Science.gov

Sample records for acids including lysine

  1. Structural Insights Into Amino Acid Binding and Gene Control by a Lysine Riboswitch

    SciTech Connect

    Serganov, A.; Huang, L; Patel, D

    2008-01-01

    In bacteria, the intracellular concentration of several amino acids is controlled by riboswitches1, 2, 3, 4. One of the important regulatory circuits involves lysine-specific riboswitches, which direct the biosynthesis and transport of lysine and precursors common for lysine and other amino acids. To understand the molecular basis of amino acid recognition by riboswitches, here we present the crystal structure of the 174-nucleotide sensing domain of the Thermotoga maritima lysine riboswitch in the lysine-bound (1.9 A) and free (3.1 A) states. The riboswitch features an unusual and intricate architecture, involving three-helical and two-helical bundles connected by a compact five-helical junction and stabilized by various long-range tertiary interactions. Lysine interacts with the junctional core of the riboswitch and is specifically recognized through shape-complementarity within the elongated binding pocket and through several direct and K+-mediated hydrogen bonds to its charged ends. Our structural and biochemical studies indicate preformation of the riboswitch scaffold and identify conformational changes associated with the formation of a stable lysine-bound state, which prevents alternative folding of the riboswitch and facilitates formation of downstream regulatory elements. We have also determined several structures of the riboswitch bound to different lysine analogues5, including antibiotics, in an effort to understand the ligand-binding capabilities of the lysine riboswitch and understand the nature of antibiotic resistance. Our results provide insights into a mechanism of lysine-riboswitch-dependent gene control at the molecular level, thereby contributing to continuing efforts at exploration of the pharmaceutical and biotechnological potential of riboswitches.

  2. Histidine-lysine peptides as carriers of nucleic acids.

    PubMed

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo. PMID:17440630

  3. Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats.

    PubMed

    Nagao, Kenji; Bannai, Makoto; Seki, Shinobu; Kawai, Nobuhiro; Mori, Masato; Takahashi, Michio

    2010-06-01

    Rats voluntarily run up to a dozen kilometers per night when their cages are equipped with a running wheel. Daily voluntary running is generally thought to enhance protein turnover. Thus, we sought to determine whether running worsens or improves protein degradation caused by a lysine-deficient diet and whether it changes the utilization of free amino acids released by proteolysis. Rats were fed a lysine-deficient diet and were given free access to a running wheel or remained sedentary (control) for 4 wk. Amino acid levels in plasma, muscle, and liver were measured together with plasma insulin levels and tissue weight. The lysine-deficient diet induced anorexia, skeletal muscle loss, and serine and threonine aminoacidemia, and it depleted plasma insulin and essential amino acids in skeletal muscle. Allowing rats to run voluntarily improved these symptoms; thus, voluntary wheel running made the rats less susceptible to dietary lysine deficiency. Amelioration of the declines in muscular leucine and plasma insulin observed in running rats could contribute to protein synthesis together with the enhanced availability of lysine and other essential amino acids in skeletal muscle. These results indicate that voluntary wheel running under lysine-deficient conditions does not enhance protein catabolism; on the contrary, it accelerates protein synthesis and contributes to the maintenance of muscle mass. The intense nocturnal voluntary running that characterizes rodents might be an adaptation of lysine-deficient grain eaters that allows them to maximize opportunities for food acquisition. PMID:20233939

  4. A Candida guilliermondii lysine hyperproducer capable of elevated citric acid production.

    PubMed

    West, Thomas P

    2016-05-01

    A mutant of the yeast Candida guilliermondii ATCC 9058 exhibiting elevated citric acid production was isolated based upon its ability to overproduce lysine. This method involved the use of a solid medium containing a combination of lysine analogues to identify a mutant that produced a several-fold higher lysine level compared to its parent strain using glucose or glycerol as a carbon source. The mutant strain was also capable of producing more than a fivefold higher citric acid level on glycerol as a carbon source compared to its parent strain. It was concluded that the screening of yeast lysine hyperproducer strains could provide a rapid approach to isolate yeast citric acid hyperproducer strains. PMID:27038943

  5. A Candida guilliermondii lysine hyperproducer capable of elevated citric acid production.

    PubMed

    West, Thomas P

    2016-05-01

    A mutant of the yeast Candida guilliermondii ATCC 9058 exhibiting elevated citric acid production was isolated based upon its ability to overproduce lysine. This method involved the use of a solid medium containing a combination of lysine analogues to identify a mutant that produced a several-fold higher lysine level compared to its parent strain using glucose or glycerol as a carbon source. The mutant strain was also capable of producing more than a fivefold higher citric acid level on glycerol as a carbon source compared to its parent strain. It was concluded that the screening of yeast lysine hyperproducer strains could provide a rapid approach to isolate yeast citric acid hyperproducer strains.

  6. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance.

    PubMed

    Yang, Qing-Qing; Zhang, Chang-Quan; Chan, Man-Ling; Zhao, Dong-Sheng; Chen, Jin-Zhu; Wang, Qing; Li, Qian-Feng; Yu, Heng-Xiu; Gu, Ming-Hong; Sun, Samuel Sai-Ming; Liu, Qiao-Quan

    2016-07-01

    Rice (Oryza sativa L.), a major staple crop worldwide, has limited levels of the essential amino acid lysine. We previously produced engineered rice with increased lysine content by expressing bacterial aspartate kinase and dihydrodipicolinate synthase and inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase activity. However, the grain quality, field performance, and integration patterns of the transgenes in these lysine-enriched lines remain unclear. In the present study, we selected several elite transgenic lines with endosperm-specific or constitutive regulation of the above key enzymes but lacking the selectable marker gene. All target transgenes were integrated into the intragenic region in the rice genome. Two pyramid transgenic lines (High Free Lysine; HFL1 and HFL2) with free lysine levels in seeds up to 25-fold that of wild type were obtained via a combination of the above two transgenic events. We observed a dramatic increase in total free amino acids and a slight increase in total protein content in both pyramid lines. Moreover, the general physicochemical properties were improved in pyramid transgenic rice, but the starch composition was not affected. Field trials indicated that the growth of HFL transgenic rice was normal, except for a slight difference in plant height and grain colour. Taken together, these findings will be useful for the potential commercialization of high-lysine transgenic rice. PMID:27252467

  7. Effects of dietary lysine levels on plasma free amino acid profile in late-stage finishing pigs.

    PubMed

    Regmi, Naresh; Wang, Taiji; Crenshaw, Mark A; Rude, Brian J; Wu, Guoyao; Liao, Shengfa F

    2016-01-01

    Muscle growth requires a constant supply of amino acids (AAs) from the blood. Therefore, plasma AA profile is a critical factor for maximizing the growth performance of animals, including pigs. This research was conducted to study how dietary lysine intake affects plasma AA profile in pigs at the late production stage. Eighteen crossbred (Large White × Landrace) finishing pigs (nine barrows and nine gilts; initial BW 92.3 ± 6.9 kg) were individually penned in an environment controlled barn. Pigs were assigned randomly to one of the three dietary treatments according to a randomized complete block design with sex as block and pig as experiment unit (6 pigs/treatment). Three corn- and soybean meal-based diets contained 0.43 % (lysine-deficient, Diet I), 0.71 % (lysine-adequate, Diet II), and 0.98 % (lysine-excess, Diet III) l-lysine, respectively. After a 4-week period of feeding, jugular vein blood samples were collected from the pigs and plasma was obtained for AA analysis using established HPLC methods. The change of plasma lysine concentration followed the same pattern as that of dietary lysine supply. The plasma concentrations of threonine, histidine, phenylalanine, isoleucine, valine, arginine, and citrulline of pigs fed Diet II or III were lower (P < 0.05) than that of pigs fed Diet I. The plasma concentrations of alanine, glutamate, and glycine of pigs fed Diet II or III were higher (P < 0.05) than that of pigs fed Diet I. The change of plasma leucine and asparagine concentrations followed the patterns similar to that of plasma lysine. Among those affected AAs, arginine was decreased (P < 0.05) in the greatest proportion with the lysine-excess diet. We suggest that the skeletal muscle growth of finishing pigs may be further increased with a lysine-excess diet if the plasma concentration of arginine can be increased through dietary supplementation or other practical nutritional management strategies. PMID:27386336

  8. AMPHOTERIC BEHAVIOR OF COMPLEX SYSTEMS : III. THE CONDUCTIVITY OF SULFANILIC ACID-LYSIN MIXTURES.

    PubMed

    Stearn, A E

    1927-01-20

    Conductivities of sulfanilic acid, lysin, and mixtures of the two were made over a wide pH range, the pH being adjusted by means of phosphate buffers. The actual conductivities of the sulfanilic acid, the lysin, and the mixture were calculated. The difference between the conductivity of the mixture and the sum of the conductivities of the components alone passes through a maximum at a pH theoretically calculable as the isoelectric point of the system. Certain applications of the results are made to the explanation of the behavior of living tissues.

  9. Role of pipecolic acid in the biosynthesis of lysine in Rhodotorula glutinis.

    PubMed

    Kinzel, J J; Bhattacharjee, J K

    1979-05-01

    The role of pipecolic acid in the biosynthesis of lysine was investigated in Rhodotorula glutinis, an aerobic red yeast. Supplementation of pipecolic acid in the minimal medium supported the growth of mutants lys2, lys3, and lys5; alpha-aminoadipic acid supported the growth of lys5; but neither alpha-aminoadipic acid nor pipecolic acid supported the growth of mutants MNNG42 and MNNG37. During the growth of the appropriate mutants, pipecolic acid was removed from the growth medium and the intracellular pool. In tracer experiments, radioactivity from [(14)C]pipecolic acid was selectively incorporated into the cellular lysine of lys5 and the wild-type strain. l-Pipecolic acid-dependent enzyme activity did not require any cofactor and was inhibited by mercuric chloride and potassium cyanide. This activity was present in the wild-type strain and all of the mutants tested and was repressed in mutant lys5 when grown in the presence of higher concentration of lysine. The reaction product of pipecolic acid was converted to saccharopine by lys5 enzyme in the presence of glutamate and reduced nicotin-amide adenine dinucleotide phosphate. Mutant MNNG37 lacked the saccharopine dehydrogenase activity, indicating that this step is involved in the conversion of alpha-aminoadipic acid and pipecolic acid to lysine. Mutants MNNG37 and MNNG42 accumulated a p-dimethylaminobenzaldehyde-reacting product in the culture supernatant and in the intracellular pool. Chromatographic properties of the p-dimethylaminobenzaldehyde adduct and that of the pipecolic acid-dependent reaction product were similar. The reaction product and the accumulation product were characterized on the basis of mass and absorption spectra as alpha-aminoadipic-semialdehyde, which in solution remains in equilibrium with Delta(1)-piperideine-6-carboxylic acid. Since alpha-aminoadipic-semialdehyde is a known intermediate of the alpha-aminoadipic acid pathway for the biosynthesis of lysine, it is concluded that pipecolic

  10. Self-assembly and foaming properties of fatty acid-lysine aqueous dispersions.

    PubMed

    Novales, Bruno; Riaublanc, Alain; Navailles, Laurence; Houssou, Bérénice Houinsou; Gaillard, Cédric; Nallet, Frédéric; Douliez, Jean-Paul

    2010-04-20

    We report on dispersions of fatty acid-lysine salts in aqueous solutions which are further used to produce foams. The alkyl chain length is varied from dodecyl to stearic. In aqueous solutions, the lysine salt of the dodecyl chain yields an isotropic solution, probably micelles, whereas for longer alkyl chains, vesicles formed but crystallized upon resting at room temperature or when kept at 4 degrees C. Solid-state NMR showed that in vesicles fatty acids are embedded in a lamellar arrangement passing from a gel to a fluid state upon heating; the transition temperature at which it occurs was determined by DSC. Those results are confirmed by small-angle neutron scattering which also give additional information on the bilayer structure. Incredibly stable foams are obtained using the palmitic acid/Lys salt whereas for other alkyl chain length, poor or no foam is formed. We conclude that the foamability is related to the phase behavior in aqueous solution. PMID:20334439

  11. Controlled trial of whole body protein synthesis and plasma amino acid concentrations in yearling horses fed graded amounts of lysine.

    PubMed

    Mastellar, S L; Coleman, R J; Urschel, K L

    2016-10-01

    Lysine has been reported as the first limiting amino acid in typical equine diets. Indicator amino acid oxidation (IAAO) has become the standard method for determining amino acid requirements in other species, but prior to this study, it has not been used to determine equine requirements. The aim of this study was to evaluate whole body protein synthesis and plasma and muscle amino acid concentrations in response to graded levels of lysine intake in yearling horses. Six Thoroughbred colts (358 ± 5 kg) were fed each of six treatment lysine intakes ranging from 76 to 136 mg/kg body weight/day. Blood samples were taken before and 90 min after the morning concentrate meal. Gluteal muscle biopsies were taken ~100 min after the morning concentrate meal. The next day, whole body phenylalanine kinetics were determined using a 2 h primed, constant infusion of [(13)C] sodium bicarbonate followed by a 6 h primed, constant infusion of [1-(13)C] phenylalanine. Plasma lysine concentrations increased linearly (P <0.05) at both the 0 and 90 min time points with increasing lysine intakes. Free muscle asparagine, aspartate, arginine, glutamine, lysine, taurine and tryptophan concentrations responded quadratically to lysine intake (P <0.05). Phenylalanine kinetics did not differ between treatment intakes (P > 0.10). A broken line analysis of lysine intake and phenylalanine oxidation failed to yield a breakpoint from which to determine a lysine requirement. These diets may have been limiting in an amino acid other than lysine, underscoring the lack of data concerning amino acid requirements and bioavailability data in the horse. PMID:27687933

  12. Controlled trial of whole body protein synthesis and plasma amino acid concentrations in yearling horses fed graded amounts of lysine.

    PubMed

    Mastellar, S L; Coleman, R J; Urschel, K L

    2016-10-01

    Lysine has been reported as the first limiting amino acid in typical equine diets. Indicator amino acid oxidation (IAAO) has become the standard method for determining amino acid requirements in other species, but prior to this study, it has not been used to determine equine requirements. The aim of this study was to evaluate whole body protein synthesis and plasma and muscle amino acid concentrations in response to graded levels of lysine intake in yearling horses. Six Thoroughbred colts (358 ± 5 kg) were fed each of six treatment lysine intakes ranging from 76 to 136 mg/kg body weight/day. Blood samples were taken before and 90 min after the morning concentrate meal. Gluteal muscle biopsies were taken ~100 min after the morning concentrate meal. The next day, whole body phenylalanine kinetics were determined using a 2 h primed, constant infusion of [(13)C] sodium bicarbonate followed by a 6 h primed, constant infusion of [1-(13)C] phenylalanine. Plasma lysine concentrations increased linearly (P <0.05) at both the 0 and 90 min time points with increasing lysine intakes. Free muscle asparagine, aspartate, arginine, glutamine, lysine, taurine and tryptophan concentrations responded quadratically to lysine intake (P <0.05). Phenylalanine kinetics did not differ between treatment intakes (P > 0.10). A broken line analysis of lysine intake and phenylalanine oxidation failed to yield a breakpoint from which to determine a lysine requirement. These diets may have been limiting in an amino acid other than lysine, underscoring the lack of data concerning amino acid requirements and bioavailability data in the horse.

  13. Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Alexopoulos, Eftichia; Zhao, Boyu; El Bakkouri, Majida; Thibault, Guillaume; Liu, Kaiyin; Ramachandran, Shaliny; Snider, Jamie; Pai, Emil F; Houry, Walid A

    2011-03-01

    The Escherichia coli inducible lysine decarboxylase, LdcI/CadA, together with the inner-membrane lysine-cadaverine antiporter, CadB, provide cells with protection against mild acidic conditions (pH∼5). To gain a better understanding of the molecular processes underlying the acid stress response, the X-ray crystal structure of LdcI was determined. The structure revealed that the protein is an oligomer of five dimers that associate to form a decamer. Surprisingly, LdcI was found to co-crystallize with the stringent response effector molecule ppGpp, also known as the alarmone, with 10 ppGpp molecules in the decamer. ppGpp is known to mediate the stringent response, which occurs in response to nutrient deprivation. The alarmone strongly inhibited LdcI enzymatic activity. This inhibition is important for modulating the consumption of lysine in cells during acid stress under nutrient limiting conditions. Hence, our data provide direct evidence for a link between the bacterial acid stress and stringent responses. PMID:21278708

  14. Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster.

    PubMed

    Gatto, Gregory J; Boyne, Michael T; Kelleher, Neil L; Walsh, Christopher T

    2006-03-22

    Rapamycin, FK506, and FK520 are immunosuppressant macrolactone natural products comprised of predominantly polyketide-based core structures. A single nonproteinogenic pipecolic acid residue is installed into the scaffold by a nonribosomal peptide synthetase that also performs the subsequent macrocyclization step at the carbonyl group of this amino acid. It has been assumed that pipecolic acid is generated from lysine by the cyclodeaminases RapL/FkbL. Herein we report the heterologous overexpression and purification of RapL and validate its ability to convert L-lysine to L-pipecolic acid by a cyclodeamination reaction that involves redox catalysis. RapL also accepts L-ornithine as a substrate, albeit with a significantly reduced catalytic efficiency. Turnover is presumed to encompass a reversible oxidation at the alpha-amine, internal cyclization, and subsequent re-reduction of the cyclic delta1-piperideine-2-carboxylate intermediate. As isolated, RapL has about 0.17 equiv of tightly bound NAD+, suggesting that the enzyme is incompletely loaded when overproduced in E. coli. In the presence of exogenous NAD+, the initial rate is elevated 8-fold with a Km of 2.3 microM for the cofactor, consistent with some release and rebinding of NAD+ during catalytic cycles. Through the use of isotopically labeled substrates, we have confirmed mechanistic details of the cyclodeaminase reaction, including loss of the alpha-amine and retention of the hydrogen atom at the alpha-carbon. In addition to the characterization of a critical enzyme in the biosynthesis of a medically important class of natural products, this work represents the first in vitro characterization of a lysine cyclodeaminase, a member of a unique group of enzymes which utilize the nicotinamide cofactor in a catalytic manner. PMID:16536560

  15. Linkages in thermal copolymers of lysine

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Suzuki, F.

    1975-01-01

    The thermal copolymerization of lysine with other alpha-amino acids was studied. The identity of the second amino acid influences various properties of the polymer obtained, including the proportion of alpha and epsilon linkages of lysine. A review of linkages in proteinoids indicates alpha and beta linkages for aspartic acid, alpha and gamma linkages for glutamic acid, alpha and epsilon linkages for lysine, and alpha linkages for other amino acids. Thermal proteinoids are thus more complex in types of linkage than are proteins.

  16. Amino acid metabolism in the piglet. 3. Influence of lysine level in the diet on energy metabolism and in vivo oxidation.

    PubMed

    Chavez, E R; Bayley, H S

    1976-11-01

    1. Supplementing a lysine-deficient diet (5 g lysine/kg) with five increments of lysine, each of 2 g/kg, resulted in increased in growth rate of Yorkshire piglets, aged between 3 and 7 weeks, up to the highest level of lysine (15 g/kg). 2. The free lysine concentration of plasma tended to increase as the dietary lysine level increased from 13 to 15 g/kg, and plasma threonine concentration decreased significantly as the lysine content of the diet was increased from 11 to 15 g/kg indicating that threonine was the second limiting amino acid in the diet. 3. Oxygen consumption and carbon dioxide production of the piglets were not influenced by supplementing the diets with lysine. The heat production was 0-313 kJ/min per kg body-weight in the 6 h experimental period. 4. Supplementation of the diet with lysine had no consistent effect on the recovery of 14C as 14CO2 from a single dose of L-[U-14C]lysine. 5. Adjustment of the determined recoveries of the tracer dose of lysine for the differences in the plasma concentrations of free lysine for the pigs receiving the graded levels of dietary lysine simplified the relationship between recovery and dietary lysine level: it was linear for the first four increments in dietary lysine and then increased sharply for the fifth increment. This indicated that a marked change in the rate of lysine catabolism occurred as the level of dietary lysine was increased from 13 to 15 g/kg. 6. The results of this experiment indicate that the piglets' requirement for lysine is between 13 and 15 g lysine/kg in a diet which contained 181 g crude protein (nitrogen X6-25)/kg.

  17. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.

    PubMed

    Pérez-García, Fernando; Peters-Wendisch, Petra; Wendisch, Volker F

    2016-09-01

    The Gram-positive Corynebacterium glutamicum is widely used for fermentative production of amino acids. The world production of L-lysine has surpassed 2 million tons per year. Glucose uptake and phosphorylation by C. glutamicum mainly occur by the phosphotransferase system (PTS) and to lesser extent by inositol permeases and glucokinases. Heterologous expression of the genes for the high-affinity glucose permease from Streptomyces coelicolor and Bacillus subtilis glucokinase fully compensated for the absence of the PTS in Δhpr strains. Growth of PTS-positive strains with glucose was accelerated when the endogenous inositol permease IolT2 and glucokinase from B. subtilis were overproduced with balanced translation initiation rates using plasmid pEKEx3-IolTBest. When the genome-reduced C. glutamicum strain GRLys1 carrying additional in-frame deletions of sugR and ldhA to derepress glycolytic and PTS genes and to circumvent formation of L-lactate as by-product was transformed with this plasmid or with pVWEx1-IolTBest, 18 to 20 % higher volumetric productivities and 70 to 72 % higher specific productivities as compared to the parental strain resulted. The non-proteinogenic amino acid L-pipecolic acid (L-PA), a precursor of immunosuppressants, peptide antibiotics, or piperidine alkaloids, can be derived from L-lysine. To enable production of L-PA by the constructed L-lysine-producing strain, the L-lysine 6-dehydrogenase gene lysDH from Silicibacter pomeroyi and the endogenous pyrroline 5-carboxylate reductase gene proC were overexpressed as synthetic operon. This enabled C. glutamicum to produce L-PA with a yield of 0.09 ± 0.01 g g(-1) and a volumetric productivity of 0.04 ± 0.01 g L(-1) h(-1).To the best of our knowledge, this is the first fermentative process for the production of L-PA from glucose.

  18. Synthesis of peptides from amino acids and ATP with lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1980-01-01

    The paper examines the synthesis of peptides from aminoacids and ATP with a lysine-rich protenoid. The latter in aqueous solution catalyzes the formation of peptides from free amino acids and ATP; this catalytic activity is not found in acidic protenoids, even though the latter contain a basic aminoacid. The pH optimum for the synthesis is about 11, but it is appreciable below 8 and above 13. Temperature data indicate an optimum at 20 C or above, with little increase in rate up to 60 C. Pyrophosphate can be used instead of ATP, but the yields are lower. The ATP-aided syntheses of peptides in aqueous solution occur with several types of proteinous aminoacids.

  19. Identification and Quantitation of the Lipation Product 2-Amino-6-(3-methylpyridin-1-ium-1-yl)hexanoic Acid (MP-Lysine) in Peanuts.

    PubMed

    Globisch, Martin; Deuber, Meike; Henle, Thomas

    2016-08-31

    The lipid peroxidation product acrolein was semiquantitated by GC-MS (EI) in unheated and heated peanut oil, respectively, representing a model system for peanut roasting. Depending on the heating time, acrolein levels significantly increased from 0.2 to 10.7 mg/kg oil. As a result of heating N(α)-acetyl-l-lysine and acrolein, the pyridinium derivative 2-acetamido-6-(3-methylpyridin-1-ium-1-yl)hexanoic acid (MP-acetyl lysine) was identified. In addition, the lysine derivative 2-amino-6-[5-(hydroxymethyl)-3,6-dihydro-2H-pyridin-1-yl]hexanoic acid was identified after reduction and hydrolysis. After preparation of 2-amino-6-(3-methylpyridin-1-ium-1-yl)hexanoic acid (MP-lysine) as reference material, its amounts were quantitated in acrolein-modified peanut proteins by HPLC-ESI-MS/MS after acid hydrolysis, showing that at low acrolein concentrations, the modification of lysine could be entirely explained by the formation of MP-lysine. Furthermore, for the first time, MP-lysine was quantitated in peanut samples in amounts up to 10.2 mg/kg, showing an increase depending on the roasting time. Thus, MP-lysine might represent a marker to evaluate the extent of food protein lipation by acrolein. PMID:27499313

  20. Kinetics of CO2 Absorption into Aqueous Basic Amino Acid Salt: Potassium Salt of Lysine Solution.

    PubMed

    Shen, Shufeng; Yang, Ya-nan; Bian, Yangyang; Zhao, Yue

    2016-02-16

    Aqueous amino acid salts are considered as an attractive alternative to alkanolamine solvents (e.g., MEA) for carbon dioxide (CO2) absorption. The kinetics of CO2 into unloaded aqueous solutions of potassium lysinate (LysK) was studied using a wetted wall column at concentrations ranging from 0.25 to 2.0 M and temperatures from 298 to 333 K. Physicochemical properties of aqueous LysK solutions such as density, viscosity, and physical solubility of CO2 were measured to evaluate the reaction rate constants. The reaction pathway is described using zwitterion mechanism taking into account the effect of ionic strength on the reaction rate. Under the fast pseudo-first-order regime, the reaction rate parameters were obtained and correlated in a power-law reaction rate expression. LysK shows higher chemical reactivity toward CO2 than the industrial standard MEA and most of amino acid salts. Its reaction rate constants increase considerably with concentration and temperature. The reaction order is found to be an average value of 1.58 with respect to LysK. The forward second-order kinetic rate constant, k2 0 , are obtained as 31615 and 84822 m3 kmol−1 s−1 at 298 and 313 K, respectively with activation energy of 51.0 kJ mol−1. The contribution of water to the zwitterion deprotonation seems to be more significant than that of LysK for the above-mentioned kinetic conditions PMID:26751093

  1. A l-Lysine Transporter of High Stereoselectivity of the Amino Acid-Polyamine-Organocation (APC) Superfamily

    PubMed Central

    Kaur, Jagdeep; Olkhova, Elena; Malviya, Viveka Nand; Grell, Ernst; Michel, Hartmut

    2014-01-01

    Membrane proteins of the amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play an important role in the regulation of cellular processes. We report the heterologous production of the LysP-related transporter STM2200 from Salmonella typhimurium in Escherichia coli, its purification, and functional characterization. STM2200 is assumed to be a proton-dependent APC transporter of l-lysine. The functional interaction between basic amino acids and STM2200 was investigated by thermoanalytical methods, i.e. differential scanning and isothermal titration calorimetry. Binding of l-lysine to STM2200 in its solubilized monomer form is entropy-driven. It is characterized by a dissociation constant of 40 μm at pH 5.9 and is highly selective; no evidence was found for the binding of l-arginine, l-ornithine, l-2,4-diaminobutyric acid, and l-alanine. d-Lysine is bound 45 times more weakly than its l-chiral form. We thus postulate that STM2200 functions as a specific transport protein. Based on the crystal structure of ApcT (Shaffer, P. L., Goehring, A., Shankaranarayanan, A., and Gouaux, E. (2009) Science 325, 1010–1014), a proton-dependent amino acid transporter of the APC superfamily, a homology model of STM2200 was created. Docking studies allowed identification of possible ligand binding sites. The resulting predictions indicated that Glu-222 and Arg-395 of STM2200 are markedly involved in ligand binding, whereas Lys-163 is suggested to be of structural and functional relevance. Selected variants of STM2200 where these three amino acid residues were substituted using single site-directed mutagenesis showed no evidence for l-lysine binding by isothermal titration calorimetry, which confirmed the predictions. Molecular aspects of the observed ligand specificity are discussed. PMID:24257746

  2. Mobility of lysozyme in poly(l-lysine)/hyaluronic acid multilayer films.

    PubMed

    Velk, Natalia; Uhlig, Katja; Vikulina, Anna; Duschl, Claus; Volodkin, Dmitry

    2016-11-01

    The spatial and temporal control over presentation of protein-based biomolecules such as growth factors and hormones is crucial for in vitro applications to mimic the complex in vivo environment. We investigated the interaction of a model protein lysozyme (Lys) with poly(L-lysine)/hyaluronic acid (PLL/HA) multilayer films. We focused on Lys diffusion as well as adsorption and retention within the film as a function of the film deposition conditions and post-treatment. Additionally, an effect of Lys concentration on its mobility was probed. A combination of confocal fluorescence microscopy, fluorescence recovery after photobleaching, and microfluidics was employed for this investigation. Our main finding is that adsorption of PLL and HA after protein loading induces acceleration and reduction of Lys mobility, respectively. These results suggest that a charge balance in the film to a high extent governs the protein-film interaction. We believe that control over protein mobility is a key to reach the full potential of the PLL/HA films as reservoirs for biomolecules depending on the application demand. PMID:27552029

  3. Heterologous Production of Hyaluronic Acid in an ε-Poly-l-Lysine Producer, Streptomyces albulus

    PubMed Central

    Yoshimura, Tomohiro; Shibata, Nobuyuki; Hamano, Yoshimitsu

    2015-01-01

    Hyaluronic acid (HA) is used in a wide range of medical applications, where its performance and therapeutic efficacy are highly dependent on its molecular weight. In the microbial production of HA, it has been suggested that a high level of intracellular ATP enhances the productivity and molecular weight of HA. Here, we report on heterologous HA production in an ε-poly-l-lysine producer, Streptomyces albulus, which has the potential to generate ATP at high level. The hasA gene from Streptococcus zooepidemicus, which encodes HA synthase, was refactored and expressed under the control of a late-log growth phase-operating promoter. The expression of the refactored hasA gene, along with genes coding for UDP-glucose dehydrogenase, UDP-N-acetylglucosamine pyrophosphorylase, and UDP-glucose pyrophosphorylase, which are involved in HA precursor sugar biosynthesis, resulted in efficient production of HA in the 2.0 MDa range, which is greater than typical bacterial HA, demonstrating that a sufficient amount of ATP was provided to support the biosynthesis of the precursor sugars, which in turn promoted HA production. In addition, unlike in the case of streptococcal HA, S. albulus-derived HA was not cell associated. Based on these findings, our heterologous production system appears to have several advantages for practical HA production. We propose that the present system could be applicable to the heterologous production of a wide variety of molecules other than HA in the case their biosynthesis pathways require ATP in vivo. PMID:25795665

  4. Functional impact of polar and acidic substitutions in the lactose repressor hydrophobic monomer.monomer interface with a buried lysine.

    PubMed

    Zhan, Hongli; Sun, Zhifei; Matthews, Kathleen Shive

    2009-02-17

    Despite predicted energetic penalties, the charged K84 side chains of tetrameric lactose repressor protein (LacI) are found buried within the highly hydrophobic monomer.monomer interface that includes side chains of V94 and V96. Once inducer binding has occurred, these K84 side chains move to interact with the more solvent-exposed side chains of D88 and E100'. Previous studies demonstrated that hydrophobic substitutions for K84 increased protein stability and significantly impaired the allosteric response. These results indicated that enhanced hydrophobic interactions at the monomer.monomer interface remove the energetic driving force of the buried charges, decreasing the likelihood of a robust conformational change and stabilizing the structure. We hypothesized that creating a salt bridge network with the lysine side chains by including nearby negatively charged residues might result in a similar outcome. To that end, acidic residues, D and E, and their neutral amides, N and Q, were substituted for the valines at positions 94 and 96. These variants exhibited one or more of the following functional changes: weakened inducer binding, impaired allosteric response, and diminished protein stability. For V96D and V96E, ion pair formation with K84 appears optimal, and the loss of inducer response exceeds that of the hydrophobic K84A and -L variants. However, impacts on functional properties indicate that stabilizing the buried positive charge with polar or ion pair interactions is not functionally equivalent to structural stabilization via hydrophobic enhancement. PMID:19166325

  5. First hyperpolarizability of the natural aromatic amino acids tryptophan, tyrosine, and phenylalanine and the tripeptide lysine-tryptophan-lysine determined by hyper-Rayleigh scattering.

    PubMed

    Duboisset, J; Matar, G; Russier-Antoine, I; Benichou, E; Bachelier, G; Jonin, Ch; Ficheux, D; Besson, F; Brevet, P F

    2010-11-01

    We report the first hyperpolarizability of tryptophan (Trp) and tyrosine (Tyr) and an upper limit for that of phenylalanine (Phe), three natural aromatic amino acids. The measurements were performed with hyper-Rayleigh scattering in an aqueous Tris buffer solution at a pH of 8.5 and 150 mM salt concentration with a fundamental wavelength of 780 nm. A value of (4.7 ± 0.7) × 10(-30) esu is found for Trp and (4.1 ± 0.7) × 10(-30) esu for Tyr whereas the upper limit of 1.4 × 10(-30) esu is found for that of Phe due to its limited solubility. The influence of the presence of lysine (Lys) in close vicinity of Trp is investigated with a measurement of the first hyperpolarizabilty of Trp in an excess of Lys and compared to the first hyperpolarizability obtained for the tripeptide Lys-Trp-Lys. The clear decrease of the values measured in these two cases indicates that the first hyperpolarizabilty of Trp is very sensitive to its local environment.

  6. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  7. Comparative analysis of some essential amino acids and available lysine in Acacia colei and A. tumida seeds using chemical methods and an amino acid analyzer.

    PubMed

    Falade, Olumuyiwa S; Adewusi, Steve R A

    2013-01-01

    Methionine, cysteine, tryptophan, and available lysine were determined in Acacia colei and A. tumida seeds and some cereals using chemical methods, and the results were compared to those obtained using an amino acid analyzer. Ba(OH)2 hydrolysis gave the best result of the three methods of hydrolysis (acid, base, and enzyme) tried. Oxidized methionine, cysteine, and tryptophan were not detected, but S-carboxyethylcysteine was estimated as cysteine by the chemical methods, thus overestimating cysteine's content in Acacia seeds. Tryptophan and methionine were higher in cereals than in Acacia seeds, while the level of cysteine and available lysine was higher in Acacia seeds than in cereals. These results agreed with values obtained using the amino acid analyzer and could therefore be used in low budget laboratories.

  8. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

    PubMed Central

    Kaur, Randeep; Chitanda, Jackson M; Michel, Deborah; Maley, Jason; Borondics, Ferenc; Yang, Peng; Verrall, Ronald E; Badea, Ildiko

    2012-01-01

    Purpose: Detonation nanodiamonds (NDs) are carbon-based nanomaterials that, because of their size (4–5 nm), stable inert core, alterable surface chemistry, fluorescence, and biocompatibility, are emerging as bioimaging agents and promising tools for the delivery of biochemical molecules into cellular systems. However, diamond particles possess a strong propensity to aggregate in liquid formulation media, restricting their applicability in biomedical sciences. Here, the authors describe the covalent functionalization of NDs with lysine in an attempt to develop nanoparticles able to act as suitable nonviral vectors for transferring genetic materials across cellular membranes. Methods: NDs were oxidized and functionalized by binding lysine moieties attached to a three-carbon-length linker (1,3-diaminopropane) to their surfaces through amide bonds. Raman and Fourier transform infrared spectroscopy, zeta potential measurement, dynamic light scattering, atomic force microscopic imaging, and thermogravimetric analysis were used to characterize the lysine-functionalized NDs. Finally, the ability of the functionalized diamonds to bind plasmid DNA and small interfering RNA was investigated by gel electrophoresis assay and through size and zeta potential measurements. Results: NDs were successfully functionalized with the lysine linker, producing surface loading of 1.7 mmol g−1 of ND. These modified NDs formed highly stable aqueous dispersions with a zeta potential of 49 mV and particle size of approximately 20 nm. The functionalized NDs were found to be able to bind plasmid DNA and small interfering RNA by forming nanosized “diamoplexes”. Conclusion: The lysine-substituted ND particles generated in this study exhibit stable aqueous formulations and show potential for use as carriers for genetic materials. PMID:22904623

  9. Safety, efficacy and physiological actions of a lysine-free, arginine-rich formula to treat glutaryl-CoA dehydrogenase deficiency: focus on cerebral amino acid influx.

    PubMed

    Strauss, Kevin A; Brumbaugh, Joan; Duffy, Alana; Wardley, Bridget; Robinson, Donna; Hendrickson, Christine; Tortorelli, Silvia; Moser, Ann B; Puffenberger, Erik G; Rider, Nicholas L; Morton, D Holmes

    2011-01-01

    Striatal degeneration from glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type 1, GA1) is associated with cerebral formation and entrapment of glutaryl-CoA and its derivatives that depend on cerebral lysine influx. In 2006 we designed a lysine-free study formula enriched with arginine to selectively block lysine transport across cerebral endothelia and thereby limit glutaryl-CoA production by brain. Between 2006 and present, we treated twelve consecutive children with study formula (LYSx group) while holding all other treatment practices constant. Clinical and biochemical outcomes were compared to 25 GA1 patients (PROx group) treated between 1995 and 2005 with natural protein restriction (dietary lysine/arginine ratio of 1.7±0.3 mg:mg). We used published kinetic parameters of the y+and LAT1 blood-brain barrier transporters to model the influx of amino acids into the brain. Arginine fortification to achieve a mean dietary lysine/arginine ratio of 0.7±0.2 mg:mg was neuroprotective. All 12 LYSx patients are physically and neurologically healthy after 28 aggregate patient-years of follow up (current ages 28±21 months) and there were no adverse events related to formula use. This represents a 36% reduction of neurological risk (95% confidence interval 14-52%, p=0.018) that we can directly attribute to altered amino acid intake. During the first year of life, 20% lower lysine intake and two-fold higher arginine intake by LYSx patients were associated with 50% lower plasma lysine, 3-fold lower plasma lysine/arginine concentration ratio, 42% lower mean calculated cerebral lysine influx, 54% higher calculated cerebral arginine influx, 15-26% higher calculated cerebral influx of several anaplerotic precursors (isoleucine, threonine, methionine, and leucine), 50% less 3-hydroxyglutarate excretion, and a 3-fold lower hospitalization rate (0.8 versus 2.3 hospitalizations per patient per year). The relationship between arginine fortification and plasma lysine

  10. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level.

    PubMed

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-01

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance. PMID:26806099

  11. The Coding Properties of Lysine-accepting Transfer Ribonucleic Acids from Black-eyed Peas 1

    PubMed Central

    Hague, Donald R.; Kofoid, Eric C.

    1971-01-01

    Lysine-accepting transfer RNA from ungerminated and germinated embryo axes of black-eyed peas (Vigna sinensis L. Savi) was fractionated on benzoylated diethylaminoethyl cellulose and reverse phase Freon columns. Cochromatography indicated the presence of two similar lysyl transfer RNA fractions in each tissue. Ribosome binding studies revealed that the larger of the two fractions in each case is specific for the AAG codon, while the smaller one recognizes AAA and AAG. Possible implications of this difference in quantities of isoacceptors in translation of genetic information are discussed. PMID:16657787

  12. The Coding Properties of Lysine-accepting Transfer Ribonucleic Acids from Black-eyed Peas.

    PubMed

    Hague, D R; Kofoid, E C

    1971-09-01

    Lysine-accepting transfer RNA from ungerminated and germinated embryo axes of black-eyed peas (Vigna sinensis L. Savi) was fractionated on benzoylated diethylaminoethyl cellulose and reverse phase Freon columns. Cochromatography indicated the presence of two similar lysyl transfer RNA fractions in each tissue. Ribosome binding studies revealed that the larger of the two fractions in each case is specific for the AAG codon, while the smaller one recognizes AAA and AAG. Possible implications of this difference in quantities of isoacceptors in translation of genetic information are discussed.

  13. The lysine-ketoglutarate reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues.

    PubMed

    Moulin, M; Deleu, C; Larher, F; Bouchereau, A

    2006-01-01

    Higher plant responses to abiotic stresses are associated with physiological and biochemical changes triggering a number of metabolic adjustments. We focused on L-lysine catabolism, and have previously demonstrated that degradation of this amino acid is osmo-regulated at the level of lysine-ketoglutarate reductase (LKR, EC 1.5.1.8) and saccharopine dehydrogenase (SDH, EC 1.5.1.9) in Brassica napus. LKR and SDH activities are enhanced by decreasing osmotic potential and decrease when the upshock osmotic treatment is followed by a downshock osmotic one. Moreover we have shown that the B. napus LKR/SDH gene is up-regulated in osmotically-stressed tissues. The LKR/SDH activity produces alpha-aminoadipate semialdehyde which could be further converted into alpha-aminoadipate and acetyl CoA. Alternatively alpha-aminoadipate could behave as a precursor for pipecolic acid. Pipecolic acid is described as an osmoprotectant in bacteria and is co-accumulated with proline in halophytic plants. We suggest that osmo-induction of the LKR/SDH activity could be partly responsible for pipecolic acid accumulation. This proposal has been assessed in this study through pipecolic acid amounts determination in rape leaf discs subjected to various upshift and downshift osmotic treatments. Changes in pipecolic acid level actually behave as those observed for LKR and SDH activities, since it increases or decreases in rape leaf discs treated under hyper- or hypo-osmotic conditions, respectively. In addition we show that pipecolic acid level is positively correlated with the external osmotic potential as well as with the duration of the applied treatment. On the other hand pipecolic acid level is related to the availability of L-lysine and not to that of D-lysine. Collectively the results obtained demonstrate that lysine catabolism through LKR/SDH activity is involved in osmo-induced synthesis of pipecolic acid.

  14. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels.

    PubMed

    Cui, Ning; Qian, Junmin; Xu, Weijun; Xu, Minghui; Zhao, Na; Liu, Ting; Wang, Hongjie

    2016-01-20

    In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications.

  15. Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans

    PubMed Central

    Moore, Eli K.; Hopmans, Ellen C.; Rijpstra, W. Irene C.; Sánchez-Andrea, Irene; Villanueva, Laura; Wienk, Hans; Schoutsen, Frans; Stams, Alfons J. M.; Sinninghe Damsté, Jaap S.

    2015-01-01

    Microbial decomposition of organic matter is an essential process in the global carbon cycle. The soil bacteria Pseudopedobacter saltans and Flavobacterium johnsoniae are both able to degrade complex organic molecules, but it is not fully known how their membrane structures are adapted to their environmental niche. The membrane lipids of these species were extracted and analyzed using high performance liquid chromatography-electrospray ionization/ion trap/mass spectrometry (HPLC-ESI/IT/MS) and high resolution accurate mass/mass spectrometry (HRAM/MS). Abundant unknown intact polar lipids (IPLs) from P. saltans were isolated and further characterized using amino acid analysis and two dimensional nuclear magnetic resonance (NMR) spectroscopy. Ornithine IPLs (OLs) with variable (hydroxy) fatty acid composition were observed in both bacterial species. Lysine-containing IPLs (LLs) were also detected in both species and were characterized here for the first time using HPLC-MS. Novel LLs containing hydroxy fatty acids and novel hydroxylysine lipids with variable (hydroxy) fatty acid composition were identified in P. saltans. The confirmation of OL and LL formation in F. johnsoniae and P. saltans and the presence of OlsF putative homologs in P. saltans suggest the OlsF gene coding protein is possibly involved in OL and LL biosynthesis in both species, however, potential pathways of OL and LL hydroxylation in P. saltans are still undetermined. Triplicate cultures of P. saltans were grown at three temperature/pH combinations: 30°C/pH 7, 15°C/pH 7, and 15°C/pH 9. The fractional abundance of total amino acid containing IPLs containing hydroxylated fatty acids was significantly higher at higher temperature, and the fractional abundance of lysine-containing IPLs was significantly higher at lower temperature and higher pH. These results suggest that these amino acid-containing IPLs, including the novel hydroxylysine lipids, could be involved in temperature and pH stress

  16. Inhibition of corneal neovascularization with a nutrient mixture containing lysine, proline, ascorbic acid, and green tea extract.

    PubMed

    Shakiba, Yadollah; Mostafaie, Ali

    2007-10-01

    Corneal neovascularization is a significant, sight-threatening complication of many ocular surface disorders. Various growth factors and proteinases are involved in corneal neovascularization. The data supporting a causal role for vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are extensive. Inhibition of VEGF and MMPs is a main strategy for treating corneal neovascularization. Several findings have shown that corneal neovascularization can be reduced by using anti-VEGF and anti-MMPs agents. Efficacy of a nutrient mixture (NM) containing lysine, proline, ascorbic acid, and green tea extract has been demonstrated for reducing VEGF and MMPs secretion by various cells. Moreover, NM can inhibit endothelial cell migration and capillary tube formation. We herein note that topical application of NM is potentially useful for inhibiting corneal neovascularization and restoration of corneal clarity. Further investigations in animal models are needed to place NM alongside corneal neovascularization therapeutics.

  17. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH)

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Tang, Yao-Hua; Li, Kai-Long; Yang, Lu; Fu, Qiang; Li, Guo-Qing

    2015-01-01

    Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens. PMID:26000452

  18. Peptide nucleic acids tagged with four lysine residues for amperometric genosensors

    PubMed Central

    Zanardi, Chiara; Terzi, Fabio; Seeber, Renato; Baldoli, Clara; Licandro, Emanuela; Maiorana, Stefano

    2012-01-01

    A homothymine PNA decamer bearing four lysine residues has been synthesized as a probe for the development of amperometric sensors. On one hand, the four amino groups introduced make this derivative nine times more soluble than the corresponding homothymine PNA decamer and, on the other hand, allow the stable anchoring of this molecule on Au nanostructured surface through the terminal -NH2 moieties. In particular, XPS and electrochemical investigations performed with hexylamine, as a model molecule, indicate that the stable deposition of primary amine derivatives on such a nanostructured surface is possible and involves the free electron doublet on the nitrogen atom. This finding indicates that this PNA derivative is suitable to act as the probe molecule for the development of amperometric sensors.   Thanks to the molecular probe chosen and to the use of a nanostructured surface as the substrate for the sensor assembly, the device proposed makes possible the selective recognition of the target oligonucleotide sequence with very high sensitivity. PMID:22772036

  19. Poly(L-diaminopropionic acid), a novel non-proteinic amino acid oligomer co-produced with poly(ε-L-lysine) by Streptomyces albulus PD-1.

    PubMed

    Xia, Jun; Xu, Hong; Feng, Xiaohai; Xu, Zhaoxian; Chi, Bo

    2013-09-01

    Poly(ε-L-lysine) (ε-PL) producer strain Streptomyces albulus PD-1 secreted a novel polymeric substance into its culture broth along with ε-PL. The polymeric substance was purified to homogeneity and identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and nuclear magnetic resonance spectroscopy as well as other analytical techniques revealed that the substance was poly(L-diaminopropionic acid) (PDAP). PDAP is an L-α,β-diaminopropionic acid oligomer linking between amino and carboxylic acid functional groups. The molecular weight of PDAP ranged from 500 to 1500 Da, and no co-polymers composed of L-diaminopropionic acid and L-lysine were present in the culture broth. Compared with ε-PL, PDAP exhibited stronger inhibitory activities against yeasts but weaker activities against bacteria. ε-PL and PDAP co-production was also investigated. Both ε-PL and PDAP were synthesized during the stationary phase of growth, and the final ε-PL and PDAP concentration reached 21.7 and 4.8 g L(-1), respectively, in fed-batch fermentation. Citric acid feeding resulted in a maximum ε-PL concentration of 26.1 g L(-1) and a decrease in the final concentration of PDAP to 3.8 g L(-1). No studies on ε-PL and PDAP co-production in Streptomyces albulus have been reported previously, and inhibition of by-products such as PDAP is potentially useful in ε-PL production. PMID:23775267

  20. Synthesis of lysine methyltransferase inhibitors

    PubMed Central

    Hui, Chunngai; Ye, Tao

    2015-01-01

    Lysine methyltransferase which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery. PMID:26258118

  1. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality.

    PubMed

    Galili, Gad; Amir, Rachel

    2013-02-01

    Humans, as well as farm animals, cannot synthesize a number of essential amino acids, which are critical for their survival. Hence, these organisms must obtain these essential amino acids from their diets. Cereal and legume crops, which represent the major food and feed sources for humans and livestock worldwide, possess limiting levels of some of these essential amino acids, particularly Lys and Met. Extensive efforts were made to fortify crop plants with these essential amino acids using traditional breeding and mutagenesis. However, aside from some results obtained with maize, none of these approaches was successful. Therefore, additional efforts using genetic engineering approaches concentrated on increasing the synthesis and reducing the catabolism of these essential amino acids and also on the expression of recombinant proteins enriched in them. In the present review, we discuss the basic biological aspects associated with the synthesis and accumulation of these amino acids in plants and also describe recent developments associated with the fortification of crop plants with essential amino acids by genetic engineering approaches.

  2. Genetic identification of ACC-RESISTANT2 reveals involvement of LYSINE HISTIDINE TRANSPORTER1 in the uptake of 1-aminocyclopropane-1-carboxylic acid in Arabidopsis thaliana.

    PubMed

    Shin, Kihye; Lee, Sumin; Song, Won-Yong; Lee, Rin-A; Lee, Inhye; Ha, Kyungsun; Koo, Ja-Choon; Park, Soon-Ki; Nam, Hong-Gil; Lee, Youngsook; Soh, Moon-Soo

    2015-03-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) is a biosynthetic precursor of ethylene, a gaseous plant hormone which controls a myriad of aspects of development and stress adaptation in higher plants. Here, we identified a mutant in Arabidopsis thaliana, designated as ACC-resistant2 (are2), displaying a dose-dependent resistance to exogenously applied ACC. Physiological analyses revealed that mutation of are2 impaired various aspects of exogenous ACC-induced ethylene responses, while not affecting sensitivity to other plant hormones during seedling development. Interestingly, the are2 mutant was normally sensitive to gaseous ethylene, compared with the wild type. Double mutant analysis showed that the ethylene-overproducing mutations, eto1 or eto3, and the constitutive ethylene signaling mutation, ctr1 were epistatic to the are2 mutation. These results suggest that the are2 mutant is not defective in ethylene biosynthesis or ethylene signaling per se. Map-based cloning of ARE2 demonstrated that LYSINE HISTIDINE TRANSPORTER1 (LHT1), encoding an amino acid transporter, is the gene responsible. An uptake experiment with radiolabeled ACC indicated that mutations of LHT1 reduced, albeit not completely, uptake of ACC. Further, we performed an amino acid competition assay and found that two amino acids, alanine and glycine, known as substrates of LHT1, could suppress the ACC-induced triple response in a LHT1-dependent way. Taken together, these results provide the first molecular genetic evidence supporting that a class of amino acid transporters including LHT1 takes part in transport of ACC, thereby influencing exogenous ACC-induced ethylene responses in A. thaliana. PMID:25520403

  3. FXR-induced lysine-specific histone demethylase, LSD1, reduces hepatic bile acid levels and protects the liver against bile acid toxicity

    PubMed Central

    Kim, Young-Chae; Fang, Sungsoon; Byun, Sangwon; Seok, Sunmi; Kemper, Byron; Kemper, Jongsook Kim

    2015-01-01

    Bile acids (BAs) function as endocrine signaling molecules that activate multiple nuclear and membrane receptor signaling pathways to control fed-state metabolism. Since the detergent-like property of BAs causes liver damage at high concentrations, hepatic BA levels must be tightly regulated. BA homeostasis is regulated largely at the level of transcription by nuclear receptors, particularly the primary bile acid receptor, farnesoid X receptor (FXR), and small heterodimer partner (SHP) that inhibits BA synthesis by recruiting repressive histone-modifying enzymes. Although histone modifiers have been shown to regulate BA-responsive genes, their in vivo functions remain unclear. Here we show that lysine-specific histone demethylase1 (LSD1) is directly induced by BA-activated FXR, is recruited to BA synthetic genes, Cyp7a1 and Cyp8b1, and the BA uptake transporter gene, Ntcp, and removes a gene-activation mark, tri-methylated histone H3 lysine-4, leading to gene repression. LSD1 recruitment was dependent on SHP, and LSD1-mediated demethylation of H3K4-me3 was required for additional repressive histone modifications, H3K9/K14 deacetylation and H3K9 methylation. BA overload, feeding 0.5% cholic acid chow for 6 days, resulted in adaptive responses of altered expression of hepatic genes involved in BA synthesis, transport, and detoxification/conjugation. In contrast, adenoviral-mediated downregulation of hepatic LSD1 blunted these responses, which led to substantial increases in liver and serum BA levels, serum AST/ALT levels, and hepatic inflammation. This study identifies LSD1 as a novel histone-modifying enzyme in the orchestrated regulation mediated by the FXR and SHP that reduces hepatic BA levels and protects the liver against BA toxicity. PMID:25545350

  4. Poly(L-lysine)-g-poly(D,L-lactic-co-glycolic acid) micelles for low cytotoxic biodegradable gene delivery carriers.

    PubMed

    Jeong, Ji Hoon; Park, Tae Gwan

    2002-07-18

    Poly(lactic-co-glycolic acid) (PLGA)-grafted poly(L-lysine) (PLL) (PLL-g-PLGA) was synthesized to demonstrate its micelle-forming property in an aqueous solution. The micelles were used as a gene delivery carrier. The hydrodynamic diameter of PLL-g-PLGA micelles in an aqueous solution was ca. 149 nm with a narrow size distribution. Critical micelle concentration (cmc) was 9.6 mg/l. The PLL-g-PLGA micelles could be used to produce compact nanoparticulate complexes with plasmid DNA, which could efficiently protect the complexed DNA from enzymatic degradation by DNase I. The micelle/DNA complexes had highly compacted structure sized between 200-300 nm with a positive surface charge value. The PLL-g-PLGA micelles exhibited much higher transfection efficiency with lower cytotoxicity than PLL. Here, we demonstrated that biodegradable and cationic PLL-g-PLGA micelles could be used as an effective DNA condensation carrier for gene delivery system.

  5. Intracellular traffic of the lysine and glutamic acid rich protein KERP1 reveals features of endomembrane organization in Entamoeba histolytica.

    PubMed

    Perdomo, Doranda; Manich, Maria; Syan, Sylvie; Olivo-Marin, Jean-Christophe; Dufour, Alexandre C; Guillén, Nancy

    2016-08-01

    The development of amoebiasis is influenced by the expression of the lysine and glutamic acid rich protein 1 (KERP1), a virulence factor involved in Entamoeba histolytica adherence to human cells. Up to date, it is unknown how the protein transits the parasite cytoplasm towards the plasma membrane, specially because this organism lacks a well-defined endoplasmic reticulum (ER) and Golgi apparatus. In this work we demonstrate that KERP1 is present at the cell surface and in intracellular vesicles which traffic in a pathway that is independent of the ER-Golgi anterograde transport. The intracellular displacement of vesicles enriched in KERP1 relies on the actin-rich cytoskeleton activities. KERP1 is also present in externalized vesicles deposited on the surface of human cells. We further report the interactome of KERP1 with its association to endomembrane components and lipids. The model for KERP1 traffic here proposed hints for the first time elements of the endocytic and exocytic paths of E. histolytica. PMID:26857352

  6. A lysine- and glutamic acid-rich protein, KERP1, from Entamoeba histolytica binds to human enterocytes.

    PubMed

    Seigneur, Marie; Mounier, Joelle; Prevost, Marie-Christine; Guillén, Nancy

    2005-04-01

    Contact-dependent cytolysis of host cells by Entamoeba histolytica is an important hallmark of amoebiasis that points out the importance of molecules involved in the interaction between the parasite and the human cells. To decipher the molecular and cellular mechanisms supporting the invasion of the intestinal epithelium by E. histolytica, we analysed proteins involved in the interaction of the parasite with enterocytes. Affinity chromatography revealed several amoebic proteins interacting with purified brush border of differentiated Caco2 cells. Among them were found the intermediate subunit of the Gal/GalNAc lectin, an alpha-actinin-like protein and two new proteins KERP1 and KERP2 rich in lysine and glutamic acid. In silico analysis revealed the presence of KERP2 in the closely related non-pathogenic amoeba species Entamoeba dispar but not of KERP1. In additon, polymerase chain reaction analysis allowed to suggest the absence of kerp1 homologous gene in E. dispar. Therefore, we concentrated on the cellular analysis of KERP1. Cloning of the KERP1-encoding gene, production of a recombinant protein in Escherichia coli and production of a specific antibody allowed us to show the following properties: (i) purified KERP1 binds to epithelial cell surface, (ii) KERP1 is located on the plasma membrane and in vesicles of trophozoites and (iii) KERP1 is delivered in the interstitial area between the trophozoites and the intestinal cells.

  7. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery.

    PubMed

    Liu, Yang; Li, Jianfeng; Shao, Kun; Huang, Rongqin; Ye, Liya; Lou, Jinning; Jiang, Chen

    2010-07-01

    The blood-brain barrier is the major obstacle that prevents diagnostic and therapeutic drugs being delivered to the central nervous systems in order to exert their effects. Specific ligand-receptor binding mediated endocytosis is one of the possible strategies to cross this barrier. A 30-amino-acid peptide (leptin30) derived from an endogenic hormone-leptin is exploited as brain-targeting ligand as it is reported to possess the same brain accumulation efficiency after intravenous injection. Dendrigraft poly-L-lysine (DGL) is used as non-viral gene vector in this study. DGL-PEG-Leptin30 was complexed with plasmid DNA yielding nanoparticles (NPs). The cellular uptake characteristic and mechanism were explored in brain capillary endothelial cells (BCECs) which express leptin receptors. Furthermore, brain parenchyma microglia cells such as BV-2 cells expressing leptin receptors could promote ligand-receptor mediated endocytosis leading to enhanced gene transfection ability of DGL-PEG-Leptin30/DNA NPs. The targeted NPs were proved to be transported across in vitro BBB model effectively and accumulate more in brains after i.v. resulting in a relatively high gene transfection efficiency both in vitro and in vivo. Besides, the NPs showed low cytotoxicity after in vitro transfection. Thus, DGL-PEG-Leptin30 provides a safe and noninvasive approach for the delivery of gene across the blood-brain barrier.

  8. Proline-glutamic acid-proline-lysine repetition peptide as an antigen for the serological diagnosis of strangles.

    PubMed

    Hobo, S; Niwa, H; Anzai, T

    2008-04-12

    The reactivity of the proline-glutamic acid-proline-lysine (PEPK) repetition peptide antigen in 3176 serum samples was investigated to evaluate its utility as an antigen for the serological diagnosis of strangles. The reactivity of the sera of horses infected with Streptococcus equi subspecies equi was high when the peptide had several PEPK repetitions. However, as the number of PEPK repetitions increased, the reactivity of the antigen with the sera of horses infected with Streptococcus equi subspecies zooepidemicus also increased. In horses infected experimentally with S equi, the reactivity of the PEPK antigen with five repetitions increased one week after inoculation and continued to increase during the following four weeks. The optical density (OD) values of test sera from horses infected experimentally with S equi and sera from horses that had recovered from strangles were high. The od values of sera from horses that had recovered from an experimental infection with S zooepidemicus and of sera from healthy horses were comparatively low.

  9. Proline-glutamic acid-proline-lysine peptide set as a specific antigen for the serological diagnosis of strangles.

    PubMed

    Hobo, S; Niwa, H; Anzai, T

    2006-11-01

    The reactivity of synthesised peptide sets for the M-like proteins SeM and SzPSe with sera from horses infected with Streptococcus equi or Streptococcus zooepidemicus, or control horses, was investigated by an ELISA. Seventeen horses were infected experimentally with S equi or S zooepidemicus, convalescent sera were obtained from 25 horses and control sera were obtained from 1945 horses. The serum antibody responses of individual horses to the peptide sets were highly variable. Some of the peptide sets for SeM reacted strongly with the sera from the horses infected experimentally with S equi, but also reacted with sera from some of the horses infected experimentally with S zooepidemicus. However, the proline-glutamic acid-proline-lysine (PEPK) repeats peptide set, synthesised from the PEPK repeats areas of SzPSe, reacted most strongly with the sera from the horses infected experimentally with S equi and the horses convalescing from strangles, and reacted only minimally with the sera from the horses infected experimentally with S zooepidemicus and the control horses.

  10. Two amino acid-based superlow fouling polymers: poly(lysine methacrylamide) and poly(ornithine methacrylamide).

    PubMed

    Liu, Qingsheng; Li, Wenchen; Singh, Anuradha; Cheng, Gang; Liu, Lingyun

    2014-07-01

    We developed and investigated two new antifouling zwitterionic polymers, poly(lysine methacrylamide) (pLysAA) and poly(ornithine methacrylamide) (pOrnAA), both derived from natural amino acids - lysine and ornithine, respectively. The pLysAA and pOrnAA brushes were grafted on gold via the surface-initiated photoiniferter-mediated polymerization, with the polymer film thickness controlled by the UV-irradiation time. Nonspecific adsorption from human blood serum and plasma was investigated by surface plasmon resonance. Results show that the adsorption level decreased with the increasing film thickness. With the thin films of ∼14.5 nm, the minimal adsorption on pLysAA was 3.9 ng cm(-2) from serum and 5.4 ng cm(-2) from plasma, whereas the lowest adsorption on pOrnAA was 1.8 and 3.2 ng cm(-2), from serum and plasma, respectively. Such protein resistance is comparable to other widely reported antifouling surfaces such as poly(sulfobetaine methacrylate) and polyacrylamide, with a much thinner polymer film thickness. Both pLysAA and pOrnAA showed better protein resistance than the previously reported serine-based poly(serine methacrylate), whereas the pOrnAA is the best among three. The pLysAA- and pOrnAA-grafted surfaces also highly resisted the endothelial cell attachment and Escherichia coli K12 bacterial adhesion. Nanogels made of pLysAA and pOrnAA were found to be ultrastable in undiluted serum, with no aggregation observed after culturing for 24h. Dextran labeled with fluorescein isothiocyanate (FITC-dextran) was encapsulated in nanogels as a model drug. The encapsulated FITC-dextran exhibited controlled release from the pOrnAA nanogels. The superlow fouling, biomimetic and multifunctional properties of pLysAA and pOrnAA make them promising materials for a wide range of applications, such as implant coating, drug delivery and biosensing. PMID:24613545

  11. Possible Evidence of Amide Bond Formation Between Sinapinic Acid and Lysine-Containing Bacterial Proteins by Matrix-Assisted Laser Desorption/Ionization (MALDI) at 355 nm

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.; Sultan, Omar; Carter, Michelle Q.

    2012-12-01

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, Hde, and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight tandem mass spectrometry (TOF-TOF-MS/MS) and post-source decay (PSD). We also reported the absence of adduct formation when using α-cyano-4-hydroxycinnamic acid (CHCA) matrix. Further mass spectrometric analysis of disulfide-intact and disulfide-reduced over-expressed HdeA and HdeB proteins from lysates of gene-inserted E. coli plasmids suggests covalent attachment of SA occurs not at cysteine residues but at lysine residues. In this revised hypothesis, the attachment of SA is preceded by formation of a solid phase ammonium carboxylate salt between SA and accessible lysine residues of the protein during sample preparation under acidic conditions. Laser irradiation at 355 nm of the dried sample spot results in equilibrium retrogradation followed by nucleophilic attack by the amine group of lysine at the carbonyl group of SA and subsequent amide bond formation and loss of water. The absence of CHCA adducts suggests that the electron-withdrawing effect of the α-cyano group of this matrix may inhibit salt formation and/or amide bond formation. This revised hypothesis is supported by dissociative loss of SA (-224 Da) and the amide-bound SA (-206 Da) from SA-adducted HdeA and HdeB ions by MS/MS (PSD). It is proposed that cleavage of the amide-bound SA from the lysine side-chain occurs via rearrangement involving a pentacyclic transition state followed by hydrogen abstraction/migration and loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal (-206 Da).

  12. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    PubMed

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  13. Quantum Computational Calculations of the Ionization Energies of Acidic and Basic Amino Acids: Aspartate, Glutamate, Arginine, Lysine, and Histidine

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.

    An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.

  14. Distinct Paths for Basic Amino Acid Export in Escherichia coli: YbjE (LysO) Mediates Export of l-Lysine

    PubMed Central

    Pathania, Amit

    2015-01-01

    ABSTRACT In Escherichia coli, argO encodes an exporter for l-arginine (Arg) and its toxic analogue canavanine (CAN), and its transcriptional activation and repression, by Arg and l-lysine (Lys), respectively, are mediated by the regulator ArgP. Accordingly argO and argP mutants are CAN supersensitive (CANss). We report the identification of ybjE as a gene encoding a predicted inner membrane protein that mediates export of Lys, and our results confirm the previous identification with a different approach of YbjE as a Lys exporter, reported by Ueda and coworkers (T. Ueda, Y. Nakai, Y. Gunji, R. Takikawa, and Y. Joe, U.S. patents 7,629,142 B2 [December 2009] and 8,383,363 B1 [February 2013] and European patent 1,664,318 B1 [September 2009]). ybjE was isolated as a multicopy suppressor of the CANss phenotype of a strain lacking ArgO. The absence of YbjE did not confer a CANss phenotype but instead conferred hypersensitivity to the lysine antimetabolite thialysine and led to growth inhibition by the dipeptide lysylalanine, which is associated with elevated cellular Lys content. YbjE overproduction resulted in Lys excretion and syntrophic cross-feeding of a Lys auxotroph. Constitutive overexpression of argO promoted Lys cross-feeding that is indicative of a latent Lys export potential of ArgO. Arg modestly repressed ybjE transcription in an ArgR-dependent manner, and ArgR displayed Arg-sensitive binding to the ybjE promoter region in vitro. Our studies suggest that the reciprocal repression of argO and ybjE, respectively, by Lys and Arg confers the specificity for basic amino acid export by distinct paths and that such cross-repression contributes to maintenance of cytoplasmic Arg/Lys balance. We propose that YbjE be redesignated LysO. IMPORTANCE This work ascribes a lysine export function to the product of the ybjE gene of Escherichia coli, leading to a physiological scenario wherein two proteins, ArgO and YbjE, perform the task of separately exporting arginine and

  15. Lysine Residues Are Not Required for Proteasome-Mediated Proteolysis of the Auxin/Indole Acidic Acid Protein IAA1.

    PubMed

    Gilkerson, Jonathan; Kelley, Dior R; Tam, Raymond; Estelle, Mark; Callis, Judy

    2015-06-01

    Although many ubiquitin-proteasome substrates have been characterized in plants, very little is known about the corresponding ubiquitin attachment(s) underlying regulated proteolysis. Current dogma asserts that ubiquitin is typically covalently attached to a substrate through an isopeptide bond between the ubiquitin carboxy terminus and a substrate lysyl amino group. However, nonlysine (non-Lys) ubiquitin attachment has been observed in other eukaryotes, including the N terminus, cysteine, and serine/threonine modification. Here, we investigate site(s) of ubiquitin attachment on indole-3-acetic acid1 (IAA1), a short-lived Arabidopsis (Arabidopsis thaliana) Auxin/indole-3-acetic acid (Aux/IAA) family member. Most Aux/IAA proteins function as negative regulators of auxin responses and are targeted for degradation after ubiquitination by the ubiquitin ligase SCF(TIR1/AFB) (for S-Phase Kinase-Associated Protein1, Cullin, F-box [SCF] with Transport Inhibitor Response1 [TIR1]/Auxin Signaling F-box [AFB]) by an interaction directly facilitated by auxin. Surprisingly, using a Histidine-Hemaglutinin (HIS(6x)-HA(3x)) epitope-tagged version expressed in vivo, Lys-less IAA1 was ubiquitinated and rapidly degraded in vivo. Lys-substituted versions of IAA1 localized to the nucleus as Yellow Fluorescent Protein fusions and interacted with both TIR1 and IAA7 in yeast (Saccharomyces cerevisiae) two-hybrid experiments, indicating that these proteins were functional. Ubiquitination on both HIS(6x)-HA(3x)-IAA1 and Lys-less HIS(6x)-HA(3x)-IAA1 proteins was sensitive to sodium hydroxide treatment, indicative of ubiquitin oxyester formation on serine or threonine residues. Additionally, base-resistant forms of ubiquitinated IAA1 were observed for HIS(6x)-HA(3x)-IAA1, suggesting additional lysyl-linked ubiquitin on this protein. Characterization of other Aux/IAA proteins showed that they have diverse degradation rates, adding additional complexity to auxin signaling. Altogether, these data

  16. Lysine Residues Are Not Required for Proteasome-Mediated Proteolysis of the Auxin/Indole Acidic Acid Protein IAA1.

    PubMed

    Gilkerson, Jonathan; Kelley, Dior R; Tam, Raymond; Estelle, Mark; Callis, Judy

    2015-06-01

    Although many ubiquitin-proteasome substrates have been characterized in plants, very little is known about the corresponding ubiquitin attachment(s) underlying regulated proteolysis. Current dogma asserts that ubiquitin is typically covalently attached to a substrate through an isopeptide bond between the ubiquitin carboxy terminus and a substrate lysyl amino group. However, nonlysine (non-Lys) ubiquitin attachment has been observed in other eukaryotes, including the N terminus, cysteine, and serine/threonine modification. Here, we investigate site(s) of ubiquitin attachment on indole-3-acetic acid1 (IAA1), a short-lived Arabidopsis (Arabidopsis thaliana) Auxin/indole-3-acetic acid (Aux/IAA) family member. Most Aux/IAA proteins function as negative regulators of auxin responses and are targeted for degradation after ubiquitination by the ubiquitin ligase SCF(TIR1/AFB) (for S-Phase Kinase-Associated Protein1, Cullin, F-box [SCF] with Transport Inhibitor Response1 [TIR1]/Auxin Signaling F-box [AFB]) by an interaction directly facilitated by auxin. Surprisingly, using a Histidine-Hemaglutinin (HIS(6x)-HA(3x)) epitope-tagged version expressed in vivo, Lys-less IAA1 was ubiquitinated and rapidly degraded in vivo. Lys-substituted versions of IAA1 localized to the nucleus as Yellow Fluorescent Protein fusions and interacted with both TIR1 and IAA7 in yeast (Saccharomyces cerevisiae) two-hybrid experiments, indicating that these proteins were functional. Ubiquitination on both HIS(6x)-HA(3x)-IAA1 and Lys-less HIS(6x)-HA(3x)-IAA1 proteins was sensitive to sodium hydroxide treatment, indicative of ubiquitin oxyester formation on serine or threonine residues. Additionally, base-resistant forms of ubiquitinated IAA1 were observed for HIS(6x)-HA(3x)-IAA1, suggesting additional lysyl-linked ubiquitin on this protein. Characterization of other Aux/IAA proteins showed that they have diverse degradation rates, adding additional complexity to auxin signaling. Altogether, these data

  17. The regulatory effect of citric acid on the co-production of poly(ε-lysine) and poly(L-diaminopropionic acid) in Streptomyces albulus PD-1.

