uptake of dsFv was blocked to < 5% of the control, but longer intervals were less effective. Aminosyn II and Travasol 10% (parenteral amino acid solutions) also blocked renal uptake of radiolabeled dsFv. Administration of L-lysine did not alter the blood kinetics and slightly increased the tumor uptake of dsFv, but it did prevent catabolism in the kidney and resulted in lower amounts of catabolites in the serum and urine. In conclusion, we have shown that a blocking dose of lysine, injected with or immediately before the injection of radiolabeled dsFv, is most effective in blocking the renal uptake of dsFv. This is consistent with the rapid uptake of L-[3H]lysine by the kidney and is further substantiated by the relative ineffectiveness of lysine injected immediately after the radiolabeled dsFv injection.

  15. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies.

  16. Seed-specific expression of a lysine-rich protein gene, GhLRP, from cotton significantly increases the lysine content in maize seeds.

    PubMed

    Yue, Jing; Li, Cong; Zhao, Qian; Zhu, Dengyun; Yu, Jingjuan

    2014-03-27

    Maize seed storage proteins are a major source of human and livestock consumption. However, these proteins have poor nutritional value, because they are deficient in lysine and tryptophan. Much research has been done to elevate the lysine content by reducing zein content or regulating the activities of key enzymes in lysine metabolism. Using the naturally lysine-rich protein genes, sb401 and SBgLR, from potato, we previously increased the lysine and protein contents of maize seeds. Here, we examined another natural lysine-rich protein gene, GhLRP, from cotton, which increased the lysine content of transgenic maize seeds at levels varying from 16.2% to 65.0% relative to the wild-type. The total protein content was not distinctly different, except in the six transgenic lines. The lipid and starch levels did not differ substantially in Gossypium hirsutum L. lysine-rich protein (GhLRP) transgenic kernels when compared to wild-type. The agronomic characteristics of all the transgenic maize were also normal. GhLRP is a high-lysine protein candidate gene for increasing the lysine content of maize. This study provided a valuable model system for improving maize lysine content.

  17. A one-carbon modification of protein lysine associated with elevated oxidative stress in human substantia nigra.

    PubMed

    Floor, Erik; Maples, Anne M; Rankin, Carolyn A; Yaganti, Vamsee M; Shank, Sylvan S; Nichols, Grant S; O'Laughlin, Michael; Galeva, Nadezhda A; Williams, Todd D

    2006-04-01

    We describe for the first time a naturally occurring lysine modification that is converted to methyllysine by reduction with sodium borohydride. This modification is approximately 1.7 times as abundant in soluble proteins from human substantia nigra pars compacta as in proteins from other brain regions, possibly as a result of elevated oxidative stress in the nigra. Proteins from cultured PC12 cells exposed to oxidative stress conditions also contain elevated levels of this lysine modification. The abundance of the naturally occurring modification is roughly 0.08 nmoles/mg protein in either unstressed brain or PC12 cells. Modification levels remain stable in isolated proteins incubated for 2 h at 37 degrees C in pH 7 buffer. We propose that the endogenous modification is the lysine Schiff base, epsilon-N-methylenelysine, and that lysine modifications may result from a reaction with formaldehyde in vivo. Rat brain contains approximately 60 nmoles/g wet weight of formaldehyde, which probably includes both free and reversibly bound forms. Adding approximately 35 microm HCHO to PC12 cell growth medium introduces methylenelysine modifications in cell proteins and impairs cell viability. The existence of this post-translational modification suggests new mechanisms of oxidative stress that may contribute to tissue degeneration, including loss of nigral dopamine neurons during normal aging and in Parkinson's disease.

  18. Reduction of dietary lysine increases free glutamate content in chicken meat and improves its taste.

    PubMed

    Watanabe, Genya; Kobayashi, Hiroyuki; Shibata, Masahiro; Kubota, Masatoshi; Kadowaki, Motoni; Fujimura, Shinobu

    2017-02-01

    Taste is a crucial factor of meat quality, and amino acids are important taste-active components in meat. Here, the effects of dietary lysine (Lys) content on taste-active components in meat, especially free glutamate (Glu), were investigated. Twenty-eight-day-old broilers (Gallus gallus) were fed diets with graded Lys content of 90% or 100% of the recommended Lys requirement, (according to the National Research Council, ) for 10 days. Free amino acid content in meat and sensory scores of meat soup were estimated. Free Glu content, the main taste-active component of meat, was significantly increased by a reduction of dietary Lys. Compared with the Lys 100% group (control), free Glu concentrations of meat were increased by 35.7% in the Lys 90% group (P < 0.05). In addition, free glycine, valine, isoleucine, leucine, histidine and threonine concentrations of meat were significantly increased in the Lys 90% group (P < 0.05). Sensory evaluation of meat soup made from the Lys 100% and 90% groups indicated different meat tastes. Sensory scores of taste intensity, umami and kokumi tastes were significantly higher in the Lys 90% group. These results suggest that a reduction of dietary lysine increased free glutamate content in meat and improved its taste.

  19. pH-Sensitive surfactants from lysine: assessment of their cytotoxicity and environmental behavior.

    PubMed

    Colomer, Aurora; Pinazo, Aurora; García, Maria Teresa; Mitjans, Montserrat; Vinardell, M Pilar; Infante, Maria Rosa; Martínez, Verónica; Pérez, Lourdes

    2012-04-10

    The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna . All surfactants yielded EC(50) values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO(2) headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as "readily biodegradable compounds".

  20. Drug Discovery Toward Antagonists of Methyl-Lysine Binding Proteins

    PubMed Central

    Herold, J. Martin; Ingerman, Lindsey A; Gao, Cen; Frye, Stephen V

    2011-01-01

    The recognition of methyl-lysine and -arginine residues on both histone and other proteins by specific “reader” elements is important for chromatin regulation, gene expression, and control of cell-cycle progression. Recently the crucial role of these reader proteins in cancer development and dedifferentiation has emerged, owing to the increased interest among the scientific community. The methyl-lysine and -arginine readers are a large and very diverse set of effector proteins and targeting them with small molecule probes in drug discovery will inevitably require a detailed understanding of their structural biology and mechanism of binding. In the following review, the critical elements of methyl-lysine and -arginine recognition will be summarized with respect to each protein family and initial results in assay development, probe design, and drug discovery will be highlighted. PMID:22145013

  1. Folding domains and intramolecular ionic interactions of lysine residues in glyceraldehyde 3-phosphate dehydrogenase.

    PubMed Central

    Lambert, J M; Perham, R N

    1977-01-01

    1. Treatment with methyl acetimidate was used to probe the topography of several tetrameric glyceraldehyde 3-phosphate dehydrogenases, in particular the holoenzymes from rabbit muscle and Bacillus stearothermophilus. During the course of the reaction with the rabbit muscle enzyme, the number of amino groups fell rapidly from the starting value of 27 per subunit to a value of approx. five per subunit. This number could be lowered further to values between one and two per subunit by a second treatment with methyl acetimidate. The enzyme remained tetrameric throughout and retained 50% of its initial catalytic activity at the end of the experiment. 2. Use of methyl [1-14C]acetimidate and small-scale methods of protein chemistry showed that only one amino group per subunit, that of lysine-306, was completely unavailable for reaction with imido ester in the native enzyme. This results is consistent with the structure of the highly homologous glyceraldehyde 3-phosphate dehydrogenase of lobster muscle deduced from X-ray-crystallographic analysis, since lysine-306 can be seen to form an intrachain ion-pair with aspartic acid-241 in the hydrophobic environment of a subunit-subunit interface. 3. Several other amino groups in the rabbit muscle enzyme that reacted only slowly with the reagent were also identified chemically. These were found to be located entirely in the C-terminal half of the polypeptides chain, which comprises a folding domain associated with catalytic activity and subunit contact in the three-dimensional structure. Slow reaction of these 'surface' amino groups with methyl acetimidate is attributed to intramolecular ionic interactions of the amino groups with neighbouring side-chain carboxyl groups, a conclusion that is compatible with the reported three-dimensional structure and with the dependence of the reaction of ionic stength. 4. Very similar results were obtained with the enzymes from B. stearothermophilus and from ox muscle and ox liver, supporting

  2. Histone lysine methyltransferases as anti-cancer targets for drug discovery

    PubMed Central

    Liu, Qing; Wang, Ming-wei

    2016-01-01

    Post-translational epigenetic modification of histones is controlled by a number of histone-modifying enzymes. Such modification regulates the accessibility of DNA and the subsequent expression or silencing of a gene. Human histone methyltransferases (HMTs)constitute a large family that includes histone lysine methyltransferases (HKMTs) and histone/protein arginine methyltransferases (PRMTs). There is increasing evidence showing a correlation between HKMTs and cancer pathogenesis. Here, we present an overview of representative HKMTs, including their biological and biochemical properties as well as the profiles of small molecule inhibitors for a comprehensive understanding of HKMTs in drug discovery. PMID:27397541

  3. Lysine-iron agar in the detection of Arizona cultures.

    PubMed

    EDWARDS, P R; FIFE, M A

    1961-11-01

    A lysine-iron agar is described and recommended for the detection of Arizona strains which ferment lactose rapidly. Black colonies which appear on bismuth sulfite agar should be transferred to the medium. Salmonellae and Arizona cultures produce a distinctive reaction since they are the only recognized groups of enteric bacteria which regularly produce lysine decarboxylase rapidly and form large amounts of hydrogen sulfide. Use of the medium is particularly recommended in the examination of specimens from enteric infections in which shigellae and salmonellae are not detected.

  4. Improving protein content and quality by over-expressing artificially synthetic fusion proteins with high lysine and threonine constituent in rice plants

    PubMed Central

    Jiang, Shu-Ye; Ma, Ali; Xie, Lifen; Ramachandran, Srinivasan

    2016-01-01

    Rice grains are rich in starch but low in protein with very low level of both lysine and threonine. Thus, it is important to further improve protein quality and quantity, especially to increase lysine and threonine content in rice grains. We artificially synthesized two new genes by fusing endogenous rice genes with lysine (K)/threonine (T) motif (TKTKK) coding sequences. They were designated as TKTKK1 and TKTKK2 and their encoded proteins consist of 73.1% and 83.5% of lysine/threonine, respectively. These two genes were under the control of 35S promoter and were independently introduced into the rice genome to generate transgenic plants. Our data showed that overexpression of TKTKK1 generated stable proteins with expected molecular weight and the transgenic rice seeds significantly increased lysine, threonine, total amino acids and crude protein content by 33.87%, 21.21%, 19.43% and 20.45%, respectively when compared with wild type control; significant improvement was also observed in transgenic rice seeds overexpressing TKTKK2. However, limited improvement in protein quality and quantity was observed in transgenic seeds carrying tandom array of these two new genes. Our data provide the basis and alternative strategy on further improving protein quality and quantity in other crops or vegetable plants by synthetic biology. PMID:27677708

  5. Temporal trends of perfluoroalkane sulfonic acids and their sulfonamide-based precursors in herring from the Swedish west coast 1991-2011 including isomer-specific considerations.

    PubMed

    Ullah, Shahid; Huber, Sandra; Bignert, Anders; Berger, Urs

    2014-04-01

    A method was developed for simultaneous analysis of perfluoroalkane sulfonic acids (PFSAs) and their sulfonamide-based precursors (perfluoroalkane sulfonamidoacetic acids (FASAAs), sulfonamides (FASAs), and sulfonamidoethanols (FASEs)) in fish muscle. Extraction was performed with acetonitrile followed by a clean-up and fractionation step and instrumental analysis by UPLC/MS/MS and GC/MS. Time trends of PFSAs and their precursors in herring muscle samples originating from the Kattegat at the west coast of Sweden were investigated covering the years 1991-2011. The following analytes were detected, all with decreasing or unchanged trends between 1991 and 2011: Perfluorobutane sulfonic acid (PFBS, below the method detection limit (acid (PFHxS, 9-38pg/g), perfluorooctane sulfonic acid (PFOS, 240-930pg/g), perfluorodecane sulfonic acid (PFDS, acid (MeFOSAA and EtFOSAA, 2-39 and 2-31pg/g, respectively) and perfluorooctane sulfonamide (FOSA, 78-920pg/g). The highest concentrations were found for PFOS and FOSA around the turn of the century. Shorter disappearance half-lives were observed for precursors compared to PFSAs. Assuming that these trend differences are representative for fish consumed by the general Swedish population, this observation suggests that the relative contribution of precursors to total human exposure to PFOS via fish intake has decreased in Sweden over the study period. PFOS precursors in fish may have constituted a significant indirect exposure pathway for PFOS in the 1990s. Isomer-specific analysis of PFOS and FOSA revealed <10% relative contributions of branched isomers to total PFOS and total FOSA. Furthermore, the percentage branched isomers decreased over time for both compounds. These findings are contrary to patterns and temporal trends of PFOS isomers commonly found in human serum. In combination with literature data on isomer patterns

  6. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens.

    PubMed

    Yang, Zonglin; Peng, Hanyong; Lu, Xiufen; Liu, Qingqing; Huang, Rongfu; Hu, Bin; Kachanoski, Gary; Zuidhof, Martin J; Le, X Chris

    2016-07-05

    The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.

  7. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    SciTech Connect

    Carnevale, V.; Raugei, S.

    2009-12-14

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  8. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation.

