Science.gov

Sample records for acids increase spontaneous

  1. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    SciTech Connect

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W. )

    1991-05-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication.

  2. Polyphenolic drug composition based on benzenepolycarboxylic acids (BP-C3) increases life span and inhibits spontaneous tumorigenesis in female SHR mice

    PubMed Central

    Anisimov, Vladimir N.; Popovich, Irina G.; Zabezhinski, Mark A.; Yurova, Maria N.; Tyndyk, Margarita L.; Anikin, Ivan V.; Egormin, Peter A.; Baldueva, Irina A.; Fedoros, Elena I.; Pigarev, Sergey E.; Panchenko, Andrey V.

    2016-01-01

    Effects of long-term application of novel polyphenolic composition BP-C3, containing polyphenolic benzenepolycarboxylic acids, vitamins and minerals on some biomarkers of aging, life span and spontaneous tumorigenesis has been studied in female SHR mice. Administration of BP-C3 with drinking water (0.005%) did not exert any toxic effect (did not have effect on general condition of animals, weight dynamics and consumption of food), postponed age-related switch-off of estrous function, caused slight reduction of body temperature. An increased survival was observed in mice treated with BP-C3 (p=0.00164, log rank test). BP-C3 increased mean lifespan – by 8.4%, lifespan of the last 10% of animals – by 12.4%, and life span of tumor-free mice – by 11.6%. A tendency in ability of BP-C3 to inhibit development of spontaneous tumors in mice was detected, though it did not reach the level of statistical significance (p=0.166, log rank test). The number of malignant mammary tumors was 1.5 times less and total number of tumors of various localizations was 1.6 times less in BP-C3 treated animals. Multiple tumors were registered in 8% of mice in the control group and no cases – in BP-C3 treated group. Thus, BP-C3 demonstrated some anti-carcinogenic and a pronounced geroprotective activity. PMID:27574962

  3. Polyphenolic drug composition based on benzenepolycarboxylic acids (BP-C3) increases life span and inhibits spontaneous tumorigenesis in female SHR mice.

    PubMed

    Anisimov, Vladimir N; Popovich, Irina G; Zabezhinski, Mark A; Yurova, Maria N; Tyndyk, Margarita L; Anikin, Ivan V; Egormin, Peter A; Baldueva, Irina A; Fedoros, Elena I; Pigarev, Sergey E; Panchenko, Andrey V

    2016-08-28

    Effects of long-term application of novel polyphenolic composition BP-C3, containing polyphenolic benzenepolycarboxylic acids, vitamins and minerals on some biomarkers of aging, life span and spontaneous tumorigenesis has been studied in female SHR mice. Administration of BP-C3 with drinking water (0.005%) did not exert any toxic effect (did not have effect on general condition of animals, weight dynamics and consumption of food), postponed age-related switch-off of estrous function, caused slight reduction of body temperature. An increased survival was observed in mice treated with BP-C3 (p=0.00164, log rank test). BP-C3 increased mean lifespan - by 8.4%, lifespan of the last 10% of animals - by 12.4%, and life span of tumor-free mice - by 11.6%. A tendency in ability of BP-C3 to inhibit development of spontaneous tumors in mice was detected, though it did not reach the level of statistical significance (p=0.166, log rank test). The number of malignant mammary tumors was 1.5 times less and total number of tumors of various localizations was 1.6 times less in BP-C3 treated animals. Multiple tumors were registered in 8% of mice in the сontrol group and no cases - in BP-C3 treated group. Thus, BP-C3 demonstrated some anti-carcinogenic and a pronounced geroprotective activity.

  4. [Increased spontaneous uterine motility with serotonin].

    PubMed

    Lechner, W; Sölder, E; Sölder, B; Kölle, D; Huter, O

    1992-01-01

    The influence of serotonine, a vasoactive neurotransmitter, on the spontaneous motility of uterine strips was investigated. A highly significant (p less than 0.001) increase of uterine activity was observed when serotonine 10(-6) M was added to the perfusing medium.

  5. Bicarbonate Increases Tumor pH and Inhibits Spontaneous Metastases

    PubMed Central

    Robey, Ian F.; Baggett, Brenda K.; Kirkpatrick, Nathaniel D.; Roe, Denise J.; Dosescu, Julie; Sloane, Bonnie F.; Hashim, Arig Ibrahim; Morse, David L.; Raghunand, Natarajan; Gatenby, Robert A.; Gillies, Robert J.

    2010-01-01

    The external pH of solid tumors is acidic as a consequence of increased metabolism of glucose and poor perfusion. Acid pH has been shown to stimulate tumor cell invasion and metastasis in vitro and in cells before tail vein injection in vivo. The present study investigates whether inhibition of this tumor acidity will reduce the incidence of in vivo metastases. Here, we show that oral NaHCO3 selectively increased the pH of tumors and reduced the formation of spontaneous metastases in mouse models of metastatic breast cancer. This treatment regimen was shown to significantly increase the extracellular pH, but not the intracellular pH, of tumors by 31P magnetic resonance spectroscopy and the export of acid from growing tumors by fluorescence microscopy of tumors grown in window chambers. NaHCO3 therapy also reduced the rate of lymph node involvement, yet did not affect the levels of circulating tumor cells, suggesting that reduced organ metastases were not due to increased intravasation. In contrast, NaHCO3 therapy significantly reduced the formation of hepatic metastases following intrasplenic injection, suggesting that it did inhibit extravasation and colonization. In tail vein injections of alternative cancer models, bicarbonate had mixed results, inhibiting the formation of metastases from PC3M prostate cancer cells, but not those of B16 melanoma. Although the mechanism of this therapy is not known with certainty, low pH was shown to increase the release of active cathepsin B, an important matrix remodeling protease. PMID:19276390

  6. Bicarbonate increases tumor pH and inhibits spontaneous metastases.

    PubMed

    Robey, Ian F; Baggett, Brenda K; Kirkpatrick, Nathaniel D; Roe, Denise J; Dosescu, Julie; Sloane, Bonnie F; Hashim, Arig Ibrahim; Morse, David L; Raghunand, Natarajan; Gatenby, Robert A; Gillies, Robert J

    2009-03-15

    The external pH of solid tumors is acidic as a consequence of increased metabolism of glucose and poor perfusion. Acid pH has been shown to stimulate tumor cell invasion and metastasis in vitro and in cells before tail vein injection in vivo. The present study investigates whether inhibition of this tumor acidity will reduce the incidence of in vivo metastases. Here, we show that oral NaHCO(3) selectively increased the pH of tumors and reduced the formation of spontaneous metastases in mouse models of metastatic breast cancer. This treatment regimen was shown to significantly increase the extracellular pH, but not the intracellular pH, of tumors by (31)P magnetic resonance spectroscopy and the export of acid from growing tumors by fluorescence microscopy of tumors grown in window chambers. NaHCO(3) therapy also reduced the rate of lymph node involvement, yet did not affect the levels of circulating tumor cells, suggesting that reduced organ metastases were not due to increased intravasation. In contrast, NaHCO(3) therapy significantly reduced the formation of hepatic metastases following intrasplenic injection, suggesting that it did inhibit extravasation and colonization. In tail vein injections of alternative cancer models, bicarbonate had mixed results, inhibiting the formation of metastases from PC3M prostate cancer cells, but not those of B16 melanoma. Although the mechanism of this therapy is not known with certainty, low pH was shown to increase the release of active cathepsin B, an important matrix remodeling protease.

  7. Increased spontaneous recovery with increases in conditioned stimulus alone exposures.

    PubMed

    Leung, Hiu Tin; Westbrook, R Frederick

    2010-07-01

    A series of experiments used the compound test procedure (Rescorla, 2002) to measure the size of spontaneous recovery of freezing responses by rats to a latently inhibited and/or extinguished conditioned stimulus (CS). The size of recovery was greater: to a pre-exposed and conditioned CS than to a CS just conditioned or just pre-exposed; to an extensively pre-exposed or extinguished CS than to a moderately pre-exposed or extinguished CS; and to a pre-exposed and extinguished CS than to a CS just pre-exposed or just extinguished. These results show that the size of recovery is proportional to the size of the depression produced by CS-alone exposures regardless of whether they occurred before, after, or both before and after conditioning. The results are discussed in terms of some contemporary models of recovery and of the inferences permitted by the use of the compound assessment technique.

  8. Nucleic Acid Sample Preparation using Spontaneous Biphasic Plug Flow

    PubMed Central

    Thomas, Peter C.; Strotman, Lindsay N.; Theberge, Ashleigh B.; Berthier, Erwin; O’Connell, Rachel; Loeb, Jennifer M.; Berry, Scott M.; Beebe, David J.

    2013-01-01

    Nucleic acid (NA) extraction and purification has become a common technique in both research and clinical laboratories. Current methods require repetitive wash steps with a pipette that is laborious and time consuming making it inefficient for clinical settings. We present here a simple technique that relies on spontaneous biphasic plug flow inside a capillary to achieve sample preparation. By filling the sample with oil, aqueous contaminants were displaced from the captured NA without pipetting wash buffers or use of external force and equipment. mRNA from mammalian cell culture was purified and PCR amplification showed similar threshold cycle values as those obtained from a commercially available kit. HIV viral like particles were spiked into serum and a 5-fold increase in viral RNA extraction yield was achieved compared to the conventional wash method. In addition, viral RNA was successfully purified from human whole blood, and a limit of detection of approximately 14 copies of RNA extracted per sample. The results demonstrate the utility of the current technique for nucleic acid purification for clinical purposes, and the overall approach provides a potential method to implement nucleic acid testing in low resource settings. PMID:23941230

  9. Nucleic acid sample preparation using spontaneous biphasic plug flow.

    PubMed

    Thomas, Peter C; Strotman, Lindsay N; Theberge, Ashleigh B; Berthier, Erwin; O'Connell, Rachel; Loeb, Jennifer M; Berry, Scott M; Beebe, David J

    2013-09-17

    Nucleic acid (NA) extraction and purification has become a common technique in both research and clinical laboratories. Current methods require repetitive wash steps with a pipet that are laborious and time-consuming, making the procedure inefficient for clinical settings. We present here a simple technique that relies on spontaneous biphasic plug flow inside a capillary to achieve sample preparation. By filling the sample with oil, aqueous contaminants were displaced from the captured NA without pipetting wash buffers or use of external force and equipment. mRNA from mammalian cell culture was purified, and polymerase chain reaction (PCR) amplification showed similar threshold cycle values as those obtained from a commercially available kit. Human immunodeficiency virus (HIV) viral-like particles were spiked into serum and a 5-fold increase in viral RNA extraction yield was achieved compared to the conventional wash method. In addition, viral RNA was successfully purified from human whole blood, and a limit of detection of approximately 14 copies of RNA extracted per sample was determined. The results demonstrate the utility of the current technique for nucleic acid purification for clinical purposes, and the overall approach provides a potential method to implement nucleic acid testing in low-resource settings.

  10. Soy isoflavones increase latency of spontaneous mammary tumors in mice.

    PubMed

    Jin, Zeming; MacDonald, Ruth S

    2002-10-01

    Soy protein, with and without isoflavones, is being added to foods by manufacturers in response to the Food and Drug Administration (FDA)-approved health claim for cardiovascular protection. Furthermore, soy isoflavones are increasingly consumed by women in the United States as an alternative to hormone replacement therapy. The role of these phytoestrogens in breast cancer is controversial. Although exposure of rodents to soy isoflavones during the perinatal period appears to reduce mammary cancer formation, exposure in utero or during adulthood may increase tumor growth. The mouse mammary tumor virus (MMTV)-neu mouse spontaneously develops mammary tumors due to overexpression of the ErbB-2/neu/HER2 oncogene. This model is comparable with human breast cancer because overexpression of the neu oncogene occurs in 20-40% of human breast cancers. We fed MMTV-neu mice AIN-93G diets containing no isoflavones, 250 mg/kg genistein, 250 mg/kg daidzein or an isoflavone mixture (NovaSoy, equivalent to 250 mg genistein/kg) from 7 wk of age. Mammary tumor latency was significantly delayed in mice fed isoflavones compared with the control. Once tumors formed, however, the isoflavones did not reduce the number or size of tumors such that at 34 wk of age there were no differences in tumor burden among the treatment groups. Hence, in the MMTV-neu mouse, soy isoflavones delayed mammary tumorigenesis. Further studies are warranted to define the cellular mechanisms through which these compounds affect mammary tumorigenesis in this model.

  11. Risk of spontaneous bacterial peritonitis associated with gastric Acid suppression.

    PubMed

    Chang, Shy-Shin; Lai, Chih-Cheng; Lee, Meng-tse Gabriel; Lee, Yu-Chien; Tsai, Yi-Wen; Hsu, Wan-Ting; Lee, Chien-Chang

    2015-06-01

    The primary objective of this study was to determine the association between the use of gastric acid suppressants (GAS) and the risk of developing spontaneous bacterial peritonitis (SBP) in patients with advanced liver cirrhosis (LC). A case-control study nested within a cohort of 480,000 representatives of Taiwan National Health Insurance beneficiaries was carried out. A case was matched with 100 controls on age, gender, and index date of SBP diagnosis. GAS use was identified from the 1-year period before the index date. Conditional logistic regression analysis was used to adjust for various unbalanced covariates between users and nonusers of GAS. A total of 947 cases of SBP were identified among the 86,418 patients with advanced LC. A significant increased risk of developing SBP was found to be associated with current (within 30 days), and recent (within 30-90 day) use of 2 different classes of GAS: proton pump inhibitors (PPIs) and histamine 2 receptor antagonists (H2RAs). The confounder adjusted rate ratio (aRR) for the current use of PPIs was 2.77 (95% CI: 1.90-4.04) and H2RAs was 2.62 (95% CI: 2.00-3.42). The risk of SBP attenuated for the recent use of PPIs (aRR: 2.20, 95%CI: 1.60-3.02) or H2RAs (aRR: 1.72, 95% CI: 1.25-2.37). In addition, sensitivity analysis using hospitalized SBP as the primary outcome showed a similar risk for the current use of PPIs (aRR, 3.24; 95% CI: 2.08-5.05) and H2RAs (aRR 2.43; 95% CI 1.71-3.46). Furthermore, higher cumulative days of gastric acid suppression were associated with a higher risk of SBP (trend P < 0.0001). To conclude, exposure to GAS was associated with an increased risk of SBP in patients with advanced LC. The association was more pronounced in current PPI users compared with nonusers.

  12. Spontaneously recovered severe thrombocytopaenia following zoledronic acid infusion for osteoporosis.

    PubMed

    Kulkarni, Pooja; Cushman, Terra; Donthireddy, Vijayalakshmi; Rao, Sudhaker

    2016-02-03

    Zoledronic acid is widely used for the treatment of various skeletal disorders. While acute phase reactions are commonly seen, hypocalcaemia, femoral shaft fractures, osteonecrosis of the jaw and renal failure are rare. Two cases of fatal thrombocytopaenic purpura have been reported following zoledronic acid infusion. We report a case of non-fatal thrombocytopaenia with spontaneous recovery. A 70-year woman with osteoporosis participated in a research study. Complete blood and platelet counts prior to zoledronic acid infusion were normal (138,000/µL), but had declined slightly from 185,000/µL 2 years ago. One year after the first zoledronic acid infusion, her platelet count declined to 50,000/µL without any clinical manifestations, and rose slowly returning to normal (156,000/µL) over the next 1 year. Extensive evaluation did not reveal any specific abnormalities, and the pathogenesis of her transient severe thrombocytopaenia after two infusions of zoledronic acid remains unclear.

  13. Spontaneous surface convection in extraction of lanthanoids by di-2-ethylhexylphosphoric acid

    SciTech Connect

    Dupal, A.Ya.; Tarasov, V.V.; Yagodin, G.A.; Arutyunyan, V.A.

    1988-09-01

    It has been established that when lanthanoids are extracted from aqueous nitric acid solutions (pH > 1.5) by di-2-ethylhexylphosphoric acid in decane or toluene a spontaneous surface convection occurs in the system over the initial period, which leads to an up to tenfold increase in the mass transfer coefficient. The intensity of the spontaneous surface convection (SSC) depends on the concentrations of the components and the conditions under which the extraction is conducted. With the passage of time an interphase film is formed at the interface which suppresses the SSC and retards the mass transfer. Small additions of ionic surfactants increase the surface viscosity, reducing any motion in the interphase region, which leads to an effective suppression of the SSC.

  14. Ego depletion results in an increase in spontaneous false memories.

    PubMed

    Otgaar, Henry; Alberts, Hugo; Cuppens, Lesly

    2012-12-01

    The primary aim of the current study was to examine whether depleted cognitive resources might have ramifications for the formation of neutral and negative spontaneous false memories. To examine this, participants received neutral and negative Deese/Roediger-McDermott false memory wordlists. Also, for half of the participants, cognitive resources were depleted by use of an ego depletion manipulation (solving difficult calculations while being interfered with auditory noise). Our chief finding was that depleted cognitive resources made participants more vulnerable for the production of false memories. Our results shed light on how depleted cognitive resources affect neutral and negative correct and errant memories.

  15. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae.

    PubMed

    Medina, K; Boido, E; Fariña, L; Gioia, O; Gomez, M E; Barquet, M; Gaggero, C; Dellacassa, E; Carrau, F

    2013-12-01

    Discovery, characterisation and use of novel yeast strains for winemaking is increasingly regarded as a way for improving quality and to provide variation, including subtle characteristic differences in fine wines. The objective of this work was to evaluate the use of a native apiculate strain, selected from grapes, Hanseniaspora vineae (H. vineae) 02/5A. Fermentations were done in triplicate, working with 225 L oak barrels, using a Chardonnay grape must. Three yeast fermentation strategies were compared: conventional inoculation with a commercial Saccharomyces cerevisiae strain, ALG 804, sequential inoculation with H. vineae and then strain ALG 804 and spontaneous fermentation. Yeast strain identification was performed during fermentation, in which the apiculate strain was found to be active, until 9% of alcohol in volume, for the co-fermentation and the spontaneous fermentation was completed by three native S. cerevisiae strains. Basic winemaking parameters and some key chemical analysis, such as concentration of glycerol, biogenic amines, organic acids, and aroma compounds were analysed. Sensory analysis was done using a trained panel and further evaluated with professional winemakers. Sequential inoculation with H. vineae followed by S. cerevisiae resulted in relatively dry wines, with increased aroma and flavour diversity compared with wines resulting from inoculation with S. cerevisiae alone. Wines produced from sequential inoculations were considered, by a winemaker's panel, to have an increased palate length and body. Characteristics of wines derived from sequential inoculation could be explained due to significant increases in glycerol and acetyl and ethyl ester flavour compounds and relative decreases in alcohols and fatty acids. Aroma sensory analysis of wine character and flavour, attributed to winemaking using H. vineae, indicated a significant increase in fruit intensity described as banana, pear, apple, citric fruits and guava. GC analysis of the

  16. Prolonged stimulation with low-intensity ultrasound induces delayed increases in spontaneous hippocampal culture spiking activity.

    PubMed

    Kim, Hyun-Bum; Swanberg, Kelley M; Han, Hee-Sok; Kim, Jung-Chae; Kim, Jun-Woo; Lee, Sungon; Lee, C Justin; Maeng, Sungho; Kim, Tae-Seong; Park, Ji-Ho

    2017-03-01

    Ultrasound is a promising neural stimulation modality, but an incomplete understanding of its range and mechanism of effect limits its therapeutic application. We investigated the modulation of spontaneous hippocampal spike activity by ultrasound at a lower acoustic intensity and longer time scale than has been previously attempted, hypothesizing that spiking would change conditionally upon the availability of glutamate receptors. Using a 60-channel multielectrode array (MEA), we measured spontaneous spiking across organotypic rat hippocampal slice cultures (N = 28) for 3 min each before, during, and after stimulation with low-intensity unfocused pulsed or sham ultrasound (spatial-peak pulse average intensity 780 μW/cm(2) ) preperfused with artificial cerebrospinal fluid, 300 μM kynurenic acid (KA), or 0.5 μM tetrodotoxin (TTX) at 3 ml/min. Spike rates were normalized and compared across stimulation type and period, subregion, threshold level, and/or perfusion condition using repeated-measures ANOVA and generalized linear mixed models. Normalized 3-min spike counts for large but not midsized, small, or total spikes increased after but not during ultrasound relative to sham stimulation. This result was recapitulated in subregions CA1 and dentate gyrus and replicated in a separate experiment for all spike size groups in slices pretreated with aCSF but not KA or TTX. Increases in normalized 18-sec total, midsized, and large spike counts peaked predominantly 1.5 min following ultrasound stimulation. Our low-intensity ultrasound setup exerted delayed glutamate receptor-dependent, amplitude- and possibly region-specific influences on spontaneous spike rates across the hippocampus, expanding the range of known parameters at which ultrasound may be used for neural activity modulation. © 2016 Wiley Periodicals, Inc.

  17. Model Systems of Precursor Cellular Membranes: Long-Chain Alcohols Stabilize Spontaneously Formed Oleic Acid Vesicles

    PubMed Central

    Rendón, Adela; Carton, David Gil; Sot, Jesús; García-Pacios, Marcos; Montes, Ruth; Valle, Mikel; Arrondo, José-Luis R.; Goñi, Felix M.; Ruiz-Mirazo, Kepa

    2012-01-01

    Oleic acid vesicles have been used as model systems to study the properties of membranes that could be the evolutionary precursors of more complex, stable, and impermeable phospholipid biomembranes. Pure fatty acid vesicles in general show high sensitivity to ionic strength and pH variation, but there is growing evidence that this lack of stability can be counterbalanced through mixtures with other amphiphilic or surfactant compounds. Here, we present a systematic experimental analysis of the oleic acid system and explore the spontaneous formation of vesicles under different conditions, as well as the effects that alcohols and alkanes may have in the process. Our results support the hypothesis that alcohols (in particular 10- to 14-C-atom alcohols) contribute to the stability of oleic acid vesicles under a wider range of experimental conditions. Moreover, studies of mixed oleic-acid-alkane and oleic-acid-alcohol systems using infrared spectroscopy and Langmuir trough measurements indicate that precisely those alcohols that increased vesicle stability also decreased the mobility of oleic acid polar headgroups, as well as the area/molecule of lipid. PMID:22339864

  18. Histological evidence of increased turnover in bone from spontaneously hypertensive rats.

    PubMed

    Barbagallo, M; Quaini, F; Baroni, M C; Barbagallo, C M; Boiardi, L; Passeri, G; Arlunno, B; Delsignore, R; Passeri, M

    1991-03-01

    24 weeks-old spontaneously hypertensive male rats and normotensive genetic controls were subjected to: histomorphometry of the proximal tibiae, assay of mineral density of the femurs by dual photon absorptiometry, and measurement of the calcium content of the femoral bone ash by atomic absorption spectophotometry. Compared with the controls, the hypertensive rats showed osteopenia and increased bone turnover; their osteoid volumes and the surface area of both osteoclasts and osteoblasts were all increased. The data suggest that, during aging, spontaneously hypertensive rats both lose bone mass more rapidly and also have an increased skeletal metabolic rate with respect to the controls.

  19. Lead increases tetrodotoxin-insensitive spontaneous release of glutamate and GABA from hippocampal neurons.

    PubMed

    Braga, M F; Pereira, E F; Marchioro, M; Albuquerque, E X

    1999-04-24

    This study was aimed at investigating the effects of the environmental pollutant lead (Pb2+) on the tetrodotoxin (TTX)-insensitive release of neurotransmitters from hippocampal neurons. Evidence is provided that Pb2+ (>/=100 nM) increases the frequency of gamma-aminobutyric acid (GABA)- and glutamate-mediated miniature postsynaptic currents (MPSCs) recorded by means of the patch-clamp technique from cultured hippocampal neurons. Because Pb2+ changed neither the amplitude nor the decay-time constant of the MPSCs, Pb2+-induced changes in MPSC frequency are exclusively due to a presynaptic action of this heavy metal. Increase by Pb2+ of the action potential-independent release of GABA and glutamate was concentration dependent and was only partially reversible upon washing of the neurons with nominally Pb2+-free external solution. This effect was also Ca2+ independent and began approximately after 1-2-min exposure of the neurons to Pb2+. The latency for the onset of the Pb2+'s effect on the MPSC frequency and the inability of the chelator ethylenediaminetetraacetic acid (100 microM) to reverse the effect that remained after washing of the neurons with external solution suggested that Pb2+ acted via an intracellular mechanism. Of interest also was the finding that Pb2+ simultaneously increased the release of GABA and glutamate, overriding the ability of these neurotransmitters to decrease the release of one another. Given that synaptic activity is a key mechanism for the establishment of stable synaptic connections early in the development, it is possible that, by interfering with spontaneous transmitter release, Pb2+ has lasting effects on neuronal maturation and plasticity.

  20. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen.

    PubMed

    Mathiesen, Claus; Brazhe, Alexey; Thomsen, Kirsten; Lauritzen, Martin

    2013-02-01

    Glial calcium (Ca(2+)) waves constitute a means to spread signals between glial cells and to neighboring neurons and blood vessels. These waves occur spontaneously in Bergmann glia (BG) of the mouse cerebellar cortex in vivo. Here, we tested three hypotheses: (1) aging and reduced blood oxygen saturation alters wave activity; (2) glial Ca(2+) waves change cerebral oxygen metabolism; and (3) neuronal and glial wave activity is correlated. We used two-photon microscopy in the cerebellar cortexes of adult (8- to 15-week-old) and aging (48- to 80-week-old) ketamine-anesthetized mice after bolus loading with OGB-1/AM and SR101. We report that the occurrence of spontaneous waves is 20 times more frequent in the cerebellar cortex of aging as compared with adult mice, which correlated with a reduction in resting brain oxygen tension. In adult mice, spontaneous glial wave activity increased on reducing resting brain oxygen tension, and ATP-evoked glial waves reduced the tissue O(2) tension. Finally, although spontaneous Purkinje cell (PC) activity was not associated with increased glia wave activity, spontaneous glial waves did affect intracellular Ca(2+) activity in PCs. The increased wave activity during aging, as well as low resting brain oxygen tension, suggests a relationship between glial waves, brain energy homeostasis, and pathology.

  1. Hyperpolarization induces a long-term increase in the spontaneous firing rate of cerebellar Golgi cells

    PubMed Central

    Hull, Court; Chu, YunXiang; Thanawala, Monica; Regehr, Wade G.

    2013-01-01

    Golgi cells (GoCs) are inhibitory interneurons that influence the cerebellar cortical response to sensory input by regulating the excitability of the granule cell layer. While GoC inhibition is essential for normal motor coordination, little is known about the circuit dynamics that govern the activity of these cells. In particular, while GoC spontaneous spiking influences the extent of inhibition and gain throughout the granule cell layer, it is not known whether this spontaneous activity can be modulated in a long-term manner. Here we describe a form of long-term plasticity that regulates the spontaneous firing rate of GoCs in the rat cerebellar cortex. We find that membrane hyperpolarization, either by mGluR2 activation of potassium channels, or by somatic current injection, induces a long-lasting increase in GoC spontaneous firing. This spike rate plasticity appears to result from a strong reduction in the spike afterhyperpolarization (AHP). Pharmacological manipulations suggest the involvement of calcium-calmodulin dependent kinase II (CaMKII) and calcium-activated potassium channels in mediating these firing rate increases. As a consequence of this plasticity, GoC spontaneous spiking is selectively enhanced, but the gain of evoked spiking is unaffected. Hence this plasticity is well-suited for selectively regulating the tonic output of GoCs rather than their sensory-evoked responses. PMID:23554471

  2. A decrease in S-adenosylmethionine synthetase activity increases the probability of spontaneous sporulation.

    PubMed Central

    Ochi, K; Freese, E

    1982-01-01

    Starting with a relaxed (relA) strain, mutants with reduced activity of adenosine triphosphate:L-methionine S-adenosyl transferase (EC 2.5.1.6; SAM synthetase) were isolated in Bacillus subtilis. One such mutant (gene symbol metE1) had only 3% of the normal SAM synthetase activity but grew almost as well as the parent strain. Another mutant was isolated (gene symbol spdC1) as being able to sporulate continually at a high frequency; it had one-half the normal SAM synthetase activity at 33 degrees C. Both mutants continually and spontaneously entered spore development at a higher frequency than the parent strain in a medium containing excess glucose, ammonium ions, and phosphate. Sporulation was prevented by a high concentration of SAM (1 mM or more) or by the combination of adenosine and methionine (0.5 mM or more each), both of which are precursors of SAM. In contrast to this continual increase in the spore titer, addition of decoyinine, an inhibitor of GMP synthetase, rapidly initiated massive sporulation. Various amino acid analogs also induced sporulation in the relA strain, the methionine analogs ethionine and selenomethionine being most effective. PMID:6811558

  3. Dietary borage oil alters plasma, hepatic and vascular tissue fatty acid composition in spontaneously hypertensive rats.

    PubMed

    Engler, M M; Engler, M B

    1998-07-01

    Dietary borage oil rich in gamma-linolenic acid (GLA) has been shown to lower blood pressure in Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). A potential mechanism for this effect may be attributed to changes in metabolism of GLA to dihomogamma-linolenic (DGLA) and arachidonic acids (AA). We investigated the effects of dietary borage oil on fatty acid composition in the plasma, liver and vascular tissue in WKY and SHR. The diet significantly increased the levels of omega-6 polyunsaturated fatty acids. GLA and DGLA levels in the plasma, liver, aorta and renal artery tissues increased in SHR (P < 0.001) and WKY (P < 0.001). AA levels were also increased in both plasma and liver of SHR (P < 0.05) and WKY (P < 0.05) fed the borage oil enriched diet. The results demonstrate that dietary borage oil produces marked changes in the metabolism of GLA which may contribute to its blood pressure lowering effect in WKY and SHR.

  4. An Analysis of Naturalistic Interventions for Increasing Spontaneous Expressive Language in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Lane, Justin D.; Lieberman-Betz, Rebecca; Gast, David L.

    2016-01-01

    The purpose of this review was to identify naturalistic language interventions for increasing spontaneous expressive language (defined in this review as absence of verbal prompt or other verbalization from adults or peers) in young children with autism spectrum disorder. Also, the methodological rigor and effectiveness of each study were evaluated…

  5. Spontaneous, Metal-Catalyzed, and Enzyme-Catalyzed Decarboxylation of Oxalosuccinic Acid.

    DTIC Science & Technology

    1980-01-01

    The Ohio State University, 1980 309 Pages Professor Daniel Leussing, Advisor Decarboxylation rates of oxalosuccinic acid , a tricarboxylic acid , thas...been studied in detail. It was shown that the keto forms of the acid spontaneously decarboxylate. The catalytic effect of three metals were examined. The...overall effectiveness of the metals were , This catalysis resulted from the formation of a 1:1 complex between the acid and the metal ions. The

  6. A Staff-Training Program to Increase Spontaneous Vocal Requests in Children With Autism

    PubMed Central

    Karp, Rebecca

    2013-01-01

    This study evaluated a staff-training and feedback program to increase (a) staff use of naturalistic language training techniques, and (b) child production of spontaneous vocal requests in a school setting for young children with autism. Training was conducted in integrated preschool centers and in an art group. The results revealed that the training and feedback procedure was successful in increasing staff use of naturalistic language training techniques. Further, these increased strategies were associated with corresponding increases in spontaneous vocal requests for all children during embedded training and ongoing feedback conditions. In addition, probes collected by an unobtrusive observer revealed durability of child requesting when staff feedback was discontinued. Social validity measures from front-line staff regarding the intervention revealed positive ratings. The results are discussed in relation to the continued search for effective service-delivery systems to improve communication for children with autism in the public school setting. PMID:27999635

  7. Fatal spontaneous Clostridium septicum gas gangrene: a possible association with iatrogenic gastric acid suppression.

    PubMed

    Wu, Yiru E; Baras, Alexander; Cornish, Toby; Riedel, Stefan; Burton, Elizabeth C

    2014-06-01

    The long-term use of proton pump inhibitors has been linked to an increased risk for the development of gastric polyps, hip fractures, pneumonia, and Clostridium difficile colitis. There is evidence that chronic acid suppression from long-term use of proton pump inhibitors poses some risk for the development of C difficile-associated diarrhea by decreasing the elimination of pathogenic microbes before reaching the lower gastrointestinal tract. Here we present a case of a 51-year-old woman with a recent history of abdominal pain and fever who presented to the emergency department with rapidly progressive spontaneous necrotizing fasciitis and gas gangrene and died within hours of presentation. Postmortem examination confirmed spreading tissue gas gangrene and myonecrosis. In addition, multiple intestinal ulcers containing Clostridium septicum were present at autopsy. This case illustrates a possible association between proton pump inhibitor therapy and fatal C septicum infection.

  8. Aspirin increases mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E; Bharathi, Sivakama S; Zhang, Yuxun; Stolz, Donna B; Goetzman, Eric S

    2017-01-08

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.

  9. Folic acid supplementation, dietary folate intake during pregnancy and risk for spontaneous preterm delivery: a prospective observational cohort study

    PubMed Central

    2013-01-01

    Background Health authorities in numerous countries recommend periconceptional folic acid to pregnant women to prevent neural tube defects. The objective of this study was to examine the association of folic acid supplementation during different periods of pregnancy and of dietary folate intake with the risk of spontaneous preterm delivery (PTD). Methods The Norwegian Mother and Child Cohort Study is a population-based prospective cohort study. A total of 65,668 women with singleton pregnancies resulting in live births in 1999–2009 were included. Folic acid supplementation was self-reported from 26 weeks before pregnancy until week 24 during pregnancy. At gestational week 22, the women completed a food frequency questionnaire, which allowed the calculation of their average total folate intake from foods and supplements for the first 4–5 months of pregnancy. Spontaneous PTD was defined as the spontaneous onset of delivery between weeks 22+0 and 36+6 (n = 1,628). Results The median total folate intake was 266 μg/d (interquartile range IQR 154–543) in the overall population and 540 μg/d (IQR 369–651) in the supplement users. Eighty-three percent reported any folic acid supplementation from <8 weeks before to 24 weeks after conception while 42% initiated folic acid supplementation before their pregnancy. Cox regression analysis showed that the amount of folate intake from the diet (hazard ratio HR 1.16; confidence interval CI 0.65-2.08) and from the folic acid supplements (HR 1.04; CI 0.95-1.13) was not significantly associated with the risk of PTD. The initiation of folic acid supplementation more than 8 weeks before conception was associated with an increased risk for PTD (HR 1.19; CI 1.05-1.34) compared to no folic acid supplementation pre-conception. There was no significant association with PTD when supplementation was initiated within 8 weeks pre-conception (HR 1.01; CI 0.88-1.16). All analyses were adjusted for maternal characteristics and

  10. α-Lactalbumin:Oleic Acid Complex Spontaneously Delivers Oleic Acid to Artificial and Erythrocyte Membranes.

    PubMed

    Wen, Hanzhen; Strømland, Øyvind; Halskau, Øyvind

    2015-09-25

    Human α-lactalbumin made lethal to tumor cells (HAMLET) is a tumoricidal complex consisting of human α-lactalbumin and multiple oleic acids (OAs). OA has been shown to play a key role in the activity of HAMLET and its related complexes, generally known as protein-fatty acid (PFA) complexes. In contrast to what is known about the fate of the protein component of such complexes, information about what happens to OA during their action is still lacking. We monitored the membrane, OA and protein components of bovine α-lactalbumin complexed with OA (BLAOA; a HAMLET-like substance) and how they associate with each other. Using ultracentrifugation, we found that the OA and lipid components follow each other closely. We then firmly identify a transfer of OA from BLAOA to both artificial and erythrocyte membranes, indicating that natural cells respond similarly to BLAOA treatment as artificial membranes. Uncomplexed OA is unable to similarly affect membranes at the conditions tested, even at elevated concentrations. Thus, BLAOA can spontaneously transfer OA to a lipid membrane. After the interaction with the membrane, the protein is likely to have lost most or all of its OA. We suggest a mechanism for passive import of mainly uncomplexed protein into cells, using existing models for OA's effect on membranes. Our results are consistent with a membrane destabilization mediated predominantly by OA insertion being a significant contribution to PFA cytotoxicity.