    PubMed

    Xia, Jun; Xu, Zhaoxian; Xu, Hong; Feng, Xiaohai; Bo, Fangfang

    2014-10-01

    Streptomyces albulus PD-1 can co-produce antimicrobial homo-polymers poly(ε-lysine) (ε-PL) and poly(L-diaminopropionic acid) (PDAP). In this study, a novel feeding strategy of citric acid coupled with glucose-(NH4)2SO4 feeding was employed to S. albulus PD-1. When the pH of the culture broth dropped to 4.0, the feeding solution was added continuously to maintain the concentrations of glucose and citric acid at 10 and 4 g L(-1), respectively. As a result, the final concentration of ε-PL increased from 21.7 to 29.7 g L(-1) and the final concentration of PDAP decreased from 4.8 to 3.2 g L(-1). Assays on intracellular nucleotide levels and key enzyme activities were performed to elucidate the underlying regulation mechanism. The addition of citric acid increased NADH/NAD(+) ratio and decreased intracellular ATP level; meanwhile, the activities of pyruvate kinase, citrate synthase and isocitrate dehydrogenase decreased while aspartate aminotransferase activity increased. Therefore, we deduced that citric acid feeding resulted in metabolic flux redistribution at the node of phosphoenolpyruvate; the metabolic pathway from phosphoenolpyruvate directed into tricarboxylic acid cycle was weakened and thus PDAP production was inhibited. On the other hand, the metabolic pathway from phosphoenolpyruvate directed into oxaloacetate and L-aspartate was enhanced, thereby improving ε-PL production. This fermentation strategy may be potentially useful in ε-PL production because it can effectively inhibit the formation of by-products, such as PDAP.

  18. The regulatory effect of citric acid on the co-production of poly(ε-lysine) and poly(L-diaminopropionic acid) in Streptomyces albulus PD-1.

    PubMed

    Xia, Jun; Xu, Zhaoxian; Xu, Hong; Feng, Xiaohai; Bo, Fangfang

    2014-10-01

    Streptomyces albulus PD-1 can co-produce antimicrobial homo-polymers poly(ε-lysine) (ε-PL) and poly(L-diaminopropionic acid) (PDAP). In this study, a novel feeding strategy of citric acid coupled with glucose-(NH4)2SO4 feeding was employed to S. albulus PD-1. When the pH of the culture broth dropped to 4.0, the feeding solution was added continuously to maintain the concentrations of glucose and citric acid at 10 and 4 g L(-1), respectively. As a result, the final concentration of ε-PL increased from 21.7 to 29.7 g L(-1) and the final concentration of PDAP decreased from 4.8 to 3.2 g L(-1). Assays on intracellular nucleotide levels and key enzyme activities were performed to elucidate the underlying regulation mechanism. The addition of citric acid increased NADH/NAD(+) ratio and decreased intracellular ATP level; meanwhile, the activities of pyruvate kinase, citrate synthase and isocitrate dehydrogenase decreased while aspartate aminotransferase activity increased. Therefore, we deduced that citric acid feeding resulted in metabolic flux redistribution at the node of phosphoenolpyruvate; the metabolic pathway from phosphoenolpyruvate directed into tricarboxylic acid cycle was weakened and thus PDAP production was inhibited. On the other hand, the metabolic pathway from phosphoenolpyruvate directed into oxaloacetate and L-aspartate was enhanced, thereby improving ε-PL production. This fermentation strategy may be potentially useful in ε-PL production because it can effectively inhibit the formation of by-products, such as PDAP. PMID:24752482

  19. Efficacy of a Complex of 5-Aminolevulinic Acid and Glycyl-Histidyl-Lysine Peptide on Hair Growth

    PubMed Central

    Sim, Hyun Bo; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won; Yim, Soon-Ho

    2016-01-01

    Background Pattern hair loss is a very common problem. Although effective therapeutics for the treatment of pattern hair loss have been used, novel therapeutic modalities are still required to enhance hair growth. Objective We investigated the efficacy and safety of a complex (ALAVAX) of 5-aminolevulinic acid (5-ALA) and glycyl-histidyl-lysine (GHK) peptide for the treatment of pattern hair loss. Methods Forty-five patients with male pattern hair loss were treated with ALAVAX 100 mg/ml (group A), ALAVAX 50 mg/ml (group B) or placebo (group C) once a day for 6 months. Total hair count, hair length, hair thickness, patient's assessment and adverse events were evaluated at month 1, 3, and 6. Results An increase in hair count for 6 months was 52.6 (p<0.05) in group A, 71.5 (p<0.05) in group B, and 9.6 in group C. The ratio of changes in hair count between group B (2.38) and group C (1.21) at 6 months showed a statistically significant difference (p<0.05). The proportion above good satisfaction was higher in group A (26.7%) than in the other groups (group B: 14.3%, group C: 7.1%). There was no statistically significant difference in hair length and hair thickness among 3 groups at 6 months. There was no adverse event in 3 groups. Conclusion Our study showed that a complex of 5-ALA and GHK peptide may be considered as one of the complementary agents for the treatment of male pattern hair loss. PMID:27489425

  20. The catabolic function of the alpha-aminoadipic acid pathway in plants is associated with unidirectional activity of lysine-oxoglutarate reductase, but not saccharopine dehydrogenase.

    PubMed Central

    Zhu, X; Tang, G; Galili, G

    2000-01-01

    Whereas plants and animals use the alpha-aminoadipic acid pathway to catabolize lysine, yeast and fungi use the very same pathway to synthesize lysine. These two groups of organisms also possess structurally distinct forms of two enzymes in this pathway, namely lysine-oxoglutarate reductase (lysine-ketoglutarate reductase; LKR) and saccharopine dehydrogenase (SDH): in plants and animals these enzymes are linked on to a single bifunctional polypeptide, while in yeast and fungi they exist as separate entities. In addition, yeast LKR and SDH possess bi-directional activities, and their anabolic function is regulated by complex transcriptional and post-transcriptional controls, which apparently ascertain differential accumulation of intermediate metabolites; in plants, the regulation of the catabolic function of these two enzymes is not known. To elucidate the regulation of the catabolic function of plant bifunctional LKR/SDH enzymes, we have used yeast as an expression system to test whether a plant LKR/SDH also possesses bi-directional LKR and SDH activities, similar to the yeast enzymes. The Arabidopsis enzyme complemented a yeast SDH, but not LKR, null mutant. Identical results were obtained when deletion mutants encoding only the LKR or SDH domains of this bifunctional polypeptide were expressed individually in the yeast cells. Moreover, activity assays showed that the Arabidopsis LKR possessed catabolic, but not anabolic, activity, and its uni-directional activity stems from its structure rather than its linkage to SDH. Our results suggest that the uni-directional activity of LKR plays an important role in regulating the catabolic function of the alpha-amino adipic acid pathway in plants. PMID:10998364

  1. Degradation signals in the lysine-asparagine sequence space.

    PubMed

    Suzuki, T; Varshavsky, A

    1999-11-01

    The N-degrons, a set of degradation signals recognized by the N-end rule pathway, comprise a protein's destabilizing N-terminal residue and an internal lysine residue. We show that the strength of an N-degron can be markedly increased, without loss of specificity, through the addition of lysine residues. A nearly exhaustive screen was carried out for N-degrons in the lysine (K)-asparagine (N) sequence space of the 14-residue peptides containing either K or N (16 384 different sequences). Of these sequences, 68 were found to function as N-degrons, and three of them were at least as active and specific as any of the previously known N-degrons. All 68 K/N-based N-degrons lacked the lysine at position 2, and all three of the strongest N-degrons contained lysines at positions 3 and 15. The results support a model of the targeting mechanism in which the binding of the E3-E2 complex to the substrate's destabilizing N-terminal residue is followed by a stochastic search for a sterically suitable lysine residue. Our strategy of screening a small library that encompasses the entire sequence space of two amino acids should be of use in many settings, including studies of protein targeting and folding. PMID:10545113

  2. Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation.

    PubMed

    Colak, Gozde; Pougovkina, Olga; Dai, Lunzhi; Tan, Minjia; Te Brinke, Heleen; Huang, He; Cheng, Zhongyi; Park, Jeongsoon; Wan, Xuelian; Liu, Xiaojing; Yue, Wyatt W; Wanders, Ronald J A; Locasale, Jason W; Lombard, David B; de Boer, Vincent C J; Zhao, Yingming

    2015-11-01

    The protein substrates of sirtuin 5-regulated lysine malonylation (Kmal) remain unknown, hindering its functional analysis. In this study, we carried out proteomic screening, which identified 4042 Kmal sites on 1426 proteins in mouse liver and 4943 Kmal sites on 1822 proteins in human fibroblasts. Increased malonyl-CoA levels in malonyl-CoA decarboxylase (MCD)-deficient cells induces Kmal levels in substrate proteins. We identified 461 Kmal sites showing more than a 2-fold increase in response to MCD deficiency as well as 1452 Kmal sites detected only in MCD-/- fibroblast but not MCD+/+ cells, suggesting a pathogenic role of Kmal in MCD deficiency. Cells with increased lysine malonylation displayed impaired mitochondrial function and fatty acid oxidation, suggesting that lysine malonylation plays a role in pathophysiology of malonic aciduria. Our study establishes an association between Kmal and a genetic disease and offers a rich resource for elucidating the contribution of the Kmal pathway and malonyl-CoA to cellular physiology and human diseases. PMID:26320211

  3. Segregation for endosperm lysine in F2, F 3 and F 4 progeny from a cross of in vitro-selected and unselected cultivar of rice.

    PubMed

    Schaeffer, G W; Sharpe, F T; Dudley, J T

    1989-02-01

    Lysine is a limiting amino acid for optimal nutritional quality in rice grain. In vitro selections using inhibitory levels of lysine plus threonine or s-aminoethylcysteine allow the predictable recovery of variants with elevated levels of lysine and protein. These methods may generate useful starting germplasm for plant breeders. This study was conducted to define the genetics of lysine mutants in progeny from crosses of mutants derived from cells cultured in vitro in the presence of inhibitory levels of lysine plus threonine and s-(2-aminoethyl)-cysteine. In vitro selections produce a wide range of mutants, including endosperm mutants with elevated lysine and protein levels as well as mutants for high and low seed weights. Mutants were analyzed for lysine content by the endosperm half-seed method in which the halves without the embryo were ground and acid hydrolyzed for amino acid determinations. The halves with the embryos were preserved for later germination. In two different F2 populations derived from a cross of a selected mutant x M-101, a parental marker, there was an inverse relationship between seed weight and percent lysine in endosperm protein (R(2) 0.52 and 0.56). The F2 segregation patterns show that elevated lysine is inherited as a recessive gene and that increased lysine is correlated with decreased seed size. F3 and F4 data provide evidence for the transmission of high lysine genes to advanced germplasm in rice. This work supports our earlier conclusions that high lysine phenotypes can be recovered predictably from in vitro selections. The elevated lysine phenotypes are frequently, but not exclusively, associated with opaque seed. Some segregants from crosses produced increased lysine in plants with near normal seed weight and good fertility. PMID:24232525

  4. The same substitution, glutamic acid----lysine at position 501, occurs in three alloalbumins of Asiatic origin: albumins Vancouver, Birmingham, and Adana.

    PubMed Central

    Huss, K; Madison, J; Ishioka, N; Takahashi, N; Arai, K; Putnam, F W

    1988-01-01

    A strategy is described for identifying structural changes in genetic variants of human serum albumin (alloalbumins). By use of this strategy we have determined an amino acid substitution in three alloalbumins of Asiatic origin. The same amino acid exchange, glutamic acid----lysine at position 501, occurs in albumins Vancouver and Birmingham, both from families that migrated from northern India, and also in albumin Adana from Turkey. This exchange corresponds to a single base mutation in the codon GAG to AAG and accords with the slow mobility of the three albumins at pH 8.6. Each of the three alloalbumins had been reported to be a new variant, yet they have the same substitution. These results emphasize the need for structural study of genetic variants that have been differentiated only by nonspecific physical criteria such as dye binding and electrophoretic mobility. We know of no other description of the substitution involved in an alloalbumin originating from the Indian subcontinent. However, the same change of glutamic acid----lysine at position 501 may be present in several other named variants reported for populations in north India and the surrounding regions. Images PMID:2901102

  5. Suppression of human cervical cancer cell lines Hela and DoTc2 4510 by a mixture of lysine, proline, ascorbic acid, and green tea extract.

    PubMed

    Roomi, M W; Ivanov, V; Kalinovsky, T; Niedzwiecki, A; Rath, M

    2006-01-01

    Cervical cancer, the second most common cancer in women, once metastasized, leads to poor prognosis. We investigated the antitumor effect of a nutrient mixture (NM) containing lysine, proline, arginine, ascorbic acid, and green tea extract on human cervical cancer cells Hela (CCL-2) and DoTc2 4510 by measuring cell proliferation (MTT assay), modulation of matrix metalloproteinases (MMP)-2 and MMP-9) expression (gelatinase zymography), and cancer cell invasive potential (Matrigel). NM showed significant antiproliferative effect on CCL-2 and DoTc2 4510 cancer cells. The NM inhibited CCL-2 expression of MMP-2 and MMP-9 in a dose-dependent fashion, with virtual total inhibition of MMP-2 at 1000 microg/mL and MMP-9 at 500 microg/mL NM. Untreated DoTc2 4510 cells showed MMP-9 expression, which was enhanced with phorbol 12-myristate 13-acetate treatment. NM inhibited MMP-9 expression in a dose-dependent fashion, with virtual inhibition at 500 microg/mL. Invasion of human cervical cancer cells CCL-2 and DoTc2 4510 through Matrigel decreased in a dose-dependent fashion, with 100% inhibition at 500 microg/mL NM (P < 0.0001) and 1000 microg/mL NM (P < 0.0001), respectively. Our results suggest that the mixture of lysine, proline, arginine, ascorbic acid, and green tea extract has potential in the treatment of cervical cancer by inhibiting critical steps in cancer development and spread.

  6. Effects of long-term consumption of standard diets including glucose-lysine model glycated compounds on the antioxidant status of adult rats.

    PubMed

    Pastoriza, Silvia; Rufián-Henares, José Ángel; Delgado-Andrade, Cristina

    2015-09-15

    Our purpose was to evaluate the uptake of antioxidant capacity (AC) in rats fed long-term a diet containing commonly consumed Maillard reaction products (MRPs) from the glucose-lysine system. The effects on the oxidative status of liver, biceps brachii muscle and serum were also tested. The presence of model MRPs in the diet, especially melanoidins, led to a significantly higher intake (24.0μmolTrolox/day), faecal excretion (0.604μmolTrolox/day), and uptake (23.4μmolTrolox/day) of AC, although the uptake rate remained stable compared to the control group (97.5%). Consumption of the assayed MRPs did not affect the hepatic antioxidant defence while some positive modifications, like an increase in glutathione peroxidase, were detected in muscle (29%) and serum (400%). This pointed to an improved antioxidant capacity. Despite the interesting findings for these specific MRPs, attention must be paid to the overall consumption of MRPs from different sources in a conventional diet, due to their implications in the development/advance of many disorders.

  7. Extraterrestrial Amino Acids in Ureilites Including Almahata Sitta

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.

    2011-01-01

    Ureilites are a class of meteorites that lack chondrules (achondrites) but have relatively high carbon abundances, averaging approx.3 wt %. Using highly sensitive liquid chromatography coupled with UV fluorescence and time-of-flight mass spectrometry (LC-FD/ToF-MS), it was recently determined that there are amino acids in. fragment 94 of the Almahata Sitta ureilite[l]. Based on the presence of amino acids that are rare in the Earth's biosphere, as well as the near-racemic enantiomeric ratios of marry of the more common amino acids, it was concluded that most of the detected amino acids were indigenous to the meteorite. Although the composition of the Almahata Sitta ureilite appears to be unlike other recovered ureilites, the discovery of amino acids in this meteorite raises the question of whether other ureilites rnav also contain amino acids. Herein we present the results of LC-FDlTo.F-MS analyses of: a sand sample from the Almahata Sitta strewn held, Almahata Sitta fragments 425 (an ordinary H5 chondrite) and 427 (ureilite), as well as an Antarctic ureilite (Allan lulls, ALHA 77257).

  8. Antiradical activity of gallic acid included in lipid interphases.

    PubMed

    Salcedo, C L; Frías, M A; Cutro, A C; Nazareno, M A; Disalvo, E A

    2014-10-01

    Polyphenols are well known as antioxidant agents and by their effects on the hydration layers of lipid interphases. Among them, gallic acid and its derivatives are able to decrease the dipole potential and to act in water as a strong antioxidant. In this work we have studied both effects on lipid interphases in monolayers and bilayers of dimyristoylphosphatidylcholine. The results show that gallic acid (GA) increases the negative surface charges of large unilamellar vesicles (LUVs) and decreases the dipole potential of the lipid interphase. As a result, positively charged radical species such as ABTS(+) are able to penetrate the membrane forming an association with GA. These results allow discussing the antiradical activity (ARA) of GA at the membrane phase which may be taking place in water spaces between the lipids.

  9. X-ray studies of crystalline complexes involving amino acids and peptides. XLIV. Invariant features of supramolecular association and chiral effects in the complexes of arginine and lysine with tartaric acid.

    PubMed

    Selvaraj, M; Thamotharan, S; Roy, Siddhartha; Vijayan, M

    2007-06-01

    The tartaric acid complexes with arginine and lysine exhibit two stoichiometries depending upon the ionization state of the anion. The structures reported here are DL-argininium DL-hydrogen tartrate, bis(L-argininium) L-tartrate, bis(DL-lysinium) DL-tartrate monohydrate, L-lysinium D-hydrogen tartrate and L-lysinium L-hydrogen tartrate. During crystallization, L-lysine preferentially interacts with D-tartaric acid to form a complex when DL-tartaric acid is used in the experiment. The anions and the cations aggregate into separate alternating layers in four of the five complexes. In bis(L-argininium) L-tartrate, the amino acid layers are interconnected by individual tartrate ions which do not interact among themselves. The aggregation of argininium ions in the DL- and the L-arginine complexes is remarkably similar, which is in turn similar to those observed in other dicarboxylic acid complexes of arginine. Thus, argininium ions have a tendency to assume similar patterns of aggregation, which are largely unaffected by a change in the chemistry of partner molecules such as the introduction of hydroxyl groups or a change in chirality or stoichiometry. On the contrary, the lysinium ions exhibit fundamentally different aggregation patterns in the DL-DL complexes on the one hand and L-D and L-L complexes on the other. Interestingly, the pattern in the L-D complex is similar to that in the L-L complex. The lysinium ions in the DL-DL complex exhibit an aggregation pattern similar to those observed in the DL-lysine complexes involving other dicarboxylic acids. Thus, the effect of change in the chirality of a subset of the component complexes could be profound or marginal, in an unpredictable manner. The relevant crystal structures appear to indicate that the preference of L-lysine for D-tartaric acid is perhaps caused by chiral discrimination resulting from the amplification of a small energy difference.

  10. Estimation of the optimal standardized ileal digestible lysine requirement for primiparous lactating sows fed diets supplemented with crystalline amino acids.

    PubMed

    Shi, Meng; Zang, Jianjun; Li, Zhongchao; Shi, Chuanxin; Liu, Ling; Zhu, Zhengpeng; Li, Defa

    2015-10-01

    This experiment was conducted to determine the optimal standardized ileal digestible lysine (SID Lys) level in diets fed to primiparous sows during lactation. A total of 150 (Landrace × Large White) crossbred gilts (weighing 211.1 ± 3.5 kg with a litter size of 11.1 ± 0.2) were fed lactation diets (3325 kcal metabolizable energy (ME)/kg) containing SID Lys levels of 0.76, 0.84, 0.94, 1.04 or 1.14%, through 28 days lactation. Gilts were allocated to treatments based on their body weight and backfat thickness 48 h after farrowing. Gilt body weight loss was significantly (P < 0.05) decreased by increasing dietary SID Lys levels. Fitted broken-line (P < 0.05) and quadratic plot (P < 0.05) analysis of body weight loss indicated that the optimal SID Lys for primiparous sows was 0.85 and 1.01%, respectively. Average daily feed intake (ADFI), weaning-to-estrus interval and subsequent conception rate were not affected by dietary SID Lys levels. Increasing dietary lysine had no effect on litter performances. Protein content in milk was increased by dietary SID Lys (P < 0.05). Dietary SID Lys tended to increase concentrations of serum insulin-like growth factor I (P = 0.066). These results of this experiment indicate that the optimal dietary SID Lys for lactating gilts was at least 0.85%, which approaches the recommendation of 0.84% that is estimated by the National Research Council (2012).

  11. NMR studies of protonation and hydrogen bond states of internal aldimines of pyridoxal 5'-phosphate acid-base in alanine racemase, aspartate aminotransferase, and poly-L-lysine.

    PubMed

    Chan-Huot, Monique; Dos, Alexandra; Zander, Reinhard; Sharif, Shasad; Tolstoy, Peter M; Compton, Shara; Fogle, Emily; Toney, Michael D; Shenderovich, Ilya; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-12-01

    Using (15)N solid-state NMR, we have studied protonation and H-bonded states of the cofactor pyridoxal 5'-phosphate (PLP) linked as an internal aldimine in alanine racemase (AlaR), aspartate aminotransferase (AspAT), and poly-L-lysine. Protonation of the pyridine nitrogen of PLP and the coupled proton transfer from the phenolic oxygen (enolimine form) to the aldimine nitrogen (ketoenamine form) is often considered to be a prerequisite to the initial step (transimination) of the enzyme-catalyzed reaction. Indeed, using (15)N NMR and H-bond correlations in AspAT, we observe a strong aspartate-pyridine nitrogen H-bond with H located on nitrogen. After hydration, this hydrogen bond is maintained. By contrast, in the case of solid lyophilized AlaR, we find that the pyridine nitrogen is neither protonated nor hydrogen bonded to the proximal arginine side chain. However, hydration establishes a weak hydrogen bond to pyridine. To clarify how AlaR is activated, we performed (13)C and (15)N solid-state NMR experiments on isotopically labeled PLP aldimines formed by lyophilization with poly-L-lysine. In the dry solid, only the enolimine tautomer is observed. However, a fast reversible proton transfer involving the ketoenamine tautomer is observed after treatment with either gaseous water or gaseous dry HCl. Hydrolysis requires the action of both water and HCl. The formation of an external aldimine with aspartic acid at pH 9 also produces the ketoenamine form stabilized by interaction with a second aspartic acid, probably via a H-bond to the phenolic oxygen. We postulate that O-protonation is an effectual mechanism for the activation of PLP, as is N-protonation, and that enzymes that are incapable of N-protonation employ this mechanism. PMID:24147985

  12. CPLM: a database of protein lysine modifications

    PubMed Central

    Liu, Zexian; Wang, Yongbo; Gao, Tianshun; Pan, Zhicheng; Cheng, Han; Yang, Qing; Cheng, Zhongyi; Guo, Anyuan; Ren, Jian; Xue, Yu

    2014-01-01

    We reported an integrated database of Compendium of Protein Lysine Modifications (CPLM; http://cplm.biocuckoo.org) for protein lysine modifications (PLMs), which occur at active ε-amino groups of specific lysine residues in proteins and are critical for orchestrating various biological processes. The CPLM database was updated from our previously developed database of Compendium of Protein Lysine Acetylation (CPLA), which contained 7151 lysine acetylation sites in 3311 proteins. Here, we manually collected experimentally identified substrates and sites for 12 types of PLMs, including acetylation, ubiquitination, sumoylation, methylation, butyrylation, crotonylation, glycation, malonylation, phosphoglycerylation, propionylation, succinylation and pupylation. In total, the CPLM database contained 203 972 modification events on 189 919 modified lysines in 45 748 proteins for 122 species. With the dataset, we totally identified 76 types of co-occurrences of various PLMs on the same lysine residues, and the most abundant PLM crosstalk is between acetylation and ubiquitination. Up to 53.5% of acetylation and 33.1% of ubiquitination events co-occur at 10 746 lysine sites. Thus, the various PLM crosstalks suggested that a considerable proportion of lysines were competitively and dynamically regulated in a complicated manner. Taken together, the CPLM database can serve as a useful resource for further research of PLMs. PMID:24214993

  13. Lysine catabolism in Rhizoctonia leguminicola and related fungi.

    PubMed Central

    Guengerich, F P; Broquist, H P

    1976-01-01

    The catabolism of lysine was studied in several yeasts and fungi. Results with cell-free extracts of Rhizoctonia leguminicola support a proposed pathway involving (D- and L-) EPSILON-N-acetyllysine, alpha-keto-epsilon-acetamidohexanoic acid, delta-acetamidovaleric acid, and delta-aminovaleric acid in the conversion of L-lysine to shortchain organic acids. Label from radioactive L-lysine was found to accumulate in D- and L-epsilon-N-acetyllysine, delta-acetamidovaleric acid, delta-aminovaleric acid, and glutaric acid in cultures of R. leguminicola, Neurospora crassa, Saccharomyces cerevisiae, and Hansenula saturnus, suggesting that the proposed omega-acetyl pathway of lysine catabolism is generalized among yeasts and fungi. In N. crassa, as is the case in R. leguminicola, the major precursor of L-pipecolic acid was the L-isomer of lysine; 15N experiments were consistent with delta1-piperideine-2-carboxylic acid as an intermediate in the transformation. PMID:131119

  14. Intestinal absorption of amino acids in the Pacific bluefin tuna (Thunnus orientalis): in vitro lysine-arginine interaction using the everted intestine system.

    PubMed

    Martínez-Montaño, Emmanuel; Peña, Emyr; Viana, María Teresa

    2013-04-01

    The interaction between lysine (Lys) and arginine (Arg) in the proximal intestinal region of Pacific bluefin tuna (Thunnus orientalis) was evaluated using the everted intestine method. This in vitro intestinal system has been shown to be an effective tool for studying the nutrient absorption without the need to handle the tuna fish in marine cages as needed for digestibility and amino acid (AA) absorption. We used a factorial design with two sets of variables: low and high Lys concentration (10 and 75 mM) and four different Arg concentrations (3, 10, 20, and 30 mM). Both amino acids were dissolved in marine Ringer solution with a basal amino acidic composition consisting of a tryptone solution (9 mg mL(-1)). No interaction was observed between the absorption of Lys and Arg during the first 10 min of the experiment when low concentration of Lys and Arg was used in the hydrolyzate solution. However, there seemed to be a positive effect on Lys absorption when both amino acids were at high concentrations (30 and 75 mM, respectively). This type of studies will led us to test different formulations and/or additives to better understand the efficiency of AA supplementation as an alternative to in situ studies that are difficult to follow to design with the Pacific Bluefin Tuna.

  15. Bioavailability of lysine in Maillard browned protein as determined by plasma lysine response in rainbow trout (Salmo gairdneri).

    PubMed

    Plakas, S M; Lee, T C; Wolke, R E

    1988-01-01

    The bioavailability of lysine in Maillard browned protein was investigated by plasma lysine response in rainbow trout (Salmo gairdneri). The concentrations of free lysine in the plasma were measured after feeding control and browned protein diets supplemented with graded levels of lysine. Bioavailability of lysine was estimated based on the amounts of supplemental lysine in the diets that resulted in rapid increases in plasma lysine. An approximately 80% loss in bioavailable lysine content was determined by this method in a fish protein isolate subjected to the Maillard browning reaction under mild conditions (40 d incubation at 37 degrees C). The nutritional damage to lysine determined by plasma lysine response was similar to that estimated in vitro by enzymatic hydrolysis and fluorodinitrobenzene reagent, but was underestimated by acid hydrolysis and trinitrobenzene sulfonic acid reagent. Rainbow trout are similar to other animals in their inability to utilize the deoxyketosyl (Amadori) compound of lysine formed in early Maillard reaction, and in their plasma response to dietary levels of essential amino acids. PMID:3121813

  16. Bioavailability of free lysine and protein-bound lysine from casein and fishmeal in juvenile turbot (Psetta maxima).

    PubMed

    Kroeckel, Saskia; Dietz, Carsten; Schulz, Carsten; Susenbeth, Andreas

    2015-03-14

    In the present study, a linear regression analysis between lysine intake and lysine retention was conducted to investigate the efficiency of lysine utilisation (k(Lys)) at marginal lysine intake of either protein-bound or free lysine sources in juvenile turbot (Psetta maxima). For this purpose, nine isonitrogenous and isoenergetic diets were formulated to contain 2·25-4·12 g lysine/100 g crude protein (CP) to ensure that lysine was the first-limiting amino acid in all diets. The basal diet contained 2·25 g lysine/100 g CP. Graded levels of casein (Cas), fishmeal (FM) and L-lysine HCl (Lys) were added to the experimental diets to achieve stepwise lysine increments. A total of 240 fish (initial weight 50·1 g) were hand-fed all the experimental diets once daily until apparent satiation over a period of 56 d. Feed intake was significantly affected by dietary lysine concentration rather than by dietary lysine source. Specific growth rate increased significantly at higher lysine concentrations (P< 0·001). CP, crude lipid and crude ash contents in the whole body were affected by the dietary treatments. The linear regression slope between lysine retention and lysine intake (k(Lys)) was similar between all the dietary lysine sources. The k(Lys) values for the diets supplemented with Cas, Lys or FM were 0·833, 0·857 and 0·684, respectively. The bioavailability of lysine from the respective lysine sources was determined by a slope-ratio approach. The bioavailability of lysine (relative to the reference lysine source Cas) from FM and Lys was 82·1 and 103 %, respectively. Nutrient requirement for maintenance was in the range of 16·7-23·4 mg/kg(0·8) per d, and did not differ between the treatments. There were no significant differences in lysine utilisation efficiency or bioavailability of protein-bound or crystalline lysine from the respective sources observed when lysine was confirmed to be the first-limiting nutrient.

  17. Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    SciTech Connect

    Giedroc, D.P.; Sinha, S.K.; Brew, K.; Puett, D.

    1985-11-05

    The CaS -dependent association of beta-endorphin and trifluoperazine with porcine testis calmodulin, as well as the effects of removing CaS by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) treatment, were investigated by the procedure of differential kinetic labeling. This technique permitted determination of the relative rates of acylation of each of the epsilon-amino groups of the seven lysyl residues on calmodulin by (TH)acetic anhydride under the different conditions. In all cases, less than 0.52 mol of lysyl residue/mol of calmodulin was modified, thus ensuring that the labeling pattern reflects the microenvironments of these groups in the native protein. Lysines 75 and 94 were found to be the most reactive amino groups in CaS -saturated calmodulin. In the presence of CaS and under conditions where beta-endorphin and calmodulin were present at a molar ratio of 2.5:1, the amino groups of lysines 75 and 148 were significantly reduced in reactivity compared to calmodulin alone. At equimolar concentrations of peptides and proteins, essentially the same result was obtained except that the magnitudes of the perturbation of these two lysines were less pronounced. With trifluoperazine, at a molar ratio to calmodulin of 2.5:1, significant perturbations of lysines 75 and 148, as well as Lys 77, were also found. These results further substantiate previous observations of a commonality between phenothiazine and peptide binding sites on calmodulin. Lastly, an intriguing difference in CaS -mediated reactivities between lysines 75 and 77 of calmodulin is demonstrated. In the CaS -saturated form of the protein, both lysines are part of the long connecting helix between the two homologous halves of the protein.

  18. Economical production of poly(ε-l-lysine) and poly(l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1.

    PubMed

    Xia, Jun; Xu, Zhaoxian; Xu, Hong; Liang, Jinfeng; Li, Sha; Feng, Xiaohai

    2014-07-01

    Poly(ε-L-lysine) (ε-PL) and poly(L-diaminopropionic acid) (PDAP) co-production by Streptomyces albulus PD-1 from cane molasses and hydrolysate of strepyomyces cells (HSC) was investigated for the first time in this study. The optimal initial total sugar concentration of the cane molasses pretreated with sulfuric acid was determined to be 20 g L(-1), and HSC could substitute for yeast extract for ε-PL and PDAP co-production. When fed-batch fermentation was performed in 1t fermentor with pretreated cane molasses and HSC, 20.6 ± 0.5 g L(-1) of ε-PL and 5.2 ± 0.6 g L(-1) of PDAP were obtained. The amount of strepyomyces cells obtained in one fed-batch fermentation is sufficient to prepare the HSC to satisfy the demand of subsequent fermentations, thus the self-cycling of organic nitrogen source becomes available. These results suggest that the low-cost cane molasses and HSC can be used for the economical production of ε-PL and PDAP by S. albulus PD-1.

  19. Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea

    PubMed Central

    Lv, Binna; Yang, Qianqian; Li, Delong; Liang, Wenxing; Song, Limin

    2016-01-01

    Lysine acetylation is a dynamic and reversible post-translational modification that plays an important role in diverse cellular processes. Botrytis cinerea is the most thoroughly studied necrotrophic species due to its broad host range and huge economic impact. However, to date, little is known about the functions of lysine acetylation in this plant pathogen. In this study, we determined the lysine acetylome of B. cinerea through the combination of affinity enrichment and high-resolution LC-MS/MS analysis. Overall, 1582 lysine acetylation sites in 954 proteins were identified. Bioinformatics analysis shows that the acetylated proteins are involved in diverse biological functions and show multiple cellular localizations. Several particular amino acids preferred near acetylation sites, including KacY, KacH, Kac***R, KacF, FKac and Kac***K, were identified in this organism. Protein interaction network analysis demonstrates that a variety of interactions are modulated by protein acetylation. Interestingly, 6 proteins involved in virulence of B. cinerea, including 3 key components of the high-osmolarity glycerol pathway, were found to be acetylated, suggesting that lysine acetylation plays regulatory roles in pathogenesis. These data provides the first comprehensive view of the acetylome of B. cinerea and serves as a rich resource for functional analysis of lysine acetylation in this plant pathogen. PMID:27381557

  20. Investigation of Lysine-Functionalized Dendrimers as Dichlorvos Detoxification Agents.

    PubMed

    Durán-Lara, Esteban F; Marple, Jennifer L; Giesen, Joseph A; Fang, Yunlan; Jordan, Jacobs H; Godbey, W Terrence; Marican, Adolfo; Santos, Leonardo S; Grayson, Scott M

    2015-11-01

    Lysine-containing polymers have seen broad application due to their amines' inherent ability to bind to a range of biologically relevant molecules. The synthesis of multiple generations of polyester dendrimers bearing lysine groups on their periphery is described in this report. Their hydrolytic stabilities with respect to pH and time, their toxicity to a range of cell lines, and their possible application as nano-detoxification agents of organophosphate compounds are all investigated. These zeroth-, first-, and second-generation water-soluble dendrimers have been designed to bear exactly 4, 8, and 16 lysine groups, respectively, on their dendritic periphery. Such monodisperse bioactive polymers show potential for a range of applications including drug delivery, gene delivery, heavy metal binding, and the sequestration of organic toxins. These monodisperse bioactive dendrimers were synthesized using an aliphatic ester dendritic core (prepared from pentaerythritol) and protected amino acid moieties. This library of lysine-conjugated dendrimers showed the ability to efficiently capture the pesticide dichlorvos, confirming the potential of dendrimer-based antidotes to maintain acetylcholinesterase activity in response to poisoning events. PMID:26460283

  1. Protein lysine methylation by seven-β-strand methyltransferases.

    PubMed

    Falnes, Pål Ø; Jakobsson, Magnus E; Davydova, Erna; Ho, Angela; Małecki, Jędrzej

    2016-07-15

    Methylation of biomolecules is a frequent biochemical reaction within the cell, and a plethora of highly specific methyltransferases (MTases) catalyse the transfer of a methyl group from S-adenosylmethionine (AdoMet) to various substrates. The posttranslational methylation of lysine residues, catalysed by numerous lysine (K)-specific protein MTases (KMTs), is a very common and important protein modification, which recently has been subject to intense studies, particularly in the case of histone proteins. The majority of KMTs belong to a class of MTases that share a defining 'SET domain', and these enzymes mostly target lysines in the flexible tails of histones. However, the so-called seven-β-strand (7BS) MTases, characterized by a twisted beta-sheet structure and certain conserved sequence motifs, represent the largest MTase class, and these enzymes methylate a wide range of substrates, including small metabolites, lipids, nucleic acids and proteins. Until recently, the histone-specific Dot1/DOT1L was the only identified eukaryotic 7BS KMT. However, a number of novel 7BS KMTs have now been discovered, and, in particular, several recently characterized human and yeast members of MTase family 16 (MTF16) have been found to methylate lysines in non-histone proteins. Here, we review the status and recent progress on the 7BS KMTs, and discuss these enzymes at the levels of sequence/structure, catalytic mechanism, substrate recognition and biological significance. PMID:27407169

  2. Lysine fortification: past, present, and future.

    PubMed

    Pellett, Peter L; Ghosh, Shibani

    2004-06-01

    Fortification with lysine to improve the protein value of human diets that are heavily based on cereals has received support from the results of these recent studies [1,2]. Support also comes from examination of average food and nutrient availability data derived from food balance sheets. Whereas nutritional status is influenced by the nutrient content of foods consumed in relation to need, the requirements for protein and amino acids are influenced by many additional factors [10, 12, 14, 28, 29]. These include age, sex, body size, physical activity, growth, pregnancy and lactation, infection, and the efficiency of nutrient utilization. Even if the immune response was influenced by the added lysine, adequate water and basic sanitation would remain essential. Acute and chronic undernutrition and most micronutrient deficiencies primarily affect poor and deprived people who do not have access to food of adequate nutritional value, live in unsanitary environments without access to clean water and basic services, and lack access to appropriate education and information [30]. A further variable is the possible interaction between protein and food energy availability [31]. This could affect the protein value of diets when food energy is limiting to a significant degree. Thus, the additional effects of food energy deficiency on protein utilization could well be superimposed on the very poorest. The improvement of dietary diversity must be the long-term aim, with dietary fortification considered only a short-term solution. The former should take place as wealth improves and the gaps between rich and poor diminish. Although such changes are taking place, they are highly uneven. Over the last several decades, increases have occurred in the availability of food energy, total protein, and animal protein for both developed and developing countries. However, for the very poorest developing countries over the same period, changes have been almost nonexistent, and the values for

  3. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    PubMed Central

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  4. The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 Regulates the Cross Talk between Immunity and Abscisic Acid Responses1[W][OPEN

    PubMed Central

    Paparella, Chiara; Savatin, Daniel Valentin; Marti, Lucia; De Lorenzo, Giulia; Ferrari, Simone

    2014-01-01

    Transmembrane receptor-like kinases characterized by the presence of one or more lysin motif (LysM) domains in the extracytoplasmic portion (LysM-containing receptor-like kinases [LYKs]) mediate recognition of symbiotic and pathogenic microorganisms in plants. The Arabidopsis (Arabidopsis thaliana) genome encodes five putative LYKs; among them, AtLYK1/CHITIN ELICITOR RECEPTOR KINASE1 is required for response to chitin and peptidoglycan, and AtLYK4 contributes to chitin perception. More recently, AtLYK3 has been shown to be required for full repression, mediated by Nod factors, of Arabidopsis innate immune responses. In this work, we show that AtLYK3 also negatively regulates basal expression of defense genes and resistance to Botrytis cinerea and Pectobacterium carotovorum infection. Enhanced resistance of atlyk3 mutants requires PHYTOALEXIN-DEFICIENT3, which is crucial for camalexin biosynthesis. The expression of AtLYK3 is strongly repressed by elicitors and fungal infection and is induced by the hormone abscisic acid (ABA), which has a negative impact on resistance against B. cinerea and P. carotovorum. Plants lacking a functional AtLYK3 also show reduced physiological responses to ABA and are partially resistant to ABA-induced inhibition of PHYTOALEXIN-DEFICIENT3 expression. These results indicate that AtLYK3 is important for the cross talk between signaling pathways activated by ABA and pathogens. PMID:24639336

  5. Biocompatibility Assessment of Polyethylene Glycol-Poly L-Lysine-Poly Lactic-Co-Glycolic Acid Nanoparticles In Vitro and In Vivo.

    PubMed

    Guo, Liting; Chen, Baoan; Liu, Ran; Xia, Guohua; Wang, Yonglu; Li, Xueming; Wei, Chen; Wang, Xuemei; Jiang, Hulin

    2015-05-01

    The present study was designed to evaluate the biocompatibility of nanoparticles polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid copolymer (PLGA) (PEG-PLL-PLGA) before clinical application. We applied some tests to assess the safety of PEG-PLL-PLGA nanoparticles (NPs). There was low cytotoxicity of PEG-PLL-PLGA NPs in vitro as detected by MTT assay. Cell apoptosis and intracellular accumulation of PEG-PLL-PLGA were determined by FCM assay. The apoptotic rate induced by nanoparticles and the fluorescence intensity of intracellular daunorubicin (DNR) demonstrated that DNR-PEG-PLL-PLGA could be taken up by the mouse fibroblast cells (L929 cells). Hemolysis test and micronucleus (MN) assay demonstrated that the nanoparticles have no obviously blood toxicity and genotoxicity. DNR-PEG-PLL-PLGA NPs were injected into mice through tail vein to calculate the median lethal dose (LD50), the results showed that they had a wide safe scale. Blood was taken by removing the eyeball of mice to study the influence of DNR-PEG-PLL-PLGA in hepatic and renal functions. The results revealed that there was no significant difference as compared with the control group. Interestingly, the pathologic changes of heart, liver, spleen, lung and kidney were observed in nanoparticles treated mice. Thus, this study demonstrates that PEG-PLL-PLGA NPs appear to be highly biocompatible and safe nanoparticles that can be suitable for further application in the treatment of tumor.

  6. Influence of assembling pH on the stability of poly(L-glutamic acid) and poly(L-lysine) multilayers against urea treatment.

    PubMed

    Zhou, Jie; Wang, Bo; Tong, Weijun; Maltseva, Elena; Zhang, Gang; Krastev, Rumen; Gao, Changyou; Möhwald, Helmuth; Shen, Jiacong

    2008-04-01

    Polyelectrolyte multilayers of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) were built up using the layer-by-layer (LbL) technique in low pH (3.6, PM3.6) and in neutral pH (7.4, PM7.4) solutions. The multilayers were then treated with a concentrated urea (one kind of denaturant for proteins and polypeptides) solution (8M) and rinsed with corresponding buffer. The buildup and treatment processes were investigated by ultraviolet visible spectroscopy and ellipsometry. The surface morphology was observed by scanning force microscopy (SFM). The inner structures were determined by X-ray reflectometry and circular dichroism spectroscopy (CD). An exponential growth of the optical mass and the layer thickness was observed for both PM3.6 and PM7.4. After urea treatment, a significant mass loss for PM3.6 was found, while no mass change was recorded for PM7.4. The dominant driving force for PM7.4 is electrostatic interaction, resulting in multilayers with an abundant beta-sheet structure, which has higher stability against urea treatment. By contrast, the dominant driving force for PM3.6 is hydrogen bonding and hydrophobic interaction, which are sensitive to the urea treatment. The mechanism is substantiated by molecular mechanics calculation. This has offered a convenient pathway to mediate the multilayer properties, which is of great importance for potential applications.

  7. The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 regulates the cross talk between immunity and abscisic acid responses.

    PubMed

    Paparella, Chiara; Savatin, Daniel Valentin; Marti, Lucia; De Lorenzo, Giulia; Ferrari, Simone

    2014-05-01

    Transmembrane receptor-like kinases characterized by the presence of one or more lysin motif (LysM) domains in the extracytoplasmic portion (LysM-containing receptor-like kinases [LYKs]) mediate recognition of symbiotic and pathogenic microorganisms in plants. The Arabidopsis (Arabidopsis thaliana) genome encodes five putative LYKs; among them, AtLYK1/CHITIN ELICITOR RECEPTOR KINASE1 is required for response to chitin and peptidoglycan, and AtLYK4 contributes to chitin perception. More recently, AtLYK3 has been shown to be required for full repression, mediated by Nod factors, of Arabidopsis innate immune responses. In this work, we show that AtLYK3 also negatively regulates basal expression of defense genes and resistance to Botrytis cinerea and Pectobacterium carotovorum infection. Enhanced resistance of atlyk3 mutants requires PHYTOALEXIN-DEFICIENT3, which is crucial for camalexin biosynthesis. The expression of AtLYK3 is strongly repressed by elicitors and fungal infection and is induced by the hormone abscisic acid (ABA), which has a negative impact on resistance against B. cinerea and P. carotovorum. Plants lacking a functional AtLYK3 also show reduced physiological responses to ABA and are partially resistant to ABA-induced inhibition of PHYTOALEXIN-DEFICIENT3 expression. These results indicate that AtLYK3 is important for the cross talk between signaling pathways activated by ABA and pathogens.

  8. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    PubMed

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  9. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  10. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.

    PubMed

    Kumar, Vidya Prasanna; Thomas, Leonard M; Bobyk, Kostyantyn D; Andi, Babak; Cook, Paul F; West, Ann H

    2012-01-31

    Saccharopine dehydrogenase (SDH) catalyzes the final reaction in the α-aminoadipate pathway, the conversion of l-saccharopine to l-lysine (Lys) and α-ketoglutarate (α-kg) using NAD⁺ as an oxidant. The enzyme utilizes a general acid-base mechanism to conduct its reaction with a base proposed to accept a proton from the secondary amine of saccharopine in the oxidation step and a group proposed to activate water to hydrolyze the resulting imine. Crystal structures of an open apo form and a closed form of the enzyme with saccharopine and NADH bound have been determined at 2.0 and 2.2 Å resolution, respectively. In the ternary complex, a significant movement of domain I relative to domain II that closes the active site cleft between the two domains and brings H96 and K77 into the proximity of the substrate binding site is observed. The hydride transfer distance is 3.6 Å, and the side chains of H96 and K77 are properly positioned to act as acid-base catalysts. Preparation of the K77M and H96Q single-mutant and K77M/H96Q double-mutant enzymes provides data consistent with their role as the general acid-base catalysts in the SDH reaction. The side chain of K77 initially accepts a proton from the ε-amine of the substrate Lys and eventually donates it to the imino nitrogen as it is reduced to a secondary amine in the hydride transfer step, and H96 protonates the carbonyl oxygen as the carbinolamine is formed. The K77M, H976Q, and K77M/H96Q mutant enzymes give 145-, 28-, and 700-fold decreases in V/E(t) and >10³-fold increases in V₂/K(Lys)E(t) and V₂/K(α-kg)E(t) (the double mutation gives >10⁵-fold decreases in the second-order rate constants). In addition, the K77M mutant enzyme exhibits a primary deuterium kinetic isotope effect of 2.0 and an inverse solvent deuterium isotope effect of 0.77 on V₂/K(Lys). A value of 2.0 was also observed for (D)(V₂/K(Lys))(D₂O) when the primary deuterium kinetic isotope effect was repeated in D₂O, consistent with a

  11. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.

    PubMed

    Kumar, Vidya Prasanna; Thomas, Leonard M; Bobyk, Kostyantyn D; Andi, Babak; Cook, Paul F; West, Ann H

    2012-01-31

    Saccharopine dehydrogenase (SDH) catalyzes the final reaction in the α-aminoadipate pathway, the conversion of l-saccharopine to l-lysine (Lys) and α-ketoglutarate (α-kg) using NAD⁺ as an oxidant. The enzyme utilizes a general acid-base mechanism to conduct its reaction with a base proposed to accept a proton from the secondary amine of saccharopine in the oxidation step and a group proposed to activate water to hydrolyze the resulting imine. Crystal structures of an open apo form and a closed form of the enzyme with saccharopine and NADH bound have been determined at 2.0 and 2.2 Å resolution, respectively. In the ternary complex, a significant movement of domain I relative to domain II that closes the active site cleft between the two domains and brings H96 and K77 into the proximity of the substrate binding site is observed. The hydride transfer distance is 3.6 Å, and the side chains of H96 and K77 are properly positioned to act as acid-base catalysts. Preparation of the K77M and H96Q single-mutant and K77M/H96Q double-mutant enzymes provides data consistent with their role as the general acid-base catalysts in the SDH reaction. The side chain of K77 initially accepts a proton from the ε-amine of the substrate Lys and eventually donates it to the imino nitrogen as it is reduced to a secondary amine in the hydride transfer step, and H96 protonates the carbonyl oxygen as the carbinolamine is formed. The K77M, H976Q, and K77M/H96Q mutant enzymes give 145-, 28-, and 700-fold decreases in V/E(t) and >10³-fold increases in V₂/K(Lys)E(t) and V₂/K(α-kg)E(t) (the double mutation gives >10⁵-fold decreases in the second-order rate constants). In addition, the K77M mutant enzyme exhibits a primary deuterium kinetic isotope effect of 2.0 and an inverse solvent deuterium isotope effect of 0.77 on V₂/K(Lys). A value of 2.0 was also observed for (D)(V₂/K(Lys))(D₂O) when the primary deuterium kinetic isotope effect was repeated in D₂O, consistent with a

  12. Structure and Mechanisms of Lysine Methylation Recognition by the Chromodomain in Gene Transcription†

    PubMed Central

    Yap, Kyoko L.; Zhou, Ming-Ming

    2011-01-01

    Histone methylation recognition is accomplished by a number of evolutionarily conserved protein domains, including those belonging to the methylated lysine-binding Royal family of structural folds. One well-known member of the Royal family, the chromodomain, is found in the HP1/Chromobox and CHD subfamilies of proteins, in addition to a small number of other proteins that are involved in chromatin remodeling and gene transcriptional silencing. Here we discuss the structure and function of the chromodomain within these proteins as histone methylated lysine binders, and how the functions of these chromodomains can be modulated by additional post-translational modifications or binding to nucleic acids. PMID:21288002

  13. Autologous aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy.

    PubMed

    Miller, Elizabeth; Spadaccia, Meredith; Sabado, Rachel; Chertova, Elena; Bess, Julian; Trubey, Charles Mac; Holman, Rose Marie; Salazar, Andres; Lifson, Jeffrey; Bhardwaj, Nina

    2015-01-01

    Therapeutic interventions for HIV-1 that successfully augment adaptive immunity to promote killing of infected cells may be a requisite component of strategies to reduce latent cellular reservoirs. Adoptive immunotherapies utilizing autologous monocyte-derived dendritic cells (DCs) that have been activated and antigen loaded ex vivo may serve to circumvent defects in DC function that are present during HIV infection in order to enhance adaptive immune responses. Here we detail the clinical preparation of DCs loaded with autologous aldrithiol-2 (AT-2)-inactivated HIV that have been potently activated with the viral mimic, Polyinosinic-polycytidylic acid-poly-l-lysine carboxymethylcellulose (Poly-ICLC). HIV is first propagated from CD4+ T cells from HIV-infected donors and then rendered non-replicative by chemical inactivation with aldrithiol-2 (AT-2), purified, and quantified. Viral inactivation is confirmed through measurement of Tat-regulated β-galactosidase reporter gene expression following infection of TZM-bl cells. In-process testing for sterility, mycoplasma, LPS, adventitious agents, and removal of AT-2 is performed on viral preparations. Autologous DCs are generated and pulsed with autologous AT-2-inactivated virus and simultaneously stimulated with Poly-ICLC to constitute the final DC vaccine product. Phenotypic identity, maturation, and induction of HIV-specific adaptive immune responses are confirmed via flow cytometric analysis of DCs and cocultured autologous CD4+ and CD8+ T cells. Lot release criteria for the DC vaccine have been defined in accordance with Good Manufacturing Practice (GMP) guidelines. The demonstrated feasibility of this approach has resulted in approval by the FDA for investigational use in antiretroviral (ART) suppressed individuals. We discuss how this optimized DC formulation may enhance the quality of anti-HIV adaptive responses beyond what has been previously observed during DC immunotherapy trials for HIV infection.

  14. Effect of L-lysine on expression of selected genes, serum concentration of amino acids, muscle growth and performance of growing pigs.

    PubMed

    Morales, A; García, H; Arce, N; Cota, M; Zijlstra, R T; Araiza, B A; Cervantes, M

    2015-08-01

    Lysine (Lys) is the first limiting amino acid (AA) in most feed formulations for pigs and most abundant, along with leucine, in muscle proteins. An experiment was conducted with 17 pigs (17.7 ± 0.05 kg initial BW) to identify a role of dietary Lys in the control of protein synthesis in pigs. Fourteen pigs were randomly assigned to one of the two wheat-based dietary treatments: Lys-deficient, 3.0 g/kg (DEF) and Lys-adequate, 10.8 g/kg (ADE). Samples from jejunum mucosa, liver, Longissumus and Semitendinosus muscles, and blood were collected. The other three pigs were sacrificed at the beginning of the trial to measure basal carcass composition. Weight gain, gain:feed ratio, Lys intake and loin eye area were greater in ADE than in DEF pigs (p < 0.01). Muscle-related carcass characteristics were better, and myosin heavy chain IIb expression (MyHC IIb) in Semitendinosus was higher in ADE than in DEF pigs. Expression of AA transporters CAT-1 was lower (p < 0.05), serum Lys was higher and serum Val was lower in pigs fed the ADE diet. The higher muscularity, MyHC IIb expression in Semitendinosus muscle and Lys serum of pigs fed the ADE diet suggest that Lys increases growth rate not only by functioning as protein construction unit but also as potential control of the protein synthesis process.

  15. N-formylation of lysine in histone proteins as a secondary modification arising from oxidative DNA damage

    PubMed Central

    Jiang, Tao; Zhou, Xinfeng; Taghizadeh, Koli; Dong, Min; Dedon, Peter C.

    2007-01-01

    The posttranslational modification of histone and other chromatin proteins has a well recognized but poorly defined role in the physiology of gene expression. With implications for interfering with these epigenetic mechanisms, we now report the existence of a relatively abundant secondary modification of chromatin proteins, the N6-formylation of lysine that appears to be uniquely associated with histone and other nuclear proteins. Using both radiolabeling and sensitive bioanalytical methods, we demonstrate that the formyl moiety of 3′-formylphosphate residues arising from 5′-oxidation of deoxyribose in DNA, caused by the enediyne neocarzinostatin, for example, acylate the N6-amino groups of lysine side chains. A liquid chromatography (LC)–tandem mass spectrometry (MS) method was developed to quantify the resulting N6-formyl-lysine residues, which were observed to be present in unperturbed cells and all sources of histone proteins to the extent of 0.04–0.1% of all lysines in acid-soluble chromatin proteins including histones. Cells treated with neocarzinostatin showed a clear dose–response relationship for the formation of N6-formyl-lysine, with this nucleosome linker-selective DNA-cleaving agent causing selective N6-formylation of the linker histone H1. The N6-formyl-lysine residue appears to represent an endogenous histone secondary modification, one that bears chemical similarity to lysine N6-acetylation recognized as an important determinant of gene expression in mammalian cells. The N6-formyl modification of lysine may interfere with the signaling functions of lysine acetylation and methylation and thus contribute to the pathophysiology of oxidative and nitrosative stress. PMID:17190813

  16. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  17. Evaluation of protein content, lysine and sulfur-containing amino acids content and electrophoretic patterns of soluble proteins for gamma-irradiated semolina before and after milling of durum wheat

    NASA Astrophysics Data System (ADS)

    Azzeh, F. S.; Amr, A. S.

    2009-11-01

    Influenced of gamma irradiation (0, 0.25, 1, 2.5, 5 and 10 kGy) on total nitrogen, lysine and sulfur-containing amino acids content and electrophoretic patterns of soluble proteins of semolina was studied. The effect of irradiation before and after milling on previous parameters was also investigated. Protein content of semolina was not affected with gamma irradiation before and after milling. Up to 10 kGy dose, cystine and methionine were not significantly changed, although they increased slightly with increasing irradiation dose. Lysine content decreased significantly ( P≤0.05) at irradiation dose higher than 5 kGy. At 10 kGy dose, lysine decreased 5% and 14% for irradiated semolina and that obtained from irradiated wheat grains, respectively. The bands number and intensity of soluble proteins decreased with increasing irradiation dose higher than 5 kGy, as shown on SDS-PAGE electrophoresis. Irradiated semolina and semolina obtained from irradiated wheat grains at 10 kGy showed 13 and 15 bands, respectively. Unirradiated sample showed 19 bands.

  18. In vitro degradation of lysine by ruminal fluid-based fermentations and by Fusobacterium necrophorum.

    PubMed

    Elwakeel, E A; Amachawadi, R G; Nour, A M; Nasser, M E A; Nagaraja, T G; Titgemeyer, E C

    2013-01-01

    The objective of these studies was to characterize some factors affecting lysine degradation by mixed ruminal bacteria and by ruminal Fusobacterium necrophorum. Mixed ruminal bacteria degraded lysine, and addition of pure cultures of F. necrophorum did not increase lysine degradation. Addition of acetic or propionic acid strikingly reduced NH(3) production from lysine by mixed ruminal bacteria at pH 6, but not at pH 7. Although typical ruminal environments with acidic pH and normal concentrations of volatile fatty acids might inhibit lysine degradation by F. necrophorum, ruminal fluid contained enough bacteria with a lysine-degrading capacity to ferment 50 mM lysine in vitro. Of 7 strains of ruminal F. necrophorum tested, all grew on both lactate and lysine as the primary energy source. Both subspecies of ruminal F. necrophorum (necrophorum and funduliforme) used lysine as a primary C and energy source. Lysine and glutamic acid were effectively fermented by F. necrophorum, but alanine and tryptophan were not, and histidine and methionine were fermented only to a minor extent. The end products of lactate fermentation by F. necrophorum were propionate and acetate, and those of lysine degradation were butyrate and acetate. Fermentation of glutamic acid by F. necrophorum yielded acetate and butyrate in a ratio near to 2:1. The minimum inhibitory concentration of tylosin for F. necrophorum was not dependent on whether bacteria were grown with lactate or lysine, but F. necrophorum was more susceptible to monensin when grown on lysine than on lactate. Although F. necrophorum is generally resistant to monensin, the ionophore may reduce lysine degradation by F. necrophorum in the rumen. The essential oil components limonene, at 20 or 100 μg/mL, and thymol, at 100 μg/mL, inhibited F. necrophorum growth, whereas eugenol, guaiacol, and vanillin had no effect. Our findings may lead to ways to minimize ruminal lysine degradation and thus increase its availability to the animal

  19. Amino acids

    MedlinePlus

    ... amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan , and valine. Nonessential amino acids "Nonessential" means that our bodies produce an amino ...

  20. Global analysis of lysine acetylation in strawberry leaves.

    PubMed

    Fang, Xianping; Chen, Wenyue; Zhao, Yun; Ruan, Songlin; Zhang, Hengmu; Yan, Chengqi; Jin, Liang; Cao, Lingling; Zhu, Jun; Ma, Huasheng; Cheng, Zhongyi

    2015-01-01

    Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants. PMID:26442052

  1. Effect of omega-3 fatty acids on the modification of erythrocyte membrane fatty acid content including oleic acid in peritoneal dialysis patients.

    PubMed

    An, W S; Lee, S M; Son, Y K; Kim, S E; Kim, K H; Han, J Y; Bae, H R; Park, Y

    2012-01-01

    Erythrocyte membrane fatty acids (FA), such as oleic acid, are related to acute coronary syndrome. There is no report about the effect of omega-3 FA on oleic acid in peritoneal dialysis (PD) patients. We hypothesized that omega-3 FA can modify erythrocyte membrane FA, including oleic acid, in PD patients. In a double-blind, randomized, placebo-controlled study, 18 patients who were treated with PD for at least 6 months were randomized to treatment for 12 weeks with omega-3 FA or placebo. Erythrocyte membrane FA content was measured by gas chromatography at baseline and after 12 weeks. The erythrocyte membrane content of eicosapentaenoic acid and docosahexaenoic acid was significantly increased and saturated FA and oleic acid were significantly decreased in the omega-3 FA supplementation group after 12 weeks compared to baseline. In conclusion, erythrocyte membrane FA content, including oleic acid, was significantly modified by omega-3 FA supplementation for 12 weeks in PD patients.

  2. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata).

    PubMed

    Azizi, Sheida; Nematollahi, Mohammad Ali; Mojazi Amiri, Bagher; Vélez, Emilio J; Lutfi, Esmail; Navarro, Isabel; Capilla, Encarnación; Gutiérrez, Joaquim

    2016-01-01

    Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA) to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs). This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs), MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates the importance of

  3. Lysine and Leucine Deficiencies Affect Myocytes Development and IGF Signaling in Gilthead Sea Bream (Sparus aurata)

    PubMed Central

    Azizi, Sheida; Nematollahi, Mohammad Ali; Mojazi Amiri, Bagher; Vélez, Emilio J.; Lutfi, Esmail; Navarro, Isabel; Capilla, Encarnación; Gutiérrez, Joaquim

    2016-01-01

    Optimizing aquaculture production requires better knowledge of growth regulation and improvement in diet formulation. A great effort has been made to replace fish meal for plant protein sources in aquafeeds, making necessary the supplementation of such diets with crystalline amino acids (AA) to cover the nutritional requirements of each species. Lysine and Leucine are limiting essential AA in fish, and it has been demonstrated that supplementation with them improves growth in different species. However, the specific effects of AA deficiencies in myogenesis are completely unknown and have only been studied at the level of hepatic metabolism. It is well-known that the TOR pathway integrates the nutritional and hormonal signals to regulate protein synthesis and cell proliferation, to finally control muscle growth, a process also coordinated by the expression of myogenic regulatory factors (MRFs). This study aimed to provide new information on the impact of Lysine and Leucine deficiencies in gilthead sea bream cultured myocytes examining their development and the response of insulin-like growth factors (IGFs), MRFs, as well as key molecules involved in muscle growth regulation like TOR. Leucine deficiency did not cause significant differences in most of the molecules analyzed, whereas Lysine deficiency appeared crucial in IGFs regulation, decreasing significantly IGF-I, IGF-II and IGF-IRb mRNA levels. This treatment also down-regulated the gene expression of different MRFs, including Myf5, Myogenin and MyoD2. These changes were also corroborated by a significant decrease in proliferation and differentiation markers in the Lysine-deficient treatment. Moreover, both Lysine and Leucine limitation induced a significant down-regulation in FOXO3 gene expression, which deserves further investigation. We believe that these results will be relevant for the production of a species as appreciated for human consumption as it is gilthead sea bream and demonstrates the importance of

  4. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics.

    PubMed

    Wu, Xia; Vellaichamy, Adaikkalam; Wang, Dongping; Zamdborg, Leonid; Kelleher, Neil L; Huber, Steven C; Zhao, Youfu

    2013-02-21

    Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence. PMID:23234799

  5. A chemical proteomics approach for global analysis of lysine monomethylome profiling.

    PubMed

    Wu, Zhixiang; Cheng, Zhongyi; Sun, Mingwei; Wan, Xuelian; Liu, Ping; He, Tieming; Tan, Minjia; Zhao, Yingming

    2015-02-01

    Methylation of lysine residues on histone proteins is known to play an important role in chromatin structure and function. However, non-histone protein substrates of this modification remain largely unknown. An effective approach for system-wide analysis of protein lysine methylation, particularly lysine monomethylation, is lacking. Here we describe a chemical proteomics approach for global screening for monomethyllysine substrates, involving chemical propionylation of monomethylated lysine, affinity enrichment of the modified monomethylated peptides, and HPLC/MS/MS analysis. Using this approach, we identified with high confidence 446 lysine monomethylation sites in 398 proteins, including three previously unknown histone monomethylation marks, representing the largest data set of protein lysine monomethylation described to date. Our data not only confirms previously discovered lysine methylation substrates in the nucleus and spliceosome, but also reveals new substrates associated with diverse biological processes. This method hence offers a powerful approach for dynamic study of protein lysine monomethylation under diverse cellular conditions and in human diseases. PMID:25505155

  6. Role of several histone lysine methyltransferases in tumor development

    PubMed Central

    LI, JIFU; ZHU, SHUNQIN; KE, XIAO-XUE; CUI, HONGJUAN

    2016-01-01

    The field of cancer epigenetics has been evolving rapidly in recent decades. Epigenetic mechanisms include DNA methylation, histone modifications and microRNAs. Histone modifications are important markers of function and chromatin state. Aberrant histone methylation frequently occurs in tumor development and progression. Multiple studies have identified that histone lysine methyltransferases regulate gene transcription through the methylation of histone, which affects cell proliferation and differentiation, cell migration and invasion, and other biological characteristics. Histones have variant lysine sites for different levels of methylation, catalyzed by different lysine methyltransferases, which have numerous effects on human cancers. The present review focused on the most recent advances, described the key function sites of histone lysine methyltransferases, integrated significant quantities of data to introduce several compelling histone lysine methyltransferases in various types of human cancers, summarized their role in tumor development and discussed their potential mechanisms of action. PMID:26998265

  7. Creative lysins: Listeria and the engineering of antimicrobial enzymes.

    PubMed

    Van Tassell, Maxwell L; Angela Daum, M; Kim, Jun-Seob; Miller, Michael J

    2016-02-01

    Cell wall lytic enzymes have been of increasing interest as antimicrobials for targeting Gram-positive spoilage and pathogenic bacteria, largely due to the development of strains resistant to antibiotics and bacteriophage therapy. Such lysins show considerable promise against Listeria monocytogenes, a primary concern in food-processing environments, but there is room for improvement via protein engineering. Advances in antilisterial applications could benefit from recent developments in lysin biotechnology that have largely targeted other organisms. Herein we present various considerations for the future development of lysins, including environmental factors, cell physiology concerns, and dynamics of protein architecture. Our goal is to review key developments in lysin biotechnology to provide a contextual framework for the current models of lysin-cell interactions and highlight key considerations for the characterization and design of novel lytic enzymes. PMID:26710271

  8. Creative lysins: Listeria and the engineering of antimicrobial enzymes.

    PubMed

    Van Tassell, Maxwell L; Angela Daum, M; Kim, Jun-Seob; Miller, Michael J

    2016-02-01

    Cell wall lytic enzymes have been of increasing interest as antimicrobials for targeting Gram-positive spoilage and pathogenic bacteria, largely due to the development of strains resistant to antibiotics and bacteriophage therapy. Such lysins show considerable promise against Listeria monocytogenes, a primary concern in food-processing environments, but there is room for improvement via protein engineering. Advances in antilisterial applications could benefit from recent developments in lysin biotechnology that have largely targeted other organisms. Herein we present various considerations for the future development of lysins, including environmental factors, cell physiology concerns, and dynamics of protein architecture. Our goal is to review key developments in lysin biotechnology to provide a contextual framework for the current models of lysin-cell interactions and highlight key considerations for the characterization and design of novel lytic enzymes.

  9. Insights into the regulatory landscape of the lysine riboswitch

    PubMed Central

    Garst, Andrew D.; Porter, Ely B.; Batey, Robert T.

    2012-01-01

    A prevalent means of regulating gene expression in bacteria is by riboswitches found within mRNA leader sequences. Like protein repressors these RNA elements must bind an effector molecule with high specificity against a background of other cellular metabolites of similar chemical structure to elicit the appropriate regulatory response. Current crystal structures of the lysine riboswitch do not provide a complete understanding of selectivity as recognition is substantially mediated through main chain atoms of the amino acid. Using a directed set of lysine analogs and other amino acids, the relative contributions of the polar functional groups to binding affinity and the regulatory response have been determined. Our results reveal that the lysine riboswitch has >1,000-fold specificity for lysine over other amino acids. To achieve this specificity, the aptamer is highly sensitive to the precise placement of the ε-amino group and relatively tolerant of alterations to the main chain functional groups. At low NTP concentrations, we observe good agreement between the half-maximal regulatory activity (T50) and the affinity of the receptor for lysine (KD) as well many of its analogs. However, above 400 µM [NTP] the concentration of lysine required to elicit transcription termination rises, moving into the riboswitch into a kinetic control regime. These data demonstrate that under physiologically relevant conditions riboswitches can integrate both effector and NTP concentrations to generate a regulatory response appropriate for global metabolic state of the cell. PMID:22771573

  10. Insights into the regulatory landscape of the lysine riboswitch.

    PubMed

    Garst, Andrew D; Porter, Ely B; Batey, Robert T

    2012-10-12

    A prevalent means of regulating gene expression in bacteria is by riboswitches found within mRNA leader sequences. Like protein repressors, these RNA elements must bind an effector molecule with high specificity against a background of other cellular metabolites of similar chemical structure to elicit the appropriate regulatory response. Current crystal structures of the lysine riboswitch do not provide a complete understanding of selectivity as recognition is substantially mediated through main-chain atoms of the amino acid. Using a directed set of lysine analogs and other amino acids, we have determined the relative contributions of the polar functional groups to binding affinity and the regulatory response. Our results reveal that the lysine riboswitch has >1000-fold specificity for lysine over other amino acids. The aptamer is highly sensitive to the precise placement of the ε-amino group and relatively tolerant of alterations to the main-chain functional groups in order to achieve this specificity. At low nucleotide triphosphate (NTP) concentrations, we observe good agreement between the half-maximal regulatory activity (T(50)) and the affinity of the receptor for lysine (K(d)), as well as many of its analogs. However, above 400 μM [NTP], the concentration of lysine required to elicit transcription termination rises, moving into the riboswitch into a kinetic control regime. These data demonstrate that, under physiologically relevant conditions, riboswitches can integrate both effector and NTP concentrations to generate a regulatory response appropriate for global metabolic state of the cell. PMID:22771573

  11. The dietary lysine requirement of juvenile hybrid striped bass.

    PubMed

    Griffin, M E; Brown, P B; Grant, A L

    1992-06-01

    Two experiments were conducted to determine the dietary lysine requirement of juvenile hybrid striped bass (Morone saxatilis x M. chrysops). In both experiments the diets contained 35 g crude protein/100 g diet (10 g crude protein supplied by casein and gelatin and 25 g crude protein supplied by crystalline L-amino acids) and contained graded levels of L-lysine.HCl resulting in eight dietary treatments. Diets were fed to triplicate groups of fish and ranged in dietary lysine concentration from 1.2 to 2.6 g/100 g of the dry diet in Experiment 1 and from 0.8 to 2.2 g/100 g of the dry diet in Experiment 2. Weight gain and food efficiency data from Experiment 1 indicated the dietary lysine requirement to be between 1.2 and 1.4 g/100 g of the dry diet. Weight gain, food efficiency and serum lysine data from Experiment 2 confirmed the requirement to be between 1.2 and 1.4 g/100 g of the dry diet. Broken-line analysis of weight gain and food efficiency data from Experiment 2 indicated the dietary lysine requirement to be 1.4 +/- 0.2% of the dry diet, or 4.0 g/100 g of the dietary protein. Changes in the relative proportions of dietary lipid and carbohydrate between the two experiments, although maintaining similar gross energy levels, did not alter the lysine requirement estimate of juvenile hybrid striped bass.