    PubMed

    Carnevale, V; Raugei, S

    2009-12-14

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  9. Physicochemical compatibility between ketoprofen lysine salt injections (Artrosilene Fiale) and pharmaceutical products frequently used for combined therapy.

    PubMed

    Anacardio, R; Perilli, O; Bartolini, S; Gentile, M M; Mazzeo, P; Carlucci, G

    2002-01-01

    Ketoprofen lysine salt (Artrosilene Fiale), a non steroidal anti-inflammatory agent, is frequently administered in association regimen with other drugs, such as steroidal anti-inflammatory, muscle relaxant, local anaesthetic and anti-spastic drugs or vitamins. The aim of this study was to investigate the physicochemical compatibility between ketoprofen lysine salt (Artrosilene Fiale) and other injectable drugs frequently used in association. Physicochemical properties of ketoprofen lysine salt mixtures with different drugs, including colour, clarity, pH and drug content were observed or measured before and after (up to 3 hours) mixing at room temperature and under light protection. Results show that the association of Artrosilene Fiale with different drugs and vitamins does not cause, up to three hours f rom mixing, any significant variation in thephysicochemical parameters mentioned above, except for the association with Benexor B12 where a persistent phase separation occurs. In conclusion the results obtained demonstrated the physicochemical compatibility of Ketoprofen lysine salt (Artrosilene Fiale) with diverse drugs and vitamins, with a single exception.

  10. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.

    PubMed

    Peters-Wendisch, P; Stansen, K C; Götker, S; Wendisch, V F

    2012-03-01

    Corynebacterium glutamicum is a biotin auxotrophic Gram-positive bacterium that is used for large-scale production of amino acids, especially of L-glutamate and L-lysine. It is known that biotin limitation triggers L-glutamate production and that L-lysine production can be increased by enhancing the activity of pyruvate carboxylase, one of two biotin-dependent proteins of C. glutamicum. The gene cg0814 (accession number YP_225000) has been annotated to code for putative biotin protein ligase BirA, but the protein has not yet been characterized. A discontinuous enzyme assay of biotin protein ligase activity was established using a 105aa peptide corresponding to the carboxyterminus of the biotin carboxylase/biotin carboxyl carrier protein subunit AccBC of the acetyl CoA carboxylase from C. glutamicum as acceptor substrate. Biotinylation of this biotin acceptor peptide was revealed with crude extracts of a strain overexpressing the birA gene and was shown to be ATP dependent. Thus, birA from C. glutamicum codes for a functional biotin protein ligase (EC 6.3.4.15). The gene birA from C. glutamicum was overexpressed and the transcriptome was compared with the control strain revealing no significant gene expression changes of the bio-genes. However, biotin protein ligase overproduction increased the level of the biotin-containing protein pyruvate carboxylase and entailed a significant growth advantage in glucose minimal medium. Moreover, birA overexpression resulted in a twofold higher L-lysine yield on glucose as compared with the control strain.

  11. [Cloning, prokaryotic expression and characterization of lysine decarboxylase gene from Huperzia serrata].

    PubMed

    Di, Ci; Li, Jing; Tang, Yuntao; Peng, Qingzhong

    2014-08-01

    Huperzine A is a promising drug to treat Alzheimer's disease (AD). To date, its biosynthetic pathway is still unknown. Lysine decarboxylase (LDC) has been proposed to catalyze the first-step of the biosynthesis of huperzine A. To identify and characterize LDCs from Huperzia serrata, we isolated two LDC fragments (LDC1 and LDC2) from leaves of H. serrata by RT-PCR and then cloned them into pMD 19-T vector. Sequence analysis showed that LDC1 and LDC2 genes shared 95.3% identity and encoded the protein of 212 and 202 amino acid residues respectively. Thus, we ligated LDC genes into pET-32a(+) to obtain recombinant expressing vectors pET-32a(+)/LDC1 and pET-32a(+)/LDC2 respectively. We further introduced two expression vectors into Escherichia coli BL21(DE3) and cultured positive colonies of E. coli in liquid LB medium. After inducing for 4 hours with 260 μg/mL IPTG at 30 degrees C, soluble recombinant Trx-LDC1 and Trx-LDC2 were obtained and isolated for purification using a Ni-NTA affinity chromatography. We incubated purified recombinant proteins with L-lysine in the enzyme reaction buffer at 37 degrees C and then derived the reaction products using dansyl chloride. It was found that both Trx-LDC1 and Trx-LDC2 had decarboxylase activity, could convert L-lysine into cadaverine by way of thin layer chromatography assay. Further, bioinformatics analysis indicated that deduced LDC1 and LDC2 had different physicochemical properties, but similar secondary and three-dimensional structures.

  12. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveal Substrate Specificity of Protein Acetyltransferases*

    PubMed Central

    Crosby, Heidi A.; Pelletier, Dale A.; Hurst, Gregory B.; Escalante-Semerena, Jorge C.

    2012-01-01

    N-Lysine acetylation is a posttranslational modification that has been well studied in eukaryotes and is likely widespread in prokaryotes as well. The central metabolic enzyme acetyl-CoA synthetase is regulated in both bacteria and eukaryotes by acetylation of a conserved lysine residue in the active site. In the purple photosynthetic α-proteobacterium Rhodopseudomonas palustris, two protein acetyltransferases (RpPat and the newly identified RpKatA) and two deacetylases (RpLdaA and RpSrtN) regulate the activities of AMP-forming acyl-CoA synthetases. In this work, we used LC/MS/MS to identify other proteins regulated by the N-lysine acetylation/deacetylation system of this bacterium. Of the 24 putative acetylated proteins identified, 14 were identified more often in a strain lacking both deacetylases. Nine of these proteins were members of the AMP-forming acyl-CoA synthetase family. RpPat acetylated all nine of the acyl-CoA synthetases identified by this work, and RpLdaA deacetylated eight of them. In all cases, acetylation occurred at the conserved lysine residue in the active site, and acetylation decreased activity of the enzymes by >70%. Our results show that many different AMP-forming acyl-CoA synthetases are regulated by N-lysine acetylation. Five non-acyl-CoA synthetases were identified as possibly acetylated, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Rpa1177, a putative 4-oxalocrotonate tautomerase. Neither RpPat nor RpKatA acetylated either of these proteins in vitro. It has been reported that Salmonella enterica Pat (SePat) can acetylate a number of metabolic enzymes, including GAPDH, but we were unable to confirm this claim, suggesting that the substrate range of SePat is not as broad as suggested previously. PMID:22416131

  13. A noncanonical function of sortase enables site-specific conjugation of small molecules to lysine residues in proteins.

    PubMed

    Bellucci, Joseph J; Bhattacharyya, Jayanta; Chilkoti, Ashutosh

    2015-01-07

    We provide the first demonstration that isopeptide ligation, a noncanonical activity of the enzyme sortase A, can be used to modify recombinant proteins. This reaction was used in vitro to conjugate small molecules to a peptide, an engineered targeting protein, and a full-length monoclonal antibody with an exquisite level of control over the site of conjugation. Attachment to the protein substrate occurred exclusively through isopeptide bonds at a lysine ε-amino group within a specific amino acid sequence. This reaction allows more than one molecule to be site-specifically conjugated to a protein at internal sites, thereby overcoming significant limitations of the canonical native peptide ligation reaction catalyzed by sortase A. Our method provides a unique chemical ligation procedure that is orthogonal to existing methods, supplying a new method to site-specifically modify lysine residues that will be a valuable addition to the protein conjugation toolbox.

  14. Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities.

    PubMed

    Colomer, A; Pinazo, A; Manresa, M A; Vinardell, M P; Mitjans, M; Infante, M R; Pérez, L

    2011-02-24

    Three different sets of cationic surfactants from lysine have been synthesized. The first group consists of three monocatenary surfactants with one lysine as the cationic polar head with one cationic charge. The second consists of three monocatenary surfactants with two amino acids as cationic polar head with two positive charges. Finally, four gemini surfactants were synthesized in which the spacer chain and the number and type of cationic charges have been regulated. The micellization process, antimicrobial activity, and hemolytic activity were evaluated. The critical micelle concentration was dependent only on the hydrophobic character of the molecules. Nevertheless, the antimicrobial and hemolytic activities were related to the structure of the compounds as well as the type of cationic charges. The most active surfactants against the bacteria were those with a cationic charge on the trimethylated amino group, whereas all of these surfactants showed low hemolytic character.

  15. Distinguishing the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) from other diamino acids.

    PubMed

    Banack, S A; Metcalf, J S; Spáčil, Z; Downing, T G; Downing, S; Long, A; Nunn, P B; Cox, P A

    2011-04-01

    β-N-methylamino-L-alanine (BMAA) is produced by diverse taxa of cyanobacteria, and has been detected by many investigators who have searched for it in cyanobacterial blooms, cultures and collections. Although BMAA is distinguishable from proteinogenic amino acids and its isomer 2,4-DAB using standard chromatographic and mass spectroscopy techniques routinely used for the analysis of amino acids, we studied whether BMAA could be reliably distinguished from other diamino acids, particularly 2,6-diaminopimelic acid which has been isolated from the cell walls of many bacterial species. We used HPLC-FD, UHPLC-UV, UHPLC-MS, and triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) to differentiate BMAA from the diamino acids 2,6-diaminopimelic acid, N-2(amino)ethylglycine, lysine, ornithine, 2,4-diaminosuccinic acid, homocystine, cystine, tryptophan, as well as other amino acids including asparagine, glutamine, and methionine methylsulfonium.

  16. A role of lysine-43 in the inactivation of rat prorenin.

    PubMed

    Suzuki, F; Tosaki, I; Shiratori, Y; Nagai, M; Murakami, K; Nakamura, Y

    1995-12-01

    1. Lysine-43 (Lys43) in the prosegment region was located within 3 x 10(-1) of catalytic sites, Asp81 and Asp266, in a stereo structure model of rat prorenin. 2. A mutant prorenin, Lys43Leu, was produced to elucidate a role of Lys43 in the inactivation of prorenin. Lys43Leu as well as the wild type were inactive at a neutral pH, and activated at an acidic pH. Its acid-activation speed was three times higher than that of the wild type. The mutant prorenin was more labile than the wild type at 55 degrees C and a neutral pH. 3. These results indicate that Lys43 forms ionic bonds with Asp81 and Asp266 to inactivate and stabilize prorenin.

  17. Purification to homogeneity and partial amino acid sequence of a fragment which includes the methyl acceptor site of the human DNA repair protein for O6-methylguanine.

    PubMed

    Major, G N; Gardner, E J; Carne, A F; Lawley, P D

    1990-03-25

    DNA repair by O6-methylguanine-DNA methyltransferase (O6-MT) is accomplished by removal by the enzyme of the methyl group from premutagenic O6-methylguanine-DNA, thereby restoring native guanine in DNA. The methyl group is transferred to an acceptor site cysteine thiol group in the enzyme, which causes the irreversible inactivation of O6-MT. We detected a variety of different forms of the methylated, inactivated enzyme in crude extracts of human spleen of molecular weights higher and lower than the usually observed 21-24kDa for the human O6-MT. Several apparent fragments of the methylated form of the protein were purified to homogeneity following reaction of partially-purified extract enzyme with O6-[3H-CH3]methylguanine-DNA substrate. One of these fragments yielded amino acid sequence information spanning fifteen residues, which was identified as probably belonging to human methyltransferase by virtue of both its significant sequence homology to three procaryote forms of O6-MT encoded by the ada, ogt (both from E. coli) and dat (B. subtilis) genes, and sequence position of the radiolabelled methyl group which matched the position of the conserved procaryote methyl acceptor site cysteine residue. Statistical prediction of secondary structure indicated good homologies between the human fragment and corresponding regions of the constitutive form of O6-MT in procaryotes (ogt and dat gene products), but not with the inducible ada protein, indicating the possibility that we had obtained partial amino acid sequence for a non-inducible form of the human enzyme. The identity of the fragment sequence as belonging to human methyltransferase was more recently confirmed by comparison with cDNA-derived amino acid sequence from the cloned human O6-MT gene from HeLa cells (1). The two sequences compared well, with only three out of fifteen amino acids being different (and two of them by only one nucleotide in each codon).

  18. Effect of including carob pulp in the diet of fattening pigs on the fatty acid composition and oxidative stability of pork.

    PubMed

    Inserra, L; Luciano, G; Bella, M; Scerra, M; Cilione, C; Basile, P; Lanza, M; Priolo, A

    2015-02-01

    The effect of feeding pigs with carob pulp on meat quality was investigated. Nine pigs were finished on a conventional concentrate-based diet (control), while two groups received a diet comprising of the same ingredients with the inclusion of 8% or 15% carob pulp (Carob 8% and Carob 15%, respectively). Feeding carob-containing diets reduced the concentration of saturated fatty acids in the muscle, increased the concentration of monounsaturated fatty acids in meat (P < 0.01) and of n-3 polyunsaturated fatty acids (PUFAs) and reduced the n-6/n-3 PUFA ratio (P < 0.001). The meat underwent slow oxidative deterioration over 9 days of storage. However, the Carob 15% treatment increased meat susceptibility to lipid oxidation across storage (P = 0.03), while the dietary treatment did not affect meat colour stability. In conclusion, feeding pigs with carob pulp could represent a strategy,in the Mediterranean areas, to naturally improve meat nutritional value and to promote the exploitation of this local feed resource.