  11. Efficacy of iopanoic acid for treatment of spontaneous hyperthyroidism in cats.

    PubMed

    Gallagher, Alexander E; Panciera, David L

    2011-06-01

    Iopanoic acid is an iodine containing oral cholecystographic agent that has been used to treat hyperthyroidism in humans and has recently been evaluated in an experimental model of feline hyperthyroidism. The aim of this study was to evaluate the efficacy of iopanoic acid in cats with spontaneous hyperthyroidism. Eleven cats were included in the study. Eight were treated initially with 50mg orally q 12h and three were treated with 100mg orally q 12h. Prior to treatment (baseline) and at 2, 4, and 12 weeks of treatment, owner questionnaires, physical exams, complete blood count, biochemistry analyses, and T(3) and T(4) concentrations were evaluated. The mean serum T(3) concentration decreased with treatment at all time periods compared to baseline. Mean T(4) concentrations were increased at weeks 4 and 12 compared to baseline. Five cats had a partial response during the initial 4 weeks of therapy, but the effects were transient and no significant improvements in clinical signs or physical exam findings were noted at any time period. Results suggest that iopanoic acid may be beneficial for acute management of thyrotoxicosis in some cats, but is not suitable for long-term management.

  12. Influence of fatty acid desaturation on spontaneous acyl migration in 2-monoacylglycerols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of desaturation from the C9 to the C15 carbon of 2-monoacylglycerol (2-MAG) fatty acids on spontaneous acyl migration is described. Density functional calculations for 2-monooleoylglycerol (C18:cis-delta9), 2-monolinoleoylglycerol (C18:cis-delta9,12), and 2-monolinolenoylglycerol (C18:cis...

  13. Increase of renal sympathetic nerve activity by metoprolol or propranolol in conscious spontaneously hypertensive rats.

    PubMed

    Majcherczyk, S; Mikulski, A; Sjölander, M; Thorén, P

    1987-08-01

    1 Mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in conscious spontaneously hypertensive rats (SHR). 2 Infusion of metoprolol (4 mumol kg-1 h-1) or propranolol (1.5 mumol kg-1 h-1) reduced HR and significantly increased RSNA. 3 Administration of metoprolol caused a sustained decrease of MAP starting in the third hour of infusion. In contrast, administration of propranolol induced a biphasic response in MAP. It is suggested that the increase of RSNA after both beta-adrenoceptor blocking drugs is due to a decrease in arterial baroreceptor activity.

  14. Dietary supplementation with methylseleninic acid, but not selenomethionine, reduces spontaneous metastasis of Lewis lung carcinoma in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary supplementation with methylseleninic acid reduces spontaneous metastasis of Lewis lung carcinoma in mice Lin Yan*, Lana C. DeMars The present study investigated the effects of dietary supplementation with methylseleninic acid (MSeA) on spontaneous metastasis of Lewis lung carcinoma (LLC) in...

  15. Dietary anhydrous milk fat naturally enriched with conjugated linoleic acid and vaccenic acid modify cardiovascular risk biomarkers in spontaneously hypertensive rats.

    PubMed

    Herrera-Meza, M S; Mendoza-López, M R; García-Barradas, O; Sanchez-Otero, M G; Silva-Hernández, E R; Angulo, J O; Oliart-Ros, R M

    2013-08-01

    Saturated and trans fatty acids have been associated with the risk to develop cardiovascular diseases. However, health-promoting effects are associated with consumption of anhydrous milk fat (AMF) and ruminant trans fatty acids, such as conjugated linoleic acid (CLA) and vaccenic acid (VA) contained in the lipid fraction of milk and dairy products. The purpose of this study was to evaluate the effect of AMF naturally enriched with CLA and VA in spontaneously hypertensive rats (SHR), using sterculic oil to inhibit the conversion of VA into CLA. The administration of AMF to SHR during 7 weeks exerted beneficial effects on cardiovascular risk biomarkers (reduction of insulin, blood lipids, increase of adiponectin). When sterculic oil was included, some parameters were further ameliorated (reduction of insulin, increase of adiponectin). Sterculic oil alone reduced body weight and adiposity, and improved blood pressure, adiponectin and triglyceride levels.

  16. Amplified spontaneous emission from the exciplex state of a conjugated polymer "PFO" in oleic acid

    NASA Astrophysics Data System (ADS)

    Idriss, Hajo; Taha, Kamal K.; Aldaghri, O.; Alhathlool, R.; AlSalhi, M. S.; Ibnaouf, K. H.

    2016-09-01

    The amplified spontaneous emission (ASE) characteristics of a conjugated polymer poly (9, 9-dioctylfluorenyl-2, 7-diyl) (PFO) in oleic acid have been studied under different concentrations and temperatures. Here, the ASE spectra of PFO in oleic acid have been obtained using a transverse cavity configuration where the conjugated PFO was pumped by laser pulses from the third harmonic of Nd: YAG laser (355 nm). The PFO in oleic acid produces ASE from an exciplex state - a new molecular species. The obtained results were compared with the PFO in benzene. Such ASE spectra from the exciplex state have not been observed for the PFO in benzene.

  17. Serotonin activates catecholamine neurons in the solitary tract nucleus by increasing spontaneous glutamate inputs.

    PubMed

    Cui, Ran Ji; Roberts, Brandon L; Zhao, Huan; Zhu, Mingyan; Appleyard, Suzanne M

    2012-11-14

    Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT(3) receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A(2)/C(2) catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT(3) receptor antagonist ondansetron and mimicked by the 5-HT(3) receptor agonists SR5227 and mCPBG. In contrast, 5-HT(3) receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT(3) receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT(3) receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function.

  18. Serotonin Activates Catecholamine Neurons in the Solitary Tract Nucleus by Increasing Spontaneous Glutamate Inputs

    PubMed Central

    Cui, Ran Ji; Roberts, Brandon L.; Zhao, Huan; Zhu, Mingyan

    2012-01-01

    Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT3 receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A2/C2 catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT3 receptor antagonist ondansetron and mimicked by the 5-HT3 receptor agonists SR5227 and mCPBG. In contrast, 5-HT3 receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT3 receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT3 receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function. PMID:23152635

  19. Forskolin induced increase in spontaneous activity of auditory brainstem neurons is comparable to acoustic stimulus evoked responses.

    PubMed

    Shaikh, Aasef G; Finlayson, Paul G

    2012-12-07

    Contemporary proposals for the pathophysiology of tinnitus due to cochlear damage underscore increased spontaneous activity of auditory brainstem neurons. One of the several consequences of the cochlear injury is the activation of the ERK pathway, suppression of phosphodiestase E activity, and putatively setting a long-term increase in intracellular levels of cyclic AMP at central auditory neurons. Local application of forskolin also increases intracellular cyclic AMP and spontaneous neural activity. We measured the effects of locally applied forskolin on spontaneous firing rate of isolated neurons in the peri-olivary region of the superior olive complex in anesthetized adult Long Evan rats. Forskolin induced increase in spontaneous neural activity was comparable to supra-threshold tone evoke neural responses. These results are viewed in context of hyperexcitability as a correlate of tinnitus.

  20. Maltreatment increases spontaneous false memories but decreases suggestion-induced false memories in children.

    PubMed

    Otgaar, Henry; Howe, Mark L; Muris, Peter

    2017-01-17

    We examined the creation of spontaneous and suggestion-induced false memories in maltreated and non-maltreated children. Maltreated and non-maltreated children were involved in a Deese-Roediger-McDermott false memory paradigm where they studied and remembered negative and neutral word lists. Suggestion-induced false memories were created using a misinformation procedure during which both maltreated and non-maltreated children viewed a negative video (i.e., bank robbery) and later received suggestive misinformation concerning the event. Our results showed that maltreated children had higher levels of spontaneous negative false memories but lower levels of suggestion-induced false memories as compared to non-maltreated children. Collectively, our study demonstrates that maltreatment both increases and decreases susceptibility to memory illusions depending on the type of false memory being induced. Statement of contribution What is already known on this subject? Trauma affects memory. It is unclear how trauma affects false memory. What does this study add? This study focuses on two types of false memories.

  1. Lamivudine/Adefovir Treatment Increases the Rate of Spontaneous Mutation of Hepatitis B Virus in Patients

    PubMed Central

    Pereira-Gómez, Marianoel; Bou, Juan-Vicente; Andreu, Iván; Sanjuán, Rafael

    2016-01-01

    The high levels of genetic diversity shown by hepatitis B virus (HBV) are commonly attributed to the low fidelity of its polymerase. However, the rate of spontaneous mutation of human HBV in vivo is currently unknown. Here, based on the evolutionary principle that the population frequency of lethal mutations equals the rate at which they are produced, we have estimated the mutation rate of HBV in vivo by scoring premature stop codons in 621 publicly available, full-length, molecular clone sequences derived from patients. This yielded an estimate of 8.7 × 10−5 spontaneous mutations per nucleotide per cell infection in untreated patients, which should be taken as an upper limit estimate because PCR errors and/or lack of effective lethality may inflate observed mutation frequencies. We found that, in patients undergoing lamivudine/adefovir treatment, the HBV mutation rate was elevated by more than sixfold, revealing a mutagenic effect of this treatment. Genome-wide analysis of single-nucleotide polymorphisms indicated that lamivudine/adefovir treatment increases the fraction of A/T-to-G/C base substitutions, consistent with recent work showing similar effects of lamivudine in cellular DNA. Based on these data, the rate at which HBV produces new genetic variants in treated patients is similar to or even higher than in RNA viruses. PMID:27649318

  2. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.

    PubMed

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-07-01

    In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs.

  3. Salvianolic Acid A, a Novel Matrix Metalloproteinase-9 Inhibitor, Prevents Cardiac Remodeling in Spontaneously Hypertensive Rats

    PubMed Central

    Deng, Yanping; Teng, Fukang; Chen, Jing; Xue, Song; Kong, Xiangqian; Luo, Cheng; Shen, Xu; Jiang, Hualiang; Xu, Feng; Yang, Wengang; Yin, Jun; Wang, Yanhui; Chen, Hui; Wu, Wanying; Liu, Xuan; Guo, De-an

    2013-01-01

    Cardiac fibrosis is a deleterious consequence of hypertension which may further advance to heart failure and increased matrix metalloproteinase-9 (MMP-9) contributes to the underlying mechanism. Therefore, new therapeutic strategies to attenuate the effects of MMP-9 are urgently needed. In the present study, we characterize salvianolic acid A (SalA) as a novel MMP-9 inhibitor at molecular, cellular and animal level. We expressed a truncated form of MMP-9 which contains only the catalytic domain (MMP-9 CD), and used this active protein for enzymatic kinetic analysis and Biacore detection. Data generated from these assays indicated that SalA functioned as the strongest competitive inhibitor of MMP-9 among 7 phenolic acids from Salvia miltiorrhiza. In neonatal cardiac fibroblast, SalA inhibited fibroblast migration, blocked myofibroblast transformation, inhibited secretion of intercellular adhesion molecule (ICAM), interleukin-6 (IL-6) and soluble vascular cell adhesion molecule-1 (sVCAM-1) as well as collagen induced by MMP-9 CD. Functional effects of SalA inhibition on MMP-9 was further confirmed in cultured cardiac H9c2 cell overexpressing MMP-9 in vitro and in heart of spontaneously hypertensive rats (SHR) in vivo. Moreover, SalA treatment in SHR resulted in decreased heart fibrosis and attenuated heart hypertrophy. These results indicated that SalA is a novel inhibitor of MMP-9, thus playing an inhibitory role in hypertensive fibrosis. Further studies to develop SalA and its analogues for their potential clinical application of cardioprotection are warranted. PMID:23533637

  4. (−)-Epicatechin Prevents Blood Pressure Increase and Reduces Locomotor Hyperactivity in Young Spontaneously Hypertensive Rats

    PubMed Central

    Berenyiova, A.; Drobna, M.; Lukac, S.

    2016-01-01

    This study investigated the effects of subchronic (−)-epicatechin (Epi) treatment on locomotor activity and hypertension development in young spontaneously hypertensive rats (SHR). Epi was administered in drinking water (100 mg/kg/day) for 2 weeks. Epi significantly prevented the development of hypertension (138 ± 2 versus 169 ± 5 mmHg, p < 0.001) and reduced total distance traveled in the open-field test (22 ± 2 versus 35 ± 4 m, p < 0.01). In blood, Epi significantly enhanced erythrocyte deformability, increased total antioxidant capacity, and decreased nitrotyrosine concentration. In the aorta, Epi significantly increased nitric oxide (NO) synthase (NOS) activity and elevated the NO-dependent vasorelaxation. In the left heart ventricle, Epi increased NOS activity without altering gene expressions of nNOS, iNOS, and eNOS. Moreover, Epi reduced superoxide production in the left heart ventricle and the aorta. In the brain, Epi increased nNOS gene expression (in the brainstem and cerebellum) and eNOS expression (in the cerebellum) but had no effect on overall NOS activity. In conclusion, Epi prevented the development of hypertension and reduced locomotor hyperactivity in young SHR. These effects resulted from improved cardiovascular NO bioavailability concurrently with increased erythrocyte deformability, without changes in NO production in the brain. PMID:27885334

  5. Altered fatty acid profile in the liver and serum of stroke-prone spontaneously hypertensive rats: reduced proportion of cis-vaccenic acid.

    PubMed

    Tanaka, Shizuyo; Kojiguchi, Chiho; Yamazaki, Tohru; Mitsumoto, Atsushi; Kobayashi, Daisuke; Kudo, Naomi; Kawashima, Yoichi

    2013-01-01

    Stroke-prone spontaneously hypertensive rats (SHRSP) are utilized as models for study of the pathogenesis of not only stroke and cardiovascular disorders but also atherosclerosis and metabolic syndrome. Basic information on the profiles of fatty acids and lipid classes in the liver is indispensable to use SHRSP as a model of disorder of lipid metabolism; nevertheless, detailed information on the metabolism of triacylglycerols (TAGs) and fatty acids in the liver of SHRSP is lacking. This study aimed to characterize profiles of lipid classes and fatty acids and to explore the mechanism underlying the characteristic alterations in metabolism of TAGs and fatty acids in the liver of SHRSP, in comparison with spontaneously hypertensive rats (SHR). The characteristic changes observed in SHRSP were (1) markedly lower hepatic TAG contents; (2) altered expressions of genes encoding three enzymes responsible for the control of TAG level, namely, adipose triglyceride lipase (for TAG degradation; up-regulated), carnitine palmitoyltransferase 1a (for fatty acid β-oxidation; up-regulated) and long-chain acyl-CoA synthetase 3 (for glycerolipid synthesis; down-regulated); (3) evidently lower contents and proportions of monounsaturated fatty acids, in particular cis-vaccenic acid (18:1n-7), in the liver and serum; and (4) down-regulation of palmitoleoyl-CoA chain elongase, which is necessary for the biosynthesis of 18:1n-7, in the liver. From the above observations, we concluded that there are significant differences in profiles of lipid classes and fatty acids between SHRSP and SHR, and that altered characteristics in SHRSP are likely responsible for increases in TAG hydrolysis and β-oxidation, and decreases in TAG synthesis and 18:1n-7 synthesis.

  6. Mutations in the Drosophila Pushover Gene Confer Increased Neuronal Excitability and Spontaneous Synaptic Vesicle Fusion

    PubMed Central

    Richards, S.; Hillman, T.; Stern, M.

    1996-01-01

    We describe the identification of a gene called pushover (push), which affects both behavior and synaptic transmission at the neuromuscular junction. Adults carrying either of two mutations in push exhibit sluggishness, uncoordination, a defective escape response, and male sterility. Larvae defective in push exhibit increased release of transmitter at the neuromuscular junction. In particular, the frequency of spontaneous transmitter release and the amount of transmitter release evoked by nerve stimulation are each increased two- to threefold in push mutants at the lowest external [Ca(2+)] tested (0.15 mM). Furthermore, these mutants are more sensitive than wild type to application of the potassium channel-blocking drug quinidine: following qunidine application, push mutants, but not wild-type, display repetitive firing of the motor axon, leading to repetitive muscle postsynaptic potentials. The push gene thus might affect both neuronal excitability and the transmitter release process. Complementation tests and recombinational mapping suggest that the push mutations are allelic to a previously identified P-element-induced mutation, which also causes behavioral abnormalities and male sterility. PMID:8846899

  7. Evidence that natural benzodiazepine-like compounds increase during spontaneous labour.

    PubMed

    Facchinetti, Fabio; Avallone, Rossella; Modugno, Giuseppe; Baraldi, Mario

    2006-01-01

    Natural benzodiazepine-like compounds (NBDZ) are present in the blood of normal people free of commercial benzodiazepine medication. In this work, we evaluated the levels of NBDZ in maternal/foetal serum during delivery after spontaneous labour (VD) or caesarean section (CS). For both the VD (n=11) and the CS (n=11) groups (VD+CS=22), three blood samples were collected at three different times: the first was collected three days before labour, the second immediately after delivery or at fetal abdominal extraction and the third one was obtained at second day post-partum. NBDZ were measured by radioreceptor binding assay after HPLC extraction and purification while cortisol was measured through radioimmunoassay. In the VD group, a significant increase of NBDZ levels occurred at labour in comparison with the levels found in pre- and post-partum periods. By the contrary, no differences in NBDZ levels were found in the CS group at the three different times. The levels of cortisol in the VD group were found to be higher at labour than that determined at pre- and post-partum. Again no significant changes were found in the CS group. These findings suggest for the first time that labour is associated with a marked increase of NBDZ which could be envisaged as a stress-related event.

  8. Immunohistochemical analysis of brain lesions using S100B and glial fibrillary acidic protein antibodies in arundic acid- (ONO-2506) treated stroke-prone spontaneously hypertensive rats.

    PubMed

    Higashino, Hideaki; Niwa, Atsuko; Satou, Takao; Ohta, Yoshio; Hashimoto, Shigeo; Tabuchi, Masaki; Ooshima, Kana

    2009-10-01

    Stroke-prone spontaneously hypertensive rats (SHRSP) used as a model of essential hypertension cause a high incidence of brain stroke on the course of hypertension. Incidences and sizes of brain lesions are known to relate to the astrocyte activities. Therefore, relation between brain damage and the expression profile of the astrocytes was investigated with morphometric and immunohistochemical analyses using astrocyte marker antibodies of S100B and glial fibrillary acidic protein (GFAP) with or without arundic acid administration, a suppressor on the activation of astrocytes. Arundic acid extended the average life span of SHRSP. An increase in brain tissue weight was inhibited concomitant with a lower rate of gliosis/hemosiderin deposit/scarring in brain lesions. S100B- or GFAP-positive dot and filamentous structures were decreased in arundic acid-treated SHRSP, and this effect was most pronounced in the cerebral cortex, white matter, and pons, and less so in the hippocampus, diencephalon, midbrain, and cerebellum. Blood pressure decreased after administration of arundic acid in the high-dose group (100 mg/kg/day arundic acid), but not in the low-dose group (30 mg/kg/day). These data indicate that arundic acid can prevent hypertension-induced stroke, and may inhibit the enlargement of the stroke lesion by preventing the inflammatory changes caused by overproduction of the S100B protein in the astrocytes.

  9. Influence of Turning and Environmental Contamination on the Dynamics of Populations of Lactic Acid and Acetic Acid Bacteria Involved in Spontaneous Cocoa Bean Heap Fermentation in Ghana▿

    PubMed Central

    Camu, Nicholas; González, Ángel; De Winter, Tom; Van Schoor, Ann; De Bruyne, Katrien; Vandamme, Peter; Takrama, Jemmy S.; Addo, Solomon K.; De Vuyst, Luc

    2008-01-01

    The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing. PMID:17993565

  10. Cosegregation of the renin allele of the spontaneously hypertensive rat with an increase in blood pressure.

    PubMed Central

    Kurtz, T W; Simonet, L; Kabra, P M; Wolfe, S; Chan, L; Hjelle, B L

    1990-01-01

    The spontaneously hypertensive rat (SHR) exhibits alterations in the renin-angiotensin-aldosterone system which are similar to those that characterize patients with "nonmodulating" hypertension, a common and highly heritable form of essential hypertension. Accordingly, we determined whether the inheritance of a DNA restriction fragment length polymorphism (RFLP) marking the renin gene of the SHR was associated with greater blood pressure than inheritance of a RFLP marking the renin gene of a normotensive control rat. In an F2 population derived from inbred SHR and inbred normotensive Lewis rats, we found the blood pressure in rats that inherited a single SHR renin allele to be significantly greater than that in rats that inherited only the Lewis renin allele. To the extent that the SHR provides a suitable model of "nonmodulating" hypertension, these findings raise the possibility that a structural alteration in the renin gene, or a closely linked gene, may be a pathogenetic determinant of increased blood pressure in one of the most common forms of essential hypertension in humans. Images PMID:1969424

  11. Increased parent reinforcement of spontaneous requests in children with autism spectrum disorder: effects on problem behavior.

    PubMed

    Robertson, Rachel E; Wehby, Joseph H; King, Susannah M

    2013-03-01

    Previous studies of response classes in individuals with developmental disabilities (DD) and problem behavior have shown that mild problem behavior, precursor behavior, and mands or requests can occur as functionally equivalent to severe problem behavior in some individuals. Furthermore, participants in some studies chose to use functionally equivalent alternatives over severe problem behavior to produce the maintaining reinforcer. The present study added to this literature by having parents reinforce spontaneous requests functionally equivalent to problem behavior in their children with autism at home. First, parent-implemented functional analyses identified conditions associated with increased problem behavior and requests in two children with autism. Then, parents provided the maintaining reinforcer contingent on problem behavior alone or both problem behavior and requests in a withdrawal design. The treatment analysis indicated that the same reinforcer maintained child requests and problem behavior. In addition, when parents reinforced both requests and problem behavior, child participants demonstrated a preference for requests, thereby decreasing problem behavior. Implications of this relation for function-based treatment of problem behavior in children with autism are discussed.

  12. Pretreatment of Parsley Suspension Cultures with Salicylic Acid Enhances Spontaneous and Elicited Production of H2O2.

    PubMed Central

    Kauss, H.; Jeblick, W.

    1995-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to study the regulation of extracellular H2O2. After resuspension, the washed cells regulated the H2O2 concentration spontaneously to a constant level that was greatly increased when the cultures were pretreated for 1 d with salicylic acid (SA). The H2O2 level was further increased on addition of a fungal elicitor preparation, macromolecular chitosan, the sterol-binding polyene macrolide amphotericin B, the G protein-activating peptide mastoparan, or La3+. In all cases, this induced H2O2 burst was also greatly enhanced in cell suspensions pretreated with SA. Both the spontaneous and the induced H2O2 production were decreased by the protein kinase inhibitor K-252a. It is suggested that production of extracellular H2O2 occurs by an endogenously controlled plasma membrane enzyme complex that requires continuous phosphorylation for function and whose activity is increased by pretreatment of the cells with SA. This system can also receive various external stimuli, including those resulting from binding of fungal elicitor. SA can induce acquired resistance against pathogens. The conditioning of the parsley suspension culture by SA represents, therefore, a model for the long-term regulation of apoplastic H2O2 concentration by this signal substance, as suggested previously for the wound hormone methyl jasmonate. PMID:12228535

  13. Preterm birth is associated with an increased fundamental frequency of spontaneous crying in human infants at term-equivalent age

    PubMed Central

    Shinya, Yuta; Kawai, Masahiko; Niwa, Fusako; Myowa-Yamakoshi, Masako

    2014-01-01

    Human infant crying has been researched as a non-invasive tool for assessing neurophysiological states at an early developmental stage. Little is known about the acoustic features of spontaneous cries in preterm infants, although their pain-induced cries are at a higher fundamental frequency (F0) before term-equivalent age. In this study, we investigated the effects of gestational age, body size at recording and intrauterine growth retardation (IUGR) on the F0 of spontaneous cries in healthy preterm and full-term infants at term-equivalent age. We found that shorter gestational age was significantly associated with higher F0, although neither smaller body size at recording nor IUGR was related to increased F0 in preterm infants. These findings suggest that the increased F0 of spontaneous cries is not caused by their smaller body size, but instead might be caused by more complicated neurophysiological states owing to their different intrauterine and extrauterine experiences. PMID:25122740

  14. Activation of the prostaglandin system in response to sleep loss in healthy humans: Potential mediator of increased spontaneous pain

    PubMed Central

    Haack, Monika; Lee, Erin; Cohen, Daniel; Mullington, Janet M.

    2009-01-01

    Insufficient duration of sleep is a highly prevalent behavioral pattern in society that has been shown to cause an increase in spontaneous pain and sensitivity to noxious stimuli. Prostaglandins (PG), in particular PGE2, are key mediators of inflammation and pain, and we investigated whether PGE2 is a potential mediator in sleep-loss induced changes in nociceptive processing. Twenty-four participants (7 females, age 35. 17.1yrs) stayed for 7 days in the Clinical Research Center. After two baseline days, participants were randomly assigned to either three days of 88 hours of total sleep deprivation (TSD, N=15) or 8 hours of sleep per night (N=9), followed by a night of recovery sleep. Participants rated the intensity of various pain-related symptoms every two hours across waking periods on computerized visual analog scales. PGE2 was measured in 24h-urine collections during baseline and third sleep deprivation day. Spontaneous pain, including headache, muscle pain, stomach pain, generalized body pain, and physical discomfort significantly increased by 5 to 14 units on a 100-unit scale during TSD, compared to the sleep condition. Urinary PGE2 metabolite significantly increased by about 30% in TSD over sleep condition. TSD-induced increase in spontaneous pain, in particular headache and muscle pain, was significantly correlated with increase in PGE2 metabolite. Activation of the PGE2 system appears to be a potential mediator of increased spontaneous pain in response to insufficient sleep. PMID:19560866

  15. Insights into the spontaneity of hydrogen bond formation between formic acid and phthalimide derivatives.

    PubMed

    Júnior, Rogério V A; Moura, Gustavo L C; Lima, Nathalia B D

    2016-11-01

    We evaluated a group of phthalimide derivatives, which comprise a convenient test set for the study of the multiple factors involved in the energetics of hydrogen bond formation. Accordingly, we carried out quantum chemical calculations on the hydrogen bonded complexes formed between a sample of phthalimide derivatives with formic acid with the intent of identifying the most important electronic and structural factors related to how their strength and spontaneity vary across the series. The geometries of all species considered were fully optimized at DFT B3LYP/6-31++G(d,p), RM1, RM1-DH2, and RM1-D3H4 level, followed by frequency calculations to determine their Gibbs free energies of hydrogen bond formation using Gaussian 2009 and MOPAC 2012. Our results indicate that the phthalimide derivatives that form hydrogen bond complexes most favorably, have in their structures only one C=O group and at least one NH group. On the other hand, the phthalimide derivatives predicted to form hydrogen bonds least favorably, possess in their structures two carbonyl groups, C=O, and no NH group. The ability to donate electrons and simultaneously receive one acidic hydrogen is the most important property related to the spontaneity of hydrogen bond formation. We further chose two cyclic compounds, phthalimide and isoindolin-1-one, in which to study the main changes in molecular, structural and spectroscopic properties as related to the formation of hydrogen bonds. Thus, the greatest ability of the isoindolin-1-one compound in forming hydrogen bonds is evidenced by the larger effect on the structural, vibrational, and chemical shifts properties associated with the O-H group. In summary, the electron-donating ability of the hydrogen bond acceptor emerged as the most important property differentiating the spontaneity of hydrogen bond formation in this group of complexes.

  16. Increased renal epithelial na channel expression and activity correlate with elevation of blood pressure in spontaneously hypertensive rats.

    PubMed

    Haloui, Mounsif; Tremblay, Johanne; Seda, Ondrej; Koltsova, Svetlana V; Maksimov, Georgy V; Orlov, Sergei N; Hamet, Pavel

    2013-10-01

    Elevation of blood pressure with age is one of the hallmarks of hypertension in both males and females. This study examined transcriptomic profiles in the kidney of 12-, 40-, and 80-week-old spontaneously hypertensive rats and 4 recombinant inbred strains in search for functional genetic elements supporting temporal dynamics of blood pressure elevation. We found that both in males and females of spontaneously hypertensive rats and hypertensive recombinant inbred strains age-dependent blood pressure increment was accompanied by 50% heightened expression of epithelial sodium channel β- and γ-subunits. Epithelial sodium channel subunit expression correlated positively with blood pressure but correlated negatively with renin expression. Increased epithelial sodium channel activity was observed in cultured epithelial cells isolated from the kidney medulla of 80-week-old spontaneously hypertensive rats but not in age-matched normotensive Wistar Kyoto. This difference remained evident after 24-hour treatment with aldosterone. 22Na uptake in the perfused kidney medulla was increased whereas the urinary Na/K ratio was decreased in old spontaneously hypertensive rats compared with normotensive controls. The difference was eliminated by the administration of epithelial sodium channel inhibitor benzamil. Observations in recombinant inbred strains representing various mixtures of parental hypertensive and normotensive genomes suggest that Scnn1g and Scnn1b genes themselves are not implicated in heightened expression and that the increased expression is neither secondary nor required for a partial elevation of blood pressure in contrast to spontaneously hypertensive rats. We suggest that spontaneously hypertensive rats display an intact negative feed-back between renin-angiotensin-system and epithelial Na channel activity whose upregulated expression is supported by a yet unknown mechanism.

  17. Plasma ghrelin and obestatin levels are increased in spontaneously hypertensive rats.

    PubMed

    Li, Zhao-Feng; Guo, Zhi-Fu; Cao, Jiang; Hu, Jian-Qiang; Zhao, Xian-Xian; Xu, Rong-Liang; Huang, Xin-Miao; Qin, Yong-Wen; Zheng, Xing

    2010-02-01

    Obestatin, encoded by the same gene as ghrelin, was first described as a physiological opponent of ghrelin. We investigated fasting plasma ghrelin and obestatin levels in spontaneously hypertensive rats and Wistar-Kyoto rats. We found that ghrelin levels, obestatin levels and the ratio of ghrelin to obestatin were significantly higher in spontaneously hypertensive rats than Wistar-Kyoto rats. Systolic blood pressure and diastolic blood pressure were positively correlated; however, heart period and baroreflex sensitivity were negatively correlated with ghrelin levels. Systolic blood pressure was positively correlated, whereas baroreflex sensitivity was negatively correlated with obestatin levels. In addition, systolic blood pressure was a significantly independent variable of ghrelin levels, obestatin levels, and the ghrelin to obestatin ratio in a multiple regression analysis. Our data suggests that there is a disturbance of ghrelin and obestatin in the circulation of spontaneously hypertensive rats and the ghrelin/obestatin system might play a role in blood pressure regulation.

  18. Action of niflumic acid on evoked and spontaneous calcium-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein.

    PubMed

    Hogg, R C; Wang, Q; Large, W A

    1994-07-01

    1. The action of niflumic acid was studied on spontaneous and evoked calcium-activated chloride (ICl(Ca)) and potassium (IK(Ca)) currents in rabbit isolated portal vein cells. 2. With the nystatin perforated patch technique in potassium-containing solutions at a holding potential of -77 mV (the potassium equilibrium potential), niflumic acid produced a concentration-dependent inhibition of spontaneous transient inward current (STIC, calcium-activated chloride current) amplitude. The concentration to reduce the STIC amplitude by 50% (IC50) was 3.6 x 10(-6) M. 3. At -77 mV holding potential, niflumic acid converted the STIC decay from a single exponential to 2 exponential components. In niflumic acid the fast component of decay was faster, and the slow component was slower than the control decay time constant. Increasing the concentration of niflumic acid enhanced the decay rate of the fast component and reduced the decay rate of the slow component. 4. The effect of niflumic acid on STIC amplitude was voltage-dependent and at -50 and +50 mV the IC50 values were 2.3 x 10(-6) M and 1.1 x 10(-6) M respectively (cf. 3.6 x 10(-6) M at -77 mV). 5. In K-free solutions at potentials of -50 mV and +50 mV, niflumic acid did not induce a dual exponential STIC decay but just increased the decay time constant at both potentials in a concentration-dependent manner. 6. Niflumic acid, in concentrations up to 5 x 10(-5) M, had no effect on spontaneous calcium-activated potassium currents. 7. Niflumic acid inhibited noradrenaline- and caffeine-evoked IO(Ca) with an ICM50 of 6.6 x 10-6 M, i.e.was less potent against evoked currents compared to spontaneous currents. In contrast niflumic acid(2 x 10-6 M-5 x 105 M) increased noradrenaline- and caffeine-induced IK(ca).8. The results are discussed with respect to the mechanism of block of ICl(Ca) by niflumic acid and its suitability as a pharmacological tool for assessing the role of Ic(ca) in physiological mechanisms.

  19. Action of niflumic acid on evoked and spontaneous calcium-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein.

    PubMed Central

    Hogg, R. C.; Wang, Q.; Large, W. A.

    1994-01-01

    1. The action of niflumic acid was studied on spontaneous and evoked calcium-activated chloride (ICl(Ca)) and potassium (IK(Ca)) currents in rabbit isolated portal vein cells. 2. With the nystatin perforated patch technique in potassium-containing solutions at a holding potential of -77 mV (the potassium equilibrium potential), niflumic acid produced a concentration-dependent inhibition of spontaneous transient inward current (STIC, calcium-activated chloride current) amplitude. The concentration to reduce the STIC amplitude by 50% (IC50) was 3.6 x 10(-6) M. 3. At -77 mV holding potential, niflumic acid converted the STIC decay from a single exponential to 2 exponential components. In niflumic acid the fast component of decay was faster, and the slow component was slower than the control decay time constant. Increasing the concentration of niflumic acid enhanced the decay rate of the fast component and reduced the decay rate of the slow component. 4. The effect of niflumic acid on STIC amplitude was voltage-dependent and at -50 and +50 mV the IC50 values were 2.3 x 10(-6) M and 1.1 x 10(-6) M respectively (cf. 3.6 x 10(-6) M at -77 mV). 5. In K-free solutions at potentials of -50 mV and +50 mV, niflumic acid did not induce a dual exponential STIC decay but just increased the decay time constant at both potentials in a concentration-dependent manner. 6. Niflumic acid, in concentrations up to 5 x 10(-5) M, had no effect on spontaneous calcium-activated potassium currents.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7921628

  20. Renewal and spontaneous recovery, but not latent inhibition, are mediated by gamma-aminobutyric acid in appetitive conditioning.

    PubMed

    Delamater, Andrew R; Campese, Vincent; Westbrook, R Frederick

    2009-04-01

    Previous research has reported a role for the neurotransmitter gamma-aminobutyric acid (GABA) in the extinction and renewal of conditioned fear. Here, the authors examine whether GABA is involved in the acquisition, extinction, renewal, spontaneous recovery, and latent inhibition of appetitive conditioning. Using Long-Evans rats, systemic injection of the GABA A receptor inverse agonist FG 7142 was shown to eliminate ABA renewal (Experiment 1) and spontaneous recovery (Experiment 4) of appetitive responding by selectively reducing the recovery of extinguished magazine approach. Furthermore, treatment with FG 7142 had no effects on acquisition or single-session extinction (Experiment 3) or on the context-specific expression of latent inhibition (Experiment 2). These data suggest that ABA renewal and spontaneous recovery, but not latent inhibition or responding during acquisition and an initial extinction session, are mediated by GABAergic mechanisms in appetitive Pavlovian conditioning. They provide support for the view that renewal and spontaneous recovery share a common psychological mechanism.

  1. Isolation of a spontaneous CHO amino acid transport mutant by a combination of tritium suicide and replica plating

    SciTech Connect

    Dantzig, A.H.; Slayman, C.W.; Adelberg, E.A.

    1982-07-01

    A spontaneous transport mutant of Chinese hamster ovary cells, CHY-1, was isolated by a combination of (/sup 3/H)proline suicide and replica plating. The mutant took up less tritium than the parent, resulting in a lower killing rate during storage. Transport by four separate amino acid transport systems (A, ASC, L, Ly+) was examined. The CHY-1 mutant exhibited normal uptake via the ASC, L, and Ly+ systems. By contrast, uptake of the most specific substrate of the A system, 2-(methylamino)-isobutyric acid, was significantly reduced at low, but not high, concentrations, due to a 3.5-fold increase in Km and a 1.5-fold increase in Vmax. Taken together, these data suggest that the CHY-1 mutation may be in the structural gene coding for the A transport protein. The tritium suicide procedure is discussed, and general equations are derived to predict the maximum storage time for the survival of one mutant cell and the optimum size of the cell population for maximum mutant enrichment.

  2. Dietary supplementation with methylseleninic acid, but not selenomethionine, reduces spontaneous metastasis of Lewis lung carcinoma in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of dietary supplementation with methylseleninic acid (MSeA), in comparison with selenomethionine (SeMet), on spontaneous metastasis of Lewis lung carcinoma (LLC) in male C57BL/6 mice using intramuscular and subcutaneous injection models. Mice were fed AIN9...