  12. Fatty Acid Composition of Egg Yolk from Chickens Fed a Diet including Marigold (Tagetes erecta L.)

    PubMed Central

    Altuntaş, A.; Aydin, R.

    2014-01-01

    The objective of this study was to determine the effects of diet supplemented with marigold on egg yolk fatty acid composition and egg quality parameters. Sixty hens were assigned into three groups and fed diets supplemented with 0 (control), 10 g kg−1, or 20 g kg−1 marigold for 42 days. Eggs collected at the 6th week of the study were analyzed for fatty acid analysis. Laying performance, egg quality parameters, and feed intake were also evaluated. Yolk color scores in the group fed the 20 g kg−1 marigold-supplemented diet were found greater than control (10.77 versus 9.77). Inclusion of 20 g kg−1 marigold in diet influenced egg weights adversely compared to the control. Diet supplemented with 10 g kg−1 or 20 g kg−1 marigold increased the levels of C16:0 and C18:0 and decreased levels of C16:1 (n-7) and C18:1 (n-9) in the egg yolk. Also, diet including marigold increased total saturated fatty acids (SFA) and decreased monounsaturated fatty acids (MUFA) in the egg yolk. PMID:25587451

  13. Fatty Acid Composition of Egg Yolk from Chickens Fed a Diet including Marigold (Tagetes erecta L.).

    PubMed

    Altuntaş, A; Aydin, R

    2014-01-01

    The objective of this study was to determine the effects of diet supplemented with marigold on egg yolk fatty acid composition and egg quality parameters. Sixty hens were assigned into three groups and fed diets supplemented with 0 (control), 10 g kg(-1), or 20 g kg(-1) marigold for 42 days. Eggs collected at the 6th week of the study were analyzed for fatty acid analysis. Laying performance, egg quality parameters, and feed intake were also evaluated. Yolk color scores in the group fed the 20 g kg(-1) marigold-supplemented diet were found greater than control (10.77 versus 9.77). Inclusion of 20 g kg(-1) marigold in diet influenced egg weights adversely compared to the control. Diet supplemented with 10 g kg(-1) or 20 g kg(-1) marigold increased the levels of C16:0 and C18:0 and decreased levels of C16:1 (n-7) and C18:1 (n-9) in the egg yolk. Also, diet including marigold increased total saturated fatty acids (SFA) and decreased monounsaturated fatty acids (MUFA) in the egg yolk. PMID:25587451

  14. Nutritional consequences of interspecies differences in arginine and lysine metabolism.

    PubMed

    Ball, Ronald O; Urschel, Kristine L; Pencharz, Paul B

    2007-06-01

    Differences in lysine and arginine requirements among various species such as omnivores (humans, pigs, rats, dogs), carnivores (cats), herbivores (rabbits, horses), ruminants (cattle), poultry, and fish, are covered in detail in this article. Although lysine is classified as an indispensable amino acid across species, the classification of arginine as either an indispensable or dispensable amino acid is more ambiguous because of differences among species in rates of de novo arginine synthesis. Because lysine is most often the limiting amino acid in the diet, its requirement has been extensively studied. By use of the ideal protein concept, the requirements of the other indispensable amino acids can be extrapolated from the lysine requirement. The successful use of this concept in pigs is compared with potential application of the ideal protein concept in humans. The current dietary arginine requirement varies widely among species, with ruminants, rabbits, and rats having relatively low requirements and carnivores, fish, and poultry having high requirements. Interspecies differences in metabolic arginine utilization and reasons for different rates of de novo arginine synthesis are reviewed in detail, as these are the primary determinants of the dietary arginine requirement. There is presently no dietary requirement for humans of any age, although this needs to be reassessed, particularly in neonates. A thorough understanding of the factors contributing to the lysine and arginine requirements in different species will be useful in our understanding of human amino acid requirements.

  15. An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots.

    PubMed

    Dirks, Robert M; Pierce, Niles A

    2004-07-30

    Given a nucleic acid sequence, a recent algorithm allows the calculation of the partition function over secondary structure space including a class of physically relevant pseudoknots. Here, we present a method for computing base-pairing probabilities starting from the output of this partition function algorithm. The approach relies on the calculation of recursion probabilities that are computed by backtracking through the partition function algorithm, applying a particular transformation at each step. This transformation is applicable to any partition function algorithm that follows the same basic dynamic programming paradigm. Base-pairing probabilities are useful for analyzing the equilibrium ensemble properties of natural and engineered nucleic acids, as demonstrated for a human telomerase RNA and a synthetic DNA nanostructure. PMID:15139042

  16. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    SciTech Connect

    Dwyer, B.P. )

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  17. Biofortification of rice with lysine using endogenous histones.

    PubMed

    Wong, H W; Liu, Q; Sun, S S M

    2015-02-01

    Rice is the most consumed cereal grain in the world, but deficient in the essential amino acid lysine. Therefore, people in developing countries with limited food diversity who rely on rice as their major food source may suffer from malnutrition. Biofortification of stable crops by genetic engineering provides a fast and sustainable method to solve this problem. In this study, two endogenous rice lysine-rich histone proteins, RLRH1 and RLRH2, were over-expressed in rice seeds to achieve lysine biofortification. Their protein sequences passed an allergic sequence-based homology test. Their accumulations in rice seeds were raised to a moderate level by the use of a modified rice glutelin 1 promoter with lowered expression strength to avoid the occurrence of physiological abnormalities like unfolded protein response. The expressed proteins were further targeted to protein storage vacuoles for stable storage using a glutelin 1 signal peptide. The lysine content in the transgenic rice seeds was enhanced by up to 35 %, while other essential amino acids remained balanced, meeting the nutritional standards of the World Health Organization. No obvious unfolded protein response was detected. Different degrees of chalkiness, however, were detected in the transgenic seeds, and were positively correlated with both the levels of accumulated protein and lysine enhancement. This study offered a solution to the lysine deficiency in rice, while at the same time addressing concerns about food safety and physiological abnormalities in biofortified crops.

  18. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    PubMed

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  19. Amino acid composition, including key derivatives of eccrine sweat: potential biomarkers of certain atopic skin conditions.

    PubMed

    Mark, Harker; Harding, Clive R

    2013-04-01

    The free amino acid (AA) composition of eccrine sweat is different from other biological fluids, for reasons which are not properly understood. We undertook the detailed analysis of the AA composition of freshly isolated pure human eccrine sweat, including some of the key derivatives of AA metabolism, to better understand the key biological mechanisms governing its composition. Eccrine sweat was collected from the axillae of 12 healthy subjects immediately upon formation. Free AA analysis was performed using an automatic AA analyser after ninhydrin derivatization. Pyrrolidine-5-carboxylic acid (PCA) and urocanic acid (UCA) levels were determined using GC/MS. The free AA composition of sweat was dominated by the presence of serine accounting for just over one-fifth of the total free AA composition. Glycine was the next most abundant followed by PCA, alanine, citrulline and threonine, respectively. The data obtained indicate that the AA content of sweat bears a remarkable similarity to the AA composition of the epidermal protein profilaggrin. This protein is the key source of free AAs and their derivatives that form a major part of the natural moisturizing factor (NMF) within the stratum corneum (SC) and plays a major role in maintaining the barrier integrity of human skin. As perturbations in the production of NMF can lead to abnormal barrier function and can arise as a consequence of filaggrin genotype, we propose the quantification of AAs in sweat may serve as a non-invasive diagnostic biomarker for certain atopic skin conditions, that is, atopic dermatitis (AD).

  20. Biodegradable tri-block copolymer poly(lactic acid)-poly(ethylene glycol)-poly(l-lysine)(PLA-PEG-PLL) as a non-viral vector to enhance gene transfection.

    PubMed

    Fu, Chunhua; Sun, Xiaoli; Liu, Donghua; Chen, Zhijing; Lu, Zaijun; Zhang, Na

    2011-02-23

    Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z)-NCA onto amine-terminated NH(2)-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs) possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ɛ-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge) and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells) of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs) were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells) than PEI/DNA complexes (14.01% and 24.22%). These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo.

  1. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks

    PubMed Central

    Rardin, Matthew J.; He, Wenjuan; Nishida, Yuya; Newman, John C.; Carrico, Chris; Danielson, Steven R.; Guo, Ailan; Gut, Philipp; Sahu, Alexandria K.; Li, Biao; Uppala, Radha; Fitch, Mark; Riiff, Timothy; Zhu, Lei; Zhou, Jing; Mulhern, Daniel; Stevens, Robert D.; Ilkayeva, Olga R.; Newgard, Christopher B.; Jacobson, Matthew P.; Hellerstein, Marc; Goetzman, Eric S.; Gibson, Bradford W.; Verdin, Eric

    2014-01-01

    Summary Reversible posttranslational modifications are emerging as critical regulators of mitochondrial proteins and metabolism. Here, we use a label-free quantitative proteomic approach to characterize the lysine succinylome in liver mitochondria and its regulation by the desuccinylase SIRT5. A total of 1190 unique sites were identified as succinylated, and 386 sites across 140 proteins representing several metabolic pathways including β-oxidation and ketogenesis were significantly hypersuccinylated in Sirt5−/− animals. Loss of SIRT5 leads to accumulation of medium- and long-chain acylcarnitines and decreased β-hydroxybutyrate production in vivo. In addition, we demonstrate that SIRT5 regulates succinylation of the rate-limiting ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) both in vivo and in vitro. Finally, mutation of hypersuccinylated residues K83 and K310 on HMGCS2 to glutamic acid strongly inhibits enzymatic activity. Taken together, these findings establish SIRT5 as a global regulator of lysine succinylation in mitochondria and present a mechanism for inhibition of ketogenesis through HMGCS2. PMID:24315375

  2. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks.

    PubMed

    Rardin, Matthew J; He, Wenjuan; Nishida, Yuya; Newman, John C; Carrico, Chris; Danielson, Steven R; Guo, Ailan; Gut, Philipp; Sahu, Alexandria K; Li, Biao; Uppala, Radha; Fitch, Mark; Riiff, Timothy; Zhu, Lei; Zhou, Jing; Mulhern, Daniel; Stevens, Robert D; Ilkayeva, Olga R; Newgard, Christopher B; Jacobson, Matthew P; Hellerstein, Marc; Goetzman, Eric S; Gibson, Bradford W; Verdin, Eric

    2013-12-01

    Reversible posttranslational modifications are emerging as critical regulators of mitochondrial proteins and metabolism. Here, we use a label-free quantitative proteomic approach to characterize the lysine succinylome in liver mitochondria and its regulation by the desuccinylase SIRT5. A total of 1,190 unique sites were identified as succinylated, and 386 sites across 140 proteins representing several metabolic pathways including β-oxidation and ketogenesis were significantly hypersuccinylated in Sirt5(-/-) animals. Loss of SIRT5 leads to accumulation of medium- and long-chain acylcarnitines and decreased β-hydroxybutyrate production in vivo. In addition, we demonstrate that SIRT5 regulates succinylation of the rate-limiting ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) both in vivo and in vitro. Finally, mutation of hypersuccinylated residues K83 and K310 on HMGCS2 to glutamic acid strongly inhibits enzymatic activity. Taken together, these findings establish SIRT5 as a global regulator of lysine succinylation in mitochondria and present a mechanism for inhibition of ketogenesis through HMGCS2.

  3. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks.

    PubMed

    Rardin, Matthew J; He, Wenjuan; Nishida, Yuya; Newman, John C; Carrico, Chris; Danielson, Steven R; Guo, Ailan; Gut, Philipp; Sahu, Alexandria K; Li, Biao; Uppala, Radha; Fitch, Mark; Riiff, Timothy; Zhu, Lei; Zhou, Jing; Mulhern, Daniel; Stevens, Robert D; Ilkayeva, Olga R; Newgard, Christopher B; Jacobson, Matthew P; Hellerstein, Marc; Goetzman, Eric S; Gibson, Bradford W; Verdin, Eric

    2013-12-01

    Reversible posttranslational modifications are emerging as critical regulators of mitochondrial proteins and metabolism. Here, we use a label-free quantitative proteomic approach to characterize the lysine succinylome in liver mitochondria and its regulation by the desuccinylase SIRT5. A total of 1,190 unique sites were identified as succinylated, and 386 sites across 140 proteins representing several metabolic pathways including β-oxidation and ketogenesis were significantly hypersuccinylated in Sirt5(-/-) animals. Loss of SIRT5 leads to accumulation of medium- and long-chain acylcarnitines and decreased β-hydroxybutyrate production in vivo. In addition, we demonstrate that SIRT5 regulates succinylation of the rate-limiting ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) both in vivo and in vitro. Finally, mutation of hypersuccinylated residues K83 and K310 on HMGCS2 to glutamic acid strongly inhibits enzymatic activity. Taken together, these findings establish SIRT5 as a global regulator of lysine succinylation in mitochondria and present a mechanism for inhibition of ketogenesis through HMGCS2. PMID:24315375

  4. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism.

    PubMed

    Qian, Lili; Nie, Litong; Chen, Ming; Liu, Ping; Zhu, Jun; Zhai, Linhui; Tao, Sheng-Ce; Cheng, Zhongyi; Zhao, Yingming; Tan, Minjia

    2016-06-01

    Protein lysine malonylation is a recently identified post-translational modification (PTM), which is evolutionarily conserved from bacteria to mammals. Although analysis of lysine malonylome in mammalians suggested that this modification was related to energy metabolism, the substrates and biological roles of malonylation in prokaryotes are still poorly understood. In this study, we performed qualitative and quantitative analyses to globally identify lysine malonylation substrates in Escherichia coli. We identified 1745 malonylation sites in 594 proteins in E. coli, representing the first and largest malonylome data set in prokaryotes up to date. Bioinformatic analyses showed that lysine malonylation was significantly enriched in protein translation, energy metabolism pathways and fatty acid biosynthesis, implying the potential roles of protein malonylation in bacterial physiology. Quantitative proteomics by fatty acid synthase inhibition in both auxotrophic and prototrophic E. coli strains revealed that lysine malonylation is closely associated with E. coli fatty acid metabolism. Protein structural analysis and mutagenesis experiment suggested malonylation could impact enzymatic activity of citrate synthase, a key enzyme in citric acid (TCA) cycle. Further comparative analysis among lysine malonylome, succinylome and acetylome data showed that these three modifications could participate in some similar enriched metabolism pathways, but they could also possibly play distinct roles such as in fatty acid synthesis. These data expanded our knowledge of lysine malonylation in prokaryotes, providing a resource for functional study of lysine malonylation in bacteria. PMID:27183143

  5. Characterization and expression profile of complete functional domain of granulysin/NK-lysin homologue (buffalo-lysin) gene of water buffalo (Bubalus bubalis).

    PubMed

    Kandasamy, Sukumar; Mitra, Abhijit

    2009-04-15

    Granulysin (GNLY)/NK-lysin (NKL) is an effector antimicrobial cationic peptide expressed in the cytotoxic and natural killer lymphocytes. We report here cDNA sequence (405bp) encoding the complete functional domain of buffalo-lysin (bu-lysin), and its expression profile in the various tissues. The nucleotide sequence of bu-lysin exhibited >85% identity with the bovine lysin. Comparison of the deduced amino acid sequence of bu-lysin with those of GNLY/NKL of different species revealed the conservation of six cysteine (Cys) residues and five alpha helices. Unlike the homologues in other species, bu-lysin composed of 11 positively charged Lys residues as in equine. The expression of bu-lysin mRNA in the in vitro cultured lymphocytes was inducible and increased markedly (p<0.05) in a dose dependant manner when incubated with Concanavalin A (ConA). The expression of bu-lysin mRNA in the different tissues was variable: comparatively higher in the spleen and lymph node, moderate in the uterine endometrium and low in the liver and kidney. These results indicate the existence and active expression of GNLY/NKL homologue in water buffalo having a significant influence in immune response.

  6. Selective Deletion of the Internal Lysine Residue from the Peptide Sequence by Collisional Activation

    NASA Astrophysics Data System (ADS)

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-11-01

    The gas-phase peptide ion fragmentation chemistry is always the center of attraction in proteomics to analyze the amino acid sequence of peptides and proteins. In this work, we describe the formation of an anomalous fragment ion, which corresponds to the selective deletion of the internal lysine residue from a series of lysine containing peptides upon collisional activation in the ion trap. We detected several water-loss fragment ions and the maximum number of water molecules lost from a particular fragment ion was equal to the number of lysine residues in that fragment. As a consequence of this water-loss phenomenon, internal lysine residues were found to be deleted from the peptide ion. The N,N-dimethylation of all the amine functional groups of the peptide stopped the internal lysine deletion reaction, but selective N-terminal α-amino acetylation had no effect on this process indicating involvement of the side chains of the lysine residues. The detailed mechanism of the lysine deletion was investigated by multistage CID of the modified and unmodified peptides, by isotope labeling and by energy resolved CID studies. The results suggest that the lysine deletion might occur through a unimolecular multistep mechanism involving a seven-membered cyclic imine intermediate formed by the loss of water from a lysine residue in the protonated peptide. This intermediate subsequently undergoes degradation reaction to deplete the interior imine ring from the peptide backbone leading to the deletion of an internal lysine residue.

  7. Basis for the equilibrium constant in the interconversion of l-lysine and l-beta-lysine by lysine 2,3-aminomutase.

    PubMed

    Chen, Dawei; Tanem, Justinn; Frey, Perry A

    2007-02-01

    l-beta-lysine and beta-glutamate are produced by the actions of lysine 2,3-aminomutase and glutamate 2,3-aminomutase, respectively. The pK(a) values have been titrimetrically measured and are for l-beta-lysine: pK(1)=3.25 (carboxyl), pK(2)=9.30 (beta-aminium), and pK(3)=10.5 (epsilon-aminium). For beta-glutamate the values are pK(1)=3.13 (carboxyl), pK(2)=3.73 (carboxyl), and pK(3)=10.1 (beta-aminium). The equilibrium constants for reactions of 2,3-aminomutases favor the beta-isomers. The pH and temperature dependencies of K(eq) have been measured for the reaction of lysine 2,3-aminomutase to determine the basis for preferential formation of beta-lysine. The value of K(eq) (8.5 at 37 degrees C) is independent of pH between pH 6 and pH 11; ruling out differences in pK-values as the basis for the equilibrium constant. The K(eq)-value is temperature-dependent and ranges from 10.9 at 4 degrees C to 6.8 at 65 degrees C. The linear van't Hoff plot shows the reaction to be enthalpy-driven, with DeltaH degrees =-1.4 kcal mol(-1) and DeltaS degrees =-0.25 cal deg(-1) mol(-1). Exothermicity is attributed to the greater strength of the bond C(beta)-N(beta) in l-beta-lysine than C(alpha)-N(alpha) in l-lysine, and this should hold for other amino acids.

  8. Fatty acid composition including cis-9, trans-11 CLA of cooked ground lamb

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is available on effect of cooking on beneficial fatty acids such as conjugated linoleic acid (CLA) and n-3 polyunsaturated fatty acids (PUFA). The objective of this study was to examine impact of cooking on the FA composition of ground lamb of two different muscles. Samples were p...

  9. Characterization and crystal structure of lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase (cDHDPS) protein

    SciTech Connect

    Rice, E.A.; Bannon, G.A.; Glenn, K.C.; Jeong, S.S.; Sturman, E.J.; Rydel, T.J.

    2008-11-21

    The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysine revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.

  10. Possible evidence of amide bond formation between sinapinic acid and lysine-containing bacterial proteins by matrix-assisted laser desorption/ionization (MALDI) at 355 nm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, HdeB and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALD...

  11. Identification of lysine residue involved in inactivation of brain glutamate dehydrogenase isoproteins by o-phthalaldehyde.

    PubMed

    Ahn, J Y; Choi, S; Cho, S W

    1999-12-01

    Incubation of two types of glutamate dehydrogenase (GDH) isoproteins from bovine brain with o-phthalaldehyde resulted in a time-dependent loss of enzyme activity. The inactivation was partially prevented by preincubation of the GDH isoproteins with 2-oxoglutarate or NADH. Spectrophotometric studies indicated that the inactivation of GDH isoproteins with o-phthalaldehyde resulted in isoindole derivatives characterized by typical fluorescence emission spectra with a stoichiometry of one isoindole derivative per molecule of enzyme subunit. There were no differences between the two GDH isoproteins in sensitivities to inactivation by o-phthalaldehyde indicating that the microenvironmental structures of the GDH isoproteins are very similar to each other. Tryptic peptides of the isoproteins, modified with and without protection, identified a selective modification of one lysine as in the region containing the sequence L-Q-H-G-S-I-L-G-F-P-X-A-K for both GDH isoproteins. The symbol X indicates a position for which no phenylthiohydantoin-amino acid could be assigned. The missing residue, however, can be designated as an o-phthalaldehyde-labeled lysine since the sequences including the lysine residue in question have a complete identity with those of the other mammalian GDHs. Also, trypsin was unable to cleave the labeled peptide at this site. Both amino acid sequencing and compositional analysis identified Lys-306 as the site of o-phthalaldehyde binding within the brain GDH isoproteins. PMID:10607407

  12. Proteomic Investigations of Lysine Acetylation Identify Diverse Substrates of Mitochondrial Deacetylase Sirt3

    PubMed Central

    Weinert, Brian T.; Kumar, Amit; Kim, Hyun-Seok; Deng, Chu-Xia; Choudhary, Chunaram

    2012-01-01

    Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site-specific acetylation in wild-type murine embryonic fibroblasts to Sirt3 knockout cells. We confirm Sirt3-regulated acetylation of several mitochondrial proteins in human cells by comparing acetylation in U2OS cells overexpressing Sirt3 to U2OS cells in which Sirt3 expression was reduced by shRNA. Our data demonstrate that ablation of Sirt3 significantly increases acetylation at dozens of sites on mitochondrial proteins. Substrates of Sirt3 are implicated in various metabolic pathways, including fatty acid metabolism and the tricarboxylic acid cycle. These results imply broader regulatory roles of Sirt3 in the mitochondria by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases. PMID:23236377

  13. Lysine nutrition in swine and the related monogastric animals: muscle protein biosynthesis and beyond.

    PubMed

    Liao, Shengfa F; Wang, Taiji; Regmi, Naresh

    2015-01-01

    Improving feed efficiency of pigs with dietary application of amino acids (AAs) is becoming increasingly important because this practice can not only secure the plasma AA supply for muscle growth but also protect the environment from nitrogen discharge with feces and urine. Lysine, the first limiting AA in typical swine diets, is a substrate for generating body proteins, peptides, and non-peptide molecules, while excess lysine is catabolized as an energy source. From a regulatory standpoint, lysine is at the top level in controlling AA metabolism, and lysine can also affect the metabolism of other nutrients. The effect of lysine on hormone production and activities is reflected by the change of plasma concentrations of insulin and insulin-like growth factor 1. Lysine residues in peptides are important sites for protein post-translational modification involved in epigenetic regulation of gene expression. An inborn error of a cationic AA transporter in humans can lead to a lysinuric protein intolerance condition. Dietary deficiency of lysine will impair animal immunity and elevate animal susceptibility to infectious diseases. Because lysine deficiency has negative impact on animal health and growth performance and it appears that dietary lysine is non-toxic even at a high dose of supplementation, nutritional emphasis should be put on lysine supplementation to avoid its deficiency rather than toxicity. Improvement of muscle growth of monogastric animals such as pigs via dietary lysine supply may be due to a greater increase in protein synthesis rather than a decrease in protein degradation. Nevertheless, the underlying metabolic and molecular mechanisms regarding lysine effect on muscle protein accretion merits further clarification. Future research undertaken to fully elucidate the metabolic and regulatory mechanisms of lysine nutrition could provide a sound scientific foundation necessary for developing novel nutritional strategies to enhance the muscle growth and

  14. Severe dietary lysine restriction affects growth and body composition and hepatic gene expression for nitrogen metabolism in growing rats.

    PubMed

    Kim, J; Lee, K S; Kwon, D-H; Bong, J J; Jeong, J Y; Nam, Y S; Lee, M S; Liu, X; Baik, M

    2014-02-01

    Dietary lysine restriction may differentially affect body growth and lipid and nitrogen metabolism, depending on the degree of lysine restriction. This study was conducted to examine the effect of dietary lysine restriction on growth and lipid and nitrogen metabolism with two different degree of lysine restriction. Isocaloric amino acid-defined diets containing 1.4% lysine (adequate), 0.70% lysine (50% moderate lysine restriction) and 0.35% lysine (75% severe lysine restriction) were fed from the age of 52 to 77 days for 25 days in male Sprague-Dawley rats. The 75% severe lysine restriction increased (p < 0.05) food intake, but retarded (p < 0.05) growth, increased (p < 0.05) liver and muscle lipid contents and abdominal fat accumulation, increased (p < 0.05) blood urea nitrogen levels and mRNA levels of the serine-synthesizing 3-phosphoglycerate dehydrogenase gene, but decreased (p < 0.05) urea cycle arginase gene mRNA levels. In contrast, the 50% lysine restriction did not significantly (p > 0.05) affect body growth and lipid and nitrogen metabolism. Our results demonstrate that severe 75% lysine restriction has detrimental effects on body growth and deregulate lipid and nitrogen metabolism. PMID:23441935

  15. Proton Affinity of Isomeric Dipeptides Containing Lysine and Non-Proteinogenic Lysine Homologues.

    PubMed

    Batoon, Patrick; Ren, Jianhua

    2016-08-18

    Conformational effects on the proton affinity of oligopeptides have been studied using six alanine (A)-based acetylated dipeptides containing a basic probe that is placed closest to either the C- or the N-terminus. The basic probe includes Lysine (Lys) and two nonproteinogenic Lys-homologues, ornithine (Orn) and 2,3-diaminopropionic acid (Dap). The proton affinities of the peptides have been determined using the extended Cooks kinetic method in a triple quadrupole mass spectrometer. Computational studies have been carried out to search for the lowest energy conformers and to calculate theoretical proton affinities as well as various molecular properties using the density functional theory. The dipeptides containing a C-terminal probe, ALys, AOrn, and ADap, were determined to have a higher proton affinity by 1-4 kcal/mol than the corresponding dipeptides containing an N-terminal probe, LysA, OrnA, and DapA. For either the C-probe peptides or the N-probe peptides, the proton affinity reduces systematically as the side-chain of the probe residue is shortened. The difference in the proton affinities between isomeric peptides is largely associated with the variation of the conformations. The peptides with higher values of the proton affinity adopt a relatively compact conformation such that the protonated peptides can be stabilized through more efficient internal solvation. PMID:27459294

  16. Complexation des acides aminés basiques arginine, histidine et lysine avec l'ADN plasmidique en solution aqueuse : participation à la capture de radicaux sous irradiation X à 1,5 keV

    NASA Astrophysics Data System (ADS)

    Tariq Khalil, Talat; Taillefumier, Baptiste; Boulanouar, Omar; Mavon, Christophe; Fromm, Michel

    2016-09-01

    L'environnement chimique de l'ADN en situation biologique est complexe notam-ment en raison de la présence d'histones, protéines nucléaires, associées en quantité approximativement égales à l'ADN pour former la chromatine. Les histones possèdent de nombreux radicaux basiques arginine et lysine chargés positivement et dont la majorité se trouve sur les chaînes émergentes, l'ADN présente quant à lui des charges négatives sur ses groupements phosphates localisés tout au long de la double hélice. Dans cette étude, la complexité de la structure de la chromatine nucléaire est dans un premier temps mimée en solution aqueuse par la formation de complexes entre un ADN plasmidique sonde et les trois acides aminés basiques, Arg, His, Lys, qui, mis à part His, sont protonés au pH physiologique. Ces acides aminés libres en solution sont réputés être des capteurs efficaces de radicaux libres, notamment pour le radical hydroxyle, conférant ainsi un pouvoir protecteur vis-à-vis des effets indirects sur l'ADN en situation d'exposition aux rayonnements ionisants. A concentration fixée, les capacités de capture des acides aminés libres, σ, pour le radical hydroxyle sont typiquement les suivantes σHis ≈σArg > σLys (σLys ≈ 0,1 × σArg). Nous avons mesuré les taux de cassures simple brin par plasmide et par Gray (χ) lors d'expositions de solutions aqueuses de complexes [acide aminé - ADN plasmidique] aux rayons X ultra-mous (1,5 keV). A concentrations égales, les trois acides aminés complexés et présents en large excès ne manifestent pas une capacité de protection de l'ADN proportionnelle à leur capacité de capture libre et en solution ; on trouve en effet des taux de cassures dans l'ordre suivant χHis > χArg > χLys (χLys ≈ 0,01 χArg). Après avoir détaillé le mode opératoire de ces mesures, nous analyserons sur des bases bibliographiques, les modes spécifiques d'interaction des acides aminés basiques avec l'ADN. La sp

  17. Estimation of the standardized ileal digestible valine to lysine ratio required for 25- to 120-kilogram pigs fed low crude protein diets supplemented with crystalline amino acids.

    PubMed

    Liu, X T; Ma, W F; Zeng, X F; Xie, C Y; Thacker, P A; Htoo, J K; Qiao, S Y

    2015-10-01

    Four 28-d experiments were conducted to determine the standardized ileal digestible (SID) valine (Val) to lysine (Lys) ratio required for 26- to 46- (Exp. 1), 49- to 70- (Exp. 2), 71- to 92- (Exp. 3), and 94- to 119-kg (Exp. 4) pigs fed low CP diets supplemented with crystalline AA. The first 3 experiments utilized 150 pigs (Duroc × Landrace × Large White), while Exp. 4 utilized 90 finishing pigs. Pigs in all 4 experiments were randomly allocated to 1 of 5 diets with 6 pens per treatment (3 pens of barrows and 3 pens of gilts) and 5 pigs per pen for the first 3 experiments and 3 pigs per pen for Exp. 4. Diets for all experiments were formulated to contain SID Val to Lys ratios of 0.55, 0.60, 0.65, 0.70, or 0.75. In Exp. 1 (26 to 46 kg), ADG increased (linear, = 0.039; quadratic, = 0.042) with an increasing dietary Val:Lys ratio. The SID Val:Lys ratio to maximize ADG was 0.62 using a linear broken-line model and 0.71 using a quadratic model. In Exp. 2 (49 to 70 kg), ADG increased (linear, = 0.021; quadratic, = 0.042) as the SID Val:Lys ratio increased. G:F improved (linear, = 0.039) and serum urea nitrogen (SUN) decreased (linear, = 0.021; quadratic, = 0.024) with an increased SID Val:Lys ratio. The SID Val:Lys ratios to maximize ADG as well as to minimize SUN levels were 0.67 and 0.65, respectively, using a linear broken-line model and 0.72 and 0.71, respectively, using a quadratic model. In Exp. 3 (71 to 92 kg), ADG increased (linear, = 0.007; quadratic, = 0.022) and SUN decreased (linear, = 0.011; quadratic, = 0.034) as the dietary SID Val:Lys ratio increased. The SID Val:Lys ratios to maximize ADG as well as to minimize SUN levels were 0.67 and 0.67, respectively, using a linear broken-line model and 0.72 and 0.74, respectively, using a quadratic model. In Exp. 4 (94 to 119 kg), ADG increased (linear, = 0.041) and G:F was improved (linear, = 0.004; quadratic, = 0.005) as the dietary SID Val:Lys ratio increased. The SID Val:Lys ratio to maximize G:F was 0

  18. Folding simulations of alanine-based peptides with lysine residues.

    PubMed Central

    Sung, S S

    1995-01-01

    The folding of short alanine-based peptides with different numbers of lysine residues is simulated at constant temperature (274 K) using the rigid-element Monte Carlo method. The solvent-referenced potential has prevented the multiple-minima problem in helix folding. From various initial structures, the peptides with three lysine residues fold into helix-dominated conformations with the calculated average helicity in the range of 60-80%. The peptide with six lysine residues shows only 8-14% helicity. These results agree well with experimental observations. The intramolecular electrostatic interaction of the charged lysine side chains and their electrostatic hydration destabilize the helical conformations of the peptide with six lysine residues, whereas these effects on the peptides with three lysine residues are small. The simulations provide insight into the helix-folding mechanism, including the beta-bend intermediate in helix initiation, the (i, i + 3) hydrogen bonds, the asymmetrical helix propagation, and the asymmetrical helicities in the N- and C-terminal regions. These findings are consistent with previous studies. PMID:7756550

  19. Influence of Fatty Acid Precursors, Including Food Preservatives, on the Growth and Fatty Acid Composition of Listeria monocytogenes at 37 and 10°C ▿

    PubMed Central

    Julotok, Mudcharee; Singh, Atul K.; Gatto, Craig; Wilkinson, Brian J.

    2010-01-01

    Listeria monocytogenes is a food-borne pathogen that grows at refrigeration temperatures and increases its content of anteiso-C15:0 fatty acid, which is believed to be a homeoviscous adaptation to ensure membrane fluidity, at these temperatures. As a possible novel approach for control of the growth of the organism, the influences of various fatty acid precursors, including branched-chain amino acids and branched- and straight-chain carboxylic acids, some of which are also well-established food preservatives, on the growth and fatty acid composition of the organism at 37°C and 10°C were studied in order to investigate whether the organism could be made to synthesize fatty acids that would result in impaired growth at low temperatures. The results indicate that the fatty acid composition of L. monocytogenes could be modulated by the feeding of branched-chain amino acid, C4, C5, and C6 branched-chain carboxylic acid, and C3 and C4 straight-chain carboxylic acid fatty acid precursors, but the growth-inhibitory effects of several preservatives were independent of effects on fatty acid composition, which were minor in the case of preservatives metabolized via acetyl coenzyme A. The ability of a precursor to modify fatty acid composition was probably a reflection of the substrate specificities of the first enzyme, FabH, in the condensation of primers of fatty acid biosynthesis with malonyl acyl carrier protein. PMID:20048057

  20. Influence of fatty acid precursors, including food preservatives, on the growth and fatty acid composition of Listeria monocytogenes at 37 and 10degreesC.

    PubMed

    Julotok, Mudcharee; Singh, Atul K; Gatto, Craig; Wilkinson, Brian J

    2010-03-01

    Listeria monocytogenes is a food-borne pathogen that grows at refrigeration temperatures and increases its content of anteiso-C(15:0) fatty acid, which is believed to be a homeoviscous adaptation to ensure membrane fluidity, at these temperatures. As a possible novel approach for control of the growth of the organism, the influences of various fatty acid precursors, including branched-chain amino acids and branched- and straight-chain carboxylic acids, some of which are also well-established food preservatives, on the growth and fatty acid composition of the organism at 37 degrees C and 10 degrees C were studied in order to investigate whether the organism could be made to synthesize fatty acids that would result in impaired growth at low temperatures. The results indicate that the fatty acid composition of L. monocytogenes could be modulated by the feeding of branched-chain amino acid, C(4), C(5), and C(6) branched-chain carboxylic acid, and C(3) and C(4) straight-chain carboxylic acid fatty acid precursors, but the growth-inhibitory effects of several preservatives were independent of effects on fatty acid composition, which were minor in the case of preservatives metabolized via acetyl coenzyme A. The ability of a precursor to modify fatty acid composition was probably a reflection of the substrate specificities of the first enzyme, FabH, in the condensation of primers of fatty acid biosynthesis with malonyl acyl carrier protein.

  1. Poly(l-lysine)-graft-folic acid-coupled poly(2-methyl-2-oxazoline) (PLL-g-PMOXA-c-FA): a bioactive copolymer for specific targeting to folate receptor-positive cancer cells.

    PubMed

    Chen, Yin; Cao, Wenbin; Zhou, Junli; Pidhatika, Bidhari; Xiong, Bin; Huang, Lu; Tian, Qian; Shu, Yiwei; Wen, Weijia; Hsing, I-Ming; Wu, Hongkai

    2015-02-01

    In this study, we present the preparation, characterization and application of a novel bioactive copolymer poly(l-lysine)-graft-folic acid-coupled poly(2-methyl-2-oxazoline) (PLL-g-PMOXA-c-FA), which has a specific interaction with folate receptor (FR)-positive cancer cells. Glass surface immobilized with PLL-g-PMOXA-c-FA was demonstrated to be adhesive to FR-positive cancer cells (HeLa, JEG-3) while nonadhesive to FR-negative ones (MCF-7, HepG2) in 3 h. The specific interaction between conjugated FA on the substrate and FRs on the cells could hardly be inhibited unless a high concentration (5 mM) of free FA was used due to the multivalent nature of it. The FA functionality ratio of the copolymer on the substrate had a significant influence on the adhesion of HeLa cells, and our experiments revealed that the affinity of the substrate to the cells declined dramatically with the decrease of functionality ratio. This was believed to be caused by the polydispersity of PMOXA tethers, as supported by GPC and ToF-SIMS data. As a proof of concept in the application of our material, we demonstrated successful recovery of HeLa cells from mixture with MCF-7 (1:100) on the copolymer-coated glass, and our results showed that both high sensitivity (95.6 ± 13.3%) and specificity (24.3 ± 8.6%) were achieved.

  2. Lysine carboxylation in proteins: OXA-10 beta-lactamase.

    PubMed

    Li, Jie; Cross, Jason B; Vreven, Thom; Meroueh, Samy O; Mobashery, Shahriar; Schlegel, H Bernhard

    2005-11-01

    An increasing number of proteins are being shown to have an N(zeta)-carboxylated lysine in their structures, a posttranslational modification of proteins that proceeds without the intervention of a specific enzyme. The role of the carboxylated lysine in these proteins is typically structural (hydrogen bonding or metal coordination). However, carboxylated lysines in the active sites of OXA-10 and OXA-1 beta-lactamases and the sensor domain of BlaR signal-transducer protein serve in proton transfer events required for the functions of these proteins. These examples demonstrate the utility of this unusual amino acid in acid-base chemistry, in expansion of function beyond those of the 20 standard amino acids. In this study, the ONIOM quantum-mechanical/molecular-mechanical (QM/MM) method is used to study the carboxylation of lysine in the OXA-10 beta-lactamase. Lys-70 and the active site of the OXA-10 beta-lactamase were treated with B3LYP/6-31G(d,p) density functional calculations and the remainder of the enzyme with the AMBER molecular mechanics force field. The barriers for unassisted carboxylation of neutral lysine by carbon dioxide or bicarbonate are high. However, when the reaction with CO2 is catalyzed by a molecule of water in the active site, it is exothermic by about 13 kcal/mol, with a barrier of approximately 14 kcal/mol. The calculations show that the carboxylation and decarboxylation of Lys-70 are likely to be accompanied by deprotonation and protonation of the carbamate, respectively. The analysis may also be relevant for other proteins with carboxylated lysines, a feature that may be more common in nature than previously appreciated.

  3. Application of PCDA/SPH/CHO/Lysine vesicles to detect pathogenic bacteria in chicken.

    PubMed

    de Oliveira, Taíla V; Soares, Nilda de F F; de Andrade, Nélio J; Silva, Deusanilde J; Medeiros, Eber Antônio A; Badaró, Amanda T

    2015-04-01

    During the course of infection, Salmonella must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments, as lysine decarboxylation to cadaverine. The idea of Salmonella defenses responses could be employed in systems as polydiacetylene (PDA) to detect this pathogen so important to public health system. Beside that PDA is an important substance because of the unique optical property; that undergoes a colorimetric transitions by various external stimuli. Therefore 10,12-pentacosadyinoic acid (PCDA)/Sphingomyelin(SPH)/Cholesterol(CHO)/Lysine system was tested to determine the colorimetric response induced by Salmonella choleraesuis. PCDA/SPH/CHO/Lysine vesicles showed a colour change even in low S. choleraesuis concentration present in laboratory conditions and in chicken meat. Thus, this work showed a PCDA/SPH/CHO/Lysine vesicle application to simplify routine analyses in food industry, as chicken meat industry.

  4. Biodegradable Tri-Block Copolymer Poly(lactic acid)-poly(ethylene glycol)-poly(l-lysine)(PLA-PEG-PLL) as a Non-Viral Vector to Enhance Gene Transfection

    PubMed Central

    Fu, Chunhua; Sun, Xiaoli; Liu, Donghua; Chen, Zhijing; Lu, Zaijun; Zhang, Na

    2011-01-01

    Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z)-NCA onto amine-terminated NH2-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs) possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ɛ-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge) and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells) of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs) were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells) than PEI/DNA complexes (14.01% and 24.22%). These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo. PMID:21541064

  5. Characterization of the fibrinogen binding domain of bacteriophage lysin from Streptococcus mitis.

    PubMed

    Seo, Ho Seong; Sullam, Paul M

    2011-09-01

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. Platelet binding by Streptococcus mitis SF100 is mediated in part by a lysin encoded by the lysogenic bacteriophage SM1. In addition to its role in the phage life cycle, lysin mediates the binding of S. mitis to human platelets via its interaction with fibrinogen on the platelet surface. To better define the region of lysin mediating fibrinogen binding, we tested a series of purified lysin truncation variants for their abilities to bind this protein. These studies revealed that the fibrinogen binding domain of lysin is contained within the region spanned by amino acid residues 102 to 198 (lysin(102-198)). This region has no sequence homology to other known fibrinogen binding proteins. Lysin(102-198) bound fibrinogen comparably to full-length lysin and with the same selectivity for the fibrinogen Aα and Bβ chains. Lysin(102-198) also inhibited the binding in vitro of S. mitis to human fibrinogen and platelets. When assessed by platelet aggregometry, the disruption of the lysin gene in SF100 resulted in a significantly longer time to the onset of aggregation of human platelets than that of the parent strain. The preincubation of platelets with purified lysin(102-198) also delayed the onset of aggregation by SF100. These results indicate that the binding of lysin to fibrinogen is mediated by a specific domain of the phage protein and that this interaction is important for both platelet binding and aggregation by S. mitis. PMID:21690235

  6. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase

    PubMed Central

    Sahonero-Canavesi, Diana X.; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M.; Geiger, Otto

    2016-01-01

    Summary Phospholipids are well known for their membrane forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth. PMID:25711932

  7. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    PubMed

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.

  8. Recombinant bacteriophage lysins as antibacterials

    PubMed Central

    Fenton, Mark; Ross, Paul; McAuliffe, Olivia; O'Mahony, Jim

    2010-01-01

    With the increasing worldwide prevalence of antibiotic resistant bacteria, bacteriophage endolysins (lysins) represent a very promising novel alternative class of antibacterial in the fight against infectious disease. Lysins are phage-encoded peptidoglycan hydrolases which, when applied exogenously (as purified recombinant proteins) to Gram-positive bacteria, bring about rapid lysis and death of the bacterial cell. A number of studies have recently demonstrated the strong potential of these enzymes in human and veterinary medicine to control and treat pathogens on mucosal surfaces and in systemic infections. They also have potential in diagnostics and detection, bio-defence, elimination of food pathogens and control of phytopathogens. This review discusses the extensive research on recombinant bacteriophage lysins in the context of antibacterials, and looks forward to future development and potential. PMID:21327123

  9. Intramuscular bioavailability of ketoprofen lysine salt in horses.

    PubMed

    Anfossi, P; Villa, R; Montesissa, C; Carli, S

    1997-06-01

    Lysine salts are often used in human pharmaceuticals to increase the solubility and absorption of acidic drugs when these are administered parenterally. In this study the intramuscular bioavailability of ketoprofen administered as the lysine salt was evaluated in horses (n = 5) treated intravenously and intramuscularly (2.2 mg/kg active substance) in a cross-over study. The absorption rate of ketoprofen administered as the lysine salt was rather low: the mean residence time increased from 31.7 min after IV injection to 128.9 min (after IM injection), and the bioavailability was high (mean 92.4%). The calculated steady state plasma concentrations of ketoprofen during multiple dosage were much higher after intramuscular (0.106 g/ml) than after intravenous (0.066 microgram/ml) administration. Intramuscular injections of the ketoprofen lysine salt can therefore be given to horses, which are particularly prone to develop soft tissue reactions, since use of the lysine salt markedly reduced local irritation at the injection site.

  10. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G).

    PubMed

    Han, Ruizhi; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian

    2013-07-01

    In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of L-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.97 g/l, which was 64.2% higher than that (1.20 g/l) produced by the wild-type CGTase. The reaction kinetics analysis confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, the four mutants had relatively lower cyclization activities and higher disproportionation activities, which was favorable for AA-2G synthesis. The mechanism responsible for the enhanced substrate specificity was further explored by structure modeling and it was indicated that the enhancement of maltodextrin specificity may be due to the short residue chain and the removal of hydrogen bonding interactions between the side chain of residue 47 and the sugar at -3 subsite. Here the obtained mutant CGTases, especially the K47L, has a great potential in the production of AA-2G with maltodextrin as a cheap and easily soluble substrate.

  11. Altering the fatty acids in milk fat by including canola seed in dairy cattle diets.

    PubMed

    Chichlowski, M W; Schroeder, J W; Park, C S; Keller, W L; Schimek, D E

    2005-09-01

    The objective was to evaluate the effects of feeding ground canola seed on the fatty acid profile, yield, and composition of milk from dairy cows. Twenty-four multiparous Holstein cows (548.3 +/- 11.9 kg body weight and 28 +/- 9 d in lactation) were randomly assigned to 1 of 2 treatments: Control (CON) or ground canola seed treatment (GCS) with 14% [of diet dry matter (DM)] of the total ration as ground canola seed containing 34% lipid. Diets contained 20% crude protein, but varied in net energy as a result of fat content differences of 2.5% and 6.4% (DM) for CON and GCS, respectively. Diets were composed of corn, corn silage, alfalfa (50:50 ground hay and haylage, DM basis), soybean and blood meal, and vitamins and minerals. Mechanically extruded canola meal was used in the CON diet to adjust for the protein from canola seed in the GCS diet. Cows were housed in tie-stalls and fed and milked twice daily for 10 wk. The inclusion of ground canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from GCS cows had greater proportions of long-chain fatty acids (> or = 18 carbons) and a lower ratio of n-6 to n-3 fatty acids. Feeding GCS reduced the proportion of short- and medium-chain fatty acids. Milk fat from cows fed GCS had a greater proportion of vaccenic acid and tended to have a higher proportion of cis-9,trans-11 conjugated linoleic acid. Actual and 3.5% fat-corrected milk yields were similar between treatments. The milk fat and protein percentages were lower for GCS cows, but total yield of these components was similar between treatments. Milk urea nitrogen was lower and serum urea nitrogen tended to be lower in cows fed canola seed. Serum glucose, insulin, and nonesterified fatty acids were not altered, but serum triglycerides were higher in GCS cows. Ammonia and total volatile fatty acids tended to be lower in ruminal fluid from GCS cows; rumen pH was unchanged. Feeding canola seed to lactating dairy cows resulted in milk

  12. Novel Engineered Peptides of a Phage Lysin as Effective Antimicrobials against Multidrug-Resistant Acinetobacter baumannii.

    PubMed

    Thandar, Mya; Lood, Rolf; Winer, Benjamin Y; Deutsch, Douglas R; Euler, Chad W; Fischetti, Vincent A

    2016-05-01

    Acinetobacter baumannii is a Gram-negative bacterial pathogen responsible for a range of nosocomial infections. The recent rise and spread of multidrug-resistant A. baumannii clones has fueled a search for alternative therapies, including bacteriophage endolysins with potent antibacterial activities. A common feature of these lysins is the presence of a highly positively charged C-terminal domain with a likely role in promoting outer membrane penetration. In the present study, we show that the C-terminal amino acids 108 to 138 of phage lysin PlyF307, named P307, alone were sufficient to kill A. baumannii (>3 logs). Furthermore, P307 could be engineered for improved activity, the most active derivative being P307SQ-8C (>5-log kill). Both P307 and P307SQ-8C showed high in vitro activity against A. baumannii in biofilms. Moreover, P307SQ-8C exhibited MICs comparable to those of levofloxacin and ceftazidime and acted synergistically with polymyxin B. Although the peptides were shown to kill by disrupting the bacterial cytoplasmic membrane, they did not lyse human red blood cells or B cells; however, serum was found to be inhibitory to lytic activity. In a murine model of A. baumannii skin infection, P307SQ-8C reduced the bacterial burden by ∼2 logs in 2 h. This study demonstrates the prospect of using peptide derivatives from bacteriophage lysins to treat topical infections and remove biofilms caused by Gram-negative pathogens.

  13. Lysine Propionylation Is a Prevalent Post-translational Modification in Thermus thermophilus

    PubMed Central

    Okanishi, Hiroki; Kim, Kwang; Masui, Ryoji; Kuramitsu, Seiki

    2014-01-01

    Recent studies of protein post-translational modifications revealed that various types of lysine acylation occur in eukaryotic and bacterial proteins. Lysine propionylation, a newly discovered type of acylation, occurs in several proteins, including some histones. In this study, we identified 361 propionylation sites in 183 mid-exponential phase and late stationary phase proteins from Thermus thermophilus HB8, an extremely thermophilic eubacterium. Functional classification of the propionylproteins revealed that the number of propionylation sites in metabolic enzymes increased in late stationary phase, irrespective of protein abundance. The propionylation sites on proteins expressed in mid-exponential and late stationary phases partially overlapped. Furthermore, amino acid frequencies in the vicinity of propionylation sites differed, not only between the two growth phases but also relative to acetylation sites. In addition, 33.8% of mid-exponential phase–specific and 80.0% of late stationary phase–specific propionylations (n ≥ 2) implied that specific mechanisms regulate propionylation in the cell. Moreover, the limited degree of overlap between lysine propionylation (36.8%) and acetylation (49.2%) sites in 67 proteins that were both acetylated and propionylated strongly suggested that the two acylation reactions are regulated separately by specific enzymes and may serve different functions. Finally, we also found that eight propionylation sites overlapped with acetylation sites critical for protein functions such as Schiff-base formation and ligand binding. PMID:24938286

  14. Case Studies in Systems Chemistry. Final Report. [Includes Complete Case Study, Carboxylic Acid Equilibria

    ERIC Educational Resources Information Center

    Fleck, George

    This publication was produced as a teaching tool for college chemistry. The book is a text for a computer-based unit on the chemistry of acid-base titrations, and is designed for use with FORTRAN or BASIC computer systems, and with a programmable electronic calculator, in a variety of educational settings. The text attempts to present computer…

  15. Antibiosis of some lactic acid bacteria including Lactobacillus acidophilus toward Listeria monocytogenes.

    PubMed

    Raccach, M; McGrath, R; Daftarian, H

    1989-08-01

    Eleven strains of lactic acid bacteria were tested by the 'spot' on the 'lawn' method for their antagonistic activity against four strains of Listeria monocytogenes. Four out of the five strains of lactic acid bacteria most antagonistic toward the pathogen were those cultures known to produce bacteriocins. Four other strains of lactic acid bacteria were not antagonistic against Listeria by this method. Seventeen inhibition zones of the pathogen were obtained at 25 degrees C as compared to 10 at 32 degrees C. Lactobacillus acidophilus strains NU-A and 88, growing in the presence of L. monocytogenes in milk prevented the latter from attaining populations it would have in pure culture (P less than 0.01). 10(1.4)-10(3.5) lower numbers were noted. L. acidophilus in most cases exhibited a bacteriostatic effect toward the pathogen except for strain 88 which appeared to have a bactericidal effect (P less than 0.01) against Listeria strain OH. The lactobacilli reduced the pH of the milk to 4.7 over a 24 h period, showing that acid played a role in the observed antibiosis.

  16. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    PubMed

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors. PMID:26819382

  17. pH dependent growth of poly( L-lysine)/poly( L-glutamic) acid multilayer films and their cell adhesion properties

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Arntz, Youri; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2004-10-01

    The short-term interaction of chondrosarcoma cells with (PGA/PLL) polyelectrolyte multilayers was investigated in a serum-containing medium for films built at different pHs and subsequently exposed to the culture medium. The buildup of the films and their stability was first investigated by means of optical waveguide lightmode spectroscopy, quartz crystal microbalance, streaming potential measurements and atomic force microscopy. While film growth is linear at all pHs, after a few layers have been deposited the growth is much larger for the films built at basic pH and even more pronounced for those built at acidic pH. However, these latter films remain stable in the culture medium only if they have been crosslinked prior to the ionic strength and pH jumps. The films built at acidic pH were found to swell in water by about 200% whereas those built at other pHs did not swell in a physiological buffer. For thin films (≈20 nm) built at pH = 7.4, the detachment forces were dependent on the outermost layer, the forces being significantly higher on PLL-ending films than on PGA-ending ones. In contrast, for the thick films built at pH = 4.4 and at pH = 10.4 (thickness of the order of few hundred of nanometers), the detachment forces were independent of the outermost layer of the film. The films built at pH = 10.4, which shrink in contact with salt containing solutions, were highly cell adhesive whereas those built at acidic pH were highly cell resistant. Protein adsorption and film roughness (as measured by AFM) could not explain these striking differences. The high adhesion observed on the film built at pH 10.4 may rather be related to the secondary structure of the film and to its relatively low swellability in water, whereas the cell resistance of the films built at pH 4.4 may be linked to their high swellability. Therefore, for the PGA/PLL films, the cell adhesion properties can be tuned depending on the deposition pH of the polyelectrolyte solutions. This study

  18. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.

    PubMed

    Rardin, Matthew J; Newman, John C; Held, Jason M; Cusack, Michael P; Sorensen, Dylan J; Li, Biao; Schilling, Birgit; Mooney, Sean D; Kahn, C Ronald; Verdin, Eric; Gibson, Bradford W

    2013-04-16

    Large-scale proteomic approaches have identified numerous mitochondrial acetylated proteins; however in most cases, their regulation by acetyltransferases and deacetylases remains unclear. Sirtuin 3 (SIRT3) is an NAD(+)-dependent mitochondrial protein deacetylase that has been shown to regulate a limited number of enzymes in key metabolic pathways. Here, we use a rigorous label-free quantitative MS approach (called MS1 Filtering) to analyze changes in lysine acetylation from mouse liver mitochondria in the absence of SIRT3. Among 483 proteins, a total of 2,187 unique sites of lysine acetylation were identified after affinity enrichment. MS1 Filtering revealed that lysine acetylation of 283 sites in 136 proteins was significantly increased in the absence of SIRT3 (at least twofold). A subset of these sites was independently validated using selected reaction monitoring MS. These data show that SIRT3 regulates acetylation on multiple proteins, often at multiple sites, across several metabolic pathways including fatty acid oxidation, ketogenesis, amino acid catabolism, and the urea and tricarboxylic acid cycles, as well as mitochondrial regulatory proteins. The widespread modification of key metabolic pathways greatly expands the number of known substrates and sites that are targeted by SIRT3 and establishes SIRT3 as a global regulator of mitochondrial protein acetylation with the capability of coordinating cellular responses to nutrient status and energy homeostasis.

  19. Structural insights into the recovery of aldolase activity in N-acetylneuraminic acid lyase by replacement of the catalytically active lysine with γ-thialysine by using a chemical mutagenesis strategy.

    PubMed

    Timms, Nicole; Windle, Claire L; Polyakova, Anna; Ault, James R; Trinh, Chi H; Pearson, Arwen R; Nelson, Adam; Berry, Alan

    2013-03-01

    Chemical modification has been used to introduce the unnatural amino acid γ-thialysine in place of the catalytically important Lys165 in the enzyme N-acetylneuraminic acid lyase (NAL). The Staphylococcus aureus nanA gene, encoding NAL, was cloned and expressed in E. coli. The protein, purified in high yield, has all the properties expected of a class I NAL. The S. aureus NAL which contains no natural cysteine residues was subjected to site-directed mutagenesis to introduce a cysteine in place of Lys165 in the enzyme active site. Subsequently chemical mutagenesis completely converted the cysteine into γ-thialysine through dehydroalanine (Dha) as demonstrated by ESI-MS. Initial kinetic characterisation showed that the protein containing γ-thialysine regained 17 % of the wild-type activity. To understand the reason for this lower activity, we solved X-ray crystal structures of the wild-type S. aureus NAL, both in the absence of, and in complex with, pyruvate. We also report the structures of the K165C variant, and the K165-γ-thialysine enzyme in the presence, or absence, of pyruvate. These structures reveal that γ-thialysine in NAL is an excellent structural mimic of lysine. Measurement of the pH-activity profile of the thialysine modified enzyme revealed that its pH optimum is shifted from 7.4 to 6.8. At its optimum pH, the thialysine-containing enzyme showed almost 30 % of the activity of the wild-type enzyme at its pH optimum. The lowered activity and altered pH profile of the unnatural amino acid-containing enzyme can be rationalised by imbalances of the ionisation states of residues within the active site when the pK(a) of the residue at position 165 is perturbed by replacement with γ-thialysine. The results reveal the utility of chemical mutagenesis for the modification of enzyme active sites and the exquisite sensitivity of catalysis to the local structural and electrostatic environment in NAL.

  20. Rumen-protected methionine and lysine: effects on milk production and plasma amino acids of dairy cows with reference to metabolisable protein status.

    PubMed

    Awawdeh, Mofleh S

    2016-05-01

    Two experiments were conducted to study the effects of rumen-protected Met (RPM) alone or with rumen-protected Lys (RPL) on milk yield and plasma amino acids of dairy cows. In experiment 1, 24 multiparous Holstein cows (154 DIM) were assigned to one of 3 groups where each cow received 0 g/d of RPM and RPL (C), 30 g/d of RPM (M), or 30 g/d of RPM plus 25 g of RPL (ML). The study lasted for 8 weeks where milk yield and composition were determined weekly. Daily milk yield averaged 28·0, 27·8, and 29·7 kg/cow for the C, M, and ML groups, respectively. Dietary treatments had no effects (P ≥ 0·54) on milk contents of fat, lactose, solid non-fat or total solids. Milk protein content in the ML group was greater (P < 0·05) than the C and M groups. Plasma levels of all AA were not significantly (P ≥ 0·09) affected by supplemental RPL and/or RPM. In experiment 2, 30 multiparous Holstein cows (100 DIM) were assigned to one of 3 groups where each cow received 0 g/d of RPM and RPL (C), 50 g/d of RPM (M), or 50 g/d of RPM plus 25 g/d of RPL (ML). The study lasted for 5 weeks. Cows in the M (30·5 kg) and ML (31·4 kg) groups produced (P < 0·05) more milk than those of the C group (29·1 kg). Under conditions of this study, RPM plus RPL improved milk yield and protein contents of dairy cows and was better than supplying RPM alone. Response in milk yield to RPM and RPL was affected by the MP status of cows which deserves further investigation.

  1. Bioavailability of lysine in selected foods by rat growth assay.

    PubMed

    McDonough, F E; Bodwell, C E; Hitchins, A D; Staples, R S

    1989-01-01

    Lysine bioavailabilities in reference protein and 16 test protein diets were estimated using 10 day rat growth assays. A standard growth curve was obtained by feeding 5 diets containing casein, zein and synthetic amino acids ranging in total lysine concentration from 0.3 to 0.7%. Experimental foods were added to the basal diet at the expense of zein and/or synthetic amino acids to provide 2 specific lysine concentrations, i.e., 0.4 and 0.6%. Availabilities were established by comparing growth responses from the test food diets to the regression line of the standard growth data. Availabilities were over 88% for 13 of 16 products. Utilization was poor in pinto beans (73%), rice-wheat gluten cereal (70%), and skim milk powder heated to 100 degrees C for 12 h (66%). Addition of excess lysine (700 mg/100 g diet) to the pinto bean diet did not improve growth response; thus poor digestibility or some unidentified growth inhibitor is indicated. PMID:2496403

  2. Correlation of carnitine levels to methionine and lysine intake.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Babinská, K; Béder, I

    2000-01-01

    Plasma carnitine levels were measured in two alternative nutrition groups--strict vegetarians (vegans) and lactoovovegetarians (vegetarians consuming limited amounts of animal products such as milk products and eggs). The results were compared to an average sample of probands on mixed nutrition (omnivores). Carnitine levels were correlated with the intake of essential amino acids, methionine and lysine (as substrates of its endogenous synthesis), since the intake of carnitine in food is negligible in the alternative nutrition groups (the highest carnitine content is in meat, lower is in milk products, while fruit, cereals and vegetables contain low or no carnitine at all). An average carnitine level in vegans was significantly reduced with hypocarnitinemia present in 52.9% of probands. Similarly, the intake of methionine and lysine was significantly lower in this group due to the exclusive consumption of plant proteins with reduced content of these amino acids. Carnitine level in lactoovovegetarians was also significantly reduced, but the incidence of values below 30 micromol/l was lower than in vegans representing 17.8% vs. 3.3% in omnivores. Intake of methionine and lysine was also significantly reduced in this group, but still higher compared to vegans (73% of protein intake covered by plant proteins). Significant positive correlation of carnitine levels with methionine and lysine intake in alternative nutrition groups indicates that a significant portion of carnitine requirement is covered by endogenous synthesis. Approximately two thirds of carnitine requirement in omnivores comes from exogenous sources. The results demonstrate the risks of alternative nutrition with respect to the intake of essential amino acids, methionine and lysine, and with respect to the intake and biosynthesis of carnitine. PMID:11043928

  3. Correlation of carnitine levels to methionine and lysine intake.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Babinská, K; Béder, I

    2000-01-01

    Plasma carnitine levels were measured in two alternative nutrition groups--strict vegetarians (vegans) and lactoovovegetarians (vegetarians consuming limited amounts of animal products such as milk products and eggs). The results were compared to an average sample of probands on mixed nutrition (omnivores). Carnitine levels were correlated with the intake of essential amino acids, methionine and lysine (as substrates of its endogenous synthesis), since the intake of carnitine in food is negligible in the alternative nutrition groups (the highest carnitine content is in meat, lower is in milk products, while fruit, cereals and vegetables contain low or no carnitine at all). An average carnitine level in vegans was significantly reduced with hypocarnitinemia present in 52.9% of probands. Similarly, the intake of methionine and lysine was significantly lower in this group due to the exclusive consumption of plant proteins with reduced content of these amino acids. Carnitine level in lactoovovegetarians was also significantly reduced, but the incidence of values below 30 micromol/l was lower than in vegans representing 17.8% vs. 3.3% in omnivores. Intake of methionine and lysine was also significantly reduced in this group, but still higher compared to vegans (73% of protein intake covered by plant proteins). Significant positive correlation of carnitine levels with methionine and lysine intake in alternative nutrition groups indicates that a significant portion of carnitine requirement is covered by endogenous synthesis. Approximately two thirds of carnitine requirement in omnivores comes from exogenous sources. The results demonstrate the risks of alternative nutrition with respect to the intake of essential amino acids, methionine and lysine, and with respect to the intake and biosynthesis of carnitine.

  4. Amperometric biosensor based on diamond paste for the enantioanalysis of L-lysine.

    PubMed

    Stefan-van Staden, Raluca-Ioana; Nejem, R'afat Mahmoud; van Staden, Jacobus Frederick; Aboul-Enein, Hassan Y

    2012-05-15

    An amperometric biosensor was proposed for the enantioanalysis of L-lysine. The biosensor is based on the impregnation of L-lysine oxidase in diamond paste. The potential used for the determination of l-lysine was 650 mV. The biosensor exhibited a linear concentration range between 1 and 100 nmol/L with a limit of detection of 4 pmol/L. The selectivity of the biosensor is high over other amino acids, such as L-serine, L-leucine, L-aspartic acid, L-glutamic acid, histamine, glycine. The proposed biosensor can be applied for the determination of L-lysine in serum samples and pharmaceutical compounds.

  5. Fate of N-nitrosodimethylamine, trihalomethane and haloacetic acid precursors in tertiary treatment including biofiltration.

    PubMed

    Farré, Maria José; Reungoat, Julien; Argaud, Francois Xavier; Rattier, Maxime; Keller, Jürg; Gernjak, Wolfgang

    2011-11-01

    The presence of disinfection by-products (DBPs) such as trihalomethanes (THMs), haloacetic acids (HAAs) and N-nitrosamines in water is of great concern due to their adverse effects on human health. In this work, the removal of N-nitrosodimethylamine (NDMA), total THM and five HAA precursors from secondary effluent by biological activated carbon (BAC) is investigated at full and pilot scale. In the pilot plant two filter media, sand and granular activated carbon, are tested. In addition, we evaluate the influence of ozonation prior to BAC filtration on its performance. Among the bulk of NDMA precursors, the fate of four pharmaceuticals containing a dimethylamino moiety in the chemical structure are individually investigated. Both NDMA formation potential and each of the studied pharmaceuticals are dramatically reduced by the BAC even in the absence of main ozonation prior to the filtration. The low removal of NDMA precursors at the sand filtration in comparison to the removal of NDMA precursors at the BAC suggests that adsorption may play an important role on the removal of NDMA precursors by BAC. Contrary, the precursors for THM and HAA formation are reduced in both sand filtration and BAC indicating that the precursors for the formation of these DBPs are to some extent biodegradable.

  6. Differential regulation of host genes including hepatic fatty acid synthase in HBV-transgenic mice.

    PubMed

    Zhang, Hongmin; Li, Hong; Yang, Yixuan; Li, Sanglin; Ren, Hong; Zhang, Dazhi; Hu, Huaidong

    2013-06-01

    Hepatitis B virus (HBV) is the most common of the hepatitis viruses that cause chronic liver infections in humans, and it is considered to be a major global health problem. To gain a better understanding of HBV pathogenesis, and identify novel putative targets for anti-HBV therapy, this study was designed to elucidate the differential expression of host proteins in liver tissue from HBV-transgenic mice. Liver samples from two groups, (1) HBV-transgenic (Tg) mice, (2) corresponding background normal mice, wild-type (WT) mice, were collected and subjected to iTRAQ and mass spectrometry analysis. In total, 1950 unique proteins were identified, and 68 proteins were found to be differentially expressed in HBV-Tg mice as compared with that in WT mice. Several differentially expressed proteins were further validated by real-time quantitative RT-PCR, Western blot and immunohistochemical analysis. Furthermore, the association of HBV replication with fatty acid synthase (FASN), one of the highly expressed proteins in HBV-Tg mice, was verified. Silencing of FASN expression in HepG2.2.15 cells suppressed viral replication through the IFN signaling pathway, and some downstream antiviral effectors. The implicated role of FASN in HBV replication provides an opportunity to test existing compounds against FASN for adjuvant therapy and/or treatment of HBV replication. PMID:23675653

  7. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE.

    PubMed

    Van de Wouwer, Dorien; Vanholme, Ruben; Decou, Raphaël; Goeminne, Geert; Audenaert, Dominique; Nguyen, Long; Höfer, René; Pesquet, Edouard; Vanholme, Bartel; Boerjan, Wout

    2016-09-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  8. Longitudinal distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling

    NASA Astrophysics Data System (ADS)

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka

    2016-03-01

    Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.

  9. Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea.

    PubMed

    Zhou, Qi-Jia; Wang, Jun; Liu, Min; Qiao, Ying; Hong, Wan-Shu; Su, Yong-Quan; Han, Kun-Huang; Ke, Qiao-Zhen; Zheng, Wei-Qiang

    2016-08-01

    As fundamental immunologic mechanism, the innate immunity system is more important than the specific immunity system in teleost fishes during pathogens infection. Antimicrobial peptides are integral parts of the innate immune system, and play significant roles against pathogens infection. NK-lysin, the compounds of the natural killer cells and cytotoxic T cells, are potent and effective antimicrobial peptides widely distributed in animals. In this study, we reported the sequence characteristics, expression profiles and antibacterial activities of a NK-lysin gene (Lc-NK-lysin) from a commercially important marine fish, the large yellow croaker (Larimichthys crocea). The open reading frame of Lc-NK-lysin cDNA sequence was 447 bp in length, coding 148 amino acids. The genomic DNA of Lc-NK-lysin has the common features of NK-lysin family, consisting of five exons and four introns, and in its deduced mature peptide, there are six well-conserved cysteine residues and a Saposin B domain. Lc-NK-lysin was expressed in all tested tissues (skin, muscle, gill, brain, head kidney, heart, liver, spleen, stomach and intestine) with different expression patterns. In pathogens infection the expression profiles of Lc-NK-lysin varied significantly in gill, head kidney, spleen and liver, indicating its role in immune response. Two peptides (Lc-NK-lysin-1 and Lc-NK-lysin-2) divided from the core region of the Lc-NK-lysin mature polypeptide were chemically synthesized and their antibacterial activities were examined; the potential function on the inhibition of bacteria propagation was revealed. Our results suggested that Lc-NK-lysin is a typical member of the NK-lysin family and as an immune-related gene it involves in the immune response when pathogens invasion. PMID:27238427

  10. Evaluation of the number of ionogenic groups of inulinase by acid-base titration.

    PubMed

    Kovaleva, T A; Holyavka, M G; Rezvan, S G; Kozhedub, S V

    2008-06-01

    Acid base titration showed that Aspergillus awamori inulinase includes 178 asparaginic and glutamic acid residues, 20 histidine, 10 serine, and 34 lysine and tyrosine residues. Denaturation temperature for this enzyme was calculated using analysis of the proportion of stabilizing and destabilizing amino acids in the molecule.