  19. A comparison of an optimised sequential extraction procedure and dilute acid leaching of elements in anoxic sediments, including the effects of oxidation on sediment metal partitioning.

    PubMed

    Larner, Bronwyn L; Palmer, Anne S; Seen, Andrew J; Townsend, Ashley T

    2008-02-11

    The effect of oxidation of anoxic sediment upon the extraction of 13 elements (Cd, Sn, Sb, Pb, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As) using the optimised Community Bureau of Reference of the European Commission (BCR) sequential extraction procedure and a dilute acid partial extraction procedure (4h, 1 molL(-1) HCl) was investigated. Elements commonly associated with the sulfidic phase, Cd, Cu, Pb, Zn and Fe exhibited the most significant changes under the BCR sequential extraction procedure. Cd, Cu, Zn, and to a lesser extent Pb, were redistributed into the weak acid extractable fraction upon oxidation of the anoxic sediment and Fe was redistributed into the reducible fraction as expected, but an increase was also observed in the residual Fe. For the HCl partial extraction, sediments with moderate acid volatile sulfide (AVS) levels (1-100 micromolg(-1)) showed no significant difference in element partitioning following oxidation, whilst sediments containing high AVS levels (>100 micromolg(-1)) were significantly different with elevated concentrations of Cu and Sn noted in the partial extract following oxidation of the sediment. Comparison of the labile metals released using the BCR sequential extraction procedure (SigmaSteps 1-3) to labile metals extracted using the dilute HCl partial extraction showed that no method was consistently more aggressive than the other, with the HCl partial extraction extracting more Sn and Sb from the anoxic sediment than the BCR procedure, whilst the BCR procedure extracted more Cr, Co, Cu and As than the HCl extraction.

  20. The Clinical Spectrum of Missense Mutations of the First Aspartic Acid of cbEGF-like Domains in Fibrillin-1 Including a Recessive Family

    PubMed Central

    Hilhorst-Hofstee, Yvonne; Rijlaarsdam, Marry EB; Scholte, Arthur JHA; Swart-van den Berg, Marietta; Versteegh, Michel IM; van der Schoot-van Velzen, Iris; Schäbitz, Hans-Joachim; Bijlsma, Emilia K; Baars, Marieke J; Kerstjens-Frederikse, Wilhelmina S; Giltay, Jacques C; Hamel, Ben C; Breuning, Martijn H; Pals, Gerard

    2010-01-01

    Marfan syndrome (MFS) is a dominant disorder with a recognizable phenotype. In most patients with the classical phenotype mutations are found in the fibrillin-1 gene (FBN1) on chromosome 15q21. It is thought that most mutations act in a dominant negative way or through haploinsufficiency. In 9 index cases referred for MFS we detected heterozygous missense mutations in FBN1 predicted to substitute the first aspartic acid of different calcium-binding Epidermal Growth Factor-like (cbEGF) fibrillin-1 domains. A similar mutation was found in homozygous state in 3 cases in a large consanguineous family. Heterozygous carriers of this mutation had no major skeletal, cardiovascular or ophthalmological features of MFS. In the literature 14 other heterozygous missense mutations are described leading to the substitution of the first aspartic acid of a cbEGF domain and resulting in a Marfan phenotype. Our data show that the phenotypic effect of aspartic acid substitutions in the first position of a cbEGF domain can range from asymptomatic to a severe neonatal phenotype. The recessive nature with reduced expression of FBN1 in one of the families suggests a threshold model combined with a mild functional defect of this specific mutation. © 2010 Wiley-Liss, Inc. PMID:20886638

  1. Activation of neuronal Kv7/KCNQ/M-channels by the opener QO58-lysine and its anti-nociceptive effects on inflammatory pain in rodents

    PubMed Central

    Teng, Bo-chuan; Song, Yan; Zhang, Fan; Ma, Tian-yang; Qi, Jin-long; Zhang, Hai-lin; Li, Gang; Wang, KeWei

    2016-01-01

    Aim: The aim of this study was to examine the activation of neuronal Kv7/KCNQ channels by a novel modified Kv7 opener QO58-lysine and to test the anti-nociceptive effects of QO58-lysine on inflammatory pain in rodent models. Methods: Assays including whole-cell patch clamp recordings, HPLC, and in vivo pain behavioral evaluations were employed. Results: QO58-lysine caused instant activation of Kv7.2/7.3 currents, and increasing the dose of QO58-lysine resulted in a dose-dependent activation of Kv7.2/Kv7.3 currents with an EC50 of 1.2±0.2 μmol/L. QO58-lysine caused a leftward shift of the voltage-dependent activation of Kv7.2/Kv7.3 to a hyperpolarized potential at V1/2=-54.4±2.5 mV from V1/2=-26.0±0.6 mV. The half-life in plasma (t1/2) was derived as 2.9, 2.7, and 3.0 h for doses of 12.5, 25, and 50 mg/kg, respectively. The absolute bioavailabilities for the three doses (12.5, 25, and 50 mg/kg) of QO58-lysine (po) were determined as 13.7%, 24.3%, and 39.3%, respectively. QO58-lysine caused a concentration-dependent reduction in the licking times during phase II pain induced by the injection of formalin into the mouse hindpaw. In the Complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats, oral or intraperitoneal administration of QO58-lysine resulted in a dose-dependent increase in the paw withdrawal threshold, and the anti-nociceptive effect on mechanical allodynia could be reversed by the channel-specific blocker XE991 (3 mg/kg). Conclusion: Taken together, our findings show that a modified QO58 compound (QO58-lysine) can specifically activate Kv7.2/7.3/M-channels. Oral or intraperitoneal administration of QO58-lysine, which has improved bioavailability and a half-life of approximately 3 h in plasma, can reverse inflammatory pain in rodent animal models. PMID:27264315

  2. Small Molecule Ligands of Methyl-Lysine Binding Proteins

    PubMed Central

    Herold, J. Martin; Wigle, Tim J.; Norris, Jacqueline L.; Lam, Robert; Korboukh, Victoria K.; Gao, Cen; Ingerman, Lindsey A.; Kireev, Dmitri B.; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J.; Arrowsmith, Cheryl H.; Jin, Jian; Janzen, William P.; Frye, Stephen V.

    2011-01-01

    Proteins which bind methylated lysines (“readers” of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first co-crystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design. PMID:21417280

  3. Small-molecule ligands of methyl-lysine binding proteins.

    PubMed

    Herold, J Martin; Wigle, Tim J; Norris, Jacqueline L; Lam, Robert; Korboukh, Victoria K; Gao, Cen; Ingerman, Lindsey A; Kireev, Dmitri B; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J; Arrowsmith, Cheryl H; Jin, Jian; Janzen, William P; Frye, Stephen V

    2011-04-14

    Proteins which bind methylated lysines ("readers" of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small-molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first cocrystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design.

  4. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  5. [Modification of the lysine-iron agar (author's transl)].

    PubMed

    Wauters, G

    1975-12-01

    The addition of L-phenylalanine to the lysine-iron agar described by Edwards and Fife ]1] allows a more valuable screening of the Proteus group based on its deamination properties. Some minor modifications of the indicator and thiosulfate content lead to improve and earlier recording of the results.

  6. [L-lysine-alpha-oxidase activity of some Trichoderma species].

    PubMed

    Smirnova, I P; Khaduev, S Kh

    1984-01-01

    Trichoderma cultures were tested for their ability to produce L-lysine-alpha-oxidase. The highest enzyme activity was manifested by T. harzianum (MGU), T. longibrachiatum Rifai VKM F-2025 and T. aureoviride Rifai VKM F-2026. The biosynthesis of the enzyme did not depend on the growth of the cultures and did not vary among the species.

  7. Histone H4 lysine 16 acetylation breaks the genome's silence

    PubMed Central

    Shia, Wei-Jong; Pattenden, Samantha G; Workman, Jerry L

    2006-01-01

    Acetylation at histone H4 lysine 16 is involved in many cellular processes in organisms as diverse as yeast and humans. A recent biochemical study pinpoints this particular acetylation mark as a switch for changing chromatin from a repressive to a transcriptionally active state. PMID:16689998

  8. Lysine 419 targets human glucocorticoid receptor for proteasomal degradation.

    PubMed

    Wallace, Andrew D; Cao, Yan; Chandramouleeswaran, Sindhu; Cidlowski, John A

    2010-12-01

    Glucocorticoid receptors (GRs) are members of a highly conserved family of ligand dependent transcription factors which following hormone binding undergo homologous down-regulation reducing the levels of receptor protein. This decline in human GR (hGR) is due in part to a decrease in protein receptor stability that may limit cellular responsiveness to ligand. To examine the role of the proteasome protein degradation pathway in steroid-dependent hGR responsiveness, we utilized the proteasomal inhibitors MG-132, beta-lactone, and epoxomicin. HeLa cells and COS cells were treated with proteasome inhibitors in the presence of the GR agonist dexamethasone (Dex), or were pretreated with proteasomal inhibitor and then Dex. Dexamethasone induced glucocorticoid responsive reporter activity significantly over untreated controls, whereas cells treated with proteasomal inhibitors and Dex together showed 2-3-fold increase in activity. Protein sequence analysis of the hGR protein identified several candidate protein degradation motifs including a PEST element. Mutagenesis of this element at lysine 419 was done and mutant K419A hGR failed to undergo ligand dependent down-regulation. Mutant K419A hGR displayed 2-3-fold greater glucocorticoid responsive reporter activity in the presence of Dex than wild type hGR. These differences in transcriptional activity were not due to altered subcellular localization, since when the mutant K419A hGR was fused with the green fluorescent protein (GFP) it was found to move in and out of the nucleus similarly to wild type hGR. Together these results suggest that the proteasome and the identified PEST degradation motif limit steroid-dependent human glucocorticoid receptor signaling.

  9. Evaluation of the Immunomodulatory Activity of the Chicken NK-Lysin-Derived Peptide cNK-2

    PubMed Central

    Kim, Woo H.; Lillehoj, Hyun S.; Min, Wongi

    2017-01-01

    Chicken NK-lysin (cNK-lysin), the chicken homologue of human granulysin, is a cationic amphiphilic antimicrobial peptide (AMP) that is produced by cytotoxic T cells and natural killer cells. We previously demonstrated that cNK-lysin and cNK-2, a synthetic peptide incorporating the core α-helical region of cNK-lysin, have antimicrobial activity against apicomplexan parasites such as Eimeria spp., via membrane disruption. In addition to the antimicrobial activity of AMPs, the immunomodulatory activity of AMPs mediated by their interactions with host cells is increasingly recognized. Thus, in this study, we investigated whether cNK-lysin derived peptides modulate the immune response in the chicken macrophage cell line HD11 and in chicken primary monocytes by evaluating the induction of chemokines, anti-inflammatory properties, and activation of signalling pathways. cNK-2 induced the expression of CCL4, CCL5 and interleukin(IL)-1β in HD11 cells and CCL4 and CCL5 in primary monocytes. We also determined that cNK-2 suppresses the lipopolysaccharide-induced inflammatory response by abrogating IL-1β expression. The immunomodulatory activity of cNK-2 involves the mitogen-activated protein kinases-mediated signalling pathway, including p38, extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinases, as well as the internalization of cNK-2 into the cells. These results indicate that cNK-2 is a potential novel immunomodulating agent rather than an antimicrobial agent. PMID:28332637

  10. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease.

    PubMed

    Morris, Gerwyn; Berk, Michael; Carvalho, Andre; Caso, Javier R; Sanz, Yolanda; Walder, Ken; Maes, Michael

    2016-06-27

    There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.

  11. Electron capture dissociation mass spectrometric analysis of lysine-phosphorylated peptides.

    PubMed

    Kowalewska, Karolina; Stefanowicz, Piotr; Ruman, Tomasz; Fraczyk, Tomasz; Rode, Wojciech; Szewczuk, Zbigniew

    2010-12-01

    Phosphorylation of proteins is an essential signalling mechanism in eukaryotic and prokaryotic cells. Although N-phosphorylation of basic amino acid is known for its importance in biological systems, it is still poorly explored in terms of products and mechanisms. In the present study, two MS fragmentation methods, ECD (electron-capture dissociation) and CID (collision-induced dissociation), were tested as tools for analysis of N-phosphorylation of three model peptides, RKRSRAE, RKRARKE and PLSRTLSVAAKK. The peptides were phosphorylated by reaction with monopotassium phosphoramidate. The results were confirmed by 1H NMR and 31P NMR studies. The ECD method was found useful for the localization of phosphorylation sites in unstable lysine-phosphorylated peptides. Its main advantage is a significant reduction of the neutral losses related to the phosphoramidate moiety. Moreover, the results indicate that the ECD-MS may be useful for analysis of regioselectivity of the N-phosphorylation reaction. Stabilities of the obtained lysine-phosphorylated peptides under various conditions were also tested.

  12. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    DOE PAGES

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; ...

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue ismore » substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (₋E₂₃T₂₄HVP₋), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.« less

  13. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    SciTech Connect

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; Romao, Celia V.; Pinto, Liliana C.; Huber, Harald; Saraiva, Ligia M.; Todorovic, Smilja

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (₋E₂₃T₂₄HVP₋), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  14. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins

    PubMed Central

    Morton, Kyla J.; Jia, Shangang; Zhang, Chi; Holding, David R.

    2016-01-01

    Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm. PMID:26712829

  15. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue.