  3. Fractal Analysis of Fracture Increasing Spontaneous Imbibition in Porous Media with Gas-Saturated

    NASA Astrophysics Data System (ADS)

    Cai, Jianchao; Sun, Shuyu

    2013-08-01

    Spontaneous imbibition (SI) of wetting liquid into matrix blocks due to capillary pressure is regarded as an important recovery mechanism in low permeability fractured reservoir. In this paper, an analytical model is proposed for characterizing SI horizontally from a single plane fracture into gas-saturated matrix blocks. The presented model is based on the fractal character of pores in porous matrix, with gravity force included in the entire imbibition process. The accumulated mass of wetting liquid imbibed into matrix blocks is related to a number of factors such as contact area, pore fractal dimension, tortuosity, maximum pore size, porosity, liquid density and viscosity, surface tension, contact angle, as well as height and tilt angle of the fracture. The mechanism of fracture-enhanced SI is analyzed accordingly. Because of the effect of fracture, the gravity force is positive to imbibition process. Additionally, the farther away from the fracture top of the pore, the more influential the hydrostatic pressure is upon the imbibition action. The presented fractal analysis of horizontal spontaneous imbibition from a single fracture could also shed light on the scaling study of the mass transfer function between matrix and fracture system of fractured reservoirs.

  4. Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis.

    PubMed

    Degroote, Roxane L; Uhl, Patrizia B; Amann, Barbara; Krackhardt, Angela M; Ueffing, Marius; Hauck, Stefanie M; Deeg, Cornelia A

    2017-02-10

    The membrane protein expression repertoire of cells changes in course of activation. In equine recurrent uveitis (ERU), a spontaneous autoimmune disease in horses with relapsing and ultimately blinding inner eye inflammation, CD4+ T lymphocytes are the crucial pathogenic cells activated in the periphery directly prior to an inflammatory episode. In order to find relevant changes in the membrane proteome associated to disease, we sorted CD4+ lymphocytes and compared protein abundance from the generated proteome datasets of both healthy horses and ERU cases. We detected formin like 1, a key player in actin dependent cellular processes such as phagocytosis, cell adhesion and cell migration, with significantly higher abundance in the CD4+ cell membrane proteome of horses with ERU. In transmigration experiments, we demonstrated higher migration rate of cells originating from diseased animals connecting formin like 1 to the migratory ability of cells. These findings are the first description of formin like 1 in association to processes involved in migration of inflammatory CD4+ T cells across the blood-retinal barrier in a spontaneous ocular autoimmune disease and suggest formin like 1 to play a role in the molecular mechanisms of ERU disease pathogenesis. Data are available via ProteomeXchange with identifier PXD005384.

  5. Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs.

    PubMed

    Moroni, Alice V; Arendt, Elke K; Dal Bello, Fabio

    2011-05-01

    In this study, four different laboratory scale gluten-free (GF) sourdoughs were developed from buckwheat or teff flours. The fermentations were initiated by the spontaneous biota of the flours and developed under two technological conditions (A and B). Sourdoughs were propagated by continuous back-slopping until the stability was reached. The composition of the stable biota occurring in each sourdough was assessed using both culture-dependent and -independent techniques. Overall, a broad spectrum of lactic acid bacteria (LAB) and yeasts species, belonging mainly to the genera Lactobacillus, Pediococcus, Leuconostoc, Kazachstania and Candida, were identified in the stable sourdoughs. Buckwheat and teff sourdoughs were dominated mainly by obligate or facultative heterofermentative LAB, which are commonly associated with traditional wheat or rye sourdoughs. However, the spontaneous fermentation of the GF flours resulted also in the selection of species which are not consider endemic to traditional sourdoughs, i.e. Pediococcus pentosaceus, Leuconostoc holzapfelii, Lactobacillus gallinarum, Lactobacillus vaginalis, Lactobacillus sakei, Lactobacillus graminis and Weissella cibaria. In general, the composition of the stable biota was strongly affected by the fermentation conditions, whilst Lactobacillus plantarum dominated in all buckwheat sourdoughs. Lactobacillus pontis is described for the first time as dominant species in teff sourdough. Among yeasts, Saccharomyces cerevisiae and Candida glabrata dominated teff sourdoughs, whereas the solely Kazachstania barnetti was isolated in buckwheat sourdough developed under condition A. This study allowed the identification and isolation of LAB and yeasts species which are highly competitive during fermentation of buckwheat or teff flours. Representatives of these species can be selected as starters for the production of sourdough destined to GF bread production.

  6. A gene differentially expressed in the kidney of the spontaneously hypertensive rat cosegregates with increased blood pressure.

    PubMed Central

    Samani, N J; Lodwick, D; Vincent, M; Dubay, C; Kaiser, M A; Kelly, M P; Lo, M; Harris, J; Sassard, J; Lathrop, M

    1993-01-01

    The role of the kidney in initiating hypertension has been much debated. Here we demonstrate that a recently identified gene of yet unknown function, termed SA, which is differentially expressed in the kidney of the spontaneously hypertensive rat, cosegregates with an increase in blood pressure in F2 rats derived from a cross of the spontaneously hypertensive rat with normotensive Wistar-Kyoto rats, accounting for 28 and 21% of the genetic variability in systolic and diastolic blood pressures, respectively. Further, the genotype at this locus appears to determine the level of expression of the gene in the kidney. The findings provide strong evidence for a primary genetic involvement of the kidney in hypertension. Images PMID:8349793

  7. Through your eyes: incongruence of gaze and action increases spontaneous perspective taking.

    PubMed

    Furlanetto, Tiziano; Cavallo, Andrea; Manera, Valeria; Tversky, Barbara; Becchio, Cristina

    2013-01-01

    What makes people spontaneously adopt the perspective of others? Previous work suggested that perspective taking can serve understanding the actions of others. Two studies corroborate and extend that interpretation. The first study varied cues to intentionality of eye gaze and action, and found that the more the actor was perceived as potentially interacting with the objects, the stronger the tendency to take his perspective. The second study investigated how manipulations of gaze affect the tendency to adopt the perspective of another reaching for an object. Eliminating gaze cues by blurring the actor's face did not reduce perspective-taking, suggesting that in the absence of gaze information, observers rely entirely on the action. Intriguingly, perspective-taking was higher when gaze and action did not signal the same intention, suggesting that in presence of ambiguous behavioral intention, people are more likely take the other's perspective to try to understand the action.

  8. Effect of losartan with folic acid on plasma homocysteine and vascular ultrastructural changes in spontaneously hypertensive rats.

    PubMed

    Zhu, Lihe; Yu, Jiong; Jia, Baofu; Zhao, Feng; Tang, Mengmeng; Hu, Lufeng; Lin, Feiyan

    2015-01-01

    Elevated homocysteine (Hcy) is a high risk factor of hypertension due to its function in endothelial dysfunction. Its level in the blood is strongly influenced by folic acid. In order to investigate the effects of losartan with folic acid on plasma level of Hcy and vascular ultrastructural changes, thirty spontaneously hypertensive rats (SHR) involved and randomly divided into three groups (n=10): SHR-C group (control), SHR-L group (losartan 25 mg · kg(-1) · d(-1)), SHR-L+Y group (losartan 25 mg · kg(-1) · d(-1) + folic acid 0.4 mg · kg(-1) · d(-1)). Another 10 Wistar Rats involved as WKY-C group for normal control. The level of plasma Hcy was measured dynamically by LS-MS, the vascular ultrastructural changes were analyzed by light and electron microscopy. Moreover, the thickness and area of aorta was measured. The results showed the Hcy levels in four groups were WKY-C 7.49 ± 1.95 μmol/L; SHR-C 8.45 ± 1.90 μmol/L; SHR-L 8.28 ± 2.11 μmol/L; SHR-L+Y 7.53 ± 2.02 μmol/L at 80 days. There was no significant change for plasma Hcy (P>0.05). The morphological change showed the subendothelial space didn't increased significantly, the endothelial cells have a more smooth and intact cellular membrane in SHR-L+Y group. In conclusion, Losartan combined with folic acid could improve arterial endothelial structure in SHR which has no significant correlation with plasma Hcy.

  9. Aerobic training prior to myocardial infarction increases cardiac GLUT4 and partially preserves heart function in spontaneously hypertensive rats.

    PubMed

    Schaun, Maximiliano Isoppo; Marschner, Rafael Aguiar; Peres, Thiago Rodrigues; Markoski, Melissa Medeiros; Lehnen, Alexandre Machado

    2017-03-01

    We assessed cardiac function (echocardiographic) and glucose transporter 4 (GLUT4) expression (Western blot) in response to 10 weeks of aerobic training (treadmill) prior to acute myocardial infarction (AMI) by ligation of the left coronary artery in spontaneously hypertensive rats. Animals were allocated to sedentary+sham, sedentary+AMI, training+sham, and training+AMI. Aerobic training prior to AMI partially preserves heart function. AMI and/or aerobic training increased GLUT4 expression. However, those animals trained prior to AMI showed a greater increase in GLUT4 in cardiomyocytes.

  10. Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-09-14

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  11. Acute Treatment with Lauric Acid Reduces Blood Pressure and Oxidative Stress in Spontaneously Hypertensive Rats.

    PubMed

    Alves, Naiane Ferraz Bandeira; de Queiroz, Thyago Moreira; de Almeida Travassos, Rafael; Magnani, Marciane; de Andrade Braga, Valdir

    2017-04-01

    The effects of acute administration of lauric acid (LA), the most abundant medium-chain fatty acid of coconut oil, on blood pressure, heart rate and oxidative stress were investigated in spontaneously hypertensive rats (SHR). Intravenous doses of LA reduced blood pressure in a dose-dependent fashion (1, 3, 4, 8 and 10 mg/kg) in both SHR and Wistar Kyoto rats. LA (10(-8) to 3 × 10(-3) M) induced vasorelaxation in isolated superior mesenteric artery rings of SHR in the presence (n = 7) or absence (n = 8) of functional endothelium [maximum effect (ME) = 104 ± 3 versus 103 ± 4%]. After exposure to KCl (60 mM), LA also induced concentration-dependent vasorelaxation (n = 7) compared to that under Phe-induced contraction (ME = 113.5 + 5.1 versus 104.5 + 4.0%). Furthermore, LA-induced vasorelaxation in vessels contracted with S(-)-BayK8644 (200 nM), a L-type Ca(2+) channel agonist (ME = 91.4 + 4.3 versus 104.5 + 4.0%, n = 7). Lastly, LA (10(-3) M) reduced NADPH-dependent superoxide accumulation in the heart (18 ± 1 versus 25 ± 1 MLU/min/μg protein, n = 4, p < 0.05) and kidney (82 ± 3 versus 99 ± 4 MLU/min/μg protein, n = 4, p < 0.05). Our data show that LA reduces blood pressure in normotensive and hypertensive rats. In SHR, this effect might involve Ca(+2) channels in the resistance vessels and by its capability of reducing oxidative stress in heart and kidneys.

  12. Microbial gut overgrowth guarantees increased spontaneous mutation leading to polyclonality and antibiotic resistance in the critically ill.

    PubMed

    van Saene, H K F; Taylor, N; Damjanovic, V; Sarginson, R E

    2008-05-01

    Polyclonality is defined as the occurrence of different genotypes of a bacterial species. We are of the opinion that these different clones originate within the patient. When infections and outbreaks occur, the terms of polyclonal infections and polyclonal outbreaks have been used, respectively. The origin of polyclonality has never been reported, although some authors suggest the acquisition of different clones from different animate and inanimate sources. We think that the gut of the critically ill patient with microbial overgrowth is the ideal site for the de-novo development of new clones, following increased spontaneous mutation.

  13. Increasing Acetylcholine Levels in the Hippocampus or Entorhinal Cortex Reverses the Impairing Effects of Septal GABA Receptor Activation on Spontaneous Alternation

    PubMed Central

    Degroot, Aldemar; Parent, Marise B.

    2000-01-01

    Intra-septal infusions of the γ-aminobutyric acid (GABA) agonist muscimol impair learning and memory in a variety of tasks. This experiment determined whether hippocampal or entorhinal infusions of the acetylcholinesterase inhibitor physostigmine would reverse such impairing effects on spontaneous alternation performance, a measure of spatial working memory. Male Sprague-Dawley rats were given intra-septal infusions of vehicle or muscimol (1 nmole/0.5 μL) combined with unilateral intra-hippocampal or intra-entorhinal infusions of vehicle or physostigmine (10 μg/μL for the hippocampus; 7.5 μg/μL or 1.875 μg/0.25 μL for the entorhinal cortex). Fifteen minutes later, spontaneous alternation performance was assessed. The results indicated that intra-septal infusions of muscimol significantly decreased percentage-of-alternation scores, whereas intra-hippocampal or intra-entorhinal infusions of physostigmine had no effect. More importantly, intra-hippocampal or intra-entorhinal infusions of physostigmine, at doses that did not influence performance when administered alone, completely reversed the impairing effects of the muscimol infusions. These findings indicate that increasing cholinergic levels in the hippocampus or entorhinal cortex is sufficient to reverse the impairing effects of septal GABA receptor activation and support the hypothesis that the impairing effects of septal GABAergic activity involve cholinergic processes in the hippocampus and the entorhinal cortex. PMID:11040261

  14. Early increase in dopamine release in the ipsilateral striatum after unilateral intranigral administration of lactacystin produces spontaneous contralateral rotations in rats.

    PubMed

    Konieczny, J; Lenda, T; Czarnecka, A

    2016-06-02

    Since the discovery of the role of the ubiquitin-proteasome system (UPS) in the pathogenesis of Parkinson's disease, UPS inhibitors, such as lactacystin have been used to investigate the relationship between UPS impairment and degeneration of dopamine (DA) neurons. However, mostly long-term neurotoxic effects of lactacystin have been studied in animal models. Therefore, the aim of our study was to investigate behavioral and biochemical changes related to the DA system during the first week following unilateral intranigral injection of lactacystin to rats. We found that lactacystin produced early spontaneous contralateral rotations which were inhibited by combined administration of DA D1 and D2 receptor antagonists. Simultaneously, an increase in the extracellular level of DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) was found in the ipsilateral striatum. In contrast, one week after lesion, when turning behavior was no longer visible, a decrease in the extracellular level of DA, DOPAC and HVA was demonstrated. It was accompanied by a substantial reduction in the tissue levels of DA and its metabolites in the lesioned substantia nigra and striatum. We concluded that unilateral intranigral administration of lactacystin produces an early increase in DA neurotransmission which precedes a decrease in the striatal and nigral tissue DA content. It is manifested by the appearance of spontaneous contralateral rotations and an elevation of the extracellular DA level in the ipsilateral striatum. Since similar behavior was previously observed after intranigral administration of rotenone and MPP(+) but not 6-hydroxydopamine (6-OHDA), it may indicate a common mechanism of action shared by these neurotoxins.

  15. Alteration of spontaneous spectral powers and coherences of local field potential in prenatal valproic acid mouse model of autism.

    PubMed

    Cheaha, Dania; Kumarnsit, Ekkasit

    2015-01-01

    Previously, autism spectrum disorder (ASD) has been identified mainly by social communication deficits and behavioral symptoms. However, a link between behaviors and learning process in the brain of animal model of autism remained largely unexplored. Particularly, spontaneous neural signaling in learning-related brain areas has not been studied. This study investigated local field potential (LFP) of the hippocampus (HP), the olfactory bulb (OB) and the medial prefrontal cortex (mPFC) in mice prenatally exposed to valproic acid (VPA) on gestational day 13. Adult male Swiss albino mouse offspring implanted with intracranial electrodes were used. VPA-exposed mice exhibited ASD-associated behaviors. Hippocampal LFP analysis revealed that VPA group significantly increased low gamma activity (25-45 Hz) during awake immobility. Regression analyses confirmed positive correlations between locomotor speed and hippocampal theta oscillations in control but not VPA group. VPA group exhibited increases in delta (1-4 Hz) and beta (25-35 Hz) activities in OB during awake immobility and active exploring, respectively. Moreover, significantly increased and decreased coherences between HP and OB of VPA animals were seen within gamma (active exploration) and theta (awake immobility) ranges, respectively. In addition, significant increase in coherence between HP and mPFC was seen within delta range during active exploration. In addition to three ASD symptoms, VPA animals also exhibited differential patterns of olfacto-hippocampal LFP, altered locomotor speed-related hippocampal theta activities and distinct interplays between HP and learning-related brain areas. The altered olfacto-hippocampal and medial prefrontal cortex-hippocampal networks may underlie impairments in autism mouse model.

  16. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    PubMed Central

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  17. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity.

    PubMed

    Simopoulos, Artemis P

    2016-03-02

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.

  18. Gastrodin Suppresses the Amyloid β-Induced Increase of Spontaneous Discharge in the Entorhinal Cortex of Rats

    PubMed Central

    Chen, Peng-zhi; Jiang, Hui-hui; Wen, Bo; Ren, Shuan-cheng; Chen, Yang; Ji, Wei-gang; Hu, Bo; Zhang, Jun; Xu, Fenglian; Zhu, Zhi-ru

    2014-01-01

    Accumulated soluble amyloid beta- (Aβ-) induced aberrant neuronal network activity may directly contribute to cognitive deficits, which are the most outstanding characteristics of Alzheimer's disease (AD). The entorhinal cortex (EC) is one of the earliest affected brain regions in AD. Impairments of EC neurons are responsible for the cognitive deficits in AD. However, little effort has been made to investigate the effects of soluble Aβ on the discharge properties of EC neurons in vivo. The present study was designed to examine the effects of soluble Aβ1−42 on the discharge properties of EC neurons, using in vivo extracellular single unit recordings. The protective effects of gastrodin (GAS) were also investigated against Aβ1−42-induced alterations in EC neuronal activities. The results showed that the spontaneous discharge of EC neurons was increased by local application of soluble Aβ1−42 and that GAS can effectively reverse Aβ1−42-induced facilitation of spontaneous discharge in a concentration-dependent manner. Moreover, whole-cell patch clamp results indicated that the protective function of GAS on abnormal hyperexcitability may be partially mediated by its inhibitory action on Aβ1−42-elicited inward currents in EC neurons. Our study suggested that GAS may provide neuroprotective effects on Aβ1−42-induced hyperactivity in EC neurons of rats. PMID:25485157

  19. Activation of NPY type 5 receptors induces a long-lasting increase in spontaneous GABA release from cerebellar inhibitory interneurons

    PubMed Central

    Dubois, C. J.; Ramamoorthy, P.; Whim, M. D.

    2012-01-01

    Neuropeptide Y (NPY), a widely distributed neuropeptide in the central nervous system, can transiently suppress inhibitory synaptic transmission and alter membrane excitability via Y2 and Y1 receptors (Y2rs and Y1rs), respectively. Although many GABAergic neurons express Y5rs, the functional role of these receptors in inhibitory neurons is not known. Here, we investigated whether activation of Y5rs can modulate inhibitory transmission in cerebellar slices. Unexpectedly, application of NPY triggered a long-lasting increase in the frequency of miniature inhibitory postsynaptic currents in stellate cells. NPY also induced a sustained increase in spontaneous GABA release in cultured cerebellar neurons. When cerebellar cultures were examined for Y5r immunoreactivity, the staining colocalized with that of VGAT, a presynaptic marker for GABAergic cells, suggesting that Y5rs are located in the presynaptic terminals of inhibitory neurons. RT-PCR experiments confirmed the presence of Y5r mRNA in the cerebellum. The NPY-induced potentiation of GABA release was blocked by Y5r antagonists and mimicked by application of a selective peptide agonist for Y5r. Thus Y5r activation is necessary and sufficient to trigger an increase in GABA release. Finally, the potentiation of inhibitory transmission could not be reversed by a Y5r antagonist once it was initiated, consistent with the development of a long-term potentiation. These results indicate that activation of presynaptic Y5rs induces a sustained increase in spontaneous GABA release from inhibitory neurons in contrast to the transient suppression of inhibitory transmission that is characteristic of Y1r and Y2r activation. Our findings thus reveal a novel role of presynaptic Y5rs in inhibitory interneurons in regulating GABA release and suggest that these receptors could play a role in shaping neuronal network activity in the cerebellum. PMID:22190627

  20. Increased phase synchronization of spontaneous calcium oscillations in epileptic human versus normal rat astrocyte cultures

    NASA Astrophysics Data System (ADS)

    Balázsi, Gábor; Cornell-Bell, Ann H.; Moss, Frank

    2003-06-01

    Stochastic synchronization analysis is applied to intracellular calcium oscillations in astrocyte cultures prepared from epileptic human temporal lobe. The same methods are applied to astrocyte cultures prepared from normal rat hippocampus. Our results indicate that phase-repulsive coupling in epileptic human astrocyte cultures is stronger, leading to an increased synchronization in epileptic human compared to normal rat astrocyte cultures.

  1. Increased Local Spontaneous Neural Activity in the Left Precuneus Specific to Auditory Verbal Hallucinations of Schizophrenia

    PubMed Central

    Zhuo, Chuan-Jun; Zhu, Jia-Jia; Wang, Chun-Li; Wang, Li-Na; Li, Jie; Qin, Wen

    2016-01-01

    Background: Auditory verbal hallucinations (AVHs) of schizophrenia have been associated with structural and functional alterations of some brain regions. However, the brain regional homogeneity (ReHo) alterations specific to AVHs of schizophrenia remain unclear. In the current study, we aimed to investigate ReHo alterations specific to schizophrenic AVHs. Methods: Thirty-five schizophrenic patients with AVH, 41 schizophrenic patients without AVHs, and fifty healthy subjects underwent resting-state functional magnetic resonance imaging. ReHo differences across the three groups were tested using a voxel-wise analysis. Results: Compared with the healthy control group, the two schizophrenia groups showed significantly increased ReHo in the right caudate and inferior temporal gyrus and decreased ReHo in the bilateral postcentral gyrus and thalamus and the right inferior occipital gyrus (false discovery rate corrected, P < 0.05). More importantly, the AVH group exhibited significantly increased ReHo in the left precuneus compared with the non-AVH group. However, using correlation analysis, we did not find any correlation between the auditory hallucination rating scale score and the ReHo of brain regions. Conclusions: Our results suggest that increased ReHo in the left precuneus may be a pathological feature exclusive to schizophrenic AVHs. PMID:26996476

  2. Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors.

    PubMed

    Hermes, Gretchen L; Delgado, Bertha; Tretiakova, Maria; Cavigelli, Sonia A; Krausz, Thomas; Conzen, Suzanne D; McClintock, Martha K

    2009-12-29

    In a life span study, we examined how the social environment regulates naturally occurring tumor development and malignancy in genetically prone Sprague-Dawley rats. We randomly assigned this gregarious species to live either alone or in groups of five female rats. Mammary tumor burden among social isolates increased to 84 times that of age-matched controls, as did malignancy, specifically a 3.3 relative risk for ductal carcinoma in situ and invasive ductal carcinoma, the most common early breast cancers in women. Importantly, isolation did not extend ovarian function in late middle age; in fact, isolated animals were exposed to lower levels of estrogen and progesterone in the middle-age period of mammary tumor growth, with unchanged tumor estrogen and progesterone receptor status. Isolates, however, did develop significant dysregulation of corticosterone responses to everyday stressors manifest in young adulthood, months before tumor development, and persisting into old age. Among isolates, corticosterone response to an acute stressor was enhanced and recovery was markedly delayed, each associated with increased mammary tumor progression. In addition to being stressed and tumor prone, an array of behavioral measures demonstrated that socially isolated females possessed an anxious, fearful, and vigilant phenotype. Our model provides a framework for studying the interaction of social neglect with genetic risk to identify mechanisms whereby psychosocial stressors increase growth and malignancy of breast cancer.

  3. Use of ascorbic and citric acids to increase dialyzable iron from vinal (Prosopis ruscifolia) pulp.

    PubMed

    Bernardi, C; Freyre, M; Sambucetti, M E; Pirovani, M E

    2004-01-01

    Vinal (Prosopis ruscifolia) is an ecologically important wild leguminous tree that grows spontaneously in Argentine deforested lands, the fruit of which is consumed by humans and animals. Because considerable iron content with low to intermediate availability has been previously reported in vinal pulps, its enhancement would be of interest. Iron availability was determined as iron dialyzability using an in vitro technique. Response surface methodology was used to evaluate iron availability increase after adding ascorbic and/or citric acids to vinal pulp at different mM acid/mM Fe ratios. Those ratios ranged from 0.05:1 to 9.95:1 and from 0.5:1 to 99.5:1 for ascorbic acid/Fe (AA:Fe) and citric acid/Fe (CA:Fe), respectively. The obtained second- and first-order polynomial equations showed that AA:Fe and CA:Fe molar ratios linear terms had a significant effect on iron dialyzability increase (P < or = 0.05). It was possible to enhance iron availability to a maximum of 4.6 times. Additional confirmatory experiments were made adding the same organic acids to different vinal pulps and to a traditional cake prepared with vinal pulp called "patay." There were no significant differences (p > 0.05) between predicted values obtained by the model and experimental results.

  4. A Mutant of Arabidopsis with Increased Levels of Stearic Acid.

    PubMed Central

    Lightner, J.; Wu, J.; Browse, J.

    1994-01-01

    A mutation at the fab2 locus of Arabidopsis caused increased levels of stearate in leaves. The increase in leaf stearate in fab2 varied developmentally, and the largest increase occurred in young leaves, where stearate accounted for almost 20% of total leaf fatty acids. The fatty acid composition of leaf lipids isolated from the fab2 mutant showed increased stearate in all the major glycerolipids of both the chloroplast and extrachloroplast membranes. Although the stearate content was increased, the fab2 mutant still contained abundant amounts of 18:1, 18:2, and 18:3 fatty acids. These results are consistent with the expectations for a mutation partially affecting the action of the stromal stearoyl-acyl carrier protein desaturase. Positional analysis indicated that the extra 18:0 is excluded with high specificity from the sn-2 position of both chloroplast and extrachloroplast glycerolipids. Although stearate content was increased in all the major leaf membrane lipids, the amount of increase varied considerably among the different lipids, from a high of 25% of fatty acids in phosphatidylcholine to a low of 2.9% of fatty acids in monogalactosyldiacylglycerol. PMID:12232421

  5. Acid mine drainage and subsidence: effects of increased coal utilization.

    PubMed Central

    Hill, R D; Bates, E R

    1979-01-01

    The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence. PMID:540617

  6. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    PubMed Central

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  7. Conjugated fatty acids increase energy expenditure in part by increasing voluntary movement in mice.

    PubMed

    Park, Yooheon; Park, Yeonhwa

    2012-07-15

    Conjugated linoleic acid (CLA) and conjugated nonadecadienoic acid (CNA) have been previously shown to effectively reduce body fat. However, it is not clear if these effects persist with extended feeding, including potential mechanisms of increased energy expenditure. Thus the current investigation was conducted to determine the influence of dietary conjugated fatty acids on non-exercise form of voluntary movement and lipid and glucose metabolisms for 4-12 week feeding of male mice. CLA and CNA significantly reduced body weight and fat mass by increasing energy expenditure, in part by increasing voluntary movement. CLA and CNA significantly reduced serum leptin and tumour necrosis factor-α, while modulating the mRNA levels of genes associated with lipid and glucose metabolisms. The current results of increased physical activity along with modulation of lipid and glucose metabolisms by conjugated fatty acids will help contribute to future applications of these toward controlling obesity.

  8. BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl- co-transporter KCC2.

    PubMed

    Aguado, Fernando; Carmona, Maria A; Pozas, Esther; Aguiló, Agustín; Martínez-Guijarro, Francisco J; Alcantara, Soledad; Borrell, Victor; Yuste, Rafael; Ibañez, Carlos F; Soriano, Eduardo

    2003-04-01

    Spontaneous neural activity is a basic property of the developing brain, which regulates key developmental processes, including migration, neural differentiation and formation and refinement of connections. The mechanisms regulating spontaneous activity are not known. By using transgenic embryos that overexpress BDNF under the control of the nestin promoter, we show here that BDNF controls the emergence and robustness of spontaneous activity in embryonic hippocampal slices. Further, BDNF dramatically increases spontaneous co-active network activity, which is believed to synchronize gene expression and synaptogenesis in vast numbers of neurons. In fact, BDNF raises the spontaneous activity of E18 hippocampal neurons to levels that are typical of postnatal slices. We also show that BDNF overexpression increases the number of synapses at much earlier stages (E18) than those reported previously. Most of these synapses were GABAergic, and GABAergic interneurons showed hypertrophy and a 3-fold increase in GAD expression. Interestingly, whereas BDNF does not alter the expression of GABA and glutamate ionotropic receptors, it does raise the expression of the recently cloned K(+)/Cl(-) KCC2 co-transporter, which is responsible for the conversion of GABA responses from depolarizing to inhibitory, through the control of the Cl(-) potential. Together, results indicate that both the presynaptic and postsynaptic machineries of GABAergic circuits may be essential targets of BDNF actions to control spontaneous activity. The data indicate that BDNF is a potent regulator of spontaneous activity and co-active networks, which is a new level of regulation of neurotrophins. Given that BDNF itself is regulated by neuronal activity, we suggest that BDNF acts as a homeostatic factor controlling the emergence, complexity and networking properties of spontaneous networks.

  9. Uric acid increases erythrocyte aggregation: Implications for cardiovascular disease.

    PubMed

    Sloop, Gregory D; Bialczak, Jessica K; Weidman, Joseph J; St Cyr, J A

    2016-10-05

    Uric acid may be a risk factor for atherosclerotic cardiovascular disease, although the data conflict and the mechanism by which it may cause cardiovascular disease is uncertain. This study was performed to test the hypothesis that uric acid, an anion at physiologic pH, can cause erythrocyte aggregation, which itself is associated with cardiovascular disease. Normal erythrocytes and erythrocytes with a positive direct antiglobulin test for surface IgG were incubated for 15 minutes in 14.8 mg/dL uric acid. Erythrocytes without added uric acid were used as controls. Erythrocytes were then examined microscopically for aggregation. Aggregates of up to 30 erythrocytes were noted when normal erythrocytes were incubated in uric acid. Larger aggregates were noted when erythrocytes with surface IgG were incubated in uric acid. Aggregation was negligible in controls. These data show that uric acid causes erythrocyte aggregation. The most likely mechanism is decreased erythrocyte zeta potential. Erythrocyte aggregates will increase blood viscosity at low shear rates and increase the risk of atherothrombosis. In this manner, hyperuricemia and decreased zeta potential may be risk factors for atherosclerotic cardiovascular disease.

  10. Phytic acid increases mucin and endogenous amino acid losses from the gastrointestinal tract of chickens.

    PubMed

    Onyango, Edward M; Asem, Elikplimi K; Adeola, Olayiwola

    2009-03-01

    The influence of the form of phytic acid on the regulation of mucin and endogenous losses of amino acids, nitrogen and energy in chickens was investigated. Forty-eight 10-week-old male broilers were grouped by weight into eight blocks of six cages with one bird per cage. Birds received by intubation six dextrose-based combinations of phytic acid and phytase arranged in a 3 x 2 factorial consisting of phytic acid form (no phytic acid, 1.0 g free phytic acid or 1.3 g magnesium-potassium phytate) and phytase (0 or 1000 units). Each bird received the assigned combination added to 25 g dextrose at each of the two feedings on the first day of experimentation. All excreta were collected continuously for 54 h following feeding and frozen until analysed. Frozen excreta were thawed, pooled for each bird, lyophilised, ground, and analysed for DM, energy, nitrogen, amino acids, mucin, and sialic and uric acids. Chickens fed either magnesium-potassium phytate or free phytic acid showed increased (P < 0.05) loss of crude mucin and sialic acid. The amount of crude mucin lost was significantly greater (P < 0.05) with magnesium-potassium phytate than with free phytic acid treatment. Both phytic acid treatments also increased (P < 0.05) endogenous loss of threonine, proline and serine. In conclusion, the form of phytic acid fed to chickens affects the extent of mucin and endogenous amino acid losses from the gastrointestinal tract.

  11. Phase I Pharmacokinetic and Pharmacodynamic Evaluation of Combined Valproic Acid/Doxorubicin Treatment in Dogs with Spontaneous Cancer

    PubMed Central

    Wittenburg, Luke A.; Gustafson, Daniel L.; Thamm, Douglas H.

    2010-01-01

    Purpose Histone deacetylase inhibitors (HDACi) are targeted anti-cancer agents with a well-documented ability to act synergistically with cytotoxic agents. We recently demonstrated that the HDACi valproic acid (VPA) sensitizes osteosarcoma cells to doxorubicin (DOX) in vitro and in vivo. As there are no published reports on the clinical utility of HDACi in dogs with spontaneous cancers, we sought to determine a safe and biologically effective dose of VPA administered prior to a standard dose of DOX. Methods 21 dogs were enrolled into eight cohorts in an accelerated dose-escalation trial consisting of pre-treatment with oral VPA followed by DOX on a three-week cycle. Blood and tumor tissue were collected for determination of serum VPA concentration and evaluation of pharmcodynamic effects by immunofluorescence cytochemistry and immunohistochemistry. Serum and complete blood counts were obtained for determination of changes in DOX pharmacokinetics or hematologic effects. Results All doses of VPA were well tolerated. Serum VPA concentrations increased linearly with dose. DOX pharmacokinetics were comparable to those in dogs receiving DOX alone. A positive correlation was detected between VPA dose and histone hyperacetylation in PBMC. No potentiation of DOX-induced myelosuppression was observed. Histone hyperacetylation was documented in tumor and PBMC. Responses included 2/21 complete, 3/21 partial, 5/21 stable disease, and 11/21 progressive disease. Conclusions VPA can be administered to dogs at doses up to 240 mg/kg/day prior to a standard dose of DOX. In addition, we have developed the PK/PD tools necessary for future studies of novel HDACi in the clinical setting of canine cancer. PMID:20705615

  12. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  13. Increased level of reactive oxygen species persuades postovulatory aging-mediated spontaneous egg activation in rat eggs cultured in vitro.

    PubMed

    Premkumar, Karuppanan V; Chaube, Shail K

    2016-05-01

    The present study was aimed to find out whether increased level of reactive oxygen species (ROS) particularity hydrogen peroxide (H2O2) could persuade postovulatory aging-mediated abortive spontaneous egg activation (SEA) in rat eggs cultured in vitro. For this purpose, ROS and H2O2 levels, mitochondria distribution and its membrane potential, p286-CaMK-II, Emi2, Thr-161 phophorylated cyclin-dependent protein kinase1 (Cdk1) as well as cyclin B1 levels, in vitro effects of 3-tert-butyl-4 hydroxy anisole (BHA), pentoxifylline and dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) were analyzed during postovulatory aging-induced abortive SEA in vitro. Data of the present study suggest that postovulatory aging increased H2O2 levels, disturbed mitochondrial distribution pattern and mitochondrial membrane potential (MMP) in eggs. There was an significant increase of p286-CaMK-II level, while Emi2 level reduced significantly during egg aging in vitro. The reduced Emi2 level was associated with decreased Thr-161 phosphorylated cyclin-dependent kinase-1 (Cdk1) as well as cyclin B1 level in aged eggs that underwent abortive SEA. Further, supplementation of pentoxifylline, db-cAMP, and BHA protected postovulatory aging-mediated abortive SEA in concentration-dependent manner. These data suggest that postovulatory aging increased H2O2 levels, reduced MMP, and increased p286-CaMK-II. The increased p286-CaMK-II was associated with reduced Emi2 level and maturation-promoting factor levels during postovulatory aging-mediated abortive SEA. Drugs that elevate cAMP directly or indirectly and BHA protected postovulatory aging-mediated abortive SEA possibly by reducing ROS level in rat eggs cultured in vitro.

  14. Increased Frequency of Spontaneous Neoplastic Transformation in Progeny of Bystander Cells from Cultures Exposed to Densely Ionizing Radiation

    PubMed Central

    Buonanno, Manuela; de Toledo, Sonia M.; Azzam, Edouard I.

    2011-01-01

    An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons. PMID:21738697

  15. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles.

    PubMed

    Giarra, Simona; Serri, Carla; Russo, Luisa; Zeppetelli, Stefania; De Rosa, Giuseppe; Borzacchiello, Assunta; Biondi, Marco; Ambrosio, Luigi; Mayol, Laura

    2016-04-20

    The arrangement of tumor targeting hyaluronic acid (HA) moieties on irinotecan (IRIN)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) has been directed by means of a gradient of lipophilicity between the oil and water phases of the emulsion used to produce the NPs. PLGA constitutes the NP bulk while HA is superficially exposed, with amphiphilic poloxamers acting as a bridge between PLGA and HA. Differential scanning calorimetry, zeta potential analyses and ELISA tests were employed to support the hypothesis of polymer assembly in NP formulations. The presence of flexible HA chains on NP surface enhances NP size stability over time due to an increased electrostatic repulsion between NPs and a higher degree of hydration of the device surface. IRIN in vitro release kinetics can be sustained up to 7-13 days. In vitro biologic studies indicated that HA-containing NPs were more toxic than bare PLGA NPs against CD44-overexpressing breast carcinoma cells (HS578T), therefore indicating their ability to target CD44 receptor.