  11. Coacervate-like microspheres from lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Rohlfing, D. L.

    1975-01-01

    Microspheres form isothermally from lysine-rich proteinoid when the ionic strength of the solution is increased with NaCl or other salts. Studies with different monovalent anions and with polymers of different amino acid composition indicate that charge neutralization and hydrophobic bonding contribute to microsphere formation. The particles also form in sea water, especially if heated or made slightly alkaline. The microspheres differ from those made from acidic proteinoid but resemble coacervate droplets in some ways (isothermal formation, limited stability, stabilization by quinone, uptake of dyes). Because the constituent lysine-rich proteinoid is of simulated prebiotic origin, the study is interpreted to add emphasis to and suggest an evolutionary continuity for coacervation phenomena.

  12. Identification and characterization of lysine-methylated sites on histones and non-histone proteins.

    PubMed

    Lee, Tzong-Yi; Chang, Cheng-Wei; Lu, Cheng-Tzung; Cheng, Tzu-Hsiu; Chang, Tzu-Hao

    2014-06-01

    Protein methylation is a kind of post-translational modification (PTM), and typically takes place on lysine and arginine amino acid residues. Protein methylation is involved in many important biological processes, and most recent studies focused on lysine methylation of histones due to its critical roles in regulating transcriptional repression and activation. Histones possess highly conserved sequences and are homologous in most species. However, there is much less sequence conservation among non-histone proteins. Therefore, mechanisms for identifying lysine-methylated sites may greatly differ between histones and non-histone proteins. Nevertheless, this point of view was not considered in previous studies. Here we constructed two support vector machine (SVM) models by using lysine-methylated data from histones and non-histone proteins for predictions of lysine-methylated sites. Numerous features, such as the amino acid composition (AAC) and accessible surface area (ASA), were used in the SVM models, and the predictive performance was evaluated using five-fold cross-validations. For histones, the predictive sensitivity was 85.62% and specificity was 80.32%. For non-histone proteins, the predictive sensitivity was 69.1% and specificity was 88.72%. Results showed that our model significantly improved the predictive accuracy of histones compared to previous approaches. In addition, features of the flanking region of lysine-methylated sites on histones and non-histone proteins were also characterized and are discussed. A gene ontology functional analysis of lysine-methylated proteins and correlations of lysine-methylated sites with other PTMs in histones were also analyzed in detail. Finally, a web server, MethyK, was constructed to identify lysine-methylated sites. MethK now is available at http://csb.cse.yzu.edu.tw/MethK/.

  13. Hemoglobin Labeled by Radioactive Lysine

    DOE R&D Accomplishments Database

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  14. Functional importance of motif I of pseudouridine synthases: mutagenesis of aligned lysine and proline residues.

    PubMed

    Spedaliere, C J; Hamilton, C S; Mueller, E G

    2000-08-01

    On the basis of sequence alignments, the pseudouridine synthases were grouped into four families that share no statistically significant global sequence similarity, though some common sequence motifs were discovered [Koonin, E. V. (1996) Nucleic Acids. Res. 24, 2411-2415; Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762]. We have investigated the functional significance of these alignments by substituting the nearly invariant lysine and proline residues in Motif I of RluA and TruB, pseudouridine synthases belonging to different families. Contrary to our expectations, the altered enzymes display only very mild kinetic impairment. Substitution of the aligned lysine and proline residues does, however, reduce structural stability, consistent with a temperature sensitive phenotype that results from substitution of the cognate proline residue in Cbf5p, a yeast homologue of TruB [Zerbarjadian, Y., King, T., Fournier, M. J., Clarke, L., and Carbon, J. (1999) Mol. Cell. Biol. 19, 7461-7472]. Together, our data support a functional role for Motif I, as predicted by sequence alignments, though the effect of substituting the highly conserved residues was milder than we anticipated. By extrapolation, our findings also support the assignment of pseudouridine synthase function to certain physiologically important eukaryotic proteins that contain Motif I, including the human protein dyskerin, alteration of which leads to the disease dyskeratosis congenita.

  15. Spectrophotometric assays for L-lysine alpha-oxidase and gamma-glutamylamine cyclotransferase.

    PubMed

    Danson, Jedidah W; Trawick, Mary Lynn; Cooper, Arthur J L

    2002-04-15

    A new assay for l-lysine alpha-oxidase is described. In this assay, the oxidized product generated from l-lysine is reacted with semicarbazide to form alpha-keto-epsilon-aminocaproate semicarbazone. Formation of the alpha-keto acid semicarbazone is continuously monitored spectrophotometrically at 248 nm (epsilon 10,160 +/- 240 M(-1) cm(-1)). The method was adapted to provide a new assay for gamma-glutamylamine cyclotransferase. This enzyme catalyzes the conversion of many l-gamma-glutamylamines to 5-oxo-l-proline and free amine. A biologically important substrate is N(epsilon)-(gamma-l-glutamyl)-l-lysine, which is converted to 5-oxo-l-proline and l-lysine by the action of gamma-glutamylamine cyclotransferase. The l-lysine generated from N(epsilon)-(gamma-l-glutamyl)-l-lysine in an endpoint assay is converted to alpha-keto epsilon-aminocaproate semicarbazone in the presence of semicarbazide, excess l-lysine alpha-oxidase, and catalase. The methods were applied to the determination of gamma-glutamylamine cyclotransferase activity of partially purified preparations of the bovine kidney enzyme and to detect gamma-glutamylamine cyclotransferase activity in rat kidney and liver homogenates. PMID:11950211

  16. Structural Basis for l-Lysine Feedback Inhibition of Homocitrate Synthase

    SciTech Connect

    Bulfer, Stacie L.; Scott, Erin M.; Pillus, Lorraine; Trievel, Raymond C.

    2010-09-02

    The {alpha}-aminoadipate pathway of lysine biosynthesis is modulated at the transcriptional and biochemical levels by feedback inhibition. The first enzyme in the {alpha}-aminoadipate pathway, homocitrate synthase (HCS), is the target of the feedback regulation and is strongly inhibited by L-lysine. Here we report the structure of Schizosaccharomyces pombe HCS (SpHCS) in complex with L-lysine. The structure illustrates that the amino acid directly competes with the substrate 2-oxoglutarate for binding within the active site of HCS. Differential recognition of the substrate and inhibitor is achieved via a switch position within the ({alpha}/{beta}){sub 8} TIM barrel of the enzyme that can distinguish between the C5-carboxylate group of 2-oxoglutarate and the {epsilon}-ammonium group of L-lysine. In vitro and in vivo assays demonstrate that mutations of the switch residues, which interact with the L-lysine {epsilon}-ammonium group, abrogate feedback inhibition, as do substitutions of residues within the C-terminal domain that were identified in a previous study of L-lysine-insensitive HCS mutants in Saccharomyces cerevisiae. Together, these results yield new insights into the mechanism of feedback regulation of an enzyme central to lysine biosynthesis.

  17. Genome-Wide Analysis of the Lysine Biosynthesis Pathway Network during Maize Seed Development

    PubMed Central

    Liu, Yuwei; Xie, Shaojun; Yu, Jingjuan

    2016-01-01

    Lysine is one of the most limiting essential amino acids for humans and livestock. The nutritional value of maize (Zea mays L.) is reduced by its poor lysine content. To better understand the lysine biosynthesis pathway in maize seed, we conducted a genome-wide analysis of the genes involved in lysine biosynthesis. We identified lysine biosynthesis pathway genes (LBPGs) and investigated whether a diaminopimelate pathway variant exists in maize. We analyzed two genes encoding the key enzyme dihydrodipicolinate synthase, and determined that they contribute differently to lysine synthesis during maize seed development. A coexpression network of LBPGs was constructed using RNA-sequencing data from 21 developmental stages of B73 maize seed. We found a large set of genes encoding ribosomal proteins, elongation factors and zein proteins that were coexpressed with LBPGs. The coexpressed genes were enriched in cellular metabolism terms and protein related terms. A phylogenetic analysis of the LBPGs from different plant species revealed different relationships. Additionally, six transcription factor (TF) families containing 13 TFs were identified as the Hub TFs of the LBPGs modules. Several expression quantitative trait loci of LBPGs were also identified. Our results should help to elucidate the lysine biosynthesis pathway network in maize seed. PMID:26829553

  18. Selected nutrient contents, fatty acid composition, including conjugated linoleic acid, and retention values in separable lean from lamb rib loins as affected by external fat and cooking method.

    PubMed

    Badiani, Anna; Montellato, Lara; Bochicchio, Davide; Anfossi, Paola; Zanardi, Emanuela; Maranesi, Magda

    2004-08-11

    Proximate composition and fatty acid profile, conjugated linoleic acid (CLA) isomers included, were determined in separable lean of raw and cooked lamb rib loins. The cooking methods compared, which were also investigated for cooking yields and true nutrient retention values, were dry heating of fat-on cuts and moist heating of fat-off cuts; the latter method was tested as a sort of dietetic approach against the more traditional former type. With significantly (P < 0.05) lower cooking losses, dry heating of fat-on rib-loins produced slightly (although only rarely significantly) higher retention values for all of the nutrients considered, including CLA isomers. On the basis of the retention values obtained, both techniques led to a minimum migration of lipids into the separable lean, which was higher (P < 0.05) in dry heating than in moist heating, and was characterized by the prevalence of saturated and monounsaturated fatty acids. On the whole, the response to cooking of the class of CLA isomers (including that of the nutritionally most important isomer cis-9,trans-11) was more similar to that of the monounsaturated than the polyunsaturated fatty acids.

  19. The Saccharomyces cerevisiae poly(A)-binding protein is subject to multiple post-translational modifications, including the methylation of glutamic acid.

    PubMed

    Low, Jason K K; Hart-Smith, Gene; Erce, Melissa A; Wilkins, Marc R

    2014-01-10

    Poly(A)-binding protein in mouse and man was recently found to be highly post-translationally modified. Here we analysed an ortholog of this protein, Pab1 from Saccharomyces cerevisiae, to assess the conservation and thus likely importance of these modifications. Pab1 showed the presence of six sites of methylated glutamate, five sites of lysine acetylation, and one phosphorylation of serine. Many modifications on Pab1 showed either complete conservation with those on human or mouse PABPC1, were present on nearby residues and/or were present in the same domain(s). The conservation of methylated glutamate, an unusual modification, was of particular note and suggests a conserved function. Comparison of methylated glutamate sites in human, mouse and yeast poly(A)-binding protein, along with methylation sites catalysed by CheR L-glutamyl protein methyltransferase from Salmonella typhimurium, revealed that the methylation of glutamate preferentially occurs in EE and DE motifs or other small regions of acidic amino acids. The conservation of methylated glutamate in the same protein between mouse, man and yeast suggests the presence of a eukaryotic l-glutamyl protein methyltransferase and that the modification is of functional significance.

  20. Favored and disfavored pathways of protein crosslinking by glucose: glucose lysine dimer (GLUCOLD) and crossline versus glucosepane

    PubMed Central

    Nemet, Ina; Strauch, Christopher M.

    2010-01-01

    We describe the isolation and molecular characterization of a novel glucose-lysine dimer crosslink 1,3-bis-(5-amino-5-carboxypentyl)-4-(1′,2′,3′,4′-tetrahydroxybutyl)-3H-imidazolium salt, named GLUCOLD. GLUCOLD was easily formed from the Amadori product (fructose–lysine). However, when BSA was incubated with 100 mM glucose for 25 days, the levels of the lysine-lysine glucose crosslinks GLUCOLD and CROSSLINE were only 21 and <1 pmol/mg, respectively, compared to 611 pmol/mg protein for the lysine-arginine GLUCOSEPANE crosslink, in spite of more than 20 potential lysine-lysine crosslinking sites in the protein. Mechanistic investigation revealed that metal-free phosphate ions catalyzed formation of fructose–lysine and all three crosslinks from amino acids, while cationic MOPS buffer had an opposite effect. This together with the rapid formation of N6-1,4-dideoxy-5,6-dioxoglucosone derivatives by dicarbonyl trapping agents, such as 1,2-diaminobenzene or γ-guanidinobutyric acid, strongly suggests that enolization of the Amadori product and trapping of the 5,6-dioxo derivative by arginine residues constitutes the major pathway for glucose-mediated crosslinking in proteins. PMID:20607325

  1. The MurE synthetase from Thermotoga maritima is endowed with an unusual D-lysine adding activity.

    PubMed

    Boniface, Audrey; Bouhss, Ahmed; Mengin-Lecreulx, Dominique; Blanot, Didier

    2006-06-01

    The peptidoglycan of Thermotoga maritima, an extremely thermophilic eubacterium, was shown to contain no diaminopimelic acid and approximate amounts of both enantiomers of lysine (Huber, R., Langworthy, T. A., König, H., Thomm, M., Woese, C. R., Sleytr, U. B., and Stetter, K. O. (1986) Arch. Microbiol. 144, 324-333). To assess the possible involvement of the MurE activity in the incorporation of D-lysine, the murE gene from this organism was cloned in Escherichia coli, and the corresponding protein was purified as the C-terminal His6-tagged form. In vitro assays showed that D-lysine and meso-diaminopimelic acid were added to UDP-N-acetylmuramoyl-dipeptide with 25 and 10% efficiencies, respectively, relative to L-lysine. The purified enzyme was used to synthesize the L- and D-lysine-containing UDP-N-acetylmuramoyl-tripeptides; chemical analysis revealed an unusual structure for the D-lysine-containing nucleotide, namely acylation of the epsilon-amino function of D-lysine by the D-glutamyl residue. In vitro assays with MurF and MraY enzymes from T. maritima showed that this novel nucleotide was not a substrate for MurF but that it could be directly processed into tripeptide lipid I by MraY, thereby substantiating the role of MurE in the incorporation of D-lysine into peptidoglycan.

  2. The Construction and Expression of Lysine-Rich Gene in the Mammary Gland of Transgenic Mice

    PubMed Central

    Ma, Xin; Zhang, Peng; Song, Guangqi; Chen, Yue; Wang, Zhongwei; Yin, Yupeng; Kong, Delong; Zhang, Sheng; Zhao, Zhihui; Ouyang, Hongsheng

    2012-01-01

    Lysine is the limiting amino acid in cereal grains, which represent a major source of human food and animal feed worldwide, and is considered the most important of the essential amino acids. In this study, β-casein, αS2-casein, and lactotransferrin cDNA clone fragments encoding lysine-rich peptides were fused together to generate a lysine-rich (LR) gene and the mammary gland-specific expression vector pBC1-LR-NEOr was constructed. Transgenic mice were generated by pronuclear microinjection of the linearized expression vectors harboring the LR transgene. The transgenic mice and their offspring were examined using multiplex polymerase chain reaction (PCR), Southern blotting, reverse transcriptase–PCR, in situ hybridization, and Western blotting techniques. Our results showed that the LR gene was successfully integrated into the mouse genome and was transmitted stably. The specific LR gene expression was restricted to the mammary gland, active alveoli of the transgenic female mice during lactation. The lysine level of the two transgenic lines was significantly higher than that of nontransgenic controls (p<0.05). In addition, the growth performance of transgenic pups was enhanced by directly feeding them the LR protein-enriched transgenic milk. Our results demonstrated that lysine-rich gene was successfully constructed and expressed in mammary gland of transgenic mice. This study will provide a better understanding of how mammary gland expression systems that increase the lysine content of milk can be applied to other mammals, such as cows. PMID:22577831

  3. Na/sup +/-dependent transport of /sup 14/C-L-lysine across bullfrog alveolar epithelium

    SciTech Connect

    Kim, K.J.; Crandall, E.D.

    1986-03-01

    Transepithelial transport of the basic amino acid L-lysine has been studied utilizing the isolated intact bullfrog lung mounted in the Ussing chamber. Lungs were excised from doubly pithed bullfrogs and sandwiched between two hemichambers. /sup 14/C-(U)-L-lysine was added to the upstream reservoir of amphibian Ringer solution, while the tissue was short-circuited. Two lungs from the same animal were used simultaneously to determine the two opposite unidirectional fluxes. Downstream and upstream radioactivities were assayed and used to estimate the apparent permeability (P) of the labeled lysine. Results indicate that the apparent P of /sup 14/C-L-lysine measured in the alveolar (M) to the pleural (S) direction is 19.06 (+- 2.84) x 10/sup -7/ cm/s and P in the S to M direction is 3.29 (+- 0.02) x 10/sup -7/ cm/s. When the 100 mM NaCl in the bath was replaced by 110 mM choline chloride, the flux of /sup 14/C-L-lysine from the alveolar to the pleural side decreased to the same value as that in the opposite direction. The flux from the pleural to the alveolar direction in the absence of Na/sup +/ did not change. These results suggest that the alveolar epithelium exhibits Na/sup +/-dependent amino acid (L-lysine) transport in the M->S, but not in the S->M, direction.

  4. Engineering a Lysine-ON Riboswitch for Metabolic Control of Lysine Production in Corynebacterium glutamicum.

    PubMed

    Zhou, Li-Bang; Zeng, An-Ping

    2015-12-18

    Riboswitches are natural RNA elements that regulate gene expression by binding a ligand. Here, we demonstrate the possibility of altering a natural lysine-OFF riboswitch from Eschericia coli (ECRS) to a synthetic lysine-ON riboswitch and using it for metabolic control. To this end, a lysine-ON riboswitch library was constructed using tetA-based dual genetic selection. After screening the library, the functionality of the selected lysine-ON riboswitches was examined using a report gene, lacZ. Selected lysine-ON riboswitches were introduced into the lysE gene (encoding a lysine transport protein) of Corynebacterium glutamicum and used to achieve dynamic control of lysine transport in a recombinant lysine-producing strain, C. glutamicum LPECRS, which bears a deregulated aspartokinase and a lysine-OFF riboswitch for dynamic control of the enzyme citrate synthase. Batch fermentation results of the strains showed that the C. glutamicum LPECRS strain with an additional lysine-ON riboswitch for the control of lysE achieved a 21% increase in the yield of lysine compared to that of the C. glutamicum LPECRS strain and even a 89% increase in yield compared to that of the strain with deregulated aspartokinase. This work provides a useful approach to generate lysine-ON riboswitches for C. glutamicum metabolic engineering and demonstrates for the first time a synergetic effect of lysine-ON and -OFF riboswitches for improving lysine production in this industrially important microorganism. The approach can be used to dynamically control other genes and can be applied to other microorganisms. PMID:26300047

  5. Wall Teichoic Acids Are Involved in the Medium-Induced Loss of Function of the Autolysin CD11 against Clostridium difficile

    PubMed Central

    Wu, Xia; Paskaleva, Elena E.; Mehta, Krunal K.; Dordick, Jonathan S.; Kane, Ravi S.

    2016-01-01

    Bacterial lysins are potent antibacterial enzymes with potential applications in the treatment of bacterial infections. Some lysins lose activity in the growth media of target bacteria, and the underlying mechanism remains unclear. Here we use CD11, an autolysin of Clostridium difficile, as a model lysin to demonstrate that the inability of this enzyme to kill C. difficile in growth medium is not associated with inhibition of the enzyme activity by medium, or the modification of the cell wall peptidoglycan. Rather, wall teichoic acids (WTAs) appear to prevent the enzyme from binding to the cells and cleaving the cell wall peptidoglycan. By partially blocking the biosynthetic pathway of WTAs with tunicamycin, cell binding improved and the lytic efficacy of CD11 was significantly enhanced. This is the first report of the mechanism of lysin inactivation in growth medium, and provides insights into understanding the behavior of lysins in complex environments, including the gastrointestinal tract. PMID:27759081

  6. Temporal changes (1997-2012) of perfluoroalkyl acids and selected precursors (including isomers) in Swedish human serum.

    PubMed

    Gebbink, Wouter A; Glynn, Anders; Berger, Urs

    2015-04-01

    Concentrations (including isomer patterns) and temporal changes (1997-2012) of perfluoroalkyl acids (PFAAs) and selected perfluorooctane sulfonate (PFOS) and perfluoroalkyl carboxylic acid (PFCA) precursors were determined in serum samples from Swedish women. Perfluorooctane sulfonamide (FOSA) and perfluorooctane sulfonamidoacetic acid (FOSAA), as well as its N-methyl and N-ethyl derivatives (MeFOSAA and EtFOSAA) were consistently detected. Highest PFOS precursor concentrations were found for EtFOSAA (before year 2000) or MeFOSAA and FOSAA (after 2000). Disappearance half-lives for all PFOS precursors were shorter compared to PFOS. 4:2/6:2 and 6:2/6:2 polyfluoroalkyl phosphate diesters (diPAPs) were detected in <60% of the samples, whereas 6:2/8:2 and 8:2/8:2 diPAPs were detected in >60% of the samples, but showed no significant change in concentrations over time. Linear and sum-branched isomers were quantified separately for three PFAAs and three precursors. Significant changes between 1997 and 2012 in the % linear isomer were observed for PFOA and FOSA (increase) and PFOS (decrease).

  7. Estimation of the true ileal digestible lysine and sulfur amino acid requirement and comparison of the bioefficacy of 2-hydroxy-4-(methylthio)butanoic acid and DL-methionine in eleven- to twenty-six-kilogram nursery pigs.

    PubMed

    Yi, G F; Gaines, A M; Ratliff, B W; Srichana, P; Allee, G L; Perryman, K R; Knight, C D

    2006-07-01

    Three experiments were conducted to determine the true ileal digestible (TID) Lys and sulfur AA (SAA) requirement and to compare the bioefficacy of 2-hydroxy-4-(methylthio)butanoic acid (HMTBA) and dl-MET as Met sources in nursery pigs. Experiment 1 included 2 studies: 1 was 662 nursery pigs (Triumph 4 x PIC C22; initial BW 12.2 +/- 0.18 kg) allotted to 1 of 5 dietary treatments with TID Lys concentrations ranging from 1.10 to 1.50%; and the second study was 665 nursery pigs (Triumph 4 x PIC C22; initial BW 12.3 +/- 0.18 kg) allotted to 1 of 5 dietary treatments with TID SAA concentration ranging from 0.63 to 0.90%. In Exp. 2, 638 nursery pigs (Triumph 4 x PIC C22; initial BW 13.0 +/- 0.16 kg) were allotted to the same 5 SAA dietary treatments as in Exp. 1. In Exp. 3, 1,232 pigs (Triumph 4 x PIC C22; initial BW 11.0 +/- 0.30 kg) were allotted to 1 of 7 dietary treatments. The basal diet (diet 1) was supplemented with high concentrations of synthetic AA but no Met; this resulted in a dietary concentration of TID Lys of 1.30% and TID SAA of 0.50%. Diets 2 to 7 were the basal diet supplemented with 3 equimolar levels of HMTBA or dl-MET to provide TID SAA concentrations of 0.56, 0.62, and 0.68%, respectively. In Exp. 1, increasing TID Lys from 1.10 to 1.50% increased ADG (quadratic; P < 0.05) and improved G:F (linear; P < 0.002). The pooled data of Exp. 1 (SAA study) and Exp. 2 indicated that increasing TID SAA from 0.63 to 0.90% increased ADG (quadratic; P < 0.01) and improved G:F (quadratic; P < 0.01). Various methods of analyzing the growth response surface indicated that the optimal TID Lys concentration ranged from 1.28 to 1.32% for ADG (Exp. 1), and the optimal TID SAA concentration ranged from 0.73 to 0.77% for ADG and 0.80 to 0.83% for G:F (pooled Exp. 1 and 2), respectively. In Exp. 3, increasing TID SAA concentrations from 0.50 to 0.68% resulted in a linear improvement of ADG (P < 0.001), ADFI (P < 0.05), and G:F (P < 0.001). The best fit comparison of HMTBA

  8. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity.

    PubMed

    Lillico, Ryan; Stesco, Nicholas; Khorshid Amhad, Tina; Cortes, Claudia; Namaka, Mike P; Lakowski, Ted M

    2016-05-01

    Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.

  9. Lysine biosynthesis and nitrogen metabolism in quinoa (Chenopodium quinoa): study of enzymes and nitrogen-containing compounds.

    PubMed

    Varisi, Vanderlei A; Camargos, Liliane S; Aguiar, Leandro F; Christofoleti, Renata M; Medici, Leonardo O; Azevedo, Ricardo A

    2008-01-01

    Aspartate kinase (AK, EC 2.7.2.4), homoserine dehydrogenase (HSDH, EC 1.1.1.3) and dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) were isolated and partially purified from immature Chenopodium quinoa Willd seeds. Enzyme activities were studied in the presence of the aspartate-derived amino acids lysine, threonine and methionine and also the lysine analogue S-2-aminoethyl-l-cysteine (AEC), at 1 mM and 5 mM. The results confirmed the existence of, at least, two AK isoenzymes, one inhibited by lysine and the other inhibited by threonine, the latter being predominant in quinoa seeds. HSDH activity was also shown to be partially inhibited by threonine, whereas some of the activity was resistant to the inhibitory effect, indicating the presence of two isoenzymes, one resistant and another sensitive to threonine inhibition. Only one DHDPS isoenzyme highly sensitive to lysine inhibition was detected. The results suggest that the high concentration of lysine observed in quinoa seeds is possibly due to a combined effect of increased lysine synthesis and accumulation in the soluble form and/or as protein lysine. Nitrogen assimilation was also investigated and based on nitrate content, nitrate reductase activity, amino acid distribution and ureide content, the leaves were identified as the predominant site of nitrate reduction in this plant species. The amino acid profile analysis in leaves and roots also indicated an important role of soluble glutamine as a nitrogen transporting compound.

  10. Lysine fortification of wheat flour improves selected indices of the nutritional status of predominantly cereal-eating families in Pakistan.

    PubMed

    Hussain, Tajammal; Abbas, Shaid; Khan, Mushtaq A; Scrimshaw, Nevin S

    2004-06-01

    Wheat provides more than 50% of the protein and calorie intake of the population of Pakistan. Legumes and animal protein that could complement the amino acid pattern of wheat, in which lysine is the first limiting amino acid for utilization of protein, are not affordable by members of lower socioeconomic groups in developing countries. The purpose of the study was to determine whether lysine fortification of wheat flour would have a positive impact on populations consuming a predominantly wheat-based diet. A double-blind study was carried out for three months on the outskirts of Peshawar, Pakistan. Forty families received wheat flour fortified with lysine, and 40 families received wheat flour without lysine. Wheat provided 59% of the protein for men, 65% for women, and 58% for children. The weight and height of the children in both groups increased during the study, but the increase was significantly greater in the lysine group. Hemoglobin increased significantly in the women receiving lysine-fortified flour. Transferrin levels increased significantly in men, women, and children in the lysine group as compared with those in the control group. Prealbumin increased significantly in adults receiving additional lysine but decreased in children. Men, women, and children in the lysine-supplemented families had significant increases in CD4, CD8, and complement C3 as compared with controls. These results indicate that lysine fortification of wheat flour can significantly improve sensitive indicators of nutritional status in a population consuming a diet in which 58% to 65% of the protein, depending on age and sex, is supplied by wheat.

  11. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. PMID:27542466

  12. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat.

  13. Impact of hedonic evaluation on consumers' preferences for beef attributes including its enrichment with n-3 and CLA fatty acids.

    PubMed

    Baba, Yasmina; Kallas, Zein; Costa-Font, Montserrat; Gil, José María; Realini, Carolina E

    2016-01-01

    The impact of hedonic evaluation on consumers' preferences for beef attributes was evaluated (origin, animal diet, fat content, color, price) including its enrichment with omega-3 (n-3) and conjugated linoleic acid (CLA) fatty acids. One group of consumers (n=325) received information about n-3 and CLA, while the other group (n=322) received no information. Consumers conducted a Discrete Choice Experiment (DCE), using the recently developed Generalized Multinomial Logit model; followed by a blind hedonic evaluation of beef samples, which were identified after tasting, and finally repeated the DCE. Results showed that hedonic evaluation had a significant impact on consumers' preferences, which were similar after tasting for all consumers, with less emphasis on the fat content, color, and origin attributes and greater emphasis on animal diet. Preference for n-3 enriched beef increased, while preference for CLA enriched beef was still not significant after tasting. The information provided had a significant effect on consumers' beef preferences, but no significant impact on beef liking scores.

  14. Impact of hedonic evaluation on consumers' preferences for beef attributes including its enrichment with n-3 and CLA fatty acids.

    PubMed

    Baba, Yasmina; Kallas, Zein; Costa-Font, Montserrat; Gil, José María; Realini, Carolina E

    2016-01-01

    The impact of hedonic evaluation on consumers' preferences for beef attributes was evaluated (origin, animal diet, fat content, color, price) including its enrichment with omega-3 (n-3) and conjugated linoleic acid (CLA) fatty acids. One group of consumers (n=325) received information about n-3 and CLA, while the other group (n=322) received no information. Consumers conducted a Discrete Choice Experiment (DCE), using the recently developed Generalized Multinomial Logit model; followed by a blind hedonic evaluation of beef samples, which were identified after tasting, and finally repeated the DCE. Results showed that hedonic evaluation had a significant impact on consumers' preferences, which were similar after tasting for all consumers, with less emphasis on the fat content, color, and origin attributes and greater emphasis on animal diet. Preference for n-3 enriched beef increased, while preference for CLA enriched beef was still not significant after tasting. The information provided had a significant effect on consumers' beef preferences, but no significant impact on beef liking scores. PMID:26331961

  15. Crystal Growth, Thermal, Optical, and Dielectric Properties of L-Lysine Doped Kdp Crystals

    NASA Astrophysics Data System (ADS)

    Parikh, Ketan D.; Dave, Dipak J.; Joshi, Mihir J.

    Single crystals of pure and various amount of L-lysine doped KDP crystals were grown from aqueous solution. The doping of L-lysine was confirmed by CHN analysis and FT-IR spectroscopy. Powder XRD was carried out to assess the single phase nature of the samples. The effect of doping on thermal stability of the crystals was carried out by TGA and the kinetic and thermodynamic parameters of dehydration were evaluated. It was found that as the amount of doping of amino acid, L-lysine, increased the thermal stability of the grown crystals decreased. However, the second-harmonic generation (SHG) efficiency of Nd:YAG laser and UV-vis spectroscopy studies indicated that as the L-lysine doping increased in KDP crystals the SHG efficiency and optical transmission percentage increased. The dielectric constant and the dielectric loss of L-lysine doped KDP crystals are lower than the pure KDP crystals. Hence L-lysine doped KDP crystals are found to be more beneficial from an application point of view as compared to pure KDP crystals. The results are discussed.

  16. Lysine acetylation stabilizes SP2 protein in the silkworm Bombyx mori.

    PubMed

    Zhou, Yong; Wu, Chengcheng; Sheng, Qing; Jiang, Caiying; Chen, Qin; Lv, Zhengbing; Yao, Juming; Nie, Zuoming

    2016-01-01

    Lysine acetylation (Kac) is a vital post-translational modification that plays an important role in many cellular processes in organisms. In the present study, the nutrient storage proteins in hemolymph were first found to be highly acetylated-particularly SP2 protein, which contains 20 potential Kac sites. Further results confirmed that lysine acetylation could stabilize and up-regulate the protein level of anti-apoptosis protein SP2, thereby improving the survival of H2O2-treated BmN cells and suppressing the apoptosis induced by H2O2. The potential mechanism involved in the inhibition of ubiquitin-mediated proteasomal degradation by crosstalk between lysine acetylation and ubiquitination. Our results showed that the increase in the acetylation level by TSA could decrease the ubiquitination and improve the protein level of SP2, indicating that lysine acetylation could influence the SP2 protein level through competition between ubiquitination and the suppression of ubiquitin-mediated proteasomal degradation, thereby stabilizing the protein. SP2 is a major nutrient storage protein from hemolymph for amino acid storage and utilization. The crosstalk between lysine acetylation and ubiquitination of SP2 might imply an important role of lysine acetylation for nutrient storage and utilization in silkworm. PMID:27374983

  17. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy.

    PubMed

    Yuzyuk, Tatiana; Thomas, Amanda; Viau, Krista; Liu, Aiping; De Biase, Irene; Botto, Lorenzo D; Pasquali, Marzia; Longo, Nicola

    2016-07-01

    Pyridoxine-Dependent Epilepsy (PDE) is a recessive disorder caused by deficiency of α-aminoadipic semialdehyde dehydrogenase in the catabolic pathway of lysine. It is characterized by intractable seizures controlled by the administration of pharmacological doses of vitamin B6. Despite seizure control with pyridoxine, intellectual disability and developmental delays are still observed in some patients with PDE, likely due to the accumulation of toxic intermediates in the lysine catabolic pathway: alpha-aminoadipic semialdehyde (AASA), delta-1-piperideine-6-carboxylate (P6C), and pipecolic acid. Here we evaluate biochemical and clinical parameters in two PDE patients treated with a lysine-restricted diet and arginine supplementation (100-150mg/kg), aimed at reducing the levels of PDE biomarkers. Lysine restriction resulted in decreased accumulation of PDE biomarkers and improved development. Plasma lysine but not plasma arginine, directly correlated with plasma levels of AASA-P6C (p<0.001, r(2)=0.640) and pipecolic acid (p<0.01, r(2)=0.484). In addition, plasma threonine strongly correlated with the levels of AASA-P6C (p<0.0001, r(2)=0.732) and pipecolic acid (p<0.005, r(2)=0.527), suggesting extreme sensitivity of threonine catabolism to pyridoxine availability. Our results further support the use of dietary therapies in combination with pyridoxine for the treatment of PDE. PMID:27324284

  18. Accessibility and mobility of lysine residues in. beta. -lactoglobulin

    SciTech Connect

    Brown, E.M.; Pfeffer, P.E.; Kumosinski, T.F.; Greenberg, R.

    1988-07-26

    N/sup epsilon/-(/sup 2/H/sub 6/)Isopropyllysyl-..beta..-lactoglobulin was prepared by reductive alkylation of ..beta..-lactoglobulin with (/sup 2/H/sub 6/)acetone and NaBH/sub 4/ to provide a /sup 2/H (NMR) probe for the study of lysine involvement in lipid-protein interactions. Amino acid analysis showed 80% of the protein's 15 lysine residues to be labeled. Unmodified lysine residues were located through peptide maps produced from CNBr, tryptic, and chymotryptic digests of the labeled protein. Average correlation times calculated from /sup 2/H NMR spectra were 20 and 320 ps for 8.7 and 3.3 residues, respectively, in 6 M guanidine hydrochloride; in nondenaturing solution, values of 70 and 320 ps were obtained for 6.5 and 3.2 residues, respectively, with the remaining 2.3 modified residues not observed, suggesting that side chains of lysine residues in unordered or flexible regions were more mobile than those in stable periodic structures. /sup 2/H NMR spectra of the protein complexed with dipalmitoylphosphatidylcholine confirmed the extrinsic membrane protein type behavior of ..beta..-lactoglobulin previously reported from /sup 31/P NMR studies of the phospholipids complexed with ..beta..-lactoglobulin. Although no physiological function has yet been identified, comparison of these results with the X-ray structure supports the hypothesis that residues not accessible for modification may help to stabilize the cone-shaped ..beta..-barrel thought to contain binding sites for small lipid-soluble molecules.

  19. Effect of supplementation of crystalline lysine on the performance of WL layers in tropics during summer.

    PubMed

    Kumari, K Naga Raja; Reddy, V Ravinder; Preetham, V Chinni; Kumar, D Srinivas; Sen, Arup Ratan; Rao, S Venkata Rama

    2016-04-01

    A trial was conducted to evaluate the effect of lysine concentration in the diet of WL layers with constant ratio of other essential amino acids to lysine. Pullets (528) aged 25 to 36 weeks were fed with test diet containing two protein levels (13.36 and 15.78%) each with 5% concentration of lysine (0.50, 0.55, 0.60, 0.65, and 0.70) and a control with 17% CP and 0.70%, lysine. Each test diet was fed ad libitum to six replicates of eight birds for a period of 12 weeks. Egg production (EP), egg weight (EW), egg mass (EM), feed efficiency (g/g) (FE), body weight gain (BWG), Haugh unit (HU) and yolk colour (YC) were measured. Increased (P ≤ 0.05) EP, EW, EM, FE and BWG were obtained with increasing lysine concentration in diets. Whereas, feed intake/h/day, feed intake/egg, egg shell defects (ESD), mortality and shell thickness were not affected (P ≥ 0.05) by the concentration of lysine in diet. However, higher (P ≤ 0.05) HU score and YC were noticed at low lysine (0.50 %) concentrations. Based on this, it was concluded that WL layers (25-36 weeks) reared in open-sided houses in the tropics require approximately 0.70 % lysine (597.90 vs. 584.39 mg/h/day) in low (13.36% CP) and high (15.78% CP) protein groups in diets containing approximately 2700 kcal of ME/kg in summer.

  20. SPOTing Acetyl-Lysine Dependent Interactions.

    PubMed

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-08-17

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  1. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation. PMID:27600229

  2. SPOTing Acetyl-Lysine Dependent Interactions

    PubMed Central

    Picaud, Sarah; Filippakopoulos, Panagis

    2015-01-01

    Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation.

  3. Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2'-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents

    PubMed Central

    Torres, Adrian G.; Threlfall, Richard N.

    2011-01-01

    Efficient cell delivery of antisense oligonucleotides (ONs) is a key issue for their potential therapeutic use. It has been shown recently that some ONs can be delivered into cells without the use of transfection agents (gymnosis), but this generally requires cell incubation over several days and high amounts of ONs (micromolar concentrations). Here we have targeted microRNA 122 (miR-122), a small non-coding RNA involved in regulation of lipid metabolism and in the replication of hepatitis C virus, with ONs of different chemistries (anti-miRs) by gymnotic delivery in cell culture. Using a sensitive dual-luciferase reporter assay, anti-miRs were screened for their ability to enter liver cells gymnotically and inhibit miR-122 activity. Efficient miR-122 inhibition was obtained with cationic PNAs and 2'-O-methyl (OMe) and Locked Nucleic Acids (LNA)/OMe mixmers containing either phosphodiester (PO) or phosphorothioate (PS) linkages at sub-micromolar concentrations when incubated with cells for just 4 hours. Furthermore, PNA and PS-containing anti-miRs were able to sustain miR-122 inhibitory effects for at least 4 days. LNA/OMe PS anti-miRs were the most potent anti-miR chemistry tested in this study, an ON chemistry that has been little exploited so far as anti-miR agents towards therapeutics. PMID:22567190

  4. A Method to determine lysine acetylation stoichiometries

    SciTech Connect

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; Pasa-Tolic, Ljiljana; Qian, Weijun; Smith, Richard D.; Adkins, Joshua N.; Ansong, Charles

    2014-07-21

    A major bottleneck to fully understanding the functional aspects of lysine acetylation is the lack of stoichiometry information. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of lysine acetylation on proteins globally. Using this technique, we determined the modification occupancy on hundreds of acetylated peptides from cell lysates and cross-validated the measurements via immunoblotting.

  5. Lysine requirement of growing male Pekin ducks.

    PubMed

    Bons, A; Timmler, R; Jeroch, H

    2002-12-01

    1. One growth experiment and one balance test were conducted to study the response to increasing levels of dietary lysine supplementation in male Pekin ducks with special reference to the growth periods from 1 to 3 weeks and 4 to 7 weeks of age. 2. Two different low-lysine diets were used as basal diets in both periods. The basal lysine levels were 7.6 g/kg (d 1 to 21) and 6.2 g/kg (d 22 to 49) and the ranges in lysine concentration were 7.6 to 12.6 g/kg (d 1 to 21) and 6.2 to 11.2 g/kg (d 22 to 49). 3. Growth performance, feed conversion efficiency and meat yield increased (P < 0.05) with increasing lysine concentration (requirement defined as 95% of the asymptote). 4. It is concluded that the dietary lysine concentration should be 0.93 g/MJ nitrogen corrected apparent metabolisable energy (AMEN) (11.7 g/kg) for the starter period (until d 21) and 0.75 g/MJ AMEN (10.0 g/kg) for the grower period (from d 22 onwards).

  6. PR Domain-containing Protein 7 (PRDM7) Is a Histone 3 Lysine 4 Trimethyltransferase*

    PubMed Central

    Blazer, Levi L.; Lima-Fernandes, Evelyne; Gibson, Elisa; Eram, Mohammad S.; Loppnau, Peter; Arrowsmith, Cheryl H.; Schapira, Matthieu; Vedadi, Masoud

    2016-01-01

    PR domain-containing protein 7 (PRDM7) is a primate-specific histone methyltransferase that is the result of a recent gene duplication of PRDM9. The two proteins are highly homologous, especially in the catalytic PR/SET domain, where they differ by only three amino acid residues. Here we report that PRDM7 is an efficient methyltransferase that selectively catalyzes the trimethylation of H3 lysine 4 (H3K4) both in vitro and in cells. Through selective mutagenesis we have dissected the functional roles of each of the three divergent residues between the PR domains of PRDM7 and PRDM9. These studies indicate that after a single serine to tyrosine mutation at residue 357 (S357Y), PRDM7 regains the substrate specificities and catalytic activities similar to its evolutionary predecessor, including the ability to efficiently methylate H3K36. PMID:27129774

  7. Substitution of lysine for arginine in the N-terminal 217th amino acid residue of the H gamma II of Staphylococcal gamma-hemolysin lowers the activity of the toxin.

    PubMed

    Sudo, K; Choorit, W; Asami, I; Kaneko, J; Muramoto, K; Kamio, Y

    1995-09-01

    The staphylococcal toxin gamma-hemolysin consists of two protein components, LukF and H gamma II. Staphylococcus aureus P83 was found to have five components, LukF, LukF-PV, LukM, LukS, and H gamma II for leukocidin or gamma-hemolysin. H gamma II of S. aureus P83 was demonstrated to be a naturally-occurring analogous molecule of H gamma II [H gamma II(P83)], in which the 217th arginine residue was replaced by lysine. The H gamma II(P83) showed about 50% of the hemolytic activity of normal H gamma II in the presence of LukF.

  8. Simultaneous analysis of Nε-(carboxymethyl)lysine, reducing sugars, and lysine during the dairy thermal process.

    PubMed

    Xu, Xian-Bing; Ma, Fei; Yu, Shu-Juan; Guan, Yong-Guang

    2013-09-01

    A new analytical method allowing the simultaneous quantification of Nε-(carboxymethyl)lysine (CML), lysine, and reducing sugars (glucose, lactose, and galactose) is described. It is based on high performance anion-exchange chromatography with pulsed amperometric electrochemical detection. This method demonstrated a low limit of quantification (0.385 to 0.866 mg/L), excellent linear correlation (R(2)>0.997), and desired calibration range (3.125 to 25 mg/L). In addition, lactose-lysine solutions containing sulfite (4 to 400 mmol/L) were heated at 110°C for 2h. The results showed that sulfite inhibited the formation of CML and promoted the consumption of reducing sugars and lysine in the Maillard reaction model. The method proved to be useful for simultaneous analysis of CML, lysine, and reducing sugars (glucose, galactose, and lactose) in the Maillard reaction system. Moreover, sulfite was an effective inhibitor of CML formation.

  9. NKLP27: a teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection.

    PubMed

    Zhang, Min; Li, Mo-fei; Sun, Li

    2014-01-01

    NK-lysin is an antimicrobial protein produced by cytotoxic T lymphocytes and natural killer cells. In this study, we examined the biological property of a peptide, NKLP27, derived from tongue sole (Cynoglossus semilaevis) NK-lysin. NKLP27 is composed of 27 amino acids and shares little sequence identity with known NK-lysin peptides. NKLP27 possesses bactericidal activity against both Gram-negative and Gram-positive bacteria including common aquaculture pathogens. The bactericidal activity of NKLP27 was dependent on the C-terminal five residues, deletion of which dramatically reduced the activity of NKLP27. During its interaction with the target bacterial cells, NKLP27 destroyed cell membrane integrity, penetrated into the cytoplasm, and induced degradation of genomic DNA. In vivo study showed that administration of tongue sole with NKLP27 before bacterial and viral infection significantly reduced pathogen dissemination and replication in tissues. Further study revealed that fish administered with NKLP27 exhibited significantly upregulated expression of the immune genes including those that are known to be involved in antibacterial and antiviral defense. These results indicate that NKLP27 is a novel antimicrobial against bacterial and viral pathogens, and that the observed effect of NKLP27 on bacterial DNA and host gene expression adds new insights to the action mechanism of fish antimicrobial peptides.

  10. Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the malaria parasite

    PubMed Central

    Cobbold, Simon A.; Santos, Joana M.; Ochoa, Alejandro; Perlman, David H.; Llinás, Manuel

    2016-01-01

    Lysine acetylation is a ubiquitous post-translational modification in many organisms including the malaria parasite Plasmodium falciparum, yet the full extent of acetylation across the parasite proteome remains unresolved. Moreover, the functional significance of acetylation or how specific acetyl-lysine sites are regulated is largely unknown. Here we report a seven-fold expansion of the known parasite ‘acetylome’, characterizing 2,876 acetylation sites on 1,146 proteins. We observe that lysine acetylation targets a diverse range of protein complexes and is particularly enriched within the Apicomplexan AP2 (ApiAP2) DNA-binding protein family. Using quantitative proteomics we determined that artificial perturbation of the acetate/acetyl-CoA balance alters the acetyl-lysine occupancy of several ApiAP2 DNA-binding proteins and related transcriptional proteins. This metabolic signaling could mediate significant downstream transcriptional responses, as we show that acetylation of an ApiAP2 DNA-binding domain ablates its DNA-binding propensity. Lastly, we investigated the acetyl-lysine targets of each class of lysine deacetylase in order to begin to explore how each class of enzyme contributes to regulating the P. falciparum acetylome. PMID:26813983

  11. Proteome-Wide Identification of Lysine Succinylation in the Proteins of Tomato (Solanum lycopersicum)

    PubMed Central

    Jin, Weibo; Wu, Fangli

    2016-01-01

    Post-translational modification of proteins through lysine succinylation plays important regulatory roles in living cells. Lysine succinylation was recently identified as a novel post-translational modification in Escherichia coli, yeast, Toxoplasma gondii, HeLa cells, and mouse liver. Interestingly, only a few sites of lysine succinylation have been detected in plants to date. In this study, we identified 347 sites of lysine succinylation in 202 proteins in tomato by using high-resolution mass spectrometry. Succinylated proteins are implicated in the regulation of diverse metabolic processes, including chloroplast and mitochondrial metabolism. Bioinformatic analysis showed that succinylated proteins are evolutionarily conserved and involved in various cellular functions such as metabolism and epigenetic regulation. Moreover, succinylated proteins exhibit diverse subcellular localizations. We also defined six types of definitively conserved succinylation motifs. These results provide the first in-depth analysis of the lysine succinylome and novel insights into the role of succinylation in tomato, thereby elucidating lysine succinylation in the context of cellular physiology and metabolite biosynthesis in plants. PMID:26828863

  12. Proteome-Wide Identification of Lysine Succinylation in the Proteins of Tomato (Solanum lycopersicum).

    PubMed

    Jin, Weibo; Wu, Fangli

    2016-01-01

    Post-translational modification of proteins through lysine succinylation plays important regulatory roles in living cells. Lysine succinylation was recently identified as a novel post-translational modification in Escherichia coli, yeast, Toxoplasma gondii, HeLa cells, and mouse liver. Interestingly, only a few sites of lysine succinylation have been detected in plants to date. In this study, we identified 347 sites of lysine succinylation in 202 proteins in tomato by using high-resolution mass spectrometry. Succinylated proteins are implicated in the regulation of diverse metabolic processes, including chloroplast and mitochondrial metabolism. Bioinformatic analysis showed that succinylated proteins are evolutionarily conserved and involved in various cellular functions such as metabolism and epigenetic regulation. Moreover, succinylated proteins exhibit diverse subcellular localizations. We also defined six types of definitively conserved succinylation motifs. These results provide the first in-depth analysis of the lysine succinylome and novel insights into the role of succinylation in tomato, thereby elucidating lysine succinylation in the context of cellular physiology and metabolite biosynthesis in plants. PMID:26828863

  13. A Method to Determine Lysine Acetylation Stoichiometries

    DOE PAGES

    Nakayasu, Ernesto S.; Wu, Si; Sydor, Michael A.; Shukla, Anil K.; Weitz, Karl K.; Moore, Ronald J.; Hixson, Kim K.; Kim, Jong-Seo; Petyuk, Vladislav A.; Monroe, Matthew E.; et al

    2014-01-01

    Lysine acetylation is a common protein posttranslational modification that regulates a variety of biological processes. A major bottleneck to fully understanding the functional aspects of lysine acetylation is the difficulty in measuring the proportion of lysine residues that are acetylated. Here we describe a mass spectrometry method using a combination of isotope labeling and detection of a diagnostic fragment ion to determine the stoichiometry of protein lysine acetylation. Using this technique, we determined the modification occupancy for ~750 acetylated peptides from mammalian cell lysates. Furthermore, the acetylation on N-terminal tail of histone H4 was cross-validated by treating cells with sodiummore » butyrate, a potent deacetylase inhibitor, and comparing changes in stoichiometry levels measured by our method with immunoblotting measurements. Of note we observe that acetylation stoichiometry is high in nuclear proteins, but very low in mitochondrial and cytosolic proteins. In summary, our method opens new opportunities to study in detail the relationship of lysine acetylation levels of proteins with their biological functions.« less

  14. Metabolic inflexibility and protein lysine acetylation in heart mitochondria of a chronic model of type 1 diabetes.

    PubMed

    Vadvalkar, Shraddha S; Baily, C Nathan; Matsuzaki, Satoshi; West, Melinda; Tesiram, Yasvir A; Humphries, Kenneth M

    2013-01-01

    Diabetic cardiomyopathy refers to the changes in contractility that occur to the diabetic heart that can arise in the absence of vascular disease. Mitochondrial bioenergetic deficits and increased free radical production are pathological hallmarks of diabetic cardiomyopathy, but the mechanisms and causal relationships between mitochondrial deficits and the progression of disease are not understood. We evaluated cardiac mitochondrial function in a rodent model of chronic Type 1 diabetes (OVE26 mice) before the onset of contractility deficits. We found that the most pronounced change in OVE26 heart mitochondria is severe metabolic inflexibility. This inflexibility is characterized by large deficits in mitochondrial respiration measured in the presence of non-fatty acid substrates. Metabolic inflexibility occurred concomitantly with decreased activities of PDH (pyruvate dehydrogenase) and complex II. Hyper-acetylation of protein lysine was also observed. Treatment of control heart mitochondria with acetic anhydride (Ac2O), an acetylating agent, preferentially inhibited respiration by non-fatty acid substrates and increased superoxide production. We have concluded that metabolic inflexibility, induced by discrete enzymatic and molecular changes, including hyper-acetylation of protein lysine residues, precedes mitochondrial defects in a chronic rodent model of Type 1 diabetes. PMID:23030792

  15. Recent advances in the biotechnological production of microbial poly(ɛ-L-lysine) and understanding of its biosynthetic mechanism.

    PubMed

    Xu, Zhaoxian; Xu, Zheng; Feng, Xiaohai; Xu, Delei; Liang, Jinfeng; Xu, Hong

    2016-08-01

    Poly(ɛ-L-lysine) (ɛ-PL) is an unusual biopolymer composed of L-lysine connected between α-carboxyl and ɛ-amino groups. It has been used as a preservative in food and cosmetics industries, drug carrier in medicines, and gene carrier in gene therapy. Modern biotechnology has significantly improved the synthetic efficiency of this novel homopoly(amino acid) on an industrial scale and has expanded its industrial applications. In the latest years, studies have focused on the biotechnological production and understanding the biosynthetic mechanism of microbial ɛ-PL. Herein, this review focuses on the current trends and future perspectives of microbial ɛ-PL. Information on the screening of ɛ-PL-producing strains, fermentative production of ɛ-PL, breeding of high-ɛ-PL-producing strains, genomic data of ɛ-PL-producing strains, biosynthetic mechanism of microbial ɛ-PL, and the control of molecular weight of microbial ɛ-PL is included. This review will contribute to the development of this novel homopoly(amino acid) and serve as a basis of studies on other biopolymers. PMID:27333910

  16. Isolation and identification of microorganisms including lactic acid bacteria and their use in microbial deacidification of wines from domestic vineyards.

    PubMed

    Drozdz, Iwona; Makarewicz, Malgorzata; Tuszyński, Tadeusz

    2013-01-01

    The aim of this study was to identify various bacteria isolated from grapes and their wines. Additionally we investigated the capacity of lactic acid bacteria for microbiological deacidification of wines produced in Poland. We have identified Oenococcus oeni, Lactobacillus acidophilus and Lactobacillus delbrueckii. During the microbial deacidification process, we observed decreases of total acidity and increases of volatile acidity, with statistically significant changes noted for O. oeni in Marechal Foch and Seyval Blanc, and for Lb. acidophilus in Frontenac. On the other hand, a statistically significant increase in pH was observed in Marechal Foch and Seyval Blanc following deacidification by O. oeni.

  17. Effect of dietary lysine on growth, intestinal enzymes activities and antioxidant status of sub-adult grass carp (Ctenopharyngodon idella).

    PubMed

    Li, Xue-Yin; Tang, Ling; Hu, Kai; Liu, Yang; Jiang, Wei-Dan; Jiang, Jun; Wu, Pei; Chen, Gang-Fu; Li, Shu-Hong; Kuang, Sheng-Yao; Feng, Lin; Zhou, Xiao-Qiu

    2014-06-01

    The dietary lysine requirement of sub-adult grass carp (460 ± 1.5 g) was assessed by feeding diets supplemented with grade levels of lysine (6.6, 8.5, 10.8, 12.9, 15.0 and 16.7 g kg(-1) diet) for 56 days. The test diets (28% CP) contained fish meal, casein and gelatin as sources of intact protein, supplemented with crystalline amino acids. Weight gain (WG), feed intake and feed efficiency were significantly improved with increasing levels of lysine up to 12.9 g kg(-1) diet and thereafter declined (P < 0.05). Quadratic regression analysis of WG at 95% maximum response indicated lysine requirement was 10.9 g kg(-1) diet. Activities of trypsin, chymotrypsin, lipase, Na(+), K(+)-ATPase and alkaline phosphatase in intestine, creatine kinase activity in proximal and mid-intestine responded similar to WG (P < 0.05). In addition, lipid and protein oxidation decreased with increasing levels of lysine up to certain values and increased thereafter (P < 0.05); the anti-hydroxyl radical capacity, dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase (GST) activities and glutathione content were increased with increasing dietary lysine levels up to certain values in the detected tissues, except for hepatopancreatic GST. Requirement estimated on the basis of malondialdehyde content in intestine and hepatopancreas was 10.6 and 9.53 g lysine kg(-1) diet, respectively. PMID:24174167

  18. Enhanced L-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation.

    PubMed

    He, Xun; Chen, Kequan; Li, Yan; Wang, Zhen; Zhang, Hong; Qian, Juan; Ouyang, Pingkai

    2015-08-01

    Faster sugar consumption rate and low-cost nitrogen source are required for the chemical biosynthesis using molasses. Five pretreatment methods were applied to beet molasses prior to fermentation through engineered Escherichia coli, respectively, and corn steep liquid was used as an organic nitrogen source to replace expensive yeast extract. Furthermore, the effects of different feeding strategy in fed-batch fermentation on L-lysine production were investigated. The experimental results showed that combined tricalcium phosphate, sulfuric acid, and activated carbon pretreatment method (TPSA) pretreatment could improve the sugar consumption rate most greatly, and the initial total sugar concentration of 35 g/L from TPSA-pretreated beet molasses gave the best results with respect to L-lysine production, dry cell weight concentration, and L-lysine yield in batch fermentation. Moreover, a mixture of low-cost corn steep liquid and yeast extract containing equal amount of nitrogen could be used as the organic nitrogen source for effective L-lysine fermentation, and constant speed feeding strategy of TPSA-pretreated beet molasses promoted L-lysine production by engineered E. coli. The TPSA-pretreated beet molasses had a sugar consumption rate of 1.75 g/(L h), and a L-lysine yield of 27.81% was achieved, compared with the theoretical yield of 62% by glucose. It was clarified that the pretreatment significantly enhanced the conversion of sugars in beet molasses to L-lysine.

  19. Two protein lysine methyltransferases methylate outer membrane protein B from Rickettsia.

    PubMed

    Abeykoon, Amila H; Chao, Chien-Chung; Wang, Guanghui; Gucek, Marjan; Yang, David C H; Ching, Wei-Mei

    2012-12-01

    Rickettsia prowazekii, the etiologic agent of epidemic typhus, is a potential biological threat agent. Its outer membrane protein B (OmpB) is an immunodominant antigen and plays roles as protective envelope and as adhesins. The observation of the correlation between methylation of lysine residues in rickettsial OmpB and bacterial virulence has suggested the importance of an enzymatic system for the methylation of OmpB. However, no rickettsial lysine methyltransferase has been characterized. Bioinformatic analysis of genomic DNA sequences of Rickettsia identified putative lysine methyltransferases. The genes of the potential methyltransferases were synthesized, cloned, and expressed in Escherichia coli, and expressed proteins were purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. The methyltransferase activities of the purified proteins were analyzed by methyl incorporation of radioactively labeled S-adenosylmethionine into recombinant fragments of OmpB. Two putative recombinant methyltransferases (rRP789 and rRP027-028) methylated recombinant OmpB fragments. The specific activity of rRP789 is 10- to 30-fold higher than that of rRP027-028. Western blot analysis using specific antibodies against trimethyl lysine showed that both rRP789 and rRP027-028 catalyzed trimethylation of recombinant OmpB fragments. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis showed that rRP789 catalyzed mono-, di-, and trimethylation of lysine, while rRP027-028 catalyzed exclusively trimethylation. To our knowledge, rRP789 and rRP027-028 are the first biochemically characterized lysine methyltransferases of outer membrane proteins from Gram-negative bacteria. The production and characterization of rickettsial lysine methyltransferases provide new tools to investigate the mechanism of methylation of OmpB, effects of methylation on the structure and function of OmpB, and development of methylated OmpB-based diagnostic assays and vaccine candidates.

  20. Separation of fatty acids or methyl esters including positional and geometric isomers by alumina argentation thin-layer chromatography.

    PubMed

    Breuer, B; Stuhlfauth, T; Fock, H P

    1987-07-01

    This paper describes novel and rapid thin-layer chromatography procedures for the analysis of fatty acids and methyl esters using silver-impregnated alumina sheets. These techniques are known in most laboratories, and the equipment is readily available. The fatty acid method allows a separation of petroselinic (C18:1 delta 6c), oleic (C18:1 delta 9c), elaidic (C18:1 delta 9t), erucic (C22:1 delta 13c), and brassidic acids (C22:1 delta 13t), and the methyl ester method gives an excellent resolution with respect to the number, configuration, and position of the unsaturated centers. Sufficient separation for the subsequent ozonolysis and chromatographic quantification of isomeric C18 and C22 fatty acid methyl esters is obtained with both methods.

  1. Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9: potential effect of phosphorylation on methyl-lysine binding

    PubMed Central

    Chang, Yanqi; Horton, John R.; Bedford, Mark T.; Zhang, Xing; Cheng, Xiaodong

    2011-01-01

    M phase phosphoprotein 8 (MPP8) harbors a N-terminal chromodomain and a C-terminal ankyrin repeat domain. MPP8, via its chromodomain, binds histone H3 peptide tri- or di-methylated at lysine 9 (H3K9me3/2) in submicromolar affinity. We determined the crystal structure of MPP8 chromodomain in complex with H3K9me3 peptide. MPP8 interacts with at least six histone H3 residues from glutamine 5 to serine 10, enabling its ability to distinguish lysine 9 containing peptide (QTARKS) from that of lysine 27 (KAARKS), both sharing the ARKS sequence. A partial hydrophobic cage with three aromatic residues (Phe59, Trp80, Tyr83) and one aspartate (Asp87) encloses the methylated lysine 9. MPP8 has been reported to be phosphorylated in vivo, including the cage residue Tyr83 and the succeeding Thr84 and Ser85. Modeling a phosphate group onto the side chain hydroxyl oxygen of Tyr83 suggests the negatively charged phosphate group could enhance the binding of positively charged methyl-lysine or create a regulatory signal by allowing or inhibiting binding of other protein(s). PMID:21419134

  2. Fatty acid composition, including CLA's isomers and cholesterol content of m. longissimus lumborum and m. semimebranosus of Katahdin, Suffolk, Katahdin x Suffolk, and Suffolk x Katahdin lambs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipids in meat products have important human health implications. Muscle tissues from Katahdin (KK), Suffolk (SS), Katahdin x Suffolk (KS), and Suffolk x Katahdin (SS) lambs were analyzed to determine the effect of breed-type on muscle fatty acid composition, including conjugated linoleic acid (CLA)...

  3. Brain uptake of ketoprofen-lysine prodrug in rats.

    PubMed

    Gynther, Mikko; Jalkanen, Aaro; Lehtonen, Marko; Forsberg, Markus; Laine, Krista; Ropponen, Jarmo; Leppänen, Jukka; Knuuti, Johanna; Rautio, Jarkko

    2010-10-31

    The blood-brain barrier (BBB) controls the entry of xenobiotics into the brain. Often the development of central nervous system drugs needs to be terminated because of their poor brain uptake. We describe a way to achieve large neutral amino acid transporter (LAT1)-mediated drug transport into the rat brain. We conjugated ketoprofen to an amino acid l-lysine so that the prodrug could access LAT1. The LAT1-mediated brain uptake of the prodrug was demonstrated with in situ rat brain perfusion technique. The ability of the prodrug to deliver ketoprofen into the site of action, the brain intracellular fluid, was determined combining in vivo and in vitro experiments. A rapid brain uptake from blood and cell uptake was seen both in in situ and in vivo experiments. Therefore, our results show that a prodrug approach can achieve uptake of drugs via LAT1 into the brain intracellular fluid. The distribution of the prodrug in the brain parenchyma and the site of parent drug release in the brain were shown with in vivo and in vitro studies. In addition, our results show that although lysine or ketoprofen are not LAT1-substrates themselves, by combining these molecules, the formed prodrug has affinity for LAT1. PMID:20727958

  4. Mycobacteriophage Lysin B is a novel mycolylarabinogalactan esterase

    SciTech Connect

    Payne, K.; Sun, Q.; Sacchettini, J.; Hatfull, G.F.

    2010-08-27

    Mycobacteriophages encounter a unique problem among phages of Gram-positive bacteria, in that lysis must not only degrade the peptidoglycan layer but also circumvent a mycolic acid-rich outer membrane covalently attached to the arabinogalactan-peptidoglycan complex. Mycobacteriophages accomplish this by producing two lysis enzymes, Lysin A (LysA) that hydrolyses peptidoglycan, and Lysin B (LysB), a novel mycolylarabinogalactan esterase, that cleaves the mycolylarabinogalactan bond to release free mycolic acids. The D29 LysB structure shows an {alpha}/{beta} hydrolase organization with a catalytic triad common to cutinases, but which contains an additional four-helix domain implicated in the binding of lipid substrates. Whereas LysA is essential for mycobacterial lysis, a Giles {Delta}lysB mutant mycobacteriophage is viable, but defective in the normal timing, progression and completion of host cell lysis. We propose that LysB facilitates lysis by compromising the integrity of the mycobacterial outer membrane linkage to the arabinogalactan-peptidoglycan layer.

  5. Lysine221 is the general base residue of the isochorismate synthase from Pseudomonas aeruginosa (PchA) in a reaction that is diffusion limited.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Dhar, Prajnaparamita; Lamb, Audrey L

    2013-10-01

    The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from Escherichia coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid-general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid-general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step. PMID:23942051

  6. Lysine221 is the general base residue of the isochorismate synthase from Pseudomonas aeruginosa (PchA) in a reaction that is diffusion limited

    PubMed Central

    Meneely, Kathleen M.; Luo, Qianyi; Dhar, Prajnaparamita; Lamb, Audrey L.

    2013-01-01

    The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from E. coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid – general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid – general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step. PMID:23942051

  7. Lysine221 is the general base residue of the isochorismate synthase from Pseudomonas aeruginosa (PchA) in a reaction that is diffusion limited.

    PubMed

    Meneely, Kathleen M; Luo, Qianyi; Dhar, Prajnaparamita; Lamb, Audrey L

    2013-10-01

    The isochorismate synthase from Pseudomonas aeruginosa (PchA) catalyzes the conversion of chorismate to isochorismate, which is subsequently converted by a second enzyme (PchB) to salicylate for incorporation into the salicylate-capped siderophore pyochelin. PchA is a member of the MST family of enzymes, which includes the structurally homologous isochorismate synthases from Escherichia coli (EntC and MenF) and salicylate synthases from Yersinia enterocolitica (Irp9) and Mycobacterium tuberculosis (MbtI). The latter enzymes generate isochorismate as an intermediate before generating salicylate and pyruvate. General acid-general base catalysis has been proposed for isochorismate synthesis in all five enzymes, but the residues required for the isomerization are a matter of debate, with both lysine221 and glutamate313 proposed as the general base (PchA numbering). This work includes a classical characterization of PchA with steady state kinetic analysis, solvent kinetic isotope effect analysis and by measuring the effect of viscosogens on catalysis. The results suggest that isochorismate production from chorismate by the MST enzymes is the result of general acid-general base catalysis with a lysine as the base and a glutamic acid as the acid, in reverse protonation states. Chemistry is determined to not be rate limiting, favoring the hypothesis of a conformational or binding step as the slow step.

  8. Elongation factor 1 alpha concentration is highly correlated with the lysine content of maize endosperm.

    PubMed Central

    Habben, J E; Moro, G L; Hunter, B G; Hamaker, B R; Larkins, B A

    1995-01-01

    Lysine is the most limiting essential amino acid in cereals, and for many years plant breeders have attempted to increase its concentration to improve the nutritional quality of these grains. The opaque2 mutation in maize doubles the lysine content in the endosperm, but the mechanism by which this occurs is unknown. We show that elongation factor 1 alpha (EF-1 alpha) is overexpressed in opaque2 endosperm compared with its normal counterpart and that there is a highly significant correlation between EF-1 alpha concentration and the total lysine content of the endosperm. This relationship is also true for two other cereals, sorghum and barley. It appears that genetic selection for genotypes with a high concentration of EF-1 alpha can significantly improve the nutritional quality of maize and other cereals. Images Fig. 1 Fig. 2 PMID:7567989

  9. Keggin-lysine hybrid nanostructures in the shape modulation of gold

    NASA Astrophysics Data System (ADS)

    Das, Subhasis; Ghosh, Tanmay; Satpati, Biswarup; Sanyal, Ambarish; Bala, Tanushree

    2014-03-01

    We show here that L-lysine effectively complexes with phosphomolybdic acid (PMA) and the solution mixture when added to a 10-3 M aqueous solution of HAuCl4 after UV-irradiation for 3 h leads to the slow reduction and consequent formation of gold nanotriangles with a high degree of anisotropy. The same reaction carried out in a 12.5 kDa cutoff dialysis bag where the irradiated PMA-lysine solution was kept inside and stirred in a beaker containing aqueous HAuCl4, did not lead to the formation of gold nanotriangles. This implies that L-lysine plays the role of a shape-modulating agent and hence this study proves an improvement in the understanding of the role of such organic-inorganic hybrid structures in the synthesis and growth of anisotropic nanoparticles.

  10. The lysine biosynthetic enzyme Lys4 influences iron metabolism, mitochondrial function and virulence in Cryptococcus neoformans.