    PubMed

    Pinto, Ana F; Romão, Célia V; Pinto, Liliana C; Huber, Harald; Saraiva, Lígia M; Todorovic, Smilja; Cabelli, Diane; Teixeira, Miguel

    2015-01-01

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (-E23T24HVP-), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild-type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  16. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine

    PubMed Central

    Meiswinkel, Tobias M; Gopinath, Vipin; Lindner, Steffen N; Nampoothiri, K Madhavan; Wendisch, Volker F

    2013-01-01

    Summary Because of their abundance in hemicellulosic wastes arabinose and xylose are an interesting source of carbon for biotechnological production processes. Previous studies have engineered several Corynebacterium glutamicum strains for the utilization of arabinose and xylose, however, with inefficient xylose utilization capabilities. To improve xylose utilization, different xylose isomerase genes were tested in C. glutamicum. The gene originating from Xanthomonas campestris was shown to have the highest effect, resulting in growth rates of 0.14 h−1, followed by genes from Bacillus subtilis, Mycobacterium smegmatis and Escherichia coli. To further increase xylose utilization different xylulokinase genes were expressed combined with X. campestris xylose isomerase gene. All combinations further increased growth rates of the recombinant strains up to 0.20 h−1 and moreover increased biomass yields. The gene combination of X. campestris xylose isomerase and C. glutamicum xylulokinase was the fastest growing on xylose and compared with the previously described strain solely expressing E. coli xylose isomerase gene delivered a doubled growth rate. Productivity of the amino acids glutamate, lysine and ornithine, as well as the diamine putrescine was increased as well as final titres except for lysine where titres remained unchanged. Also productivity in medium containing rice straw hydrolysate as carbon source was increased. Funding Information No funding information provided. PMID:23164409

  17. Isolation, purification and characterization of histidino-threosidine, a novel Maillard reaction protein crosslink from threose, lysine and histidine.

    PubMed

    Dai, Zhenyu; Nemet, Ina; Shen, Wei; Monnier, Vincent M

    2007-07-01

    We isolated a novel acid-labile yellow chromophore from the incubation of lysine, histidine and d-threose and identified its chemical structure by one and two-dimensional NMR spectroscopy combined with LC-tandem mass spectrometry. This new cross-link exhibits a UV absorbance maximum at 305 nm and a molecular mass of 451 Da. The proposed structure is 2-amino-5-(3-((4-(2-amino-2-carboxyethyl)-1H-imidazol-1-yl)methyl)-4-(1,2-dihydroxyethyl)-2-formyl-1H-pyrrol-1-yl)pentatonic acid, a cross-link between lysine and histidine with addition of two threose molecules. It was in part deduced and confirmed through synthesis of the analogous compound from n-butylamine, imidazole and d-threose. We assigned the compound the trivial name histidino-threosidine. Systemic incubation revealed that histidino-threosidine can be formed in low amounts from fructose, glyceraldehyde, methylglyoxal, glycolaldehyde, ascorbic acid, and dehydroascorbic acid, but at a much higher yield with degradation products of ascorbic acid, i.e. threose, erythrose, and erythrulose. Bovine lens protein incubated with 10 and 50 mM threose for two weeks yielded 560 and 2840 pmol/mg histidino-threosidine. Histidino-threosidine is to our knowledge the first Maillard reaction product known to involve histidine in a crosslink.

  18. Impact of dry heating on physicochemical properties of corn starch and lysine mixture.

    PubMed

    Ji, Ying; Yu, Jicheng; Xu, Yongbin; Zhang, Yinghui

    2016-10-01

    Corn starch was modified with lysine by dry heat treatment and to investigate how they can affect the pasting and structural properties of the treated starches. Dry heating with lysine reduced the pasting temperature and resulting in viscosity increase. The particle size of heated starch-lysine mixture increased, suggesting that starch granules were cross-linked to lysine. After dry heating, the onset temperature, peak temperature and conclusion temperature of corn starch-lysine mixture were lower than those of other starches. The degree of crystallinity decreased for the starch after dry heat treatment while these heated starch samples still have the same X-ray diffraction types as the original starch.

  19. The LysR-type regulator LeuO regulates the acid tolerance response in Vibrio cholerae

    PubMed Central

    Ante, Vanessa M.; Bina, X. Renee

    2015-01-01

    Vibrio cholerae is a neutrophilic enteric pathogen that is extremely sensitive to acid. As V. cholerae passages through the host gastrointestinal tract it is exposed to a variety of environmental stresses including low pH and volatile fatty acids. Exposure to acidic environments induces expression of the V. cholerae acid tolerance response. A key component of the acid tolerance response is the cad system, which is encoded by cadC and the cadBA operon. CadB is a lysine/cadaverine antiporter and CadA is a lysine decarboxylase and these function together to counter low intracellular and extracellular pH. CadC is a membrane-associated transcription factor that activates cadBA expression in response to acidic conditions. Herein we investigated the role of the LysR-type transcriptional regulator LeuO in the V. cholerae acid tolerance response. Transcriptional reporter assays revealed that leuO expression repressed cadC transcription, indicating that LeuO was a cadC repressor. Consistent with this, leuO expression was inversely linked to lysine decarboxylase production and leuO overexpression resulted in increased sensitivity to organic acids. Overexpression of leuO in a cadA mutant potentiated killing by organic acids, suggesting that the function of leuO in the acid tolerance response extended beyond its regulation of the cad system. Collectively, these studies have identified a new physiological role for LeuO in V. cholerae acid tolerance. PMID:26424466

  20. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum.

    PubMed

    Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin

    2016-03-09

    Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.

  1. Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine-producing corynebacteria.

    PubMed

    Wittmann, Christoph; Heinzle, Elmar

    2002-12-01

    A comprehensive approach of metabolite balancing, (13)C tracer studies, gas chromatography-mass spectrometry, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and isotopomer modeling was applied for comparative metabolic network analysis of a genealogy of five successive generations of lysine-producing Corynebacterium glutamicum. The five strains examined (C. glutamicum ATCC 13032, 13287, 21253, 21526, and 21543) were previously obtained by random mutagenesis and selection. Throughout the genealogy, the lysine yield in batch cultures increased markedly from 1.2 to 24.9% relative to the glucose uptake flux. Strain optimization was accompanied by significant changes in intracellular flux distributions. The relative pentose phosphate pathway (PPP) flux successively increased, clearly corresponding to the product yield. Moreover, the anaplerotic net flux increased almost twofold as a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes to cover the increased demand for lysine formation; thus, the overall increase was a consequence of concerted regulation of C(3) carboxylation and C(4) decarboxylation fluxes. The relative flux through isocitrate dehydrogenase dropped from 82.7% in the wild type to 59.9% in the lysine-producing mutants. In contrast to the NADPH demand, which increased from 109 to 172% due to the increasing lysine yield, the overall NADPH supply remained constant between 185 and 196%, resulting in a decrease in the apparent NADPH excess through strain optimization. Extrapolated to industrial lysine producers, the NADPH supply might become a limiting factor. The relative contributions of PPP and the tricarboxylic acid cycle to NADPH generation changed markedly, indicating that C. glutamicum is able to maintain a constant supply of NADPH under completely different flux conditions. Statistical analysis by a Monte Carlo approach revealed high precision for the estimated fluxes, underlining the

  2. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    PubMed

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids.

  3. Recognition of Histone H3 Lysine-4 Methylation by the Double Tudor Domain of JMJD2A

    SciTech Connect

    Huang,Y.; Fang, J.; Bedford, M.; Zhang, Y.; Xu, R.

    2006-01-01

    Biological responses to histone methylation critically depend on the faithful readout and transduction of the methyl-lysine signal by 'effector' proteins, yet our understanding of methyl-lysine recognition has so far been limited to the study of histone binding by chromodomain and WD40-repeat proteins. The double tudor domain of JMJD2A, a Jmjc domain-containing histone demethylase, binds methylated histone H3-K4 and H4-K20. We found that the double tudor domain has an interdigitated structure, and the unusual fold is required for its ability to bind methylated histone tails. The cocrystal structure of the JMJD2A double tudor domain with a trimethylated H3-K4 peptide reveals that the trimethyl-K4 is bound in a cage of three aromatic residues, two of which are from the tudor-2 motif, whereas the binding specificity is determined by side-chain interactions involving amino acids from the tudor-1 motif. Our study provides mechanistic insights into recognition of methylated histone tails by tudor domains and reveals the structural intricacy of methyl-lysine recognition by two closely spaced effector domains.

  4. cis-acting DNA regulatory elements, including the retinoic acid response element, are required for tissue specific laminin B1 promoter/lacZ expression in transgenic mice.

    PubMed

    Sharif, K A; Li, C; Gudas, L J

    2001-05-01

    The LAMB1 gene encodes the laminin beta1 subunit of laminin, an extracellular matrix protein. Using several transgenic mouse lines containing various lengths of the LAMB1 promoter driving lacZ reporter gene expression, regions of LAMB1 promoter that contain cis-acting DNA regulatory element(s) have been identified. The 3.9LAMB1betagal transgene is expressed in various tissues during development. LAMB1 transgene expression is observed in a selective set of nephrons of the neonatal and adult kidneys. The cis-acting DNA regulatory elements responsible for LAMB1 transgene expression in ovaries and in juvenile kidneys are present between -'1.4 and -0.7 kb relative to the transcription start site, while those of adult kidneys are located between -2.5 and -1.4 kb. The LAMB1 transgene is also expressed in the epididymis of 1 week old transgenic mice. Mutation of the retinoic acid response element (RARE) in the context of the 3.9LAMB1betagal transgene results in loss of LAMB1 transgene expression in all tissues. Thus, sequences between -2.5 and -0.7 kb plus the RARE are required for appropriate expression of the LAMB1 transgene in mice.

  5. The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase.

    PubMed

    Ma, Qingjun; Zhao, Xin; Nasser Eddine, Ali; Geerlof, Arie; Li, Xinping; Cronan, John E; Kaufmann, Stefan H E; Wilmanns, Matthias

    2006-06-06

    Lipoic acid is essential for the activation of a number of protein complexes involved in key metabolic processes. Growth of Mycobacterium tuberculosis relies on a pathway in which the lipoate attachment group is synthesized from an endogenously produced octanoic acid moiety. In patients with multiple-drug-resistant M. tuberculosis, expression of one gene from this pathway, lipB, encoding for octanoyl-[acyl carrier protein]-protein acyltransferase is considerably up-regulated, thus making it a potential target in the search for novel antiinfectives against tuberculosis. Here we present the crystal structure of the M. tuberculosis LipB protein at atomic resolution, showing an unexpected thioether-linked active-site complex with decanoic acid. We provide evidence that the transferase functions as a cysteine/lysine dyad acyltransferase, in which two invariant residues (Lys-142 and Cys-176) are likely to function as acid/base catalysts. Analysis by MS reveals that the LipB catalytic reaction proceeds by means of an internal thioesteracyl intermediate. Structural comparison of LipB with lipoate protein ligase A indicates that, despite conserved structural and sequence active-site features in the two enzymes, 4'-phosphopantetheine-bound octanoic acid recognition is a specific property of LipB.

  6. Removing a bottleneck in the Bacillus subtilis biotin pathway: bioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction.

    PubMed

    Van Arsdell, Scott W; Perkins, John B; Yocum, R Rogers; Luan, Linda; Howitt, C Linda; Chatterjee, Nilu Prasad; Pero, Janice G

    2005-07-05

    In biotin biosynthesis, DAPA aminotransferase encoded by the bioA gene catalyzes the formation of the intermediate 7,8-diaminopelargonic acid (DAPA) from 7-keto-8-aminopelargonic acid (KAPA). DAPA aminotransferases from Escherichia coli, Serratia marcescens, and Bacillus sphaericus use S-adenosylmethionine (SAM) as the amino donor. Our observation that SAM is not an amino donor for B. subtilis DAPA aminotransferase led to a search for an alternative amino donor for this enzyme. Testing of 26 possible amino acids in a cell-free extract assay revealed that only l-lysine was able to dramatically stimulate the in vitro conversion of KAPA to DAPA by the B. subtilis DAPA aminotransferase. The K(m) for lysine and KAPA was estimated to be between 2 and 25 mM, which is significantly higher than the K(m) of purified E. coli BioA for SAM (0.15 mM). This higher requirement for lysine resulted in accumulation of KAPA during fermentation of B. subtilis biotin producing strains. However, this pathway bottleneck could be relieved by either addition of exogenous lysine to the medium or by introduction of lysine deregulated mutations into the production strains.

  7. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)

    1994-01-01

    The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.

  8. [Evaluation of ten fish species to be included as part of renal diet, due to their protein, phosphorus and fatty acids content].