  16. Accumulation of Phosphatidic Acid Increases Vancomycin Resistance in Escherichia coli

    PubMed Central

    Sutterlin, Holly A.; Zhang, Sisi

    2014-01-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. PMID:24957626

  17. Influence of low-dose neonatal domoic acid on the spontaneous behavior of rats in early adulthood.

    PubMed

    Jandová, K; Kozler, P; Langmeier, M; Marešová, D; Pokorný, J; Riljak, V

    2014-01-01

    Consumption of seafood containing toxin domoic acid (DA) causes an alteration of glutamatergic signaling pathways and could lead to various signs of neurotoxicity in animals and humans. Neonatal treatment with domoic acid was suggested as valuable model of schizophrenia and epilepsy. We tested how repeated early postnatal DA administration influences the spontaneous behavior of rats in adulthood. Rats were injected with 30 microg DA/kg from postnatal day (PND) 10 until PND 14. Their behavior was observed in the open field test for one hour (Laboras, Metris) at PND 35, PND 42 and PND 112. We did not find any difference between DA treated rats and animals injected with equivalent volume of saline in both test sessions at PND 35 and PND 42. DA rats at PND 112 exhibited significantly higher vertical and horizontal exploratory activity (tested parameters: locomotion, distance travelled, average speed reached during test, grooming and rearing) between the 30th-40th min of the test session and habituated over 10 min later. We conclude that at least in the given experimental design, neonatal DA treatment results in alteration of the spontaneous behavior of rats in adulthood.

  18. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  19. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  20. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  1. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  2. Chronic enalapril treatment increases transient outward potassium current in cardiomyocytes isolated from right ventricle of spontaneously hypertensive rats.

    PubMed

    Rodrigues Junior, Luiz Fernando; de Azevedo Carvalho, Ana Carolina; Pimentel, Enildo Broetto; Mill, José Geraldo; Nascimento, José Hamilton Matheus

    2017-03-01

    It has been well established that chronic pressure overload resulting from hypertension leads to ventricular hypertrophy and electrophysiological remodeling. The transient outward potassium current (I to) reduction described in hypertensive animals delays ventricular repolarization, leading to complex ventricular arrhythmias and sudden death. Antihypertensive drugs, as angiotensin-converting enzyme inhibitors (ACEi), can restore I to and reduce the incidence of arrhythmic events. The purpose of this study was to evaluate the differential effects of long-term treatment with ACEi or direct-acting smooth muscle relaxant on the I to of left and right ventricle myocytes of spontaneously hypertensive rats (SHR). Animals were divided into four groups: normotensive Wistar-Kyoto rats (WKY), hypertensive (SHR), SHR treated for 6 weeks with enalapril 10 mg/kg/day (SHRE), or hydralazine 20 mg/kg/day (SHRH). Systolic blood pressure (SBP) and hypertrophy index (heart weight/body weight (HW/BW)) were determined at the end of treatment period. Cell membrane capacitance (C m) and I to were assessed in cardiomyocytes isolated from left and right ventricles. The SHR exhibited significantly increased SBP and HW/BW when compared to the WKY. The treated groups, SHRE and SHRH, restored normal SBP but not HW/BW. The SHR group exhibited a diminished I to in the left but not the right ventricle. Both the treated groups restored I to in the left ventricle. However, in the right ventricle, only enalapril treatment modified I to. The SHRE group exhibited a significant increase in I to compared to all the other groups. These findings suggest that enalapril may increase I to by a pressure overload independent mechanism.

  3. Deletion of the amino acid transporter Slc6a14 suppresses tumour growth in spontaneous mouse models of breast cancer.

    PubMed

    Babu, Ellappan; Bhutia, Yangzom D; Ramachandran, Sabarish; Gnanaprakasam, Jaya P; Prasad, Puttur D; Thangaraju, Muthusamy; Ganapathy, Vadivel

    2015-07-01

    SLC6A14 mediates Na(+)/Cl(-)-coupled concentrative uptake of a broad-spectrum of amino acids. It is expressed at low levels in many tissues but up-regulated in certain cancers. Pharmacological blockade of SLC6A14 causes amino acid starvation in estrogen receptor positive (ER+) breast cancer cells and suppresses their proliferation in vitro and in vivo. In the present study, we interrogated the role of this transporter in breast cancer by deleting Slc6a14 in mice and monitoring the consequences of this deletion in models of spontaneous breast cancer (Polyoma middle T oncogene-transgenic mouse and mouse mammary tumour virus promoter-Neu-transgenic mouse). Slc6a14-knockout mice are viable, fertile and phenotypically normal. The plasma amino acids were similar in wild-type and knockout mice and there were no major compensatory changes in the expression of other amino acid transporter mRNAs. There was also no change in mammary gland development in the knockout mouse. However, when crossed with PyMT-Tg mice or MMTV/Neu (mouse mammary tumour virus promoter-Neu)-Tg mice, the development and progression of breast cancer were markedly decreased on Slc6a14(-/-) background. Analysis of transcriptomes in tumour tissues from wild-type mice and Slc6a14-null mice indicated no compensatory changes in the expression of any other amino acid transporter mRNA. However, the tumours from the null mice showed evidence of amino acid starvation, decreased mTOR signalling and decreased cell proliferation. These studies demonstrate that SLC6A14 is critical for the maintenance of amino acid nutrition and optimal mammalian target of rapamycin (mTOR) signalling in ER+ breast cancer and that the transporter is a potential target for development of a novel class of anti-cancer drugs targeting amino acid nutrition in tumour cells.

  4. Altered lauric acid metabolism in renal microsomes from spontaneously hypertensive rats (SHR)

    SciTech Connect

    Shiverick, K.T.; Applewhite, J.; Okita, R.

    1986-03-01

    Studies investigated whether changes in omega- and (omega-1)-hydroxylation (OH) of lauric acid (LA) occurred in renal microsomes prepared from SHR compared to Wistar-Kyoto (WK) control rats. Systolic blood pressure in age-matched adult SHR and WKR were 189 +/- 3 and 123 +/- 4 mm Hg(anti X +/- SE) respectively (p < 0.001). No significant differences between SHR and WKR were seen in body weight, kidney weight or renal microsomal protein content. Renal microsomes, prepared from whole kidneys, were incubated with 10 mM NADPH and (/sup 14/C)LA at concentrations between 5-50 ..mu..M. The 11- and 12-OH metabolites of LA were separated by HPLC using a reverse phase column with a methanol:water:acetic acid (62:37.8:0.2) mobile phase. Apparent (app) V/sub max/ values for 12-OH in WKR and SHR were 0.87 +/- 0.19 vs 1.48 +/- .11 nmoles/mg protein/min (p < 0.05), respectively, while values for 11-OH were 0.51 +/- 0.12 vs 0.60 +/- .07, respectively. No significant differences were found in app K/sub m/ values for either 11- or 12-OH between the two strains. SDS-polyacrylamide gel electrophoresis of renal microsomes showed the increased prominence of a 52,000 dalton protein in SHR preparations. Thus data suggest that selective alterations in renal cytochrome P-450 monooxygenase reactions may be associated with the endogenous biochemical processes underlying hypertension.

  5. Acidic beverages increase the risk of in vitro tooth erosion.

    PubMed

    Ehlen, Leslie A; Marshall, Teresa A; Qian, Fang; Wefel, James S; Warren, John J

    2008-05-01

    Acidic beverages are thought to increase the potential for dental erosion. We report pH and titratable acidities (ie, quantity of base required to bring a solution to neutral pH) of beverages popular in the United States and lesion depths in enamel and root surfaces after beverage exposure, and we describe associations among pH, titratable acidity, and both enamel and root erosive lesion depths. The pH of 100% juices, regular sodas, diet sodas, and sports drinks upon opening and the titratable acidity both upon opening and after 60 minutes of stirring were measured. Enamel and root surfaces of healthy permanent molars and premolars were exposed to individual beverages (4 enamel and 4 root surfaces per beverage) for 25 hours, and erosion was measured. Statistical analyses included 2-sample t tests, analyses of variance with post hoc Tukey studentized range test; and Spearman rank correlation coefficients. All beverages were acidic; the titratable acidity of energy drinks was greater than that of regular and diet sodas that were greater than that of 100% juices and sports drinks (P < .05). Enamel lesion depths after beverage exposures were greatest for Gatorade, followed by those for Red Bull and Coke that were greater than those for Diet Coke and 100% apple juice (P < .05). Root lesion depths were greatest for Gatorade, followed by Red Bull, Coke, 100% apple juice, and Diet Coke (P < .05). Lesion depths were not associated with pH or titratable acidity. Beverages popular in the United States can produce dental erosion.

  6. Increased Spontaneous Central Bleeding and Cognition Impairment in APP/PS1 Mice with Poorly Controlled Diabetes Mellitus.

    PubMed

    Ramos-Rodriguez, Juan José; Infante-Garcia, Carmen; Galindo-Gonzalez, Lucia; Garcia-Molina, Yaiza; Lechuga-Sancho, Alfonso; Garcia-Alloza, Mónica

    2016-05-01

    Alzheimer's disease (AD) and vascular dementia (VaD) are the most common causes of dementia, and borderlines are blurred in many cases. Aging remains the main risk factor to suffer dementia; however, epidemiological studies reveal that diabetes may also predispose to suffer AD. In order to further study this relationship, we have induced hypoinsulinemic diabetes to APPswe/PS1dE9 (APP/PS1) mice, a classical model of AD. APP/PS1 mice received streptozotocin (STZ) ip at 18 weeks of age, when AD pathology is not yet established in this animal model. Cognition was evaluated at 26 weeks of age in the Morris water maze and the new object discrimination tests. We observed that STZ-induced episodic and working memory impairment was significantly worsened in APP/PS1 mice. Postmortem assessment included brain atrophy, amyloid-beta and tau pathology, spontaneous bleeding, and increased central inflammation. Interestingly, in APP/PS1-STZ diabetic mice, we detected a shift in Aβ soluble/insoluble levels, towards more toxic soluble species. Phospho-tau levels were also increased in APP/PS1-STZ mice, accompanied by an exacerbated inflammatory process, both in the close proximity to senile plaque (SP) and in SP-free areas. The presence of hemorrhages was significantly higher in APP/PS1-STZ mice, and although pericytes and endothelium were only partially affected, it remains possible that blood-brain barrier alterations underlie observed pathological features. Our data support the implication of the diabetic process in AD and VaD, and it is feasible that improving metabolic control could delay observed central pathology.

  7. Increased WDR spontaneous activity and receptive field size in rats following a neuropathic or inflammatory injury: implications for mechanical sensitivity.

    PubMed

    Chu, Katharine L; Faltynek, Connie R; Jarvis, Michael F; McGaraughty, Steve

    2004-11-30

    Spontaneous activity and receptive field size for spinal wide dynamic range (WDR) neurons were measured and related to the mechanical allodynia in both neuropathic (L5-L6 ligation, 14 days post-injury) and complete Freund's adjuvant-inflamed rats (CFA, 2 days post-injury). The size of the WDR receptive field located on the hindpaw expanded significantly (p<0.01) following both modes of injury, with no difference between CFA and neuropathic animals. Likewise, the spontaneous firing of WDR neurons was significantly elevated following both the CFA (4.4+/-0.6 spikes/s, p<0.01) and neuropathic (3.2+/-0.3 spikes/s, p<0.05) injuries compared to naive (2.1+/-0.2 spikes/s) and sham-neuropathic (1.9+/-0.3 spikes/s) rats. Furthermore, the spontaneous WDR activity recorded from CFA rats was also significantly greater (p<0.05) than neuropathic rats. Mechanical allodynia, as measured by application of a von Frey hair stimulus, was observed from both CFA and neuropathic rats, however, the degree of sensitivity was significantly greater (p<0.01) for the CFA animals. These data suggest that the differences in mechanical sensitivity between CFA and neuropathic rats may be related to their respective changes in WDR spontaneous activity, but not to the changes in receptive field size, and is further demonstration of the importance of spontaneous WDR activity in determining mechanical sensitivity following injury.

  8. Spontaneous increase of magnetic flux and chiral-current reversal in bosonic ladders: Swimming against the tide

    NASA Astrophysics Data System (ADS)

    Vekua, Teimuraz; Greschner, Sebastian; Piraud, Marie; Heidrich-Meisner, Fabain; McCulloch, Ian; Schollwoeck, Uli

    The interplay between the spontaneous symmetry breaking and the wave-like nature of quantum particles in lattice produces an extraordinary behavior of the chiral current of interacting bosonic particles in the presence of a uniform magnetic flux defined on a two-leg ladder. While non-interacting as well as strongly interacting particles, stirred by the magnetic field circulate along the system's boundary in the counterclockwise direction, for certain interactions between particles and at sufficiently low temperature, the circulation direction of chiral current can be spontaneously reversed in vortex lattice states. Chiral-current reversal is counter-intuitive many-body effect produced by synthetic magnetism and it can be observed up to temperatures T=0.5J, where J is a hopping rate along ladder. Besides this effect we present first numerical evidence of vortex lattice states in interacting bosonic ladders with flux and a state with spontaneously imbalanced density between the ladder legs.

  9. Increase in gene-transcript levels as indicators of up-regulation of the unfolded protein response in spontaneous canine tumors.

    PubMed

    Elliot, Kirsten; MacDonald-Dickinson, Valerie; Linn, Kathleen; Simko, Elemir; Misra, Vikram

    2014-07-01

    The unfolded protein response (UPR), a conserved cellular response to stressors such as hypoxia and nutrient deprivation, is associated with angiogenesis and metastasis in tumor cells. This article discusses a pilot study conducted to determine whether components of the UPR could be identified in spontaneous canine tumors and whether they were up-regulated within tumor tissue compared with adjacent normal tissue. Tissue samples of various spontaneous canine neoplasms were taken from 13 dogs shortly after surgical excision or euthanasia; control samples were taken from adjacent normal tissue. RNA purification and real-time quantitative reverse-transcription polymerase chain reaction were done to measure the expression of 4 genes associated with the UPR (HERP, CHOP, GRP78, and XBP1s). The results indicated that UPR gene expression can be identified in spontaneous canine tumors and that the UPR is up-regulated, as indicated by significantly increased expression of CHOP and GRP78 within the tumor.

  10. The cholinergic agonist carbachol increases the frequency of spontaneous GABAergic synaptic currents in dorsal raphe serotonergic neurons in the mouse.

    PubMed

    Yang, C; Brown, R E

    2014-01-31

    Dorsal raphe nucleus (DRN) serotonin (5-HT) neurons play an important role in feeding, mood control and stress responses. One important feature of their activity across the sleep-wake cycle is their reduced firing during rapid-eye-movement (REM) sleep which stands in stark contrast to the wake/REM-on discharge pattern of brainstem cholinergic neurons. A prominent model of REM sleep control posits a reciprocal interaction between these cell groups. 5-HT inhibits cholinergic neurons, and activation of nicotinic receptors can excite DRN 5-HT neurons but the cholinergic effect on inhibitory inputs is incompletely understood. Here, in vitro, in DRN brain slices prepared from GAD67-GFP knock-in mice, a brief (3 min) bath application of carbachol (50 μM) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in GFP-negative, putative 5-HT neurons but did not affect miniature (tetrodotoxin-insensitive) IPSCs. Carbachol had no direct postsynaptic effect. Thus, carbachol likely increases the activity of local GABAergic neurons which synapse on 5-HT neurons. Removal of dorsal regions of the slice including the ventrolateral periaqueductal gray (vlPAG) region where GABAergic neurons projecting to the DRN have been identified, abolished the effect of carbachol on sIPSCs whereas the removal of ventral regions containing the oral region of the pontine reticular nucleus (PnO) did not. In addition, carbachol directly excited GFP-positive, GABAergic vlPAG neurons. Antagonism of both muscarinic and nicotinic receptors completely abolished the effects of carbachol. We suggest cholinergic neurons inhibit DRN 5-HT neurons when acetylcholine levels are lower i.e. during quiet wakefulness and the beginning of REM sleep periods, in part via excitation of muscarinic and nicotinic receptors located on local vlPAG and DRN GABAergic neurons. Higher firing rates or burst firing of cholinergic neurons associated with attentive wakefulness or phasic REM sleep periods

  11. Aging increases capacitance and spontaneous transient outward current amplitude of smooth muscle cells from murine superior epigastric arteries

    PubMed Central

    Hayoz, Sebastien; Bradley, Vanessa; Boerman, Erika M.; Nourian, Zahra; Segal, Steven S.

    2014-01-01

    Large conductance Ca2+-activated K+ channels (BKCa) contribute to negative feedback regulation of smooth muscle cell (SMC) tone. However, the effects of aging on BKCa function are unclear. We tested the hypothesis that aging alters SMC BKCa function in superior epigastric arteries (SEAs) by using perforated patch recording of enzymatically isolated SMCs from 3- to 4-mo-old male C57BL/6 mice (Young) and 24- to 26-mo-old male C57BL/6 mice (Old). SMC capacitance from Young (15.7 ± 0.4 pF; n = 110) was less than Old (17.9 ± 0.5 pF; n = 104) (P < 0.05). SMCs displayed spontaneous transient outward currents (STOCs) at membrane potentials more positive than −30 mV; depolarization increased STOC amplitude and frequency (P < 0.05; n = 19–24). STOC frequency in Young (2.2 ± 0.6 Hz) was less than Old (4.2 ± 0.7 Hz) at −10 mV (P < 0.05, n = 27–30), with no difference in amplitude (1.0 ± 0.1 vs. 0.9 ± 0.1 pA/pF, respectively). At +30 mV, STOC amplitude in Young (3.2 ± 0.3 pA/pF) was less than Old (5.0 ± 0.5 pA/pF; P < 0.05, n = 61–67) with no difference in frequency (3.9 ± 0.4 vs. 3.2 ± 0.3 Hz, respectively). BKCa blockers (1 μM paxilline, 100 nM iberiotoxin, 1 mM tetraethylammonium) or a ryanodine receptor antagonist (100 μM tetracaine) inhibited STOCs (n ≥ 6; P < 0.05 each). Western blots revealed increased expression of BKCa α-subunit protein in Old. Pressure myography revealed no effect of age on SEA maximal diameter, myogenic tone, or paxilline-induced constriction (n = 10–12; P > 0.05). Enhanced functional expression of SMC BKCa-dependent STOCs in Old may represent an adaptation of resistance arteries to maintain functional integrity. PMID:24705555

  12. Persistent neurological damage associated with spontaneous recurrent seizures and atypical aggressive behavior of domoic acid epileptic disease.

    PubMed

    Tiedeken, Jessica A; Ramsdell, John S

    2013-05-01

    The harmful alga Pseudo-nitzschia sp. is the cause of human amnesic shellfish poisoning and the stranding of thousands of sea lions with seizures as a hallmark symptom. A human case study and epidemiological report of hundreds of stranded sea lions found individuals presenting months after recovery with a neurological disease similar to temporal lobe epilepsy. A rat model developed to establish and better predict how epileptic disease results from domoic acid poisoning demonstrated that a single episode of status epilepticus (SE), after a latent period, leads to a progressive state of spontaneous recurrent seizure (SRS) and expression of atypical aggressive behaviors. Structural damage associated with domoic acid-induced SE is prominent in olfactory pathways. Here, we examine structural damage in seven rats that progressed to epileptic disease. Diseased animals show progressive neuronal loss in the piriform cortex and degeneration of terminal fields in these layers and the posteromedial cortical amygdaloid nucleus. Animals that display aggressive behavior had additional neuronal damage to the anterior olfactory cortex. This study provides insight into the structural basis for the progression of domoic acid epileptic disease and relates to the California sea lion, where poisoned animals progress to a disease characterized by SRS and aggressive behaviors.

  13. The Use of Lactic Acid Bacteria Starter Culture in the Production of Nunu, a Spontaneously Fermented Milk Product in Ghana

    PubMed Central

    Tano-Debrah, Kwaku; Parkouda, Charles; Jespersen, Lene

    2014-01-01

    Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB) previously isolated and identified from Nunu product were assessed in vitro for their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities). Following the determination of technological properties, Lactobacillus fermentum 22-16, Lactobacillus plantarum 8-2, Lactobacillus helveticus 22-7, and Leuconostoc mesenteroides 14-11 were used as single and combined starter cultures for Nunu fermentation. Starter culture fermented Nunu samples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging to Lactobacillus helveticus, L. plantarum, L. fermentum, and Leu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 μg/mL) was observed for 50% Leu. mesenteroides, 40% L. fermentum, 41% L. helveticus, 27% L. plantarum, and 10% Ent. faecium species. In starter culture fermented Nunu samples, all amino acids determined were detected in Nunu fermented with single starters of L. plantarum and L. helveticus and combined starter of L. fermntum and L. helveticus. Consumer sensory analysis showed varying degrees of acceptability for Nunu fermented with the different starter cultures. PMID:26904646

  14. Increased amplification success from forensic samples with locked nucleic acids.

    PubMed

    Ballantyne, Kaye N; van Oorschot, Roland A H; Mitchell, R John

    2011-08-01

    Inadequate sample quantities and qualities can commonly result in poor DNA amplification success rates for forensic case samples. In some instances, modifying the PCR protocol or components may assist profiling by overcoming inhibition, or reducing the threshold required for successful amplification and detection. Incorporation of locked nucleic acids (LNAs) into PCR primers has previously been shown to increase amplification success for a range of non-forensic sample types and applications. To investigate their use in a forensic context, the PCR primers for four commonly used STR loci have been redesigned to include LNA bases. The modified LNA primers provided significantly increased amplification success when compared to standard DNA primers, with both high-quality buccal samples and simulated forensic casework samples. Peak heights increased by as much as 5.75× for the singleplex amplifications. When incorporated into multiplexes, the LNA primers continued to outperform standard DNA primers, with increased ease of optimisation, and increased amplification success. The use of LNAs in PCR primers can greatly assist the profiling of a range of samples, and increase success rates from challenging forensic samples.

  15. DIETARY N-6 POLYUNSATURATED FATTY ACID DEPRIVATION INCREASES DOCOSAHEXAENOIC ACID METABOLISM IN RAT BRAIN

    PubMed Central

    Kim, Hyung-Wook; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I.

    2011-01-01

    Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A2 (cPLA2-IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective Ca2+-independent iPLA2-VIA expression. We hypothesized that these changes are accompanied by upregulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA “adequate” (31.4 wt% linoleic acid) or “deficient” (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-14C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acidn-3 (DPAn-3, 22:5n-3) and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid. Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promote neuroprotection. (199 words) PMID:22117540

  16. Increasing dietary crude protein does not increase the essential amino acid requirements of kittens.

    PubMed

    Strieker, M J; Morris, J G; Rogers, Q R

    2006-08-01

    Essential amino acid (EAA) requirements of omnivores and herbivores (e.g. chicks, lambs, pigs and rats) are directly related to the concentration of dietary crude protein (CP). When an EAA is limiting in the diet, addition of a mixture of EAA lacking the limiting one (which increases dietary CP) results in a decrease in food intake and weight gain. This interaction has been referred to as an AA imbalance and has not been studied in depth in strict carnivores. The objectives of these experiments were to examine the effects on growing kittens (2-week periods) of the addition to diets of a mixture of AA lacking the limiting one. The control diets were at the requirement of the respective limiting EAA (or about 85% of the 1986 National Research Council requirement). In experiment 1, with the dietary EAAs at the minimally determined requirements, the concentration of the essential or dispensable amino acids was increased to determine if CP or an EAA was limiting. Results of growth rates (n = 12) and plasma AA concentrations indicated that tryptophan was limiting, but increased body weight gain also occurred when the concentration of CP was increased as dispensable amino acids without additional tryptophan. Experiment 1 was repeated in experiment 2 using a crossover design. Again, when tryptophan was limiting additional concentrations of dispensable AAs increased body weight gain. This response is the opposite of that in herbivores and omnivores. Experiment 3 consisted of 10 separate crossover trials, one for each of the 10 EAA and examined the effect of two concentrations of dietary CP (200 and 300 g CP/kg diet) on body weight gain of kittens (n = 8) offered diets limiting in each respective EAA. Body weight gain was numerically greater when diets contained 300 g CP/kg than 200 g CP/kg for eight of 10 EAAs (p < 0.05 for only isoleucine and threonine) when each amino acid was limiting. This response is the reverse of that which occurs in chicks, lambs, pigs and rats when

  17. Internal waves as a proposed mechanism for increasing ambient noise in an increasingly acidic ocean.

    PubMed

    Rouseff, Daniel; Tang, Dajun

    2010-06-01

    The effect on the ambient noise level in shallow water of the ocean growing more acidic is modeled. Because most noise sources are near the surface, high-order acoustic modes are preferentially excited. Linear internal waves, however, can scatter the noise into the low-order, low-loss modes most affected by the changes in acidity. The model uses transport theory to couple the modes and assumes an isotropic distribution for the noise sources. For a scenario typical of the East China Sea, the noise at 3 kHz is predicted to increase by 30%, about one decibel, as the pH decreases from 8.0 to 7.4.

  18. Free fatty acids do not acutely increase asymmetrical dimethylarginine concentrations.

    PubMed

    Namiranian, K; Mittermayer, F; Artwohl, M; Pleiner, J; Schaller, G; Mayer, B X; Bayerle-Eder, M; Roden, M; Baumgartner-Parzer, S; Wolzt, M

    2005-12-01

    Concentrations of asymmetrical dimethylarginine (ADMA) and free fatty acids (FFAs) are elevated in insulin resistance which is associated with impaired vascular function. We hypothesized that FFAs could alter vascular tone by affecting ADMA concentrations. Plasma FFA levels were increased in seventeen healthy male volunteers by Intralipid/heparin infusion; hemodynamic and biochemical parameters were measured after 90 minutes. Plasma collected before and during Intralipid/heparin or equivalent synthetic FFAs was incubated with human umbilical vein endothelial cells (HUVECs) in vitro. Intralipid/heparin infusion resulted in an approximately seven-fold increase in plasma FFA levels to 1861 +/- 139 micromol/l, which was paralleled by increased systemic blood pressure and forearm blood flow. Intralipid/heparin did not affect ADMA (baseline mean 0.59 [95 % confidence interval [CI]: 0.54; 0.64] and 0.56 [CI: 0.51; 0.59] after 90 minutes), but slightly decreased SDMA (from 0.76, [CI: 0.70; 0.83] to 0.71 [CI: 0.64; 0.74], p < 0.05), and had no effect on ADMA/SDMA ratio. There was no correlation between ADMA and FFA concentrations or forearm blood flow. Incubation of HUVECs with FFA-rich plasma or synthetic FFAs induced an ADMA release after 24 hours, but not after 90 minutes. Acutely increased FFA levels caused hemodynamic effects but did not affect ADMA. Prolonged elevation of FFA levels might influence vascular function by increasing ADMA levels.

  19. Longitudinal Evaluation of Fatty Acid Metabolism in Normal and Spontaneously Hypertensive Rat Hearts with Dynamic MicroSPECT Imaging

    DOE PAGES

    Reutter, Bryan W.; Huesman, Ronald H.; Brennan, Kathleen M.; ...

    2011-01-01

    The goal of this project is to develop radionuclide molecular imaging technologies using a clinical pinhole SPECT/CT scanner to quantify changes in cardiac metabolism using the spontaneously hypertensive rat (SHR) as a model of hypertensive-related pathophysiology. This paper quantitatively compares fatty acid metabolism in hearts of SHR and Wistar-Kyoto normal rats as a function of age and thereby tracks physiological changes associated with the onset and progression of heart failure in the SHR model. The fatty acid analog, 123 I-labeled BMIPP, was used in longitudinal metabolic pinhole SPECT imaging studies performed every seven months for 21 months. The uniquenessmore » of this project is the development of techniques for estimating the blood input function from projection data acquired by a slowly rotating camera that is imaging fast circulation and the quantification of the kinetics of 123 I-BMIPP by fitting compartmental models to the blood and tissue time-activity curves.« less

  20. Hyperactivity in the rat is associated with spontaneous low level of n-3 polyunsaturated fatty acids in the frontal cortex.

    PubMed

    Vancassel, S; Blondeau, C; Lallemand, S; Cador, M; Linard, A; Lavialle, M; Dellu-Hagedorn, F

    2007-06-18

    Inattention, hyperactivity and impulsiveness are the main symptoms of the heterogeneous attention-deficit/hyperactivity disorder (ADHD). It has been suggested that ADHD is associated with an imbalance in polyunsaturated fatty acid (PUFA) composition, with abnormal low levels of the main n-3 PUFA, DHA (22: 6n-3). DHA is highly accumulated in nervous tissue membranes and is implicated in neural function. Animal studies have shown that diet-induced lack of DHA in the brain leads to alterations in cognitive processes, but the relationship between DHA and hyperactivity is unclear. We examined the membrane phospholipid fatty acid profile in frontal cortex of rats characterized for attention, impulsiveness and motricity in various environmental contexts to determine the relationship between brain PUFA composition and the symptoms of ADHD. The amounts of n-3 PUFA in the PE were significantly correlated with nocturnal locomotor activity and the locomotor response to novelty: hyperactive individuals had less n-3 PUFA than hypoactive ones. We conclude that spontaneous hyperactivity in rats is the symptom of ADHD that best predicts the n-3 PUFA content of the frontal cortex. This differential model in rats should help to better understand the role of PUFA in several psychopathologies in which PUFA composition is modified.

  1. Aspartic acid aminotransferase activity is increased in actively spiking compared with non-spiking human epileptic cortex.

    PubMed Central

    Kish, S J; Dixon, L M; Sherwin, A L

    1988-01-01

    Increased concentration of the excitatory neurotransmitter aspartic acid in actively spiking human epileptic cerebral cortex was recently described. In order to further characterise changes in the aspartergic system in epileptic brain, the behaviour of aspartic acid aminotransferase (AAT), a key enzyme involved in aspartic acid metabolism has now been examined. Electrocorticography performed during surgery was employed to identify cortical epileptic spike foci in 16 patients undergoing temporal lobectomy for intractable seizures. Patients with spontaneously spiking lateral temporal cortex (n = 8) were compared with a non-spiking control group (n = 8) of patients in whom the epileptic lesions were confined to the hippocampus sparing the temporal convexity. Mean activity of AAT in spiking cortex was significantly elevated by 16-18%, with aspartic acid concentration increased by 28%. Possible explanations for the enhanced AAT activity include increased proliferation of cortical AAT-containing astrocytes at the spiking focus and/or a generalised increase in neuronal or extraneuronal metabolism consequent to the ongoing epileptic discharge. It is suggested that the data provide additional support for a disturbance of central excitatory aspartic acid mechanisms in human epileptic brain. PMID:2898010

  2. Niflumic acid-induced increase in potassium currents in frog motor nerve terminals: effects on transmitter release.

    PubMed

    Miralles, F; Marsal, J; Peres, J; Solsona, C

    1996-04-01

    The actions of the nonsteroidal antiinflammatory drug niflumic acid were studied on frog neuromuscular preparations by conventional electrophysiological techniques. Niflumic acid reduced the amplitude and increased the latency of endplate potentials in a concentration-dependent manner. Neuromuscular junctions pretreated with niflumic acid (0.05-0.5 mM) showed much less depression than control when they were stimulated with trains of impulses. Inhibition of acetylcholine release was reverted by raising the extracellular Ca(2+) concentration but not by simply washing out the preparations with niflumic acid-free solutions. Pretreatment with indomethacin (0.1 mM), another nonsteroidal antiinflammatory drug, did not affect the niflumic acid-induced inhibition of evoked responses. Niflumic acid (0.1 mM) did not change the amplitude of miniature endplate potentials and had a dual action on the frequency of miniatures: it decreased their frequency at 0.1 mM whereas it produced an enormous increase in the rate of spontaneous discharge at 0.5 mM. Niflumic acid (0.1 - 1 mM) reversibly increased the amplitude and affected the kinetics of presynaptic voltage-activated K+ current and Ca(2+)-activated K(+) current in a concentration-dependent manner. Niflumic acid (0.1 - 1 mM) irreversibly decreased the amplitude and reversibly affected the kinetics of the nodal Na(+) current. Indomethacin (0.1 mM) had no effect on presynaptic currents. In conclusion, niflumic acid reduces acetylcholine release by increasing presynaptic K+ currents. This may shorten the depolarizing phase of the presynaptic action potential and may reduce the entry of Ca(2+) with each impulse.

  3. Wall teichoic acids mediate increased virulence in Staphylococcus aureus.

    PubMed

    Wanner, Stefanie; Schade, Jessica; Keinhörster, Daniela; Weller, Nicola; George, Shilpa E; Kull, Larissa; Bauer, Jochen; Grau, Timo; Winstel, Volker; Stoy, Henriette; Kretschmer, Dorothee; Kolata, Julia; Wolz, Christiane; Bröker, Barbara M; Weidenmaier, Christopher

    2017-01-23

    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are the cause of a severe pandemic consisting primarily of skin and soft tissue infections. The underlying pathomechanisms have not been fully understood and we report here a mechanism that plays an important role for the elevated virulence of CA-MRSA. Surprisingly, skin abscess induction in an animal model was correlated with the amount of a major cell wall component of S. aureus, termed wall teichoic acid (WTA). CA-MRSA exhibited increased cell-wall-associated WTA content (WTA(high)) and thus were more active in inducing abscess formation via a WTA-dependent and T-cell-mediated mechanism than S. aureus strains with a WTA(low) phenotype. We show here that WTA is directly involved in S. aureus strain-specific virulence and provide insight into the underlying molecular mechanisms that could guide the development of novel anti-infective strategies.

  4. Spontaneous Increase of Magnetic Flux and Chiral-Current Reversal in Bosonic Ladders: Swimming against the Tide

    NASA Astrophysics Data System (ADS)

    Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.

    2015-11-01

    The interplay between spontaneous symmetry breaking in many-body systems, the wavelike nature of quantum particles and lattice effects produces an extraordinary behavior of the chiral current of bosonic particles in the presence of a uniform magnetic flux defined on a two-leg ladder. While noninteracting as well as strongly interacting particles, stirred by the magnetic field, circulate along the system's boundary in the counterclockwise direction in the ground state, interactions stabilize vortex lattices. These states break translational symmetry, which can lead to a reversal of the circulation direction. Our predictions could readily be accessed in quantum gas experiments with existing setups or in arrays of Josephson junctions.

  5. From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model.

    PubMed

    Drab, M; Haller, H; Bychkov, R; Erdmann, B; Lindschau, C; Haase, H; Morano, I; Luft, F C; Wobus, A M

    1997-09-01

    Vascular smooth muscle cell (VSMC) differentiation is important in understanding vascular disease; however, no in vitro model is available. Totipotent mouse embryonic stem (ES) cells were used to establish such a model. To test whether the ES cell-derived smooth muscle cells expressed VSMC-specific properties, the differentiated cells were characterized by 1) morphological analysis, 2) gene expression, 3) immunostaining for VSMC-specific proteins, 4) expression of characteristic VSMC ion channels, and 5) formation of [Ca2+]i transients in response to VSMC-specific agonists. Treatment of embryonic stem cell-derived embryoid bodies with retinoic acid and dibutyryl-cyclic adenosine monophosphate (db-cAMP) induced differentiation of spontaneously contracting cell clusters in 67% of embryoid bodies compared with 10% of untreated controls. The highest differentiation rate was observed when retinoic acid and db-cAMP were applied to the embryoid bodies between days 7 and 11 in combination with frequent changes of culture medium. Other protocols with retinoic acid and db-cAMP, as well as single or combined treatment with VEGF, ECGF, bFGF, aFGF, fibronectin, matrigel, or hypoxia did not influence the differentiation rate. Single-cell RT-PCR and sequencing of the PCR products identified myosin heavy chain (MHC) splice variants distinguishing between gut and VSMC isoforms. RT-PCR with VSMC-specific MHC primers and immunostaining confirmed the presence of VSMC transcripts and MHC protein. Furthermore, VSMC expressing MHC had typical ion channels and responded to specific agonists with an increased [Ca2+]i. Here we present a retinoic acid + db-cAMP-inducible embryonic stem cell model of in vitro vasculogenesis. ES cell-derived cells expressing VSMC-specific MHC and functional VSMC properties may be a suitable system to study mechanisms of VSMC differentiation.

  6. Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long-term potentiation in vivo.