    PubMed

    Do, Eunsoo; Park, Minji; Hu, Guanggan; Caza, Mélissa; Kronstad, James W; Jung, Won Hee

    2016-09-01

    The lysine biosynthesis pathway via α-aminoadipate in fungi is considered an attractive target for antifungal drugs due to its absence in mammalian hosts. The iron-sulfur cluster-containing enzyme homoaconitase converts homocitrate to homoisocitrate in the lysine biosynthetic pathway, and is encoded by LYS4 in the model yeast Saccharomyces cerevisiae. In this study, we identified the ortholog of LYS4 in the human fungal pathogen, Cryptococcus neoformans, and found that LYS4 expression is regulated by iron levels and by the iron-related transcription factors Hap3 and HapX. Deletion of the LYS4 gene resulted in lysine auxotrophy suggesting that Lys4 is essential for lysine biosynthesis. Our study also revealed that lysine uptake was mediated by two amino acid permeases, Aap2 and Aap3, and influenced by nitrogen catabolite repression (NCR). Furthermore, the lys4 mutant showed increased sensitivity to oxidative stress, agents that challenge cell wall/membrane integrity, and azole antifungal drugs. We showed that these phenotypes were due in part to impaired mitochondrial function as a result of LYS4 deletion, which we propose disrupts iron homeostasis in the organelle. The combination of defects are consistent with our observation that the lys4 mutant was attenuated virulence in a mouse inhalation model of cryptococcosis. PMID:27353379

  11. Critical lysine residues of Klf4 required for protein stabilization and degradation

    SciTech Connect

    Lim, Key-Hwan; Kim, So-Ra; Ramakrishna, Suresh; Baek, Kwang-Hyun

    2014-01-24

    Highlights: • Klf4 undergoes the 26S proteasomal degradation by ubiquitination on its multiple lysine residues. • Essential Klf4 ubiquitination sites are accumulated between 190–263 amino acids. • A mutation of lysine at 232 on Klf4 elongates protein turnover. • Klf4 mutants dramatically suppress p53 expression both under normal and UV irradiated conditions. - Abstract: The transcription factor, Krüppel-like factor 4 (Klf4) plays a crucial role in generating induced pluripotent stem cells (iPSCs). As the ubiquitination and degradation of the Klf4 protein have been suggested to play an important role in its function, the identification of specific lysine sites that are responsible for protein degradation is of prime interest to improve protein stability and function. However, the molecular mechanism regulating proteasomal degradation of the Klf4 is poorly understood. In this study, both the analysis of Klf4 ubiquitination sites using several Klf4 deletion fragments and bioinformatics predictions showed that the lysine sites which are signaling for Klf4 protein degradation lie in its N-terminal domain (aa 1–296). The results also showed that Lys32, 52, 232, and 252 of Klf4 are responsible for the proteolysis of the Klf4 protein. These results suggest that Klf4 undergoes proteasomal degradation and that these lysine residues are critical for Klf4 ubiquitination.

  12. Evaluation of a diet dilution technique for measuring the response of broiler chickens to increasing concentrations of lysine.

    PubMed

    Gous, R M; Morris, T R

    1985-04-01

    Three experiments were conducted on male broiler chickens between one and three weeks of age to determine their response to dietary lysine concentrations. Serial dilutions of a summit diet shown to be first-limiting in lysine were fed in all experiments. The balance between amino acids in these diets was maintained within narrow limits. Intake of the most-limiting amino acid was the most important factor determining growth rate; protein intake as such was of little or no importance. The efficiency of utilisation of dietary lysine for protein growth was calculated to be 65.05 mg/g protein gain, representing a net efficiency of 0.85. The diet dilution technique overcomes the major disadvantage of the graded supplementation method for determining the requirements of amino acids, namely that of the amino acid balance changing systematically in successive dietary treatments.

  13. Effect of irradiation on Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine formation in cooked meat products during storage

    NASA Astrophysics Data System (ADS)

    Yu, Ligang; He, Zhiyong; Zeng, Maomao; Zheng, Zongping; Chen, Jie

    2016-03-01

    This study investigated the effects of irradiation on Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL) formation in cooked red and white meats during storage. The results showed that irradiation did not affect CML/CEL formation (0 weeks). After 6 weeks, CML/CEL contents in the irradiated samples exhibited a higher growth rate than the non-irradiated samples, especially the red meat. The results of electron spin resonance spectrometry and 2-Thiobarbituric acid-reactive substances suggested irradiation had induced free-radical reactions and accelerated lipid oxidation during storage. A linear correlation (r=0.810-0.906, p<0.01) was found between the loss of polyunsaturated fatty acids content and increase of CML/CEL content in the irradiated samples after 0 and 6 weeks of storage. The results indicate that irradiation-induced lipid oxidation promotes CML/CEL formation, and CML/CEL formation by the lipid oxidation pathways may be an important pathway for CML/CEL accumulation in irradiated meat products during storage.

  14. Rapid identification of triterpenoid sulfates and hydroxy fatty acids including two new constituents from Tydemania expeditionis by LC-MS

    PubMed Central

    Zhang, Jian-Long; Kubanek, Julia; Hay, Mark E.; Aalbersberg, William; Ye, Wen-Cai; Jiang, Ren-Wang

    2011-01-01

    Tydemania expeditionis Weber-van Bosse (Udoteaceae) is a weakly calcified green alga. In the present paper, liquid chromatography coupled with photodiode array detection and electrospray mass spectrometry was developed to identify the fingerprint components. A total of four triterpenoid sulfates and three hydroxy fatty acids in the ethyl acetate fraction of the crude extract were structurally characterized on the basis of retention time, online UV spectrum and mass fragmentation pattern. Furthermore, detailed LC-MS analysis revealed two new hydroxy fatty acids, which were then prepared and characterized by extensive NMR analyses. The proposed method provides a scientific and technical platform for the rapid identification of triterpenoid sulfates and hydroxy fatty acids in similar marine algae and terrestrial plants. PMID:21915955

  15. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Reprinted from Biotechnology and Bioengineering, Vol. 41, Pp 633-646 (1993).

    PubMed

    Vallino, J J; Stephanopoulos, G

    2000-03-20

    The two main contributions of this article are the solidification of Corynebacterium glutamicum biochemistry guided by bioreaction network analysis, and the determination of basal metabolic flux distributions during growth and lysine synthesis. Employed methodology makes use of stoichiometrically based mass balances to determine flux distributions in the C. glutamicum metabolic network. Presented are a brief description of the methodology, a thorough literature review of glutamic acid bacteria biochemistry, and specific results obtained through a combination of fermentation studies and analysis-directed intracellular assays. The latter include the findings of the lack of activity of glyoxylate shunt, and that phosphoenolpyruvate carboxylase (PPC) is the only anaplerotic reaction expressed in C. glutamicum cultivated on glucose minimal media. Network simplifications afforded by the above findings facilitated the determination of metabolic flux distributions under a variety of culture conditions and led to the following conclusions. Both the pentose phosphate pathway and PPC support significant fluxes during growth and lysine overproduction, and that flux partitioning at the glucosa-6-phosphate branch point does not appear to limit lysine synthesis. PMID:10699864

  16. Class I Lysine Deacetylases Facilitate Glucocorticoid-induced Transcription*

    PubMed Central

    Kadiyala, Vineela; Patrick, Nina M.; Mathieu, Wana; Jaime-Frias, Rosa; Pookhao, Naruekamol; An, Lingling; Smith, Catharine L.

    2013-01-01

    Nuclear receptors use lysine acetyltransferases and lysine deacetylases (KDACs) in regulating transcription through histone acetylation. Lysine acetyltransferases interact with steroid receptors upon binding of an agonist and are recruited to target genes. KDACs have been shown to interact with steroid receptors upon binding to an antagonist. We have shown previously that KDAC inhibitors (KDACis) potently repress the mouse mammary tumor virus promoter through transcriptional mechanisms and impair the ability of the glucocorticoid receptor (GR) to activate it, suggesting that KDACs can play a positive role in GR transactivation. In the current study, we extended this analysis to the entire GR transcriptome and found that the KDACi valproic acid impairs the ability of agonist-bound GR to activate about 50% of its target genes. This inhibition is largely due to impaired transcription rather than defective GR processing and was also observed using a structurally distinct KDACi. Depletion of KDAC1 expression mimicked the effects of KDACi in over half of the genes found to be impaired in GR transactivation. Simultaneous depletion of KDACs 1 and 2 caused full or partial impairment of several more GR target genes. Altogether we found that Class I KDAC activity facilitates GR-mediated activation at a sizable fraction of GR-activated target genes and that KDAC1 alone or in coordination with KDAC2 is required for efficient GR transactivation at many of these target genes. Finally, our work demonstrates that KDACi exposure has a significant impact on GR signaling and thus has ramifications for the clinical use of these drugs. PMID:23946490

  17. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  18. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  19. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  20. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  1. 21 CFR 582.5411 - Lysine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Lysine. 582.5411 Section 582.5411 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  2. Radioactive Lysine in Protein Metabolism Studies

    DOE R&D Accomplishments Database

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  3. Targeting Lysine Deacetylases (KDACs) in Parasites.

    PubMed

    Wang, Qi; Rosa, Bruce A; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R; Mitreva, Makedonka

    2015-01-01

    Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in

  4. Binding of the growth factor glycyl-L-histidyl-L-lysine by heparin.

    PubMed

    Rabenstein, D L; Robert, J M; Hari, S

    1995-12-01

    Evidence is presented that the growth factor glycyl-histidyl-lysine (GHK) binds to heparin, and the interaction has been characterized by [1H]NMR spectroscopy. 1H chemical shifts indicate that GHK interacts with both the carboxylic acid and the carboxylate forms of heparin. The chemical shift data are consistent with a weak delocalized binding of the triprotonated (ImH+, GlyNH3+, LysNH3+) form of GHK by the carboxylic acid form of heparin. As the pD is increased and the carboxylic acid groups are titrated, chemical shift data indicate that ammonium groups of GHK are hydrogen bonded to heparin carboxylate groups, while the histidyl imidazolium ring occupies the imidazolium-binding site of heparin. Evidence for site-specific binding includes displacement of chemical shift titration curves for heparin to lower pD, increased shielding of specific heparin protons by the imidazolium ring current and displacement of chemical shift titration curves for GHK to higher pD. Specific binding constants were determined for binding of the (ImH+, GlyNH3+), LysNH3+) forms of GHK by the carboxylate form of heparin from chemical shift vs. pD titration data. PMID:7498545

  5. Dietary lysine affected the expression of genes related to lipid metabolism in skeletal muscle of finishing pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been reported that some amino acids can function as signaling molecules to regulate skeletal muscle growth in mammals. This study was conducted to identify those genes that may be regulated by amino acid lysine and responsible for muscle growth and meat quality of pigs. Nine crossbred barrows...

  6. High-throughput screening to identify inhibitors of lysine demethylases.

    PubMed

    Gale, Molly; Yan, Qin

    2015-01-01

    Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several High-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the High-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors.

  7. Acetylproteomic analysis reveals functional implications of lysine acetylation in human spermatozoa (sperm).

    PubMed

    Yu, Heguo; Diao, Hua; Wang, Chunmei; Lin, Yan; Yu, Fudong; Lu, Hui; Xu, Wei; Li, Zheng; Shi, Huijuan; Zhao, Shimin; Zhou, Yuchuan; Zhang, Yonglian

    2015-04-01

    Male infertility is a medical condition that has been on the rise globally. Lysine acetylation of human sperm, an essential posttranslational modification involved in the etiology of sperm abnormality, is not fully understood. Therefore, we first generated a qualified pan-anti-acetyllysine monoclonal antibody to characterize the global lysine acetylation of uncapacitated normal human sperm with a proteomics approach. With high enrichment ratios that were up to 31%, 973 lysine-acetylated sites that matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 205 novel lysine-acetylated proteins, were identified. These proteins exhibited conserved motifs XXXKYXXX, XXXKFXXX, and XXXKHXXX, were annotated to function in multiple metabolic processes, and were localized predominantly in the mitochondrion and cytoplasmic fractions. Between the uncapacitated and capacitated sperm, different acetylation profiles in regard to functional proteins involved in sperm capacitation, sperm-egg recognition, sperm-egg plasma fusion, and fertilization were observed, indicating that acetylation of functional proteins may be required during sperm capacitation. Bioinformatics analysis revealed association of acetylated proteins with diseases and drugs. Novel acetylation of voltage-dependent anion channel proteins was also found. With clinical sperm samples, we observed differed lysine acetyltransferases and lysine deacetylases expression between normal sperm and abnormal sperm of asthenospermia or necrospermia. Furthermore, with sperm samples impaired by epigallocatechin gallate to mimic asthenospermia, we observed that inhibition of sperm motility was partly through the blockade of voltage-dependent anion channel 2 Lys-74 acetylation combined with reduced ATP levels and mitochondrial membrane potential. Taken together, we obtained a qualified pan-anti-acetyllysine monoclonal antibody, analyzed the acetylproteome of uncapacitated human sperm, and revealed

  8. Acetylproteomic Analysis Reveals Functional Implications of Lysine Acetylation in Human Spermatozoa (sperm)*

    PubMed Central

    Yu, Heguo; Diao, Hua; Wang, Chunmei; Lin, Yan; Yu, Fudong; Lu, Hui; Xu, Wei; Li, Zheng; Shi, Huijuan; Zhao, Shimin; Zhou, Yuchuan; Zhang, Yonglian

    2015-01-01

    Male infertility is a medical condition that has been on the rise globally. Lysine acetylation of human sperm, an essential posttranslational modification involved in the etiology of sperm abnormality, is not fully understood. Therefore, we first generated a qualified pan-anti-acetyllysine monoclonal antibody to characterize the global lysine acetylation of uncapacitated normal human sperm with a proteomics approach. With high enrichment ratios that were up to 31%, 973 lysine-acetylated sites that matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 205 novel lysine-acetylated proteins, were identified. These proteins exhibited conserved motifs XXXKYXXX, XXXKFXXX, and XXXKHXXX, were annotated to function in multiple metabolic processes, and were localized predominantly in the mitochondrion and cytoplasmic fractions. Between the uncapacitated and capacitated sperm, different acetylation profiles in regard to functional proteins involved in sperm capacitation, sperm-egg recognition, sperm-egg plasma fusion, and fertilization were observed, indicating that acetylation of functional proteins may be required during sperm capacitation. Bioinformatics analysis revealed association of acetylated proteins with diseases and drugs. Novel acetylation of voltage-dependent anion channel proteins was also found. With clinical sperm samples, we observed differed lysine acetyltransferases and lysine deacetylases expression between normal sperm and abnormal sperm of asthenospermia or necrospermia. Furthermore, with sperm samples impaired by epigallocatechin gallate to mimic asthenospermia, we observed that inhibition of sperm motility was partly through the blockade of voltage-dependent anion channel 2 Lys-74 acetylation combined with reduced ATP levels and mitochondrial membrane potential. Taken together, we obtained a qualified pan-anti-acetyllysine monoclonal antibody, analyzed the acetylproteome of uncapacitated human sperm, and revealed

  9. Fatty acid composition of ruminal digesta and longissimus muscle from lambs fed silage mixtures including red clover, sainfoin, and timothy.

    PubMed

    Campidonico, L; Toral, P G; Priolo, A; Luciano, G; Valenti, B; Hervás, G; Frutos, P; Copani, G; Ginane, C; Niderkorn, V

    2016-04-01

    This work investigated the effects of feeding silage mixtures of a plant containing polyphenol oxidase (PPO; red clover [; RC]), a plant containing tannins (sainfoin [; SF]), and a grass species not containing these compounds (timothy [; T]) on ruminal and intramuscular (i.m.) fatty acids of lambs. Forty 4-mo-old castrated male Romane lambs, divided into 5 groups, received 1 of the following silages: 1) T (100%), 2) a binary mixture of timothy and tannin-containing sainfoin ( cv. Perly; 50:50 [T-SF]), 3) a binary mixture of timothy and PPO-containing red clover ( cv. Mervius; 50:50 [T-RC]), 4) a ternary mixture of timothy, sainfoin, and red clover containing both tannins and PPO (50:25:25, respectively [T-SF-RC]), and 5) a binary mixture of tannin-containing sainfoin and PPO-containing red clover (50:50 [SF-RC]). In the rumen digesta, the partial or total replacement of T with forage legumes was associated with greater concentrations of PUFA ( < 0.001) and 1esser concentrations of MUFA ( < 0.001). The inclusion of forage legumes in the silage favored the accumulation of 18:3 -3 ( < 0.001), with the greatest concentrations being observed in SF-RC. This latter diet also led to the greatest percentage of 18:2 -6 ( < 0.001). Forage legumes decreased the -11 18:1 to 30% of T in rumen digesta ( < 0.001). Forage legumes decreased the total concentration of branched-chain fatty acids in the rumen digesta (on average, -28%; < 0.001), this effect being less marked (-17%; = 0.014) in T-RC in comparison with T. The dietary treatment tended to affect the proportion of MUFA ( = 0.081) and of PUFA ( = 0.079) in the i.m. fat of the LM, respectively, at the highest and lowest numerical value in the T group. The sum of -3 fatty acids was less in the T and T-SF groups compared with the mixture of legumes without T (SF-RC; < 0.001 and < 0.008, respectively). The latter group had also a lesser -6-to--3 ratio than the T-SF group ( = 0.01). -11 18:1 was greater ( < 0.03) in lambs given T

  10. Fatty acid composition of ruminal digesta and longissimus muscle from lambs fed silage mixtures including red clover, sainfoin, and timothy.

    PubMed

    Campidonico, L; Toral, P G; Priolo, A; Luciano, G; Valenti, B; Hervás, G; Frutos, P; Copani, G; Ginane, C; Niderkorn, V

    2016-04-01

    This work investigated the effects of feeding silage mixtures of a plant containing polyphenol oxidase (PPO; red clover [; RC]), a plant containing tannins (sainfoin [; SF]), and a grass species not containing these compounds (timothy [; T]) on ruminal and intramuscular (i.m.) fatty acids of lambs. Forty 4-mo-old castrated male Romane lambs, divided into 5 groups, received 1 of the following silages: 1) T (100%), 2) a binary mixture of timothy and tannin-containing sainfoin ( cv. Perly; 50:50 [T-SF]), 3) a binary mixture of timothy and PPO-containing red clover ( cv. Mervius; 50:50 [T-RC]), 4) a ternary mixture of timothy, sainfoin, and red clover containing both tannins and PPO (50:25:25, respectively [T-SF-RC]), and 5) a binary mixture of tannin-containing sainfoin and PPO-containing red clover (50:50 [SF-RC]). In the rumen digesta, the partial or total replacement of T with forage legumes was associated with greater concentrations of PUFA ( < 0.001) and 1esser concentrations of MUFA ( < 0.001). The inclusion of forage legumes in the silage favored the accumulation of 18:3 -3 ( < 0.001), with the greatest concentrations being observed in SF-RC. This latter diet also led to the greatest percentage of 18:2 -6 ( < 0.001). Forage legumes decreased the -11 18:1 to 30% of T in rumen digesta ( < 0.001). Forage legumes decreased the total concentration of branched-chain fatty acids in the rumen digesta (on average, -28%; < 0.001), this effect being less marked (-17%; = 0.014) in T-RC in comparison with T. The dietary treatment tended to affect the proportion of MUFA ( = 0.081) and of PUFA ( = 0.079) in the i.m. fat of the LM, respectively, at the highest and lowest numerical value in the T group. The sum of -3 fatty acids was less in the T and T-SF groups compared with the mixture of legumes without T (SF-RC; < 0.001 and < 0.008, respectively). The latter group had also a lesser -6-to--3 ratio than the T-SF group ( = 0.01). -11 18:1 was greater ( < 0.03) in lambs given T

  11. Evaluation of a novel food composition database that includes glutamine and other amino acids derived from gene sequencing data

    PubMed Central

    Lenders, CM; Liu, S; Wilmore, DW; Sampson, L; Dougherty, LW; Spiegelman, D; Willett, WC

    2011-01-01

    Objectives To determine the content of glutamine in major food proteins. Subjects/Methods We used a validated 131-food item food frequency questionnaire (FFQ) to identify the foods that contributed the most to protein intake among 70 356 women in the Nurses’ Health Study (NHS, 1984). The content of glutamine and other amino acids in foods was calculated based on protein fractions generated from gene sequencing methods (Swiss Institute of Bioinformatics) and compared with data from conventional (USDA) and modified biochemical (Khun) methods. Pearson correlation coefficients were used to compare the participants’ dietary intakes of amino acids by sequencing and USDA methods. Results The glutamine content varied from 0.01 to to 9.49 g/100 g of food and contributed from 1 to to 33% of total protein for all FFQ foods with protein. When comparing the sequencing and Kuhn’s methods, the proportion of glutamine in meat was 4.8 vs 4.4%. Among NHS participants, mean glutamine intake was 6.84 (s.d.=2.19) g/day and correlation coefficients for amino acid between intakes assessed by sequencing and USDA methods ranged from 0.94 to 0.99 for absolute intake, −0.08 to 0.90 after adjusting for 100 g of protein, and 0.88 to 0.99 after adjusting for 1000 kcal. The between-person coefficient of variation of energy-adjusted intake of glutamine was 16%. Conclusions These data suggest that (1) glutamine content can be estimated from gene sequencing methods and (2) there is a reasonably wide variation in energy-adjusted glutamine intake, allowing for exploration of glutamine consumption and disease. PMID:19756030

  12. Characterization of the degradation mechanisms of lysine-derived aliphatic poly(ester urethane) scaffolds.

    PubMed

    Hafeman, Andrea E; Zienkiewicz, Katarzyna J; Zachman, Angela L; Sung, Hak-Joon; Nanney, Lillian B; Davidson, Jeffrey M; Guelcher, Scott A

    2011-01-01

    Characterization of the degradation mechanism of polymeric scaffolds and delivery systems for regenerative medicine is essential to assess their clinical applicability. Key performance criteria include induction of a minimal, transient inflammatory response and controlled degradation to soluble non-cytotoxic breakdown products that are cleared from the body by physiological processes. Scaffolds fabricated from biodegradable poly(ester urethane)s (PEURs) undergo controlled degradation to non-cytotoxic breakdown products and support the ingrowth of new tissue in preclinical models of tissue regeneration. While previous studies have shown that PEUR scaffolds prepared from lysine-derived polyisocyanates degrade faster under in vivo compared to in vitro conditions, the degradation mechanism is not well understood. In this study, we have shown that PEUR scaffolds prepared from lysine triisocyanate (LTI) or a trimer of hexamethylene diisocyanate (HDIt) undergo hydrolytic, esterolytic, and oxidative degradation. Hydrolysis of ester bonds to yield α-hydroxy acids is the dominant mechanism in buffer, and esterolytic media modestly increase the degradation rate. While HDIt scaffolds show a modest (<20%) increase in degradation rate in oxidative medium, LTI scaffolds degrade six times faster in oxidative medium. Furthermore, the in vitro rate of degradation of LTI scaffolds in oxidative medium approximates the in vivo rate in rat excisional wounds, and histological sections show macrophages expressing myeloperoxidase at the material surface. While recent preclinical studies have underscored the potential of injectable PEUR scaffolds and delivery systems for tissue regeneration, this promising class of biomaterials has a limited regulatory history. Elucidation of the macrophage-mediated oxidative mechanism by which LTI scaffolds degrade in vivo provides key insights into the ultimate fate of these materials when injected into the body. PMID:20864156

  13. Characterization of the Degradation Mechanisms of Lysine-derived Aliphatic Poly(ester urethane) Scaffolds

    PubMed Central

    Hafeman, Andrea E.; Zienkiewicz, Katarzyna J.; Zachman, Angela L.; Sung, Hak-Joon; Nanney, Lillian B.; Davidson, Jeffrey M.; Guelcher, Scott A.

    2010-01-01

    Characterization of the degradation mechanism of polymeric scaffolds and delivery systems for regenerative medicine is essential to assess their clinical applicability. Key performance criteria include induction of a minimal, transient inflammatory response and controlled degradation to soluble non-cytotoxic breakdown products that are cleared from the body by physiological processes. Scaffolds fabricated from biodegradable poly(ester urethane)s (PEURs) undergo controlled degradation to non-cytotoxic breakdown products and support the ingrowth of new tissue in preclinical models of tissue regeneration. While previous studies have shown that PEUR scaffolds prepared from lysine-derived polyisocyanates degrade faster under in vivo compared to in vitro conditions, the degradation mechanism is not well understood. In this study, we have shown that PEUR scaffolds prepared from lysine triisocyanate (LTI) or a trimer of hexamethylene diisocyanate (HDIt) undergo hydrolytic, esterolytic, and oxidative degradation. Hydrolysis of ester bonds to yield α-hydroxy acids is the dominant mechanism in buffer, and esterolytic media modestly increase the degradation rate. While HDIt scaffolds show a modest (<20%) increase in degradation rate in oxidative medium, LTI scaffolds degrade six times faster in oxidative medium. Furthermore, the in vitro rate of degradation of LTI scaffolds in oxidative medium approximates the in vivo rate in rat excisional wounds, and histological sections show macrophages expressing myeloperoxidase at the material surface. While recent preclinical studies have underscored the potential of injectable PEUR scaffolds and delivery systems for tissue regeneration, this promising class of biomaterials has a limited regulatory history. Elucidation of the macrophage-mediated oxidative mechanism by which LTI scaffolds degrade in vivo provides key insights into the ultimate fate of these materials when injected into the body. PMID:20864156

  14. Comparative Mitogenomics of Plant Bugs (Hemiptera: Miridae): Identifying the AGG Codon Reassignments between Serine and Lysine

    PubMed Central

    Wang, Pei; Song, Fan; Cai, Wanzhi

    2014-01-01

    Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409

  15. Liquid chromatographic resolution of amino acid esters of acyclovir including racemic valacyclovir on crown ether-based chiral stationary phases.

    PubMed

    Ahn, Seong Ae; Hyun, Myung Ho

    2015-03-01

    Valacyclovir, a potential prodrug for the treatment of patients with herpes simplex and herpes zoster, and its analogs were resolved on two chiral stationary phases (CSPs) based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 covalently bonded to silica gel. In order to find out an appropriate mobile phase condition, various mobile phases consisting of various organic modifiers in water containing various acidic modifiers were applied to the resolution of valacyclovir and its analogs. When 30% acetonitrile in water containing any of 0.05 M, 0.10 M, or 0.15 M perchloric acid was used as a mobile phase, valacyclovir and its analogs were resolved quite well on the two CSPs with the separation factors (α) in the range of 2.49 ~ 6.35 and resolutions (RS ) in the range of 2.95 ~ 12.21. Between the two CSPs, the CSP containing residual silanol protecting n-octyl groups on the silica surface was found to be better than the CSP containing residual silanol groups.

  16. DMPS-arsenic challenge test. II. Modulation of arsenic species, including monomethylarsonous acid (MMA(III)), excreted in human urine.

    PubMed

    Aposhian, H V; Zheng, B; Aposhian, M M; Le, X C; Cebrian, M E; Cullen, W; Zakharyan, R A; Ma, M; Dart, R C; Cheng, Z; Andrewes, P; Yip, L; O'Malley, G F; Maiorino, R M; Van Voorhies, W; Healy, S M; Titcomb, A

    2000-05-15

    The administration of sodium 2,3-dimercapto-1-propane sulfonate (DMPS) to humans chronically exposed to inorganic arsenic in their drinking water resulted in the increased urinary excretion of arsenic, the appearance and identification of monomethylarsonous acid (MMA(III)) in their urine, and a large decrease in the concentration and percentage of urinary dimethylarsinic acid (DMA). This is the first time that MMA(III) has been detected in the urine. In vitro biochemical experiments were then designed and performed to understand the urinary appearance of MMA(III) and decrease of DMA. The DMPS-MMA(III) complex was not active as a substrate for the MMA(III) methyltransferase. The experimental results support the hypothesis that DMPS competes with endogenous ligands for MMA(III), forming a DMPS-MMA complex that is readily excreted in the urine and points out the need for studying the biochemical toxicology of MMA(III). It should be emphasized that MMA(III) was excreted in the urine only after DMPS administration. The results of these studies raise many questions about the potential central role of MMA(III) in the toxicity of inorganic arsenic and to the potential involvement of MMA(III) in the little-understood etiology of hyperkeratosis, hyperpigmentation, and cancer that can result from chronic inorganic arsenic exposure.

  17. Liquid chromatographic resolution of amino acid esters of acyclovir including racemic valacyclovir on crown ether-based chiral stationary phases.

    PubMed

    Ahn, Seong Ae; Hyun, Myung Ho

    2015-03-01

    Valacyclovir, a potential prodrug for the treatment of patients with herpes simplex and herpes zoster, and its analogs were resolved on two chiral stationary phases (CSPs) based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 covalently bonded to silica gel. In order to find out an appropriate mobile phase condition, various mobile phases consisting of various organic modifiers in water containing various acidic modifiers were applied to the resolution of valacyclovir and its analogs. When 30% acetonitrile in water containing any of 0.05 M, 0.10 M, or 0.15 M perchloric acid was used as a mobile phase, valacyclovir and its analogs were resolved quite well on the two CSPs with the separation factors (α) in the range of 2.49 ~ 6.35 and resolutions (RS ) in the range of 2.95 ~ 12.21. Between the two CSPs, the CSP containing residual silanol protecting n-octyl groups on the silica surface was found to be better than the CSP containing residual silanol groups. PMID:25626672

  18. Growth and development of the arborescent cactus Stenocereus queretaroensis in a subtropical semiarid environment, including effects of gibberellic acid.

    PubMed

    Pimienta, Eulogio; Hernandez, Gerardo; Domingues, Alejandro; Nobel, Park S.

    1998-01-01

    In Stenocereus queretaroensis (Weber) Buxbaum, an arborescent cactus cultivated in Jalisco, Mexico, for its fruits but studied here in wild populations, stem extension occurred in the autumn at the beginning of the dry season, flowering and fruiting occurred in the spring at the end of the dry season, and new roots grew in the summer during the wet season. The asynchrony of vegetative and reproductive growth reduces competitive sink effects, which may be advantageous for wild populations growing in infertile rocky soils. Seasonal patterns of sugars in the roots and especially the stems of S. queretaroensis were closely related to the main phenological stages, becoming lower in concentration during periods of major stem extension. Cessation of stem extension occurred in 100-year-old plants for which injection of GA(3) reinitiated such growth. Isolated chlorenchyma cylinders had maximum extension in a bathing solution containing 0.1 &mgr;M gibberellic acid.

  19. Expression of the Bovine NK-Lysin Gene Family and Activity against Respiratory Pathogens

    PubMed Central

    Chen, Junfeng; Yang, Chingyuan; Tizioto, Polyana C.; Huang, Huan; Lee, Mi O. K.; Payne, Harold R.; Lawhon, Sara D.; Schroeder, Friedhelm; Taylor, Jeremy F.; Womack, James E.

    2016-01-01

    Unlike the genomes of many mammals that have a single NK-lysin gene, the cattle genome contains a family of four genes, one of which is expressed preferentially in the lung. In this study, we compared the expression of the four bovine NK-lysin genes in healthy animals to animals challenged with pathogens known to be associated with bovine respiratory disease (BRD) using transcriptome sequencing (RNA-seq). The expression of several NK-lysins, especially NK2C, was elevated in challenged relative to control animals. The effects of synthetic peptides corresponding to functional region helices 2 and 3 of each gene product were tested on both model membranes and bio-membranes. Circular dichroism spectroscopy indicated that these peptides adopted a more helical secondary structure upon binding to an anionic model membrane and liposome leakage assays suggested that these peptides disrupt membranes. Bacterial killing assays further confirmed the antimicrobial effects of these peptides on BRD-associated bacteria, including both Pasteurella multocida and Mannhemia haemolytica and an ultrastructural examination of NK-lysin-treated P. multocida cells by transmission electron microscopy revealed the lysis of target membranes. These studies demonstrate that the expanded bovine NK-lysin gene family is potentially important in host defense against pathogens involved in bovine respiratory disease. PMID:27409794

  20. Expression of the Bovine NK-Lysin Gene Family and Activity against Respiratory Pathogens.

    PubMed

    Chen, Junfeng; Yang, Chingyuan; Tizioto, Polyana C; Huang, Huan; Lee, Mi O K; Payne, Harold R; Lawhon, Sara D; Schroeder, Friedhelm; Taylor, Jeremy F; Womack, James E

    2016-01-01

    Unlike the genomes of many mammals that have a single NK-lysin gene, the cattle genome contains a family of four genes, one of which is expressed preferentially in the lung. In this study, we compared the expression of the four bovine NK-lysin genes in healthy animals to animals challenged with pathogens known to be associated with bovine respiratory disease (BRD) using transcriptome sequencing (RNA-seq). The expression of several NK-lysins, especially NK2C, was elevated in challenged relative to control animals. The effects of synthetic peptides corresponding to functional region helices 2 and 3 of each gene product were tested on both model membranes and bio-membranes. Circular dichroism spectroscopy indicated that these peptides adopted a more helical secondary structure upon binding to an anionic model membrane and liposome leakage assays suggested that these peptides disrupt membranes. Bacterial killing assays further confirmed the antimicrobial effects of these peptides on BRD-associated bacteria, including both Pasteurella multocida and Mannhemia haemolytica and an ultrastructural examination of NK-lysin-treated P. multocida cells by transmission electron microscopy revealed the lysis of target membranes. These studies demonstrate that the expanded bovine NK-lysin gene family is potentially important in host defense against pathogens involved in bovine respiratory disease. PMID:27409794

  1. Gastroprotective effects of L-lysine salification of ketoprofen in ethanol-injured gastric mucosa.

    PubMed

    Cimini, Annamaria; Brandolini, Laura; Gentile, Roberta; Cristiano, Loredana; Menghini, Paola; Fidoamore, Alessia; Antonosante, Andrea; Benedetti, Elisabetta; Giordano, Antonio; Allegretti, Marcello

    2015-04-01

    Ketoprofen L-lysine salt (KLS), a NSAID, is widely used for its analgesic efficacy and tolerability. L-lysine salification was reported to increase the solubility and the gastric absorption and tolerance of ketoprofen. Since the management of NSAIDs gastrotoxicity still represents a major limitation in prolonged therapies, mainly when gastric lesions are present, this study investigated the gastro-protective activity of L-lysine by using a well-established model of gastric mucosa injury, the ethanol-gastric injury model. Several evidences show that the damaging action of ethanol could be attributed to the increase of ROS, which plays a key role in the increase of lipid peroxidation products, including malonyldialdehyde and 4-hydroxy-2-nonenal. With the aim to unravel the mechanism of L-lysine gastroprotection, cellular MDA levels and 4-HNE protein adducts as markers of lipid peroxidation and a panel of key endogenous gastro-protective proteins were assayed. The data obtained indicate a gastroprotective effect of L-lysine on gastric mucosa integrity.

  2. Investigating the appropriate mode of expressing lysine requirement of fish through non-linear mixed model analysis and multilevel analysis.

    PubMed

    Hua, Katheline

    2013-03-28

    Accurate estimates of lysine requirement are essential to fish feed formulation. However, controversy exists regarding the most appropriate mode to express lysine requirement. In the fish nutrition literature, essential amino acid (AA) requirement has been expressed as a percentage of diet, a percentage of dietary crude protein or a ratio to dietary digestible energy (DE). The controversy lies in the different assumptions regarding the effects of dietary protein and DE on lysine requirement. Non-linear mixed model analysis and multilevel analysis were carried out to investigate whether dietary protein or DE affected lysine requirement of fish. The non-linear mixed model analysis suggests that expressing lysine requirement as a percentage of dietary protein provides a better goodness of fit to the modelling dataset than expressing requirement as a fixed concentration of diet, which in turn is generally better than expressing requirement as a ratio to DE. Results from the multilevel analysis confirm that dietary protein content has a significant effect on lysine requirement, while DE does not. The findings of the present study could contribute to a better understanding of the underlying dietary factors that affect AA requirements of fish. The results of the present study could also be useful for developing nutritional guidelines and feed formulations for fish.

  3. Skin aging and photoaging alter fatty acids composition, including 11,14,17-eicosatrienoic acid, in the epidermis of human skin.

    PubMed

    Kim, Eun Ju; Kim, Min-Kyoung; Jin, Xing-Ji; Oh, Jang-Hee; Kim, Ji Eun; Chung, Jin Ho

    2010-06-01

    We investigated the alterations of major fatty acid components in epidermis by natural aging and photoaging processes, and by acute ultraviolet (UV) irradiation in human skin. Interestingly, we found that 11,14,17-eicosatrienoic acid (ETA), which is one of the omega-3 polyunsaturated acids, was significantly increased in photoaged human epidermis in vivo and also in the acutely UV-irradiated human skin in vivo, while it was significantly decreased in intrinsically aged human epidermis. The increased ETA content in the epidermis of photoaged human skin and acute UV-irradiated human skin is associated with enhanced expression of human elongase 1 and calcium-independent phosphodiesterase A(2). We demonstrated that ETA inhibited matrix metalloproteinase (MMP)-1 expression after UV-irradiation, and that inhibition of ETA synthesis using EPTC and NA-TCA, which are elongase inhibitors, increased MMP-1 expression. Therefore, our results suggest that the UV increases the ETA levels, which may have a photoprotective effect in the human skin.

  4. Chemical Genetics Uncovers Novel Inhibitors of Lignification, Including p-Iodobenzoic Acid Targeting CINNAMATE-4-HYDROXYLASE1[OPEN

    PubMed Central

    Van de Wouwer, Dorien; Decou, Raphaël; Audenaert, Dominique; Nguyen, Long

    2016-01-01

    Plant secondary-thickened cell walls are characterized by the presence of lignin, a recalcitrant and hydrophobic polymer that provides mechanical strength and ensures long-distance water transport. Exactly the recalcitrance and hydrophobicity of lignin put a burden on the industrial processing efficiency of lignocellulosic biomass. Both forward and reverse genetic strategies have been used intensively to unravel the molecular mechanism of lignin deposition. As an alternative strategy, we introduce here a forward chemical genetic approach to find candidate inhibitors of lignification. A high-throughput assay to assess lignification in Arabidopsis (Arabidopsis thaliana) seedlings was developed and used to screen a 10-k library of structurally diverse, synthetic molecules. Of the 73 compounds that reduced lignin deposition, 39 that had a major impact were retained and classified into five clusters based on the shift they induced in the phenolic profile of Arabidopsis seedlings. One representative compound of each cluster was selected for further lignin-specific assays, leading to the identification of an aromatic compound that is processed in the plant into two fragments, both having inhibitory activity against lignification. One fragment, p-iodobenzoic acid, was further characterized as a new inhibitor of CINNAMATE 4-HYDROXYLASE, a key enzyme of the phenylpropanoid pathway synthesizing the building blocks of the lignin polymer. As such, we provide proof of concept of this chemical biology approach to screen for inhibitors of lignification and present a broad array of putative inhibitors of lignin deposition for further characterization. PMID:27485881

  5. Retinoic Acid Induced 1, RAI1: A Dosage Sensitive Gene Related to Neurobehavioral Alterations Including Autistic Behavior

    PubMed Central

    Carmona-Mora, Paulina; Walz, Katherina

    2010-01-01

    Genomic structural changes, such as gene Copy Number Variations (CNVs) are extremely abundant in the human genome. An enormous effort is currently ongoing to recognize and catalogue human CNVs and their associations with abnormal phenotypic outcomes. Recently, several reports related neuropsychiatric diseases (i.e. autism spectrum disorders, schizophrenia, mental retardation, behavioral problems, epilepsy) with specific CNV. Moreover, for some conditions, both the deletion and duplication of the same genomic segment are related to the phenotype. Syndromes associated with CNVs (microdeletion and microduplication) have long been known to display specific neurobehavioral traits. It is important to note that not every gene is susceptible to gene dosage changes and there are only a few dosage sensitive genes. Smith-Magenis (SMS) and Potocki-Lupski (PTLS) syndromes are associated with a reciprocal microdeletion and microduplication within chromosome 17p11.2. in humans. The dosage sensitive gene responsible for most phenotypes in SMS has been identified: the Retinoic Acid Induced 1 (RAI1). Studies on mouse models and humans suggest that RAI1 is likely the dosage sensitive gene responsible for clinical features in PTLS. In addition, the human RAI1 gene has been implicated in several neurobehavioral traits as spinocerebellar ataxia (SCA2), schizophrenia and non syndromic autism. In this review we discuss the evidence of RAI1 as a dosage sensitive gene, its relationship with different neurobehavioral traits, gene structure and mutations, and what is known about its molecular and cellular function, as a first step in the elucidation of the mechanisms that relate dosage sensitive genes with abnormal neurobehavioral outcomes. PMID:21629438

  6. Targeting Lysine Deacetylases (KDACs) in Parasites

    PubMed Central

    Wang, Qi; Rosa, Bruce A.; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R.; Mitreva, Makedonka

    2015-01-01

    Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in

  7. Targeting Lysine Deacetylases (KDACs) in Parasites.

    PubMed

    Wang, Qi; Rosa, Bruce A; Nare, Bakela; Powell, Kerrie; Valente, Sergio; Rotili, Dante; Mai, Antonello; Marshall, Garland R; Mitreva, Makedonka

    2015-01-01

    Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in

  8. ε-Polylysine and next-generation dendrigraft poly-L-lysine: chemistry, activity, and applications in biopharmaceuticals.

    PubMed

    Shi, Chen; He, Yu; Feng, Xiaobo; Fu, Dehao

    2015-01-01

    Polylysine is an important class of polyamino acids with a broad spectrum of applications in biomedical research and development. It can be divided into two classes, α-polylysine and ε-polylysine, the former is synthesized by artificial chemical synthesis and has limited applications due to its high toxicity, and the latter is produced by microbial synthesis as a class of natural polymers and is widely used in various food, medicinal, and electronics products. Another major class of synthetic polymers is dendrimers (after linear, cross-linked, and branched polymers). Dendrigraft poly-L-lysine (DGL) has the favorable properties of polylysine and dendrimers, with a broad spectrum of applications in drug discovery and development, including drug delivery, gene carriers, diagnostic imaging, diagnostics, biosensors, and special cancer therapies (such as boron neutron capture therapy and photodynamic therapy). As there are still some problems with the development of DGL, further research is warranted for its broad applications.

  9. Effect of lysine addition on growth of black iguana (Ctenosaura pectinata).

    PubMed

    Guzmán, Juan José Ortiz; Luis, Arcos-García José; Martínez, Germán D Mendoza; Pérez, Fernando Xicoténcatl Plata; Mascorro, Gisela Fuentes; Inzunza, Gabriela Ruelas

    2013-01-01

    The effects of the addition of lysine to commercial feed given to captive black iguana (Ctenosaura pectinata) were evaluated in terms of growth and feed digestibility. Twenty-eight-day-old black iguana with an initial weight of 5.5 ± 0.3 g were housed individually in cages measuring 45 × 45 × 45 cm. The experiment lasted 150 days. The ambient temperature ranged from 28 to 35°C with a relative humidity of 60 to 95%. Treatments consisted of the addition of different percentages of lysine to the feed (0.0, 0.1, 0.2, and 0.3%, dry matter [DM] base). There was a linear response (P < 0.01) in daily gain (68, 112, 118, and 151 mg/d) and daily intake (251, 289, 297, and 337 mg/d) for levels from 0 to 0.3%, respectively, as well in the growth in head size, snout-vent length, and total length. The digestibility of DM, neutral detergent fiber, and acid detergent fiber were reduced linearly (P < 0.01) as lysine levels increased. Intake and digestibility were negatively correlated (r = -0.74; P < 0.001). It is concluded that the addition of lysine to the black iguana diet in the first months of life is important to stimulate growth and intake.

  10. Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate.

    PubMed

    Kitak, Teja; Dumičić, Aleksandra; Planinšek, Odon; Šibanc, Rok; Srčič, Stanko

    2015-01-01

    In recent years there has been a growing interest in formulating solid dispersions, which purposes mainly include solubility enhancement, sustained drug release and taste masking. The most notable problem by these dispersions is drug-carrier (in)solubility. Here we focus on solubility parameters as a tool for predicting the solubility of a drug in certain carriers. Solubility parameters were determined in two different ways: solely by using calculation methods, and by experimental approaches. Six different calculation methods were applied in order to calculate the solubility parameters of the drug ibuprofen and several excipients. However, we were not able to do so in the case of ibuprofen lysinate, as calculation models for salts are still not defined. Therefore, the extended Hansen's approach and inverse gas chromatography (IGC) were used for evaluating of solubility parameters for ibuprofen lysinate. The obtained values of the total solubility parameter did not differ much between the two methods: by the extended Hansen's approach it was δt = 31.15 MPa(0.5) and with IGC it was δt = 35.17 MPa(0.5). However, the values of partial solubility parameters, i.e., δd, δp and δh, did differ from each other, what might be due to the complex behaviour of a salt in the presence of various solvents.

  11. The topology of lysine-containing amphipathic peptides in bilayers by circular dichroism, solid-state NMR, and molecular modeling.

    PubMed Central

    Vogt, B; Ducarme, P; Schinzel, S; Brasseur, R; Bechinger, B

    2000-01-01

    In order to better understand the driving forces that determine the alignment of amphipathic helical polypeptides with respect to the surface of phospholipid bilayers, lysine-containing peptide sequences were designed, prepared by solid-phase chemical synthesis, and reconstituted into membranes. CD spectroscopy indicates that all peptides exhibit a high degree of helicity in the presence of SDS micelles or POPC small unilamellar vesicles. Proton-decoupled (31)P-NMR solid-state NMR spectroscopy demonstrates that in the presence of peptides liquid crystalline phosphatidylcholine membranes orient well along glass surfaces. The orientational distribution and dynamics of peptides labeled with (15)N at selected sites were investigated by proton-decoupled (15)N solid-state NMR spectroscopy. Polypeptides with a single lysine residue adopt a transmembrane orientation, thereby locating this polar amino acid within the core region of the bilayer. In contrast, peptides with > or = 3 lysines reside along the surface of the membrane. With 2 lysines in the center of an otherwise hydrophobic amino acid sequence the peptides assume a broad orientational distribution. The energy of lysine discharge, hydrophobic, polar, and all other interactions are estimated to quantitatively describe the polypeptide topologies observed. Furthermore, a molecular modeling algorithm based on the hydrophobicities of atoms in a continuous hydrophilic-hydrophobic-hydrophilic potential describes the experimentally observed peptide topologies well. PMID:11053137

  12. Elucidating the effects of arginine and lysine on a monoclonal antibody C-terminal lysine variation in CHO cell cultures.

    PubMed

    Zhang, Xintao; Tang, Hongping; Sun, Ya-Ting; Liu, Xuping; Tan, Wen-Song; Fan, Li

    2015-08-01

    C-terminal lysine variants are commonly observed in monoclonal antibodies (mAbs) and found sensitive to process conditions, especially specific components in culture medium. The potential roles of media arginine (Arg) and lysine (Lys) in mAb heavy chain C-terminal lysine processing were investigated by monitoring the lysine variant levels under various Arg and Lys concentrations. Both Arg and Lys were found to significantly affect lysine variant level. Specifically, lysine variant level increased from 18.7 to 31.8 % when Arg and Lys concentrations were increased from 2 to 10 mM. Since heterogeneity of C-terminal lysine residues is due to the varying degree of proteolysis by basic carboxypeptidases (Cps), enzyme (basic Cps) level, pH conditions, and product (Arg and Lys) inhibition, which potentially affect the enzymatic reaction, were investigated under various Arg and Lys conditions. Enzyme level and pH conditions were found not to account for the different lysine variant levels, which was evident from the minimal variation in transcription level and intracellular pH. On the other hand, product inhibition effect of Arg and Lys on basic Cps was evident from the notable intracellular and extracellular Arg and Lys concentrations comparable with Ki values (inhibition constant) of basic Cps and further confirmed by cell-free assays. Additionally, a kinetic study of lysine variant level during the cell culture process enabled further characterization of the C-terminal lysine processing.

  13. Formation equilibria of nickel complexes with glycyl-histidyl-lysine and two synthetic analogues.

    PubMed

    Conato, Chiara; Kozłowski, Henryk; Swiatek-Kozłowska, Jolanta; Młynarz, Piotr; Remelli, Maurizio; Silvestri, Sergio

    2004-01-01

    Complex-formation equilibria between the Ni(II) ion and the natural tripeptide glycyl-L-histidyl-L-lysine have been investigated. Two synthetic analogues, where the histidine residue has been substituted with L-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (L-Spinacine) and L-1,2,3,4-tetrahydro-isoquinolin-3-carboxylic acid (Tic), respectively, have been considered, as well. Different experimental techniques have been employed: potentiometry, calorimetry, visible spectrophotometry and CD spectroscopy. Structural hypotheses on the main complex species are suggested. Evidences on the formation of tetrameric species with the first ligand are shown. No involvement of the side-chain amino group of lysine residue in metal ion coordination was found. PMID:14659644

  14. Optimal hematologic variables for oxygen transport, including P50, hemoglobin cooperativity, hematocrit, acid-base status, and cardiac function.

    PubMed

    Winslow, R M

    1988-01-01

    The two important blood properties that affect O2 delivery are the O2 equilibrium curve (OEC) and blood viscosity with its subsequent effect on flow (cardiac output). To quantitate these properties blood OEC's were analyzed in terms of the Adair 4-step oxygenation model and the resulting parameters were used to construct a computer nomogram to reproduce the OEC at any combination of effectors that regulate P50 (pH, PCO2, and 2,3-DPG). In this way, the P50 could be changed systematically and the effects on overall O2 transport could be studied. Hematocrit-viscosity-cardiac output relationships were taken from the literature and validated using data from human subjects with various pathological states and high-altitude natives. A model was then developed, using the Bohr integration, to predict the O2 transport function of blood under a variety of conditions including exercise and hypoxia. The results indicate that the optimal hematocrit is about 43-45%, even in hypoxia. The optimal P50, however, depends on the availability of O2: a high P50 is not necessarily beneficial in hypoxia and high cardiac output states. This model and general approach should prove useful in the design of blood substitutes.

  15. 6th Amino Acid Assessment Workshop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The focus of the 6th workshop is on lysine, arginine, and related amino acids. Functions, metabolic pathways, clinical uses, and upper tolerance intakes are emphasized in the articles that follow. Lysine is arguably the most deficient amino acid in the food supply of countries where poverty exists, ...

  16. Antimicrobial activity of chicken NK-lysin against Eimeria sporozoites.

    PubMed

    Hong, Yeong H; Lillehoj, Hyun S; Siragusa, Gregory R; Bannerman, Douglas D; Lillehoj, Erik P

    2008-06-01

    NK-lysin is an antimicrobial and antitumor polypeptide that is considered to play an important role in innate immunity. Chicken NK-lysin is a member of the saposin-like protein family and exhibits potent antitumor cell activity. To evaluate the antimicrobial properties of chicken NK-lysin, we examined its ability to reduce the viability of various bacterial strains and two species of Eimeria parasites. Culture supernatants from COS7 cells transfected with a chicken NK-lysin cDNA and His-tagged purified NK-lysin from the transfected cells both showed high cytotoxic activity against Eimeria acervulina and Eimeria maxima sporozoites. In contrast, no bactericidal activity was observed. Further studies using synthetic peptides derived from NK-lysin may be useful for pharmaceutical and agricultural uses in the food animal industry.

  17. Three-Component Lysine/Ornithine Decarboxylation System in Lactobacillus saerimneri 30a

    PubMed Central

    Romano, Andrea; Trip, Hein; Lolkema, Juke S.

    2013-01-01

    Lactic acid bacteria play a pivotal role in many food fermentations and sometimes represent a health threat due to the ability of some strains to produce biogenic amines that accumulate in foods and cause trouble following ingestion. These strains carry specific enzymatic systems catalyzing the uptake of amino acid precursors (e.g., ornithine and lysine), the decarboxylation inside the cell, and the release of the resulting biogenic amines (e.g., putrescine and cadaverine). This study aimed to identify the system involved in production of cadaverine from lysine, which has not been described to date for lactic acid bacteria. Strain Lactobacillus saerimneri 30a (formerly called Lactobacillus sp. 30a) produces both putrescine and cadaverine. The sequencing of its genome showed that the previously described ornithine decarboxylase gene was not associated with the gene encoding an ornithine/putrescine exchanger as in other bacteria. A new hypothetical decarboxylation system was detected in the proximity of the ornithine decarboxylase gene. It consisted of two genes encoding a putative decarboxylase sharing sequence similarities with ornithine decarboxylases and a putative amino acid transporter resembling the ornithine/putrescine exchangers. The two decarboxylases were produced in Escherichia coli, purified, and characterized in vitro, whereas the transporter was heterologously expressed in Lactococcus lactis and functionally characterized in vivo. The overall data led to the conclusion that the two decarboxylases and the transporter form a three-component decarboxylation system, with the new decarboxylase being a specific lysine decarboxylase and the transporter catalyzing both lysine/cadaverine and ornithine/putrescine exchange. To our knowledge, this is an unprecedented observation of a bacterial three-component decarboxylation system. PMID:23316036

  18. Omega-3 fatty acid concentrate from Dunaliella salina possesses anti-inflammatory properties including blockade of NF-κB nuclear translocation.

    PubMed

    Chitranjali, T; Anoop Chandran, P; Muraleedhara Kurup, G

    2015-02-01

    The health benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA), mainly eicosapentaenoic acid (EPA 20:5) and docosahexaenoic acid (DHA, 22:6), have been long known. Although various studies have demonstrated the health benefits of ω-3 PUFA, the mechanisms of action of ω-3 PUFAs are still not completely understood. While the major commercial source is marine fish oil, in this study we suggest the marine micro algae, Dunaliella salina as an alternate source of omega-3 fatty acids. Treatment with this algal omega-3 fatty acid concentrate (Ds-ω-3 FA) resulted in significant down-regulation of LPS-induced production of TNF-α and IL-6 by peripheral blood mononuclear cells (PBMCs). The concentrate was also found to be a potent blocker of cyclooxygenase (COX-2) and matrix metalloproteinase (MMP-2 and MMP-9) expression. The present study reveals the anti-inflammatory properties of Ds-ω-3 FA concentrate including the inhibition of NF-κB translocation.

  19. Enzymatic production of 5-aminovalerate from l-lysine using l-lysine monooxygenase and 5-aminovaleramide amidohydrolase

    PubMed Central

    Liu, Pan; Zhang, Haiwei; Lv, Min; Hu, Mandong; Li, Zhong; Gao, Chao; Xu, Ping; Ma, Cuiqing

    2014-01-01

    5-Aminovalerate is a potential C5 platform chemical for synthesis of valerolactam, 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. It is a metabolite of l-lysine catabolism through the aminovalerate pathway in Pseudomonas putida. l-Lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) play key roles in the biotransformation of l-lysine into 5-aminovalerate. Here, DavB and DavA of P. putida KT2440 were expressed, purified, and coupled for the production of 5-aminovalerate from l-lysine. Under optimal conditions, 20.8 g/L 5-aminovalerate was produced from 30 g/L l-lysine in 12 h. Because l-lysine is an industrial fermentation product, the two-enzyme coupled system presents a promising alternative for the production of 5-aminovalerate. PMID:25012259

  20. Study of broiler chicken responses to dietary protein and lysine using neural network and response surface models.

    PubMed

    Faridi, A; Golian, A; France, J; Heravi Mousavi, A

    2013-01-01

    1. In this study, neural network (NN) and response surface (RS) models were developed to investigate the response [average daily gain (ADG) and feed efficiency (FE)] of young broiler chickens to dietary protein and lysine. For this purpose, data on their responses to dietary protein and lysine were extracted from the literature and separate NN and RS models were constructed. 2. Comparison between the NN and RS models revealed higher accuracy of prediction with the NN models compared to the RS models. In terms of R (2) values, the NN models developed for both ADG (R (2) = 0.923) and FE (R (2) = 0.904) were far superior to the RS models (R (2) for ADG = 0.511; R (2) for FE = 0.67). This suggests that the NN models can serve as an alternative option to conventional regression approaches including use of RS models. 3. Optimisation of the NN models developed for response to protein and lysine showed that diets containing 220.7 (g/kg of diet) protein and 12.85 (g/kg of diet) lysine maximise ADG, whereas maximum FE is achieved with diets containing 241.3 and 13.12 (g/kg) protein and lysine, respectively. Based on the optimisation results, optimal dietary protein and lysine concentrations for maximum FE in broiler chickens during the starting period are higher than for ADG.

  1. New force field parameters for metalloproteins I: Divalent copper ion centers including three histidine residues and an oxygen-ligated amino acid residue.

    PubMed

    Wise, Olivia; Coskuner, Orkid

    2014-06-30

    Transition metal ion complexation with proteins is ubiquitous across such diverse fields as neurodegenerative and cardiovascular diseases and cancer. In this study, the structures of divalent copper ion centers including three histidine and one oxygen-ligated amino acid residues and the relative binding affinities of the oxygen-ligated amino acid residues with these metal ion centers, which are debated in the literature, are presented. Furthermore, new force field parameters, which are currently lacking for the full-length metal-ligand moieties, are developed for metalloproteins that have these centers. These new force field parameters enable investigations of metalloproteins possessing these binding sites using molecular simulations. In addition, the impact of using the atom equivalence and inequivalence atomic partial charge calculation procedures on the simulated structures of these metallopeptides, including hydration properties, is described.

  2. Bacteriophage phi11 lysin: physicochemical characterization and comparison with phage phi80a lysin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phage lytic enzymes are promising antimicrobial agents. Lysins of phage phi11 (LysPhi11) and phi80a (LysPhi80a) can lyse (destroy) biofilms and cells of antibiotic-resistant strains of Staphylococcus aureus. Stability of enzymes is one of the parameters making their practical use possible. The obj...

  3. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat

    PubMed Central

    Zhang, Yumei; Song, Limin; Liang, Wenxing; Mu, Ping; Wang, Shu; Lin, Qi

    2016-01-01

    Lysine acetylation of proteins, a dynamic and reversible post-translational modification, plays a critical regulatory role in both eukaryotes and prokaryotes. Several researches have been carried out on acetylproteome in plants. However, until now, there have been no data on common wheat, the major cereal crop in the world. In this study, we performed a global acetylproteome analysis of common wheat variety (Triticum aestivum L.), Chinese Spring. In total, 416 lysine modification sites were identified on 277 proteins, which are involved in a wide variety of biological processes. Consistent with previous studies, a large proportion of the acetylated proteins are involved in metabolic process. Interestingly, according to the functional enrichment analysis, 26 acetylated proteins are involved in photosynthesis and Calvin cycle, suggesting an important role of lysine acetylation in these processes. Moreover, protein interaction network analysis reveals that diverse interactions are modulated by protein acetylation. These data represent the first report of acetylome in common wheat and serve as an important resource for exploring the physiological role of lysine acetylation in this organism and likely in all plants. PMID:26875666

  4. A Study on the Effect of Surface Lysine to Arginine Mutagenesis on Protein Stability and Structure Using Green Fluorescent Protein

    PubMed Central

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering. PMID:22792305

  5. Structures of lithiated lysine and structural analogues in the gas phase: effects of water and proton affinity on zwitterionic stability.

    PubMed

    Lemoff, Andrew S; Bush, Matthew F; O'Brien, Jeremy T; Williams, Evan R

    2006-07-13

    The structures of lithiated lysine, ornithine, and related molecules, both with and without a water molecule, are investigated using both density functional theory and blackbody infrared radiative dissociation experiments. The lowest-energy structure of lithiated lysine without a water molecule is nonzwitterionic; the metal ion interacts with both nitrogen atoms and the carbonyl oxygen. Structures in which lysine is zwitterionic are higher in energy by more than 29 kJ/mol. In contrast, the singly hydrated clusters with the zwitterionic and nonzwitterionic forms of lysine are more similar in energy, with the nonzwitterionic form more stable by only approximately 7 kJ/mol. Thus, a single water molecule can substantially stabilize the zwitterionic form of an amino acid. Analogous molecules that have methyl groups attached to either the N-terminus (NMeLys) or the side-chain amine (Lys(Me)) have proton affinities greater than that of lysine. In the lithiated clusters with a water molecule attached, the zwitterionic forms of NMeLys and Lys(Me) are calculated to be approximately 4 and approximately 11 kJ/mol more stable than the nonzwitterionic forms, respectively. Calculations of the potential-energy pathway for interconversion between the different forms of lysine in the lithiated complex indicate multiple stable intermediates with an overall barrier height of approximately 83 kJ/mol between the lowest-energy nonzwitterionic form and the most accessible zwitterionic form. Experimentally determined binding energies of water are similar for all these complexes and range from 57 to 64 kJ/mol. These results suggest that loss of a water molecule from the lysine complexes is both energetically and entropically favored compared to interconversion between the nonzwitterionic and zwitterionic structures. Comparisons to calculated binding energies of water to the various structures show that the experimental results are most consistent with the nonzwitterionic forms. PMID

  6. Extension of a PBPK model for ethylene glycol and glycolic acid to include the competitive formation and clearance of metabolites associated with kidney toxicity in rats and humans

    SciTech Connect

    Corley, R.A.; Saghir, S.A.; Bartels, M.J.; Hansen, S.C.; Creim, J.; McMartin, K.E.; Snellings, W.M.

    2011-02-01

    A previously developed PBPK model for ethylene glycol and glycolic acid was extended to include glyoxylic acid, oxalic acid, and the precipitation of calcium oxalate that is associated with kidney toxicity in rats and humans. The development and evaluation of the PBPK model was based upon previously published pharmacokinetic studies coupled with measured blood and tissue partition coefficients and rates of in vitro metabolism of glyoxylic acid to oxalic acid, glycine and other metabolites using primary hepatocytes isolated from male Wistar rats and humans. Precipitation of oxalic acid with calcium in the kidneys was assumed to occur only at concentrations exceeding the thermodynamic solubility product for calcium oxalate. This solubility product can be affected by local concentrations of calcium and other ions that are expressed in the model using an ion activity product estimated from toxicity studies such that calcium oxalate precipitation would be minimal at dietary exposures below the NOAEL for kidney toxicity in the sensitive male Wistar rat. The resulting integrated PBPK predicts that bolus oral or dietary exposures to ethylene glycol would result in typically 1.4-1.6-fold higher peak oxalate levels and 1.6-2-fold higher AUC's for calcium oxalate in kidneys of humans as compared with comparably exposed male Wistar rats over a dose range of 1-1000 mg/kg. The converse (male Wistar rats predicted to have greater oxalate levels in the kidneys than humans) was found for inhalation exposures although no accumulation of calcium oxalate is predicted to occur until exposures are well in excess of the theoretical saturated vapor concentration of 200 mg/m{sup 3}. While the current model is capable of such cross-species, dose, and route-of-exposure comparisons, it also highlights several areas of potential research that will improve confidence in such predictions, especially at low doses relevant for most human exposures.

  7. Mouse adaptation of a sub-genogroup B5 strain of human enterovirus 71 is associated with a novel lysine to glutamic acid substitution at position 244 in protein VP1.

    PubMed

    Zaini, Zainun; Phuektes, Patchara; McMinn, Peter

    2012-07-01

    Most human enterovirus 71 (HEV71) strains infect only primates and are unable to cause clinically apparent infection in mice. Here we describe a mouse-adapted HEV71 strain that belongs to sub-genogroup B5 with increased virulence in newborn BALB/c mice. The mouse-virulent strain was initially selected by serial passage of a HEV71 clinical isolate (HEV71-B5) in Chinese hamster ovary (CHO) cells (CHO-B5), followed by serial passage in newborn mice. Virus from the fifth mouse passage was cultured twice on Vero cells and designated as MP-B5. MP-B5 induces severe disease of high mortality in newborn mice in a dose-dependent manner. Skeletal muscle is the primary site of virus replication and results in severe myositis. CHO-B5 harbours a single amino acid substitution (K(149) → I) in the VP2 capsid protein. Five additional nucleotide sequence changes were identified in MP-B5, two of which are located in the 5' UTR and the three within the open reading frame (ORF). Two of the ORF mutations resulted in deduced amino acid changes in the capsid protein VP1: S(241) → L and K(244) → E; the third ORF mutation was a synonymous C → T change at nucleotide position 6072 within the 3D polymerase gene. Infectious cDNA clone-derived mutant virus populations of HEV71 belonging to sub-genogroup B3 (CHO-26 M) that contain the VP1 mutations identified in MP-B5 were generated in order to determine the mutation(s) responsible for mouse virulence. Only viruses expressing the VP1 (K(244) → E) mutation were virulent in 5-day-old BALB/c mice, indicating that the VP1 (K(244) → E) change is the critical genetic determinant of mouse adaptation and virulence in this model.

  8. Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains.

    PubMed

    Blombach, Bastian; Seibold, Gerd M

    2010-05-01

    Carbohydrates exclusively serve as feedstock for industrial amino acid production with Corynebacterium glutamicum. Due to the industrial interest, knowledge about the pathways for carbohydrate metabolization in C. glutamicum steadily increases, enabling the rational design of optimized strains and production processes. In this review, we provide an overview of the metabolic pathways for utilization of hexoses (glucose, fructose), disaccharides (sucrose, maltose), pentoses (D-ribose, L-arabinose, D-xylose), gluconate, and beta-glucosides present in C. glutamicum. Recent approaches of metabolic engineering of L: -lysine production strains based on the known pathways are described and evaluated with respect to L: -lysine yields.

  9. Converting the Yeast Arginine Can1 Permease to a Lysine Permease*

    PubMed Central

    Ghaddar, Kassem; Krammer, Eva-Maria; Mihajlovic, Natalija; Brohée, Sylvain; André, Bruno; Prévost, Martine

    2014-01-01

    Amino acid uptake in yeast cells is mediated by about 16 plasma membrane permeases, most of which belong to the amino acid-polyamine-organocation (APC) transporter family. These proteins display various substrate specificity ranges. For instance, the general amino acid permease Gap1 transports all amino acids, whereas Can1 and Lyp1 catalyze specific uptake of arginine and lysine, respectively. Although Can1 and Lyp1 have different narrow substrate specificities, they are close homologs. Here we investigated the molecular rules determining the substrate specificity of the H+-driven arginine-specific permease Can1. Using a Can1-Lyp1 sequence alignment as a guideline and a three-dimensional Can1 structural model based on the crystal structure of the bacterial APC family arginine/agmatine antiporter, we introduced amino acid substitutions liable to alter Can1 substrate specificity. We show that the single substitution T456S results in a Can1 variant transporting lysine in addition to arginine and that the combined substitutions T456S and S176N convert Can1 to a Lyp1-like permease. Replacement of a highly conserved glutamate in the Can1 binding site leads to variants (E184Q and E184A) incapable of any amino acid transport, pointing to a potential role for this glutamate in H+ coupling. Measurements of the kinetic parameters of arginine and lysine uptake by the wild-type and mutant Can1 permeases, together with docking calculations for each amino acid in their binding site, suggest a model in which residues at positions 176 and 456 confer substrate selectivity at the ligand-binding stage and/or in the course of conformational changes required for transport. PMID:24448798

  10. Converting the yeast arginine can1 permease to a lysine permease.

    PubMed

    Ghaddar, Kassem; Krammer, Eva-Maria; Mihajlovic, Natalija; Brohée, Sylvain; André, Bruno; Prévost, Martine

    2014-03-01

    Amino acid uptake in yeast cells is mediated by about 16 plasma membrane permeases, most of which belong to the amino acid-polyamine-organocation (APC) transporter family. These proteins display various substrate specificity ranges. For instance, the general amino acid permease Gap1 transports all amino acids, whereas Can1 and Lyp1 catalyze specific uptake of arginine and lysine, respectively. Although Can1 and Lyp1 have different narrow substrate specificities, they are close homologs. Here we investigated the molecular rules determining the substrate specificity of the H(+)-driven arginine-specific permease Can1. Using a Can1-Lyp1 sequence alignment as a guideline and a three-dimensional Can1 structural model based on the crystal structure of the bacterial APC family arginine/agmatine antiporter, we introduced amino acid substitutions liable to alter Can1 substrate specificity. We show that the single substitution T456S results in a Can1 variant transporting lysine in addition to arginine and that the combined substitutions T456S and S176N convert Can1 to a Lyp1-like permease. Replacement of a highly conserved glutamate in the Can1 binding site leads to variants (E184Q and E184A) incapable of any amino acid transport, pointing to a potential role for this glutamate in H(+) coupling. Measurements of the kinetic parameters of arginine and lysine uptake by the wild-type and mutant Can1 permeases, together with docking calculations for each amino acid in their binding site, suggest a model in which residues at positions 176 and 456 confer substrate selectivity at the ligand-binding stage and/or in the course of conformational changes required for transport.

  11. Short communication: Supplementing lysine and methionine in a lactation diet containing a high concentration of wet corn gluten feed did not alter milk protein yield.

    PubMed

    Mullins, C R; Weber, D; Block, E; Smith, J F; Brouk, M J; Bradford, B J

    2013-08-01

    Primiparous (n=33) and multiparous (n=63) lactating Holstein cows (186±51 d in milk) were used to evaluate the effects of supplementing metabolizable amino acids using lysine in a matrix of Ca salts of fatty acids (Megamine-L, Arm & Hammer Animal Nutrition, Princeton, NJ) and the isopropyl ester of 2-hydroxy-4-(methylthio) butanoic acid (MetaSmart, Adisseo Inc., Antony, France) in diets containing >26% wet corn gluten feed (dry matter basis). Cows were blocked by production level, parity, and pregnancy status, then randomly assigned to 1 of 8 pens and allowed a 7-d adaption period before receiving dietary treatments for 28 d. Pens were assigned randomly to either of 2 diets formulated to differ by metabolizable amino acid supply. Dry matter intake and production were monitored daily and milk components analyzed 3d/wk. Data were analyzed using mixed models with repeated measures. The original design of the study consisted of a control diet predicted to be deficient in lysine and methionine; however, after ingredient nutrients were analyzed and modeled with animal requirements at dry matter intake [26.6±0.35 kg/d (mean ± SEM)] and milk production levels achieved during the study (40.1±0.46 kg/d), only marginal deficiencies were predicted for the control (-8.1g/d for lysine; -1g/d for methionine) according to the National Research Council method, whereas the Cornell Net Carbohydrate and Protein System 5.0 and 6.1 models indicated positive balances for these amino acids (25.9 and 21.8 g/d for lysine, 14.7 and 18.9 g/d for methionine, respectively). Supplementing 30 g/d of metabolizable lysine in a Ca soap matrix and 2.4 g/d of metabolizable methionine as 2-hydroxy-4-(methylthio) butanoic acid led to positive predicted lysine and methionine balances by all 3 models, and predicted metabolizable lysine-to-methionine ratios ranging from 2.9 to 3.1. No treatment effects were observed for dry matter intake, milk yield, milk component concentrations or yields, or energy

  12. Comprehensive profiling of lysine acetylation suggests the widespread function is regulated by protein acetylation in the silkworm, Bombyx mori.