    PubMed

    Castro-González, Maria Isabel; Maafs-Rodríguez, Ana Gabriela; Pérez-Gil Romo, Fernando

    2012-06-01

    Because renal disease is highly complex, its nutritional treatment is complicated and many foods are restricted, including fish because its phosphorus content. The aim of the present study was to analyze ten fillet fish species, commonly consumed in Mexico (Cyprinus carpio carpio, Ophichthus rex, Symphurus elongatus, Eucinostomus entomelas, Chirostoma patzcuaro, Bairdiella chrysoura, Salmo salar Oreochromis urolepis hornorum, Sphyraena guachancho, Istiophorus albicans), to determine their phosphorus (P), protein (Pr), cholesterol, sodium, potassium, vitamins D3 and E, and n-3 PUFA (EPA+DHA) according to the AOAC techniques, in order to identify which species could be included in renal diet; particularly because of their risk:benefit relations (calculated with those results). Protein values ranged from 16.5 to 33.5g/100 g of fillet; the specie with the highest phosphorus contest was Salmo salar, and with the lowest, Symphurus elongatus. EPA+DHA quantity ranged from 79.64 mg/100 g to 1,381.53 mg/100 g. Considering de P/Pr relation recommended to renal patients, all analyzed species (except Salmo salar, Ophichthus rex and Istiophorus albicans) could be included in their diet. As for the P/EPA+DHA relation, the species most recommended to renal patients are Symphurus elongatus, Bairdiella chrysoura and Sphyraena guachancho.

  9. Transcriptional regulation by the Set7 lysine methyltransferase.

    PubMed

    Keating, Samuel T; El-Osta, Assam

    2013-04-01

    Posttranslational histone modifications define chromatin structure and function. In recent years, a number of studies have characterized many of the enzymatic activities and diverse regulatory components required for monomethylation of histone H3 lysine 4 (H3K4me1) and the expression of specific genes. The challenge now is to understand how this specific chemical modification is written and the Set7 methyltransferase has emerged as a key regulatory enzyme mediating methylation of lysine residues of histone and non-histone proteins. In this review, we comprehensively explore the regulatory proteins modified by Set7 and highlight mechanisms of specific co-recruitment of the enzyme to activating promoters. With a focus on signaling and transcriptional control in disease we discuss recent experimental data emphasizing specific components of diverse regulatory complexes that mediate chromatin modification and reinterpretation of Set7-mediated gene expression.

  10. Inframolecular acid base studies of the tris and tetrakis myo-inositol phosphates including the 1,2,3-trisphosphate motif

    NASA Astrophysics Data System (ADS)

    Dozol, Hélène; Blum-Held, Corinne; Guédat, Philippe; Maechling, Clarisse; Lanners, Steve; Schlewer, Gilbert; Spiess, Bernard

    2002-12-01

    The intrinsic acid-base properties of the phosphate groups of three myo-inositol derivatives which display the 1,2,3-trisphosphate motif, i.e. (±)- myo-inositol 1,2,3-trisphosphate (Ins(1,2,3)P 3), (±)- myo-inositol 1,2,3,6-tetrakisphosphate (Ins(1,2,3,6)P 4), and (±)- myo-inositol 1,2,3,5-tetrakisphosphate (Ins(1,2,3,5)P 4) are reported. The studies were performed in 0.2 M KCl solution at 37 °C, near physiological ionic strength and temperature. In addition, in order to shed light on the transition metal complexation properties of Ins(1,2,3)P 3, the influence of the Zn 2+ cations on its 31P NMR titration curves was investigated. From the titration curves as well as from the determined protonation microconstants, it appears that for Ins(1,2,3)P 3, the two lateral P1 and P3 phosphates strongly contribute to stabilise a proton on the central P2 phosphate. However, in the fully deprotonated form of Ins(1,2,3)P 3, P1 and P3 repulse each other so that they establish hydrogen bonds with, respectively, their neighbouring OH6 and OH4 hydroxyls. The 1,2,3-trisphosphate motif of Ins(1,2,3,5)P 4 behaves very similarly to that of Ins(1,2,3)P 3 indicating a poor interaction with the distant P5 phosphate. By contrast, moving a phosphate group from position 5 to position 6 on the myo-inositol ring as in Ins(1,2,3,6)P 4, leads to major changes in the basicity and cooperativity of the phosphate groups. Finally, the presence of Zn 2+ cations has a marked influence on the 31P NMR titration curves of Ins(1,2,3)P 3, leading to the conclusion that two equatorial phosphates, assisted by a middle axial one, afford an optimal chelating moiety that is able to occupy all sites of the metal coordination polyhedron which could be the reason for its antioxidant properties.

  11. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain.

    PubMed

    Akçay, Gizem; Belmonte, Matthew A; Aquila, Brian; Chuaqui, Claudio; Hird, Alexander W; Lamb, Michelle L; Rawlins, Philip B; Su, Nancy; Tentarelli, Sharon; Grimster, Neil P; Su, Qibin

    2016-11-01

    Targeted covalent inhibition of disease-associated proteins has become a powerful methodology in the field of drug discovery, leading to the approval of new therapeutics. Nevertheless, current approaches are often limited owing to their reliance on a cysteine residue to generate the covalent linkage. Here we used aryl boronic acid carbonyl warheads to covalently target a noncatalytic lysine side chain, and generated to our knowledge the first reversible covalent inhibitors for Mcl-1, a protein-protein interaction (PPI) target that has proven difficult to inhibit via traditional medicinal chemistry strategies. These covalent binders exhibited improved potency in comparison to noncovalent congeners, as demonstrated in biochemical and cell-based assays. We identified Lys234 as the residue involved in covalent modification, via point mutation. The covalent binders discovered in this study will serve as useful starting points for the development of Mcl-1 therapeutics and probes to interrogate Mcl-1-dependent biological phenomena.

  12. Autoantibodies against mono- and tri-methylated lysine display similar but also distinctive characteristics

    PubMed Central

    Liu, Fan; Chen, Linjie; Gao, Ruitong; Zhang, Wei

    2017-01-01

    Autoantibodies can be either harmful or beneficial to the body. The beneficial autoantibodies play important roles in immunosurveillance, clearance of body waste and maintenance of immune homeostasis. Despite their importance, however, people’s knowledge on the protective autoantibodies is still very limited. In the current study, we examined two autoantibodies that recognized epitopes with only one amino acid. One was against mono-methylated lysine (Kme) and the other was against tri-methylated lysine (Kme3). We found that the antibodies were highly specific and not polyreactive. They did not cross-react each other. Although anti-Kme antibodies were IgM only, a large proportion of the anti-Kme3 antibodies were switched to the IgG isotype. Mass spectrometric analysis showed that both of the antibodies were mainly derived from IGHV 3–7 and/or IGHV3-74 germ line genes with conserved CDR2. De novo sequencing showed that there was a mutation at either of the SS positions on the CDR1 region, which changed one of the serine residues to a basic amino acid, i.e., arginine or lysine. We also found that neither of the antibodies was expressed at birth, and their earliest appearance was approximately 5 months after birth. All healthy human beings expressed the antibodies when they reached age two and maintained the expression thereafter throughout their life. Patients with systemic lupus erythematosus had lower levels of the IgM isotype antibodies. Serum levels of the two IgM antibodies were closely correlated, implying that they were produced by cells from the same B cell subset. We also found that both anti-Kme and anti-Kme3 antibodies could bind and might take part in the clearance of neutrophil extracellular traps released from activated cells. In conclusion, although anti-Kme and anti-Kme3 antibodies share many similarities in their origins, they are different antibodies and have different characteristics. PMID:28222195

  13. Methanococci use the diaminopimelate aminotransferase (DapL) pathway for lysine biosynthesis.

    PubMed

    Liu, Yuchen; White, Robert H; Whitman, William B

    2010-07-01

    The pathway of lysine biosynthesis in the methanococci has not been identified previously. A variant of the diaminopimelic acid (DAP) pathway uses diaminopimelate aminotransferase (DapL) to catalyze the direct conversion of tetrahydrodipicolinate (THDPA) to ll-DAP. Recently, the enzyme DapL (MTH52) was identified in Methanothermobacter thermautotrophicus and shown to belong to the DapL1 group. Although the Methanococcus maripaludis genome lacks a gene that can be unambiguously assigned a DapL function based on sequence similarity, the open reading frame MMP1527 product shares 30% amino acid sequence identity with MTH52. A Deltammp1527 deletion mutant was constructed and found to be a lysine auxotroph, suggesting that this DapL homolog in methanococci is required for lysine biosynthesis. In cell extracts of the M. maripaludis wild-type strain, the specific activity of DapL using ll-DAP and alpha-ketoglutarate as substrates was 24.3 + or - 2.0 nmol min(-1) mg of protein(-1). The gene encoding the DapL homolog in Methanocaldococcus jannaschii (MJ1391) was cloned and expressed in Escherichia coli, and the protein was purified. The maximum activity of MJ1391 was observed at 70 degrees C and pH 8.0 to 9.0. The apparent K(m)s of MJ1391 for ll-DAP and alpha-ketoglutarate were 82.8 + or - 10 microM and 0.42 + or - 0.02 mM, respectively. MJ1391 was not able to use succinyl-DAP or acetyl-DAP as a substrate. Phylogenetic analyses suggested that two lateral gene transfers occurred in the DapL genes, one from the archaea to the bacteria in the DapL2 group and one from the bacteria to the archaea in the DapL1 group. These results demonstrated that the DapL pathway is present in marine methanogens belonging to the Methanococcales.

  14. Methanococci Use the Diaminopimelate Aminotransferase (DapL) Pathway for Lysine Biosynthesis ▿

    PubMed Central

    Liu, Yuchen; White, Robert H.; Whitman, William B.

    2010-01-01

    The pathway of lysine biosynthesis in the methanococci has not been identified previously. A variant of the diaminopimelic acid (DAP) pathway uses diaminopimelate aminotransferase (DapL) to catalyze the direct conversion of tetrahydrodipicolinate (THDPA) to ll-DAP. Recently, the enzyme DapL (MTH52) was identified in Methanothermobacter thermautotrophicus and shown to belong to the DapL1 group. Although the Methanococcus maripaludis genome lacks a gene that can be unambiguously assigned a DapL function based on sequence similarity, the open reading frame MMP1527 product shares 30% amino acid sequence identity with MTH52. A Δmmp1527 deletion mutant was constructed and found to be a lysine auxotroph, suggesting that this DapL homolog in methanococci is required for lysine biosynthesis. In cell extracts of the M. maripaludis wild-type strain, the specific activity of DapL using ll-DAP and α-ketoglutarate as substrates was 24.3 ± 2.0 nmol min−1 mg of protein−1. The gene encoding the DapL homolog in Methanocaldococcus jannaschii (MJ1391) was cloned and expressed in Escherichia coli, and the protein was purified. The maximum activity of MJ1391 was observed at 70°C and pH 8.0 to 9.0. The apparent Kms of MJ1391 for ll-DAP and α-ketoglutarate were 82.8 ± 10 μM and 0.42 ± 0.02 mM, respectively. MJ1391 was not able to use succinyl-DAP or acetyl-DAP as a substrate. Phylogenetic analyses suggested that two lateral gene transfers occurred in the DapL genes, one from the archaea to the bacteria in the DapL2 group and one from the bacteria to the archaea in the DapL1 group. These results demonstrated that the DapL pathway is present in marine methanogens belonging to the Methanococcales. PMID:20418392

  15. Specificity analysis of protein lysine methyltransferases using SPOT peptide arrays.

    PubMed

    Kudithipudi, Srikanth; Kusevic, Denis; Weirich, Sara; Jeltsch, Albert

    2014-11-29

    Lysine methylation is an emerging post-translation modification and it has been identified on several histone and non-histone proteins, where it plays crucial roles in cell development and many diseases. Approximately 5,000 lysine methylation sites were identified on different proteins, which are set by few dozens of protein lysine methyltransferases. This suggests that each PKMT methylates multiple proteins, however till now only one or two substrates have been identified for several of these enzymes. To approach this problem, we have introduced peptide array based substrate specificity analyses of PKMTs. Peptide arrays are powerful tools to characterize the specificity of PKMTs because methylation of several substrates with different sequences can be tested on one array. We synthesized peptide arrays on cellulose membrane using an Intavis SPOT synthesizer and analyzed the specificity of various PKMTs. Based on the results, for several of these enzymes, novel substrates could be identified. For example, for NSD1 by employing peptide arrays, we showed that it methylates K44 of H4 instead of the reported H4K20 and in addition H1.5K168 is the highly preferred substrate over the previously known H3K36. Hence, peptide arrays are powerful tools to biochemically characterize the PKMTs.

  16. Specificity Analysis of Protein Lysine Methyltransferases Using SPOT Peptide Arrays

    PubMed Central

    Kudithipudi, Srikanth; Kusevic, Denis; Weirich, Sara; Jeltsch, Albert

    2014-01-01

    Lysine methylation is an emerging post-translation modification and it has been identified on several histone and non-histone proteins, where it plays crucial roles in cell development and many diseases. Approximately 5,000 lysine methylation sites were identified on different proteins, which are set by few dozens of protein lysine methyltransferases. This suggests that each PKMT methylates multiple proteins, however till now only one or two substrates have been identified for several of these enzymes. To approach this problem, we have introduced peptide array based substrate specificity analyses of PKMTs. Peptide arrays are powerful tools to characterize the specificity of PKMTs because methylation of several substrates with different sequences can be tested on one array. We synthesized peptide arrays on cellulose membrane using an Intavis SPOT synthesizer and analyzed the specificity of various PKMTs. Based on the results, for several of these enzymes, novel substrates could be identified. For example, for NSD1 by employing peptide arrays, we showed that it methylates K44 of H4 instead of the reported H4K20 and in addition H1.5K168 is the highly preferred substrate over the previously known H3K36. Hence, peptide arrays are powerful tools to biochemically characterize the PKMTs. PMID:25489813

  17. Purification of cytochrome c oxidase by lysine-affinity chromatography.

    PubMed

    Felsch, J; Kotake, S; Copeland, R A

    1992-02-01

    A method for the purification of cytochrome c oxidase that is based on the affinity of this enzyme for polycations such as poly-L-lysine is described. When detergent extracts of bovine cardiac mitochondria were applied to either a poly-L-lysine-agarose or a lysine-Sepharose column at low ionic strength, cytochrome c oxidase was found to adhere tightly, whereas the bulk of the proteins were eluted by washing with the same buffer. The cytochrome c oxidase was eluted by application of a linear potassium chloride gradient to the columns. The resulting enzyme was identical to that obtained by more traditional purification methods in terms of its subunit composition, optical and resonance Raman spectra, and cytochrome c oxidizing activity. When detergent extracts of spheroplasts from Paracoccus denitrificans were applied to these columns, the cytochrome c oxidase from this organism was also found to adhere tightly. Thus this purification method appears applicable to both prokaryotic and eukaryotic forms of the enzyme. The advantages of this new purification method are that it is less labor intensive than the traditional procedure and less expensive than methods based on cytochrome c-affinity chromatography.