    PubMed

    Fernández-Ruiz, Antonio; Makarov, Valeri A; Herreras, Oscar

    2012-01-01

    Long-term potentiation (LTP) is commonly used to study synaptic plasticity but the associated changes in the spontaneous activity of individual neurons or the computational properties of neural networks in vivo remain largely unclear. The multisynaptic origin of spontaneous spikes makes it difficult to estimate the impact of a particular potentiated input. Accordingly, we adopted an approach that isolates pathway-specific postsynaptic activity from raw local field potentials (LFPs) in the rat hippocampus in order to study the effects of LTP on ongoing spike transfer between cell pairs in the CA3-CA1 pathway. CA1 Schaffer-specific LFPs elicited by spontaneous clustered firing of CA3 pyramidal cells involved a regular succession of elementary micro-field-EPSPs (gamma-frequency) that fired spikes in CA1 units. LTP increased the amplitude but not the frequency of these ongoing excitatory quanta. Also, the proportion of Schaffer-driven spikes in both CA1 pyramidal cells and interneurons increased in a cell-specific manner only in previously connected CA3-CA1 cell pairs, i.e., when the CA3 pyramidal cell had shown pre-LTP significant correlation with firing of a CA1 unit and potentiated spike-triggered average (STA) of Schaffer LFPs following LTP. Moreover, LTP produced subtle reorganization of presynaptic CA3 cell assemblies. These findings show effective enhancement of pathway-specific ongoing activity which leads to increased spike transfer in potentiated segments of a network. They indicate that plastic phenomena induced by external protocols may intensify spontaneous information flow across specific channels as proposed in transsynaptic propagation of plasticity and synfire chain hypotheses that may be the substrate for different types of memory involving multiple brain structures.

  7. Does premature elevated progesterone on the day of trigger increase spontaneous abortion rates in fresh and subsequent frozen embryo transfers?

    PubMed

    Healy, Mae; Patounakis, George; Zanelotti, Austin; Devine, Kate; DeCherney, Alan; Levy, Michael; Hill, Micah J

    2017-03-02

    Recent evidence has shown elevated progesterone (P) advances the endometrium in fresh ART cycles, creating asynchrony with the embryo and thus implantation failure and decreased live birth rates. If the window of implantation is closing as the embryo attempts to implant, there may be difficulty with trophoblastic invasion, leading to failure of early pregnancies. Our objective was to evaluate if P on the day of trigger was associated with spontaneous abortion (SAB) rates in fresh ART transfers. This was a retrospective cohort study involving fresh autologous and FET cycles from 2011 to 2013. The main outcome was spontaneous abortion rates. About 4123 fresh and FET transfer cycles were included which resulted in 1547 fresh and 491 FET pregnancies. The overall SAB rate was 20% among fresh cycles and 19% in FET cycles. P on the day of trigger, as a continuous variable or when > 2 ng/mL, was not associated with SAB in fresh cycles. Similar results were found after adjusting for age, embryo quality, and embryo stage. Despite elevated P likely advancing the window of implantation, once implantation occurs, pregnancies were no longer negatively impacted by progesterone.

  8. Up-regulation of ryanodine receptor expression increases the calcium-induced calcium release and spontaneous calcium signals in cerebral arteries from hindlimb unloaded rats.

    PubMed

    Morel, Jean-Luc; Dabertrand, Fabrice; Porte, Yves; Prevot, Anne; Macrez, Nathalie

    2014-08-01

    Microgravity induces a redistribution of blood volume. Consequently, astronauts' body pressure is modified so that the upright blood pressure gradient is abolished, thereby inducing a modification in cerebral blood pressure. This effect is mimicked in the hindlimb unloaded rat model. After a duration of 8 days of unloading, Ca2+ signals activated by depolarization and inositol-1,4,5-trisphosphate intracellular release were increased in cerebral arteries. In the presence of ryanodine and thapsigargin, the depolarization-induced Ca2+ signals remained increased in hindlimb suspended animals, indicating that Ca2+ influx and Ca2+-induced Ca2+ release mechanism were both increased. Spontaneous Ca2+ waves and localized Ca2+ events were also investigated. Increases in both amplitude and frequency of spontaneous Ca2+ waves were measured in hindlimb suspension conditions. After pharmacological segregation of Ca2+ sparks and Ca2+ sparklets, their kinetic parameters were characterized. Hindlimb suspension induced an increase in the frequencies of both Ca2+ localized events, suggesting an increase of excitability. Labeling with bodipy compounds suggested that voltage-dependent Ca2+ channels and ryanodine receptor expressions were increased. Finally, the expression of the ryanodine receptor subtype 1 (RyR1) was increased in hindlimb unloading conditions. Taken together, these results suggest that RyR1 expression and voltage-dependent Ca2+ channels activity are the focal points of the regulation of Ca2+ signals activated by vasoconstriction in rat cerebral arteries with an increase of the voltage-dependent Ca2+ influx.

  9. Eicosapentaenoic and docosahexaenoic acids increase insulin sensitivity in growing steers.

    PubMed

    Cartiff, S E; Fellner, V; Eisemann, J H

    2013-05-01

    An experiment was conducted to determine the effect of dietary n-3 long chain PUFA on insulin sensitivity in growing steers. Steers (n = 12, initial BW = 336.3 kg, SEM = 7.7) were adapted to a basal diet that was 70% concentrate mix and 30% orchardgrass hay. Steers were fed a daily amount of 0.26 Mcal ME per kg BW (0.75). After 3 wk steers were transitioned to 1 of 2 treatment (Trt) diets (n = 6 per diet) containing added Ca salts of fatty acids at 4% of DM using a source of fat that was enriched in n-3 fatty acids, including eicosapentaenoic acid and docosahexaenoic acid (FOFA), or a source of fat without n-3 fatty acids and a greater percentage of C16:0 and C18:1 (LCFA). Three intravenous (i.v.) glucose tolerance tests (IVGTT) were conducted, 1 during the basal diet, and 2 after transition to treatment diets at time 1 (T1; d 4 Trt) and time 2 (T2; d 39 Trt). Three i.v. insulin challenge tests (IC) were conducted the day after each IVGTT. Measurements on the basal diet were used as covariates. For IVGTT, there was a diet by time interaction (P < 0.05) for glucose area under the response curve (AUC). The AUC50 (mM glucose × 50 min) at T1 was less (P = 0.02) for LCFA (126.2) than FOFA (151.8), AUC50 at T2 tended to be greater (P = 0.07) for LCFA (165.9) than FOFA (146.0). Preinfusion insulin concentration was greater (P < 0.001) before the IVGTT and IC for steers fed LCFA (40.4 and 40.2 µIU/mL) than for steers fed FOFA (23.7 and 27.1 µIU/mL), respectively. Glucose clearance did not differ between treatments. For IC, minimum glucose concentration was greater (P = 0.02) and glucose AUC150 was less (P < 0.01) for steers fed LCFA than for steers fed FOFA. Values for glucose concentration were 1.8 mM and 1.5 mM and for AUC150 (mM glucose × 150 min) were 203.1 and 263.6 for steers fed LCFA and FOFA, respectively. Insulin clearance (fraction/min) was greater (P < 0.01) for steers fed LCFA (0.121) than FOFA (0.101). The insulin AUC60 (µIU/mL × 60 min) postinfusion was

  10. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils.

  11. Increased mutagenicity of chromium compounds by nitrilotriacetic acid

    SciTech Connect

    Loprieno, N.; Boncristiani, G.; Venier, P.; Montaldi, A.; Majone, F.; Bianchi, V.; Paglialunga, S.; Levis, A.G.

    1985-01-01

    Nitrilotriacetic acid trisodium salt (NTA), which is a substitute for polyphosphates in household laundry detergents, and N-nitrosoiminodiacetic acid (NIDA), a derivative of NTA produced by metabolism of soil microorganisms, were tested for in vitro mutagenicity in bacteria and yeasts. No gene reversions in five strains of Salmonella typhimurium (TA1535, TA1537, TA1538, TA98, and TA100), no forward gene mutations in Schizosaccharomyces pombe P1, and no mitotic gene conversions at two loci in Saccharomyces cerevisiae D4 were induced by NTA and NIDA independently of the presence of rat liver metabolic activation. The influence of NTA on the mutagenic and clastogenic activity of several chromium compounds was examined in the Salmonella/microsome assay and in the sister chromatid exchange (SCE) assay in mammalian cell cultures (Chinese hamster ovary (CHO) line). NTA does not affect the genetic inactivity of water-soluble Cr(III) (Cr/sub 2/(SO/sub 4/)/sub 3/) and the direct mutagenicity of soluble Cr(VI) (Na/sub 2/CrO/sub 4/, K/sub 2/Cr/sub 2/O/sub 7/) compounds. The very insoluble Cr(VI) compounds PbCrO/sub 4/ and PbCrO/sub 4/ x PbO are instead clearly mutagenic in the Salmonella/microsome assay (TA100 strain) only in the presence of NTA or NaOH. The chromosome-damaging activity of PbCrO/sub 4/ is significantly increased by NTA but not by NaOH.

  12. Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture.

    PubMed

    Monda, Keina; Araki, Hiromitsu; Kuhara, Satoru; Ishigaki, Genki; Akashi, Ryo; Negi, Juntaro; Kojima, Mikiko; Sakakibara, Hitoshi; Takahashi, Sho; Hashimoto-Sugimoto, Mimi; Goto, Nobuharu; Iba, Koh

    2016-03-01

    The rate of gas exchange in plants is regulated mainly by stomatal size and density. Generally, higher densities of smaller stomata are advantageous for gas exchange; however, it is unclear what the effect of an extraordinary change in stomatal size might have on a plant's gas-exchange capacity. We investigated the stomatal responses to CO2 concentration changes among 374 Arabidopsis (Arabidopsis thaliana) ecotypes and discovered that Mechtshausen (Me-0), a natural tetraploid ecotype, has significantly larger stomata and can achieve a high stomatal conductance. We surmised that the cause of the increased stomatal conductance is tetraploidization; however, the stomatal conductance of another tetraploid accession, tetraploid Columbia (Col), was not as high as that in Me-0. One difference between these two accessions was the size of their stomatal apertures. Analyses of abscisic acid sensitivity, ion balance, and gene expression profiles suggested that physiological or genetic factors restrict the stomatal opening in tetraploid Col but not in Me-0. Our results show that Me-0 overcomes the handicap of stomatal opening that is typical for tetraploids and achieves higher stomatal conductance compared with the closely related tetraploid Col on account of larger stomatal apertures. This study provides evidence for whether larger stomatal size in tetraploids of higher plants can improve stomatal conductance.

  13. Inhibition of fatty acid oxidation activates transforming growth factor-beta in cerebrospinal fluid and decreases spontaneous motor activity.

    PubMed

    Fujikawa, Teppei; Fujita, Ryo; Iwaki, Yoko; Matsumura, Shigenobu; Fushiki, Tohru; Inoue, Kazuo

    2010-10-05

    We have previously reported that transforming growth factor (TGF)-beta in the cerebrospinal fluid (CSF) is involved in the mechanism underlying the regulation of spontaneous motor activity (SMA) by the central nervous system after exercise. However, it remained unclear what physiological condition triggers the activation of TGF-beta. We hypothesized that the shortage of energy derived from fatty acid (FA) oxidation observed in the early phase of exercise activated TGF-beta in the CSF. To test this hypothesis, we investigated whether mercaptoacetate (MA), an inhibitor of FA oxidation, could induce an activation of TGF-beta in the CSF and a decrease in SMA. Intraperitoneal (i.p.) administration of MA activated TGF-beta in CSF in rats and depressed SMA; 2-deoxyglucose, an inhibitor of carbohydrate oxidation, on the other hand, depressed SMA but failed to activate CSF TGF-beta. Intracisternal administration of anti-TGF-beta antibody abolished the depressive effect of MA on SMA. We also found that the depression of SMA and the activation of TGF-beta in the CSF by i.p. MA administration were eliminated by vagotomy. Our data suggest that TGF-beta in the CSF is activated by the inhibition of FA oxidation via the vagus nerve and that this subsequently induces depression of SMA.

  14. Stimulatory action of mitemcinal (GM-611), an acid-resistant non-peptide motilin receptor agonist, on colonic motor activity and defecation: spontaneous and mitemcinal-induced giant migrating contractions during defecation in dogs.

    PubMed

    Hirabayashi, T; Morikawa, Y; Matsufuji, H; Hoshino, K; Hagane, K; Ozaki, K

    2009-10-01

    The aim of this study was to characterize giant migrating contractions (GMCs) during spontaneous defecation in dogs and to investigate the effect of mitemcinal (an orally active and highly acid-resistant motilin receptor agonist) on colonic motility to assess the possibility of using it for the treatment of colonic motility disorders. To assess colonic motility, strain-gauge force transducers were implanted on the gastrointestinal tract of five dogs, and the behaviour of the dogs was monitored with a noctovision-video camera system. The effect of mitemcinal (0, 3, 10 or 30 mg per dog) and sennoside (300 mg per dog) on colonic motility was assessed 24 h after oral administration. During a 39-day period, the starting point of most of the 140 GMCs was between the transverse colon and the descending colon, but some variation was observed. In the daytime, the GMCs originated from somewhat more proximal positions than at night. Mitemcinal caused an increase in the GMC-index (integration of contractile amplitude and duration) and proximal translocation of the GMC starting point, but did not cause an increase in the number of defecations 12 h after administration. Sennoside, however, caused a significant increase in the number of defecations, an increase in the GMC-index, and prolongation of the duration of GMCs. The GMC starting point in the canine colon varied during spontaneous defecation. Mitemcinal was a potent prokinetic drug to mimic a spontaneous defecation compared with sennoside. Mitemcinal evacuates more intestinal luminal contents during the defecation than does sennoside.

  15. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  16. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian [East Lansing, MI; Kleff, Susanne [East Lansing, MI; Guettler, Michael V [Holt, MI

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  17. Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein.

    PubMed

    Lee, Duck Yeon; Kim, Kyeong-Ae; Yu, Yeon Gyu; Kim, Key-Sun

    2004-07-30

    Proteins from thermophiles are more stable than those from mesophiles. Several factors have been suggested as causes for this greater stability, but no general rule has been found. The amino acid composition of thermophile proteins indicates that the content of polar amino acids such as Asn, Gln, Ser, and Thr is lower, and that of charged amino acids such as Arg, Glu, and Lys is higher than in mesophile proteins. Among charged amino acids, however, the content of Asp is even lower in thermophile proteins than in mesophile proteins. To investigate the reasons for the lower occurrence of Asp compared to Glu in thermophile proteins, Glu was substituted with Asp in a hyperthermophile protein, MjTRX, and Asp was substituted with Glu in a mesophile protein, ETRX. Each substitution of Glu with Asp decreased the Tm of MjTRX by about 2 degrees C, while each substitution of Asp with Glu increased the Tm of ETRX by about 1.5 degrees C. The change of Tm destabilizes the MjTRX by 0.55 kcal/mol and stabilizes the ETRX by 0.45 kcal/mol in free energy.

  18. Topically applied NO-releasing nanoparticles can increase intracorporal pressure and elicit spontaneous erections in a rat model of radical prostatectomy

    PubMed Central

    Tar, Moses; Cabrales, Pedro; Mahantesh, Navarti; Adler, Brandon; Nacharaju, Parimala; Friedman, Adam; Friedman, Joel; Davies, Kelvin P.

    2014-01-01

    Introduction Patients undergoing radical prostatectomy (RP) suffer from erectile dysfunction (ED) refractory to PDE5 inhibitors, which act downstream of CN-mediated release of nitric oxide (NO). Direct delivery of NO to the penis could potentially circumvent this limitation. Aim To determine if topically applied NO-releasing nanoparticles (NO-np) can elicit erections in a rat model of RP and demonstrate that the mechanism is through increased blood flow. Methods 26 Sprague–Dawley rats underwent bilateral transection of the CN. One week later NO-np were applied topically to the penile shaft in DMSO-gel (10 animals) or coconut oil (6 animals). Control animals were treated with empty-np. Erectile function was determined through the intracorporal pressure/blood pressure ratio (ICP/BP). The effect of the NO-np on blood flow was determined using a hamster dorsal window chamber. Main Outcome Measures Animals were investigated for spontaneous erections, onset and duration of erectile response and basal ICP/BP ratio. Microcirculatory blood-flow was determined through arteriolar and venular diameter and blood flow. Results Eight of ten animals treated with NO-np suspended in DMSO-gel had significant increases in basal ICP/BP, and six out of these ten animals demonstrated spontaneous erections of approximately one minute duration. Onset of spontaneous erections ranged from 5–37 minutes and occurred for at least 45 minutes. Similar results were observed with NO-np applied in coconut oil. No erectile response was observed in control animal models treated with empty-np. The hamster dorsal window chamber demonstrated NO-np applied as a suspension in coconut oil caused a significant increase in the microcirculatory blood flow, sustained over 90 minutes. Conclusions Topically applied NO-np induced spontaneous erections and increased basal ICP in an animal model of RP. These effects are most likely due to increased microcirculatory blood flow. These characteristics suggest that

  19. An Increase Incidence in Uric Acid Nephrolithiasis: Changing Patterns

    PubMed Central

    Kumari, Asha; Mittal, Pawan; Kumar, Rajender; Goel, Richa; Bansal, Piyush; Kumar, Himanshu Devender; Bhutani, Jaikrit

    2016-01-01

    Introduction Nephrolithiasis is a complex disease affecting all age groups globally. As the causative factors for nephrolithiasis rises significantly, its incidence, prevalence and recurrence continues to baffle clinicians and patients. Aim To study the prevalence of different types of renal stones extracted by Percutaneous Nephrolithotomy (PCNL) and open surgical procedures. Materials and Methods Renal stones from 50 patients were retrieved by Percutaneous Nephrolithotomy (PCNL), Ureterorenoscopy (URS) and open surgical techniques for qualitative tests for detection of calcium, oxalate, uric acid, phosphate, ammonium ion, carbonate, cystine and xanthine. Results Three patients had stone removed by open surgery and rest had undergone PCNL. Nine of the stones were pure of calcium oxalate, 9 were of pure uric acid and 32 were mixed stones. Forty one stones had calcium. Among the mixed stones, oxalate was present in 25 samples (39 of total), uric acid was seen in 17 (25 of total stones), phosphate was present in 23 (23 of total) and carbonate was present in 4 stones (4 of total). Only 1 patient had triple phosphate stone. 12 were of staghorn appearance of which 6 were of struvite type, 6 were pure uric acid and remaining were mixed oxalate-phosphate stones. Conclusion Our study, though in a small number of hospital based patients, found much higher prevalence of uric acid stones and mixed stones than reported by previous hospital based studies in north India (oxalate stones~90%, uric acid~1% and mixed stones~3%). Biochemical analysis of renal stones is warranted in all cases. PMID:27630833

  20. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity.

    PubMed

    Goudjal, Yacine; Toumatia, Omrane; Sabaou, Nasserdine; Barakate, Mustapha; Mathieu, Florence; Zitouni, Abdelghani

    2013-10-01

    Twenty-seven endophytic actinomycete strains were isolated from five spontaneous plants well adapted to the poor sandy soil and arid climatic conditions of the Algerian Sahara. Morphological and chemotaxonomical analysis indicated that twenty-two isolates belonged to the Streptomyces genus and the remaining five were non-Streptomyces. All endophytic strains were screened for their ability to produce indole-3-acetic acid (IAA) in vitro on a chemically defined medium. Eighteen strains were able to produce IAA and the maximum production occurred with the Streptomyces sp. PT2 strain. The IAA produced was further extracted, partially purified and confirmed by thin layer chromatography (TLC) analysis. The 16S rDNA sequence analysis and phylogenetic studies indicated that strain PT2 was closely related to Streptomyces enissocaecilis NRRL B 16365(T), Streptomyces rochei NBRC 12908(T) and Streptomyces plicatus NBRC 13071(T), with 99.52 % similarity. The production of IAA was affected by cultural conditions such as temperature, pH, incubation period and L-tryptophan concentration. The highest level of IAA production (127 μg/ml) was obtained by cultivating the Streptomyces sp. PT2 strain in yeast extract-tryptone broth supplemented with 5 mg L-tryptophan/ml at pH 7 and incubated on a rotary shaker (200 rpm) at 30 °C for 5 days. Twenty-four-hour treatment of tomato cv. Marmande seeds with the supernatant culture of Streptomyces sp. PT2 that contained the crude IAA showed the maximum effect in promoting seed germination and root elongation.

  1. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation.

    PubMed

    Rozance, Paul J; Crispo, Michelle M; Barry, James S; O'Meara, Meghan C; Frost, Mackenzie S; Hansen, Kent C; Hay, William W; Brown, Laura D

    2009-09-01

    Protein supplementation during human pregnancy does not improve fetal growth and may increase small-for-gestational-age birth rates and mortality. To define possible mechanisms, sheep with twin pregnancies were infused with amino acids (AA group, n = 7) or saline (C group, n = 4) for 4 days during late gestation. In the AA group, fetal plasma leucine, isoleucine, valine, and lysine concentrations were increased (P < 0.05), and threonine was decreased (P < 0.05). In the AA group, fetal arterial pH (7.365 +/- 0.007 day 0 vs. 7.336 +/- 0.012 day 4, P < 0.005), hemoglobin-oxygen saturation (46.2 +/- 2.6 vs. 37.8 +/- 3.6%, P < 0.005), and total oxygen content (3.17 +/- 0.17 vs. 2.49 +/- 0.20 mmol/l, P < 0.0001) were decreased on day 4 compared with day 0. Fetal leucine disposal did not change (9.22 +/- 0.73 vs. 8.09 +/- 0.63 micromol x min(-1) x kg(-1), AA vs. C), but the rate of leucine oxidation increased 43% in the AA group (2.63 +/- 0.16 vs. 1.84 +/- 0.24 micromol x min(-1) x kg(-1), P < 0.05). Fetal oxygen utilization tended to be increased in the AA group (327 +/- 23 vs. 250 +/- 29 micromol x min(-1) x kg(-1), P = 0.06). Rates of leucine incorporation into fetal protein (5.19 +/- 0.97 vs. 5.47 +/- 0.89 micromol x min(-1) x kg(-1), AA vs. C), release from protein breakdown (4.20 +/- 0.95 vs. 4.62 +/- 0.74 micromol x min(-1) x kg(-1)), and protein accretion (1.00 +/- 0.30 vs. 0.85 +/- 0.25 micromol x min(-1) x kg(-1)) did not change. Consistent with these data, there was no change in the fetal skeletal muscle ubiquitin ligases MaFBx1 or MuRF1 or in the protein synthesis regulators 4E-BP1, eEF2, eIF2alpha, and p70(S6K). Decreased concentrations of certain essential amino acids, increased amino acid oxidation, fetal acidosis, and fetal hypoxia are possible mechanisms to explain fetal toxicity during maternal amino acid supplementation.

  2. Preventive effects of branched-chain amino acid supplementation on the spontaneous development of hepatic preneoplastic lesions in C57BL/KsJ-db/db obese mice.

    PubMed

    Terakura, Daishi; Shimizu, Masahito; Iwasa, Junpei; Baba, Atsushi; Kochi, Takahiro; Ohno, Tomohiko; Kubota, Masaya; Shirakami, Yohei; Shiraki, Makoto; Takai, Koji; Tsurumi, Hisashi; Tanaka, Takuji; Moriwaki, Hisataka

    2012-12-01

    Obesity and its associated disorders, such as non-alcoholic steatohepatitis, increase the risk of hepatocellular carcinoma. Branched-chain amino acids (BCAA), which improve protein malnutrition in patients with liver cirrhosis, reduce the risk of hepatocellular carcinoma in these patients with obesity. In the present study, the effects of BCAA supplementation on the spontaneous development of hepatic premalignant lesions, foci of cellular alteration, in db/db obese mice were examined. Male db/db mice were given a basal diet containing 3.0% of either BCAA or casein, a nitrogen-content-matched control of BCAA, for 36 weeks. On killing the mice, supplementation with BCAA significantly inhibited the development of foci of cellular alteration when compared with casein supplementation by inhibiting cell proliferation, but inducing apoptosis. BCAA supplementation increased the expression levels of peroxisome proliferator-activated receptor-γ, p21(CIP1) and p27(KIP1) messenger RNA and decreased the levels of c-fos and cyclin D1 mRNA in the liver. BCAA supplementation also reduced both the amount of hepatic triglyceride accumulation and the expression of interleukin (IL)-6, IL-1β, IL-18 and tumor necrosis factor-α mRNA in the liver. Increased macrophage infiltration was inhibited and the expression of IL-6, TNF-α, and monocyte chemoattractant protein-1 mRNA in the white adipose tissue were each decreased by BCAA supplementation. BCAA supplementation also reduced adipocyte size while increasing the expression of peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ and adiponectin mRNA in the white adipose tissue compared with casein supplementation. These findings indicate that BCAA supplementation inhibits the early phase of obesity-related liver tumorigenesis by attenuating chronic inflammation in both the liver and white adipose tissue. BCAA supplementation may be useful in the chemoprevention of liver tumorigenesis in obese

  3. Increased Rat Placental Fatty Acid, but Decreased Amino Acid and Glucose Transporters Potentially Modify Intrauterine Programming.

    PubMed

    Nüsken, Eva; Gellhaus, Alexandra; Kühnel, Elisabeth; Swoboda, Isabelle; Wohlfarth, Maria; Vohlen, Christina; Schneider, Holm; Dötsch, Jörg; Nüsken, Kai-Dietrich

    2016-07-01

    Regulation of placental nutrient transport significantly affects fetal development and may modify intrauterine growth restriction (IUGR) and fetal programming. We hypothesized that placental nutrient transporters are differentially affected both by utero-placental insufficiency and prenatal surgical stress. Pregnant rats underwent bilateral uterine artery and vein ligation (LIG), sham operation (SOP) or no operation (controls, C) on gestational day E19. Placentas were obtained by caesarean section 4 h (LIG, n=20 placentas; SOP, n=24; C, n=12), 24 h (LIG, n=28; SOP, n=20; C, n=12) and 72 h (LIG, n=20; SOP, n=20; C, n=24) after surgery. Gene and protein expression of placental nutrient transporters for fatty acids (h-FABP, CD36), amino acids (SNAT1, SNAT2) and glucose (GLUT-1, Connexin 26) were examined by qRT-PCR, western blot and immunohistochemistry. Interestingly, the mean protein expression of h-FABP was doubled in placentas of LIG and SOP animals 4, 24 (SOP significant) and 72 h (SOP significant) after surgery. CD36 protein was significantly increased in LIG after 72 h. SNAT1 and SNAT2 protein and gene expressions were significantly reduced in LIG and SOP after 24 h. Further significantly reduced proteins were GLUT-1 in LIG (4 h, 72 h) and SOP (24 h), and Connexin 26 in LIG (72 h). In conclusion, placental nutrient transporters are differentially affected both by reduced blood flow and stress, probably modifying the already disturbed intrauterine milieu and contributing to IUGR and fetal programming. Increased fatty acid transport capacity may affect energy metabolism and could be a compensatory reaction with positive effects on brain development. J. Cell. Biochem. 117: 1594-1603, 2016. © 2015 Wiley Periodicals, Inc.

  4. Depression of serum calcium by increased plasma free fatty acids in the rat: a mechanism for hypocalcemia in acute pancreatitis.

    PubMed

    Warshaw, A L; Lee, K H; Napier, T W; Fournier, P O; Duchainey, D; Axelrod, L

    1985-10-01

    Some patients with hypertriglyceridemia and acute pancreatitis have marked hypocalcemia and high levels of plasma free fatty acids (FFAs). This study tests the hypothesis that increased plasma FFAs can significantly reduce the calcium level in vivo, a phenomenon which is different from local formation of calcium soaps due to lipolysis of adipose tissue lipids. Free fatty acid elevation was induced in rats by the administration of heparin and by the infusion of triglycerides. The results show that, compared with controls, induction of elevated FFA (from 1.57 +/- 0.08 mEq/L to 5.64 +/- 0.35, mean +/- SEM) causes the concentration of calcium to fall rapidly (from 9.04 +/- 0.06 mg/dl to 8.42 +/- 0.10, p less than 0.001). There is a significant (p less than 0.001) positive correlation between spontaneous baseline concentration of FFA and the responsiveness of calcium concentration to FFA challenge. At near-normal levels of FFA there is a significant (p less than 0.001) correlation between the magnitude of increased FFA concentration and decreased calcium concentration. Additional studies in vivo and in vitro show that elevated plasma triglycerides per se did not interfere with measurement of calcium concentration; however, FFA-albumin complexes bind calcium and lower its measured value. These findings suggest that (a) changes in the concentration of FFA occurring spontaneously may affect measured serum calcium concentration; (b) the observed depression of serum calcium concentration may be due in part to intravascular sequestration of calcium by FFA, but increased flux of circulating calcium-FFA complexes into extravascular and intracellular sites may also be important; (c) the markedly increased FFA concentration in some patients with acute pancreatitis may contribute significantly to hypocalcemia and calcium flux in these patients. As parathyroid hormone secretion, function, or integrity may be impaired in pancreatitis, the depressant effect of FFA could be even

  5. Age-associated increase of spontaneous mutant frequency and molecular nature of mutation in newborn and old lacZ-transgenic mouse.

    PubMed

    Ono, T; Ikehata, H; Nakamura, S; Saito, Y; Hosoi, Y; Takai, Y; Yamada, S; Onodera, J; Yamamoto, K

    2000-02-14

    Accumulation of mutation has long been hypothesized to be a cause of aging and contribute to many of the degenerative diseases, which appear in the senescent phase of life. To test this hypothesis, age-associated changes in spontaneous mutation in different tissues of the body as well as the molecular nature of such changes should be examined. This kind of approach has become feasible only lately with a development of new transgenic mice suitable for mutation assay. Here, using one of these transgenic mice harboring lacZ gene, we have shown that the age-associated increase in spontaneous mutant frequency is common to all tissues examined; spleen, liver, heart, brain, skin and testis, while the rates of increase in mutant frequency differed among the tissues. DNA sequencing of the 496 lacZ mutants recovered from the tissues of newborn and old mice has revealed that spectra of mutations are similar at the two age points with G:C to A:T transition at CpG site being a predominant type of mutation. Furthermore, some mutations in old tissues are complex type and not found in tissues of newborn mice. These results suggest that similar mechanisms may be operating for mutation induction in fetal and postnatal aging process. In addition, the appearance of complex types of mutations in the old tissues suggests a unique cause for these mutations in aging tissues.

  6. Oxygen-glucose deprivation increases firing of unipolar brush cells and enhances spontaneous EPSCs in Purkinje cells in the vestibulo-cerebellum.

    PubMed

    Takayasu, Yukihiro; Shino, Masato; Nikkuni, Osamu; Yoshida, Yukari; Furuya, Nobuhiko; Chikamatsu, Kazuaki

    2016-05-01

    Unipolar brush cells (UBCs) are excitatory interneurons in the granular layer of the cerebellar cortex, which are predominantly distributed in the vestibulo-cerebellar region. The unique firing properties and synaptic connections of UBCs may underlie lobular heterogeneity of excitability in the granular layer and the susceptibility to ischemia-induced excitotoxicity. In this study, we investigated the effects of oxygen-glucose deprivation (OGD) on the firing properties of UBCs and granule cells and spontaneous excitatory postsynaptic currents (sEPSCs) of Purkinje cells using whole-cell recordings. Short-term OGD induced increases in spontaneous firing of UBCs by causing membrane depolarization via the activation of NMDA receptors. UBC firing indirectly affected Purkinje cells by altering parallel fiber inputs of a subset granule cells, resulting in a marked increase in sEPSCs in Purkinje cells in vestibulo-cerebellar lobules IX-X, but not in lobules IV-VI, which have fewer UBCs. Similarly, the frequency and amplitude of sEPSCs in Purkinje cells were significantly greater in lobules IX-X than in IV-VI, even in control conditions. These results reveal that UBCs play key roles in regulating local excitability in the granular layer, resulting in lobular heterogeneity in the susceptibility to ischemic insult in the cerebellum.

  7. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  8. Beef tallow increases the potency of conjugated linoleic acid in the reduction of mouse mammary tumor metastasis.

    PubMed

    Hubbard, Neil E; Lim, Debora; Erickson, Kent L

    2006-01-01

    Animal studies consistently show that dietary conjugated linoleic acid (CLA) reduces mammary tumorigenesis including metastasis. Relatively low concentrations of CLA are required for those effects, and a threshold level exists above which there is no added reduction. We reasoned that the concentration of CLA required to effectively alter mammary tumor metastasis may be dependent on the type of dietary fat because select fatty acids can enhance or suppress normal or malignant cell growth and metastasis. For this study, the diets (a total of 12 different groups) differed in fatty acid composition but not in energy from fat (40%). In experiments involving spontaneous metastasis, mice were fed for 11 wk; in experiments in which mice were injected i.v. with tumor cells, they were fed for 7 wk. Mice were then assessed for the effect of CLA concentration on mammary tumorigenesis. Mammary tumor growth was not altered, but metastasis was significantly decreased when beef tallow (BT) replaced half of a defined vegetable fat blend (VFB). That blend reflects the typical fat content of a Western diet. In addition, that same VFB:BT diet lowered the concentration of CLA required to significantly decrease mammary tumor metastasis from 0.1% of the diet to 0.05%. A diet in which corn oil replaced half of the VFB did not lower the threshold from 0.1 to 0.05%. In vitro, the main fatty acid in vegetable oil, linoleic acid, reduced the efficacy of CLA toxicity on mammary tumor cells in culture. Alternatively, fatty acids normally found in BT, such as oleic, stearic, and palmitic acids, either did not change or enhanced the cytolytic effects of CLA isomers on mouse mammary tumor cells in culture. These data provide evidence that dietary BT, itself with negligible levels of CLA, may increase the efficacy of dietary CLA in reducing mammary tumorigenesis.

  9. Phorbol ester attenuates the KCl-induced increase in (Ca/sup 2 +/) and inhibits spontaneous sarcoplasmic reticulum Ca/sup 2 +/ release, in rat cardiac myocytes

    SciTech Connect

    Hansford, R.G.; Capogrossi, M.C.; Kaku, T.; Pelto, D.J.; Filburn, C.H.; Lakatta, E.G.

    1986-03-01

    Partial membrane depolarization induced by increasing the KCl concentration of the medium bathing cardiac myocytes leads to an increase in cell (Ca/sup 2 +/), and accelerates the frequency of spontaneous contractile waves (W) caused by periodic sarcoplasmic reticulum (SR) Ca/sup 2 +/ release. In suspensions of myocytes bathed in 1.0mM Ca/sup 2 +/ at 37 (pH 7.4) and loaded with the fluorescent Ca/sup 2 +/ - indicator Fura-2, by incubation with 2 ..mu..M acetoxymethyl ester for 30 min, the addition of KCl to raise (K/sup +/) from 5 to 30 mM is associated with a rapid (< 10 sec) increase in fluorescence, corresponding to an increased cell (Ca/sup 2 +/). Prior exposure (3 min) to 10/sup -7/ M phorbol myristate acetate (PMA) diminishes this response to 44 +/- 10% of that in control suspensions (n = 9). Under the same conditions W frequency (min/sup -1/) in individual cells in 30 mM KCl averaged 8.3 +/- 0.6. Addition of PMA abolished W within 1 min. Diacylglycerol (10 ..mu..M L..cap alpha..-1,2-dioctanoylglycerol, di C8) had a similar effect on W frequency. The thesis is that PMA attenuates cell Ca/sup 2 +/ overload and its associated potentiation of spontaneous SR Ca/sup 2 +/ oscillations. In view of the efficacy of PMA and di C8, it is suggested that the effect is mediated by protein kinase c, and it may involve an alteration in the intracellular distribution of this enzyme.

  10. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    PubMed

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  11. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    SciTech Connect

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  12. Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases Spontaneous Calcium Signaling in Astrocytic Processes

    PubMed Central

    O'Donnell, John C.; Jackson, Joshua G.