    PubMed

    Nie, Zuoming; Zhu, Honglin; Zhou, Yong; Wu, Chengcheng; Liu, Yue; Sheng, Qing; Lv, Zhengbing; Zhang, Wenping; Yu, Wei; Jiang, Caiying; Xie, Longfei; Zhang, Yaozhou; Yao, Juming

    2015-09-01

    Lysine acetylation in proteins is a dynamic and reversible PTM and plays an important role in diverse cellular processes. In this study, using lysine-acetylation (Kac) peptide enrichment coupled with nano HPLC/MS/MS, we initially identified the acetylome in the silkworms. Overall, a total of 342 acetylated proteins with 667 Kac sites were identified in silkworm. Sequence motifs analysis around Kac sites revealed an enrichment of Y, F, and H in the +1 position, and F was also enriched in the +2 and -2 positions, indicating the presences of preferred amino acids around Kac sites in the silkworm. Functional analysis showed the acetylated proteins were primarily involved in some specific biological processes. Furthermore, lots of nutrient-storage proteins, such as apolipophorin, vitellogenin, storage proteins, and 30 K proteins, were highly acetylated, indicating lysine acetylation may represent a common regulatory mechanism of nutrient utilization in the silkworm. Interestingly, Ser2 proteins, the coating proteins of larval silk, were found to contain many Kac sites, suggesting lysine acetylation may be involved in the regulation of larval silk synthesis. This study is the first to identify the acetylome in a lepidoptera insect, and expands greatly the catalog of lysine acetylation substrates and sites in insects.

  13. Targeting histone lysine demethylases — Progress, challenges, and the future☆

    PubMed Central

    Thinnes, Cyrille C.; England, Katherine S.; Kawamura, Akane; Chowdhury, Rasheduzzaman; Schofield, Christopher J.; Hopkinson, Richard J.

    2014-01-01

    N-Methylation of lysine and arginine residues has emerged as a major mechanism of transcriptional regulation in eukaryotes. In humans, Nε-methyllysine residue demethylation is catalysed by two distinct subfamilies of demethylases (KDMs), the flavin-dependent KDM1 subfamily and the 2-oxoglutarate- (2OG) dependent JmjC subfamily, which both employ oxidative mechanisms. Modulation of histone methylation status is proposed to be important in epigenetic regulation and has substantial medicinal potential for the treatment of diseases including cancer and genetic disorders. This article provides an introduction to the enzymology of the KDMs and the therapeutic possibilities and challenges associated with targeting them, followed by a review of reported KDM inhibitors and their mechanisms of action from kinetic and structural perspectives. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. PMID:24859458

  14. Methylation of histone H3 lysine 9 occurs during translation

    PubMed Central

    Rivera, Carlos; Saavedra, Francisco; Alvarez, Francisca; Díaz-Celis, César; Ugalde, Valentina; Li, Jianhua; Forné, Ignasi; Gurard-Levin, Zachary A.; Almouzni, Geneviève; Imhof, Axel; Loyola, Alejandra

    2015-01-01

    Histone post-translational modifications are key contributors to chromatin structure and function, and participate in the maintenance of genome stability. Understanding the establishment and maintenance of these marks, along with their misregulation in pathologies is thus a major focus in the field. While we have learned a great deal about the enzymes regulating histone modifications on nucleosomal histones, much less is known about the mechanisms establishing modifications on soluble newly synthesized histones. This includes methylation of lysine 9 on histone H3 (H3K9), a mark that primes the formation of heterochromatin, a critical chromatin landmark for genome stability. Here, we report that H3K9 mono- and dimethylation is imposed during translation by the methyltransferase SetDB1. We discuss the importance of these results in the context of heterochromatin establishment and maintenance and new therapeutic opportunities in pathologies where heterochromatin is perturbed. PMID:26405197

  15. High-throughput screening to identify inhibitors of lysine demethylases

    PubMed Central

    Gale, Molly; Yan, Qin

    2015-01-01

    Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several high-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the high-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors. PMID:25687466

  16. Targeted mutation of Δ12 and Δ15 desaturase genes in hemp produce major alterations in seed fatty acid composition including a high oleic hemp oil.

    PubMed

    Bielecka, Monika; Kaminski, Filip; Adams, Ian; Poulson, Helen; Sloan, Raymond; Li, Yi; Larson, Tony R; Winzer, Thilo; Graham, Ian A

    2014-06-01

    We used expressed sequence tag library and whole genome sequence mining to identify a suite of putative desaturase genes representing the four main activities required for production of polyunsaturated fatty acids in hemp seed oil. Phylogenetic-based classification and developing seed transcriptome analysis informed selection for further analysis of one of seven Δ12 desaturases and one of three Δ15 desaturases that we designate CSFAD2A and CSFAD3A, respectively. Heterologous expression of corresponding cDNAs in Saccharomyces cerevisiae showed CSFAD2A to have Δx+3 activity, while CSFAD3A activity was exclusively at the Δ15 position. TILLING of an ethyl methane sulphonate mutagenized population identified multiple alleles including non-sense mutations in both genes and fatty acid composition of seed oil confirmed these to be the major Δ12 and Δ15 desaturases in developing hemp seed. Following four backcrosses and sibling crosses to achieve homozygosity, csfad2a-1 was grown in the field and found to produce a 70 molar per cent high oleic acid (18:1(Δ9) ) oil at yields similar to wild type. Cold-pressed high oleic oil produced fewer volatiles and had a sevenfold increase in shelf life compared to wild type. Two low abundance octadecadienoic acids, 18:2(Δ6,9) and 18:2(Δ9,15), were identified in the high oleic oil, and their presence suggests remaining endogenous desaturase activities utilize the increased levels of oleic acid as substrate. Consistent with this, CSFAD3A produces 18:2(Δ9,15) from endogenous 18:1(Δ9) when expressed in S. cerevisiae. This work lays the foundation for the development of additional novel oil varieties in this multipurpose low input crop.

  17. Lysine carboxylation: unveiling a spontaneous post-translational modification

    SciTech Connect

    Jimenez-Morales, David; Adamian, Larisa; Shi, Dashuang; Liang, Jie

    2014-01-01

    A computational method for the prediction of lysine carboxylation (KCX) in protein structures is described. The method accurately identifies misreported KCXs and predicts previously unknown KCX sites. The carboxylation of lysine residues is a post-translational modification (PTM) that plays a critical role in the catalytic mechanisms of several important enzymes. It occurs spontaneously under certain physicochemical conditions, but is difficult to detect experimentally. Its full impact is unknown. In this work, the signature microenvironment of lysine-carboxylation sites has been characterized. In addition, a computational method called Predictor of Lysine Carboxylation (PreLysCar) for the detection of lysine carboxylation in proteins with available three-dimensional structures has been developed. The likely prevalence of lysine carboxylation in the proteome was assessed through large-scale computations. The results suggest that about 1.3% of large proteins may contain a carboxylated lysine residue. This unexpected prevalence of lysine carboxylation implies an enrichment of reactions in which it may play functional roles. The results also suggest that by switching enzymes on and off under appropriate physicochemical conditions spontaneous PTMs may serve as an important and widely used efficient biological machinery for regulation.

  18. 40 CFR 721.10250 - Zirconium lysine complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zirconium lysine complex (generic... Specific Chemical Substances § 721.10250 Zirconium lysine complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  19. 40 CFR 721.10250 - Zirconium lysine complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zirconium lysine complex (generic... Specific Chemical Substances § 721.10250 Zirconium lysine complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  20. 40 CFR 721.10250 - Zirconium lysine complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zirconium lysine complex (generic... Specific Chemical Substances § 721.10250 Zirconium lysine complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  1. Determination of HEL (Hexanoyl-lysine adduct): a novel biomarker for omega-6 PUFA oxidation.

    PubMed

    Sakai, Kazuo; Kino, Satoko; Masuda, Aino; Takeuchi, Masao; Ochi, Tairin; Osredkar, Josko; Rejc, Barbara; Gersak, Ksenija; Ramarathnam, Narasimhan; Kato, Yoji

    2014-01-01

    Published evidences indicate that reactive oxygen species (ROS) can induce lipid peroxidation, which plays important role in the pathophysiology of numerous diseases including atherosclerosis, diabetes, cancer and aging process. Monitoring of oxidative modification or oxidative damages of biomolecules may therefore be essential for the understanding of aging, and age-related diseases. N-epsilon-Hexanoyl-lysine (HEL) is a novel lipid peroxidation biomarker which is derived from the oxidation of omega-6 unsaturated fatty acid. In this chapter, development of HEL ELISA and its applications are reported. Assay range of HEL ELISA was 2-700 nmol/L, and showed good linearity and reproducibility. Accuracy of this assay was validated by recovery test and absorption test. HEL concentration in human urine was 22.9 ± 15.4 nmol/L and it was suggested that HEL exists as low molecular substances, in a free or in the peptide-attached form. In contrast with the urine sample, serum HEL was suggested to exist in the protein-attached form, and hydrolysis by protease might be essential for the accurate measurement of HEL in protein containing samples such as serum and cultured cells. By sample pretreatment with proteases, HEL was successfully detected in oxidized LDL, oxidized serum, and rat serum. In conclusion, HEL ELISA can be applied to measure urine, serum, and other biological samples independent of the animal species, and may be useful for the assessment of omega-6 PUFA oxidation in the living bodies. PMID:24374918

  2. Regulation of Lipogenic Gene Expression by Lysine-specific Histone Demethylase-1 (LSD1)*

    PubMed Central

    Abdulla, Arian; Zhang, Yi; Hsu, Fu-Ning; Xiaoli, Alus M.; Zhao, Xiaoping; Yang, Ellen S. T.; Ji, Jun-Yuan; Yang, Fajun

    2014-01-01

    Dysregulation of lipid homeostasis is a common feature of several major human diseases, including type 2 diabetes and cardiovascular disease. However, because of the complex nature of lipid metabolism, the regulatory mechanisms remain poorly defined at the molecular level. As the key transcriptional activators of lipogenic genes, such as fatty acid synthase (FAS), sterol regulatory element-binding proteins (SREBPs) play a pivotal role in stimulating lipid biosynthesis. Several studies have shown that SREBPs are regulated by the NAD+-dependent histone deacetylase SIRT1, which forms a complex with the lysine-specific histone demethylase LSD1. Here, we show that LSD1 plays a role in regulating SREBP1-mediated gene expression. Multiple lines of evidence suggest that LSD1 is required for SREBP1-dependent activation of the FAS promoter in mammalian cells. LSD1 knockdown decreases SREBP-1a at the transcription level. Although LSD1 affects nuclear SREBP-1 abundance indirectly through SIRT1, it is also required for SREBP1 binding to the FAS promoter. As a result, LSD1 knockdown decreases triglyceride levels in hepatocytes. Taken together, these results show that LSD1 plays a role in regulating lipogenic gene expression, suggesting LSD1 as a potential target for treating dysregulation of lipid metabolism. PMID:25190802

  3. The appropriate standardized ileal digestible tryptophan to lysine ratio improves pig performance and regulates hormones and muscular amino acid transporters in late finishing gilts fed low-protein diets.

    PubMed

    Ma, W F; Zhang, S H; Zeng, X F; Liu, X T; Xie, C Y; Zhang, G J; Qiao, S Y

    2015-03-01

    This study investigated the effects of various standardized ileal digestible (SID) Trp to Lys ratios on the performance and carcass characteristics of late finishing gilts receiving low-CP (9.6%) diets supplemented with crystalline AA. Ninety gilts (89.1 ± 5.1 kg) were used in a dose-response study conducted for 35 d. Crystalline Trp (0, 0.1, 0.2, 0.4, or 0.6 g/kg) was added to a corn-wheat bran basal diet providing SID Trp to Lys ratios of 0.12, 0.15, 0.18, 0.21, or 0.24. Each diet was fed to 6 pens of pigs with 3 gilts per pen. At the end of the experiment, 30 gilts (1 pig per pen) were slaughtered to evaluate carcass traits and meat quality (BW = 121 kg). Increasing the SID Trp to Lys ratio increased ADG (linear and quadratic effect, < 0.05) and also improved G:F (linear and quadratic effect, < 0.05). Serum urea nitrogen (SUN) decreased as the SID Trp to Lys ratio increased (linear and quadratic effects, < 0.05). A quadratic effect of L* light and marbling in the longissimus dorsi was observed as the dietary SID Trp to Lys ratio increased ( < 0.05). Increasing the SID Trp to Lys ratio increased the level of serum GH (quadratic effect, < 0.05) and also increased the level of serum IGF-1 (linear and quadratic effect, < 0.05). Increasing the SID Trp to Lys ratio increased the protein abundance of the muscular AA transporter of sodium-coupled neutral amino acid transporter 2 (SNAT2) in the longissimus dorsi muscle (linear and quadratic effect, < 0.05). The optimum SID Trp to Lys ratios to maximize ADG and G:F as well as to minimize SUN levels were 0.16, 0.17, and 0.16 using a linear-breakpoint model and 0.20, 0.20, and 0.20 using a quadratic model. Tryptophan could influence serum GH and IGF-1 secretion and protein abundance of the muscular AA transporter of SNAT2 in the longissimus dorsi muscle in late finishing gilts fed low-protein diets.

  4. New cyclodextrin derivative containing poly(L-lysine) dendrons for gene and drug co-delivery.

    PubMed

    Ma, Dong; Zhang, Hong-Bin; Chen, Yu-Yun; Lin, Jian-Tao; Zhang, Li-Ming

    2013-09-01

    To develop a multifunctional polymeric carrier for gene and drug co-delivery, a new cyclodextrin derivative containing poly(L-lysine) dendrons was prepared by the click conjugation of per-6-azido-β-cyclodextrin with propargyl focal point poly(L-lysine) dendron of third generation and then characterized by FTIR, (1)H NMR, and GPC analyses. It was found that such a conjugate could form colloidally stable nanocomplexes with plasmid DNA in aqueous system and exhibited high gene transfection efficiency. Moreover, it could load efficiently methotrexate drug with anticancer activity and showed a sustained release behavior. Different from commonly used amphiphilic copolymers with cationic character, the as obtained cyclodextrin derivative may be used directly for the combinatorial delivery of nucleic acid and lipophilic anticancer drugs without a complicated micellization process. PMID:23769303

  5. Biosynthesis of lysine in Saccharomyces cervisiae: properties and spectrophotometric determination of homocitrate synthase activity.

    PubMed

    Gray, G S; Bhattacharjee, J K

    1976-11-01

    A rapid assay is described for homocitrate synthase (EC 4.1.3.21) of the lysine biosynthetic pathway of Saccharomyces cerevisiae. The alpha-ketoglutarate-dependent cleavage of acetyl-coA was measured spectrophotometrically as decrease in absorbance at 600 nm in the presence of 2,6-dichlorophenol-indophenol and enzyme from the wild type strain X2180. This activity was also present in citrate synthaseless glutamate auxotroph glu3, and the activity was inhibited by 5 mM L-lysine. Radioactive homocitric acid was obtained from a reaction mixture containing [1-14C]acetyl-coA. Homocitrate synthase activity was dependent upon time, both substrates, and enzyme. The activity exhibited a pH and temperature optimum of 7.5-8.0 and 32 degrees C, respectively, and was inhibited by metal-chelating and sulfhydryl-binding agents. PMID:10066

  6. Carnitine biosynthesis. Hydroxylation of N6-trimethyl-lysine to 3-hydroxy-N6-trimethyl-lysine.

    PubMed

    Sachan, D S; Hoppel, C L

    1980-05-15

    Rat kidney homogenates metabolize N6-trimethyl-lysine to N-trimethylammoniobutyrate, but not to carnitine. The first step in this conversion is the hydroxylation of trimethyl-lysine to form 3-hydroxy-N6-trimethyl-lysine. An assay system was developed in which hydroxylation of trimethyl-lysine is linear with respect to both time and homogenate protein concentration. The rate is 5 nmol of 3-hydroxy-N6-trimethyl-lysine formed/min per mg of homogenate protein. The cofactors required are ascorbate, alpha-oxoglutarate, FeSO4, and O2. Catalase and dithiothreitol give a 20% stimulation. Ca2+ produces a 2-fold increase in specific activity and cannot be replaced by Mg2+, Mn2+ or Zn2+. These last three bivalent cations lead to a decreased activity. Subcellular distribution studies demonstrate that trimethyl-lysine hydroxylase activity parallels the distribution profile of succinate dehydrogenase and citrate synthase. Thus trimethyl-lysine hydroxylase has a mitochondrial localization. Distribution of trimethyl-lysine hydroxylase activity between cortex and medulla of kidney if 67 and 33% respectively, similar to mitochondrial distribution.

  7. Dual Genetic Encoding of Acetyl-lysine and Non-deacetylatable Thioacetyl-lysine Mediated by Flexizyme.

    PubMed

    Xiong, Hai; Reynolds, Noah M; Fan, Chenguang; Englert, Markus; Hoyer, Denton; Miller, Scott J; Söll, Dieter

    2016-03-14

    Acetylation of lysine residues is an important post-translational protein modification. Lysine acetylation in histones and its crosstalk with other post-translational modifications in histone and non-histone proteins are crucial to DNA replication, DNA repair, and transcriptional regulation. We incorporated acetyl-lysine (AcK) and the non-hydrolyzable thioacetyl-lysine (ThioAcK) into full-length proteins in vitro, mediated by flexizyme. ThioAcK and AcK were site-specifically incorporated at different lysine positions into human histone H3, either individually or in pairs. We demonstrate that the thioacetyl group in histone H3 could not be removed by the histone deacetylase sirtuin type 1. This method provides a powerful tool to study protein acetylation and its role in crosstalk between post-translational modifications. PMID:26914285

  8. Total lipids of Sarda sheep meat that include the fatty acid and alkenyl composition and the CLA and trans-18:1 isomers.

    PubMed

    Santercole, Viviana; Mazzette, Rina; De Santis, Enrico P L; Banni, Sebastiano; Goonewardene, Laki; Kramer, John K G

    2007-04-01

    The total lipids of the longissimus dorsi muscle were analyzed from commercial adult Sarda sheep in Sardina taken from local abattoirs, and in the subsequent year from three local farms in the Sassari region that provided some information on the amount and type of supplements fed to the pasture-fed sheep. The complete lipid analysis of sheep meat included the fatty acids from O-acyl and N-acyl lipids, including the trans- and conjugated linoleic acid (CLA) isomers and the alk-1-enyl ethers from the plasmalogenic lipids. This analysis required the use of a combination of acid- and base-catalyzed methylation procedures, the former to quantitate the O-acyl, N-acyl and alkenyl ethers, and the latter to determine the content of CLA isomers and their metabolites. A combination of gas chromatographic and silver-ion separation techniques was necessary to quantitate all of the meat lipid constituents, which included a prior separation of the trans-octadecenoic acids (18:1) and a separation of fatty acid methyl esters and the dimethylacetals (DMAs) from the acyl and alk-1-enyl ethers, respectively. The alk-1-enyl moieties of the DMAs were analyzed as their stable cyclic acetals. In general, about half of the meat lipids were triacylglycerols, even though excess fat was trimmed from the meat. The higher fat content in the meat appears to be related to the older age of these animals. The variation in the trans-18:1 and CLA isomer profiles of the Sarda sheep obtained from the abattoirs was much greater than in the profiles from the sheep from the three selected farms. Higher levels of 10t-18:1, 7t9c-18:2, 9t11c-18:2 and 10t12c-18:2 were observed in the commercial sheep meat, which reflected the poorer quality diets of these sheep compared to those from the three farms, which consistently showed higher levels of 11t-18:1, 9c11t-18:2 and 11t13c-18:2. In the second study, sheep were provided with supplements during the spring and summer grazing season, which contributed to higher

  9. Thermodynamic models of aqueous solutions containing inorganic electrolytes and dicarboxylic acids at 298.15 K. 2. Systems including dissociation equilibria.

    PubMed

    Clegg, Simon L; Seinfeld, John H

    2006-05-01

    Atmospheric aerosols contain a significant fraction of water-soluble organic compounds, including dicarboxylic acids. Pitzer activity coefficient models are developed, using a wide range of data at 298.15 K, for the following systems containing succinic acid (H(2)Succ) and/or succinate salts: [H(+), Li(+), Na(+), K(+), Rb(+), Cs(+)]Cl(-)-H(2)Succ-H(2)O, HNO(3)-H(2)Succ-H(2)O, H(+)-NH(4)(+)-HSucc(-)-Succ(2-)-NH(3)-H(2)Succ-H(2)O, NH(4)Cl-(NH(4))(2)Succ-H(2)O, H(+)-Na(+)-HSucc(-)-Succ(2-)-Cl(-)-H(2)Succ-H(2)O, NH(4)NO(3)-H(2)Succ-H(2)O, and H(2)SO(4)-H(2)Succ-H(2)O. The above compositions are given in terms of ions in the cases where acid dissociation was considered. Pitzer models were also developed for the following systems containing malonic acid (H(2)Malo): H(+)-Na(+)-HMalo(-)-Malo(2-)-Cl(-)-H(2)Malo-H(2)O, and H(2)Malo-H(2)SO(4)-H(2)O. The models are used to evaluate the extended Zdanovskii-Stokes-Robinson (ZSR) model proposed by Clegg and Seinfeld (J. Phys. Chem. A 2004, 108, 1008-1017) for calculating water and solute activities in solutions in which dissociation equilibria occur. The ZSR model yields satisfactory results only for systems that contain moderate to high concentrations of (nondissociating) supporting electrolyte. A practical modeling scheme is proposed for aqueous atmospheric aerosols containing both electrolytes and dissociating (organic) nonelectrolytes.

  10. Lysine supplementation of commercial fishmeal-free diet in hybrid striped bass Morone chrysops x M. saxatilis affects expression of growth related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent results in hybrid striped bass (HSB) concluded that ideal protein theory accurately predicts first-limiting amino acids in commercial diet formulations if accurate amino acid availability data are used and that appropriate levels of supplemental lysine are needed in order to improve fish ...

  11. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication.

    PubMed

    Koonin, E V

    1993-06-11

    A new superfamily of (putative) DNA-dependent ATPases is described that includes the ATPase domains of prokaryotic NtrC-related transcription regulators, MCM proteins involved in the initiation of eukaryotic DNA replication, and a group of uncharacterized bacterial and chloroplast proteins. MCM proteins are shown to contain a modified form of the ATP-binding motif and are predicted to mediate ATP-dependent opening of double-stranded DNA in the replication origins. In a second line of investigation, it is demonstrated that the products of unidentified open reading frames from Marchantia mitochondria and from yeast, and a domain of a baculovirus protein involved in viral DNA replication are related to the superfamily III of DNA and RNA helicases that previously has been known to include only proteins of small viruses. Comparison of the multiple alignments showed that the proteins of the NtrC superfamily and the helicases of superfamily III share three related sequence motifs tightly packed in the ATPase domain that consists of 100-150 amino acid residues. A similar array of conserved motifs is found in the family of DnaA-related ATPases. It is hypothesized that the three large groups of nucleic acid-dependent ATPases have similar structure of the core ATPase domain and have evolved from a common ancestor.

  12. Lysine acetylation is a common post-translational modification of key metabolic pathway enzymes of the anaerobe Porphyromonas gingivalis.

    PubMed

    Butler, Catherine A; Veith, Paul D; Nieto, Matthew F; Dashper, Stuart G; Reynolds, Eric C

    2015-10-14

    Porphyromonas gingivalis is a Gram-negative anaerobe considered to be a keystone pathogen in the development of the bacterial-associated inflammatory oral disease chronic periodontitis. Although post-translational modifications (PTMs) of proteins are commonly found to modify protein function in eukaryotes and prokaryotes, PTMs such as lysine acetylation have not been examined in P. gingivalis. Lysine acetylation is the addition of an acetyl group to a lysine which removes this amino acid's positive charge and can induce changes in a protein's secondary structure and reactivity. A proteomics based approach combining immune-affinity enrichment with high sensitivity Orbitrap mass spectrometry identified 130 lysine acetylated peptides from 92 P. gingivalis proteins. The majority of these peptides (71) were attributed to 45 proteins with predicted metabolic activity; these proteins could be mapped to several P. gingivalis metabolic pathways where enzymes catalysing sequential reactions within the same pathway were often found acetylated. In particular, the catabolic pathways of complex anaerobic fermentation of amino acids to produce energy had 12 enzymes lysine acetylated. The results suggest that lysine acetylation may be an important mechanism in metabolic regulation in P. gingivalis, which is vital for P. gingivalis survival and adaptation of its metabolism throughout infection. Statement of significance. Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis, an inflammatory disease of the supporting tissues of the teeth. The ability of the pathogen to induce dysbiosis and disease is related to an array of specific virulence factors and metabolic regulation that enables the bacterium to proliferate in an inflamed periodontal pocket. The mechanisms P. gingivalis uses to adapt to a changing and hostile environment are poorly understood and here we show, for the first time, that enzymes of critical metabolic pathways for energy

  13. A single lysine of the two-lysine recognition motif of the D3 domain of receptor-associated protein is sufficient to mediate endocytosis by low-density lipoprotein receptor-related protein.

    PubMed

    van den Biggelaar, Maartje; Sellink, Erica; Klein Gebbinck, Jacqueline W T M; Mertens, Koen; Meijer, Alexander B

    2011-03-01

    Ligand binding of the low-density lipoprotein (LDL) receptor family is mediated by complement-type repeats (CR) each comprising a binding pocket for a single basic amino acid residue. It has been proposed that at least two CRs are required for high-affinity interaction by utilising two spatially distinct lysine residues on the ligand surface. LDL receptor-related protein (LRP) mediates the cellular uptake of a multitude of ligands, some of which bind LRP with a relatively low affinity suggesting a suboptimal positioning of the two critical lysines. We now addressed the role of the two critical lysines not only in LRP binding but also in LRP-dependent endocytosis. Variants of the third domain (D3) of receptor-associated protein (RAP) were created carrying lysine to alanine or arginine replacements at the putative contact residues K253, K256 and K270. Surface plasmon resonance revealed that replacement of K253 did not affect high-affinity LRP binding at all, whereas replacement of either K256 or K270 markedly reduced the affinity by approximately 10-fold. Binding was abolished when both lysines were replaced. Substitution by either alanine or arginine exerted an almost identical effect on LRP binding. This suggests that despite their positive charge, arginine residues do not support receptor binding at all. Confocal microscopy and flow cytometry studies surprisingly revealed that the single mutants were still taken up and still competed for the uptake of full length RAP despite their receptor binding defect. We therefore propose that the presence of only one of the two critical lysines is sufficient to drive endocytosis. PMID:21144910

  14. Multi-Biomarkers for Early Detection of Type 2 Diabetes, Including 10- and 12-(Z,E)-Hydroxyoctadecadienoic Acids, Insulin, Leptin, and Adiponectin

    PubMed Central

    Umeno, Aya; Yoshino, Kohzoh; Hashimoto, Yoshiko; Shichiri, Mototada; Kataoka, Masatoshi; Yoshida, Yasukazu

    2015-01-01

    We have previously found that fasting plasma levels of totally assessed 10- and 12-(Z,E)-hydroxyoctadecadienoic acid (HODE) correlated well with levels of glycated hemoglobin (HbA1c) and glucose during oral glucose tolerance tests (OGTT); these levels were determined via liquid chromatography—mass spectrometry after reduction and saponification. However, 10- and 12-(Z,E)-HODE alone cannot perfectly detect early impaired glucose tolerance (IGT) and/or insulin resistance, which ultimately lead to diabetes. In this study, we randomly recruited healthy volunteers (n = 57) who had no known history of any diseases, and who were evaluated using the OGTT, the HODE biomarkers, and several additional proposed biomarkers, including retinol binding protein 4 (RBP4), adiponectin, leptin, insulin, glycoalbumin, and high sensitivity-C-reactive protein. The OGTT revealed that our volunteers included normal individuals (n = 44; Group N), “high-normal” individuals (fasting plasma glucose 100–109 mg/dL) with IGT (n = 11; Group HN+IGT), and diabetic individuals (n = 2; Group D). We then used these groups to evaluate the potential biomarkers for the early detection of type 2 diabetes. Plasma levels of RBP4 and glycoalbumin were higher in Group HN+IGT, compared to those in Group N, and fasting levels of 10- and 12-(Z,E)-HODE/linoleic acids were significantly correlated with levels of RBP4 (p = 0.003, r = 0.380) and glycoalbumin (p = 0.006, r = 0.316). Furthermore, we developed a stepwise multiple linear regression models to predict the individuals’ insulin resistance index (the Matsuda Index 3). Fasting plasma levels of 10- and 12-(Z,E)-HODE/linoleic acids, glucose, insulin, and leptin/adiponectin were selected as the explanatory variables for the models. The risks of type 2 diabetes, early IGT, and insulin resistance were perfectly predicted by comparing fasting glucose levels to the estimated Matsuda Index 3 (fasting levels of 10- and 12-(Z,E)-HODE/linoleic acids, insulin

  15. Cadaverine: a lysine catabolite involved in plant growth and development.

    PubMed

    Tomar, Pushpa C; Lakra, Nita; Mishra, S N

    2013-10-01

    The cadaverine (Cad) a diamine, imino compound produced as a lysine catabolite is also implicated in growth and development of plants depending on environmental condition. This lysine catabolism is catalyzed by lysine decarboxylase, which is developmentally regulated. However, the limited role of Cad in plants is reported, this review is tempted to focus the metabolism and its regulation, transport and responses, interaction and cross talks in higher plants. The Cad varied presence in plant parts/products suggests it as a potential candidate for taxonomic marker as well as for commercial exploitation along with growth and development.

  16. Examining the Impact of Gene Variants on Histone Lysine Methylation

    PubMed Central

    Van Rechem, Capucine; Whetstine, Johnathan R.

    2015-01-01

    In recent years, there has been a boom in the amount of genome-wide sequencing data that has uncovered important and unappreciated links between certain genes, families of genes and enzymatic processes and diseases such as cancer. Such studies have highlighted the impact that chromatin modifying enzymes could have in cancer and other genetic diseases. In this review, we summarize characterized mutations and single nucleotide polymorphisms (SNPs) in histone lysine methyltransferases (KMTs), histone lysine demethylases (KDMs) and histones. We primarily focus on variants with strong disease correlations and discuss how they could impact histone lysine methylation dynamics and gene regulation. PMID:24859469

  17. Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells - Possible Relevance to Autism Spectrum Disorders

    PubMed Central

    Nankova, Bistra B.; Agarwal, Raj; MacFabe, Derrick F.; La Gamma, Edmund F.

    2014-01-01

    Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA) like propionic (PPA), and butyric acid (BA), which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD). Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal) or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH) mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s) was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals such as

  18. An expeditious multigram-scale synthesis of lysine dendrigraft (DGL) polymers by aqueous N-carboxyanhydride polycondensation.

    PubMed

    Collet, Hélène; Souaid, Eddy; Cottet, Hervé; Deratani, André; Boiteau, Laurent; Dessalces, Guy; Rossi, Jean-Christophe; Commeyras, Auguste; Pascal, Robert

    2010-02-15

    The synthesis and characterisation of new arborescent architectures of poly(L-lysine), called lysine dendrigraft (DGL) polymers, are described. DGL polymers were prepared through a multiple-generation scheme (up to generation 5) in a weakly acidic aqueous medium by polycondensing N(epsilon)-trifluoroacetyl-L-lysine-N-carboxyanhydride (Lys(Tfa)-NCA) onto the previous generation G(n-1) of DGL, which was used as a macroinitiator. The first generation employed spontaneous NCA polycondensation in water without a macroinitiator; this afforded low-molecular-weight, linear poly(L-lysine) G1 with a polymerisation degree of 8 and a polydispersity index of 1.2. The spontaneous precipitation of the growing N(epsilon)-Tfa-protected polymer (GnP) ensures moderate control of the molecular weight (with unimodal distribution) and easy work-up. The subsequent alkaline removal of Tfa protecting groups afforded generation Gn of DGL as a free form (with 35-60% overall yield from NCA precursor, depending on the DGL generation) that was either used directly in the synthesis of the next generation (G(n+1)) or collected for other uses. Unprotected forms of DGL G1-G5 were characterised by size-exclusion chromatography, capillary electrophoresis and (1)H NMR spectroscopy. The latter technique allowed us to assess the branching density of DGL, the degree of which (ca. 25%) turned out to be intermediate between previously described dendritic graft poly(L-lysines) and lysine dendrimers. An optimised monomer (NCA) versus macroinitiator (DGL G(n-1)) ratio allowed us to obtain unimodal molecular weight distributions with polydispersity indexes ranging from 1.3 to 1.5. Together with the possibility of reaching high molecular weights (with a polymerisation degree of ca. 1000 for G5) within a few synthetic steps, this synthetic route to DGL provides an easy, cost-efficient, multigram-scale access to dendritic polylysines with various potential applications in biology and in other domains.

  19. Amino acids 16-275 of minute virus of mice NS1 include a domain that specifically binds (ACCA)2-3-containing DNA.

    PubMed

    Mouw, M; Pintel, D J

    1998-11-10

    GST-NS1 purified from Escherichia coli and insect cells binds double-strand DNA in an (ACCA)2-3-dependent fashion under similar ionic conditions, independent of the presence of anti-NS1 antisera or exogenously supplied ATP and interacts with single-strand DNA and RNA in a sequence-independent manner. An amino-terminal domain (amino acids 1-275) of NS1 [GST-NS1(1-275)], representing 41% of the full-length NS1 molecule, includes a domain that binds double-strand DNA in a sequence-specific manner at levels comparable to full-length GST-NS1, as well as single-strand DNA and RNA in a sequence-independent manner. The deletion of 15 additional amino-terminal amino acids yielded a molecule [GST-NS1(1-275)] that maintained (ACCA)2-3-specific double-strand DNA binding; however, this molecule was more sensitive to increasing ionic conditions than full-length GST-NS1 and GST-NS1(1-275) and could not be demonstrated to bind single-strand nucleic acids. A quantitative filter binding assay showed that E. coli- and baculovirus-expressed GST-NS1 and E. coli GST-NS1(1-275) specifically bound double-strand DNA with similar equilibrium kinetics [as measured by their apparent equilibrium DNA binding constants (KD)], whereas GST-NS1(16-275) bound 4- to 8-fold less well.

  20. Utilization of potato starch processing wastes to produce animal feed with high lysine content.

    PubMed

    Li, Ying; Liu, Bingnan; Song, Jinzhu; Jiang, Cheng; Yang, Qian

    2015-02-01

    This work aims to utilize wastes from the potato starch industry to produce single-cell protein (SCP) with high lysine content as animal feed. In this work, S-(2-aminoethyl)-L-cysteine hydrochloride-resistant Bacillus pumilus E1 was used to produce SCP with high lysine content, whereas Aspergillus niger was used to degrade cellulose biomass and Candida utilis was used to improve the smell and palatability of the feed. An orthogonal design was used to optimize the process of fermentation for maximal lysine content. The optimum fermentation conditions were as follows: temperature of 40°C, substrate concentration of 3%, and natural pH of about 7.0. For unsterilized potato starch wastes, the microbial communities in the fermentation process were determined by terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes. Results showed that the dominant population was Bacillus sp. The protein quality as well as the amino acid profile of the final product was found to be significantly higher compared with the untreated waste product at day 0. Additionally, acute toxicity test showed that the SCP product was non-toxic, indicating that it can be used for commercial processing.

  1. Mass spectrometry-based glycoproteomic approach involving lysine derivatization for structural characterization of recombinant human erythropoietin.

    PubMed

    Cindrić, Mario; Bindila, Laura; Cepo, Tina; Peter-Katalinić, Jasna

    2006-11-01

    Lysine-containing peptides comprising glycosylation sites derived from recombinant human erythropoietin (rHuEPO) by trypsin or Lys-C and PNGase F dual digestion were derivatized with 2-methoxy-4,5-dihydro-1H-imidazole and its deuterated analogues. In the same reaction, under reducing conditions (beta-mercaptoethanol), cysteines were converted into methyl-cysteines and lysines into Lys-4,5-dihydro-1H-imidazole. Both modifications on cysteines and lysines simplified the CID-MS/MS spectra, while preserving the structural information by yielding y-series ions and improved the mass spectral signal intensity up to 25 times. Moreover, by this approach, the N-glycan occupation sites were unambiguously determined. O-Glycosylation sites as well as O-glycan structures were determined by a LC-MS/MS experiment carried out on dually digested rHuEPO. N-Glycan mixture purified on a graphitized carbon column using a newly developed method that extracted only sialylated carbohydrates was analyzed first using MALDI-TOF in negative linear ion mode with low mass accuracy but without interferences and metastabile ions and then a reflectron with high mass accuracy. After defining the precursor ions, we performed the nanoESI QTOF MS/MS analysis on N-glycans, mainly targeting the distinction between carbohydrates with sialylated antennae and those lacking sialic acid moieties.

  2. Stabilization of collagen nanofibers with L-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells.

    PubMed

    Lai, Jui-Yang; Wang, Pei-Ran; Luo, Li-Jyuan; Chen, Si-Tan

    2014-01-01

    To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of L-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the L-lysine-pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the L-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating L-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high L-lysine-pretreated concentration (ie, 30 mM) appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3-10 mM L-lysine) can provide a useful strategy to assist in the development of carbodiimide cross-linked amniotic membrane as a stable stem cell niche for corneal epithelial tissue engineering. PMID:25395849

  3. Stabilization of collagen nanofibers with L-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells.

    PubMed

    Lai, Jui-Yang; Wang, Pei-Ran; Luo, Li-Jyuan; Chen, Si-Tan

    2014-01-01

    To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of L-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the L-lysine-pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the L-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating L-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high L-lysine-pretreated concentration (ie, 30 mM) appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3-10 mM L-lysine) can provide a useful strategy to assist in the development of carbodiimide cross-linked amniotic membrane as a stable stem cell niche for corneal epithelial tissue engineering.

  4. Stabilization of collagen nanofibers with l-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells

    PubMed Central

    Lai, Jui-Yang; Wang, Pei-Ran; Luo, Li-Jyuan; Chen, Si-Tan

    2014-01-01

    To overcome the drawbacks associated with limited cross-linking efficiency of carbodiimide modified amniotic membrane, this study investigated the use of l-lysine as an additional amino acid bridge to enhance the stability of a nanofibrous tissue matrix for a limbal epithelial cell culture platform. Results of ninhydrin assays and zeta potential measurements showed that the amount of positively charged amino acid residues incorporated into the tissue collagen chains is highly correlated with the l-lysine-pretreated concentration. The cross-linked structure and hydrophilicity of amniotic membrane scaffolding materials affected by the lysine molecular bridging effects were determined. With an increase in the l-lysine-pretreated concentration from 1 to 30 mM, the cross-linking density was significantly increased and water content was markedly decreased. The variations in resistance to thermal denaturation and enzymatic degradation were in accordance with the number of cross-links per unit mass of amniotic membrane, indicating l-lysine-modulated stabilization of collagen molecules. It was also noteworthy that the carbodiimide cross-linked tissue samples prepared using a relatively high l-lysine-pretreated concentration (ie, 30 mM) appeared to have decreased light transmittance and biocompatibility, probably due to the influence of a large nanofiber size and a high charge density. The rise in stemness gene and protein expression levels was dependent on improved cross-link formation, suggesting the crucial role of amino acid bridges in constructing suitable scaffolds to preserve limbal progenitor cells. It is concluded that mild to moderate pretreatment conditions (ie, 3–10 mM l-lysine) can provide a useful strategy to assist in the development of carbodiimide cross-linked amniotic membrane as a stable stem cell niche for corneal epithelial tissue engineering. PMID:25395849

  5. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-01

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor.

  6. Seed-Specific Expression of the Arabidopsis AtMAP18 Gene Increases both Lysine and Total Protein Content in Maize

    PubMed Central

    Chang, Yujie; Shen, Erli; Wen, Liuying; Yu, Jingjuan; Zhu, Dengyun; Zhao, Qian

    2015-01-01

    Lysine is the most limiting essential amino acid for animal nutrition in maize grains. Expression of naturally lysine-rich protein genes can increase the lysine and protein contents in maize seeds. AtMAP18 from Arabidopsis thaliana encoding a microtubule-associated protein with high-lysine content was introduced into the maize genome with the seed-specific promoter F128. The protein and lysine contents of different transgenic offspring were increased prominently in the six continuous generations investigated. Expression of AtMAP18 increased both zein and non-zein protein in the transgenic endosperm. Compared with the wild type, more protein bodies were observed in the endosperm of transgenic maize. These results implied that, as a cytoskeleton binding protein, AtMAP18 facilitated the formation of protein bodies, which led to accumulation of both zein and non-zein proteins in the transgenic maize grains. Furthermore, F1 hybrid lines with high lysine, high protein and excellent agronomic traits were obtained by hybridizing T6 transgenic offspring with other wild type inbred lines. This article provides evidence supporting the use of cytoskeleton-associated proteins to improve the nutritional value of maize. PMID:26580206

  7. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases.

    PubMed

    Duncan, Anna L; Robinson, Alan J; Walker, John E

    2016-08-01

    The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme. PMID:27382158

  8. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases

    PubMed Central

    Duncan, Anna L.

    2016-01-01

    The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme. PMID:27382158

  9. Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine.

    PubMed

    Cho, Eunae; Kim, Hwanhee; Choi, Youngjin; Paik, Seung R; Jung, Seunho

    2016-01-01

    Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine. PMID:27502314

  10. Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine.

    PubMed

    Cho, Eunae; Kim, Hwanhee; Choi, Youngjin; Paik, Seung R; Jung, Seunho

    2016-08-09

    Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine.

  11. Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Kim, Hwanhee; Choi, Youngjin; Paik, Seung R.; Jung, Seunho

    2016-08-01

    Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine.

  12. Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine

    PubMed Central

    Cho, Eunae; Kim, Hwanhee; Choi, Youngjin; Paik, Seung R.; Jung, Seunho

    2016-01-01

    Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine. PMID:27502314

  13. Lysine fatty acylation promotes lysosomal targeting of TNF-α

    PubMed Central

    Jiang, Hong; Zhang, Xiaoyu; Lin, Hening

    2016-01-01

    Tumor necrosis factor-α (TNF-α) is a proinflammation cytokine secreted by various cells. Understanding its secretive pathway is important to understand the biological functions of TNF-α and diseases associated with TNF-α. TNF-α is one of the first proteins known be modified by lysine fatty acylation (e.g. myristoylation). We previously demonstrated that SIRT6, a member of the mammalian sirtuin family of enzymes, can remove the fatty acyl modification on TNF-α and promote its secretion. However, the mechanistic details about how lysine fatty acylation regulates TNF-α secretion have been unknown. Here we present experimental data supporting that lysine fatty acylation promotes lysosomal targeting of TNF-α. The result is an important first step toward understanding the biological functions of lysine fatty acylation. PMID:27079798

  14. Data detailing the platelet acetyl-lysine proteome

    PubMed Central

    Aslan, Joseph E.; David, Larry L.; McCarty, Owen J.T.

    2015-01-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification – mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332. PMID:26904711

  15. Data detailing the platelet acetyl-lysine proteome.

    PubMed

    Aslan, Joseph E; David, Larry L; McCarty, Owen J T

    2015-12-01

    Here we detail proteomics data that describe the acetyl-lysine proteome of blood platelets (Aslan et al., 2015 [1]). An affinity purification - mass spectrometry (AP-MS) approach was used to identify proteins modified by Nε-lysine acetylation in quiescent, washed human platelets. The data provide insights into potential regulatory mechanisms of platelet function mediated by protein lysine acetylation. Additionally, as platelets are anucleate and lack histone proteins, they offer a unique and valuable system to study the regulation of cytosolic proteins by lysine acetylation. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014 [2]) via with PRIDE partner repository with the dataset identifier PXD002332. PMID:26904711

  16. Identification of structural determinants of NAD(P)H selectivity and lysine binding in lysine N(6)-monooxygenase.

    PubMed

    Abdelwahab, Heba; Robinson, Reeder; Rodriguez, Pedro; Adly, Camelia; El-Sohaimy, Sohby; Sobrado, Pablo

    2016-09-15

    l-lysine (l-Lys) N(6)-monooxygenase (NbtG), from Nocardia farcinica, is a flavin-dependent enzyme that catalyzes the hydroxylation of l-Lys in the presence of oxygen and NAD(P)H in the biosynthetic pathway of the siderophore nocobactin. NbtG displays only a 3-fold preference for NADPH over NADH, different from well-characterized related enzymes, which are highly selective for NADPH. The structure of NbtG with bound NAD(P)(+) or l-Lys is currently not available. Herein, we present a mutagenesis study targeting M239, R301, and E216. These amino acids are conserved and located in either the NAD(P)H binding domain or the l-Lys binding pocket. M239R resulted in high production of hydrogen peroxide and little hydroxylation with no change in coenzyme selectivity. R301A caused a 300-fold decrease on kcat/Km value with NADPH but no change with NADH. E216Q increased the Km value for l-Lys by 30-fold with very little change on the kcat value or in the binding of NAD(P)H. These results suggest that R301 plays a major role in NADPH selectivity by interacting with the 2'-phosphate of the adenine-ribose moiety of NADPH, while E216 plays a role in l-Lys binding.

  17. Characteristics and antioxidant activity of Maillard reaction products from psicose-lysine and fructose-lysine model systems.

    PubMed

    Zeng, Yan; Zhang, Xiaoxi; Guan, Yuping; Sun, Yuanxia

    2011-04-01

    D-Psicose, an epimer of D-fructose isomerized at C-3 position, is a rare ketohexose that is thought to be beneficial for obese people and diabetic patients as a noncaloric sweetener. In the present study, model Maillard reaction products were obtained from D-psicose (or D-fructose) and L-lysine heating at 120 °C up to 8 h with the initial pH 9.0. The changes in pH, UV-vis absorbance, and free amino groups during the reaction were detected. Moreover, the antioxidant potential of the Maillard reaction products at different intervals was investigated. Although there was almost no difference in the oxygen radical absorbance capacity, the Maillard reaction products from psicose performed better than that from fructose in the radical-scavenging activity of 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and 1, 1,-diphenyl-2-picryl-hydrazyl. The reducing power of the Maillard reaction products from psicose was also stronger than that from fructose. These results indicated that psicose played an effective role in the Maillard reaction and its Maillard reaction products could act as potential antioxidants in food industry. PMID:21535806

  18. Characteristics and antioxidant activity of Maillard reaction products from psicose-lysine and fructose-lysine model systems.

    PubMed

    Zeng, Yan; Zhang, Xiaoxi; Guan, Yuping; Sun, Yuanxia

    2011-04-01

    D-Psicose, an epimer of D-fructose isomerized at C-3 position, is a rare ketohexose that is thought to be beneficial for obese people and diabetic patients as a noncaloric sweetener. In the present study, model Maillard reaction products were obtained from D-psicose (or D-fructose) and L-lysine heating at 120 °C up to 8 h with the initial pH 9.0. The changes in pH, UV-vis absorbance, and free amino groups during the reaction were detected. Moreover, the antioxidant potential of the Maillard reaction products at different intervals was investigated. Although there was almost no difference in the oxygen radical absorbance capacity, the Maillard reaction products from psicose performed better than that from fructose in the radical-scavenging activity of 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and 1, 1,-diphenyl-2-picryl-hydrazyl. The reducing power of the Maillard reaction products from psicose was also stronger than that from fructose. These results indicated that psicose played an effective role in the Maillard reaction and its Maillard reaction products could act as potential antioxidants in food industry.

  19. Efficiency of lysine utilization by growing steers.

    PubMed

    Batista, E D; Hussein, A H; Detmann, E; Miesner, M D; Titgemeyer, E C

    2016-02-01

    This study evaluated the efficiency of Lys utilization by growing steers. Five ruminally cannulated Holstein steers (165 ± 8 kg) housed in metabolism crates were used in a 6 × 6 Latin square design; data from a sixth steer was excluded due to erratic feed intake. All steers were limit fed (2.46 kg DM/d), twice daily, diets low in RUP (81% soybean hulls, 8% wheat straw, 6% cane molasses, and 5% vitamins and minerals). Treatments were 0, 3, 6, 9, 12, and 15 g/d of Lys continuously abomasally infused. To prevent AA other than Lys from limiting performance, a mixture providing all essential AA to excess was continuously abomasally infused. Additional continuous infusions included 10 g urea/d, 200 g acetic acid/d, 200 g propionic acid/d, and 50 g butyric acid/d to the rumen and 300 g glucose/d to the abomasum. These infusions provided adequate ruminal ammonia and increased energy supply without increasing microbial protein supply. Each 6-d period included 2 d for adaptation and 4 d for total fecal and urinary collections for measuring N balance. Blood was collected on d 6 (10 h after feeding). Diet OM digestibility was not altered ( ≥ 0.66) by treatment and averaged 73.7%. Urinary N excretion was decreased from 32.3 to 24.3 g/d by increasing Lys supplementation to 9 g/d, with no further reduction when more than 9 g/d of Lys was supplied (linear and quadratic, < 0.01). Changes in total urinary N excretion predominantly were due to changes in urinary urea N. Increasing Lys supply from 0 to 9 g/d increased N retention from 21.4 to 30.7 g/d, with no further increase beyond 9 g/d of Lys (linear and quadratic, < 0.01). Break-point analysis estimated maximal N retention at 9 g/d supplemental Lys. Over the linear response surface of 0 to 9 g/d Lys, the efficiency of Lys utilization for protein deposition was 40%. Plasma urea N tended to be linearly decreased ( = 0.06) by Lys supplementation in agreement with the reduction in urinary urea N excretion. Plasma concentrations

  20. An update on potato crisps contents of moisture, fat, salt and fatty acids (including trans-fatty acids) with special emphasis on new oils/fats used for frying.

    PubMed

    Gonçalves Albuquerque, Tânia; Sanches-Silva, Ana; Santos, Lèlita; Costa, Helena S

    2012-09-01

    Eighteen brands of potato crisps, frequently consumed, were analyzed to establish their nutritional value in relation to salt, fat and fatty acid (FA) composition. The purpose of the present study was to determine moisture, total fat, salt contents and FA profiles (including trans-FAs), and to identify the oil/fat used for frying of the 18 brands of potato crisps. Our results show that salt content ranged from 0.127 to 2.77 g/100 g and total fat content of potato crisps varied between 20.0 and 42.8 g/100 g. With respect to FAs analysis, palmitic acid (C16:0), oleic acid (C18:1) and linoleic acid (C18:2) were the major FAs found in the analyzed potato crisps. It is clear from our work that nowadays most potato crisps are currently produced using oils with high contents in unsaturated FAs, which can be considered as healthier from a nutritional point of view. Nevertheless, some brands of potato crisps still use palm oil or a blend of palm oil and other fats/oils, which are very rich in saturated FAs.

  1. In vitro inhibition of lysine decarboxylase activity by organophosphate esters.

    PubMed

    Wang, Sufang; Wan, Bin; Zhang, Lianying; Yang, Yu; Guo, Liang-Hong

    2014-12-01

    Organophosphate esters (OPEs), a major group of organophosphorus flame retardants, are regarded as emerging environmental contaminants of health concern. Amino acid decarboxylases catalyze the conversion of amino acids into polyamines that are essential for cell proliferation, hypertrophy and tissue growth. In this paper, inhibitory effect of twelve OPEs with aromatic, alkyl or chlorinated alkyl substituents on the activity of lysine decarboxylase (LDC) was assessed quantitatively with an economic and label-free fluorescence sensor and cell assay. The sensor comprises a macrocyclic host (cucurbit[7]uril) and a fluorescent dye (acridine orange) reporter. The twelve OPEs were found to vary in their capacity to inhibit LDC activity. Alkyl group substituted OPEs had no inhibitory effect. By contrast, six OPEs substituted with aromatic or chlorinated alkyl groups inhibited LDC activity significantly with IC50 ranging from 1.32 μM to 9.07 μM. Among them, the inhibitory effect of tri-m-cresyl phosphate (TCrP) was even more effective as an inhibitor than guanosine 5'-diphosphate-3'-diphosphate (ppGpp) (1.60 μM), an LDC natural inhibitor in vivo. Moreover, at non-cytotoxic concentrations, these six OPEs showed perceptible inhibitory effects on LDC activity in PC12 living cells, and led to a marked loss in the cadaverine content. Molecular docking analysis of the LDC/OPE complexes revealed that different binding modes contribute to the difference in their inhibitory effect. Our finding suggested that LDC, as a new potential biological target of OPEs, might be implicated in toxicological and pathogenic mechanism of OPEs. PMID:25264276

  2. Water reuse in the L-lysine fermentation process.

    PubMed

    Hsiao, T Y; Glatz, C E

    1996-02-01

    L-Lysine is produced commercially by fermentation. As is typical for fermentation processes, a large amount of liquid waste is generated. To minimize the waste, which is mostly the broth effluent from the cation exchange column used for l-lysine recovery, we investigated a strategy of recycling a large fraction of this broth effluent to the subsequent fermentation. This was done on a labscale process with Corynebacterium glutamicum ATCC 21253 as the l-lysine-producing organism. Broth effluent from a fermentation in a defined medium was able to replace 75% of the water for the subsequent batch; this recycle ratio was maintained for three sequential batches without affecting cell mass and l-lysine production. Broth effluent was recycled at 50% recycle ratio in a fermentation in a complex medium containing beet molasses. The first recycle batch had an 8% lower final l-lysine level, but 8% higher maximum cell mass. In addition to reducing the volume of liquid waste, this recycle strategy has the additional advantage of utilizing the ammonium desorbed from the ion-exchange column as a nitrogen source in the recycle fermentation. The major problem of recycling the effluent from the complex medium was in the cation-exchange operation, where column capacity was 17% lower for the recycle batch. The loss of column capacity probably results from the buildup of cations competing with l-lysine for binding. (c) 1996 John Wiley & Sons, Inc.

  3. NK-lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity.

    PubMed Central

    Andersson, M; Gunne, H; Agerberth, B; Boman, A; Bergman, T; Sillard, R; Jörnvall, H; Mutt, V; Olsson, B; Wigzell, H

    1995-01-01

    A 78 residue antimicrobial, basic peptide, NK-lysin, with three intrachain disulfide bonds was purified from pig small intestine and characterized. A corresponding clone was isolated from a porcine bone marrow cDNA library. The 780 bp DNA sequence had a reading frame of 129 amino acids which corresponded to NK-lysin. The clone was used to show that stimulation with human interleukin-2 induced synthesis of NK-lysin-specific mRNA in a lymphocyte fraction enriched for T and NK cells. Lower levels of mRNA were detected in tissues known to contain T and NK cells, such as small intestine, spleen and colon. Interleukin-2 also induced both proliferation of the lymphocyte fraction and cytolytic function in these cells. Immunostaining showed that NK-lysin was present in cells positive for CD8, CD2 and CD4. NK-lysin showed high anti-bacterial activity against Escherichia coli and Bacillus megaterium and moderate activity against Acinetobacter calcoaceticus and Streptococcus pyogenes. The peptide showed a marked lytic activity against an NK-sensitive mouse tumour cell line, YAC-1, but it did not lyse red blood cells. The amino acid sequence of NK-lysin exhibits 33% identity with a putative human preproprotein, NKG5, of unknown function but derived from a cDNA clone of activated NK cells. We suggest that NK-lysin is a new effector molecule of cytotoxic T and NK cells. Images PMID:7737114

  4. Pig performance increases with the addition of DL-methionine and L-lysine to ensiled cassava leaf protein diets.

    PubMed

    Ly, Nguyen Thi Hoa; Ngoan, Le Duc; Verstegen, Martin Wilhelmus Antonius; Hendriks, Wouter Hendrikus

    2012-01-01

    Two studies were conducted to determine the impact of supplementation of diets containing ensiled cassava leaves as the main protein source with synthetic amino acids, DL-methionine alone or with L-lysine. In study 1, a total of 40 pigs in five units, all cross-breds between Large White and Mong Cai, with an average initial body weight of 20.5 kg were randomly assigned to four treatments consisting of a basal diet containing 45% of dry matter (DM) from ensiled cassava leaves (ECL) and ensiled cassava root supplemented with 0%, 0.05%, 0.1% and 0.15% DL-methionine (as DM). Results showed a significantly improved performance and protein gain by extra methionine. This reduced the feed cost by 2.6%, 7.2% and 7.5%, respectively. In study 2, there were three units and in each unit eight cross-bred (Large White × Mong Cai) pigs with an initial body weight of 20.1 kg were randomly assigned to the four treatments. The four diets were as follows: a basal diet containing 15% ECL (as DM) supplemented with different amounts of amino acids L-lysine and DL-methionine to the control diet. The results showed that diets with 15% of DM as ECL with supplementation of 0.2% lysine +0.1% DL-methionine and 0.1% lysine +0.05% DL-methionine at the 20-50 kg and above 50 kg, respectively, resulted in the best performance, protein gain and lowest costs for cross-bred (Large White × Mong Cai) pigs. Ensiled cassava leaves can be used as a protein supplement for feeding pigs provided the diets contain additional amounts of synthetic lysine and methionine.

  5. Nutritional assessment of genetically modified rapeseed synthesizing high amounts of mid-chain fatty acids including production responses of growing-finishing pigs.

    PubMed

    Böhme, Hartwig; Rudloff, Eike; Schöne, Friedrich; Schumann, Wolfgang; Hüther, Liane; Flachowsky, Gerhard

    2007-08-01

    The nutritive value of genetically modified myristic acid-rich rapeseed, in which a acyl-thioesterase gene inserted, was studied. Crude nutrients, amino acid and fatty acid profiles as well as mineral and glucosinolate contents were determined and compared with those of the non-transgenic parental cultivar. The concentration of crude nutrients, minerals and amino acids were found to be within the range of natural variance. The myristic and palmitic acid content increased from 0.1 - 11.4% and from 3.6-20%, respectively, at the expense of oleic acid, which decreased from 68.6-42.6% of total fatty acids. The glucosinolate contents increased from 12.4 micromol/g in the parental plant to 19 micromol/g DM in the GM-plant. Full-fat rapeseed of both cultivars was incorporated in pig diets at a level of 15%, and the digestibility and the production efficiency were tested under ad libitum feeding conditions with ten pigs each over the growing finishing period from 32-105 kg BW. The experimental diets did not show significant differences in digestibility and energetic feeding value. However, feed intake and weight gain decreased presumably due to the increasing glucosinolate intake associated with the feeding of transgenic rapeseed. The dietary fatty acids profile influenced the fatty acid profile of body fat. Myristic acid accumulated in back fat and intramuscular fat while the oleic acid content decreased. The increased glucosinolate intake affected the weight of thyroid glands and their iodine concentration.

  6. Expression of glycosaminoglycans and small proteoglycans in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu(2+).

    PubMed

    Siméon, A; Wegrowski, Y; Bontemps, Y; Maquart, F X

    2000-12-01

    Glycyl-histidyl-lysine-Cu(2+) is a tripeptide-copper complex previously shown to be an activator of wound healing. We have investigated the effects of glycyl-histidyl-lysine-Cu(2+) on the synthesis of glycosaminoglycans and small proteoglycans in a model of rat experimental wounds and in rat dermal fibroblast cultures. Repeated injections of glycyl-histidyl-lysine-Cu(2+) (2 mg per injection) stimulated the wound tissue production, as appreciated by dry weight and total protein measurements. This stimulation was accompanied by an increased production of type I collagen and glycosaminoglycans (assessed, respectively, by hydroxyproline and uronic acid contents of the chamber). Electrophoretic analysis of wound tissue glycosaminoglycans showed an accumulation of chondroitin sulfate and dermatan sulfate in control wound chambers, whereas the proportion of hyaluronic acid decreased with time. The accumulation of chondroitin sulfate and dermatan sulfate was enhanced by glycyl-histidyl-lysine-Cu(2+) treatment. The expression of two small proteoglycans of the dermis, decorin and biglycan, was analyzed by northern blot. The biglycan mRNA steady-state level in the chamber was maximal at day 12, whereas the decorin mRNA increased progressively until the end of the experiment (day 22). Glycyl-histidyl-lysine-Cu(2+) treatment increased the mRNA level of decorin and decreased those of biglycan. In dermal fibroblast cultures, the stimulation of decorin expression by glycyl-histidyl-lysine-Cu(2+) was also found. In contrast, biglycan expression was not modified. These results show that the expression of different proteoglycans in wound tissue are regulated in a different manner during wound healing. The glycyl-histidyl-lysine-Cu(2+) complex is able to modulate the expression of the extracellular matrix macromolecules differently during the wound repair process. PMID:11121126

  7. Terrestrial evolution of polymerization of amino acids - Heat to ATP

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.

    1981-01-01

    Sets of amino acids containing sufficient trifunctional monomer are thermally polymerized at temperatures such as 65 deg; the amino acids order themselves. Various polymers have diverse catalytic activities. The polymers aggregate, in aqueous solution, to cell-like structures having those activities plus emergent properties, e.g. proliferatability. Polyamino acids containing sufficient lysine catalyze conversion of free amino acids, by ATP, to small peptides and a high molecular weight fraction. The lysine-rich proteinoid is active in solution, within suspensions of cell-like particles, or in other particles composed of lysine-rich proteinoid and homopolyribonucleotide. Selectivities are observed. An archaic polyamino acid prelude to coded protein synthesis is indicated.

  8. The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal.

    PubMed

    Sunil, Meeta; Hariharan, Arun K; Nayak, Soumya; Gupta, Saurabh; Nambisan, Suran R; Gupta, Ravi P; Panda, Binay; Choudhary, Bibha; Srinivasan, Subhashini

    2014-12-01

    Grain amaranths, edible C4 dicots, produce pseudo-cereals high in lysine. Lysine being one of the most limiting essential amino acids in cereals and C4 photosynthesis being one of the most sought-after phenotypes in protein-rich legume crops, the genome of one of the grain amaranths is likely to play a critical role in crop research. We have sequenced the genome and transcriptome of Amaranthus hypochondriacus, a diploid (2n = 32) belonging to the order Caryophyllales with an estimated genome size of 466 Mb. Of the 411 linkage single-nucleotide polymorphisms (SNPs) reported for grain amaranths, 355 SNPs (86%) are represented in the scaffolds and 74% of the 8.6 billion bases of the sequenced transcriptome map to the genomic scaffolds. The genome of A. hypochondriacus, codes for at least 24,829 proteins, shares the paleohexaploidy event with species under the superorders Rosids and Asterids, harbours 1 SNP in 1,000 bases, and contains 13.76% of repeat elements. Annotation of all the genes in the lysine biosynthetic pathway using comparative genomics and expression analysis offers insights into the high-lysine phenotype. As the first grain species under Caryophyllales and the first C4 dicot genome reported, the work presented here will be beneficial in improving crops and in expanding our understanding of angiosperm evolution.

  9. The formation of lipid hydroperoxide-derived amide-type lysine adducts on proteins: a review of current knowledge.

    PubMed

    Kato, Yoji

    2014-01-01

    Lipid peroxidation is an important biological reaction. In particular, polyunsaturated fatty acid (PUFA) can be oxidized easily. Peroxidized lipids often react with other amines accompanied by the formation of various covalent adducts. Novel amide-type lipid-lysine adducts have been identified from an in vitro reaction mixture of lipid hydroperoxide with a protein, biological tissues exposed to conditions of oxidative stress and human urine from a healthy person. In this chapter, the current knowledge of amide type adducts is reviewed with a focus on the evaluation of functional foods and diseases with a history of discovery of hexanoyl-lysine (HEL). Although there is extensive research on HEL and other amide-type adducts, the mechanism of generation of the amide bond remains unclear. We have found that the decomposed aldehyde plus peroxide combined with a lysine moiety does not fully explain the formation of the amide-type lipid-lysine adduct that is generated by lipid hydroperoxide. Singlet oxygen or an excited state of the ketone generated from the lipid hydroperoxide may also contribute to the formation of the amide linkage. The amide-adducts may prove useful not only for the detection of oxidative stress induced by disease but also for the estimation of damage caused by an excess intake of PUFA. PMID:24374915

  10. The Draft Genome and Transcriptome of Amaranthus hypochondriacus: A C4 Dicot Producing High-Lysine Edible Pseudo-Cereal

    PubMed Central

    Sunil, Meeta; Hariharan, Arun K.; Nayak, Soumya; Gupta, Saurabh; Nambisan, Suran R.; Gupta, Ravi P.; Panda, Binay; Choudhary, Bibha; Srinivasan, Subhashini

    2014-01-01

    Grain amaranths, edible C4 dicots, produce pseudo-cereals high in lysine. Lysine being one of the most limiting essential amino acids in cereals and C4 photosynthesis being one of the most sought-after phenotypes in protein-rich legume crops, the genome of one of the grain amaranths is likely to play a critical role in crop research. We have sequenced the genome and transcriptome of Amaranthus hypochondriacus, a diploid (2n = 32) belonging to the order Caryophyllales with an estimated genome size of 466 Mb. Of the 411 linkage single-nucleotide polymorphisms (SNPs) reported for grain amaranths, 355 SNPs (86%) are represented in the scaffolds and 74% of the 8.6 billion bases of the sequenced transcriptome map to the genomic scaffolds. The genome of A. hypochondriacus, codes for at least 24,829 proteins, shares the paleohexaploidy event with species under the superorders Rosids and Asterids, harbours 1 SNP in 1,000 bases, and contains 13.76% of repeat elements. Annotation of all the genes in the lysine biosynthetic pathway using comparative genomics and expression analysis offers insights into the high-lysine phenotype. As the first grain species under Caryophyllales and the first C4 dicot genome reported, the work presented here will be beneficial in improving crops and in expanding our understanding of angiosperm evolution. PMID:25071079

  11. Regulation of free glutamate content in meat by dietary lysine in broilers.

    PubMed

    Watanabe, Genya; Kobayashi, Hiroyuki; Shibata, Masahiro; Kubota, Masatoshi; Kadowaki, Motoni; Fujimura, Shinobu

    2015-04-01

    Regulation of taste is important for improving meat quality and glutamate (Glu) is one of the important taste-active components in meat. Here, the effects of dietary lysine (Lys) content on taste-active components in meat, especially free Glu, were investigated. Fourteen-day-old broiler chicks (Gallus gallus) were fed on diets containing 100% or 150% of the recommended Lys content for 10 days. Concentrations of free amino acids in plasma, muscle and liver were measured. The levels of messenger RNAs (mRNAs) for enzymes related to Glu metabolism were determined in muscle and liver. The concentration of muscle metabolites was also determined. The free Glu content in muscle of chicks fed the Lys150% diet was increased by 44.0% compared with that in chicks fed the Lys100% diet (P < 0.01). The mRNA level of lysine α-ketoglutarate reductase, which is involved in Lys degradation and Glu production, was significantly increased (P < 0.05) in the Lys150% group. Metabolome analysis showed that the Lys degradation products, muscular saccharopine, pipecolic acid and α-aminoadipic acid, were increased in the Lys150% group. Our results suggest that free Glu content in muscle is regulated by Lys degradation. These results suggest that a short-term feeding of high-Lys diet could improve the taste of meat. PMID:25491790

  12. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice

    PubMed Central

    Aiba, Yuji; Nakano, Yasuhiro; Koga, Yasuhiro; Takahashi, Kenji; Komatsu, Yasuhiko

    2015-01-01

    A novel strain of Lactobacillus johnsonii No. 1088 was isolated from the gastric juice of a healthy Japanese male volunteer, and characterized for its effectiveness in the stomach environment. Lactobacillus johnsonii No. 1088 was found to have the strongest acid resistance among several lactobacilli examined (>10% of cells survived at pH 1.0 after 2 h), and such a high acid resistance property was a specific characteristic of this strain of L. johnsonii. When cultured with various virulent bacteria, L. johnsonii No. 1088 inhibited the growth of Helicobacter pylori,Escherichia coli O-157, Salmonella Typhimurium, and Clostridium difficile, in which case its effectiveness was more potent than that of a type strain of L. johnsonii,JCM2012. In addition to its effect in vitro, L. johnsonii No. 1088 inhibited the growth of H. pylori in human intestinal microbiota-associated mice in both its live and lyophilized forms. Moreover, L. johnsonii No. 1088 suppressed gastric acid secretion in mice via decreasing the number of gastrin-positive cells in the stomach. These results taken together suggest that L. johnsonii No. 1088 is a unique lactobacillus having properties beneficial for supporting H. pylori eradication by triple therapy including the use of a proton pump inhibitor (PPI) and also for prophylaxis of gastroesophageal reflux disease possibly caused after H. pylori eradication as a side effect of PPI. PMID:25771812

  13. A highly acid-resistant novel strain of Lactobacillus johnsonii No. 1088 has antibacterial activity, including that against Helicobacter pylori, and inhibits gastrin-mediated acid production in mice.

    PubMed

    Aiba, Yuji; Nakano, Yasuhiro; Koga, Yasuhiro; Takahashi, Kenji; Komatsu, Yasuhiko

    2015-06-01

    A novel strain of Lactobacillus johnsonii No. 1088 was isolated from the gastric juice of a healthy Japanese male volunteer, and characterized for its effectiveness in the stomach environment. Lactobacillus johnsonii No. 1088 was found to have the strongest acid resistance among several lactobacilli examined (>10% of cells survived at pH 1.0 after 2 h), and such a high acid resistance property was a specific characteristic of this strain of L. johnsonii. When cultured with various virulent bacteria, L. johnsonii No. 1088 inhibited the growth of Helicobacter pylori, Escherichia coli O-157, Salmonella Typhimurium, and Clostridium difficile, in which case its effectiveness was more potent than that of a type strain of L. johnsonii, JCM2012. In addition to its effect in vitro, L. johnsonii No. 1088 inhibited the growth of H. pylori in human intestinal microbiota-associated mice in both its live and lyophilized forms. Moreover, L. johnsonii No. 1088 suppressed gastric acid secretion in mice via decreasing the number of gastrin-positive cells in the stomach. These results taken together suggest that L. johnsonii No. 1088 is a unique lactobacillus having properties beneficial for supporting H. pylori eradication by triple therapy including the use of a proton pump inhibitor (PPI) and also for prophylaxis of gastroesophageal reflux disease possibly caused after H. pylori eradication as a side effect of PPI.