  18. Prediction of individual milk proteins including free amino acids in bovine milk using mid-infrared spectroscopy and their correlations with milk processing characteristics.

    PubMed

    McDermott, A; Visentin, G; De Marchi, M; Berry, D P; Fenelon, M A; O'Connor, P M; Kenny, O A; McParland, S

    2016-04-01

    The aim of this study was to evaluate the effectiveness of mid-infrared spectroscopy in predicting milk protein and free amino acid (FAA) composition in bovine milk. Milk samples were collected from 7 Irish research herds and represented cows from a range of breeds, parities, and stages of lactation. Mid-infrared spectral data in the range of 900 to 5,000 cm(-1) were available for 730 milk samples; gold standard methods were used to quantify individual protein fractions and FAA of these samples with a view to predicting these gold standard protein fractions and FAA levels with available mid-infrared spectroscopy data. Separate prediction equations were developed for each trait using partial least squares regression; accuracy of prediction was assessed using both cross validation on a calibration data set (n=400 to 591 samples) and external validation on an independent data set (n=143 to 294 samples). The accuracy of prediction in external validation was the same irrespective of whether undertaken on the entire external validation data set or just within the Holstein-Friesian breed. The strongest coefficient of correlation obtained for protein fractions in external validation was 0.74, 0.69, and 0.67 for total casein, total β-lactoglobulin, and β-casein, respectively. Total proteins (i.e., total casein, total whey, and total lactoglobulin) were predicted with greater accuracy then their respective component traits; prediction accuracy using the infrared spectrum was superior to prediction using just milk protein concentration. Weak to moderate prediction accuracies were observed for FAA. The greatest coefficient of correlation in both cross validation and external validation was for Gly (0.75), indicating a moderate accuracy of prediction. Overall, the FAA prediction models overpredicted the gold standard values. Near-unity correlations existed between total casein and β-casein irrespective of whether the traits were based on the gold standard (0.92) or mid

  19. A glutamate to lysine mutation at the end of 2B rod domain of keratin 2e gene in ichthyosis bullosa of Siemens.

    PubMed

    Yang, J M; Lee, E S; Kang, H J; Choi, G S; Yoneda, K; Jung, S Y; Park, K B; Steinert, P M; Lee, E S

    1998-11-01

    Ichthyosis bullosa of Siemens is a rare autosomal dominant skin disorder whose clinical findings are quite similar to those of epidermolytic hyperkeratosis. The differences between those two diseases include absence of erythroderma and different distributions in the skin in ichthyosis bullosa of Siemens. Recent studies have confirmed that ichthyosis bullosa of Siemens is caused by the mutation in the keratin 2e (K2e) gene, which is expressed in the upper spinous and granular layers. We have identified a sporadic case of ichthyosis bullosa of Siemens; based on diagnosis by histopathological findings, the K2e gene of the patient was analysed. Direct sequencing of PCR products revealed a single base change in sequences encoding the highly conserved end of the 2B rod domain segment of the K2e gene. This mutation results in substitution of the codon for glutamic acid by a codon for lysine in position 493 in K2e (E493K). Mutations of the K2e gene involving five different residue positions (Q187P, T485P, L490P, E493D, E493K and E494K) are known to cause ichthyosis bullosa of Siemens. Of these sites, E493, which is conserved in type I and type II keratin genes, is the most frequently altered amino acid in the K2e gene. These data together suggest that this codon constitutes a hot spot for mutations in the K2e gene.

  20. Evaluation of the Effect of Psyllium on the Viability of Lactobacillus Acidophilus in Alginate-Polyl Lysine Beads

    PubMed Central

    Esmaeilzadeh, Jaleh; Nazemiyeh, Hossein; Maghsoodi, Maryam; Lotfipour, Farzaneh

    2016-01-01

    Purpose: Psylliumseeds are used in traditional herbal medicine to treat various disorders. Moreover, as a soluble fiber, psyllium has potential to stimulate bacterial growth in digestive system. We aimed to substitute alkali-extractable polysaccharides of psyllium for alginate in beads with second coat of poly-l-lysine to coat Lactobacillus acidophilus. Methods: Beads were prepared using extrusion technique. Poly-l-lysine as second coat was incorporated on optimum alginate/psyllium beads using immersion technique. Beads were characterized in terms of size, encapsulation efficiency, integrity and bacterial survival in harsh conditions. Results: Beads with narrow size distribution ranging from 1.85 ± 0.05 to 2.40 ± 0.18 mm with encapsulation efficiency higher than 96% were achieved. Psyllium concentrations in beads did not produce constant trend in bead sizes. Surface topography by SEM showed that substitution of psyllium enhanced integrity of obtained beads. Psyllium successfully protected the bacteria against acidic condition and lyophilization equal to alginate in the beads. Better survivability with beads of alginate/psyllium-poly-l-lysine was achieved with around 2 log rise in bacterial count in acid condition compared to the corresponding single coat beads. Conclusion: Alginate/psyllium (1:2) beads with narrow size distribution and high encapsulation efficiency of the bacteria have been achieved. Presence of psyllium produced a much smoother and integrated surface texture for the beads with sufficient protection of the bacteria against acidic condition as much as alginate. Considering the health benefits of psyllium and its prebiotic activity, psyllium can be beneficially replaced in part for alginate in probiotic coating. PMID:27766217

  1. Amine oxidation mediated by lysine-specific demethylase 1: quantum mechanics/molecular mechanics insights into mechanism and role of lysine 661.

    PubMed

    Karasulu, Bora; Patil, Mahendra; Thiel, Walter

    2013-09-11

    We report classical molecular dynamics (MD) simulations and combined quantum mechanics/molecular mechanics (QM/MM) calculations to elucidate the catalytic mechanism of the rate-determining amine oxidation step in the lysine-specific demethylase 1 (LSD1)-catalyzed demethylation of the histone tail lysine (H3K4), with flavin adenine dinucleotide (FAD) acting as cofactor. The oxidation of substrate lysine (sLys) involves the cleavage of an α-CH bond accompanied by the transfer of a hydride ion equivalent to FAD, leading to an imine intermediate. This hydride transfer pathway is shown to be clearly favored for sLys oxidation over other proposed mechanisms, including the radical (or single-electron transfer) route as well as carbanion and polar-nucleophilic mechanisms. MD simulations on six NVT ensembles (covering different protonation states of sLys and K661 as well as the K661M mutant) identify two possible orientations of the reacting sLys and FAD subunits (called "downward" and "upward"). Calculations at the QM(B3LYP-D/6-31G*)/CHARMM22 level provide molecular-level insights into the mechanism, helping to understand how LSD1 achieves the activation of the rather inert methyl-CH bond in a metal-free environment. Factors such as proper alignment of sLys (downward orientation), transition-state stabilization (due to the protein environment and favorable orbital interactions), and product stabilization via adduct formation are found to be crucial for facilitating the oxidative α-CH bond cleavage. The current study also sheds light on the role of important active-site residues (Y761, K661, and W695) and of the conserved water-bridge motif. The steric influence of Y761 helps to position the reaction partners properly, K661 is predicted to get deprotonated prior to substrate binding and to act as an active-site base that accepts a proton from sLys to enable the subsequent amine oxidation, and the water bridge that is stabilized by K661 and W695 mediates this proton

  2. A T-DNA Insertion Knockout of the Bifunctional Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase Gene Elevates Lysine Levels in Arabidopsis Seeds1

    PubMed Central

    Zhu, Xiaohong; Tang, Guiliang; Granier, Fabienne; Bouchez, David; Galili, Gad

    2001-01-01

    Plants possess both anabolic and catabolic pathways for the essential amino acid lysine (Lys). However, although the biosynthetic pathway was clearly shown to regulate Lys accumulation in plants, the functional significance of Lys catabolism has not been experimentally elucidated. To address this issue, we have isolated an Arabidopsis knockout mutant with a T-DNA inserted into exon 13 of the gene encoding Lys ketoglutarate reductase/saccharopine dehydrogenase. This bifunctional enzyme controls the first two steps of Lys catabolism. The phenotype of the LKR/SDH knockout was indistinguishable from wild-type plants under normal growth conditions, suggesting that Lys catabolism is not an essential pathway under standard growth conditions. However, mature seeds of the knockout mutant over-accumulated Lys compared with wild-type plants. This report provides the first direct evidence for the functional significance of Lys catabolism in regulating Lys accumulation in seeds. Such a knockout mutant may also provide new perspectives to improve the level of the essential amino acid Lys in plant seeds. PMID:11500552

  3. The effect of level of crude protein and available lysine on finishing pig performance, nitrogen balance and nutrient digestibility.

    PubMed

    Ball, M E E; Magowan, E; McCracken, K J; Beattie, V E; Bradford, R; Gordon, F J; Robinson, M J; Smyth, S; Henry, W

    2013-04-01

    Two trials were conducted to investigate the effect of decreasing the crude protein (CP) content of diets for finishing pigs containing two levels of available lysine on nutrient digestibility, nitrogen (N) balance and production performance. Ten finishing diets containing five levels of CP (on average 144, 155, 168, 182 and 193 g/kg fresh basis) and two levels of available lysine (6.9 and 8.2 g/kg fresh basis) were formulated. The diets were offered to pigs on a performance trial (n = 800 Large White (LW)×Landrace (LR) pigs) from 10 wk of age until finish at 21 wks+5 d of age. Average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR) were calculated. In addition, a digestibility/N balance trial was conducted using pigs (n = 80 LW×LR) housed in metabolism crates. Digestibility of dry matter (DM), CP, oil, fibre and energy was determined. N balance values were determined through analysis of N content of urine and faeces ('as determined'). N balance values were also calculated using ADG values and assuming that 16% of growth is protein deposition ("as calculated"). Pig performance was poor between 10 and 13 wk of age which indicated that the dietary treatments were nutritionally inadequate for pigs less than 40 kg. There was a significant (p<0.01) quadratic effect of increasing CP level on feed intake, ADG and FCR from 10 to 13 wk which indicated that the lower CP levels did not supply adequate levels of essential or non-essential amino acids. There was no effect of increasing available lysine level throughout the early period, which in conjunction with the response in older pigs, suggested that both 8.2 and 6.9 g/kg available lysine were insufficient to drive optimum growth. There was a positive response (p<0.05) to increasing available lysine level from 13 wk to finish which indicated that 6.9 g/kg available lysine was not adequate for finishing pigs. Energy digestibility decreased with decreasing CP level of diets containing 6

  4. Lysine 2,3-aminomutase. Support for a mechanism of hydrogen transfer involving S-adenosylmethionine.

    PubMed

    Baraniak, J; Moss, M L; Frey, P A

    1989-01-25

    The conversion of L-lysine to L-beta-lysine is catalyzed by lysine 2,3-aminomutase. The reaction involves the interchange of the 2-amino group of lysine with a hydrogen at carbon 3. As such the reaction is formally analogous to adenosylcobalamin-dependent rearrangements. However, the enzyme does not contain and is not activated by this coenzyme. Instead it contains iron and pyridoxal phosphate and is activated by S-adenosylmethionine. Earlier experiments implicated adenosyl-C-5' of S-adenosylmethionine in the hydrogen transfer mechanism, apparently in a role similar or analogous to that of adenosyl moiety of adenosylcobalamin in the B12-dependent rearrangements. The question of whether both hydrogens or only one hydrogen at adenosyl-C-5' participate in the hydrogen-transfer process has been addressed by carrying out the lysine 2,3-aminomutase reaction with S-[5'-3H] adenosylmethionine in the presence of 10 times its molar concentration of enzyme. Under these conditions all of the tritium appeared in lysine and beta-lysine, showing that C-5'-hydrogens participate. To determine whether hydrogen transfer is compulsorily intermolecular and intramolecular, various molar ratios of [3,3-2H2]lysine and unlabeled lysine were submitted to the action of lysine 2,3-aminomutase under conditions in which 10-15% conversion to beta-lysine occurred. Mass spectral analysis of the beta-lysine for monodeutero and dideutero species showed conclusively that hydrogen transfer is both intramolecular and intermolecular. The results quantitatively support our postulate that activation of the enzyme involves a transformation of S-adenosylmethionine into a form that promotes the generation of an adenosyl-5' free radical, which abstracts hydrogen from lysine to form 5'-deoxyadenosine as an intermediate.