    2016-01-01

    Recently, mitochondria have been localized to astrocytic processes where they shape Ca2+ signaling; this relationship has not been examined in models of ischemia/reperfusion. We biolistically transfected astrocytes in rat hippocampal slice cultures to facilitate fluorescent confocal microscopy, and subjected these slices to transient oxygen/glucose deprivation (OGD) that causes delayed excitotoxic death of CA1 pyramidal neurons. This insult caused a delayed loss of mitochondria from astrocytic processes and increased colocalization of mitochondria with the autophagosome marker LC3B. The losses of neurons in area CA1 and mitochondria in astrocytic processes were blocked by ionotropic glutamate receptor (iGluR) antagonists, tetrodotoxin, ziconotide (Ca2+ channel blocker), two inhibitors of reversed Na+/Ca2+ exchange (KB-R7943, YM-244769), or two inhibitors of calcineurin (cyclosporin-A, FK506). The effects of OGD were mimicked by NMDA. The glutamate uptake inhibitor (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartate increased neuronal loss after OGD or NMDA, and blocked the loss of astrocytic mitochondria. Exogenous glutamate in the presence of iGluR antagonists caused a loss of mitochondria without a decrease in neurons in area CA1. Using the genetic Ca2+ indicator Lck-GCaMP-6S, we observed two types of Ca2+ signals: (1) in the cytoplasm surrounding mitochondria (mitochondrially centered) and (2) traversing the space between mitochondria (extramitochondrial). The spatial spread, kinetics, and frequency of these events were different. The amplitude of both types was doubled and the spread of both types changed by ∼2-fold 24 h after OGD. Together, these data suggest that pathologic activation of glutamate transport and increased astrocytic Ca2+ through reversed Na+/Ca2+ exchange triggers mitochondrial loss and dramatic increases in Ca2+ signaling in astrocytic processes. SIGNIFICANCE STATEMENT Astrocytes, the most abundant cell type in the

  13. Ocean acidification increases fatty acids levels of larval fish.

    PubMed

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs.

  14. Ocean acidification increases fatty acids levels of larval fish

    PubMed Central

    Díaz-Gil, Carlos; Catalán, Ignacio A.; Palmer, Miquel; Faulk, Cynthia K.; Fuiman, Lee A.

    2015-01-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. PMID:26179801

  15. Adipic acid increases plasma lysine but does not improve the efficiency of lysine utilization in swine.

    PubMed

    van Kempen, T A; van Heugten, E; Trottier, N L

    2001-09-01

    Adipic acid, upon catabolism, results in intermediates that bear a structural similarity to lysine degradation products. The objectives of this research were to determine whether adipic acid affects lysine concentrations in plasma and to evaluate whether adipic acid improves the efficiency of lysine utilization in pigs. In Exp. 1, nursery pigs (n = 14) were fed (for a period of 7 d) either a standard nursery diet or the same diet supplemented with 1% adipic acid to assess effects on plasma amino acid concentrations (plasma collected on d 7). In Exp. 2, nursery pigs (n = 56) were fed (for a period of 15 d) either a control diet or the same diet but deficient in either lysine, threonine, or tryptophan with or without supplemental adipic acid to assess the effects of adipic acid on the efficiency of amino acid utilization. The results from Exp. 1 showed that adipic acid increased plasma lysine (by 18%) but not alpha-amino adipic acid, an intermediate in lysine degradation. Experiment 2 demonstrated that adipic acid did not increase the efficiency of utilization of lysine, threonine, or tryptophan. The lack of effects on alpha-amino adipic acid in Exp. 1 and the lack of a positive effect on the efficiency of utilization of lysine, threonine, and tryptophan suggest that adipic acid does not inhibit the mitochondrial uptake of lysine and(or) its degradation in the mitochondrion. It is concluded that feeding adipic acid increases plasma lysine but does not improve the efficiency of lysine utilization.

  16. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  17. Spontaneous bacteriocin resistance in Listeria monocytogenes as a susceptibility screen for identifying different mechanisms of resistance and modes of action by bacteriocins of lactic acid bacteria.

    PubMed

    Macwana, Sunita; Muriana, Peter M

    2012-01-01

    A practical system was devised for grouping bacteriocins of lactic acid bacteria (LAB) based on mode of action as determined by changes in inhibitory activity to spontaneously-acquired bacteriocin resistance (Bac(R)). Wild type Listeria monocytogenes 39-2 was sensitive to five bacteriocins produced by 3 genera of LAB: pediocin PA-1 and pediocin Bac3 (Pediococcus), lacticin FS97 and lacticin FS56 (Lactococcus), and curvaticin FS47 (Lactobacillus). A spontaneous Bac(R) derivative of L. monocytogenes 39-2 obtained by selective recovery against lacticin FS56 provided complete resistance to the bacteriocin made by Lactococcus lactis FS56. The lacticin FS56-resistant strain of L. monocyotgenes 39-2 was also cross-resistant to curvaticin FS47 and pediocin PA-1, but not to lacticin FS97 or pediocin Bac3. The same pattern of cross-resistance was also observed with Bac(R) isolates obtained with L. monocytogenes Scott A-2. A spontaneous mutation that renders a strain cross-resistant to different bacteriocins indicates that they share a common mechanism of resistance due to similar modes of action of the bacteriocins. Spontaneous resistance was acquired to other bacteriocins (in aggregate) by following the same procedure against which the Bac(R) strain was still sensitive. In subsequent challenge assays, mixtures of bacteriocins of different modes of action provided greater inhibition than mixtures of bacteriocins of the same mode of action (as determined by our screening method). This study identifies a methodical approach to classify bacteriocins into functional groups based on mechanism of resistance (i.e., mode of action) that could be used for identifying the best mixture of bacteriocins for use as biopreservatives.

  18. Increased universality of Lepidopteran elicitor compounds across insects: Identification of fatty acid amino acid conjugates (FACs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amino acid conjugates (FACs) are known elicitors of induced release of volatile compounds in plants that, in turn, attract foraging parasitoids. Since the discovery of volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] in the regurgitant of larval Spodoptera exigua1, a series of related FAC...

  19. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  20. Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings.

    PubMed

    Kummer, Kai K; El Rawas, Rana; Kress, Michaela; Saria, Alois; Zernig, Gerald

    2015-01-01

    Both cocaine and social interaction place preference conditioning lead to increased neuronal expression of the immediate early gene EGR1 in the nucleus accumbens, a central region of the reward pathway, suggesting that both drug and natural rewards may be processed in similar brain regions. In order to gain novel insights into the intrinsic in vitro electrical activity of the nucleus accumbens and adjacent brain regions and to explore the effects of reward conditioning on network activity, we performed multielectrode array recordings of spontaneous firing in acute brain slices of mice conditioned to either cocaine or social interaction place preference. Cocaine conditioning increased the spike frequency of neurons in the septal nuclei, whereas social interaction conditioning increased the spike frequency in the nucleus accumbens compared to saline control animals. In addition, social interaction conditioning decreased the amount of active neuron clusters in the nucleus accumbens. Our findings suggest that place preference conditioning for both drug and natural rewards may induce persistent changes in neuronal network activity in the nucleus accumbens and the septum that are still preserved in acute slice preparations.

  1. Effects of Increased Free Fatty Acid Availability on Adipose Tissue Fatty Acid Storage in Men

    PubMed Central

    Mundi, Manpreet S.; Koutsari, Chistina

    2014-01-01

    Context: A portion of free fatty acids (FFA) released from adipose tissue lipolysis are re-stored in adipocytes via direct uptake. Rates of direct adipose tissue FFA storage are much greater in women than men, but women also have greater systemic FFA flux and more body fat. Objective: We tested the hypotheses that experimental increases in FFA in men would equalize the rates of direct adipose tissue FFA storage in men and women. Design: We used a lipid emulsion infusion to raise FFA in men to levels seen in post-absorptive women. Direct FFA storage (μmol·kg fat−1·min−1) rates in abdominal and femoral fat was assessed using stable isotope tracer infusions to measure FFA disappearance rates and an iv FFA radiotracer bolus/timed biopsy. Setting: These studies were performed in a Clinical Research Center. Participants: Data from 13 non-obese women was compared with that from eight obese and eight non-obese men. Intervention: The men received a lipid emulsion infusion to raise FFA. Main Outcome Measures: We measured the rates of direct FFA storage in abdominal and femoral adipose tissue. Results: The three groups were similar in age and FFA flux by design; obese men had similar body fat percentage as non-obese women. Despite matching for FFA concentrations and flux, FFA storage per kg abdominal (P < .01) and femoral (P < .001) fat was less in both lean and obese men than in non-obese women. Abdominal FFA storage rates were correlated with proteins/enzymes in the FFA uptake/triglyceride synthesis pathway in men. Conclusion: The lesser rates of direct FFA adipose tissue in men compared with women cannot be explained by reduced FFA availability. PMID:25192251

  2. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation.

  3. Phosphorus limitation strategy to increase propionic acid flux towards 3-hydroxyvaleric acid monomers in Cupriavidus necator.

    PubMed

    Grousseau, Estelle; Blanchet, Elise; Déléris, Stéphane; Albuquerque, Maria G E; Paul, Etienne; Uribelarrea, Jean-Louis

    2014-02-01

    Properties of polyhydroxybutyrate-co-hydroxyvalerate (P(3HB-co-3HV)) depend on their 3HV content. 3HV can be produced by Cupriavidus necator from propionic acid. Few studies explored carbon distribution and dynamics of 3HV and 3HB monomers production, and none of them have been done with phosphorus as limiting nutrient. In this study, fed-batch cultures of C. necator with propionic acid, as sole carbon source or mixed with butyric acid, were performed. Phosphorus deficiency allowed sustaining 3HV production rate and decreasing 3HB production rate, leading to an instant production of up to 100% of 3HV. When a residual growth is sustained by a phosphorus feeding, the maximum 3HV percentage produced from propionic acid is limited to 33% (Mole.Mole(-1)). The association of a second carbon source like butyric acid lead to higher conversion of propionic acid into 3HV. This study showed the importance of the limiting nutrient and of the culture strategy to get the appropriate product.

  4. Increased apoptosis rate of human decidual cells and cytotrophoblasts in patients with recurrent spontaneous abortion as a result of abnormal expression of CDKN1A and Bax

    PubMed Central

    Lv, Xiaomei; Cai, Zhenhong; Li, Su

    2016-01-01

    In the present study, we analyzed the proliferation and apoptosis of trophoblasts and human decidual cells in patients with recurrent spontaneous abortion and the related cellular pathway mechanism. Thirty-four patients with recurrent abortion and 30 healthy pregnant women undergoing planned artificial abortion were selected. The trophoblast and decidual cells were collected by negative pressure aspiration technique. TUNEL method was used to detect the apoptosis rate. Immunohistochemical method was used for detection of TP53 protein. Quantitative real-time PCR was used for detection of the relative expression level of CDKN1A and Bax mRNA. It was found that the cell apoptosis rate in the recurrent miscarriage group was significantly increased and the expression levels of TP53 protein, CDKN1A and Bax mRNA were also significantly increased (p<0.05). In conclusion, the trophoblast and decidual cells of patients with recurrent abortion were obviously apoptotic, which was probably related to abnormal expression of the CDKN1A and Bax genes mediated by TP53 protein through cellular pathways. PMID:27882087

  5. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes.

    PubMed

    Candon, Sophie; Perez-Arroyo, Alicia; Marquet, Cindy; Valette, Fabrice; Foray, Anne-Perrine; Pelletier, Benjamin; Milani, Christian; Milani, Cristian; Ventura, Marco; Bach, Jean-François; Chatenoud, Lucienne

    2015-01-01

    Insulin-dependent or type 1 diabetes is a prototypic autoimmune disease whose incidence steadily increased over the past decades in industrialized countries. Recent evidence suggests the importance of the gut microbiota to explain this trend. Here, non-obese diabetic (NOD) mice that spontaneously develop autoimmune type 1 diabetes were treated with different antibiotics to explore the influence of a targeted intestinal dysbiosis in the progression of the disease. A mixture of wide spectrum antibiotics (i.e. streptomycin, colistin and ampicillin) or vancomycin alone were administered orally from the moment of conception, treating breeding pairs, and during the postnatal and adult life until the end of follow-up at 40 weeks. Diabetes incidence significantly and similarly increased in male mice following treatment with these two antibiotic regimens. In NOD females a slight yet not significant trend towards an increase in disease incidence was observed. Changes in gut microbiota composition were assessed by sequencing the V3 region of bacterial 16S rRNA genes. Administration of the antibiotic mixture resulted in near complete ablation of the gut microbiota. Vancomycin treatment led to increased Escherichia, Lactobacillus and Sutterella genera and decreased members of the Clostridiales order and Lachnospiraceae, Prevotellaceae and Rikenellaceae families, as compared to control mice. Massive elimination of IL-17-producing cells, both CD4+TCRαβ+ and TCRγδ+ T cells was observed in the lamina propria of the ileum and the colon of vancomycin-treated mice. These results show that a directed even partial ablation of the gut microbiota, as induced by vancomycin, significantly increases type 1 diabetes incidence in male NOD mice thus prompting for caution in the use of antibiotics in pregnant women and newborns.

  6. Neutrophils and neutrophil serine proteases are increased in the spleens of estrogen-treated C57BL/6 mice and several strains of spontaneous lupus-prone mice

    PubMed Central

    Dai, Rujuan; Cowan, Catharine; Heid, Bettina; Khan, Deena; Liang, Zhihong; Pham, Christine T. N.; Ahmed, S. Ansar

    2017-01-01

    Estrogen, a natural immunomodulator, regulates the development and function of diverse immune cell types. There is now renewed attention on neutrophils and neutrophil serine proteases (NSPs) such as neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (CG) in inflammation and autoimmunity. In this study, we found that although estrogen treatment significantly reduced total splenocytes number, it markedly increased the splenic neutrophil absolute numbers in estrogen-treated C57BL/6 (B6) mice when compared to placebo controls. Concomitantly, the levels of NSPs and myeloperoxidase (MPO) were highly upregulated in the splenocytes from estrogen-treated mice. Despite the critical role of NSPs in the regulation of non-infectious inflammation, by employing NE-/-/PR3-/-/CG-/- triple knock out mice, we demonstrated that the absence of NSPs affected neither estrogen’s ability to increase splenic neutrophils nor the induction of inflammatory mediators (IFNγ, IL-1β, IL-6, TNFα, MCP-1, and NO) from ex vivo activated splenocytes. Depletion of neutrophils in vitro in splenocytes with anti-Ly6G antibody also had no obvious effect on NSP expression or LPS-induced IFNγ and MCP-1. These data suggest that estrogen augments NSPs, which appears to be independent of enhancing ex vivo inflammatory responses. Since estrogen has been implicated in regulating several experimental autoimmune diseases, we extended our observations in estrogen-treated B6 mice to spontaneous autoimmune-prone female MRL-lpr, B6-lpr and NZB/WF1 mice. There was a remarkable commonality with regards to the increase of neutrophils and concomitant increase of NSPs and MPO in the splenic cells of different strains of autoimmune-prone mice and estrogen-treated B6 mice. Collectively, since NSPs and neutrophils are involved in diverse pro-inflammatory activities, these data suggest a potential pathologic implication of increased neutrophils and NSPs that merits further investigation. PMID:28192517

  7. Increase in fruit size of a spontaneous mutant of 'Gala' apple (Malus x domestica Borkh.) is facilitated by altered cell production and enhanced cell size.

    PubMed

    Malladi, Anish; Hirst, Peter M

    2010-06-01

    Fruit size regulation was studied in the apple cultivar 'Gala' and a large fruit size spontaneous mutant of 'Gala', 'Grand Gala' (GG). GG fruits were 15% larger in diameter and 38% heavier than 'Gala' fruits, largely due to an increase in size of the fruit cortex. The mutation in GG altered growth prior to fruit set and during fruit development. Prior to fruit set, the carpel/floral-tube size was enhanced in GG and was associated with higher cell number, larger cell size, and increased ploidy through endoreduplication, an altered form of the cell cycle normally absent in apple. The data suggest that the mutation in GG promotes either cell production or endoreduplication in the carpel/floral-tube cells depending on their competence for division. Ploidy was not altered in GG leaves. During fruit growth, GG fruit cells exited cell production earlier, and with a DNA content of 4C suggesting G2 arrest. Cell size was higher in GG fruits during exit from cell production and at later stages of fruit growth. Final cell diameter in GG fruit cortex cells was 15% higher than that in 'Gala' indicating that enhanced fruit size in GG was facilitated by increased cell size. The normal progression of cell expansion in cells arrested in G2 may account for the increase in cell size. Quantitative RT-PCR analysis indicated higher MdCDKA1 expression and reduced MdCYCA2 expression during early fruit development in GG fruits. Together, the data indicate an important role for cell expansion in regulating apple fruit size.

  8. GABA-A receptor antagonists increase firing, bursting and synchrony of spontaneous activity in neuronal networks grown on microelectrode arrays: a step towards chemical "fingerprinting"

    EPA Science Inventory

    Assessment of effects on spontaneous network activity in neurons grown on MEAs is a proposed method to screen chemicals for potential neurotoxicity. In addition, differential effects on network activity (chemical "fingerprints") could be used to classify chemical modes of action....

  9. Dietary oleic acid increases m2 macrophages in the mesenteric adipose tissue.

    PubMed

    Camell, Christina; Smith, C Wayne

    2013-01-01

    Several studies have implicated fatty-acids as inflammatory regulators, suggesting that there may be a direct role for common dietary fatty-acids in regulating innate immune cells. In humans, a single high-fat meal increases systemic cytokines and leukocytes. In mice, short term high-fat feeding increases adipose tissue (AT) leukocytes and alters the inflammatory profile of AT macrophages. We have seen that short term high fat feeding to C57BL/6J male mice increases palmitic and oleic acid within AT depots, but oleic acid increase is highest in the mesenteric AT (MAT). In vitro, oleic acid increases M2 macrophage markers (CD206, MGL1, and ARG1) in a murine macrophage cell line, while addition of palmitic acid is able to inhibit that increase. Three day supplementation of a chow diet, with oleic acid, induced an increase in M2 macrophage markers in the MAT, but not in the epididymal AT. We tested whether increases in M2 macrophages occur during short term ad lib feeding of a high fat diet, containing oleic acid. Experiments revealed two distinct populations of macrophages were altered by a three day high milk-fat diet. One population, phenotypically intermediate for F4/80, showed diet-induced increases in CD206, an anti-inflammatory marker characteristic of M2 macrophages intrinsic to the AT. Evidence for a second population, phenotypically F4/80(HI)CD11b(HI) macrophages, showed increased association with the MAT following short term feeding that is dependent on the adhesion molecule, ICAM-1. Collectively, we have shown that short term feeding of a high-fat diet changes two population of macrophages, and that dietary oleic acid is responsible for increases in M2 macrophage polarization.

  10. A cupric silver histochemical analysis of domoic acid damage to olfactory pathways following status epilepticus in a rat model for chronic recurrent spontaneous seizures and aggressive behavior.

    PubMed

    Tiedeken, Jessica A; Muha, Noah; Ramsdell, John S

    2013-01-01

    The amnesic shellfish toxin, domoic acid, interferes with glutamatergic pathways leading to neuronal damage, most notably causing memory loss and seizures. In this study, the authors utilized a recently developed rat model for domoic acid-induced epilepsy, an emerging disease appearing in California sea lions weeks to months after poisoning, to identify structural damage that may lead to a permanent epileptic state. Sprague Dawley rats were kindled with several low hourly intraperitoneal doses of domoic acid until a state of status epilepticus (SE) appears. This kindling approach has previously been shown to induce a permanent state of epileptic disease in 96% animals within 6 months. Three animals were selected for neurohistology a week after the initial SE. An amino cupric silver staining method using neutral red counterstain was used on every eighth 40 µm coronal section from each brain to highlight neural degeneration from the olfactory bulb through the brain stem. The most extensive damage was found in the olfactory bulb and related olfactory pathways, including the anterior/medial olfactory cortices, endopiriform nucleus, and entorhinal cortex. These findings indicate that damage to olfactory pathways is prominent in a rat model for domoic acid-induced chronic recurrent spontaneous seizures and aggressive behavior.

  11. Type IV resistant starch increases cecum short chain fatty acids level in rats.

    PubMed

    Le Thanh-Blicharz, Joanna; Anioła, Jacek; Kowalczewski, Przemysław; Przygoński, Krzysztof; Zaborowska, Zofia; Lewandowicz, Grażyna

    2014-01-01

    Resistant starches are type of dietary fibers. However, their physiological effects depend on the way they resist digestion in the gastrointestinal tract. The objective of this study was to examine the hypothesis that new type of RS4 preparations, of in vitro digestibility of about 50%, obtained by cross-linking and acetylation, acts as a prebiotic by increasing short chain fatty acids content in cecum digesta. The rats were fed with diet containing pregelatinized, cross-linked and acetylated starches as a main carbohydrate source. Pregelatinized, but not chemically modified, potato starch was used in the composition of the control diet. After two weeks of experiment the increase of short chain fatty acids contents in ceceum digesta was observed. The intake of starch A, cross-linked only with adipic acid, resulted in increase of about 40% of short chain fatty acids content, whereas starch PA cross-linked with sodium trimetaphosphate and adipic acid of about 50%. The utmost twofold increase was observed in the case of the production of propionic acid. In contrast, the content of butyric acid increased (12%) only as an effect of consumption of starch PA and even decreased (about 30%) in case of starch A. Both RS4 starches caused an increase of the production of acetic acid by more than 40%. No changes in serum biochemistry, liver cholesterol and organ weights of rats were stated.

  12. Increased expression of sialic acid in cervical biopsies with squamous intraepithelial lesions

    PubMed Central

    2010-01-01

    Background Altered sialylation has been observed during oncogenic transformation. Sialylated oligosaccharides of glycoproteins and glycolipids have been implicated in tumor progression and metastases. In the cervical cancer high levels of sialic acid have been reported in the patients serum, and an increased of total sialic acid concentration has been reported for the cervical neoplasia and cervical cancer. This study investigates the changes in expression and distribution of α2,3-linked sialic acid and α2,6- linked sialic acid in low and high squamous intraepithelial lesions and in normal tissue. Methods Lectin histochemistry was used to examine the expression and distribution of sialic acid in different grades of cervical neoplasia. We applied Maackia amurensis lectin, which interacts with α2,3-linked sialic acid and Sambucus nigra lectin specific for α2,6-linked sialic acid. Results The histochemical analysis showed that α2,3-linked sialic acid and α2,6- linked sialic acid increased in intensity and distribution in concordance with the grade of squamous intraepithelial lesion (SIL). These results are in concordance with a previous study that reports increased RNAm levels of three sialyltransferases. Conclusions These results show that the change in sialylation occurs before cancer development and may play an important role in cellular transformation. These findings provide the basis for more detailed studies of the possible role of cell surface glycoconjugates bearing sialic acid in the cellular cervix transformation. PMID:21092209

  13. Oleic acid increases intestinal absorption of the BCRP/ABCG2 substrate, mitoxantrone, in mice.

    PubMed

    Aspenström-Fagerlund, Bitte; Tallkvist, Jonas; Ilbäck, Nils-Gunnar; Glynn, Anders W

    2015-09-02

    The efflux transporter breast cancer resistance protein (BCRP/ABCG2) decrease intestinal absorption of many food toxicants. Oleic acid increases absorption of the specific BCRP substrate mitoxantrone (MXR), and also BCRP gene expression in human intestinal Caco-2 cells, suggesting that oleic acid affect the BCRP function. Here, we investigated the effect of oleic acid on intestinal absorption of MXR in mice. Mice were orally dosed with 2.4g oleic acid/kg b.w. and 1mg MXR/kg b.w., and sacrificed 30, 60, 90 or 120min after exposure, or were exposed to 0.6, 2.4 or 4.8g oleic acid/kg b.w. and 1mg MXR/kg b.w., and sacrificed 90min after exposure. Mice were also treated with Ko143 together with MXR and sacrificed after 60min, as a positive control of BCRP-mediated effects on MXR absorption. Absorption of MXR increased after exposure to oleic acid at all doses, and also after exposure to Ko143. Intestinal BCRP gene expression tended to increase 120min after oleic acid exposure. Our results in mice demonstrate that oleic acid decreases BCRP-mediated efflux, causing increased intestinal MXR absorption in mice. These findings may have implications in humans, concomitantly exposed to oleic acid and food contaminants that, similarly as MXR, are substrates of BCRP.

  14. Maternal separation increases GABA(A) receptor-mediated modulation of norepinephrine release in the hippocampus of a rat model of ADHD, the spontaneously hypertensive rat.

    PubMed

    Sterley, Toni-Lee; Howells, Fleur M; Russell, Vivienne A

    2013-02-25

    Experiencing early life stress increases the risk of developing a psychiatric disorder later in life, possibly by altering neural networks, such as the locus-coeruleus norepinephrine (LC-NE) system. Whether early life stress affects the LC-NE system directly, or whether the effects are via changes in glutamate and GABA modulation of the LC-NE system, is unclear. Early life stress has been shown to alter glutamate and GABA transmission, and in particular, to alter GABA(A) receptor expression. The LC-NE system has been implicated in attention-deficit/hyperactivity disorder (ADHD), amongst other disorders, and is over-responsive to glutamate stimulation in a validated rat model of ADHD, the spontaneously hypertensive rat (SHR). It is plausible that the LC-NE system, or glutamate and GABA modulation thereof, in an individual already genetically predisposed to develop ADHD, or in SHR, may respond in a unique way to early life stress. To investigate this we applied a mild developmental stressor, maternal separation, onto SHR, and onto their control strain, Wistar-Kyoto rats (WKY), from post-natal day (P)2-14. On P50-52, in early adulthood, we assayed glutamate and potassium stimulated release of radio-actively labelled NE ((3)[H]NE) from hippocampal slices using an in vitro superfusion technique, in the presence or absence of a GABA(A) receptor antagonist, bicuculline. Our results show that maternal separation altered GABA(A) receptor-mediated modulation of NE release in the hippocampus of the two strains in opposite directions, increasing it in SHR and decreasing it in WKY. Our findings indicate that effects of early life stress are highly dependent on genetic predisposition, since opposite changes in GABA(A) receptor-mediated modulation of NE release were observed in the rat model of ADHD, SHR, and their control strain, WKY.

  15. Patterned poly(lactic acid) films support growth and spontaneous multilineage gene expression of adipose-derived stem cells.

    PubMed

    Foldberg, Steffan; Petersen, Morten; Fojan, Peter; Gurevich, Leonid; Fink, Trine; Pennisi, Cristian P; Zachar, Vladimir

    2012-05-01

    Conventional culture surfaces do not provide optimal environmental cues for expansion or differentiation of adult stem cells. Aiming to increase the efficiency of the in vitro culture conditions, biocompatible and biodegradable biomaterials such as poly(lactic acid) (PLA) have been proposed to engineer the stem cell microenvironment. In this study, we explored the feasibility of using PLA substrates to control the responses of adipose-derived stem cells (ASCs). The substrates consisted of flat and patterned PLA films fabricated by casting a chloroform-PLA solution on a glass surface. Patterning was achieved through the condensation of nano-sized water droplets during chloroform evaporation, which resulted in films displaying irregularly distributed circular indentations with a mean diameter of 248±65 nm. Both types of PLA substrates were assessed for protein adsorption using fibronectin and in vitro cell culturing. Tissue-culture polystyrene (TCPS) plates were used as control surfaces. The experiments demonstrated that the patterned PLA substrates had a significantly higher fibronectin adsorption capacity when compared with the flat counterparts. For the entire duration of the culture period, there was no significant difference in cell growth rate on the PLA surfaces with respect to TCPS despite signs of reduced adhesion. In addition, the semi-quantitative real-time RT-PCR analysis of a set of 14 lineage-specific genes revealed that the PLA-related transcriptional activity significantly surpassed that of TCPS. Remarkably, when assessing the effect of patterning, the patterned films proved superior regarding the activation of genes involved in the skeletal myogenic, cardiomyogenic, chondrogenic, and adipogenic pathways. Taken together, our data provide evidence that the surface patterning can exert such an influence on the stem cell microenvironment that the differentiation process can be effectively modulated. Consequently, the patterned PLA surfaces could

  16. Acute supplementation of amino acids increases net protein accretion in IUGR fetal sheep.

    PubMed

    Brown, Laura D; Rozance, Paul J; Thorn, Stephanie R; Friedman, Jacob E; Hay, William W

    2012-08-01

    Placental insufficiency decreases fetal amino acid uptake from the placenta, plasma insulin concentrations, and protein accretion, thus compromising normal fetal growth trajectory. We tested whether acute supplementation of amino acids or insulin into the fetus with intrauterine growth restriction (IUGR) would increase net fetal protein accretion rates. Late-gestation IUGR and control (CON) fetal sheep received acute, 3-h infusions of amino acids (with euinsulinemia), insulin (with euglycemia and euaminoacidemia), or saline. Fetal leucine metabolism was measured under steady-state conditions followed by a fetal muscle biopsy to quantify insulin signaling. In CON, increasing amino acid delivery rates to the fetus by 100% increased leucine oxidation rates by 100%. In IUGR, amino acid infusion completely suppressed fetal protein breakdown rates but increased leucine oxidation rate by only 25%, resulting in increased protein accretion rates by 150%. Acute insulin infusion, however, had very little effect on amino acid delivery rates, fetal leucine disposal rates, or fetal protein accretion rates in CON or IUGR fetuses despite robust signaling of the fetal skeletal muscle insulin-signaling cascade. These results indicate that, when amino acids are given directly into the fetal circulation independently of changes in insulin concentrations, IUGR fetal sheep have suppressed protein breakdown rates, thus increasing net fetal protein accretion.

  17. Dietary oleic acid increases M2 macrophages in the mesenteric adipose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have implicated fatty-acids as inflammatory regulators, suggesting that there may be a direct role for common dietary fatty-acids in regulating innate immune cells. In humans, a single high-fat meal increases systemic cytokines and leukocytes. In mice, short term high-fat feeding in...

  18. Staple Line Coverage with a Polyglycolic Acid Patch and Fibrin Glue without Pleural Abrasion after Thoracoscopic Bullectomy for Primary Spontaneous Pneumothorax

    PubMed Central

    Hong, Ki Pyo; Kim, Do Kyun; Kang, Kyung Hoon

    2016-01-01

    Background This study was conducted to determine the efficacy of staple line coverage using a polyglycolic acid patch and fibrin glue without pleural abrasion to prevent recurrent postoperative pneumothorax. Methods A retrospective analysis was carried out of 116 operations performed between January 2011 and April 2013. During this period, staple lines were covered with a polyglycolic acid patch and fibrin glue in 58 cases (group A), while 58 cases underwent thoracoscopic bullectomy only (group B). Results The median follow-up period was 33 months (range, 22 to 55 months). The duration of chest tube drainage was shorter in group A (group A 2.7±1.2 day vs. group B 3.9±2.3 day, p=0.001). Prolonged postoperative air leakage occurred more frequently in group B than in group A (43% vs. 19%, p=0.005). The postoperative recurrence rate of pneumothorax was significantly lower in group A (8.6%) than in group B (24.1%) (p=0.043). The total cost of treatment during the follow-up period, including the cost for the treatment of postoperative recurrent pneumothorax, was not significantly different between the two groups (p=0.43). Conclusion Without pleural abrasion, staple line coverage with a medium-sized polyglycolic acid patch and fibrin glue after thoracoscopic bullectomy for primary spontaneous pneumothorax is a useful technique that can reduce the duration of postoperative pleural drainage and the postoperative recurrence rate of pneumothorax. PMID:27066431

  19. Valproic Acid Increases the Hepatic Differentiation Potential of Salivary Gland Cells

    PubMed Central

    Petrakova, O. S.; Ashapkin, V. V.; Shtratnikova, V. Y.; Kutueva, L. I.; Vorotelyak, E. A.; Borisov, M. A.; Terskikh, V. V.; Gvazava, I. G.; Vasiliev, A. V.

    2015-01-01

    The studies of cell plasticity and differentiation abilities are important problems in modern cellular biology. The use of histone deacetylase inhibitor - valproic acid is a promising approach to increasing the differentiation efficiency of various cell types. In this paper we investigate the ability of mouse submandibular salivary gland cells to differentiate into the hepatic direction and the effect of valproic acid on the efficiency of this differentiation. It was shown that the gene expression levels of hepatocyte markers (Aat, Afp, G6p, Pepck, Tat, Cyp3a13) and liver-enriched transcription factors (Hnf-3α, Hnf-3β, Hnf-4α, Hnf-6) were increased after differentiation in salivary gland cells. Valproic acid increases the specificity of hepatic differentiation, reducing the expression levels of the ductal (Krt19, Hhex1, Cyp7a1) and acinar (Ptf1a) markers. After valproic acid exposure, the efficiency of hepatic differentiation also increases, as evidenced by the increase in the gene expression level of Alb and Tdo, and increase in urea production by differentiated cells. No change was found in DNA methylation of the promoter regions of the genes; however, valproic acid treatment and subsequent hepatic differentiation largely affected the histone H3 methylation of liver-enriched genes. Thus, mouse submandibular salivary gland cells are capable of effective differentiation in the hepatic direction. Valproic acid increases the specificity and efficiency of the hepatic differentiation of these cells. PMID:26798494

  20. Fusion between cancer cells and macrophages occurs in a murine model of spontaneous neu+ breast cancer without increasing its metastatic potential

    PubMed Central

    Lizier, Michela; Anselmo, Achille; Mantero, Stefano; Ficara, Francesca; Paulis, Marianna; Vezzoni, Paolo; Lucchini, Franco; Pacchiana, Giovanni

    2016-01-01

    Cell fusion between neoplastic and normal cells has been suggested to play a role in the acquisition of a malignant phenotype. Several studies have pointed to the macrophage as the normal partner in this fusion, suggesting that the fused cells could acquire new invasive properties and become able to disseminate to distant organs. However, this conclusion is mainly based on studies with transplantable cell lines. We tested the occurrence of cell fusion in the MMTV-neu model of mouse mammary carcinoma. In the first approach, we generated aggregation chimeras between GFP/neu and RFP/neu embryos. Tumor cells would display both fluorescent proteins only if cell fusion with normal cells occurred. In addition, if cell fusion conferred a growth/dissemination advantage, cells with both markers should be detectable in lung metastases at increased frequency. We confirmed that fused cells are present at low but consistent levels in primary neoplasms and that the macrophage is the normal partner in the fusion events. Similar results were obtained using a second approach in which bone marrow from mice carrying the Cre transgene was transplanted into MMTV-neu/LoxP-tdTomato transgenic animals, in which the Tomato gene is activated only in the presence of CRE recombinase. However, no fused cells were detected in lung metastases in either model. We conclude that fusion between macrophages and tumor cells does not confer a selective advantage in our spontaneous model of breast cancer, although these data do not rule out a possible role in models in which an inflammation environment is prominent. PMID:27563823

  1. Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability.

    PubMed

    Thavarajah, Pushparajah; Thavarajah, Dil; Vandenberg, Albert

    2009-10-14

    Phytic acid is an antinutrient present mainly in seeds of grain crops such as legumes and cereals. It has the potential to bind mineral micronutrients in food and reduce their bioavailability. This study analyzed the phytic acid concentration in seeds of 19 lentil ( Lens culinaris L.) genotypes grown at two locations for two years in Saskatchewan, Canada. The objectives of this study were to determine (1) the levels of phytic acid in commercial lentil genotypes and (2) the impact of postharvest processing and (3) the effect of boiling on the stability of phytic aid in selected lentil genotypes. The phytic acid was analyzed by high-performance anion exchange separation followed by conductivity detection. The Saskatchewan-grown lentils were naturally low in phytic acid (phytic acid = 2.5-4.4 mg g(-1); phytic acid phosphorus = 0.7-1.2 mg g(-1)), with concentrations lower than those reported for low phytic acid mutants of corn, wheat, common bean, and soybean. Decortication prior to cooking further reduced total phytic acid by >50%. As lowering phytic acid intake can lead to increased mineral bioavailability, dietary inclusion of Canadian lentils may have significant benefits in regions with widespread micronutrient malnutrition.

  2. Spontaneous bilateral tubal pregnancy.

    PubMed

    Wali, Aisha Syed; Khan, Rozilla Sadia

    2012-02-01

    With the increase in incidence of ectopic pregnancy over the decades, bilateral ectopic pregnancy is also increasing. It is usually associated with assisted reproductive techniques (ART) but in recent years few cases of spontaneous bilateral ectopic pregnancy have been reported. Gynaecologists should be aware of this and that ultrasonography has limitations in diagnosis. In cases of ectopic pregnancy where contralateral adnexa is not clearly identified on ultrasound and fertility needs to be conserved, patient should be managed by experts in well equipped centres. A case of spontaneous bilateral tubal pregnancy that remained undiagnosed till laparotomy, is described.