  14. Antifibrinolytics (lysine analogues) for the prevention of bleeding in people with haematological disorders

    PubMed Central

    Estcourt, Lise J; Desborough, Michael; Brunskill, Susan J; Doree, Carolyn; Hopewell, Sally; Murphy, Michael F; Stanworth, Simon J

    2016-01-01

    Background People with haematological disorders are frequently at risk of severe or life-threatening bleeding as a result of thrombocytopenia (reduced platelet count). This is despite the routine use of prophylactic platelet transfusions to prevent bleeding once the platelet count falls below a certain threshold. Platelet transfusions are not without risk and adverse events may be life-threatening. A possible adjunct to prophylactic platelet transfusions is the use of antifibrinolytics, specifically the lysine analogues tranexamic acid (TXA) and epsilon aminocaproic acid (EACA). This is an update of a Cochrane review first published in 2013. Objectives To determine the efficacy and safety of antifibrinolytics (lysine analogues) in preventing bleeding in people with haematological disorders. Search methods We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (The Cochrane Library 2016, Issue 3), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950) and ongoing trial databases to 07 March 2016. Selection criteria We included RCTs involving participants with haematological disorders, who would routinely require prophylactic platelet transfusions to prevent bleeding. We only included trials involving the use of the lysine analogues TXA and EACA. Data collection and analysis Two review authors independently screened all electronically-derived citations and abstracts of papers, identified by the review search strategy, for relevancy. Two review authors independently assessed the full text of all potentially relevant trials for eligibility, completed the data extraction and assessed the studies for risk of bias using The Cochrane Collaboration’s ‘Risk of bias’ tool. We requested missing data from one author but the data were no longer available. The outcomes are reported narratively: we performed no meta-analyses because of the heterogeneity of the available data

  15. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity

    PubMed Central

    Sartor, Gregory C.; Powell, Samuel K.; Brothers, Shaun P.

    2015-01-01

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic “reader” proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the “readout” of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and

  16. Production process monitoring by serial mapping of microbial carbon flux distributions using a novel Sensor Reactor approach: II--(13)C-labeling-based metabolic flux analysis and L-lysine production.

    PubMed

    Drysch, A; El Massaoudi, M; Mack, C; Takors, R; de Graaf, A A; Sahm, H

    2003-04-01

    Corynebacterium glutamicum is intensively used for the industrial large-scale (fed-) batch production of amino acids, especially glutamate and lysine. However, metabolic flux analyses based on 13C-labeling experiments of this organism have hitherto been restricted to small-scale batch conditions and carbon-limited chemostat cultures, and are therefore of questionable relevance for industrial fermentations. To lever flux analysis to the industrial level, a novel Sensor Reactor approach was developed (El Massaoudi et al., Metab. Eng., submitted), in which a 300-L production reactor and a 1-L Sensor Reactor are run in parallel master/slave modus, thus enabling 13C-based metabolic flux analysis to generate a series of flux maps that document large-scale fermentation courses in detail. We describe the successful combination of this technology with nuclear magnetic resonance (NMR) analysis, metabolite balancing methods and a mathematical description of 13C-isotope labelings resulting in a powerful tool for quantitative pathway analysis during a batch fermentation. As a first application, 13C-based metabolic flux analysis was performed on exponentially growing, lysine-producing C. glutamicum MH20-22B during three phases of a pilot-scale batch fermentation. By studying the growth, (co-) substrate consumption and (by-) product formation, the similarity of the fermentations in production and Sensor Reactor was verified. Applying a generally applicable mathematical model, which included metabolite and carbon labeling balances for the analysis of proteinogenic amino acid 13C-isotopomer labeling data, the in vivo metabolic flux distribution was investigated during subsequent phases of exponential growth. It was shown for the first time that the in vivo reverse C(4)-decarboxylation flux at the anaplerotic node in C. glutamicum significantly decreased (70%) in parallel with threefold increased lysine formation during the investigated subsequent phases of exponential growth.

  17. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA)

    PubMed Central

    Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S.; Harlow, Mark L.

    2015-01-01

    Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5′ ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission. PMID:26446566

  18. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA).

    PubMed

    Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S; Harlow, Mark L

    2015-01-01

    Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5' ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission.

  19. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA).

    PubMed

    Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S; Harlow, Mark L

    2015-01-01

    Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5' ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission. PMID:26446566

  20. Serous tubal intraepithelial carcinoma upregulates markers associated with high-grade serous carcinomas including Rsf-1 (HBXAP), cyclin E and fatty acid synthase.

    PubMed

    Sehdev, Ann Smith; Kurman, Robert J; Kuhn, Elisabetta; Shih, Ie-Ming

    2010-06-01

    Serous tubal intraepithelial carcinoma (STIC) has been proposed as a precursor for many pelvic high-grade serous carcinomas. Our previous analysis of the ovarian cancer genome identified several genes with oncogenic potential that are amplified and/or overexpressed in the majority of high-grade serous carcinomas. Determining whether these genes are upregulated in STICs is important in further elucidating the relationship of STICs to high-grade serous carcinomas and is fundamental in understanding the molecular pathogenesis of high-grade serous carcinomas. In this study, 37 morphologically defined STICs were obtained from 23 patients with stage IIIC/IV high-grade serous carcinomas. Both STICs and the high-grade serous carcinomas were analyzed for expression of Rsf-1 (HBXAP), cyclin E, fatty acid synthase (FASN) and mucin-4. In addition, they were examined for expression of established markers including p53, Ki-67 and p16. We found that diffuse nuclear p53 and p16 immunoreactivity was observed in 27 (75%) of 36 and 18 (55%) of 33 STICs, respectively, whereas an elevated Ki-67 labeling index (>or=10%) was detected in 29 (78%) of 37 STICs. Cyclin E nuclear staining was seen in 24 (77%) of 35 STICs, whereas normal tubal epithelial cells were all negative. Increased Rsf-1 and FASN immunoreactivity occurred in 63%, and 62% of STICs, respectively, compared with adjacent normal-appearing tubal epithelium. Interestingly, only one STIC showed increased mucin-4 immunoreactivity. Carcinomas, when compared with STICs, overexpressed p16, Rsf-1, cyclin E and FASN in a higher proportion of cases. In conclusion, STICs express several markers including Rsf-1, cyclin E and FASN in high-grade serous carcinomas. In contrast, mucin-4 immunoreactivity either did not change or was reduced in most STICs. These results suggest that overexpression of Rsf-1, cyclin E and FASN occurs early in tumor progression.

  1. System-wide Studies of N-Lysine Acetylation in Rhodopseudomonas palustris Reveals Substrate Specificity of Protein Acetyltransferases

    SciTech Connect

    Crosby, Heidi A; Pelletier, Dale A; Hurst, Gregory {Greg} B; Escalante-Semerena, Jorge C

    2012-01-01

    Background: Protein acetylation is widespread in prokaryotes. Results: Six new acyl-CoA synthetases whose activities are controlled by acetylation were identified, and their substrate preference established. A new protein acetyltransferase was also identified and its substrate specificity determined. Conclusion: Protein acetyltransferases acetylate a conserved lysine residue in protein substrates. Significance: The R. palustris Pat enzyme specifically acetylates AMP-forming acyl-CoA synthetases and regulates fatty acid metabolism.

  2. Lysine and Arginine Reduce the Effects of Cerebral Ischemic Insults and Inhibit Glutamate-Induced Neuronal Activity in Rats

    PubMed Central

    Kondoh, Takashi; Kameishi, Makiko; Mallick, Hruda Nanda; Ono, Taketoshi; Torii, Kunio

    2010-01-01

    Intravenous administration of arginine was shown to be protective against cerebral ischemic insults via nitric oxide production and possibly via additional mechanisms. The present study aimed at evaluating the neuroprotective effects of oral administration of lysine (a basic amino acid), arginine, and their combination on ischemic insults (cerebral edema and infarction) and hemispheric brain swelling induced by transient middle cerebral artery occlusion/reperfusion in rats. Magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining were performed 2 days after ischemia induction. In control animals, the major edematous areas were observed in the cerebral cortex and striatum. The volumes associated with cortical edema were significantly reduced by lysine (2.0 g/kg), arginine (0.6 g/kg), or their combined administration (0.6 g/kg each). Protective effects of these amino acids on infarction were comparable to the inhibitory effects on edema formation. Interestingly, these amino acids, even at low dose (0.6 g/kg), were effective to reduce hemispheric brain swelling. Additionally, the effects of in vivo microiontophoretic (juxtaneuronal) applications of these amino acids on glutamate-evoked neuronal activity in the ventromedial hypothalamus were investigated in awake rats. Glutamate-induced neuronal activity was robustly inhibited by microiontophoretic applications of lysine or arginine onto neuronal membranes. Taken together, our results demonstrate the neuroprotective effects of oral ingestion of lysine and arginine against ischemic insults (cerebral edema and infarction), especially in the cerebral cortex, and suggest that suppression of glutamate-induced neuronal activity might be the primary mechanism associated with these neuroprotective effects. PMID:20589237

  3. Topography of the high-affinity lysine binding site of plasminogen as defined with a specific antibody probe

    SciTech Connect

    Miles, L.A.; Plow, E.F.

    1986-11-04

    An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound (/sup 125/I)EDP I, (/sup 125/I)Glu-plasminogen, and (/sup 125/I)Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of (/sup 125/I)EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and l730 ..mu..M, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region and did not react with those lacking an EDP I region, or with tissue plasminogen activator or prothrombin, which also contains kringles. By immunoblotting analyses, a chymotryptic degradation product of M/sub r/ 20,000 was derived from EDP I that retained reactivity with the antibody. ..cap alpha../sub 2/-Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen. The binding of (/sup 125/I)EDP I to fibrin was also inhibited by the antiserum. The observations provide independent evidence for the role of the high-affinity lysine binding site in the functional interactions of plasminogen with its primary substrate and inhibitor.

  4. ε-Poly-L-lysine peptide chain length regulated by the linkers connecting the transmembrane domains of ε-Poly-L-lysine synthetase.

    PubMed

    Hamano, Yoshimitsu; Kito, Naoko; Kita, Akihiro; Imokawa, Yuuki; Yamanaka, Kazuya; Maruyama, Chitose; Katano, Hajime

    2014-08-01

    ε-Poly-l-lysine (ε-PL), consisting of 25 to 35 l-lysine residues with linkages between the α-carboxyl groups and ε-amino groups, is produced by Streptomyces albulus NBRC14147. ε-PL synthetase (Pls) is a membrane protein with six transmembrane domains (TM1 to TM6) as well as both an adenylation domain and a thiolation domain, characteristic of the nonribosomal peptide synthetases. Pls directly generates ε-PL chain length diversity (25- to 35-mer), but the processes that control the chain length of ε-PL during the polymerization reaction are still not fully understood. Here, we report on the identification of Pls amino acid residues involved in the regulation of the ε-PL chain length. From approximately 12,000 variants generated by random mutagenesis, we found 8 Pls variants that produced shorter chains of ε-PL. These variants have one or more mutations in two linker regions connecting the TM1 and TM2 domains and the TM3 and TM4 domains. In the Pls catalytic mechanism, the growing chain of ε-PL is not tethered to the enzyme, implying that the enzyme must hold the growing chain until the polymerization reaction is complete. Our findings reveal that the linker regions are important contributors to grasp the growing chain of ε-PL. PMID:24907331

  5. Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element*S⃞

    PubMed Central

    Garst, Andrew D.; Héroux, Annie; Rambo, Robert P.; Batey, Robert T.

    2008-01-01

    Riboswitches are metabolite-sensitive elements found in mRNAs that control gene expression through a regulatory secondary structural switch. Along with regulation of lysine biosynthetic genes, mutations within the lysine-responsive riboswitch (L-box) play a role in the acquisition of resistance to antimicrobial lysine analogs. To understand the structural basis for lysine binding, we have determined the 2.8Å resolution crystal structure of lysine bound to the Thermotoga maritima asd lysine riboswitch ligand-binding domain. The structure reveals a complex architecture scaffolding a binding pocket completely enveloping lysine. Mutations conferring antimicrobial resistance cluster around this site as well as highly conserved long range interactions, indicating that they disrupt lysine binding or proper folding of the RNA. Comparison of the free and bound forms by x-ray crystallography, small angle x-ray scattering, and chemical probing reveals almost identical structures, indicating that lysine induces only limited and local conformational changes upon binding. PMID:18593706

  6. Crystal structure of the lysine riboswitch regulatory mRNA element.

    PubMed

    Garst, Andrew D; Héroux, Annie; Rambo, Robert P; Batey, Robert T

    2008-08-15

    Riboswitches are metabolite-sensitive elements found in mRNAs that control gene expression through a regulatory secondary structural switch. Along with regulation of lysine biosynthetic genes, mutations within the lysine-responsive riboswitch (L-box) play a role in the acquisition of resistance to antimicrobial lysine analogs. To understand the structural basis for lysine binding, we have determined the 2.8 angstroms resolution crystal structure of lysine bound to the Thermotoga maritima asd lysine riboswitch ligand-binding domain. The structure reveals a complex architecture scaffolding a binding pocket completely enveloping lysine. Mutations conferring antimicrobial resistance cluster around this site as well as highly conserved long range interactions, indicating that they disrupt lysine binding or proper folding of the RNA. Comparison of the free and bound forms by x-ray crystallography, small angle x-ray scattering, and chemical probing reveals almost identical structures, indicating that lysine induces only limited and local conformational changes upon binding. PMID:18593706

  7. Crystal Structure of the Lysine Riboswitch Regulatory mRNA Element

    SciTech Connect

    Garst, A.; Heroux, A; Rambo, R; Batey, R

    2008-01-01

    Riboswitches are metabolite-sensitive elements found in mRNAs that control gene expression through a regulatory secondary structural switch. Along with regulation of lysine biosynthetic genes, mutations within the lysine-responsive riboswitch (L-box) play a role in the acquisition of resistance to antimicrobial lysine analogs. To understand the structural basis for lysine binding, we have determined the 2.8{angstrom} resolution crystal structure of lysine bound to the Thermotoga maritima asd lysine riboswitch ligand-binding domain. The structure reveals a complex architecture scaffolding a binding pocket completely enveloping lysine. Mutations conferring antimicrobial resistance cluster around this site as well as highly conserved long range interactions, indicating that they disrupt lysine binding or proper folding of the RNA. Comparison of the free and bound forms by x-ray crystallography, small angle x-ray scattering, and chemical probing reveals almost identical structures, indicating that lysine induces only limited and local conformational changes upon binding.

  8. Unbiased proteomic screen for binding proteins to modified lysines on histone H3

    PubMed Central

    Chan, Doug W.; Wang, Yi; Wu, Meng; Wong, Jiemin; Qin, Jun; Zhao, Yingming

    2010-01-01

    We report a sensitive peptide pull-down approach in combination with protein identification by LC-MS/MS and qualitative abundance measurements by spectrum counting to identify proteins binding to histone H3 tail containing dimethyl lysine 4 (H3K4me2), dimethyl lysine 9 (H3K9me2), or acetyl lysine 9 (H3K9ac). Our study identified 86 nuclear proteins that associate with the histone H3 tail peptides examined, including seven known direct binders and 16 putative direct binders with conserved PHD finger, bromodomain, and WD40 domains. The reliability of our proteomic screen is supported by the fact that more than one-third of the proteins identified were previously described to associate with histone H3 tail directly or indirectly. To our knowledge, the results presented here are the most comprehensive analysis of H3K4me2, H3K9me2, and H3K9ac associated proteins and will provide a useful resource for researchers studying the mechanisms of histone code effector proteins. PMID:19337993

  9. Effects of lysine methylation on gramicidin A channel folding in lipid membranes.

    PubMed

    Wang, Fang; Qin, Luoheng; Wong, Patrick; Gao, Jianmin

    2013-11-01

    Protein-membrane interactions underlie numerous biological processes including folding of ion channels and signal transduction across lipid membranes. A detailed understanding of protein-lipid interactions is critical for designing membrane-active peptides as potential antibiotics, as well. Using gramicidin A (gA) as a model system, we investigated the effects of lysine methylation on peptide folding into transmembrane channels. The results are discussed in terms of the peptides' binding affinity to, translocation across, and structure formation in lipid membranes. The results show that gA mutants with N(ɛ)-trimethylated D-lysines (dMe3 K) are capable of folding into wild type-like channels that are selective for monovalent cations. Surprisingly, N(ɛ)-trimethylation in general reduces the peptide's binding affinity to lipid membranes despite the increased hydrophobicity. Further investigation reveals the critical contribution of the hydrogen bonding potential of lysine side chains to peptide-membrane association, which has previously been underappreciated. Importantly, methylation does give improved therapeutic indices for certain combinations of gA variant and bacterium, indicating that methylation can be an effective strategy to fine tune the performance of peptide antibiotics.

  10. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: An analysis of data from the National Health and Nutrition Examination Survey indicated that in older adults exposed to folic acid fortification, the combination of low serum vitamin B-12 and elevated folate is associated with higher concentrations of homocysteine and methylmalonic acid ...

  11. Histone lysine methylation: critical regulator of memory and behavior.

    PubMed

    Jarome, Timothy J; Lubin, Farah D

    2013-01-01

    Histone lysine methylation is a well-established transcriptional mechanism for the regulation of gene expression changes in eukaryotic cells and is now believed to function in neurons of the central nervous system to mediate the process of memory formation and behavior. In mature neurons, methylation of histone proteins can serve to both activate and repress gene transcription. This is in stark contrast to other epigenetic modifications, including histone acetylation and DNA methylation, which have largely been associated with one transcriptional state in the brain. In this review, we discuss the evidence for histone methylation mechanisms in the coordination of complex cognitive processes such as long-term memory formation and storage. In addition, we address the current literature highlighting the role of histone methylation in intellectual disability, addiction, schizophrenia, autism, depression, and neurodegeneration. Further, we discuss histone methylation within the context of other epigenetic modifications and the potential advantages of exploring this newly identified mechanism of cognition, emphasizing the possibility that this molecular process may provide an alternative locus for intervention in long-term psychopathologies that cannot be clearly linked to genes or environment alone.

  12. Biosynthesis of 'essential' amino acids by scleractinian corals.

    PubMed Central

    Fitzgerald, L M; Szmant, A M

    1997-01-01

    Animals rely on their diet for amino acids that they are incapable either of synthesizing or of synthesizing in sufficient quantities to meet metabolic needs. These are the so-called 'essential amino acids'. This set of amino acids is similar among the vertebrates and many of the invertebrates. Previously, no information was available for amino acid synthesis by the most primitive invertebrates, the Cnidaria. The purpose of this study was to examine amino acid synthesis by representative cnidarians within the Order Scleractinia. Three species of zooxanthellate reef coral, Montastraea faveolata, Acropora cervicornis and Porites divaricata, and two species of non-zooxanthellate coral, Tubastrea coccinea and Astrangia poculata, were incubated with 14C-labelled glucose or with the 14C-labelled amino acids glutamic acid, lysine or valine. Radiolabel tracer was followed into protein amino acids. A total of 17 amino acids, including hydroxyproline, were distinguishable by the techniques used. Of these, only threonine was not found radiolabelled in any of the samples. We could not detect tryptophan or cysteine, nor distinguish between the amino acid pairs glutamic acid and glutamine, or aspartic acid and asparagine. Eight amino acids normally considered essential for animals were made by the five corals tested, although some of them were made only in small quantities. These eight amino acids are valine, isoleucine, leucine, tyrosine, phenylalanine histidine, methionine and lysine. The ability of cnidarians to synthesize these amino acids could be yet another indicator of a separate evolutionary history of the cnidarians from the rest of the Metazoa. PMID:9078264

  13. Histone lysine crotonylation during acute kidney injury in mice

    PubMed Central

    Ruiz-Andres, Olga; Sanchez-Niño, Maria Dolores; Cannata-Ortiz, Pablo; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belen

    2016-01-01

    ABSTRACT Acute kidney injury (AKI) is a potentially lethal condition for which no therapy is available beyond replacement of renal function. Post-translational histone modifications modulate gene expression and kidney injury. Histone crotonylation is a recently described post-translational modification. We hypothesized that histone crotonylation might modulate kidney injury. Histone crotonylation was studied in cultured murine proximal tubular cells and in kidneys from mice with AKI induced by folic acid or cisplatin. Histone lysine crotonylation was observed in tubular cells from healthy murine and human kidney tissue. Kidney tissue histone crotonylation increased during AKI. This was reproduced by exposure to the protein TWEAK in cultured tubular cells. Specifically, ChIP-seq revealed enrichment of histone crotonylation at the genes encoding the mitochondrial biogenesis regulator PGC-1α and the sirtuin-3 decrotonylase in both TWEAK-stimulated tubular cells and in AKI kidney tissue. To assess the role of crotonylation in kidney injury, crotonate was used to increase histone crotonylation in cultured tubular cells or in the kidneys in vivo. Crotonate increased the expression of PGC-1α and sirtuin-3, and decreased CCL2 expression in cultured tubular cells and healthy kidneys. Systemic crotonate administration protected from experimental AKI, preventing the decrease in renal function and in kidney PGC-1α and sirtuin-3 levels as well as the increase in CCL2 expression. For the first time, we have identified factors such as cell stress and crotonate availability that increase histone crotonylation in vivo. Overall, increasing histone crotonylation might have a beneficial effect on AKI. This is the first observation of the in vivo potential of the therapeutic manipulation of histone crotonylation in a disease state. PMID:27125278

  14. Charge Stabilization and Entropy Reduction of Central Lysine Residues in

    SciTech Connect

    St-Jean, M.; Blonski, C; Sygusch, J

    2009-01-01

    Fructose-1,6-bisphosphate muscle aldolase is an essential glycolytic enzyme that catalyzes reversible carbon-carbon bond formation by cleaving fructose 1,6-bisphosphate to yield dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde phosphate. To elucidate the mechanistic role of conserved amino acid Asp-33, Asn-33 and Ser-33 mutants were examined by kinetic and structural analyses. The mutations significantly compromised enzymatic activity and carbanion oxidation in presence of DHAP. Detailed structural analysis demonstrated that, like native crystals, Asp-33 mutant crystals, soaked in DHAP solutions, trapped Schiff base-derived intermediates covalently attached to Lys-229. The mutant structures, however, exhibited an abridged conformational change with the helical region (34-65) flanking the active site as well as pK{sub a} reductions and increased side chain disorder by central lysine residues, Lys-107 and Lys-146. These changes directly affect their interaction with the C-terminal Tyr-363, consistent with the absence of active site binding by the C-terminal region in the presence of phosphate. Lys-146 pKa reduction and side chain disorder would further compromise charge stabilization during C-C bond cleavage and proton transfer during enamine formation. These mechanistic impediments explain diminished catalytic activity and a reduced level of carbanion oxidation and are consistent with rate-determining proton transfer observed in the Asn-33 mutant. Asp-33 reduces the entropic cost and augments the enthalpic gain during catalysis by rigidifying Lys-107 and Lys-146, stabilizing their protonated forms, and promoting a conformational change triggered by substrate or obligate product binding, which lower kinetic barriers in C-C bond cleavage and Schiff base-enamine interconversion.

  15. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation

    PubMed Central

    Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies. PMID:27606599

  16. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies.

  17. An Alternative Strategy for Pan-acetyl-lysine Antibody Generation.

    PubMed

    Kim, Sun-Yee; Sim, Choon Kiat; Zhang, Qiongyi; Tang, Hui; Brunmeir, Reinhard; Pan, Hong; Karnani, Neerja; Han, Weiping; Zhang, Kangling; Xu, Feng

    2016-01-01

    Lysine acetylation is an important post-translational modification in cell signaling. In acetylome studies, a high-quality pan-acetyl-lysine antibody is key to successful enrichment of acetylated peptides for subsequent mass spectrometry analysis. Here we show an alternative method to generate polyclonal pan-acetyl-lysine antibodies using a synthesized random library of acetylated peptides as the antigen. Our antibodies are tested to be specific for acetyl-lysine peptides/proteins via ELISA and dot blot. When pooled, five of our antibodies show broad reactivity to acetyl-lysine peptides, complementing a commercial antibody in terms of peptide coverage. The consensus sequence of peptides bound by our antibody cocktail differs slightly from that of the commercial antibody. Lastly, our antibodies are tested in a proof-of-concept to analyze the acetylome of HEK293 cells. In total we identified 1557 acetylated peptides from 416 proteins. We thus demonstrated that our antibodies are well-qualified for acetylome studies and can complement existing commercial antibodies. PMID:27606599

  18. GSH- and pH-responsive drug delivery system constructed by water-soluble pillar[5]arene and lysine derivative for controllable drug release.

    PubMed

    Wu, Xuan; Li, Yan; Lin, Chen; Hu, Xiao-Yu; Wang, Leyong

    2015-04-21

    Novel GSH- and pH-responsive supramolecular vesicles constructed by an amphiphilic inclusion complex formed from water-soluble pillar[5]arene and lysine derivative have been successfully developed, which can efficiently encapsulate anticancer drug MTZ and show rapid MTZ-release in a simulated acidic tumor environment with high GSH concentration, and exhibit potent antitumor activity.

  19. Comparison of deuterated leucine, valine, and lysine in the measurement of human apolipoprotein A-I and B-100 kinetics

    SciTech Connect

    Lichtenstein, A.H.; Cohn, J.S.; Hachey, D.L.; Millar, J.S.; Ordovas, J.M.; Schaefer, E.J. )

    1990-09-01

    The production rates of apolipoprotein (apo)B-100 in very low density lipoprotein and in low density lipoprotein and apolipoprotein A-I in high density lipoprotein were determined using a primed-constant infusion of (5,5,5,-2H3)leucine, (4,4,4,-2H3)valine, and (6,6-2H2,1,2-13C2)lysine. The three stable isotope-labeled amino acids were administered simultaneously to determine whether absolute production rates calculated using a stochastic model were independent of the tracer species utilized. Three normolipidemic adult males were studied in the constantly fed state over a 15-h period. The absolute production rates of very low density lipoprotein apoB-100 were 11.4 +/- 5.8 (leucine), 11.2 +/- 6.8 (valine), and 11.1 +/- 5.4 (lysine) mg per kg per day (mean +/- SDM). The absolute production rates for low density lipoprotein apoB-100 were 8.0 +/- 4.7 (leucine), 7.5 +/- 3.8 (valine), and 7.5 +/- 4.2 (lysine) mg per kg per day. The absolute production rates for high density lipoprotein apoA-I were 9.7 +/- 0.2 (leucine), 9.4 +/- 1.7 (valine), and 9.1 +/- 1.3 (lysine) mg per kg per day. There were no statistically significant differences in absolute synthetic rates of the three apolipoproteins when the plateau isotopic enrichment values of very low density lipoprotein apoB-100 were used to define the isotopic enrichment of the intracellular precursor pool. Our data indicate that deuterated leucine, valine, or lysine provided similar results when used for the determination of apoA-I and apoB-100 absolute production rates within plasma lipoproteins as part of a primed-constant infusion protocol.

  20. Understanding the relationship between DNA methylation and histone lysine methylation☆

    PubMed Central

    Rose, Nathan R.; Klose, Robert J.

    2014-01-01

    DNA methylation acts as an epigenetic modification in vertebrate DNA. Recently it has become clear that the DNA and histone lysine methylation systems are highly interrelated and rely mechanistically on each other for normal chromatin function in vivo. Here we examine some of the functional links between these systems, with a particular focus on several recent discoveries suggesting how lysine methylation may help to target DNA methylation during development, and vice versa. In addition, the emerging role of non-methylated DNA found in CpG islands in defining histone lysine methylation profiles at gene regulatory elements will be discussed in the context of gene regulation. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. PMID:24560929

  1. The positional specificity of EXXK motifs within an amphipathic α-helix dictates preferential lysine modification by acrolein: implications for the design of high-density lipoprotein mimetic peptides.

    PubMed

    Zheng, Ying; Kim, Sea H; Patel, Arti B; Narayanaswami, Vasanthy; Iavarone, Anthony T; Hura, Gregory L; Bielicki, John K

    2012-08-14

    Despite the ability of acrolein to damage proteins, factors governing its reactivity with the ε-amino group of lysine are poorly understood. We used a small 26-mer α-helical peptide (ATI-5261) to evaluate the influence of acidic glutamate (E) residues on site-specific lysine modification by acrolein and if this targeting played a major role in inhibiting the cholesterol efflux activity of the peptide. Exposure of ATI-5261 to acrolein resulted in N-(3-formyl-3,4-dehydropiperidino) (FDP)-lysine adducts at positions 5 and 25 and led to a concentration-dependent reduction in cholesterol efflux activity (55 ± 7 and 83 ± 3% decrease with 5:1 and 20:1 acrolein:peptide molar ratios, respectively). Amino acid substitution (K → R) experiments and mass spectrometry revealed neither K5 nor K25 was preferentially modified by acrolein, despite the location of K5 within a putative EXXK motif. Moreover, both lysine residues remained equally reactive when the lipidated peptide was exposed to acrolein. In contrast, placement of EXXK in the center of ATI-5261 resulted in site-specific modification of lysine. The latter was dependent on glutamate, thus establishing that acidic residues facilitate lysine modification and form the molecular basis of the EXXK motif. Preferential targeting of lysine, however, failed to augment the inhibitory effect of the aldehyde. Overall, the inhibitory effects of acrolein on cholesterol efflux activity were largely dependent on the number of lysine residue modifications and cross-linking of α-helical strands that restricted dissociation of the peptide to active forms.

  2. Reactive lysine content in commercially available pet foods.

    PubMed

    van Rooijen, Charlotte; Bosch, Guido; van der Poel, Antonius F B; Wierenga, Peter A; Alexander, Lucille; Hendriks, Wouter H

    2014-01-01

    The Maillard reaction can occur during processing of pet foods. During this reaction, the ε-amino group of lysine reacts with reducing sugars to become unavailable for metabolism. The aim of the present study was to determine the reactive lysine (RL; the remaining available lysine) to total lysine (TL) ratio of commercial pet foods and to evaluate whether RL levels meet minimal lysine requirements (MLR). Sixty-seven extruded, canned and pelleted commercially available dog and cat foods for growth and maintenance were analysed for proximate nutrient composition, TL and RL. RL was expressed on a metabolisable energy basis and compared with the MLR for maintenance and growth. In dog foods, average RL:TL ratios were 0·87 (se 0·02) for extruded, 0·97 (se 0·02) for canned and 0·85 (se 0·01) for pelleted foods, with the lowest ratio of 0·77 in an extruded diet for growing dogs. In extruded and canned cat foods, the average ratio was 0·91 (se 0·02) and 0·90 (se 0·03), respectively, with the lowest ratio being 0·67 in an extruded diet for growing cats. Variation in the RL:TL ratio between and within processing type indicate that ingredients rather than processing might be the key factor influencing RL content in pet foods. Eight dry foods for growing dogs had RL contents between 96 and 138 % of MLR, indicating that RL has to be between 62 and 104 % digestible to meet the MLR. Considering the variability in RL digestibility, these foods could be at risk of not meeting the MLR for growing dogs. Ingredients and pet foods should be characterised with respect to the RL content and digestibility, to avoid limitations in the lysine supply to growing dogs. PMID:26101604

  3. Histone lysine methyltransferases as anti-cancer targets for drug discovery

    PubMed Central

    Liu, Qing; Wang, Ming-wei

    2016-01-01

    Post-translational epigenetic modification of histones is controlled by a number of histone-modifying enzymes. Such modification regulates the accessibility of DNA and the subsequent expression or silencing of a gene. Human histone methyltransferases (HMTs)constitute a large family that includes histone lysine methyltransferases (HKMTs) and histone/protein arginine methyltransferases (PRMTs). There is increasing evidence showing a correlation between HKMTs and cancer pathogenesis. Here, we present an overview of representative HKMTs, including their biological and biochemical properties as well as the profiles of small molecule inhibitors for a comprehensive understanding of HKMTs in drug discovery. PMID:27397541

  4. Treating Colon Cancer Cells with FK228 Reveals a Link between Histone Lysine Acetylation and Extensive Changes in the Cellular Proteome.

    PubMed

    Wang, Tian-yun; Jia, Yan-long; Zhang, Xi; Sun, Qiu-li; Li, Yi-chun; Zhang, Jun-he; Zhao, Chun-peng; Wang, Xiao-yin; Wang, Li

    2015-12-17

    The therapeutic value of FK228 as a cancer treatment option is well known, and various types of cancer have been shown to respond to this drug. However, the complete mechanism of FK228 and the affect it has on histone lysine acetylation and the colon cancer cell proteome are largely unknown. In the present study, we used stable isotope labeling by amino acids in cell culture (SILAC) and affinity enrichment followed by high-resolution liquid chromatograph-mass spectrometer (LC-MS)/MS analysis to quantitate the changes in the lysine acetylome in HCT-8 cells after FK228 treatment. A total of 1,194 lysine acetylation sites in 751 proteins were quantified, with 115 of the sites in 85 proteins being significantly upregulated and 38 of the sites in 32 proteins being significantly downregulated in response to FK228 treatment. Interestingly, 47 histone lysine acetylation sites were identified in the core histone proteins. We also found a novel lysine acetylation site on H2BK121. These significantly altered proteins are involved in multiple biological functions as well as a myriad of metabolic and enzyme-regulated pathways. Taken together, the link between FK228 function and the downstream changes in the HCT-8 cell proteome observed in response to FK228 treatment is established.

  5. Improving protein content and quality by over-expressing artificially synthetic fusion proteins with high lysine and threonine constituent in rice plants

    PubMed Central

    Jiang, Shu-Ye; Ma, Ali; Xie, Lifen; Ramachandran, Srinivasan

    2016-01-01

    Rice grains are rich in starch but low in protein with very low level of both lysine and threonine. Thus, it is important to further improve protein quality and quantity, especially to increase lysine and threonine content in rice grains. We artificially synthesized two new genes by fusing endogenous rice genes with lysine (K)/threonine (T) motif (TKTKK) coding sequences. They were designated as TKTKK1 and TKTKK2 and their encoded proteins consist of 73.1% and 83.5% of lysine/threonine, respectively. These two genes were under the control of 35S promoter and were independently introduced into the rice genome to generate transgenic plants. Our data showed that overexpression of TKTKK1 generated stable proteins with expected molecular weight and the transgenic rice seeds significantly increased lysine, threonine, total amino acids and crude protein content by 33.87%, 21.21%, 19.43% and 20.45%, respectively when compared with wild type control; significant improvement was also observed in transgenic rice seeds overexpressing TKTKK2. However, limited improvement in protein quality and quantity was observed in transgenic seeds carrying tandom array of these two new genes. Our data provide the basis and alternative strategy on further improving protein quality and quantity in other crops or vegetable plants by synthetic biology. PMID:27677708

  6. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    SciTech Connect

    Carnevale, V.; Raugei, S.

    2009-12-14

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  7. A noncanonical function of sortase enables site-specific conjugation of small molecules to lysine residues in proteins.

    PubMed

    Bellucci, Joseph J; Bhattacharyya, Jayanta; Chilkoti, Ashutosh

    2015-01-01

    We provide the first demonstration that isopeptide ligation, a noncanonical activity of the enzyme sortase A, can be used to modify recombinant proteins. This reaction was used in vitro to conjugate small molecules to a peptide, an engineered targeting protein, and a full-length monoclonal antibody with an exquisite level of control over the site of conjugation. Attachment to the protein substrate occurred exclusively through isopeptide bonds at a lysine ε-amino group within a specific amino acid sequence. This reaction allows more than one molecule to be site-specifically conjugated to a protein at internal sites, thereby overcoming significant limitations of the canonical native peptide ligation reaction catalyzed by sortase A. Our method provides a unique chemical ligation procedure that is orthogonal to existing methods, supplying a new method to site-specifically modify lysine residues that will be a valuable addition to the protein conjugation toolbox. PMID:25363491

  8. A non-canonical function of sortase enables site-specific conjugation of small molecules to lysine residues in proteins**

    PubMed Central

    Bellucci, Joseph J.; Bhattacharyya, Jayanta

    2014-01-01

    We provide the first demonstration that isopeptide ligation, a non-canonical activity of the enzyme sortase A, can be used to modify recombinant proteins. This reaction was used in vitro to conjugate small molecules to a peptide, an engineered targeting protein, and a full-length monoclonal antibody with an exquisite level of control over the site of conjugation. Attachment to the protein substrate occurred exclusively through isopeptide bonds at a lysine ε-amino group within a specific amino acid sequence. This reaction allows more than one molecule to be site-specifically conjugated to a protein at internal sites, thereby overcoming significant limitations of the canonical native peptide ligation reaction catalyzed by sortase A. Our method provides a unique chemical ligation procedure that is orthogonal to existing methods, supplying a new method to site-specifically modify lysine residues that will be a valuable addition to the protein conjugation toolbox. PMID:25363491

  9. Temporal trends of perfluoroalkane sulfonic acids and their sulfonamide-based precursors in herring from the Swedish west coast 1991-2011 including isomer-specific considerations.

    PubMed

    Ullah, Shahid; Huber, Sandra; Bignert, Anders; Berger, Urs

    2014-04-01

    A method was developed for simultaneous analysis of perfluoroalkane sulfonic acids (PFSAs) and their sulfonamide-based precursors (perfluoroalkane sulfonamidoacetic acids (FASAAs), sulfonamides (FASAs), and sulfonamidoethanols (FASEs)) in fish muscle. Extraction was performed with acetonitrile followed by a clean-up and fractionation step and instrumental analysis by UPLC/MS/MS and GC/MS. Time trends of PFSAs and their precursors in herring muscle samples originating from the Kattegat at the west coast of Sweden were investigated covering the years 1991-2011. The following analytes were detected, all with decreasing or unchanged trends between 1991 and 2011: Perfluorobutane sulfonic acid (PFBS, below the method detection limit (acid (PFHxS, 9-38pg/g), perfluorooctane sulfonic acid (PFOS, 240-930pg/g), perfluorodecane sulfonic acid (PFDS, acid (MeFOSAA and EtFOSAA, 2-39 and 2-31pg/g, respectively) and perfluorooctane sulfonamide (FOSA, 78-920pg/g). The highest concentrations were found for PFOS and FOSA around the turn of the century. Shorter disappearance half-lives were observed for precursors compared to PFSAs. Assuming that these trend differences are representative for fish consumed by the general Swedish population, this observation suggests that the relative contribution of precursors to total human exposure to PFOS via fish intake has decreased in Sweden over the study period. PFOS precursors in fish may have constituted a significant indirect exposure pathway for PFOS in the 1990s. Isomer-specific analysis of PFOS and FOSA revealed <10% relative contributions of branched isomers to total PFOS and total FOSA. Furthermore, the percentage branched isomers decreased over time for both compounds. These findings are contrary to patterns and temporal trends of PFOS isomers commonly found in human serum. In combination with literature data on isomer patterns

  10. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens.

    PubMed

    Yang, Zonglin; Peng, Hanyong; Lu, Xiufen; Liu, Qingqing; Huang, Rongfu; Hu, Bin; Kachanoski, Gary; Zuidhof, Martin J; Le, X Chris

    2016-07-01

    The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.

  11. Activation of neuronal Kv7/KCNQ/M-channels by the opener QO58-lysine and its anti-nociceptive effects on inflammatory pain in rodents

    PubMed Central

    Teng, Bo-chuan; Song, Yan; Zhang, Fan; Ma, Tian-yang; Qi, Jin-long; Zhang, Hai-lin; Li, Gang; Wang, KeWei

    2016-01-01

    Aim: The aim of this study was to examine the activation of neuronal Kv7/KCNQ channels by a novel modified Kv7 opener QO58-lysine and to test the anti-nociceptive effects of QO58-lysine on inflammatory pain in rodent models. Methods: Assays including whole-cell patch clamp recordings, HPLC, and in vivo pain behavioral evaluations were employed. Results: QO58-lysine caused instant activation of Kv7.2/7.3 currents, and increasing the dose of QO58-lysine resulted in a dose-dependent activation of Kv7.2/Kv7.3 currents with an EC50 of 1.2±0.2 μmol/L. QO58-lysine caused a leftward shift of the voltage-dependent activation of Kv7.2/Kv7.3 to a hyperpolarized potential at V1/2=-54.4±2.5 mV from V1/2=-26.0±0.6 mV. The half-life in plasma (t1/2) was derived as 2.9, 2.7, and 3.0 h for doses of 12.5, 25, and 50 mg/kg, respectively. The absolute bioavailabilities for the three doses (12.5, 25, and 50 mg/kg) of QO58-lysine (po) were determined as 13.7%, 24.3%, and 39.3%, respectively. QO58-lysine caused a concentration-dependent reduction in the licking times during phase II pain induced by the injection of formalin into the mouse hindpaw. In the Complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats, oral or intraperitoneal administration of QO58-lysine resulted in a dose-dependent increase in the paw withdrawal threshold, and the anti-nociceptive effect on mechanical allodynia could be reversed by the channel-specific blocker XE991 (3 mg/kg). Conclusion: Taken together, our findings show that a modified QO58 compound (QO58-lysine) can specifically activate Kv7.2/7.3/M-channels. Oral or intraperitoneal administration of QO58-lysine, which has improved bioavailability and a half-life of approximately 3 h in plasma, can reverse inflammatory pain in rodent animal models. PMID:27264315

  12. Affecting proton mobility in activated peptide and whole protein ions via lysine guanidination.

    PubMed

    Pitteri, Sharon J; Reid, Gavin E; McLuckey, Scott A

    2004-01-01

    We have evaluated the effect of lysine guanidination in peptides and proteins on the dissociation of protonated ions in the gas phase. The dissociation of guanidinated model peptide ions compared to their unmodified forms showed behavior consistent with concepts of proton mobility as a major factor in determining favored fragmentation channels. Reduction of proton mobility associated with lysine guanidination was reflected by a relative increase in cleavages occurring C-terminal to aspartic acid residues as well as increases in small molecule losses. To evaluate the effect of guanidination on the dissociation behavior of whole protein ions, bovine ubiquitin was selected as a model. Essentially, all of the amide bond cleavages associated with the +10 charge state of fully guanidinated ubiquitin were observed to occur C-terminal to aspartic acid residues, unlike the dissociation behavior of the +10 ion of the unmodified protein, where competing cleavage N-terminal to proline and nonspecific amide bond cleavages were also observed. The +8 and lower charge states of the guanidinated protein showed prominent losses of small neutral molecules. This overall fragmentation behavior is consistent with current hypotheses regarding whole protein dissociation that consider proton mobility and intramolecular charge solvation as important factors in determining favored dissociation channels, and are also consistent with the fragmentation behaviors observed for the guanidinated model peptide ions. Further evaluation of the utility of condensed phase guanidination of whole proteins is necessary but the results described here confirm that guanidination can be an effective strategy for enhancing C-terminal aspartic acid cleavages. Gas phase dissociation exclusively at aspartic acid residues, especially for whole protein ions, could be useful in identifying and characterizing proteins via tandem mass spectrometry of whole protein ions.

  13. Protein Footprinting by the Combined Use of Reversible and Irreversible Lysine Modifications

    NASA Astrophysics Data System (ADS)

    Hanai, Ryo; Wang, James C.

    1994-12-01

    A two-step lysine-modification procedure has been devised to chemically footprint protein surfaces involved in macromolecular interactions. A protein tagged at one particular end, in the free state or in a complex, is first treated lightly with a reversible lysine-modifying reagent. The protein is then unfolded and treated extensively with an irreversible lysine reagent to block those lysines that did not react previously; next, the first lysine modification is reversed, and a lysine-specific endoproteinase is used to cleave the tagged polypeptide at the deblocked lysines. Separation of the proteolytic products by size and identification of the tagged fragments map the positions of these lysines. In this procedure, the reversible lysine reagent serves as the chemical footprinting agent, as cleavage of the polypeptide ensues only at the sites of reaction with this reagent. Lysines involved in macromolecular contacts are identified from differences in proteolytic patterns of the tagged protein when the first lysine modification is done with the protein in the free form and in a complex. Application of the method to vaccinia virus topoisomerase identifies a number of lysines that are involved in its binding to DNA.

  14. Bovine NK-lysin: Copy number variation and functional diversification.

    PubMed

    Chen, Junfeng; Huddleston, John; Buckley, Reuben M; Malig, Maika; Lawhon, Sara D; Skow, Loren C; Lee, Mi Ok; Eichler, Evan E; Andersson, Leif; Womack, James E

    2015-12-29

    NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants. PMID:26668394

  15. Identification and functional characterization of lysine methyltransferases of Entamoeba histolytica.

    PubMed

    Borbolla-Vázquez, Jessica; Orozco, Esther; Medina-Gómez, Christian; Martínez-Higuera, Aarón; Javier-Reyna, Rosario; Chávez, Bibiana; Betanzos, Abigail; Rodríguez, Mario A

    2016-07-01

    Lysine methylation of histones, a posttranslational modification catalyzed by lysine methyltransferases (HKMTs), plays an important role in the epigenetic regulation of transcription. Lysine methylation of non-histone proteins also impacts the biological function of proteins. Previously it has been shown that lysine methylation of histones of Entamoeba histolytica, the protozoan parasite that infects 50 million people worldwide each year and causing up to 100,000 deaths annually, is implicated in the epigenetic machinery of this microorganism. However, the identification and characterization of HKMTs in this parasite had not yet been determined. In this work we identified four HKMTs in E. histolytica (EhHKMT1 to EhHKMT4) that are expressed by trophozoites. Enzymatic assays indicated that all of them are able to transfer methyl groups to commercial histones. EhHKMT1, EhHKMT2 and EhHKMT4 were detected in nucleus and cytoplasm of trophozoites. In addition EhHKMT2 and EhHKMT4 were located in vesicles containing ingested cells during phagocytosis, and they co-immunoprecipitated with EhADH, a protein involved in the phagocytosis of this parasite. Results suggest that E. histolytica uses its HKMTs to regulate transcription by epigenetic mechanisms, and at least two of them could also be implicated in methylation of proteins that participate in phagocytosis. PMID:27062489

  16. Bovine NK-lysin: Copy number variation and functional diversification

    PubMed Central

    Chen, Junfeng; Huddleston, John; Buckley, Reuben M.; Malig, Maika; Lawhon, Sara D.; Skow, Loren C.; Lee, Mi Ok; Eichler, Evan E.; Andersson, Leif; Womack, James E.

    2015-01-01

    NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30–35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer’s patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants. PMID:26668394

  17. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  18. Androgen Receptor and Histone Lysine Demethylases in Ovine Placenta

    PubMed Central

    Cleys, Ellane R.; Halleran, Jennifer L.; Enriquez, Vanessa A.; da Silveira, Juliano C.; West, Rachel C.; Winger, Quinton A.; Anthony, Russell V.; Bruemmer, Jason E.; Clay, Colin M.; Bouma, Gerrit J.

    2015-01-01

    Sex steroid hormones regulate developmental programming in many tissues, including programming gene expression during prenatal development. While estradiol is known to regulate placentation, little is known about the role of testosterone and androgen signaling in placental development despite the fact that testosterone rises in maternal circulation during pregnancy and in placenta-induced pregnancy disorders. We investigated the role of testosterone in placental gene expression, and focused on androgen receptor (AR). Prenatal androgenization decreased global DNA methylation in gestational day 90 placentomes, and increased placental expression of AR as well as genes involved in epigenetic regulation, angiogenesis, and growth. As AR complexes with histone lysine demethylases (KDMs) to regulate AR target genes in human cancers, we also investigated if the same mechanism is present in the ovine placenta. AR co-immunoprecipitated with KDM1A and KDM4D in sheep placentomes, and AR-KDM1A complexes were recruited to a half-site for androgen response element (ARE) in the promoter region of VEGFA. Androgenized ewes also had increased cotyledonary VEGFA. Finally, in human first trimester placental samples KDM1A and KDM4D immunolocalized to the syncytiotrophoblast, with nuclear KDM1A and KDM4D immunostaining also present in the villous stroma. In conclusion, placental androgen signaling, possibly through AR-KDM complex recruitment to AREs, regulates placental VEGFA expression. AR and KDMs are also present in first trimester human placenta. Androgens appear to be an important regulator of trophoblast differentiation and placental development, and aberrant androgen signaling may contribute to the development of placental disorders. PMID:25675430

  19. Effect of including carob pulp in the diet of fattening pigs on the fatty acid composition and oxidative stability of pork.

    PubMed

    Inserra, L; Luciano, G; Bella, M; Scerra, M; Cilione, C; Basile, P; Lanza, M; Priolo, A

    2015-02-01

    The effect of feeding pigs with carob pulp on meat quality was investigated. Nine pigs were finished on a conventional concentrate-based diet (control), while two groups received a diet comprising of the same ingredients with the inclusion of 8% or 15% carob pulp (Carob 8% and Carob 15%, respectively). Feeding carob-containing diets reduced the concentration of saturated fatty acids in the muscle, increased the concentration of monounsaturated fatty acids in meat (P < 0.01) and of n-3 polyunsaturated fatty acids (PUFAs) and reduced the n-6/n-3 PUFA ratio (P < 0.001). The meat underwent slow oxidative deterioration over 9 days of storage. However, the Carob 15% treatment increased meat susceptibility to lipid oxidation across storage (P = 0.03), while the dietary treatment did not affect meat colour stability. In conclusion, feeding pigs with carob pulp could represent a strategy,in the Mediterranean areas, to naturally improve meat nutritional value and to promote the exploitation of this local feed resource.

  20. Effect of including carob pulp in the diet of fattening pigs on the fatty acid composition and oxidative stability of pork.

    PubMed

    Inserra, L; Luciano, G; Bella, M; Scerra, M; Cilione, C; Basile, P; Lanza, M; Priolo, A

    2015-02-01

    The effect of feeding pigs with carob pulp on meat quality was investigated. Nine pigs were finished on a conventional concentrate-based diet (control), while two groups received a diet comprising of the same ingredients with the inclusion of 8% or 15% carob pulp (Carob 8% and Carob 15%, respectively). Feeding carob-containing diets reduced the concentration of saturated fatty acids in the muscle, increased the concentration of monounsaturated fatty acids in meat (P < 0.01) and of n-3 polyunsaturated fatty acids (PUFAs) and reduced the n-6/n-3 PUFA ratio (P < 0.001). The meat underwent slow oxidative deterioration over 9 days of storage. However, the Carob 15% treatment increased meat susceptibility to lipid oxidation across storage (P = 0.03), while the dietary treatment did not affect meat colour stability. In conclusion, feeding pigs with carob pulp could represent a strategy,in the Mediterranean areas, to naturally improve meat nutritional value and to promote the exploitation of this local feed resource. PMID:25460134

  1. Acetylation of Lysine92 Improves the Chaperone and Anti-apoptotic Activities of Human αB-Crystallin

    PubMed Central

    Nahomi, Rooban B.; Huang, Rong; Nandi, Sandip K.; Wang, Benlian; Padmanabha, Smitha; Santhoshkumar, Puttur; Filipek, Slawomir; Biswas, Ashis; Nagaraj, Ram H.

    2013-01-01

    αB-Crystallin is a chaperone and an anti-apoptotic protein that is highly expressed in many tissues, including the lens, retina, heart and kidney. In the human lens, several lysine residues in αB-crystallin are acetylated. We have previously shown that such acetylation is predominant at lysine92 (K92) and K166. We have investigated the effect of lysine acetylation on the structure and functions of αB-crystallin by the specific introduction of an Nε-acetyllysine (AcK) mimic at K92. The introduction of AcK slightly altered the secondary and tertiary structures of the protein. AcK introduction also resulted in an increase in the molar mass and hydrodynamic radius of the protein, and the protein became structurally more open and more stable than the native protein. The acetyl protein acquired higher surface hydrophobicity and exhibited 25-55% higher chaperone activity than the native protein. The acetyl protein had higher client protein binding per subunit of the protein and higher binding affinity relative to the native protein. The acetyl protein was at least 20% more effective in inhibiting chemically induced apoptosis than the native protein. Molecular modeling suggests that acetylation of K92 makes the ‘α-crystallin domain’ more hydrophobic. Together, our results reveal that the acetylation of a single lysine residue in αB-crystallin makes the protein structurally more stable and improves its chaperone and anti-apoptotic activities. Our findings suggest that lysine acetylation of αB-crystallin is an important chemical modification to enhance αB-crystallin’s protective functions in the eye. PMID:24128140

  2. Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase EZH2.

    PubMed

    Verma, Sharad K; Tian, Xinrong; LaFrance, Louis V; Duquenne, Céline; Suarez, Dominic P; Newlander, Kenneth A; Romeril, Stuart P; Burgess, Joelle L; Grant, Seth W; Brackley, James A; Graves, Alan P; Scherzer, Daryl A; Shu, Art; Thompson, Christine; Ott, Heidi M; Aller, Glenn S Van; Machutta, Carl A; Diaz, Elsie; Jiang, Yong; Johnson, Neil W; Knight, Steven D; Kruger, Ryan G; McCabe, Michael T; Dhanak, Dashyant; Tummino, Peter J; Creasy, Caretha L; Miller, William H

    2012-12-13

    The histone H3-lysine 27 (H3K27) methyltransferase EZH2 plays a critical role in regulating gene expression, and its aberrant activity is linked to the onset and progression of cancer. As part of a drug discovery program targeting EZH2, we have identified highly potent, selective, SAM-competitive, and cell-active EZH2 inhibitors, including GSK926 (3) and GSK343 (6). These compounds are small molecule chemical tools that would be useful to further explore the biology of EZH2. PMID:24900432

  3. A Highly Active and Negatively Charged Streptococcus pyogenes Lysin with a Rare d-Alanyl-l-Alanine Endopeptidase Activity Protects Mice against Streptococcal Bacteremia

    PubMed Central

    Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W.

    2014-01-01

    Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. PMID:24637688

  4. Interaction of Sodium Hyaluronate with a Biocompatible Cationic Surfactant from Lysine: A Binding Study.

    PubMed

    Bračič, Matej; Hansson, Per; Pérez, Lourdes; Zemljič, Lidija F; Kogej, Ksenija

    2015-11-10

    Mixtures of natural and biodegradable surfactants and ionic polysaccharides have attracted considerable research interest in recent years because they prosper as antimicrobial materials for medical applications. In the present work, interactions between the lysine-derived biocompatible cationic surfactant N(ε)-myristoyl-lysine methyl ester, abbreviated as MKM, and the sodium salt of hyaluronic acid (NaHA) are investigated in aqueous media by potentiometric titrations using the surfactant-sensitive electrode and pyrene-based fluorescence spectroscopy. The critical micelle concentration in pure surfactant solutions and the critical association concentration in the presence of NaHA are determined based on their dependence on the added electrolyte (NaCl) concentration. The equilibrium between the protonated (charged) and deprotonated (neutral) forms of MKM is proposed to explain the anomalous binding isotherms observed in the presence of the polyelectrolyte. The explanation is supported by theoretical model calculations of the mixed-micelle equilibrium and the competitive binding of the two MKM forms to the surface of the electrode membrane. It is suggested that the presence of even small amounts of the deprotonated form can strongly influence the measured electrode response. Such ionic-nonionic surfactant mixtures are a special case of mixed surfactant systems where the amount of the nonionic component cannot be varied independently as was the case for some of the earlier studies.

  5. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins

    PubMed Central

    Morton, Kyla J.; Jia, Shangang; Zhang, Chi; Holding, David R.

    2016-01-01

    Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm. PMID:26712829

  6. Formation of radicals during heating lysine and glucose in solution with an intermediate water activity.

    PubMed

    Yin, J; Andersen, M L; Thomsen, M K; Skibsted, L H; Hedegaard, R V

    2013-08-01

    Heating glucose with lysine under alkaline conditions (pH 7.0-10.0) was found to take place with consumption of oxygen together with formation of brown-colored compounds. Highly reactive intermediary radicals were detected when lysine and glucose were heated at intermediate water activity at pH 7.0 and 8.0. The detection was based on initial trapping of highly reactive radicals by ethanol followed by spin trapping of 1-hydroxyethylradicals with α-(4-pyridyl N-oxide)-N-tert-butylnitrone (POBN) and Electron Spin Resonance (ESR) spectroscopy. The generation of reactive intermediary radicals from the Maillard reactions was favored by enhancing alkaline conditions (pH 8.0) and stimulated by presence of the transition metal ion Fe²⁺. The stability of the nitrone spin traps, N-tert-butyl-α-phenylnitrone and POBN was examined in buffered aqueous solutions within the pH range 1-12, and found to be less temperature dependent at acidic pH compared to alkaline conditions. A low rate (kobs) of hydrolysis of POBN was found at the used experimental conditions of 70°C and pH 7.0 and 8.0, which made this spin trap method suitable for the detection of radicals in the Maillard reaction system. PMID:23745613

  7. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    SciTech Connect

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; Romao, Celia V.; Pinto, Liliana C.; Huber, Harald; Saraiva, Ligia M.; Todorovic, Smilja

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (₋E₂₃T₂₄HVP₋), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  8. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    DOE PAGES

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; Romao, Celia V.; Pinto, Liliana C.; Huber, Harald; Saraiva, Ligia M.; Todorovic, Smilja

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue ismore » substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (₋E₂₃T₂₄HVP₋), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.« less

  9. Potential irritation of lysine derivative surfactants by hemolysis and HaCaT cell viability.

    PubMed

    Sanchez, L; Mitjans, M; Infante, M R; Vinardell, M P

    2006-02-01

    Surfactants represent one of the most common constituents in topical pharmaceutical and cosmetic applications or cleansers. Since adverse skin and ocular reactions can be caused by them, it is important to evaluate damaging effects. Amino acid-based surfactants deserve particular attention because of their low toxicity and environmental friendly properties. New lysine derivative surfactants associated with heavy and light counterions were tested. The ocular irritancy was assessed by hemolysis, and photohemolysis was employed to evaluate their phototoxicity. Cytotoxicity on HaCaT cells was determined by neutral red uptake and MTT assay to predict skin irritation. All lysine derivative surfactants were less hemolytic and thus less eye-irritating than the commercial surfactants used as model irritants. No phototoxic effects were found. All surfactants presented cytotoxic effects as demonstrated by decrease of neutral red uptake and reduction of MTT salt, with clear concentration-effect profiles. However, the rates of cytotoxicity on HaCaT for the new surfactants suggested that they were less cytotoxic and then, less skin-irritating than the reference ones; surfactants with heavy counterions were the less cytotoxic. The anionic surfactants investigated in the present work may constitute a promising class of surfactants given their low irritancy potential for pharmaceutical and cosmetic preparations. PMID:16135402

  10. Significance of lysine/glycine cluster structure in gastric H+,K+-ATPase.

    PubMed

    Asano, S; Miwa, K; Yashiro, H; Tabuchi, Y; Takeguchi, N

    2000-08-01

    Gastric H+,K+-ATPase consists of alpha- and beta-subunits. The catalytic alpha-subunit contains a very unique structure consisting of lysine and glycine clusters, KKK(or KKKK)AG(G/R)GGGK-(K/R)K, in the amino-terminal cytoplasmic region. This structure is well conserved in all gastric H+,K+-ATPases from different animal species, and was postulated to be the site controlling the access of cations (or proton) to its binding site. In this report, we studied the role of this unique structure by expressing several H+,K+-ATPase mutants of the alpha-subunit together with the wild-type beta-subunit in HEK-293 cells. Even after replacing all the positively-charged amino acid residues (six lysines and one arginine) in the cluster with alanine or removing all the glycine residues in the cluster, the mutants preserved the H+,K+-ATPase activity, and showed similar affinity for ATP and K+ as well as similar pH profiles as those of wild-type H+,K+-ATPase, indicating that the cluster is not indispensable for H+,K+-ATPase activity and not directly involved in determination of the affinity for cation (proton).

  11. Biodegradable nanoparticles composed of dendrigraft poly-L-lysine for gene delivery.

    PubMed

    Kodama, Yukinobu; Nakamura, Tadahiro; Kurosaki, Tomoaki; Egashira, Kanoko; Mine, Toyoharu; Nakagawa, Hiroo; Muro, Takahiro; Kitahara, Takashi; Higuchi, Norihide; Sasaki, Hitoshi

    2014-08-01

    We developed novel gene vectors composed of dendrigraft poly-L-lysine (DGL). The transgene expression efficiency of the pDNA/DGL complexes (DGL complexes) was markedly higher than that of the control pDNA/poly-L-lysine complex. However, the DGL complexes caused cytotoxicity and erythrocyte agglutination at high doses. Therefore, γ-polyglutamic acid (γ-PGA), which is a biodegradable anionic polymer, was added to the DGL complexes to decrease their toxicity. The resultant ternary complexes (DGL/γ-PGA complexes) were shown to be stable nanoparticles, and those with γ-PGA to pDNA charge ratios of >8 had anionic surface charges. The transgene expression efficiency of the DGL/γ-PGA complexes was similar to that of the DGL complexes; however, they exhibited lower cytotoxicity and did not induce erythrocyte agglutination at high doses. After being intravenously administered to mice, the DGL6 complex demonstrated high transfection efficiency in the liver, lungs, and spleen, whereas the DGL6/γ-PGA8 complex only displayed high transfection efficiency in the spleen. Future studies should examine the utility of DGL and DGL/γ-PGA complexes for clinical gene therapy.

  12. Lysine adducts between methyltetrahydrophthalic anhydride and collagen in guinea pig lung.

    PubMed

    Jönsson, B A; Wishnok, J S; Skipper, P L; Stillwell, W G; Tannenbaum, S R

    1995-11-01

    The formation of adducts between methyltetrahydrophthalic anhydride (MTHPA), an important industrial chemical and potent allergen, and collagen from guinea pig lung tissue was investigated. Collagen peptides were obtained from the lung tissue by homogenization, defatting, washing, and digestion with collagenase. In experiments in vitro, lung tissue was exposed to 8.4 mumol (50 microCi) of 14C MTHPA. The amount of adducts was 97 nmol MTHPA/g of wet tissue as determined from the bound radioactivity. In a study in vivo, four guinea pigs were injected intratracheally with 8.4 mumol of 14C MTHPA each. The amount of adducts was 0-1.2 nmol MTHPA/g of wet tissue (determined by bound radioactivity). N epsilon-methyltetrahydrophthaloyl-L-lysine (MTHPL) was synthesized and characterized by NMR, UV, and mass spectrometry (MS). A method to analyze MTHPL, after derivatization with methanol and pentafluorobenzoyl chloride, using gas chromatography-MS was developed. Analysis of Pronase-digested MTHPA-exposed lung tissue showed a concentration of 19 nmol MTHPL/g wet lung in vitro and between 0 and 0.15 nmol MTHPL/g wet lung in vivo. Thus, 20% in vitro and 12-15% in vivo of the bound radioactivity was found as adducts with lysine. These results are a first step toward studies of allergenic epitopes in proteins and methods for biological monitoring of exposure to acid anhydrides.

  13. Flow Analysis of Amino Acids by Using a Newly Developed Aminoacyl-tRNA Synthetase-Immobilized, Small Reactor Column-Based Assay.

    PubMed

    Kugimiya, Akimitsu; Konishi, Hidenori; Fukada, Rie

    2016-03-01

    Abnormal concentrations of amino acids in blood and urine can be indicative of several diseases, including cancer and diabetes. Therefore, analyses that examine amino acid concentrations are useful for the diagnosis of such diseases. In this study, we developed an enzyme-immobilized, small reactor column for flow analysis of amino acid concentrations. For the recognition of asparagine and lysine, asparaginyl-tRNA synthetase and lysyl-tRNA synthase were immobilized onto microparticles, respectively, and coupled with coloration reagents for spectrophotometric detection. This assay has some advantages in the analytical field, such as the ability to detect small amounts of analyte, allowing for the use of a small reaction volume, and ensuring a rapid and efficient reaction rate. This approach provided selective quantitation of up to 480 μM of asparagine and lysine in 200 mM Tris-HCl buffer (pH 8.0).

  14. Flow Analysis of Amino Acids by Using a Newly Developed Aminoacyl-tRNA Synthetase-Immobilized, Small Reactor Column-Based Assay.

    PubMed

    Kugimiya, Akimitsu; Konishi, Hidenori; Fukada, Rie

    2016-03-01

    Abnormal concentrations of amino acids in blood and urine can be indicative of several diseases, including cancer and diabetes. Therefore, analyses that examine amino acid concentrations are useful for the diagnosis of such diseases. In this study, we developed an enzyme-immobilized, small reactor column for flow analysis of amino acid concentrations. For the recognition of asparagine and lysine, asparaginyl-tRNA synthetase and lysyl-tRNA synthase were immobilized onto microparticles, respectively, and coupled with coloration reagents for spectrophotometric detection. This assay has some advantages in the analytical field, such as the ability to detect small amounts of analyte, allowing for the use of a small reaction volume, and ensuring a rapid and efficient reaction rate. This approach provided selective quantitation of up to 480 μM of asparagine and lysine in 200 mM Tris-HCl buffer (pH 8.0). PMID:26554858

  15. The LysR-type regulator LeuO regulates the acid tolerance response in Vibrio cholerae.

    PubMed

    Ante, Vanessa M; Bina, X Renee; Bina, James E

    2015-12-01

    Vibrio cholerae is a neutrophilic enteric pathogen that is extremely sensitive to acid. As V. cholerae passages through the host gastrointestinal tract it is exposed to a variety of environmental stresses including low pH and volatile fatty acids. Exposure to acidic environments induces expression of the V. cholerae acid tolerance response. A key component of the acid tolerance response is the cad system, which is encoded by cadC and the cadBA operon. CadB is a lysine/cadaverine antiporter and CadA is a lysine decarboxylase and these function together to counter low intracellular and extracellular pH. CadC is a membrane-associated transcription factor that activates cadBA expression in response to acidic conditions. Herein we investigated the role of the LysR-type transcriptional regulator LeuO in the V. cholerae acid tolerance response. Transcriptional reporter assays revealed that leuO expression repressed cadC transcription, indicating that LeuO was a cadC repressor. Consistent with this, leuO expression was inversely linked to lysine decarboxylase production and leuO overexpression resulted in increased sensitivity to organic acids. Overexpression of leuO in a cadA mutant potentiated killing by organic acids, suggesting that the function of leuO in the acid tolerance response extended beyond its regulation of the cad system. Collectively, these studies have identified a new physiological role for LeuO in V. cholerae acid tolerance.

  16. Characterization of dapB, a gene required by Pseudomonas syringae pv. tabaci BR2.024 for lysine and tabtoxinine-beta-lactam biosynthesis.

    PubMed Central

    Liu, L; Shaw, P D

    1997-01-01

    The dapB gene, which encodes L-2,3-dihydrodipicolinate reductase, the second enzyme of the lysine branch of the aspartic amino acid family, was cloned and sequenced from a tabtoxin-producing bacterium, Pseudomonas syringae pv. tabaci BR2.024. The deduced amino acid sequence shared 60 to 90% identity to known dapB gene products from gram-negative bacteria and 19 to 21% identity to the dapB products from gram-positive bacteria. The consensus sequence for the NAD(P)H binding site [(V/I)(A/G)(V/I)XGXXGXXG)] and the proposed substrate binding site (HHRHK) were conserved in the polypeptide. A BR2.024 dapB mutant is a diaminopimelate auxotroph and tabtoxin negative. The addition of a mixture of L-,L-, D,D-, and meso-diaminopimelate to defined media restored growth but not tabtoxin production. Cloned DNA fragments containing the parental dapB gene restored the ability to grow in defined media and tabtoxin production to the dapB mutant. These results indicate that the dapB gene is required for both lysine and tabtoxin biosynthesis, thus providing the first genetic evidence that the biosynthesis of tabtoxin proceeds in part along the lysine biosynthetic pathway. These data also suggest that L-2,3,4,5-tetrahydrodipicolinate is a common intermediate for both lysine and tabtoxin biosynthesis. PMID:8990304

  17. Suppression of the ELO-2 FA elongation activity results in alterations of the fatty acid composition and multiple physiological defects, including abnormal ultradian rhythms, in Caenorhabditis elegans.

    PubMed Central

    Kniazeva, Marina; Sieber, Matt; McCauley, Scott; Zhang, Kang; Watts, Jennifer L; Han, Min

    2003-01-01

    While the general steps of fatty acid (FA) biosynthesis are well understood, the individual enzymes involved in the elongation of long chain saturated and polyunsaturated FA (PUFA) are largely unknown. Recent research indicates that these enzymes might be of considerable physiological importance for human health. We use Caenorhabditis elegans to study FA elongation activities and associated abnormal phenotypes. In this article we report that the predicted C. elegans F11E6.5/ELO-2 is a functional enzyme with the FA elongation activity. It is responsible for the elongation of palmitic acid and is involved in PUFA biosynthesis. RNAi-mediated suppression of ELO-2 causes an accumulation of palmitate and an associated decrease in the PUFA fraction in triacylglycerides and phospholipid classes. This imbalance in the FA composition results in multiple phenotypic defects such as slow growth, small body size, reproductive defects, and changes in rhythmic behavior. ELO-2 cooperates with the previously reported ELO-1 in 20-carbon PUFA production, and at least one of the enzymes must function to provide normal growth and development in C. elegans. The presented data indicate that suppression of a single enzyme of the FA elongation machinery is enough to affect various organs and systems in worms. This effect resembles syndromic disorders in humans. PMID:12586704

  18. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    PubMed

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids. PMID:24922334

  19. Synthesis and biological activity of a lysine-containing cyclic analog of (Leu/sup 5/)enkephalin

    SciTech Connect

    Bobrova, I.V.; Abissova, N.A.; Rozental', G.F.; Nikiforovich, G.V.; Chipens, G.I.