  5. The effects of ursodeoxycholic acid treatment for intrahepatic cholestasis of pregnancy on maternal and fetal outcomes: a meta-analysis including non-randomized studies.

    PubMed

    Grand'Maison, Sophie; Durand, Madeleine; Mahone, Michèle

    2014-07-01

    Objectif : Les avantages de l’utilisation d’acide ursodésoxycholique (AUDC) pour la prise en charge de la cholestase intrahépatique de la grossesse (CIG) demeurent incertains. Une analyse Cochrane de 2010 ayant porté sur des essais comparatifs randomisés n’a pas été en mesure de se prononcer pour ou contre l’utilisation d’AUDC pour la prise en charge de la CIG. Nous avons mené une méta-analyse de la littérature, en englobant tant les études non randomisées (ENR) que les ECR. Nous avions pour objectif de déterminer si les patientes ayant participé aux ENR étaient comparables à celles qui avaient participé aux ECR; nous avions également pour objectif de déterminer si l’inclusion des ENR pouvait renforcer les données probantes disponibles et orienter la pratique clinique quant à l’utilisation d’AUDC chez les femmes qui présentent une CIG. Sources de données : Nous avons mené des recherches dans Medline (Ovid), Embase (Ovid), EMB Reviews, Cinahl (Ebsco) et Web of Knowledge (Thomson Reuters) en vue d’en tirer les articles publiés entre 1966 et juin 2012. Sélection des études : Nous avons inclus tous les ECR admissibles ayant comparé l’AUDC à un placebo ou à d’autres traitements et toutes les ENR ayant comparé l’AUDC à tout autre traitement chez des femmes présentant une CIG. Synthèse des données : Nous avons inclus 11 ECR (n = 625 grossesses) et six ENR (n = 211 grossesses). Bien que les femmes ayant participé aux ECR et aux ENR aient été comparables, la qualité des études était plus faible dans le cas des ENR. De façon générale, les femmes traitées à l’AUDC ont connu une atténuation du prurit dans 73 % des ECR et dans 100 % des ENR disposant de données disponibles. Les épreuves de fonction hépatique ont présenté une amélioration dans 82 % des ECR et dans 100 % des ENR disposant de données disponibles. Bien que l’utilisation d’AUDC n’ait pas affecté le taux de c

  6. Formation of pyrazines in Maillard model systems of lysine-containing dipeptides.

    PubMed

    Van Lancker, Fien; Adams, An; De Kimpe, Norbert

    2010-02-24

    Whereas most studies concerning the Maillard reaction have focused on free amino acids, little information is available on the impact of peptides and proteins on this important reaction in food chemistry. Therefore, the formation of flavor compounds from the model reactions of glucose, methylglyoxal, or glyoxal with eight dipeptides with lysine at the N-terminus was studied in comparison with the corresponding free amino acids by means of stir bar sorptive extraction (SBSE) followed by GC-MS analysis. The reaction mixtures of the dipeptides containing glucose, methylglyoxal, and glyoxal produced 27, 18, and 2 different pyrazines, respectively. Generally, the pyrazines were produced more in the case of dipeptides as compared to free amino acids. For reactions with glucose and methylglyoxal, this difference was mainly caused by the large amounts of 2,5(6)-dimethylpyrazine and trimethylpyrazine produced from the reactions with dipeptides. For reactions with glyoxal, the difference in pyrazine production was rather small and mostly unsubstituted pyrazine was formed. A reaction mechanism for pyrazine formation from dipeptides was proposed and evaluated. This study clearly illustrates the capability of peptides to produce flavor compounds that can differ from those obtained from the corresponding reactions with free amino acids.

  7. Identification and Characterization of a Novel Human Methyltransferase Modulating Hsp70 Protein Function through Lysine Methylation*

    PubMed Central

    Jakobsson, Magnus E.; Moen, Anders; Bousset, Luc; Egge-Jacobsen, Wolfgang; Kernstock, Stefan; Melki, Ronald; Falnes, Pål Ø.

    2013-01-01

    Hsp70 proteins constitute an evolutionarily conserved protein family of ATP-dependent molecular chaperones involved in a wide range of biological processes. Mammalian Hsp70 proteins are subject to various post-translational modifications, including methylation, but for most of these, a functional role has not been attributed. In this study, we identified the methyltransferase METTL21A as the enzyme responsible for trimethylation of a conserved lysine residue found in several human Hsp70 (HSPA) proteins. This enzyme, denoted by us as HSPA lysine (K) methyltransferase (HSPA-KMT), was found to catalyze trimethylation of various Hsp70 family members both in vitro and in vivo, and the reaction was stimulated by ATP. Furthermore, we show that HSPA-KMT exclusively methylates 70-kDa proteins in mammalian protein extracts, demonstrating that it is a highly specific enzyme. Finally, we show that trimethylation of HSPA8 (Hsc70) has functional consequences, as it alters the affinity of the chaperone for both the monomeric and fibrillar forms of the Parkinson disease-associated protein α-synuclein. PMID:23921388

  8. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal

    PubMed Central

    Bui, Thi Phuong Nam; Ritari, Jarmo; Boeren, Sjef; de Waard, Pieter; Plugge, Caroline M.; de Vos, Willem M.

    2015-01-01

    Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products. PMID:26620920

  9. The Lysine Acetyltransferase Activator Brpf1 Governs Dentate Gyrus Development through Neural Stem Cells and Progenitors

    PubMed Central

    You, Linya; Yan, Kezhi; Zhou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis. PMID:25757017

  10. Discovery of an in vivo Chemical Probe of the Lysine Methyltransferases G9a and GLP

    PubMed Central

    Liu, Feng; Barsyte-Lovejoy, Dalia; Li, Fengling; Xiong, Yan; Korboukh, Victoria; Huang, Xi-Ping; Allali-Hassani, Abdellah; Janzen, William P.; Roth, Bryan L.; Frye, Stephen V.; Arrowsmith, Cheryl H.; Brown, Peter J.; Vedadi, Masoud; Jin, Jian

    2013-01-01

    Among epigenetic “writers”, “readers”, and “erasers”, the lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9me2) and non-histone proteins, have been implicated in a variety of human diseases. A “toolkit” of well-characterized chemical probes will allow biological and disease hypotheses concerning these proteins to be tested in cell-based and animal models with high confidence. We previously discovered potent and selective G9a/GLP inhibitors including the cellular chemical probe UNC0638, which displays an excellent separation of functional potency and cell toxicity. However, this inhibitor is not suitable for animal studies due to its poor pharmacokinetic (PK) properties. Here, we report the discovery of the first G9a and GLP in vivo chemical probe UNC0642, which not only maintains high in vitro and cellular potency, low cell toxicity, and excellent selectivity, but also displays improved in vivo PK properties, making it suitable for animal studies. PMID:24102134

  11. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo

    PubMed Central

    Gorsky, Marianna Karina; Burnouf, Sylvie; Dols, Jacqueline; Mandelkow, Eckhard; Partridge, Linda

    2016-01-01

    Dysfunction and accumulation of the microtubule-associated human Tau (hTau) protein into intraneuronal aggregates is observed in many neurodegenerative disorders including Alzheimer’s disease (AD). Reversible lysine acetylation has recently emerged as a post-translational modification that may play an important role in the modulation of hTau pathology. Acetylated hTau species have been observed within hTau aggregates in human AD brains and multi-acetylation of hTau in vitro regulates its propensity to aggregate. However, whether lysine acetylation at position 280 (K280) modulates hTau-induced toxicity in vivo is unknown. We generated new Drosophila transgenic models of hTau pathology to evaluate the contribution of K280 acetylation to hTau toxicity, by analysing the respective toxicity of pseudo-acetylated (K280Q) and pseudo-de-acetylated (K280R) mutant forms of hTau. We observed that mis-expression of pseudo-acetylated K280Q-hTau in the adult fly nervous system potently exacerbated fly locomotion defects and photoreceptor neurodegeneration. In addition, modulation of K280 influenced total hTau levels and phosphorylation without changing hTau solubility. Altogether, our results indicate that pseudo-acetylation of the single K280 residue is sufficient to exacerbate hTau neurotoxicity in vivo, suggesting that acetylated K280-hTau species contribute to the pathological events leading to neurodegeneration in AD. PMID:26940749

  12. Synthesis and characterization of biodegradable lysine-based waterborne polyurethane for soft tissue engineering applications.

    PubMed

    Hao, Hongye; Shao, Jingyu; Deng, Ya; He, Shan; Luo, Feng; Wu, Yingke; Li, Jiehua; Tan, Hong; Li, Jianshu; Fu, Qiang

    2016-10-18

    Biomaterials for soft tissue engineering scaffolds require a combination of multiple properties including suitable mechanical properties, biodegradability, and biocompatibility. In this work, a series of light-crosslinking waterborne polyurethanes (LWPUs) were prepared using l-lysine ethyl ester diisocyanate (LDI), 1,3-propanediol (PDO) and l-lysine as hard segments and poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG) as soft segments. The obtained LWPUs exhibited appropriate stretchability with a break elongation of 1400-2500% and an excellent strength of 12-18 MPa, which could admirably meet the requirements for soft tissue engineering scaffolds. In addition, the hydrophilic surfaces of LWPUs could effectively reduce protein adsorption and platelet adhesion and favor cell proliferation compared with traditional biomedical polyurethanes. The ultimate degradation products of LWPUs were proven to be nontoxic in a cytotoxicity test. More interestingly, a cytokine release test of macrophages adherent to the LWPU film surfaces shows that these macrophages secreted less pro-inflammation cytokine TNF-α and more anti-inflammation cytokine IL-10 after 3 days' culture, indicating that LWPUs possess the potential ability to aid in the transition of macrophages toward a wound healing phenotype. Furthermore, the LWPU films could support the adhesion and proliferation of endothelial cells. Thus, the obtained LWPUs have great potential for applications in soft tissue engineering scaffolds for tissue repair and wound healing.

  13. Effects of long chain fatty acids on solute absorption: perfusion studies in the human jejunum.

    PubMed Central

    Ammon, H V; Thomas, P J; Phillips, S F

    1977-01-01

    Perfusion studies were performed in healthy volunteers to test the hypothesis that net fluid secretion induced by fatty acids is accompanied by parallel reduction in solute transport. Ricinoleic acid provoked a marked net secretion of fluid and concomitantly inhibited the absorption of all solutes tested; these included glucose, xylose, L-leucine, L-lysine, Folic acid, and 2-mono-olein. Oleic acid also reduced net fluid and solute transport, but was less potent in reducing solute absorption than was ricinoleic acid. When fluid secretion was induced osmotically with mannitol, glucose and xylose absorption was not affected. The mechanism for this generalised effect of fatty acids on solute absorption is uncertain, possibly nonspecific, and might be related to mucosal damage and altered mucosal permeability induced by these agents. PMID:590838

  14. Expansion of Lysine-rich Repeats in Plasmodium Proteins Generates Novel Localization Sequences That Target the Periphery of the Host Erythrocyte*

    PubMed Central

    Davies, Heledd M.; Thalassinos, Konstantinos; Osborne, Andrew R.

    2016-01-01

    Repetitive low complexity sequences, mostly assumed to have no function, are common in proteins that are exported by the malaria parasite into its host erythrocyte. We identify a group of exported proteins containing short lysine-rich tandemly repeated sequences that are sufficient to localize to the erythrocyte periphery, where key virulence-related modifications to the plasma membrane and the underlying cytoskeleton are known to occur. Efficiency of targeting is dependent on repeat number, indicating that novel targeting modules could evolve by expansion of short lysine-rich sequences. Indeed, analysis of fragments of GARP from different species shows that two novel targeting sequences have arisen via the process of repeat expansion in this protein. In the protein Hyp12, the targeting function of a lysine-rich sequence is masked by a neighboring repetitive acidic sequence, further highlighting the importance of repetitive low complexity sequences. We show that sequences capable of targeting the erythrocyte periphery are present in at least nine proteins from Plasmodium falciparum and one from Plasmodium knowlesi. We find these sequences in proteins known to be involved in erythrocyte rigidification and cytoadhesion as well as in previously uncharacterized exported proteins. Together, these data suggest that expansion and contraction of lysine-rich repeats could generate targeting sequences de novo as well as modulate protein targeting efficiency and function in response to selective pressure. PMID:27777305

  15. Stable Isotope Peptide Mass Spectrometry To Decipher Amino Acid Metabolism in Dehalococcoides Strain CBDB1

    PubMed Central

    Marco-Urrea, Ernest; Seifert, Jana; von Bergen, Martin

    2012-01-01

    Dehalococcoides species are key players in the anaerobic transformation of halogenated solvents at contaminated sites. Here, we analyze isotopologue distributions in amino acid pools from peptides of Dehalococcoides strain CBDB1 after incubation with 13C-labeled acetate or bicarbonate as a carbon source. The resulting data were interpreted with regard to genome annotations to identify amino acid biosynthesis pathways. In addition to using gas chromatography-mass spectrometry (GC-MS) for analyzing derivatized amino acids after protein hydrolysis, we introduce a second, much milder method, in which we directly analyze peptide masses after tryptic digest and peptide fragments by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry (nano-LC-ESI-MS/MS). With this method, we identify isotope incorporation patterns for 17 proteinaceous amino acids, including proline, cysteine, lysine, and arginine, which escaped previous analyses in Dehalococcoides. Our results confirmed lysine biosynthesis via the α-aminoadipate pathway, precluding lysine formation from aspartate. Similarly, the isotopologue pattern obtained for arginine provided biochemical evidence of its synthesis from glutamate. Direct peptide MS/MS analysis of the labeling patterns of glutamine and asparagine, which were converted to glutamate and aspartate during protein hydrolysis, gave biochemical evidence of their precursors and confirmed glutamate biosynthesis via a Re-specific citrate synthase. By addition of unlabeled free amino acids to labeled cells, we show that in strain CBDB1 none of the 17 tested amino acids was incorporated into cell mass, indicating that they are all synthesized de novo. Our approach is widely applicable and provides a means to analyze amino acid metabolism by studying specific proteins even in mixed consortia. PMID:22661690

  16. Influence of methionine supplementation of growing diets enriched with lysine on feedlot performance and characteristics of digestion in Holstein steer calves

    PubMed Central

    Torrentera, Noemí; Carrasco, Ramsés; Salinas-Chavira, Jaime; Plascencia, Alejandro; Zinn, Richard A.