  3. Forage breeding and management to increase the beneficial fatty acid content of ruminant products.

    PubMed

    Dewhurst, R J; Scollan, N D; Lee, M R F; Ougham, H J; Humphreys, M O

    2003-05-01

    The declining consumption of ruminant products has been partly associated with their high proportion (but not necessarily content) of saturated fatty acids. Recent studies have focused on the less prominent fact that they are also important sources of beneficial fatty acids, including n-3 fatty acids and conjugated linoleic acids. alpha-Linolenic acid (18 : 3n-3) is of particular interest because it also contributes to improved flavour of beef and lamb. Many recent studies showed large effects of special concentrates on levels of fatty acids in milk and meat. However, the 'rumen protection' treatments, needed to ensure a worthwhile level of fatty acid in products, are expensive. Herbage lipids are the cheapest and safest source of these fatty acids and so breeding to increase delivery of fatty acids from plants into ruminant products is an important long-term strategy. Plant lipids usually contain high levels of polyunsaturated fatty acids, particularly 18 : 2n-6 and 18 : 3n-3 which are the precursors of beneficial fatty acids. Whilst some plants are particularly rich in individual fatty acids (e.g. 18 : 3n-3 in linseed), there are also useful levels in grass and clover (Trifolium Spp.). Levels of fatty acids in forages in relation to species and varieties are considered, as well as management and conservation methods. Relationships between levels of fatty acids and existing traits and genetic markers are identified. The effects of forage treatments on the fatty acid content of ruminant products are reviewed. The higher levels of polyunsaturated fatty acids in milk from cows fed clover silages show that the level of fatty acids in herbage is not the only factor affecting levels of fatty acids in ruminant products. Further effort is needed to characterise susceptibility of unsaturated fatty acids to oxidative loss during field wilting and biohydrogenation losses in the rumen, and the relative importance of plant and microbial processes in these losses. The pathways

  4. Increased beta-aminoisobutyric acid in rat liver with 6-azauracil and its enantiomer.

    PubMed

    Tamaki, N; Fujimoto, S; Mizutani, N; Mizota, C

    1985-10-21

    When 6-azauracil was subcutaneously injected, beta-aminoisobutyric acid and beta-alanine contents were increased 22 and 61-fold, respectively, in rat liver. Incorporation of [methyl-14C]thymine into beta-aminoisobutyric acid was increased to 42-fold by 6-azauracil treatment. The absolute configuration of this amino acid was proved to be the (R)-form by means of a gas-chromatographic technique. 6-Azauracil inhibited beta-alanine-pyruvate aminotransferase activity with an I50 of approx. 2.5 mM.

  5. Prednisone lowers serum uric acid levels in patients with decompensated heart failure by increasing renal uric acid clearance.

    PubMed

    Liu, Chao; Zhen, Yuzhi; Zhao, Qingzhen; Zhai, Jian-Long; Liu, Kunshen; Zhang, Jian-Xin

    2016-07-01

    Clinical studies have shown that large doses of prednisone could lower serum uric acid (SUA) in patients with decompensated heart failure (HF); however, the optimal dose of prednisone and underlying mechanisms are unknown. Thirty-eight patients with decompensated HF were randomized to receive standard HF care alone (n = 10) or with low-dose (15 mg/day, n = 8), medium-dose (30 mg/day, n = 10), or high-dose prednisone (60 mg/day, n = 10), for 10 days. At the end of the study, only high-dose prednisone significantly reduced SUA, whereas low- and medium-dose prednisone and standard HF care had no effect on SUA. The reduction in SUA in high-dose prednisone groups was associated with a significant increase in renal uric acid clearance. In conclusion, prednisone can reduce SUA levels by increasing renal uric acid clearance in patients with decompensated HF.

  6. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli

    PubMed Central

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M.; Baerga-Ortiz, Abel

    2014-01-01

    Increasing the production of fatty acids by microbial fermentation remains an important step towards the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations towards accessible biodiesel precursors. PMID:24411456

  7. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    PubMed

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-05

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors.

  8. Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination.

    PubMed

    Cai, Yun; Zhang, Zhenhua; Jiang, Shanshan; Yu, Miao; Huang, Caihuan; Qiu, Ruixia; Zou, Yueyu; Zhang, Qirui; Ou, Shiyi; Zhou, Hua; Wang, Yong; Bai, Weibing; Li, Yiqun

    2014-03-15

    This research was aimed to investigate why chlorogenic acid, presents at high concentrations in some food raw material, influences acrylamide formation. In the asparagine/glucose Maillard reaction system (pH=6.8), addition of chlorogenic acid significantly increased acrylamide formation and inhibited its elimination. In contrast, the quinone derivative of chlorogenic acid decreased acrylamide formation. Three mechanisms may be involved for increasing acrylamide formation by chlorogenic acid. Firstly, it increased the formation of HMF, which acts as a more efficient precursor than glucose to form acrylamide. Secondly, it decreased activation energy for conversion of 3-aminopropionamide (3-APA) to acrylamide (from 173.2 to 136.6kJ/mol), and enhances deamination from 3-APA. And thirdly, it prevented attack of the produced acrylamide from free radicals by keeping high redox potential during the Maillard reaction.

  9. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice

    SciTech Connect

    Fu, Zidong Donna; Klaassen, Curtis D.

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. - Highlights: • Dose response effects of short-term CR on BA homeostasis in male mice. • CR increased the BA pool size and many individual BAs. • CR altered BA composition (increased proportion of 12α-hydroxylated BAs). • Increased mRNAs of BA enzymes in liver (Cyp7a1 and BAL) and ileal BA binding protein.

  10. Chemical Changes Associated with Increased Acid Resistance of Er:YAG Laser Irradiated Enamel

    PubMed Central

    Olea-Mejía, Oscar Fernando; García-Fabila, María Magdalena; Rodríguez-Vilchis, Laura Emma; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2014-01-01

    Background. An increase in the acid resistance of dental enamel, as well as morphological and structural changes produced by Er:YAG laser irradiation, has been reported. Purpose. To evaluate the chemical changes associated with acid resistance of enamel treated with Er:YAG laser. Methods. Forty-eight enamel samples were divided into 4 groups (n = 12). Group I (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2), 200 mJ (25.5 J/cm2), and 300 mJ (38.2 J/cm2), respectively. Results. There were significant differences in composition of irradiated groups (with the exception of chlorine) and in the amount of calcium released. Conclusions. Chemical changes associated with an increase in acid resistance of enamel treated with Er:YAG laser showed a clear postirradiation pattern characterized by a decrease in C at.% and an increase in O, P, and Ca at.% and no changes in Cl at.%. An increased Ca/P ratio after Er:YAG laser irradiation was associated with the use of higher laser energy densities. Chemical changes produced by acid dissolution showed a similar trend among experimental groups. Stable or increased Ca/P ratio after acid dissolution was observed in the irradiated groups, with reduction of Ca released into the acid solution. PMID:24600327

  11. Malic acid or orthophosphoric acid-heat treatments for protecting sunflower (Helianthus annuus) meal proteins against ruminal degradation and increasing intestinal amino acid supply.

    PubMed

    Arroyo, J M; González, J; Ouarti, M; Silván, J M; Ruiz del Castillo, M L; de la Peña Moreno, F

    2013-02-01

    The protection of sunflower meal (SFM) proteins by treatments with solutions of malic acid (1 M) or orthophosphoric acid (0.67 M) and heat was studied in a 3 × 3 Latin-square design using three diets and three rumen and duodenum cannulated wethers. Acid solutions were applied to SFM at a rate of 400 ml/kg under continuous mixing. Subsequently, treated meals were dried in an oven at 150°C for 6 h. Diets (ingested at 75 g/kg BW0.75) were isoproteic and included 40% Italian ryegrass hay and 60% concentrate. The ratio of untreated to treated SFM in the concentrate was 100 : 0 in the control diet and around 40 : 60 in diets including acid-treated meals. The use of acid-treated meals did not alter either ruminal fermentation or composition of rumen contents and led to moderate reductions of the rumen outflow rates of untreated SFM particles, whereas it did not affect their comminution and mixing rate. In situ effective estimates of by-pass (BP) and its intestinal effective digestibility (IED) of dry matter (DM), CP and amino acids (AAs) were obtained considering both rates and correcting the particle microbial contamination in the rumen using 15N infusion techniques. Estimates of BP and IED decreased applying microbial correction, but these variations were low in agreement with the small contamination level. Protective treatments increased on average the BP of DM (48.5%) and CP (267%), mainly decreasing both the soluble fraction and the degradation rate but also increasing the undegradable fraction, which was higher using orthophosphoric acid. Protective treatments increased the IED of DM (108%) and CP, but this increase was lower using orthophosphoric acid (11.8%) than malic acid (20.7%). Concentrations of AA were similar among all meals, except for a reduction in lysine concentrations using malic acid (16.3%) or orthophosphoric acid (20.5%). Protective treatments also increased on average the BP of all AA, as well as the IED of most of them. Evidence of higher

  12. Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH

    PubMed Central

    Vrabl, Pamela; Fuchs, Viktoria; Pichler, Barbara; Schinagl, Christoph W.; Burgstaller, Wolfgang

    2012-01-01

    Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH. We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions, or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi. In this study we explored this hypothesis using ammonium-limited chemostat cultivations (pH 2–7), and ammonium or phosphate-limited bioreactor batch cultivations (pH 5 and 7). Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids. Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation, and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e., overflow metabolism, charge balance, and aggressive acidification hypothesis. PMID:22493592

  13. Increased immunity to cottontail rabbit papillomavirus infection in EIII/JC inbred rabbits after vaccination with a mutant E6 that correlates with spontaneous regression.

    PubMed

    Hu, Jiafen; Cladel, Nancy M; Christensen, Neil D

    2007-01-01

    Our previous studies showed that a progressive cottontail rabbit papillomavirus (CRPV) strain containing a single amino acid change in E6 (E6G252E) induced papilloma regression in EIII/JC inbred rabbits. This finding implied that the point mutation might cause an increase in the antigenicity of the mutant versus the wild-type E6. To test this hypothesis, groups of four EIII/JC inbred rabbits were immunized with wild-type CRPVE6, CRPVE6G252E, CRPV E5, or with vector alone. A gene gun delivery system was used to deliver the DNA vaccines. Two of four rabbits from both E6G252E- and wild-type E6-vaccinated groups were free of papillomas at week 12 after viral challenge. Significantly smaller papillomas were found on E6G252E-vaccinated rabbits than on E6-, E5-, and control vector-vaccinated rabbits (p = 0.01, unpaired Student t test) and these small papillomas regressed at week 20 after viral challenge. E5 vaccination failed to provide protection against viral challenge, and the mean papilloma size was also comparable to that of the control vector-vaccinated rabbits (p > 0.05, unpaired Student t test). We conclude that a single amino acid change in the CRPV E6 protein (G252E) increased protection against wild-type infectious CRPV.

  14. Acetyl-11-Keto-β-Boswellic Acid Attenuates Prooxidant and Profibrotic Mechanisms Involving Transforming Growth Factor-β1, and Improves Vascular Remodeling in Spontaneously Hypertensive Rats

    PubMed Central

    Shang, Peijin; Liu, Wenxing; Liu, Tianlong; Zhang, Yikai; Mu, Fei; Zhu, Zhihui; Liang, Lingfei; Zhai, Xiaohu; Ding, Yi; Li, Yuwen; Wen, Aidong

    2016-01-01

    Vascular remodeling is an important complication of hypertension with oxidative stress-related profibrotic pathways involved. The transforming growth factor β1 (TGF-β1) has been shown to be a potential target of vasoprotection, and has multiple roles in vascular remodeling. Acetyl-11-Keto-β-Boswellic Acid (AKBA) is one of the active principles of Boswellic acids, and shows antioxidant activity in many diseases. The study is to determine effects of AKBA on systemic oxidative stress of hypertension and vascular remodeling. In the experiments, spontaneously hypertensive rats (SHR) were used. And in vitro, fibroblast was pretreated with AKBA before Ang II stimuli. In the results, treatment of AKBA markedly reduced oxidative stress, and decreased vascular remodeling by restoring vascular wall parameters and improving vascular reactivity. AKBA dramatically reduced TGF-β1 and Smad3 expression, as shown in immunofluorescence and immunohistochemistry. In cultured fibroblast, AKBA decreased intracellular ROS levels. Cell viability and proliferation, as well as migration were inhibited by AKBA. Additionally, treatment of AKBA significantly decreased TGF-β1 secretion in culture supernatant. Expression of TGF-β1, Smad3, P-Smad3 and Smad7 were also decreased by AKBA in fibroblast. In conclusion, AKBA is able to attenuate oxidative stress and profibrotic mechanisms, and improve vascular remodeling in hypertension through TGF-β1/Smad3 pathway. PMID:28009003

  15. Dichloroacetate improves immune dysfunction caused by tumor-secreted lactic acid and increases antitumor immunoreactivity.

    PubMed

    Ohashi, Toshimitsu; Akazawa, Takashi; Aoki, Mitsuhiro; Kuze, Bunya; Mizuta, Keisuke; Ito, Yatsuji; Inoue, Norimitsu

    2013-09-01

    The activation of oncogenic signaling pathways induces the reprogramming of glucose metabolism in tumor cells and increases lactic acid secretion into the tumor microenvironment. This is a well-known characteristic of tumor cells, termed the Warburg effect, and is a candidate target for antitumor therapy. Previous reports show that lactic acid secreted by tumor cells is a proinflammatory mediator that activates the IL-23/IL-17 pathway, thereby inducing inflammation, angiogenesis and tissue remodeling. Here, we show that lactic acid, or more specifically the acidification it causes, increases arginase I (ARG1) expression in macrophages to inhibit T-cell proliferation and activation. Accordingly, we hypothesized that counteraction of the immune effects by lactic acid might suppress tumor development. We show that dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinases, targets macrophages to suppress activation of the IL-23/IL-17 pathway and the expression of ARG1 by lactic acid. Furthermore, lactic acid-pretreated macrophages inhibited CD8+ T-cell proliferation, but CD8+ T-cell proliferation was restored when macrophages were pretreated with lactic acid and DCA. DCA treatment decreased ARG1 expression in tumor-infiltrating immune cells and increased the number of IFN-γ-producing CD8+ T cells and NK cells in tumor-bearing mouse spleen. Although DCA treatment alone did not suppress tumor growth, it increased antitumor immunotherapeutic activity of Poly(IC) in both CD8+ T cell- and NK cell-sensitive tumor models. Therefore, DCA acts not only on tumor cells to suppress glycolysis but also on immune cells to improve the immune status modulated by lactic acid and to increase the effectiveness of antitumor immunotherapy.

  16. In vivo blockade of thalamic GABA(B) receptors increases excitatory amino-acid levels.

    PubMed

    Nyitrai, G; Emri, Z; Crunelli, V; Kékesi, K A; Dobolyi, A; Juhász, G

    1996-12-30

    The effect of intrathalamic application of GABA(B) receptor antagonists on the basal excitatory amino-acid levels was studied using microdialysis probes implanted in the dorsal lateral geniculate nucleus and in the ventrobasal complex. In both nuclei, continuous perfusion of the GABA(B) receptor antagonist 3-aminopropyl-(diethoxymethyl)-phosphinic acid (CGP 35348) produced an increase in the extracellular concentration of aspartate and (to a lesser extent) glutamate, but no change was observed in the level of taurine, the main amino acid involved in the regulation of brain osmolarity processes. In contrast, 3-amino-2-hydroxy-2-(4-chlorophenyl)-propanesulphonic acid (2-hydroxy-saclofen), another GABA(B) receptor antagonist, failed to affect the extracellular concentration of aspartate, glutamate and taurine. Thus, the basal level of excitatory amino acids in the thalamus in vivo is under the control of CGP 35348-sensitive GABA(B) receptors.

  17. Increased intake of water and NaCl solutions in omega-3 fatty acid deficient monkeys.

    PubMed

    Reisbick, S; Neuringer, M; Connor, W E; Iliff-Sizemore, S

    1991-06-01

    We previously reported that long-term omega-3 fatty acid deficiency is associated with increased water intake in rhesus monkeys. To determine whether the increase was specific to water, intakes of salt solutions were measured in 15-minute single-bottle tests. Deficient monkeys drank at least twice as much of all NaCl concentrations as controls. Overall intake decreased as salt concentration increased. In 2-bottle preference tests, deficient monkeys again drank more total fluid but neither preferred nor avoided normal saline compared to controls. When deprived of water, deficient monkeys concentrated urine as well as controls, demonstrating that the increased intake was not a result of renal failure or diabetes insipidus. Omega-3 fatty acids have roles both in neural membrane function and in metabolism of prostaglandins and other eicosanoids. Omega-3 fatty acid deficiency may affect drinking through changes in one or both of these functions.

  18. Methylphenidate treatment beyond adolescence maintains increased cocaine self-administration in the spontaneously hypertensive rat model of attention deficit/hyperactivity disorder.

    PubMed

    Baskin, Britahny M; Dwoskin, Linda P; Kantak, Kathleen M

    2015-04-01

    Past research with the spontaneously hypertensive rat (SHR) model of attention deficit/hyperactivity disorder showed that adolescent methylphenidate treatment enhanced cocaine abuse risk in SHR during adulthood. The acquisition of cocaine self-administration was faster, and cocaine dose-response functions were shifted upward under fixed-ratio and progressive ratio schedules compared to adult SHR that received adolescent vehicle treatment or to control strains that received adolescent methylphenidate treatment. The current study determined if extending treatment beyond adolescence would ameliorate long-term consequences of adolescent methylphenidate treatment on cocaine abuse risk in adult SHR. Treatments (vehicle or 1.5mg/kg/day oral methylphenidate) began on postnatal day 28. Groups of male SHR were treated with vehicle during adolescence and adulthood, with methylphenidate during adolescence and vehicle during adulthood, or with methylphenidate during adolescence and adulthood. The group receiving adolescent-only methylphenidate was switched to vehicle on P56. Cocaine self-administration began on postnatal day 77, and groups receiving methylphenidate during adolescence and adulthood were treated either 1-h before or 1-h after daily sessions. At baseline under a fixed-ratio 1 schedule, cocaine self-administration (2h sessions; 0.3mg/kg unit dose) did not differ among the four treatment groups. Under a progressive ratio schedule (4.5h maximum session length; 0.01-1.0mg/kg unit doses), breakpoints for self-administered cocaine in SHR receiving the adult methylphenidate treatment 1-h pre-session were not different from the vehicle control group. However, compared to the vehicle control group, breakpoints for self-administered cocaine at the 0.3 and 1.0mg/kg unit doses were greater in adult SHR that received adolescent-only methylphenidate or received methylphenidate that was continued into adulthood and administered 1-h post-session. These findings suggest that

  19. Methylphenidate treatment beyond adolescence maintains increased cocaine self-administration in the Spontaneously Hypertensive Rat model of Attention Deficit/Hyperactivity Disorder

    PubMed Central

    Baskin, Britahny M.; Dwoskin, Linda P.; Kantak, Kathleen M.

    2015-01-01

    Past research with the Spontaneously Hypertensive Rat (SHR) model of Attention Deficit/Hyperactivity Disorder showed that adolescent methylphenidate treatment enhanced cocaine abuse risk in SHR during adulthood. Acquisition of cocaine self-administration was faster, and cocaine dose-response functions were shifted upward under fixed-ratio and progressive ratio schedules compared to adult SHR that received adolescent vehicle treatment or to control strains that received adolescent methylphenidate treatment. The current study determined if extending treatment beyond adolescence would ameliorate long-term consequences of adolescent methylphenidate treatment on cocaine abuse risk in adult SHR. Treatments (vehicle or 1.5 mg/kg/day oral methylphenidate) began on postnatal day 28. Groups of male SHR were treated with vehicle during adolescence and adulthood, with methylphenidate during adolescence and vehicle during adulthood, or with methylphenidate during adolescence and adulthood. The group receiving adolescent-only methylphenidate was switched to vehicle on P56. Cocaine self-administration began on postnatal day 77, and groups receiving methylphenidate during adolescence and adulthood were treated either 1-hr before or 1-hr after daily sessions. At baseline under a fixed-ratio 1 schedule, cocaine self-administration (2 hr sessions; 0.3 mg/kg unit dose) did not differ among the four treatment groups. Under a progressive ratio schedule (4.5 hr maximum session length; 0.01 – 1.0 mg/kg unit doses), breakpoints for self-administered cocaine in SHR receiving the adult methylphenidate treatment 1-hr pre-session were not different from the vehicle control group. However, compared to the vehicle control group, breakpoints for self-administered cocaine at the 0.3 and 1.0 mg/kg unit doses were greater in adult SHR that received adolescent-only methylphenidate or received methylphenidate that was continued into adulthood and administered 1-hr post-session. These findings

  20. Lens epithelial cell apoptosis and intracellular Ca2+ increase in the presence of xanthurenic acid

    PubMed Central

    Malina, Halina; Richter, Christoph; Frueh, Beatrice; Hess, Otto M

    2002-01-01

    Background Xanthurenic acid is an endogenous product of tryptophan degradation by indoleamine 2,3-dioxygenase (IDO). We have previously reported that IDO is present in mammalian lenses, and xanthurenic acid is accumulated in the lenses with aging. Here, we studied the involvement of xanthurenic acid in the human lens epithelial cell physiology. Methods Human lens epithelial cells primary cultures were used. Control cells, and cells in the presence of xanthurenic acid grow in the dark. Western blot analysis and immunofluorescence studies were performed. Results In the presence of xanthurenic acid human lens epithelial cells undergo apoptosis-like cell death. In the control cells gelsolin stained the perinuclear region, whereas in the presence of 10 μM xanthurenic acid gelsolin is translocated to the cytoskeleton, but does not lead to cytoskeleton breakdown. In the same condition caspase-3 activation, and DNA fragmentation was observed. At low (5 to 10 μM) of xanthurenic acid concentration, the elongation of the cytoskeleton was associated with migration of mitochondria and cytochrome c release. At higher concentrations xanthurenic acid (20 μM and 40 μM) damaged mitochondria were observed in the perinuclear region, and nuclear DNA cleavage was observed. We observed an induction of calpain Lp 82 and an increase of free Ca2+ in the cells in a xanthurenic acid concentration-dependent manner. Conclusions The results show that xanthurenic acid accumulation in human lens epithelial cells disturbs the normal cell physiology and leads to a cascade of pathological events. Xanthurenic acid induces calpain Lp82 and caspases in the cells growing in the dark and can be involved in senile cataract development. PMID:11934353

  1. Mechanisms increasing n-3 highly unsaturated fatty acids in the heart.

    PubMed

    Glück, Tobias; Rupp, Heinz; Alter, Peter

    2016-03-01

    Due to ambiguous findings on cardiovascular benefits of systemic omega-3 fatty acid therapy, endogenous mechanisms contributing to local organ-specific concentrations of highly unsaturated fatty acids (HUFA) were examined. Using gas chromatography, 43 fatty acids were analyzed in atrial and ventricular myocardium and in pericardial fluid of male Wistar rats. To examine the endogenous fatty acid metabolism, precursors were administered into the pericardial sac. Pro- and anti-inflammatory actions were induced by talc or fenofibrate, respectively. Physical exercise and a sedentary obese state were used for increased beta-oxidation. DHA (22:6n-3) was increased in ventricular when compared with atrial myocardium (9.0 ± 2.1% vs. 4.7 ± 1.0%, p < 0.001). Intrapericardial EPA (20:5n-3) application lead to an increase of the succeeding tetracosapentaenoic acid (24:5n-3) in atrial myocardium, which is a key precursor of DHA. In contrast, proinflammatory stimulation of the n-6 HUFA pathway did not influence the n-3 metabolism. Exercise- and obesity-induced increased beta-oxidation, the finalizing step of DHA synthesis, was associated with increased ventricular DHA concentrations (6.7 ± 1.0% vs. 8.4 ± 1.2%, p < 0.01). It is concluded that the endogenous metabolism contributes markedly to myocardial HUFA concentrations. The findings are supposed to influence the efficacy of oral HUFA treatment and provide a rationale for divergent findings of previous trials on omega-3 therapy.

  2. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  3. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    PubMed

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox) phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox) mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  4. Acute and chronic increases in osmolality increase excitatory amino acid drive of the rostral ventrolateral medulla in rats.

    PubMed

    Brooks, Virginia L; Freeman, Korrina L; O'Donaughy, Theresa L

    2004-12-01

    Water deprivation is associated with increased excitatory amino acid (EAA) drive of the rostral ventrolateral medulla (RVLM), but the mechanism is unknown. This study tested the hypotheses that the increased EAA activity is mediated by decreased blood volume and/or increased osmolality. This was first tested in urethane-anesthetized rats by determining whether bilateral microinjection of kynurenate (KYN, 2.7 nmol) into the RVLM decreases arterial pressure less in water-deprived rats after normalization of blood volume by intravenous infusion of isotonic saline or after normalization of plasma osmolality by intravenous infusion of 5% dextrose in water (5DW). Water-deprived rats exhibited decreased plasma volume and elevated plasma osmolality, hematocrit, and plasma sodium, chloride, and protein levels (all P < 0.05). KYN microinjection decreased arterial pressure by 24 +/- 2 mmHg (P < 0.05; n = 17). The depressor response was not altered following isotonic saline infusion but, while still present (P < 0.05), was reduced (P < 0.05) to -13 +/- 2 mmHg soon after 5DW infusion. These data suggest that the high osmolality, but not low blood volume, contributes to the KYN depressor response. To further investigate the action of increased osmolality on EAA input to RVLM, water-replete rats were also studied after hypertonic saline infusion. Whereas KYN microinjection did not decrease pressure immediately following the infusion, a depressor response gradually developed over the next 3 h. Lumbar sympathetic nerve activity also gradually increased to up to 167 +/- 19% of control (P < 0.05) 3 h after hypertonic saline infusion. In conclusion, acute and chronic increases in osmolality appear to increase EAA drive of the RVLM.

  5. Folic acid supplementation increases cutaneous vasodilator sensitivity to sympathetic nerve activity in older adults.

    PubMed

    Stanhewicz, Anna E; Greaney, Jody L; Alexander, Lacy M; Kenney, W Larry

    2017-02-22

    During heat stress, blunted increases in skin sympathetic nervous system activity (SSNA) and reductions in end-organ vascular responsiveness contribute to the age-related reduction in reflex cutaneous vasodilation. In older adults, folic acid supplementation improves the cutaneous vascular conductance (CVC) response to passive heating; however, the influence of folic acid supplementation on SSNA:CVC transduction is unknown. Fourteen older adults (66±1yrs, 8M/6F) ingested folic acid (5mg·day(-1)) or placebo for 6 weeks in a randomized, double-blind, crossover design. In protocol 1, esophageal temperature (Tes) was increased by 1.0ºC (water-perfused suit) while SSNA (peroneal microneurography) and red cell flux in the innervated dermatome (laser Doppler flowmetry; dorsum of the foot) were continuously measured. In protocol 2, two intradermal microdialysis fibers were placed in the skin of the lateral calf for graded infusions of acetylcholine (ACh; 10(-10) to 10(-1)M) with and without nitric oxide synthase (NOS) blockade (20mM L-NAME). Folic acid improved reflex vasodilation (46±4% vs. 31±3 %CVCmax for placebo; P<0.001) without affecting the increase in SSNA (Δ506±104% vs. Δ415±73% for placebo; NS). Folic acid increased the slope of the SSNA:CVC relation (0.08±0.02 vs. 0.05±0.01 for placebo; P<0.05) and extended the response range. Folic acid augmented ACh-induced vasodilation (83±3% vs. 66±4 %CVCmax for placebo; P=0.002); however there was no difference between treatments at the NOS-inhibited site (53±4% vs. 52±4% CVCmax for placebo; NS). These data demonstrate that folic acid supplementation enhances reflex vasodilation by increasing the sensitivity of skin arterioles to central sympathetic nerve outflow during hyperthermia in aged human subjects.

  6. Fish meal supplementation increases bovine plasma and luteal tissue omega-3 fatty acid composition.

    PubMed

    White, N R; Burns, P D; Cheatham, R D; Romero, R M; Nozykowski, J P; Bruemmer, J E; Engle, T E

    2012-03-01

    The objective of this experiment was to determine if dietary inclusion of fish meal would increase plasma and luteal tissue concentrations of eicosapentaenoic and docosahexaenoic acids. Seventeen nonlactating Angus cows (2 to 8 yr of age) were housed in individual pens and fed a corn silage-based diet for approximately 60 d. Diets were supplemented with fish meal at 5% DMI (a rich source of eicosapentaenoic acid and docosahexaenoic acid; n = 9 cows) or corn gluten meal at 6% DMI (n = 8 cows). Body weights and jugular blood samples were collected immediately before the initiation of supplementation and every 7 d thereafter for 56 d to monitor plasma n-3 fatty acid composition and BW. Estrous cycles were synchronized using 2 injections of PGF(2α) administered at 14-d intervals. The ovary bearing the corpus luteum was surgically removed at midcycle (between d 10 and 12) after estrus synchronization, which corresponded to approximately d 60 of supplementation. The ovary was transported to the laboratory, and approximately 1.5 g of luteal tissue was stored at -80°C until analyzed for n-3 fatty acid content. Initial and ending BW did not differ (P > 0.10) between cows supplemented with fish meal and those with corn gluten meal. Plasma eicosapentaenoic acid was greater (P < 0.05) beginning at d 7 of supplementation and docosahexaenoic was greater (P < 0.05) beginning at d 14 of supplementation for cows receiving fish meal. Luteal tissue collected from fish meal-supplemented cows had greater (P < 0.05) luteal n-3 fatty acids and reduced (P < 0.05) arachidonic acid and n-6 to n-3 ratio as compared with tissue obtained from cows supplemented with corn gluten meal. Our data show that fish meal supplementation increases luteal n-3 fatty acid content and reduces available arachidonic acid content, the precursor for PGF(2α). The increase in luteal n-3 fatty acids may reduce PGF(2α) intraluteal synthesis after breeding resulting in increased fertility in cattle.

  7. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    PubMed

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  8. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    PubMed

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it.

  9. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    PubMed

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  10. Adaptation to multiday ozone exposure is associated with a sustained increase of bronchoalveolar uric acid.

    PubMed

    Kirschvink, Nathalie; Fiévez, Laurence; Bureau, Fabrice; Degand, Guy; Maghuin-Rogister, Guy; Smith, Nicola; Art, Tatiana; Lekeux, Pierre

    2002-01-01

    The phenomenon of ozone tolerance is described, but the underlying mechanisms remain unknown. We tested whether adaptation to multiday ozone exposure was related to an upregulated pulmonary antioxidant defence. Six calves were exposed to 0.75 ppm ozone, 12 h day(-1) for seven consecutive days. Pulmonary function tests and bronchoalveolar lavage (BAL) were performed before, after the first (D1), third (D3) and seventh (D7) exposure. Differential cell count, total proteins, 8-epi-PGF2alpha, glutathione and uric acid were determined in BAL. Dynamic lung compliance and arterial oxygen tension were significantly decreased and lung oedema impaired pulmonary function on D1. By repeating ozone exposures, progressive functional adaptation occurred. Ozone induced a significant increase of BAL neutrophil percentage on D1. On D3 and D7, neutrophil percentage was progressively decreased, but remained significantly elevated. BAL total proteins were significantly increased on D1 and decreased progressively until D7. 8-Epi-PGF2alpha was significantly increased on D1 and was returned to baseline on D3 and D7, whilst glutathione significantly increased on D3 and returned to baseline on D7. Uric acid was increased ten-fold on D1. On D3, uric acid was increased six-fold and was persistently elevated at D7. This study suggests that ozone adaptation of functional and inflammatory variables is accompanied with sustained BAL uric acid elevation.

  11. Insulin rapidly increases diacylglycerol by activating de novo phosphatidic acid synthesis.

    PubMed

    Farese, R V; Konda, T S; Davis, J S; Standaert, M L; Pollet, R J; Cooper, D R

    1987-05-01

    The mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes were examined. When [3H]arachidonate labeling of phospholipids was used as an indicator of phospholipase C activation, transient increases in [3H]diacylglycerol were observed between 0.5 and 10 minutes after the onset of insulin treatment. With [3H]glycerol labeling as an indicator of de novo phospholipid synthesis, [3H]diacylglycerol was increased maximally at 1 minute and remained elevated for 20 minutes. [3H]Glycerol-labeled diacylglycerol was largely derived directly from phosphatidic acid. Insulin increased de novo phosphatidic acid synthesis within 5 to 10 seconds; within 1 minute, this synthesis was 60 times greater than that of controls. Thus, the initial increase in diacylglycerol is due to both increased hydrolysis of phospholipids and a burst of de novo phosphatidic acid synthesis. After 5 to 10 minutes, de novo phosphatidic acid synthesis continues as a major source of diacylglycerol. Both phospholipid effects of insulin seem important for generating diacylglycerol and other phospholipid-derived intracellular signaling substances.

  12. Association between Nutritional Status with Spontaneous Abortion

    PubMed Central

    Ahmadi, Rahimeh; Ziaei, Saeideh; Parsay, Sosan

    2017-01-01

    Background Spontaneous abortion is the most common adverse pregnancy outcome. We aimed to investigate a possible link between nutrient deficiencies and the risk of spontaneous abortion. Materials and Methods This case-control study included the case group (n=331) experiencing a spontaneous abortion before 14 weeks of pregnancy and the control group (n=331) who were healthy pregnant women over 14 weeks of pregnancy. The participants filled out Food Frequency Questionnaire (FFQ), in which they reported their frequency of consumption for a given serving of each food item during the past three months, on a daily, weekly or monthly basis. The reported frequency for each food item was converted to a daily intake. Then, consumption of nutrients was compared between the two groups. Results There are significant differences between the two groups regarding consumed servings/day of vegetables, bread and cereal, meat, poultry, fish, eggs, beans, fats, oils and dairy products (P=0.012, P<0.001, P=0.004, P<0.001, P=0.019, respectively). There are significant differences between the two groups in all micronutrient including folic acid, iron, vitamin C, vitamin B6, vitamin B12 and zinc (P<0.001). Conclusion Poor nutrientions may be correlated with increased risk of spontaneous abortion. PMID:28042413

  13. Production of Siderophores Increases Resistance to Fusaric Acid in Pseudomonas protegens Pf-5

    PubMed Central

    Ruiz, Jimena A.; Bernar, Evangelina M.; Jung, Kirsten

    2015-01-01

    Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. PMID:25569682

  14. Loss of organic anion transporting polypeptide 1a1 increases deoxycholic acid absorption in mice by increasing intestinal permeability.

    PubMed

    Zhang, Youcai; Csanaky, Iván L; Lehman-McKeeman, Lois D; Klaassen, Curtis D

    2011-12-01

    Deoxycholic acid (DCA) is a known hepatotoxicant, a tissue tumor promoter, and has been implicated in colorectal cancer. Male mice are more susceptible to DCA toxicity than female mice. Organic anion transporting polypeptide 1a1 (Oatp1a1), which is known to transport bile acids (BAs) in vitro, is predominantly expressed in livers of male mice. In addition, the concentrations of DCA and its taurine conjugate (TDCA) are increased in serum of Oatp1a1-null mice. To investigate whether Oatp1a1 contributes to the gender difference in DCA toxicity in mice, wild-type (WT) and Oatp1a1-null mice were fed a 0.3% DCA diet for 7 days. After feeding DCA, Oatp1a1-null mice had 30-fold higher concentrations of DCA in both serum and livers than WT mice. Feeding DCA caused more hepatotoxcity in Oatp1a1-null mice than WT mice. After feeding DCA, Oatp1a1-null mice expressed higher BA efflux-transporters (bile salt-export pump, organic solute transporter (Ost)α/β, and multidrug resistance-associated protein [Mrp]2) and lower BA-synthetic enzymes (cytochrome P450 [Cyp]7a1, 8b1, 27a1, and 7b1) in livers than WT mice. Intravenous administration of DCA and TDCA showed that lack of Oatp1a1 does not decrease the plasma elimination of DCA or TDCA. After feeding DCA, the concentrations of DCA in ileum and colon tissues are higher in Oatp1a1-null than in WT mice. In addition, Oatp1a1-null mice have enhanced intestinal permeability. Taken together, the current data suggest that Oatp1a1 does not mediate the hepatic uptake of DCA or TDCA, but lack of Oatp1a1 increases intestinal permeability and thus enhances the absorption of DCA in mice.