    1986-09-01

    A cyclic analog of enkephalin - cyclo(Lys-Tyr-Gly-Gly-Phe-Leu) -- and two corresponding linear hexapeptides containing a residue of the amino acid lysine at the beginning and the end of the molecule - Lys-Tyr-Gly-Gly-Phe-Leu and Tyr-Gly-Gly-Phe-Leu-Lys - have been synthesized by the classical methods of peptide chemistry. The addition of a lysine residue to the N-end of the enkephalin molecule or the cyclization of this hexapeptide decreased the action of the analogs on the central and peripheral opiate receptors. The addition of lysine through the epsilon-amino group to the C-end of the enkephalin molecule scarcely changed the interaction of the analog with the ..mu..-type of opiate receptor but lowered its affinity for the delta-type of receptor approximately 10-fold. All three analogs that were synthesized possessed an analgesic activity comparable in magnitude with the activity of (Leu/sup 5/)enkephalin determined by the tail pinch method on intracisternal administration to mice.

  20. The Antimicrobial Activity of Marinocine, Synthesized by Marinomonas mediterranea, Is Due to Hydrogen Peroxide Generated by Its Lysine Oxidase Activity

    PubMed Central

    Lucas-Elío, Patricia; Gómez, Daniel; Solano, Francisco; Sanchez-Amat, Antonio

    2006-01-01

    Marinocine is a broad-spectrum antibacterial protein synthesized by the melanogenic marine bacterium Marinomonas mediterranea. This work describes the basis for the antibacterial activity of marinocine and the identification of the gene coding for this protein. The antibacterial activity is inhibited under anaerobic conditions and by the presence of catalase under aerobic conditions. Marinocine is active only in culture media containing l-lysine. In the presence of this amino acid, marinocine generates hydrogen peroxide, which causes cell death as confirmed by the increased sensitivity to marinocine of Escherichia coli strains mutated in catalase activity. The gene coding for this novel enzyme was cloned using degenerate PCR with primers designed based on conserved regions in the antimicrobial protein AlpP, synthesized by Pseudoalteromonas tunicata, and some hypothetical proteins. The gene coding for marinocine has been named lodA, standing for lysine oxidase, and it seems to form part of an operon with a second gene, lodB, that codes for a putative dehydrogenase flavoprotein. The identity of marinocine as LodA has been demonstrated by N-terminal sequencing of purified marinocine and generation of lodA mutants that lose their antimicrobial activity. This is the first report on a bacterial lysine oxidase activity and the first time that a gene encoding this activity has been cloned. PMID:16547036

  1. Development of PEGylated Cysteine-Modified Lysine Dendrimers with Multiple Reduced Thiols To Prevent Hepatic Ischemia/Reperfusion Injury.

    PubMed

    Katsumi, Hidemasa; Nishikawa, Makiya; Hirosaki, Rikiya; Okuda, Tatsuya; Kawakami, Shigeru; Yamashita, Fumiyoshi; Hashida, Mitsuru; Sakane, Toshiyasu; Yamamoto, Akira

    2016-08-01

    To inhibit hepatic ischemia/reperfusion injury, we developed polyethylene glycol (PEG) conjugated (PEGylated) cysteine-modified lysine dendrimers with multiple reduced thiols, which function as scavengers of reactive oxygen species (ROS). Second, third, and fourth generation (K2, K3, and K4) highly branched amino acid spherical lysine dendrimers were synthesized, and cysteine (C) was conjugated to the outer layer of these lysine dendrimers to obtain K2C, K3C, and K4C dendrimers. Subsequently, PEG was reacted with the C residues of the dendrimers to obtain PEGylated dendrimers with multiple reduced thiols (K2C-PEG, K3C-PEG, and K4C-PEG). Radiolabeled K4C-PEG ((111)In-K4C-PEG) exhibited prolonged retention in the plasma, whereas (111)In-K2C-PEG and (111)In-K3C-PEG rapidly disappeared from the plasma. K4C-PEG significantly prevented the elevation of plasma alanine aminotransferase (ALT) activity, an index of hepatocyte injury, in a mouse model of hepatic ischemia/reperfusion injury. In contrast, K2C-PEG, K3C-PEG, l-cysteine, and glutathione, the latter two of which are classical reduced thiols, hardly affected the plasma ALT activity. These findings indicate that K4C-PEG with prolonged circulation time is a promising compound to inhibit hepatic ischemia/reperfusion injury. PMID:27336683

  2. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)

    1994-01-01

    The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.

  3. Sensitive determination of L-lysine with a new amperometric microbial biosensor based on Saccharomyces cerevisiae yeast cells.

    PubMed

    Akyilmaz, Erol; Erdoğan, Ali; Oztürk, Ramazan; Yaşa, Ihsan

    2007-01-15

    A new amperometric microbial biosensor based on Saccharomyces cerevisiae NRRL-12632 cells, which had been induced for lysine oxidase enzyme and immobilized in gelatin by a cross-linking agent was developed for the sensitive determination of L-lysine amino acid. To construct the microbial biosensor S. cerevisiae cells were activated and cultured in a suitable culture medium. By using gelatine (8.43 mg cm(-2)) and glutaraldehyde (0.25%), cells obtained in the logarithmic phase of the growth curve at the end of a 14 h period were immobilized and fixed on a pretreated oxygen sensitive Teflon membrane of a dissolved oxygen probe. The assay procedure of the microbial biosensor is based on the determination of the differences of the respiration activity of the cells on the oxygenmeter in the absence and the presence of L-lysine. According to the end point measurement technique used in the experiments it was determined that the microbial biosensor response depended linearly on L-lysine concentrations between 1.0 and 10.0 microM with a 1 min response time. In optimization studies of the microbial biosensor, the most suitable microorganism quantities were found to be 0.97x10(5)CFU cm(-2). In addition phosphate buffer (pH 7.5; 50 mM) and 30 degrees C were obtained as the optimum working conditions. In characterization studies of the microbial biosensor some parameters such as substrate specificity, interference effects of some substances on the microbial biosensor responses, reproducibility of the biosensor and operational and storage stability were investigated.

  4. Role of the lysine-rich cluster of the C2 domain in the phosphatidylserine-dependent activation of PKCalpha.

    PubMed

    Rodríguez-Alfaro, Jose A; Gomez-Fernandez, Juan C; Corbalan-Garcia, Senena

    2004-01-23

    The C2 domain of PKCalpha is a Ca(2+)-dependent membrane-targeting module involved in the plasma membrane localization of the enzyme. Recent findings have shown an additional area located in the beta3-beta4 strands, named the lysine-rich cluster, which has been demonstrated to be involved in the PtdIns(4,5)P(2)-dependent activation of the enzyme. Nevertheless, whether other anionic phospholipids can bind to this region and contribute to the regulation of the enzyme's function is not clear. To study other possible roles for this cluster, we generated double and triple mutants that substituted the lysine by alanine residues, and studied their binding and activation properties in a Ca(2+)/phosphatidylserine-dependent manner and compared them with the wild-type protein. It was found that some of the mutants exerted a constitutive activation independently of membrane binding. Furthermore, the constructs were fused to green fluorescent protein and were expressed in fibroblast cells. It was shown that none of the mutants was able to translocate to the plasma membrane, even in saturating conditions of Ca(2+) and diacylglycerol, suggesting that the interactions performed by this lysine-rich cluster are a key event in the subcellular localization of PKCalpha. Taken together, the results obtained showed that these lysine residues might be involved in two functions: one to establish an intramolecular interaction that keeps the enzyme in an inactive conformation; and the second, once the enzyme has been partially activated, to establish further interactions with diacylglycerol and/or acidic phospholipids, leading to the full activation of PKCalpha.

  5. [Quality of data on folic acid content in vegetables included in several Spanish Food Composition Tables and new data on their folate content].

    PubMed

    Olivares, A B; Bernal, M J; Ros, G; Martínez, C; Periago, M J

    2006-01-01

    The relationship between adequate folate intake, adequate serum levels, and lowering the risk of suffering from cardiovascular diseases, neural tube defects, neural illness and some kind of cancers have been widely studied. Because of the expected health benefits, the consumption of foods with high folate content or enriched foods is increasing. Therefore, an adequate folate intake is important in order to reach acceptable serum levels. Reliable food composition data are necessary in order to evaluate and estimate the populations folate intake, elaborate diets and formulate recommended dietary intakes. For this reason, we revised folic acid data in Spanish Food Composition Tables (FCT). The quality of the data was evaluated and compared with other well-known international Food Composition Tables as well as with a high-resolution liquid chromatographic method (HPLC) validated in our laboratory. We evaluated all data about folate content, as well as all the information given like data origin, analytical method, sampling or original database. For the HPLC method, the food samples were incubated with hog kidney conjugase. After that, the samples were purified and concentrated by strong anion exchange (SAX), then the folate content was quantified by HPLC with a combination of two ultraviolet and fluorescence detectors. The evaluation and comparison of data was established according to some parameters, which define the quality of data, giving punctuation depending on the compliance with these parameters. The study of different sources showed that nutrients were different in definition, analysis method, units and expression of data, and that this fact could have a potential influence on TCA data values. In addition, it has been possible to show a wide variation in food number, name of these foods as well as the analysis of raw or cooked products with different composition. When the quality conditions were tested, the Spanish FCT had the lowest punctuation in folate

  6. Molecular mechanism for H2 release from BH3NH3, including the catalytic role of the Lewis acid BH3.

    PubMed

    Nguyen, Minh Tho; Nguyen, Vinh Son; Matus, Myrna H; Gopakumar, G; Dixon, David A

    2007-02-01

    Electronic structure calculations using various methods, up to the coupled-cluster CCSD(T) level, in conjunction with the aug-cc-pVnZ basis sets with n = D, T, and Q, extrapolated to the complete basis set limit, show that the borane molecule (BH3) can act as an efficient bifunctional acid-base catalyst in the H2 elimination reactions of XHnYHn systems (X, Y = C, B, N). Such a catalyst is needed as the generation of H2 from isoelectronic ethane and borane amine compounds proceeds with an energy barrier much higher than that of the X-Y bond energy. The asymptotic energy barrier for H2 release is reduced from 36.4 kcal/mol in BH3NH3 to 6.0 kcal/mol with the presence of BH3 relative to the molecular asymptote. The NH3 molecule can also participate in a similar catalytic process but induces a smaller reduction of the energy barrier. The kinetics of these processes was analyzed by both transition-state and RRKM theory. The catalytic effect of BH3 has also been probed by an analysis of the electronic densities of the transition structures using the atom-in-molecule (AIM) and electron localization function (ELF) approaches.

  7. Crystal structures of SIRT3 reveal that the α2-α3 loop and α3-helix affect the interaction with long-chain acyl lysine.

    PubMed

    Gai, Wei; Li, He; Jiang, Hualiang; Long, Yaqiu; Liu, Dongxiang

    2016-09-01

    SIRT1-7 play important roles in many biological processes and age-related diseases. In addition to a NAD(+) -dependent deacetylase activity, they can catalyze several other reactions, including the hydrolysis of long-chain fatty acyl lysine. To study the binding modes of sirtuins to long-chain acyl lysines, we solved the crystal structures of SIRT3 bound to either a H3K9-myristoylated- or a H3K9-palmitoylated peptide. Interaction of SIRT3 with the palmitoyl group led to unfolding of the α3-helix. The myristoyl and palmitoyl groups bind to the C-pocket and an allosteric site near the α3-helix, respectively. We found that the residues preceding the α3-helix determine the size of the C-pocket. The flexibility of the α2-α3 loop and the plasticity of the α3-helix affect the interaction with long-chain acyl lysine. PMID:27501476

  8. An active-site lysine in avian liver phosphoenolpyruvate carboxykinase

    SciTech Connect

    Guidinger, P.F.; Nowak, T. )

    1991-09-10

    The participation of lysine in the catalysis by avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification and by a characterization of the modified enzyme. The rate of inactivation by 2,4-pentanedione is pseudo-first-order and linearly dependent on reagent concentration with a second-order rate constant of 0.36 {plus minus} 0.025 M{sup {minus}1} min{sup {minus}1}. Inactivation by pyridoxal 5{prime}-phosphate of the reversible reaction catalyzed by phosphoenolpyruvate carboxykinase follows bimolecular kinetics with a second-order rate constant of 7,700 {plus minus} 860 m{sup {minus}1} min{sup {minus}1}. Treatment of the enzyme or one lysine residue modified concomitant with 100% loss in activity. A stoichiometry of 1:1 is observed when either the reversible or the irreversible reactions catalyzed by the enzyme are monitored. A study of k{sub obs} vs pH suggests this active-site lysine has a pK{sub a} of 8.1 and a pH-independent rate constant of inactivation of 47,700 m{sup {minus}1} min{sup {minus}1}. Proton relaxation rate measurements suggest that pyridoxal 5{prime}-phosphate modification alters binding of the phosphate-containing substrates. {sup 31}P NMR relaxation rate measurements show altered binding of the substrates in the ternary enzyme {center dot}Mn{sup 2+}{center dot}substrate complex. Circular dichroism studies show little change in secondary structure of pyridoxal 5{prime}-phosphate modified phosphoenolpyruvate carboxykinase. These results indicate that avian liver phosphoenolpyruvate carboxykinase has one reactive lysine at the active site and it is involved in the binding and activation of the phosphate-containing substrates.

  9. Endopeptidase and Glycosidase Activities of the Bacteriophage B30 Lysin

    PubMed Central

    Baker, John R.; Liu, Chengbao; Dong, Shengli; Pritchard, David G.

    2006-01-01

    Synthetic peptides corresponding to portions of group B streptococcal peptidoglycan were used to show that the endopeptidase activity of bacteriophage B30 lysin cleaves between d-Ala in the stem peptide and l-Ala in the cross bridge and that the minimal peptide sequence cleaved is dl-γ-Glu-Lys-d-Ala-Ala-Ala. The only glycosidase activity present is that of N-acetyl-β-d-muramidase. PMID:17021237

  10. [Evaluation of ten fish species to be included as part of renal diet, due to their protein, phosphorus and fatty acids content].

    PubMed

    Castro-González, Maria Isabel; Maafs-Rodríguez, Ana Gabriela; Pérez-Gil Romo, Fernando

    2012-06-01

    Because renal disease is highly complex, its nutritional treatment is complicated and many foods are restricted, including fish because its phosphorus content. The aim of the present study was to analyze ten fillet fish species, commonly consumed in Mexico (Cyprinus carpio carpio, Ophichthus rex, Symphurus elongatus, Eucinostomus entomelas, Chirostoma patzcuaro, Bairdiella chrysoura, Salmo salar Oreochromis urolepis hornorum, Sphyraena guachancho, Istiophorus albicans), to determine their phosphorus (P), protein (Pr), cholesterol, sodium, potassium, vitamins D3 and E, and n-3 PUFA (EPA+DHA) according to the AOAC techniques, in order to identify which species could be included in renal diet; particularly because of their risk:benefit relations (calculated with those results). Protein values ranged from 16.5 to 33.5g/100 g of fillet; the specie with the highest phosphorus contest was Salmo salar, and with the lowest, Symphurus elongatus. EPA+DHA quantity ranged from 79.64 mg/100 g to 1,381.53 mg/100 g. Considering de P/Pr relation recommended to renal patients, all analyzed species (except Salmo salar, Ophichthus rex and Istiophorus albicans) could be included in their diet. As for the P/EPA+DHA relation, the species most recommended to renal patients are Symphurus elongatus, Bairdiella chrysoura and Sphyraena guachancho. PMID:23610899

  11. Evaluation of the Effect of Psyllium on the Viability of Lactobacillus Acidophilus in Alginate-Polyl Lysine Beads

    PubMed Central

    Esmaeilzadeh, Jaleh; Nazemiyeh, Hossein; Maghsoodi, Maryam; Lotfipour, Farzaneh

    2016-01-01

    Purpose: Psylliumseeds are used in traditional herbal medicine to treat various disorders. Moreover, as a soluble fiber, psyllium has potential to stimulate bacterial growth in digestive system. We aimed to substitute alkali-extractable polysaccharides of psyllium for alginate in beads with second coat of poly-l-lysine to coat Lactobacillus acidophilus. Methods: Beads were prepared using extrusion technique. Poly-l-lysine as second coat was incorporated on optimum alginate/psyllium beads using immersion technique. Beads were characterized in terms of size, encapsulation efficiency, integrity and bacterial survival in harsh conditions. Results: Beads with narrow size distribution ranging from 1.85 ± 0.05 to 2.40 ± 0.18 mm with encapsulation efficiency higher than 96% were achieved. Psyllium concentrations in beads did not produce constant trend in bead sizes. Surface topography by SEM showed that substitution of psyllium enhanced integrity of obtained beads. Psyllium successfully protected the bacteria against acidic condition and lyophilization equal to alginate in the beads. Better survivability with beads of alginate/psyllium-poly-l-lysine was achieved with around 2 log rise in bacterial count in acid condition compared to the corresponding single coat beads. Conclusion: Alginate/psyllium (1:2) beads with narrow size distribution and high encapsulation efficiency of the bacteria have been achieved. Presence of psyllium produced a much smoother and integrated surface texture for the beads with sufficient protection of the bacteria against acidic condition as much as alginate. Considering the health benefits of psyllium and its prebiotic activity, psyllium can be beneficially replaced in part for alginate in probiotic coating. PMID:27766217

  12. The effect of level of crude protein and available lysine on finishing pig performance, nitrogen balance and nutrient digestibility.

    PubMed

    Ball, M E E; Magowan, E; McCracken, K J; Beattie, V E; Bradford, R; Gordon, F J; Robinson, M J; Smyth, S; Henry, W

    2013-04-01

    Two trials were conducted to investigate the effect of decreasing the crude protein (CP) content of diets for finishing pigs containing two levels of available lysine on nutrient digestibility, nitrogen (N) balance and production performance. Ten finishing diets containing five levels of CP (on average 144, 155, 168, 182 and 193 g/kg fresh basis) and two levels of available lysine (6.9 and 8.2 g/kg fresh basis) were formulated. The diets were offered to pigs on a performance trial (n = 800 Large White (LW)×Landrace (LR) pigs) from 10 wk of age until finish at 21 wks+5 d of age. Average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR) were calculated. In addition, a digestibility/N balance trial was conducted using pigs (n = 80 LW×LR) housed in metabolism crates. Digestibility of dry matter (DM), CP, oil, fibre and energy was determined. N balance values were determined through analysis of N content of urine and faeces ('as determined'). N balance values were also calculated using ADG values and assuming that 16% of growth is protein deposition ("as calculated"). Pig performance was poor between 10 and 13 wk of age which indicated that the dietary treatments were nutritionally inadequate for pigs less than 40 kg. There was a significant (p<0.01) quadratic effect of increasing CP level on feed intake, ADG and FCR from 10 to 13 wk which indicated that the lower CP levels did not supply adequate levels of essential or non-essential amino acids. There was no effect of increasing available lysine level throughout the early period, which in conjunction with the response in older pigs, suggested that both 8.2 and 6.9 g/kg available lysine were insufficient to drive optimum growth. There was a positive response (p<0.05) to increasing available lysine level from 13 wk to finish which indicated that 6.9 g/kg available lysine was not adequate for finishing pigs. Energy digestibility decreased with decreasing CP level of diets containing 6

  13. Amine oxidation mediated by lysine-specific demethylase 1: quantum mechanics/molecular mechanics insights into mechanism and role of lysine 661.

    PubMed

    Karasulu, Bora; Patil, Mahendra; Thiel, Walter

    2013-09-11

    We report classical molecular dynamics (MD) simulations and combined quantum mechanics/molecular mechanics (QM/MM) calculations to elucidate the catalytic mechanism of the rate-determining amine oxidation step in the lysine-specific demethylase 1 (LSD1)-catalyzed demethylation of the histone tail lysine (H3K4), with flavin adenine dinucleotide (FAD) acting as cofactor. The oxidation of substrate lysine (sLys) involves the cleavage of an α-CH bond accompanied by the transfer of a hydride ion equivalent to FAD, leading to an imine intermediate. This hydride transfer pathway is shown to be clearly favored for sLys oxidation over other proposed mechanisms, including the radical (or single-electron transfer) route as well as carbanion and polar-nucleophilic mechanisms. MD simulations on six NVT ensembles (covering different protonation states of sLys and K661 as well as the K661M mutant) identify two possible orientations of the reacting sLys and FAD subunits (called "downward" and "upward"). Calculations at the QM(B3LYP-D/6-31G*)/CHARMM22 level provide molecular-level insights into the mechanism, helping to understand how LSD1 achieves the activation of the rather inert methyl-CH bond in a metal-free environment. Factors such as proper alignment of sLys (downward orientation), transition-state stabilization (due to the protein environment and favorable orbital interactions), and product stabilization via adduct formation are found to be crucial for facilitating the oxidative α-CH bond cleavage. The current study also sheds light on the role of important active-site residues (Y761, K661, and W695) and of the conserved water-bridge motif. The steric influence of Y761 helps to position the reaction partners properly, K661 is predicted to get deprotonated prior to substrate binding and to act as an active-site base that accepts a proton from sLys to enable the subsequent amine oxidation, and the water bridge that is stabilized by K661 and W695 mediates this proton

  14. Inframolecular acid base studies of the tris and tetrakis myo-inositol phosphates including the 1,2,3-trisphosphate motif

    NASA Astrophysics Data System (ADS)

    Dozol, Hélène; Blum-Held, Corinne; Guédat, Philippe; Maechling, Clarisse; Lanners, Steve; Schlewer, Gilbert; Spiess, Bernard

    2002-12-01

    The intrinsic acid-base properties of the phosphate groups of three myo-inositol derivatives which display the 1,2,3-trisphosphate motif, i.e. (±)- myo-inositol 1,2,3-trisphosphate (Ins(1,2,3)P 3), (±)- myo-inositol 1,2,3,6-tetrakisphosphate (Ins(1,2,3,6)P 4), and (±)- myo-inositol 1,2,3,5-tetrakisphosphate (Ins(1,2,3,5)P 4) are reported. The studies were performed in 0.2 M KCl solution at 37 °C, near physiological ionic strength and temperature. In addition, in order to shed light on the transition metal complexation properties of Ins(1,2,3)P 3, the influence of the Zn 2+ cations on its 31P NMR titration curves was investigated. From the titration curves as well as from the determined protonation microconstants, it appears that for Ins(1,2,3)P 3, the two lateral P1 and P3 phosphates strongly contribute to stabilise a proton on the central P2 phosphate. However, in the fully deprotonated form of Ins(1,2,3)P 3, P1 and P3 repulse each other so that they establish hydrogen bonds with, respectively, their neighbouring OH6 and OH4 hydroxyls. The 1,2,3-trisphosphate motif of Ins(1,2,3,5)P 4 behaves very similarly to that of Ins(1,2,3)P 3 indicating a poor interaction with the distant P5 phosphate. By contrast, moving a phosphate group from position 5 to position 6 on the myo-inositol ring as in Ins(1,2,3,6)P 4, leads to major changes in the basicity and cooperativity of the phosphate groups. Finally, the presence of Zn 2+ cations has a marked influence on the 31P NMR titration curves of Ins(1,2,3)P 3, leading to the conclusion that two equatorial phosphates, assisted by a middle axial one, afford an optimal chelating moiety that is able to occupy all sites of the metal coordination polyhedron which could be the reason for its antioxidant properties.

  15. Distance Restraints from Crosslinking Mass Spectrometry: Mining a Molecular Dynamics Simulation Database to Evaluate Lysine-Lysine Distances

    SciTech Connect

    Merkley, Eric D.; Rysavy, Steven; Kahraman, Abdullah; Hafen, Ryan P.; Daggett, Valerie; Adkins, Joshua N.

    2014-03-18

    Integrative structural biology models the structures of protein complexes that are intractable by classical structural methods (because of extreme size, dynamics, or heterogeneity) by combining computational structural modeling with data from experimental methods. One such method is chemical cross-linking mass spectrometry (XL-MS), in which cross-linked peptides, derived from a covalently cross-linked protein complex and identified by liquid chromatography-mass spectrometry, pinpoint protein residues close in three-dimensional space. The commonly used lysine-reactive N-hydroxysuccinimide ester reagents disuccinimidylsuberate (DSS) and bis(sulfosuccinimidyl)suberate (BS3) have a linker arm that is 11.4 Å long when fully extended. However, XL-MS studies on proteins of known structure frequently report cross-links that exceed this distance. Typically, a tolerance of ~3 Å is added to the theoretical maximum to account for this observation, with little justification for the value chosen. We used the Dynameomics database, a repository of high-quality molecular dynamics simulations of 807 proteins representative of all protein folds, to investigate the change in lysine-lysine distances resulting from native-state dynamics on the time-scale of tens of nanoseconds. We conclude that observed cross-links are consistent with a protein structure if the distance between cross-linked lysine Nζ atoms is less than the cross-linker length plus 11.3 Å. For DSS or BS3, this corresponds to a Cα to Cα distance of 30.4 Å. This analysis provides a theoretical basis for the widespread practice of adding a tolerance to the crosslinker length when comparing XL-MS results to structures, and indicates the appropriate values of an XLMS derived distance constraint to use in structural modeling.

  16. Isolation, structural characterization and biological function of a lysine-conopressin in the central nervous system of the pharyngobdellid leech Erpobdella octoculata.

    PubMed

    Salzet, M; Bulet, P; Van Dorsselaer, A; Malecha, J

    1993-11-01

    Several neuropeptides are suspected to act on the control of hydric balance in leeches. One of these peptides, a peptide immunoreactive to an antibody against oxytocin, was previously characterized from the central nervous system of the leech Erpobdella octoculata [Salzet, M., Wattez, C., Verger-Bocquet, M., Beauvillain, J.-C. & Malecha, J. (1993) Brain Res. 601, 173-184]. This paper reports the isolation from the central nervous system of E. octoculata of another peptide of the oxytocin/vasopressin family; a lysine-vasopressin-like molecule. Its purification was performed by reverse-phase high-performance liquid chromatography combined with both dot immunobinding assay and enzyme-linked immunosorbent assay for lysine-vasopressin. The amino acid sequence was established by Edman degradation and confirmed by electrospray-mass-spectrometry measurement. The nonapeptide obtained corresponded to the lysine-conopressin previously isolated from the venom of the mollusc Conus geographus [Cruz, L. L., de Santos, V., Zafaralla, G. C., Ramilo, C. A., Zeikus, R., Gray, W. R. & Olivera, B. M. (1987) J. Biol. Chem. 262, 15821-15824]. In leeches, synthetic lysine-conopressin exerts a diuretic effect which can be compared to that of the arginine-vasopressin-like peptide isolated in the Insect Locusta migratoria [Proux, J., Miller, C. A., Li, J. P., Carney, R. L., Girardie, A., Delaage, M. & Schooley, D. A. (1987) Biochem. Biophys. Res. Commun. 149, 180-186].

  17. Prediction of individual milk proteins including free amino acids in bovine milk using mid-infrared spectroscopy and their correlations with milk processing characteristics.

    PubMed

    McDermott, A; Visentin, G; De Marchi, M; Berry, D P; Fenelon, M A; O'Connor, P M; Kenny, O A; McParland, S

    2016-04-01

    The aim of this study was to evaluate the effectiveness of mid-infrared spectroscopy in predicting milk protein and free amino acid (FAA) composition in bovine milk. Milk samples were collected from 7 Irish research herds and represented cows from a range of breeds, parities, and stages of lactation. Mid-infrared spectral data in the range of 900 to 5,000 cm(-1) were available for 730 milk samples; gold standard methods were used to quantify individual protein fractions and FAA of these samples with a view to predicting these gold standard protein fractions and FAA levels with available mid-infrared spectroscopy data. Separate prediction equations were developed for each trait using partial least squares regression; accuracy of prediction was assessed using both cross validation on a calibration data set (n=400 to 591 samples) and external validation on an independent data set (n=143 to 294 samples). The accuracy of prediction in external validation was the same irrespective of whether undertaken on the entire external validation data set or just within the Holstein-Friesian breed. The strongest coefficient of correlation obtained for protein fractions in external validation was 0.74, 0.69, and 0.67 for total casein, total β-lactoglobulin, and β-casein, respectively. Total proteins (i.e., total casein, total whey, and total lactoglobulin) were predicted with greater accuracy then their respective component traits; prediction accuracy using the infrared spectrum was superior to prediction using just milk protein concentration. Weak to moderate prediction accuracies were observed for FAA. The greatest coefficient of correlation in both cross validation and external validation was for Gly (0.75), indicating a moderate accuracy of prediction. Overall, the FAA prediction models overpredicted the gold standard values. Near-unity correlations existed between total casein and β-casein irrespective of whether the traits were based on the gold standard (0.92) or mid

  18. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal.

    PubMed

    Bui, Thi Phuong Nam; Ritari, Jarmo; Boeren, Sjef; de Waard, Pieter; Plugge, Caroline M; de Vos, Willem M

    2015-12-01

    Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products.

  19. Histone H4 lysine 20 acetylation is associated with gene repression in human cells

    PubMed Central

    Kaimori, Jun-Ya; Maehara, Kazumitsu; Hayashi-Takanaka, Yoko; Harada, Akihito; Fukuda, Masafumi; Yamamoto, Satoko; Ichimaru, Naotsugu; Umehara, Takashi; Yokoyama, Shigeyuki; Matsuda, Ryo; Ikura, Tsuyoshi; Nagao, Koji; Obuse, Chikashi; Nozaki, Naohito; Takahara, Shiro; Takao, Toshifumi; Ohkawa, Yasuyuki; Kimura, Hiroshi; Isaka, Yoshitaka

    2016-01-01

    Histone acetylation is generally associated with gene activation and chromatin decondensation. Recent mass spectrometry analysis has revealed that histone H4 lysine 20, a major methylation site, can also be acetylated. To understand the function of H4 lysine 20 acetylation (H4K20ac), we have developed a specific monoclonal antibody and performed ChIP-seq analysis using HeLa-S3 cells. H4K20ac was enriched around the transcription start sites (TSSs) of minimally expressed genes and in the gene body of expressed genes, in contrast to most histone acetylation being enriched around the TSSs of expressed genes. The distribution of H4K20ac showed little correlation with known histone modifications, including histone H3 methylations. A motif search in H4K20ac-enriched sequences, together with transcription factor binding profiles based on ENCODE ChIP-seq data, revealed that most transcription activators are excluded from H4K20ac-enriched genes and a transcription repressor NRSF/REST co-localized with H4K20ac. These results suggest that H4K20ac is a unique acetylation mark associated with gene repression. PMID:27064113

  20. Histone H4 lysine 20 acetylation is associated with gene repression in human cells.

    PubMed

    Kaimori, Jun-Ya; Maehara, Kazumitsu; Hayashi-Takanaka, Yoko; Harada, Akihito; Fukuda, Masafumi; Yamamoto, Satoko; Ichimaru, Naotsugu; Umehara, Takashi; Yokoyama, Shigeyuki; Matsuda, Ryo; Ikura, Tsuyoshi; Nagao, Koji; Obuse, Chikashi; Nozaki, Naohito; Takahara, Shiro; Takao, Toshifumi; Ohkawa, Yasuyuki; Kimura, Hiroshi; Isaka, Yoshitaka

    2016-01-01

    Histone acetylation is generally associated with gene activation and chromatin decondensation. Recent mass spectrometry analysis has revealed that histone H4 lysine 20, a major methylation site, can also be acetylated. To understand the function of H4 lysine 20 acetylation (H4K20ac), we have developed a specific monoclonal antibody and performed ChIP-seq analysis using HeLa-S3 cells. H4K20ac was enriched around the transcription start sites (TSSs) of minimally expressed genes and in the gene body of expressed genes, in contrast to most histone acetylation being enriched around the TSSs of expressed genes. The distribution of H4K20ac showed little correlation with known histone modifications, including histone H3 methylations. A motif search in H4K20ac-enriched sequences, together with transcription factor binding profiles based on ENCODE ChIP-seq data, revealed that most transcription activators are excluded from H4K20ac-enriched genes and a transcription repressor NRSF/REST co-localized with H4K20ac. These results suggest that H4K20ac is a unique acetylation mark associated with gene repression. PMID:27064113

  1. FANCJ/BACH1 Acetylation at Lysine 1249 Regulates the DNA Damage Response

    PubMed Central

    Xie, Jenny; Peng, Min; Guillemette, Shawna; Quan, Steven; Maniatis, Stephanie; Wu, Yuliang; Venkatesh, Aditya; Shaffer, Scott A.; Brosh, Robert M.; Cantor, Sharon B.

    2012-01-01

    BRCA1 promotes DNA repair through interactions with multiple proteins, including CtIP and FANCJ (also known as BRIP1/BACH1). While CtIP facilitates DNA end resection when de-acetylated, the function of FANCJ in repair processing is less well defined. Here, we report that FANCJ is also acetylated. Preventing FANCJ acetylation at lysine 1249 does not interfere with the ability of cells to survive DNA interstrand crosslinks (ICLs). However, resistance is achieved with reduced reliance on recombination. Mechanistically, FANCJ acetylation facilitates DNA end processing required for repair and checkpoint signaling. This conclusion was based on the finding that FANCJ and its acetylation were required for robust RPA foci formation, RPA phosphorylation, and Rad51 foci formation in response to camptothecin (CPT). Furthermore, both preventing and mimicking FANCJ acetylation at lysine 1249 disrupts FANCJ function in checkpoint maintenance. Thus, we propose that the dynamic regulation of FANCJ acetylation is critical for robust DNA damage response, recombination-based processing, and ultimately checkpoint maintenance. PMID:22792074

  2. Function of the active site lysine autoacetylation in Tip60 catalysis.

    PubMed

    Yang, Chao; Wu, Jiang; Zheng, Y George

    2012-01-01

    The 60-kDa HIV-Tat interactive protein (Tip60) is a key member of the MYST family of histone acetyltransferases (HATs) that plays critical roles in multiple cellular processes. We report here that Tip60 undergoes autoacetylation at several lysine residues, including a key lysine residue (i.e. Lys-327) in the active site of the MYST domain. The mutation of K327 to arginine led to loss of both the autoacetylation activity and the cognate HAT activity. Interestingly, deacetylated Tip60 still kept a substantial degree of HAT activity. We also investigated the effect of cysteine 369 and glutamate 403 in Tip60 autoacetylation in order to understand the molecular pathway of the autoacetylation at K327. Together, we conclude that the acetylation of K327 which is located in the active site of Tip60 regulates but is not obligatory for the catalytic activity of Tip60. Since acetylation at this key residue appears to be evolutionarily conserved amongst all MYST proteins, our findings provide an interesting insight into the regulatory mechanism of MYST activities. PMID:22470428

  3. Genetic alterations of histone lysine methyltransferases and their significance in breast cancer

    PubMed Central

    Liu, Hui; Holowatyj, Andreana; Yang, Zeng-Quan

    2015-01-01

    Histone lysine methyltransferases (HMTs), a large class of enzymes that catalyze site-specific methylation of lysine residues on histones and other proteins, play critical roles in controlling transcription, chromatin architecture, and cellular differentiation. However, the genomic landscape and clinical significance of HMTs in breast cancer remain poorly characterized. Here, we conducted a meta-analysis of approximately 50 HMTs in breast cancer and identified associations among recurrent copy number alterations, mutations, gene expression, and clinical outcome. We identified 12 HMTs with the highest frequency of genetic alterations, including 8 with high-level amplification, 2 with putative homozygous deletion, and 2 with somatic mutation. Different subtypes of breast cancer have different patterns of copy number and expression for each HMT gene. In addition, chromosome 1q contains four HMTs that are concurrently or independently amplified or overexpressed in breast cancer. Copy number or mRNA expression of several HMTs was significantly associated with basal-like breast cancer and shorter patient survival. Integrative analysis identified 8 HMTs (SETDB1, SMYD3, ASH1L, SMYD2, WHSC1L1, SUV420H1, SETDB2, and KMT2C) that are dysregulated by genetic alterations, classifying them as candidate therapeutic targets. Together, our findings provide a strong foundation for further mechanistic research and therapeutic options using HMTs to treat breast cancer. PMID:25537518

  4. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal

    PubMed Central

    Bui, Thi Phuong Nam; Ritari, Jarmo; Boeren, Sjef; de Waard, Pieter; Plugge, Caroline M.; de Vos, Willem M.

    2015-01-01

    Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products. PMID:26620920

  5. Identification and Characterization of a Novel Human Methyltransferase Modulating Hsp70 Protein Function through Lysine Methylation*

    PubMed Central

    Jakobsson, Magnus E.; Moen, Anders; Bousset, Luc; Egge-Jacobsen, Wolfgang; Kernstock, Stefan; Melki, Ronald; Falnes, Pål Ø.

    2013-01-01

    Hsp70 proteins constitute an evolutionarily conserved protein family of ATP-dependent molecular chaperones involved in a wide range of biological processes. Mammalian Hsp70 proteins are subject to various post-translational modifications, including methylation, but for most of these, a functional role has not been attributed. In this study, we identified the methyltransferase METTL21A as the enzyme responsible for trimethylation of a conserved lysine residue found in several human Hsp70 (HSPA) proteins. This enzyme, denoted by us as HSPA lysine (K) methyltransferase (HSPA-KMT), was found to catalyze trimethylation of various Hsp70 family members both in vitro and in vivo, and the reaction was stimulated by ATP. Furthermore, we show that HSPA-KMT exclusively methylates 70-kDa proteins in mammalian protein extracts, demonstrating that it is a highly specific enzyme. Finally, we show that trimethylation of HSPA8 (Hsc70) has functional consequences, as it alters the affinity of the chaperone for both the monomeric and fibrillar forms of the Parkinson disease-associated protein α-synuclein. PMID:23921388

  6. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA

    PubMed Central

    Kandiah, Eaazhisai; Carriel, Diego; Perard, Julien; Malet, Hélène; Bacia, Maria; Liu, Kaiyin; Chan, Sze W. S.; Houry, Walid A.; Ollagnier de Choudens, Sandrine; Elsen, Sylvie; Gutsche, Irina

    2016-01-01

    The inducible lysine decarboxylase LdcI is an important enterobacterial acid stress response enzyme whereas LdcC is its close paralogue thought to play mainly a metabolic role. A unique macromolecular cage formed by two decamers of the Escherichia coli LdcI and five hexamers of the AAA+ ATPase RavA was shown to counteract acid stress under starvation. Previously, we proposed a pseudoatomic model of the LdcI-RavA cage based on its cryo-electron microscopy map and crystal structures of an inactive LdcI decamer and a RavA monomer. We now present cryo-electron microscopy 3D reconstructions of the E. coli LdcI and LdcC, and an improved map of the LdcI bound to the LARA domain of RavA, at pH optimal for their enzymatic activity. Comparison with each other and with available structures uncovers differences between LdcI and LdcC explaining why only the acid stress response enzyme is capable of binding RavA. We identify interdomain movements associated with the pH-dependent enzyme activation and with the RavA binding. Multiple sequence alignment coupled to a phylogenetic analysis reveals that certain enterobacteria exert evolutionary pressure on the lysine decarboxylase towards the cage-like assembly with RavA, implying that this complex may have an important function under particular stress conditions. PMID:27080013

  7. The effects of ursodeoxycholic acid treatment for intrahepatic cholestasis of pregnancy on maternal and fetal outcomes: a meta-analysis including non-randomized studies.

    PubMed

    Grand'Maison, Sophie; Durand, Madeleine; Mahone, Michèle

    2014-07-01

    Objectif : Les avantages de l’utilisation d’acide ursodésoxycholique (AUDC) pour la prise en charge de la cholestase intrahépatique de la grossesse (CIG) demeurent incertains. Une analyse Cochrane de 2010 ayant porté sur des essais comparatifs randomisés n’a pas été en mesure de se prononcer pour ou contre l’utilisation d’AUDC pour la prise en charge de la CIG. Nous avons mené une méta-analyse de la littérature, en englobant tant les études non randomisées (ENR) que les ECR. Nous avions pour objectif de déterminer si les patientes ayant participé aux ENR étaient comparables à celles qui avaient participé aux ECR; nous avions également pour objectif de déterminer si l’inclusion des ENR pouvait renforcer les données probantes disponibles et orienter la pratique clinique quant à l’utilisation d’AUDC chez les femmes qui présentent une CIG. Sources de données : Nous avons mené des recherches dans Medline (Ovid), Embase (Ovid), EMB Reviews, Cinahl (Ebsco) et Web of Knowledge (Thomson Reuters) en vue d’en tirer les articles publiés entre 1966 et juin 2012. Sélection des études : Nous avons inclus tous les ECR admissibles ayant comparé l’AUDC à un placebo ou à d’autres traitements et toutes les ENR ayant comparé l’AUDC à tout autre traitement chez des femmes présentant une CIG. Synthèse des données : Nous avons inclus 11 ECR (n = 625 grossesses) et six ENR (n = 211 grossesses). Bien que les femmes ayant participé aux ECR et aux ENR aient été comparables, la qualité des études était plus faible dans le cas des ENR. De façon générale, les femmes traitées à l’AUDC ont connu une atténuation du prurit dans 73 % des ECR et dans 100 % des ENR disposant de données disponibles. Les épreuves de fonction hépatique ont présenté une amélioration dans 82 % des ECR et dans 100 % des ENR disposant de données disponibles. Bien que l’utilisation d’AUDC n’ait pas affecté le taux de c

  8. Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Mo, Ran; Yang, Mingkun; Chen, Zhuo; Cheng, Zhongyi; Yi, Xingling; Li, Chongyang; He, Chenliu; Xiong, Qian; Chen, Hui; Wang, Qiang; Ge, Feng

    2015-02-01

    Cyanobacteria are the oldest known life form inhabiting Earth and the only prokaryotes capable of performing oxygenic photosynthesis. Synechocystis sp. PCC 6803 (Synechocystis) is a model cyanobacterium used extensively in research on photosynthesis and environmental adaptation. Posttranslational protein modification by lysine acetylation plays a critical regulatory role in both eukaryotes and prokaryotes; however, its extent and function in cyanobacteria remain unexplored. Herein, we performed a global acetylome analysis on Synechocystis through peptide prefractionation, antibody enrichment, and high accuracy LC-MS/MS analysis; identified 776 acetylation sites on 513 acetylated proteins; and functionally categorized them into an interaction map showing their involvement in various biological processes. Consistent with previous reports, a large fraction of the acetylation sites are present on proteins involved in cellular metabolism. Interestingly, for the first time, many proteins involved in photosynthesis, including the subunits of phycocyanin (CpcA, CpcB, CpcC, and CpcG) and allophycocyanin (ApcA, ApcB, ApcD, ApcE, and ApcF), were found to be lysine acetylated, suggesting that lysine acetylation may play regulatory roles in the photosynthesis process. Six identified acetylated proteins associated with photosynthesis and carbon metabolism were further validated by immunoprecipitation and Western blotting. Our data provide the first global survey of lysine acetylation in cyanobacteria and reveal previously unappreciated roles of lysine acetylation in the regulation of photosynthesis. The provided data set may serve as an important resource for the functional analysis of lysine acetylation in cyanobacteria and facilitate the elucidation of the entire metabolic networks and photosynthesis process in this model cyanobacterium.

  9. A lysine-to-arginine mutation on NEDD8 markedly reduces the activity of cullin RING E3 ligase through the impairment of neddylation cascades

    SciTech Connect

    Sui, Yiyan; Liu, Yaobin; Xu, Guoqiang

    2015-06-12

    Neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like modifier, which forms covalent conjugates on lysines of its substrates. This post-translational modification, neddylation, plays important roles in tumor cell proliferation and viability. Ubiquitin can form diverse polyubiquitin chains, on its seven lysines, which play important functions in various biological processes. However, the roles of lysines in NEDD8 have not been explored. Here, we generated nine NEDD8 point mutants, each with one lysine replaced by an arginine, to study the putative function of lysines in NEDD8. Our experiments discover that Lys27 in NEDD8 is a critical residue for protein neddylation. Replacement of this residue with arginine almost completely eliminates the conjugation of NEDD8 to its substrates. Furthermore, we find that the K27R mutant impairs NEDD8 conjugation to the E2 enzyme, which normally forms thioester bonds for further transferring NEDD8 to its ligases and substrates. Therefore, this mutation completely inhibits global protein neddylation, including neddylation of cullin family proteins, resulting in decreased activity of cullin-RING E3 ligases. This work sheds new light on the roles of NEDD8 lysines on neddylation cascades and provides a dominant negative mutant for the study of neddylation and its biological functions. - Highlights: • Lys27 in NEDD8 is critical for protein neddylation. • NEDD8 K27R mutant impairs the NEDD8 conjugation. • NEDD8 K27R mutant significantly reduces the activity of cullin-RING E3 ligases.

  10. Discovery of novel small molecule inhibitors of lysine methyltransferase G9a and their mechanism in leukemia cell lines.

    PubMed

    Kondengaden, Shukkoor M; Luo, Liu-Fei; Huang, Kenneth; Zhu, Mengyuan; Zang, Lanlan; Bataba, Eudoxie; Wang, Runling; Luo, Cheng; Wang, Binghe; Li, Keqin Kathy; Wang, Peng George

    2016-10-21

    Lysine methyltransferase G9a regulates the transcription of multiple genes by primarily catalyzing mono- and di-methylation of histone H3 lysine 9, as well as several non-histone lysine sites. An attractive therapeutic target in treating leukemia, knockout studies of G9a in mice have found dramatically slowed proliferation and self-renewal of acute myeloid leukemia (AML) cells due to the attenuation of HoxA9-dependent transcription. In this study, a series of compounds were identified as potential inhibitors through structure-based virtual screening. Among these compounds, a new G9a inhibitor, DCG066, was confirmed by in vitro biochemical, and cell based enzyme assays. DCG066 has a novel molecular scaffold unlike other G9a inhibitors presently available. Similar to G9a's histone substrate, DCG066 can bind directly to G9a and inhibit methyltransferase activity in vitro. In addition to suppressing G9a methyltransferase activity and reducing histone H3 methylation levels, DCG066 displays low cytotoxicity in leukemia cell lines with high levels of G9a expression, including K562. This work presents DCG066 as an inhibitor of G9a with a novel structure, providing both a lead in G9a inhibitor design and a means for probing the functionality of G9a. PMID:27393948

  11. Biophysical Characterization of Endotoxin Inactivation by NK-2, an Antimicrobial Peptide Derived from Mammalian NK-Lysin

    PubMed Central

    Andrä, Jörg; Koch, Michel H. J.; Bartels, Rainer; Brandenburg, Klaus

    2004-01-01

    NK-2, a membrane-acting antimicrobial peptide, was derived from the cationic core region of porcine NK-lysin and consists of 27 amino acid residues. It adopts an amphipathic, α-helical secondary structure and has been shown to interact specifically with membranes of negatively charged lipids. We therefore investigated the interaction of NK-2 with lipopolysaccharide (LPS), the main, highly anionic component of the outer leaflet of the outer membrane of gram-negative bacteria, by means of biophysical and biological assays. As model organisms and a source of LPS, we used Salmonella enterica strains with various lengths of the LPS carbohydrate moiety, including smooth LPS, rough LPS, and deep rough LPS (LPS Re) mutant strains. NK-2 binds to LPS Re with a high affinity and induces a change in the endotoxin-lipid A aggregate structure from a cubic or unilamellar structure to a multilamellar one. This structural change, in concert with a significant overcompensation of the negative charges of LPS, is thought to result in the neutralization of the endotoxic LPS activity in a cell culture system. Neutralization of LPS activity by NK-2 as well as its antibacterial activity against the various Salmonella strains strongly depends on the length of the sugar chains of LPS, with LPS Re being the most sensitive. This suggests that a hydrophobic peptide-LPS interaction is necessary for efficient neutralization of the biological activity of LPS and that the long carbohydrate chains, besides their function as a barrier for hydrophobic drugs, also serve as a trap for polycationic substances. PMID:15105110

  12. The Use of Poly-L-Lysine as a Capture Agent to Enhance the Detection of Antinuclear Antibodies by ELISA

    PubMed Central

    Stearns, Nancy A.; Zhou, Shuxia; Petri, Michelle; Binder, Steven R.; Pisetsky, David S.

    2016-01-01

    Antibodies to nuclear antigens (antinuclear antibodies or ANAs) are the serological hallmark of systemic lupus erythematosus (SLE). These antibodies bind diverse nuclear antigens that include DNA, histones and non-histone proteins as well as complexes of proteins with DNA and RNA. Because of the frequency of ANA expression in SLE, testing is an important component of clinical evaluation as well as determination of eligibility for clinical trials or utilization of certain therapies. Immunofluorescence assays have been commonly used for this purpose although this approach can be limited by issues of throughput, variability and difficulty in determining positivity. ELISA and multiplex assays are also useful approaches although these assays may give an incomplete picture of antibodies present. To develop a sensitive and quantitative ANA assay, we have explored an ELISA platform in which plates are pre-coated with a positively charged nucleic acid binding polymer (NABP) to increase adherence of antigens containing DNA or RNA. As a source of antigens, we have used supernatants of Jurkat cells undergoing apoptosis in vitro. As results presented show, a poly-L-lysine (PLL) pre-coat significantly enhances detection of antibodies to DNA as well as antigens such as histones, SSA, SSB and RNP. Comparison of the ELISA assay with the PLL pre-coat with a multiplex assay using the BioPlex® 2200 system indicated good agreement in results for a panel of lupus sera. Together, these studies indicate that a pre-coat with a positively charged polymer can increase the sensitivity of an ANA ELISA using as antigens molecules released from dead and dying cells. This assay platform may facilitate ANA testing by providing an ensemble of antigens more similar in composition and structure with antigens present in vivo, with a NABP promoting adherence via charge-charge interactions. PMID:27611194

  13. The Use of Poly-L-Lysine as a Capture Agent to Enhance the Detection of Antinuclear Antibodies by ELISA.

    PubMed

    Stearns, Nancy A; Zhou, Shuxia; Petri, Michelle; Binder, Steven R; Pisetsky, David S

    2016-01-01

    Antibodies to nuclear antigens (antinuclear antibodies or ANAs) are the serological hallmark of systemic lupus erythematosus (SLE). These antibodies bind diverse nuclear antigens that include DNA, histones and non-histone proteins as well as complexes of proteins with DNA and RNA. Because of the frequency of ANA expression in SLE, testing is an important component of clinical evaluation as well as determination of eligibility for clinical trials or utilization of certain therapies. Immunofluorescence assays have been commonly used for this purpose although this approach can be limited by issues of throughput, variability and difficulty in determining positivity. ELISA and multiplex assays are also useful approaches although these assays may give an incomplete picture of antibodies present. To develop a sensitive and quantitative ANA assay, we have explored an ELISA platform in which plates are pre-coated with a positively charged nucleic acid binding polymer (NABP) to increase adherence of antigens containing DNA or RNA. As a source of antigens, we have used supernatants of Jurkat cells undergoing apoptosis in vitro. As results presented show, a poly-L-lysine (PLL) pre-coat significantly enhances detection of antibodies to DNA as well as antigens such as histones, SSA, SSB and RNP. Comparison of the ELISA assay with the PLL pre-coat with a multiplex assay using the BioPlex® 2200 system indicated good agreement in results for a panel of lupus sera. Together, these studies indicate that a pre-coat with a positively charged polymer can increase the sensitivity of an ANA ELISA using as antigens molecules released from dead and dying cells. This assay platform may facilitate ANA testing by providing an ensemble of antigens more similar in composition and structure with antigens present in vivo, with a NABP promoting adherence via charge-charge interactions.

  14. The Use of Poly-L-Lysine as a Capture Agent to Enhance the Detection of Antinuclear Antibodies by ELISA.

    PubMed

    Stearns, Nancy A; Zhou, Shuxia; Petri, Michelle; Binder, Steven R; Pisetsky, David S

    2016-01-01

    Antibodies to nuclear antigens (antinuclear antibodies or ANAs) are the serological hallmark of systemic lupus erythematosus (SLE). These antibodies bind diverse nuclear antigens that include DNA, histones and non-histone proteins as well as complexes of proteins with DNA and RNA. Because of the frequency of ANA expression in SLE, testing is an important component of clinical evaluation as well as determination of eligibility for clinical trials or utilization of certain therapies. Immunofluorescence assays have been commonly used for this purpose although this approach can be limited by issues of throughput, variability and difficulty in determining positivity. ELISA and multiplex assays are also useful approaches although these assays may give an incomplete picture of antibodies present. To develop a sensitive and quantitative ANA assay, we have explored an ELISA platform in which plates are pre-coated with a positively charged nucleic acid binding polymer (NABP) to increase adherence of antigens containing DNA or RNA. As a source of antigens, we have used supernatants of Jurkat cells undergoing apoptosis in vitro. As results presented show, a poly-L-lysine (PLL) pre-coat significantly enhances detection of antibodies to DNA as well as antigens such as histones, SSA, SSB and RNP. Comparison of the ELISA assay with the PLL pre-coat with a multiplex assay using the BioPlex® 2200 system indicated good agreement in results for a panel of lupus sera. Together, these studies indicate that a pre-coat with a positively charged polymer can increase the sensitivity of an ANA ELISA using as antigens molecules released from dead and dying cells. This assay platform may facilitate ANA testing by providing an ensemble of antigens more similar in composition and structure with antigens present in vivo, with a NABP promoting adherence via charge-charge interactions. PMID:27611194

  15. Seed-specific expression of the lysine-rich protein gene sb401 significantly increases both lysine and total protein content in maize seeds.

    PubMed

    Yu, Jingjuan; Peng, Peng; Zhang, Xiujun; Zhao, Qian; Zhu, Dengyun; Sun, Xuehui; Liu, Junqi; Ao, Guangming

    2005-12-01

    The sb401 gene from potato (Solanum berthaultii) encoding a pollen-specific protein with high lysine content was successfully integrated into the genome of maize plants, and its expression was correlated with increased levels of lysine and total protein content in maize seeds. A plasmid vector containing the sb401 gene under the control of a maize seed-specific expression storage protein promoter (P19z) was constructed and introduced into maize calli by microprojectile bombardment. The integration of the sb401 gene into the maize genome was confirmed by Southern blot analysis, and its expression was confirmed by Western blot analysis. Quantification of the lysine and protein contents in R1 maize seeds showed that, compared with the nontransgenic maize control, the lysine content increased by 16.1% to 54.8% and the total protein content increased by 11.6% to 39.0%. There were no visible morphological changes in the vegetative parts and seeds of the transgenic maize plants. Lysine and protein analysis of the transgenic maize grains showed that the levels of lysine and total protein remained high for six continuous generations, indicating that the elevated lysine and total protein levels were heritable. These results indicate that the sb401 gene could be successfully employed in breeding programs aimed at improving the nutritional value of maize.

  16. Systematic identification of the lysine succinylation in the protozoan parasite Toxoplasma gondii.

    PubMed

    Li, Xiaolong; Hu, Xin; Wan, Yujing; Xie, Guizhen; Li, Xiangzhi; Chen, Di; Cheng, Zhongyi; Yi, Xingling; Liang, Shaohui; Tan, Feng

    2014-12-01

    Lysine succinylation is a new posttranslational modification identified in histone proteins of Toxoplasma gondii, an obligate intracellular parasite of the phylum Apicomplexa. However, very little is known about their scope and cellular distribution. Here, using LC-MS/MS to identify parasite peptides enriched by immunopurification with succinyl lysine antibody, we produced the first lysine succinylome in this parasite. Overall, a total of 425 lysine succinylation sites that occurred on 147 succinylated proteins were identified in extracellular Toxoplasma tachyzoites, which is a proliferative stage that results in acute toxoplasmosis. With the bioinformatics analysis, it is shown that these succinylated proteins are evolutionarily conserved and involved in a wide variety of cellular functions such as metabolism and epigenetic gene regulation and exhibit diverse subcellular localizations. Moreover, we defined five types of definitively conserved succinylation site motifs, and the results imply that lysine residue of a polypeptide with lysine on the +3 position and without lysine at the -1 to +2 position is a preferred substrate of lysine succinyltransferase. In conclusion, our findings suggest that lysine succinylation in Toxoplasma involves a diverse array of cellular functions, although the succinylation occurs at a low level.

  17. The effect of dietary lysine levels on performance and meat yields of White Pekin ducks.

    PubMed

    Adams, R L; Hester, P Y; Stadelman, W J

    1983-04-01

    Four trials were conducted to determine the effects of dietary lysine levels ranging from .70 to 1.00% on performance and yield of different carcass components of male and female White Pekin ducks. Dietary lysine had no significant effect on weights or feed efficiencies at market age of 48 or 49 days; however, significant differences were obtained with yields of component parts for the males in Trial 2 and the females in Trial 3. In these trials, overall meat yields were significantly better for males fed levels of lysine between .80 and .95% and for females fed a lysine level of .90%.

  18. Structural insight into amino group-carrier protein-mediated lysine biosynthesis: crystal structure of the LysZ·LysW complex from Thermus thermophilus.

    PubMed

    Yoshida, Ayako; Tomita, Takeo; Fujimura, Tsutomu; Nishiyama, Chiharu; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2015-01-01

    In the biosynthesis of lysine by Thermus thermophilus, the metabolite α-ketoglutarate is converted to the intermediate α-aminoadipate (AAA), which is protected by the 54-amino acid acidic protein LysW. In this study, we determined the crystal structure of LysZ from T. thermophilus (TtLysZ), an amino acid kinase that catalyzes the second step in the AAA to lysine conversion, which was in a complex with LysW at a resolution of 1.85 Å. A crystal analysis coupled with isothermal titration calorimetry of the TtLysZ mutants for TtLysW revealed tight interactions between LysZ and the globular and C-terminal extension domains of the LysW protein, which were mainly attributed to electrostatic forces. These results provided structural evidence for LysW acting as a protecting molecule for the α-amino group of AAA and also as a carrier protein to guarantee better recognition by biosynthetic enzymes for the efficient biosynthesis of lysine.

  19. Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site

    PubMed Central

    Bharathi, Sivakama S.; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E.; Rardin, Matthew J.; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W.; Hirschey, Matthew D.; Goetzman, Eric S.

    2013-01-01

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  20. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site.

    PubMed

    Bharathi, Sivakama S; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E; Rardin, Matthew J; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W; Hirschey, Matthew D; Goetzman, Eric S

    2013-11-22

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  1. Production of microspheres with surface amino groups from blends of Poly(Lactide-co-glycolide) and Poly(epsilon-CBZ-L-lysine) and use for encapsulation.

    PubMed

    Zheng, J; Hornsby, P J

    1999-01-01

    Microspheres were formed from blends of the biodegradable polymer poly(DL-lactic-co-glycolic acid) (PLGA) together with poly(epsilon-CBZ-L-lysine) (PCBZL) by a double-emulsification/solvent evaporation technique. The size of the microspheres formed by this method was dependent both on the total concentration of the polymers and on the ratio of PLGA to PCBZL. The use of the microspheres for encapsulation was demonstrated by the inclusion of a solution of Texas Red fluorescent dye. Lysine epsilon-amino groups on the surface of the microspheres were deprotected by acid hydrolysis or lithium/liquid ammonia reduction. Acid hydrolysis damaged the surface of the microspheres as assessed by scanning electron microscopy, whereas deprotection by lithium/ammonia produced less damage and allowed the retention of encapsulated dye solution. The surface lysine groups made available on the surface of the microspheres could be used to covalently link a variety of biologically active molecules to alter their in vivo properties and allow targeting to specific cell types.

  2. Lysyl-tRNA synthetase from Bacillus stearothermophilus: the Trp314 residue is shielded in a non-polar environment and is responsible for the fluorescence changes observed in the amino acid activation reaction.

    PubMed

    Takita, Teisuke; Nakagoshi, Makoto; Inouye, Kuniyo; Tonomura, Ben'ichiro

    2003-01-24

    Three Trp variants of lysyl-tRNA synthetase from Bacillus stearothermophilus, in which either one or both of the two Trp residues within the enzyme (Trp314 and Trp332) were substituted by a Phe residue, were produced by site-directed mutagenesis without appreciable loss of catalytic activity. The following two phenomena were observed with W332F and with the wild-type enzyme, but not with W314F: (1) the addition of L-lysine alone decreased the protein fluorescence of the enzyme, but the addition of ATP alone did not; (2) the subsequent addition of ATP after the addition of excess L-lysine restored the fluorescence to its original level. Fluorometry under various conditions and UV-absorption spectroscopy revealed that Trp314, which was about 20A away from the lysine binding site and was shielded in a non-polar environment, was solely responsible for the fluorescence changes of the enzyme in the L-lysine activation reaction. Furthermore, the microenvironmental conditions around the residue were made more polar upon the binding of L-lysine, though its contact with the solvent was still restricted. It was suggested that Trp314 was located in a less polar environment than was Trp332, after comparison of the wavelengths at the peaks of fluorescence emission and of the relative fluorescence quantum yields. Trp332 was thought, based on the fluorescence quenching by some perturbants and the chemical modification with N-bromosuccinimide, to be on the surface of the enzyme, whereas Trp314 was buried inside. The UV absorption difference spectra induced by the L-lysine binding indicated that the state of Trp314, including its electrostatic environment, changed during the process, but Trp332 did not change. The increased fluorescence from Trp314 at acidic pH compared with that at neutral pH suggests that carboxylate(s) are in close proximity to the Trp314 residue. PMID:12507472

  3. Mechanism of adenylate kinase. Are the essential lysines essential?

    PubMed

    Tian, G C; Yan, H G; Jiang, R T; Kishi, F; Nakazawa, A; Tsai, M D

    1990-05-01

    Using site-specific mutagenesis, we have probed the structural and functional roles of lysine-21 and lysine-27 of adenylate kinase (AK) from chicken muscle expressed in Escherichia coli. The two residues were chosen since according to the nuclear magnetic resonance (NMR) model [Mildvan, A. S., & Fry, D. C. (1987) Adv. Enzymol. 58, 241-313], they are located near the alpha- and the gamma-phosphates, respectively, of adenosine 5'-triphosphate (ATP) in the AK-MgATP complex. In addition, a lysine residue (Lys-21 in the case of AK) along with a glycine-rich loop is considered "essential" in the catalysis of kinases and other nucleotide binding proteins. The Lys-27 to methionine (K27M) mutant showed only slight increases in kcat and Km, but a substantial increase (1.8 kcal/mol) in the free energy of unfolding, relative to the WT AK. For proper interpretation of the steady-state kinetic data, viscosity-dependent kinetics was used to show that the chemical step is partially rate-limiting in the catalysis of AK. Computer modeling suggested that the folded form of K27M could gain stability (relative to the wild type) via hydrophobic interactions of Met-27 with Val-179 and Phe-183 and/or formation of a charge-transfer complex between Met-27 and Phe-183. The latter was supported by an upfield shift of the methyl protons of Met-27 in 1H NMR. Other than this, the 1H NMR spectrum of K27M is very similar to that of WT, suggesting little perturbation in the global or even local conformations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2161682

  4. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.

    PubMed Central

    Lowther, W. T.; Majer, P.; Dunn, B. M.

    1995-01-01

    Rhizopuspepsin and other fungal aspartic proteinases are distinct from the mammalian enzymes in that they are able to cleave substrates with lysine in the P1 position. Sequence and structural comparisons suggest that two aspartic acid residues, Asp 30 and Asp 77 (pig pepsin numbering), may be responsible for generating this unique specificity. Asp 30 and Asp 77 were changed to the corresponding residues in porcine pepsin, Ile 30 and Thr 77, to create single and double mutants. The zymogen forms of the wild-type and mutant enzymes were overexpressed in Escherichia coli as inclusion bodies. Following solubilization, denaturation, refolding, activation, and purification to homogeneity, structural and kinetic comparisons were made. The mutant enzymes exhibited a high degree of structural similarity to the wild-type recombinant protein and a native isozyme. The catalytic activities of the recombinant proteins were analyzed with chromogenic substrates containing lysine in the P1, P2, or P3 positions. Mutation of Asp 77 resulted in a loss of 7 kcal mol-1 of transition-state stabilization energy in the hydrolysis of the substrate containing lysine in P1. An inhibitor containing the positively charged P1-lysine side chain inhibited only the enzymes containing Asp 77. Inhibition of the Asp 77 mutants of rhizopuspepsin and several mammalian enzymes was restored upon acetylation of the lysine side chain. These results suggest that an exploitation of the specific electrostatic interaction of Asp 77 in the active site of fungal enzymes may lead to the design of compounds that preferentially inhibit a variety of related Candida proteinases in immunocompromised patients. PMID:7613467

  5. Characterization of lysine-guanine cross-links upon one-electron oxidation of a guanine-containing oligonucleotide in the presence of a trilysine peptide.

    PubMed

    Perrier, Sandrine; Hau, Jörg; Gasparutto, Didier; Cadet, Jean; Favier, Alain; Ravanat, Jean-Luc

    2006-05-01

    Formation of DNA-protein cross-links involving the initial formation of a guanine radical cation was investigated. For this purpose, riboflavin-mediated photosensitization of a TGT oligonucleotide in aerated aqueous solution in the presence of the KKK tripeptide was performed. We have shown that the nucleophilic addition of the epsilon-amino group of the central lysine residue of KKK to the C8 atom of either the guanine radical cation or its deprotonated form gives rise to the efficient formation of a Nepsilon-(guanin-8-yl)-lysine cross-link. Interestingly, the time course of formation of the above-mentioned cross-link was found to be not linear with the time of irradiation, and its formation rapidly reached a plateau. This is explained by secondary decomposition of the initially generated cross-link which could be further oxidized more efficiently than starting TGT oligonucleotide. One-electron oxidation of the initially generated cross-link was found to produce mainly two diastereomeric cross-links exhibiting a spiroimino-trilysine-dihydantoin structure as inferred from enzymatic digestion, CD, UV, NMR and mass spectrometry measurements. In addition, other minor cross-links, for which formation was favored at acidic pH, were assigned as lysine-guanine adducts in which the modified guanine base exhibits a guanidino-trilysine-iminohydantoin structure. A proposed mechanism for the formation of the different detected oligonucleotide-peptide cross-links is given. The high yield of formation of the detected cross-links strongly suggests that a DNA-protein cross-link involving a lysine residue linked to the C8 position of guanine could be generated in cellular systems if a lysine is located in the close vicinity of a guanine radical cation.

  6. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions

    SciTech Connect

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Ling; Robinson, Howard; Varnum, Susan M.

    2011-01-07

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C (~two-thirds) and BoNT/D (~one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 Å resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal β-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR

  7. Crystal Structure of the Receptor Binding Domain of the botulinum C-D Mosiac Neurotoxin Reveals Potential Roles of Lysines 1118 and 1136 in Membrane Interactions

    SciTech Connect

    Y Zhang; G Buchko; L Qin; H Robinson; S Varnum

    2011-12-31

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C ({approx}two-third) and BoNT/D ({approx}one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 {angstrom} resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal {beta}-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR.

  8. Effect of heat treatment on true digestibility in the rat, in vitro proteolysis and available lysine content of cottonseed meal protein.

    PubMed

    Craig, W M; Broderick, G A

    1981-02-01

    Effects of heating cottonseed meal (CSM) protein were quantitatively assessed by determination of true digestibility (TD), in vitro proteolysis, N solubility and fluorodinitrobenzene (FDNB) available lysine. Flaked, dehulled cottonseed was extracted with hexane and desolventized at 25 C, then autoclaved (121 C, 1.1 kg/cm(2)) for 0, 15, 30, 60, 90 or 120 minutes. Free gossypol was subsequently extracted, and TD was determined in weanling rats. Metabolic fecal N (the fecal N excreted by rats fed a basal diet containing 4% casein protein) was 1.84 +/- .10 mg N/g dry matter intake. TD and FDNB-available lysine (percentage of total) were 91 and 89%, respectively, in the unheated meal. TD and FDNB-available lysine were reduced to 84 and 78% after 60 min of autoclaving, and to 71 and 44% after 120 min of autoclaving. The effect of heat treatment on TD was described by the equation: % TD = 100 - 9.28e(.0096t) (r = .998), where t = minutes of autoclaving. This indicated an accelerated decline in TD as heating time increased. No more than 40% of the loss in FDNB-available lysine was attributable to gossypol binding. In vitro release of total amino acids from autoclaved CSM samples during pepsin-pancreatin incubations was highly correlated to TD (r = .996), but N solubility in .02 N NaOH was poorly correlated to TD. In samples of solvent-extracted and screw-pressed CSM, TD (estimated from pepsin-pancreatin incubations) ranged from 80 to 85% and FDNB-available lysine ranged from 73 to 85%, and both were only slightly lower in screw-pressed than in solvent-extracted meals. Intake of FDNB-available lysine was correlated (r = .902) to weight gain in rats fed diets containing the CSM that were more severely autoclaved. Results suggest that heat treatment must be more severe than that which normally occurs in commercial CSM processing to cause substantial, selective loss in lysine availability.

  9. Asymmetry in inward- and outward-affinity constant of transport explain unidirectional lysine flux in Saccharomyces cerevisiae.

    PubMed

    Bianchi, Frans; Klooster, Joury S van 't; Ruiz, Stephanie J; Luck, Katja; Pols, Tjeerd; Urbatsch, Ina L; Poolman, Bert

    2016-01-01

    The import of basic amino acids in Saccharomyces cerevisiae has been reported to be unidirectional, which is not typical of how secondary transporters work. Since studies of energy coupling and transport kinetics are complicated in vivo, we purified the major lysine transporter (Lyp1) of yeast and reconstituted the protein into lipid vesicles. We show that the Michaelis constant (KM) of transport from out-to-in is well in the millimolar range and at least 3 to 4-orders of magnitude higher than that of transport in the opposite direction, disfavoring the efflux of solute via Lyp1. We also find that at low values of the proton motive force,