    2017-01-01

    Objective Two trials were conducted in order to examine the effects of level of supplemental methionine on productive performance, dietary energetic, plasma amino acid concentration, and digestive function. Methods Dietary treatments consisted of a steam-flaked corn-based diet containing urea as the only source of supplemental nitrogen supplemented with no supplemental amino acid (control), or control plus 1.01% lysine and 0.032%, 0.064%, 0.096%, or 0.128% methionine. In Trial 1, 150 Holstein steer calves (127±4.9 kg) were utilized to evaluate the influence of treatments on growth-performance, dietary energetic, plasma amino acid concentration during the first 112 days of growing period. During the initial 56-d period calves received the 5 experimental diets. During the subsequent 56-d period all calves were fed the control diet. Results During the initial 56-d period, methionine supplementation increased (linear effect, p<0.01) plasma methionine. In the presence of supplemental lysine, increases on level of methionine in diet did not affect average daily gain. However, increased gain efficiency (quadratic effect, p = 0.03) and estimated dietary net energy (NE; linear effect, p = 0.05). Estimated metabolizable methionine supply was closely associated (R2 = 0.95) with efficiency NE utilization for maintenance and gain. During the subsequent 56-d period, when all calves received the control diet (no amino acid supplementation), plasma amino acid concentrations and growth performance was not different among groups. However, the effects of methionine supplementation during the initial 56-period carried over, so that following a 56-d withdrawal of supplementation, the overall 112-d effects on gain efficiency (quadratic effect, p = 0.05) dietary NE (linear effect, p≤0.05) remained appreciable. In Trial 2, 5 cannulated Holstein steers were used to evaluate treatment effects on characteristics of digestion and amino acid supply to the small intestine. There were no

  17. Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci.

    PubMed

    Horgan, Marianne; O'Flynn, Gary; Garry, Jennifer; Cooney, Jakki; Coffey, Aidan; Fitzgerald, Gerald F; Ross, R Paul; McAuliffe, Olivia

    2009-02-01

    A truncated derivative of the phage endolysin LysK containing only the CHAP (cysteine- and histidine-dependent amidohydrolase/peptidase) domain exhibited lytic activity against live clinical staphylococcal isolates, including methicillin-resistant Staphylococcus aureus. This is the first known report of a truncated phage lysin which retains high lytic activity against live staphylococcal cells.

  18. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA

    PubMed Central

    Kandiah, Eaazhisai; Carriel, Diego; Perard, Julien; Malet, Hélène; Bacia, Maria; Liu, Kaiyin; Chan, Sze W. S.; Houry, Walid A.; Ollagnier de Choudens, Sandrine; Elsen, Sylvie; Gutsche, Irina

    2016-01-01

    The inducible lysine decarboxylase LdcI is an important enterobacterial acid stress response enzyme whereas LdcC is its close paralogue thought to play mainly a metabolic role. A unique macromolecular cage formed by two decamers of the Escherichia coli LdcI and five hexamers of the AAA+ ATPase RavA was shown to counteract acid stress under starvation. Previously, we proposed a pseudoatomic model of the LdcI-RavA cage based on its cryo-electron microscopy map and crystal structures of an inactive LdcI decamer and a RavA monomer. We now present cryo-electron microscopy 3D reconstructions of the E. coli LdcI and LdcC, and an improved map of the LdcI bound to the LARA domain of RavA, at pH optimal for their enzymatic activity. Comparison with each other and with available structures uncovers differences between LdcI and LdcC explaining why only the acid stress response enzyme is capable of binding RavA. We identify interdomain movements associated with the pH-dependent enzyme activation and with the RavA binding. Multiple sequence alignment coupled to a phylogenetic analysis reveals that certain enterobacteria exert evolutionary pressure on the lysine decarboxylase towards the cage-like assembly with RavA, implying that this complex may have an important function under particular stress conditions. PMID:27080013

  19. Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Mo, Ran; Yang, Mingkun; Chen, Zhuo; Cheng, Zhongyi; Yi, Xingling; Li, Chongyang; He, Chenliu; Xiong, Qian; Chen, Hui; Wang, Qiang; Ge, Feng

    2015-02-06

    Cyanobacteria are the oldest known life form inhabiting Earth and the only prokaryotes capable of performing oxygenic photosynthesis. Synechocystis sp. PCC 6803 (Synechocystis) is a model cyanobacterium used extensively in research on photosynthesis and environmental adaptation. Posttranslational protein modification by lysine acetylation plays a critical regulatory role in both eukaryotes and prokaryotes; however, its extent and function in cyanobacteria remain unexplored. Herein, we performed a global acetylome analysis on Synechocystis through peptide prefractionation, antibody enrichment, and high accuracy LC-MS/MS analysis; identified 776 acetylation sites on 513 acetylated proteins; and functionally categorized them into an interaction map showing their involvement in various biological processes. Consistent with previous reports, a large fraction of the acetylation sites are present on proteins involved in cellular metabolism. Interestingly, for the first time, many proteins involved in photosynthesis, including the subunits of phycocyanin (CpcA, CpcB, CpcC, and CpcG) and allophycocyanin (ApcA, ApcB, ApcD, ApcE, and ApcF), were found to be lysine acetylated, suggesting that lysine acetylation may play regulatory roles in the photosynthesis process. Six identified acetylated proteins associated with photosynthesis and carbon metabolism were further validated by immunoprecipitation and Western blotting. Our data provide the first global survey of lysine acetylation in cyanobacteria and reveal previously unappreciated roles of lysine acetylation in the regulation of photosynthesis. The provided data set may serve as an important resource for the functional analysis of lysine acetylation in cyanobacteria and facilitate the elucidation of the entire metabolic networks and photosynthesis process in this model cyanobacterium.

  20. A lysine-to-arginine mutation on NEDD8 markedly reduces the activity of cullin RING E3 ligase through the impairment of neddylation cascades

    SciTech Connect

    Sui, Yiyan; Liu, Yaobin; Xu, Guoqiang

    2015-06-12

    Neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like modifier, which forms covalent conjugates on lysines of its substrates. This post-translational modification, neddylation, plays important roles in tumor cell proliferation and viability. Ubiquitin can form diverse polyubiquitin chains, on its seven lysines, which play important functions in various biological processes. However, the roles of lysines in NEDD8 have not been explored. Here, we generated nine NEDD8 point mutants, each with one lysine replaced by an arginine, to study the putative function of lysines in NEDD8. Our experiments discover that Lys27 in NEDD8 is a critical residue for protein neddylation. Replacement of this residue with arginine almost completely eliminates the conjugation of NEDD8 to its substrates. Furthermore, we find that the K27R mutant impairs NEDD8 conjugation to the E2 enzyme, which normally forms thioester bonds for further transferring NEDD8 to its ligases and substrates. Therefore, this mutation completely inhibits global protein neddylation, including neddylation of cullin family proteins, resulting in decreased activity of cullin-RING E3 ligases. This work sheds new light on the roles of NEDD8 lysines on neddylation cascades and provides a dominant negative mutant for the study of neddylation and its biological functions. - Highlights: • Lys27 in NEDD8 is critical for protein neddylation. • NEDD8 K27R mutant impairs the NEDD8 conjugation. • NEDD8 K27R mutant significantly reduces the activity of cullin-RING E3 ligases.

  1. Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.

    PubMed

    Hartl, Markus; König, Ann-Christine; Finkemeier, Iris

    2015-01-01

    The (ε)N-acetylation of lysine side chains is a highly conserved posttranslational modification of both prokaryotic and eukaryotic proteins. Lysine acetylation not only occurs on histones in the nucleus but also on many mitochondrial proteins in plants and animals. As the transfer of the acetyl group to lysine eliminates its positive charge, lysine acetylation can affect the biological function of proteins. This chapter describes two methods for the identification of lysine-acetylated proteins in plant mitochondria using an anti-acetyllysine antibody. We describe the Western blot analysis of a two-dimensional blue native-polyacrylamide gel electrophoresis with an anti-acetyllysine antibody as well as the immuno-enrichment of lysine-acetylated peptides followed by liquid chromatography-tandem mass spectrometry data acquisition and analysis.

  2. Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis.

    PubMed

    Lukacik, Petra; Barnard, Travis J; Buchanan, Susan K

    2012-12-01

    Purified phage lysins present an alternative to traditional antibiotics and work by hydrolysing peptidoglycan. Phage lysins have been developed against Gram-positive pathogens such as Bacillus anthracis and Streptococcus pneumoniae, where the peptidoglycan layer is exposed on the cell surface. Addition of the lysin to a bacterial culture results in rapid death of the organism. Gram-negative bacteria are resistant to phage lysins because they contain an outer membrane that protects the peptidoglycan from degradation. We solved crystal structures of a Yersinia pestis outer-membrane protein and the bacteriocin that targets it, which informed engineering of a bacterial-phage hybrid lysin that can be transported across the outer membrane to kill specific Gram-negative bacteria. This work provides a template for engineering phage lysins against a wide variety of bacterial pathogens.

  3. Homology modeling, substrate docking, and molecular simulation studies of mycobacteriophage Che12 lysin A.

    PubMed

    Saadhali, Shainaba A; Hassan, Sameer; Hanna, Luke Elizabeth; Ranganathan, Uma Devi; Kumar, Vanaja

    2016-08-01

    Mycobacteriophages produce lysins that break down the host cell wall at the end of lytic cycle to release their progenies. The ability to lyse mycobacterial cells makes the lysins significant. Mycobacteriophage Che12 is the first reported temperate phage capable of infecting and lysogenising Mycobacterium tuberculosis. Gp11 of Che12 was found to have Chitinase domain that serves as endolysin (lysin A) for Che12. Structure of gp11 was modeled and evaluated using Ramachandran plot in which 98 % of the residues are in the favored and allowed regions. Che12 lysin A was predicted to act on NAG-NAM-NAG molecules in the peptidoglycan of cell wall. The tautomers of NAG-NAM-NAG molecule were generated and docked with lysin A. The stability and binding affinity of lysin A - NAG-NAM-NAG tautomers were studied using molecular dynamics simulations.

  4. [Nourseothricin (streptothricin) inactivated by plasmid pIE 636-encoded acetyltransferase: detection of N-acetyl-beta-lysine in the inactivated product].

    PubMed

    Seltmann, G

    1985-12-01

    Nourseothricin (streptothricin) can be inactivated by an acetyl transferase synthesized by E. coli strains containing plasmid pIE 636. Nourseothricin inactivated in the presence of 14C-acetyl-coenzyme A was purified and submitted to partial acidic hydrolysis. By electrophoresis of the hydrolysate a 14C-containing substance moving only slowly towards the cathode could be isolated. This substance after complete hydrolysis yields only unlabelled beta-lysine.

  5. Uptake of manganese from manganese-lysine complex in the primary rat intestinal epithelial cells.

    PubMed

    Zhang, H; Gilbert, E R; Zhang, K; Ding, X; Luo, Y; Wang, J; Zeng, Q; Bai, S

    2017-02-01

    This study was conducted to compare the differences of the uptake of Mn from Mn-lysine complex (MnLys) and MnSO4 and to determine the potential mechanisms of the uptake of Mn from MnLys. We first established the primary rat intestinal epithelial cell culture model and used it to determine the uptake of Mn from different Mn sources. The MnLys increased (p < 0.001) Mn uptake when compared to MnSO4 . The uptake of Mn decreased (p < 0.05) with added Fe concentration increasing in the medium regardless of Mn source. The MnLys decreased (p < 0.01) Mn(2+) efflux transporter ferroportin 1 (FPN1) mRNA level, but did not influence (p > 0.06) Mn(2+) influx transporter DMT1 mRNA expression when compared to MnSO4 . The results above indicated that the increase of Mn accumulation for MnLys at least partly was due to the decrease of Mn efflux by reduced FPN1 expression. The N-ethylmaleimide, as an l-lysine transport system y(+) inhibitor, decreased (p < 0.001) the uptake of Mn from MnLys, but did not affect (p > 0.10) the uptake of Mn from MnSO4 . The cycloheximide, as an l-lysine transport system b(0,+) activator, increased (p < 0.001) the uptake of Mn from MnLys, whereas also did not influence the uptake of Mn from MnSO4 . The MnLys increased (p < 0.01) the system y(+) member cationic amino acid transporter (CAT) 1, and system b(0,+) components rBAT and b(0,+) AT mRN