  15. Loss of Organic Anion Transporting Polypeptide 1a1 Increases Deoxycholic Acid Absorption in Mice by Increasing Intestinal Permeability

    PubMed Central

    Zhang, Youcai; Csanaky, Iván L.; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2011-01-01

    Deoxycholic acid (DCA) is a known hepatotoxicant, a tissue tumor promoter, and has been implicated in colorectal cancer. Male mice are more susceptible to DCA toxicity than female mice. Organic anion transporting polypeptide 1a1 (Oatp1a1), which is known to transport bile acids (BAs) in vitro, is predominantly expressed in livers of male mice. In addition, the concentrations of DCA and its taurine conjugate (TDCA) are increased in serum of Oatp1a1-null mice. To investigate whether Oatp1a1 contributes to the gender difference in DCA toxicity in mice, wild-type (WT) and Oatp1a1-null mice were fed a 0.3% DCA diet for 7 days. After feeding DCA, Oatp1a1-null mice had 30-fold higher concentrations of DCA in both serum and livers than WT mice. Feeding DCA caused more hepatotoxcity in Oatp1a1-null mice than WT mice. After feeding DCA, Oatp1a1-null mice expressed higher BA efflux-transporters (bile salt-export pump, organic solute transporter (Ost)α/β, and multidrug resistance-associated protein [Mrp]2) and lower BA-synthetic enzymes (cytochrome P450 [Cyp]7a1, 8b1, 27a1, and 7b1) in livers than WT mice. Intravenous administration of DCA and TDCA showed that lack of Oatp1a1 does not decrease the plasma elimination of DCA or TDCA. After feeding DCA, the concentrations of DCA in ileum and colon tissues are higher in Oatp1a1-null than in WT mice. In addition, Oatp1a1-null mice have enhanced intestinal permeability. Taken together, the current data suggest that Oatp1a1 does not mediate the hepatic uptake of DCA or TDCA, but lack of Oatp1a1 increases intestinal permeability and thus enhances the absorption of DCA in mice. PMID:21914718

  16. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant.

  17. Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice.

    PubMed

    Choi, You-Jin; Lee, Chae-Hyeon; Lee, Kang-Yo; Jung, Seung-Hwan; Lee, Byung-Hoon

    2015-06-01

    Tetracycline induces microvesicular steatosis, which has a poor long-term prognosis and a higher risk of steatohepatitis development compared with macrovesicular steatosis. Recent gene expression studies indicated that tetracycline treatment affects the expression of many genes associated with fatty acid transport and esterification. In this study, we investigated the role of fatty acid transport and esterification in tetracycline-induced steatosis. Intracellular lipid accumulation and the protein expression of fatty acid translocase (FAT or CD36) and diacylglycerol acyltransferase (DGAT) 2 were increased in both mouse liver and HepG2 cells treated with tetracycline at 50 mg/kg (intraperitoneal injection, i.p.) and 100 μM, respectively. Tetracycline increased the cellular uptake of boron-dipyrromethene-labeled C16 fatty acid, which was abolished by CD36 RNA interference. Oleate-induced cellular lipid accumulation was further enhanced by co-incubation with tetracycline. Tetracycline downregulated extracellular signal-regulated kinase (ERK) phosphorylation, which negatively regulated DGAT2 expression. U0126, a specific ERK inhibitor, also increased DGAT2 expression and cellular lipid accumulation. DGAT1 and 2 knock-down with specific small interfering (si)-RNA completely abrogated the steatogenic effect of tetracycline in HepG2 cells. Taken together, our data showed that tetracycline induces lipid accumulation by facilitating fatty acid transport and triglyceride esterification by upregulating CD36 and DGAT2, respectively.

  18. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity.

    PubMed

    Horowitz, J F; Klein, S

    2000-12-01

    We evaluated plasma fatty acid availability and plasma and whole body fatty acid oxidation during exercise in five lean and five abdominally obese women (body mass index = 21 +/- 1 vs. 38 +/- 1 kg/m(2)), who were matched on aerobic fitness, to test the hypothesis that obesity alters the relative contribution of plasma and nonplasma fatty acids to total energy production during exercise. Subjects exercised on a recumbent cycle ergometer for 90 min at 54% of their peak oxygen consumption. Stable isotope tracer methods ([(13)C]palmitate) were used to measure fatty acid rate of appearance in plasma and the rate of plasma fatty acid oxidation, and indirect calorimetry was used to measure whole body substrate oxidation. During exercise, palmitate rate of appearance increased progressively and was similar in obese and lean groups between 60 and 90 min of exercise [3.9 +/- 0.4 vs. 4.0 +/- 0.3 micromol. kg fat free mass (FFM)(-1). min(-1)]. The rate of plasma fatty acid oxidation was also similar in obese and lean subjects (12.8 +/- 1.7 vs. 14.5 +/- 1.8 micromol. kg FFM(-1). min(-1); P = not significant). However, whole body fatty acid oxidation during exercise was 25% greater in obese than in lean subjects (21.9 +/- 1.2 vs. 17.5 +/- 1.6 micromol. kg FFM(-1). min(-1); P < 0.05). These results demonstrate that, although plasma fatty acid availability and oxidation are similar during exercise in lean and obese women, women with abdominal obesity use more fat as a fuel by oxidizing more nonplasma fatty acids.

  19. Linoleic acid supplementation results in increased arachidonic acid and eicosanoid production in CF airway cells and in cftr−/− transgenic mice

    PubMed Central

    Zaman, Munir M.; Martin, Camilia R.; Andersson, Charlotte; Bhutta, Abdul Q.; Cluette-Brown, Joanne E.; Laposata, Michael

    2010-01-01

    Cystic fibrosis (CF) patients display a fatty acid imbalance characterized by low linoleic acid levels and variable changes in arachidonic acid. This led to the recommendation that CF patients consume a high-fat diet containing >6% linoleic acid. We hypothesized that increased conversion of linoleic acid to arachidonic acid in CF leads to increased levels of arachidonate-derived proinflammatory metabolites and that this process is exacerbated by increasing linoleic acid levels in the diet. To test this hypothesis, we determined the effect of linoleic acid supplementation on downstream proinflammatory biomarkers in two CF models: 1) in vitro cell culture model using 16HBE14o− sense [wild-type (WT)] and antisense (CF) human airway epithelial cells; and 2) in an in vivo model using cftr−/− transgenic mice. Fatty acids were analyzed by gas chromatography-mass spectrometry (GC/MS), and IL-8 and eicosanoids were measured by ELISA. Neutrophils were quantified in bronchoalveolar lavage fluid from knockout mice following linoleic acid supplementation and exposure to aerosolized Pseudomonas LPS. Linoleic acid supplementation increased arachidonic acid levels in CF but not WT cells. IL-8, PGE2, and PGF2α secretion were increased in CF compared with WT cells, with a further increase following linoleic acid supplementation. cftr−/− Mice supplemented with 100 mg of linoleic acid had increased arachidonic acid levels in lung tissue associated with increased neutrophil infiltration into the airway compared with control mice. These findings support the hypothesis that increasing linoleic acid levels in the setting of loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to increased arachidonic acid levels and proinflammatory mediators. PMID:20656894

  20. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  1. Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge.

    PubMed

    Rico, J E; Mathews, A T; Lovett, J; Haughey, N J; McFadden, J W

    2016-11-01

    Reduced insulin action is a key adaptation that facilitates glucose partitioning to the mammary gland for milk synthesis and enhances adipose tissue lipolysis during early lactation. The progressive recovery of insulin sensitivity as cows advance toward late lactation is accompanied by reductions in circulating nonesterified fatty acids (NEFA) and milk yield. Because palmitic acid can promote insulin resistance in monogastrics through sphingolipid ceramide-dependent mechanisms, palmitic acid (C16:0) feeding may enhance milk production by restoring homeorhetic responses. We hypothesized that feeding C16:0 to mid-lactation cows would enhance ceramide supply and ceramide would be positively associated with milk yield. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows were randomly assigned to a sorghum silage-based diet containing no supplemental fat (control; n=10; 138±45 d in milk) or C16:0 at 4% of ration dry matter (PALM; 98% C16:0; n=10; 136±44 d in milk). Blood and milk were collected at routine intervals. Liver and skeletal muscle tissue were biopsied at d 47 of treatment. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. The plasma and tissue concentrations of ceramide and glycosylated ceramide were determined using liquid chromatography coupled with tandem mass spectrometry. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield, energy-corrected milk, and milk fat yield. The most abundant plasma and tissue sphingolipids detected were C24:0-ceramide, C24:0-monohexosylceramide (GlcCer), and C16:0-lactosylceramide. Plasma concentrations of total ceramide and GlcCer decreased as lactation advanced, and ceramide and GlcCer were elevated in cows fed PALM

  2. Abscisic Acid and Ethylene Increase in Heterodera avenae-infected Tolerant or Intolerant Oat Cultivars

    PubMed Central

    Volkmar, K. M.

    1991-01-01

    The relationship between root stunting caused by the cereal cyst nematode and levels of two root growth inhibiting hormones, abscisic acid and ethylene, was investigated in aseptically cultured root segments and in intact roots of two oat cultivars differing in tolerance to the nematode. Cultured root segments of oat cultivars New Zealand Cape (tolerant) and Sual (intolerant) were inoculated with sterilized Heterodera avenae second-stage juveniles. Suppressed growth of root axes and emerged laterals following nematode penetration corresponded to an increase in abscisic acid and ethylene in roots of both intolerant and tolerant cultivars. When the experiment was repeated on intact root systems, nematodes retarded root growth of Sual more than New Zealand Cape despite an increase in ABA and ethylene in both cultivars. Abscisic acid and (or) ethylene may be involved in growth inhibition of H. avenae-infected roots but appear to play no direct role in determining tolerance. PMID:19283149

  3. Ternatin, a cyclic peptide isolated from mushroom, and its derivative suppress hyperglycemia and hepatic fatty acid synthesis in spontaneously diabetic KK-A(y) mice.

    PubMed

    Kobayashi, Misato; Kawashima, Haruna; Takemori, Kumiko; Ito, Hiroyuki; Murai, Atsushi; Masuda, Shun; Yamada, Kaoru; Uemura, Daisuke; Horio, Fumihiko

    2012-10-19

    (-)-Ternatin is a highly methylated cyclic heptapeptide isolated from mushroom Coriolus versicolor. Ternatin has an inhibitory effect on fat accumulation in 3T3-L1 adipocytes. [D-Leu(7)]ternatin, a ternatin derivative, also inhibited fat accumulation in 3T3-L1 cells, although the effectiveness of [D-Leu(7)]ternatin was lower than that of ternatin. In this study, we investigated the effects of ternatin and [D-Leu(7)]ternatin on obesity and type 2 diabetes in KK-A(y) mice, an animal model for spontaneously developed type 2 diabetes. We continuously administered ternatin (8.5 or 17 nmol/day) or [D-Leu(7)]ternatin (68 nmol/day) to mice via a subcutaneous osmotic pump. Unexpectedly, neither ternatin nor [D-Leu(7)]ternatin affected body weight or adipose tissue weight in KK-A(y) mice. In contrast, it was demonstrated that both ternatin and [D-Leu(7)]ternatin suppress the development of hyperglycemia. In liver, the SREBP-1c mRNA level tended to be lower or significantly decreased in mice treated with ternatin or [D-Leu(7)]ternatin, respectively. Moreover, we found that ternatin directly lowered the SREBP-1c mRNA level in Hepa1-6 hepatocyte cells. This study showed that ternatin and [D-Leu(7)]ternatin each had a preventive effect on hyperglycemia and a suppressive effect on fatty acid synthesis in KK-A(y) mice.

  4. Spontaneously Occurring Formation of Intranuclear and Cytoplasmic Inclusions in Renal Proximal Epithelium Due to Accumulation of D-Amino Acid Oxidase in Wistar Hannover Rats.

    PubMed

    Shimoyama, Natsumi; Nakatsuji, Shunji; Andoh, Rie; Yamaguchi, Yuko; Tamura, Kazutoshi; Hoshiya, Toru

    2015-07-01

    Intranuclear and cytoplasmic inclusions in the renal proximal tubular epithelium were observed in nontreated male and female Wistar Hannover rats in a 26-week study (32 weeks of age) and a 104-week study (110 weeks of age). The incidence rates were less than 5% in these two studies. In affected animals, the inclusions were observed in more than 60% of proximal tubular epithelium as various sized (approximately 1-8 μm in diameter) round and eosinophilic materials, but not in distal tubules, Henle's loop, or collecting ducts. Ultrastructurally, inclusions appeared finely granular, homogenous with middle-electron density, and without a limiting membrane. These inclusions were determined to be protein histochemically stained by Azan-Mallory and immunoreactive with an antibody against D-amino acid oxidase (DAO). There was no abnormality in in-life observations or in clinical test values suggestive of renal dysfunction. There were no associated degenerative or inflammatory changes in the kidneys, and no similar inclusions were observed in the other organs. These inclusions are very similar to propiverine hydrochloride (propiverine) and norepinephreine/serotonin reuptake inhibitor-induced inclusions. This is the first report of accumulation of DAO and formation of inclusions occurring spontaneously in rat kidneys. The data are important for toxicological studies using Wistar Hannover rats.

  5. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems.

    PubMed

    Zigler, J Samuel; Hodgkinson, Colin A; Wright, Megan; Klise, Andrew; Sundin, Olof; Broman, Karl W; Hejtmancik, Fielding; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Brayton, Cory; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Hoke, Ahmet; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70-80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs.

  6. A Spontaneous Missense Mutation in Branched Chain Keto Acid Dehydrogenase Kinase in the Rat Affects Both the Central and Peripheral Nervous Systems

    PubMed Central

    Zigler, J. Samuel; Hodgkinson, Colin A.; Wright, Megan; Klise, Andrew; Broman, Karl W.; Huang, Hao; Patek, Bonnie; Sergeev, Yuri; Hose, Stacey; Xaiodong, Jiao; Vasquez, David; Maragakis, Nicholas; Mori, Susumu; Goldman, David; Sinha, Debasish

    2016-01-01

    A novel mutation, causing a phenotype we named frogleg because its most obvious characteristic is a severe splaying of the hind limbs, arose spontaneously in a colony of Sprague-Dawley rats. Frogleg is a complex phenotype that includes abnormalities in hind limb function, reduced brain weight with dilated ventricles and infertility. Using micro-satellite markers spanning the entire rat genome, the mutation was mapped to a region of rat chromosome 1 between D1Rat131 and D1Rat287. Analysis of whole genome sequencing data within the linkage interval, identified a missense mutation in the branched-chain alpha-keto dehydrogenase kinase (Bckdk) gene. The protein encoded by Bckdk is an integral part of an enzyme complex located in the mitochondrial matrix of many tissues which regulates the levels of the branched-chain amino acids (BCAAs), leucine, isoleucine and valine. BCAAs are essential amino acids (not synthesized by the body), and circulating levels must be tightly regulated; levels that are too high or too low are both deleterious. BCKDK phosphorylates Ser293 of the E1α subunit of the BCKDH protein, which catalyzes the rate-limiting step in the catabolism of the BCAAs, inhibiting BCKDH and thereby, limiting breakdown of the BCAAs. In contrast, when Ser293 is not phosphorylated, BCKDH activity is unchecked and the levels of the BCAAs will decrease dramatically. The mutation is located within the kinase domain of Bckdk and is predicted to be damaging. Consistent with this, we show that in rats homozygous for the mutation, phosphorylation of BCKDH in the brain is markedly decreased relative to wild type or heterozygous littermates. Further, circulating levels of the BCAAs are reduced by 70–80% in animals homozygous for the mutation. The frogleg phenotype shares important characteristics with a previously described Bckdk knockout mouse and with human subjects with Bckdk mutations. In addition, we report novel data regarding peripheral neuropathy of the hind limbs

  7. Polyunsaturated fatty acid content is increased in the milk of women with pregnancy associated breast cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Pregnancy associated breast cancer (PABC) is aggressive and difficult to diagnose. High intake of most types of dietary fat is thought to increase breast cancer risk, however results in humans supporting this premise remain equivocal. Fatty acid (FA) concentrations in the body comprise b...

  8. Pros and cons of increasing folic acid and vitamin B12 intake by fortification.

    PubMed

    Allen, Lindsay H

    2012-01-01

    There is no doubt that folic acid fortification can be effective for reducing the incidence of neural tube defects. The degree of efficacy depends on both the level of folate depletion and other, yet to be fully characterized, genetic and/or environmental factors. This article summarizes briefly data on neural tube defect reduction and other benefits of folic acid fortification as these have been reviewed in more detail elsewhere. More attention is drawn to questions that have been raised about the possible adverse effects of folic acid fortification including the incidence of colorectal cancer and immune function. The main question addressed here is whether folic acid fortification can exacerbate the adverse effects of vitamin B12 deficiency. Most analyses of this question have been conducted in wealthier countries based on data from elderly populations - which have the highest prevalence of vitamin B12 deficiency. However, of potentially greater concern is the increasingly common practice of folic acid fortification in developing countries, where folate status is probably often adequate even prior to fortification, and vitamin B12 depletion or deficiency is common. To add to this information, data from a group of Chilean elderly with a range of vitamin B12 status and exposed to high levels of folic acid fortification will be presented.

  9. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    PubMed

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  10. Overexpression of a Gene Involved in Phytic Acid Biosynthesis Substantially Increases Phytic Acid and Total Phosphorus in Rice Seeds.

    PubMed

    Tagashira, Yusuke; Shimizu, Tomoe; Miyamoto, Masanobu; Nishida, Sho; Yoshida, Kaoru T

    2015-04-24

    The manipulation of seed phosphorus is important for seedling growth and environmental P sustainability in agriculture. The mechanism of regulating P content in seed, however, is poorly understood. To study regulation of total P, we focused on phytic acid (inositol hexakisphosphate; InsP₆) biosynthesis-related genes, as InsP₆ is a major storage form of P in seeds. The rice (Oryza sativa L.) low phytic acid mutant lpa1-1 has been identified as a homolog of archael 2-phosphoglycerate kinase. The homolog might act as an inositol monophosphate kinase, which catalyzes a key step in InsP₆ biosynthesis. Overexpression of the homolog in transgenic rice resulted in a significant increase in total P content in seed, due to increases in InsP₆ and inorganic phosphates. On the other hand, overexpression of genes that catalyze the first and last steps of InsP₆ biosynthesis could not increase total P levels. From the experiments using developing seeds, it is suggested that the activation of InsP₆ biosynthesis in both very early and very late periods of seed development increases the influx of P from vegetative organs into seeds. This is the first report from a study attempting to elevate the P levels of seed through a transgenic approach.

  11. The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids

    PubMed Central

    Dubois-Brissonnet, Florence; Trotier, Elsa; Briandet, Romain

    2016-01-01

    Biofilm formation on contact surfaces contributes to persistence of foodborne pathogens all along the food and feed chain. The specific physiological features of bacterial cells embedded in biofilms contribute to their high tolerance to environmental stresses, including the action of antimicrobial compounds. As membrane lipid adaptation is a vital facet of bacterial response when cells are submitted to harsh or unstable conditions, we focused here on membrane fatty acid composition of biofilm cells as compared to their free-growing counterparts. Pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium) were cultivated in planktonic or biofilm states and membrane fatty acid analyses were performed on whole cells in both conditions. The percentage of saturated fatty acids increases in biofilm cells in all cases, with a concomitant decrease of branched-chain fatty acids for Gram-positive bacteria, or with a decrease in the sum of other fatty acids for Gram-negative bacteria. We propose that increased membrane saturation in biofilm cells is an adaptive stress response that allows bacteria to limit exchanges, save energy, and survive. Reprogramming of membrane fluidity in biofilm cells might explain specific biofilm behavior including bacterial recalcitrance to biocide action. PMID:27840623

  12. The Biofilm Lifestyle Involves an Increase in Bacterial Membrane Saturated Fatty Acids.

    PubMed

    Dubois-Brissonnet, Florence; Trotier, Elsa; Briandet, Romain

    2016-01-01

    Biofilm formation on contact surfaces contributes to persistence of foodborne pathogens all along the food and feed chain. The specific physiological features of bacterial cells embedded in biofilms contribute to their high tolerance to environmental stresses, including the action of antimicrobial compounds. As membrane lipid adaptation is a vital facet of bacterial response when cells are submitted to harsh or unstable conditions, we focused here on membrane fatty acid composition of biofilm cells as compared to their free-growing counterparts. Pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium) were cultivated in planktonic or biofilm states and membrane fatty acid analyses were performed on whole cells in both conditions. The percentage of saturated fatty acids increases in biofilm cells in all cases, with a concomitant decrease of branched-chain fatty acids for Gram-positive bacteria, or with a decrease in the sum of other fatty acids for Gram-negative bacteria. We propose that increased membrane saturation in biofilm cells is an adaptive stress response that allows bacteria to limit exchanges, save energy, and survive. Reprogramming of membrane fluidity in biofilm cells might explain specific biofilm behavior including bacterial recalcitrance to biocide action.

  13. Soy-Based Multiple Amino Acid Oral Supplementation Increases the Anti-Sarcoma Effect of Cyclophosphamide

    PubMed Central

    Yao, Chien-An; Chen, Chin-Chu; Wang, Nai-Phog; Chien, Chiang-Ting

    2016-01-01

    The use of a mixture of amino acids caused a selective apoptosis induction against a variety of tumor cell lines, reduced the adverse effects of anti-cancer drugs and increased the sensitivity of tumor cells to chemotherapeutic agents. We evaluated the effects and underlying mechanisms of soy-derived multiple amino acids’ oral supplementation on the therapeutic efficacy of low-dose cyclophosphamide (CTX) and on tumor growth, apoptosis, and autophagy in severe combined immunodeficiency (SCID) mice that were injected with sarcoma-180 (S-180) cells. 3-methyladenine or siRNA knockdown of Atg5 was used to evaluate its effect on sarcoma growth. A comparison of mice with implanted sarcoma cells, CTX, and oral saline and mice with implanted sarcoma cells, CTX, and an oral soy-derived multiple amino acid supplement indicated that the soy-derived multiple amino acid supplement significantly decreased overall sarcoma growth, increased the Bax/Bcl-2 ratio, caspase 3 expression, and apoptosis, and depressed LC3 II-mediated autophagy. Treatment with 3-methyladenine or Atg5 siRNA elicited similar responses as CTX plus soy-derived multiple amino acid in downregulating autophagy and upregulating apoptosis. A low dose of CTX combined with an oral soy-derived multiple amino acid supplement had a potent anti-tumor effect mediated through downregulation of autophagy and upregulation of apoptosis. PMID:27043621

  14. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.

    PubMed

    Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa

    2010-03-01

    The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

  15. Spontaneous Ejaculations Associated with Aripiprazole

    PubMed Central

    EĞİLMEZ, Oğuzhan; ÇELİK, Mustafa; KALENDEROĞLU, Aysun

    2016-01-01

    Sexual side effects are common with antipsychotic use. Spontaneous ejaculations without sexual arousal have been previously described with several typical and atypical antipsychotics. We report the case of a man who had spontaneous ejaculations after stopping risperidone and starting 30 mg/day aripiprazole. Spontaneous ejaculations ceased 3 days after decreasing the aripiprazole dose to 15 mg/day. He denied sexual fantasies or increased sexual desire during the period in which he had spontaneous ejaculations. The partial agonistic effect of aripiprazole on D2 receptors may have augmented the mesolimbic dopaminergic pathway, which was suppressed by risperidone, causing spontaneous ejaculations in this patient. Serotoninergic effects of aripiprazole should also be considered. This unusual side effect should be questioned, particularly in patients who recieve aripiprazole after D2-blocking antipsychotics; otherwise, this side effect may cause embarrassement and noncompliance. PMID:28360773

  16. Increasing the Affinity Between Carbon-Coated LiFePO4/C Electrodes and Conventional Organic Electrolyte by Spontaneous Grafting of a Benzene-Trifluoromethylsulfonimide Moiety.

    PubMed

    Delaporte, Nicolas; Perea, Alexis; Lebègue, Estelle; Ladouceur, Sébastien; Zaghib, Karim; Bélanger, Daniel

    2015-08-26

    The grafting of benzene-trifluoromethylsulfonimide groups on LiFePO4/C was achieved by spontaneous reduction of in situ generated diazonium ions of the corresponding 4-amino-benzene-trifluoromethylsulfonimide. The diazotization of 4-amino-benzene-trifluoromethylsulfonimide was a slow process that required a high concentration of precursors to promote the spontaneous grafting reaction. Contact angle measurements showed a hydrophilic surface was produced after the reaction that is consistent with grafting of benzene-trifluoromethylsulfonimide groups. Elemental analysis data revealed a 2.1 wt % loading of grafted molecules on the LiFePO4/C powder. Chemical oxidation of the cathode material during the grafting reaction was detected by X-ray diffraction and quantified by inductively coupled plasma atomic emission spectrometry. Surface modification improves the wettability of the cathode material, and better discharge capacities were obtained for modified electrodes at high C-rate. In addition, electrochemical impedance spectroscopy showed the resistance of the modified cathode was lower than that of the bare LiFePO4/C film electrode. Moreover, the modified cathode displayed superior capacity retention after 200 cycles of charge/discharge at 1 C.

  17. Homologous electron transport components fail to increase fatty acid hydroxylation in transgenic Arabidopsis thaliana

    PubMed Central

    Wayne, Laura L.; Browse, John

    2013-01-01

    Ricinoleic acid, a hydroxylated fatty acid (HFA) present in castor ( Ricinus communis) seeds, is an important industrial commodity used in products ranging from inks and paints to polymers and fuels. However, due to the deadly toxin ricin and allergens also present in castor, it would be advantageous to produce ricinoleic acid in a different agricultural crop. Unfortunately, repeated efforts at heterologous expression of the castor fatty acid hydroxylase (RcFAH12) in the model plant Arabidopsis thaliana have produced only 17-19% HFA in the seed triacylglycerols (TAG), whereas castor seeds accumulate up to 90% ricinoleic acid in the endosperm TAG. RcFAH12 requires an electron supply from NADH:cytochrome b5 reductase (CBR1) and cytochrome b5 (Cb5) to synthesize ricinoleic acid. Previously, our laboratory found a mutation in the Arabidopsis CBR1 gene, cbr1-1, that caused an 85% decrease in HFA levels in the RcFAH12 Arabidopsis line. These results raise the possibility that electron supply to the heterologous RcFAH12 may limit the production of HFA. Therefore, we hypothesized that by heterologously expressing RcCb5, the reductant supply to RcFAH12 would be improved and lead to increased HFA accumulation in Arabidopsis seeds. Contrary to this proposal, heterologous expression of the top three RcCb5 candidates did not increase HFA accumulation. Furthermore, coexpression of RcCBR1 and RcCb5 in RcFAH12 Arabidopsis also did not increase in HFA levels compared to the parental lines. These results demonstrate that the Arabidopsis electron transfer system is supplying sufficient reductant to RcFAH12 and that there must be other bottlenecks limiting the accumulation of HFA. PMID:24555099

  18. Intra-articular hyaluronic acid increases cartilage breakdown biomarker in patients with knee osteoarthritis.

    PubMed

    Gonzalez-Fuentes, Alexandra M; Green, David M; Rossen, Roger D; Ng, Bernard

    2010-06-01

    Intra-articular hyaluronic acid has been used in treatment of patients with knee osteoarthritis. Though its effect on pain has been well studied, it is not clear how it affects the articular cartilage. This is a preliminary study to evaluate the kinetics of urinary collagen type-II C-telopeptide (CTX-II) as a biomarker of collagen breakdown in response to intra-articular hyaluronic acid injection in patients with symptomatic knee osteoarthritis. Intra-articular injections of hyaluronan were administered to ten patients with symptomatic knee osteoarthritis. Urine collection for urinary CTX-II was obtained at baseline, before each injection and once every other week for a total of 6 months. Urine CTX-II was measured using a CartiLaps(c) ELISA kit. There was a statistically significant increase (p = 0.0136) in CTX-II a week after the third intra-articular injection of hyaluronic acid (6,216 ng/mmol +/- 4,428) compared with baseline (2,233 ng/mmol +/- 1,220). This increase in CTX-II was sustained throughout the entire 6 months follow-up period (repeated measures ANOVA, p < 0.015). This is the first study of changes in an osteoarthritis biomarker after intra-articular hyaluronic acid injections in patients with symptomatic knee osteoarthritis. Contrary to our initial hypothesis that CTX-II levels should decrease after intra-articular hyaluronic acid injections, we found a significant increase in urinary CTX-II levels that was sustained throughout the study. These observations suggest that intra-articular hyaluronic acid injections may accelerate cartilage breakdown in patients with symptomatic knee osteoarthritis. The responsible mechanisms are unknown and warrant further study.

  19. Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture1[OPEN

    PubMed Central

    Monda, Keina; Araki, Hiromitsu; Kuhara, Satoru; Ishigaki, Genki; Akashi, Ryo; Negi, Juntaro; Kojima, Mikiko; Sakakibara, Hitoshi; Takahashi, Sho; Hashimoto-Sugimoto, Mimi; Goto, Nobuharu; Iba, Koh

    2016-01-01

    The rate of gas exchange in plants is regulated mainly by stomatal size and density. Generally, higher densities of smaller stomata are advantageous for gas exchange; however, it is unclear what the effect of an extraordinary change in stomatal size might have on a plant’s gas-exchange capacity. We investigated the stomatal responses to CO2 concentration changes among 374 Arabidopsis (Arabidopsis thaliana) ecotypes and discovered that Mechtshausen (Me-0), a natural tetraploid ecotype, has significantly larger stomata and can achieve a high stomatal conductance. We surmised that the cause of the increased stomatal conductance is tetraploidization; however, the stomatal conductance of another tetraploid accession, tetraploid Columbia (Col), was not as high as that in Me-0. One difference between these two accessions was the size of their stomatal apertures. Analyses of abscisic acid sensitivity, ion balance, and gene expression profiles suggested that physiological or genetic factors restrict the stomatal opening in tetraploid Col but not in Me-0. Our results show that Me-0 overcomes the handicap of stomatal opening that is typical for tetraploids and achieves higher stomatal conductance compared with the closely related tetraploid Col on account of larger stomatal apertures. This study provides evidence for whether larger stomatal size in tetraploids of higher plants can improve stomatal conductance. PMID:26754665

  20. Acid retention with reduced glomerular filtration rate increases urine biomarkers of kidney and bone injury.

    PubMed

    Wesson, Donald E; Pruszynski, Jessica; Cai, Wendy; Simoni, Jan

    2017-04-01

    Diets high in acid of developed societies that do not cause metabolic acidosis in patients with chronic kidney disease nevertheless appear to cause acid retention with associated morbidity, particularly in those with reduced glomerular filtration rate. Here we used a rat 2/3 nephrectomy model of chronic kidney disease to study induction and maintenance of acid retention and its consequences on indicators of kidney and bone injury. Dietary acid was increased in animals eating base-producing soy protein with acid-producing casein and in casein-eating animals with added ammonium chloride. Using microdialysis to measure the kidney cortical acid content, we found that nephrectomized animals had greater acid retention than sham-operated animals when both ate the soy diet. Each increment in dietary acid further increased acid retention more in nephrectomized than in sham rats. Nephrectomized and sham animals achieved similar steady-state daily urine net acid excretion in response to increments in dietary acid but nephrectomized animals took longer to do so, contributing to greater acid retention that was maintained until the increased dietary acid was stopped. Acid retention was associated with increased urine excretion of both N-acetyl-β-D-glucosaminidase and deoxypyridinoline, greater in nephrectomized than control rats, consistent with kidney tubulointerstitial and bone matrix injury, respectively. Greater acid retention in nephrectomized than control animals was induced by a slower increase in urinary net acid excretion rate in response to the increment in dietary acid and also maintained until the dietary acid increment was stopped. Thus, acid retention increased biomarkers of kidney and bone injury in the urine, supporting untoward consequences to these two tissues.

  1. Spontaneous Coronary Artery Dissection

    MedlinePlus

    Spontaneous coronary artery dissection (SCAD) Overview By Mayo Clinic Staff Spontaneous coronary artery dissection — sometimes referred to as SCAD — is an ... the blood vessels in the heart. Spontaneous coronary artery dissection (SCAD) can slow or block blood flow ...

  2. Conjugated linoleic acid increases in milk from cows fed condensed corn distillers solubles and fish oil.

    PubMed

    Bharathan, M; Schingoethe, D J; Hippen, A R; Kalscheur, K F; Gibson, M L; Karges, K

    2008-07-01

    Twelve lactating Holstein cows were randomly assigned to 1 of 4 experimental diets in a replicated 4 x 4 Latin square design with 4-wk periods to ascertain the lactational response to feeding fish oil (FO), condensed corn distillers solubles (CDS) as a source of extra linoleic acid, or both. Diets contained either no FO or 0.5% FO and either no CDS or 10% CDS in a 2 x 2 factorial arrangement of treatments. Diets were fed as total mixed rations for ad libitum consumption. The forage to concentrate ratio was 55:45 on a dry matter basis for all diets and the diets contained 16.2% crude protein. The ether extract concentrations were 2.86, 3.22, 4.77, and 5.02% for control, FO, CDS, and FOCDS diets, respectively. Inclusion of FO or CDS or both had no effect on dry matter intake, feed efficiency, body weight, and body condition scores compared with diets without FO and CDS, respectively. Yields of milk (33.3 kg/d), energy-corrected milk, protein, lactose, and milk urea N were similar for all diets. Feeding FO and CDS decreased milk fat percentages (3.85, 3.39, 3.33, and 3.12%) and yields compared with diets without FO and CDS. Proportions of trans-11 C18:1 (vaccenic acid), cis-9 trans-11 conjugated linoleic acid (CLA; 0.52, 0.90, 1.11, and 1.52 g/100 g of fatty acids), and trans-10 cis-12 CLA (0.07, 0.14, 0.13, and 0.16 g/100 g of fatty acids) in milk fat were increased by FO and CDS. No interactions were observed between FO and CDS on cis-9 trans-11 CLA although vaccenic acid tended to be higher with the interaction. The addition of CDS to diets increased trans-10 C18:1. Greater ratios of vaccenic acid to cis-9 trans-11 CLA in plasma than in milk fat indicate tissue synthesis of cis-9 trans-11 CLA in the mammary gland from vaccenic acid in cows fed FO or CDS. Feeding fish oil at 0.5% of diet dry matter with a C18:2 n-6 rich source such as CDS increased the milk CLA content but decreased milk fat percentages.

  3. Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion

    SciTech Connect

    Lubienski, Andreas Duex, Markus; Lubienski, Katrin; Grenacher, Lars; Kauffmann, Guenter

    2005-12-15

    Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance, and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.

  4. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.

    PubMed

    Chino, Yukihiro; Samukawa, Yoshishige; Sakai, Soichi; Nakai, Yasuhiro; Yamaguchi, Jun-ichi; Nakanishi, Takeo; Tamai, Ikumi

    2014-10-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been reported to lower the serum uric acid (SUA) level. To elucidate the mechanism responsible for this reduction, SUA and the urinary excretion rate of uric acid (UE(UA)) were analysed after the oral administration of luseogliflozin, a SGLT2 inhibitor, to healthy subjects. After dosing, SUA decreased, and a negative correlation was observed between the SUA level and the UE(UA), suggesting that SUA decreased as a result of the increase in the UE(UA). The increase in UE(UA) was correlated with an increase in urinary D-glucose excretion, but not with the plasma luseogliflozin concentration. Additionally, in vitro transport experiments showed that luseogliflozin had no direct effect on the transporters involved in renal UA reabsorption. To explain that the increase in UE(UA) is likely due to glycosuria, the study focused on the facilitative glucose transporter 9 isoform 2 (GLUT9ΔN, SLC2A9b), which is expressed at the apical membrane of the kidney tubular cells and transports both UA and D-glucose. It was observed that the efflux of [(14) C]UA in Xenopus oocytes expressing the GLUT9 isoform 2 was trans-stimulated by 10 mm D-glucose, a high concentration of glucose that existed under SGLT2 inhibition. On the other hand, the uptake of [(14) C]UA by oocytes was cis-inhibited by 100 mm D-glucose, a concentration assumed to exist in collecting ducts. In conclusion, it was demonstrated that the UE(UA) could potentially be increased by luseogliflozin-induced glycosuria, with alterations of UA transport activity because of urinary glucose.

  5. Association between Increased Gastric Juice Acidity and Sliding Hiatal Hernia Development in Humans

    PubMed Central

    Kishikawa, Hiroshi; Kimura, Kayoko; Ito, Asako; Arahata, Kyoko; Takarabe, Sakiko; Kaida, Shogo; Kanai, Takanori; Miura, Soichiro; Nishida, Jiro

    2017-01-01

    Objectives Several clinical factors; overweight, male gender and increasing age, have been implicated as the etiology of hiatal hernia. Esophageal shortening due to acid perfusion in the lower esophagus has been suggested as the etiological mechanism. However, little is known about the correlation between gastric acidity and sliding hiatus hernia formation. This study examined whether increased gastric acid secretion is associated with an endoscopic diagnosis of hiatal hernia. Methods A total of 286 consecutive asymptomatic patients (64 were diagnosed as having a hiatal hernia) who underwent upper gastrointestinal endoscopy were studied. Clinical findings including fasting gastric juice pH as an indicator of acid secretion, age, sex, body mass index, and Helicobacter pylori infection status determined by both Helicobacter pylori serology and pepsinogen status, were evaluated to identify predictors in subjects with hiatal hernia. Results Male gender, obesity with a body mass index >25, and fasting gastric juice pH were significantly different between subjects with and without hiatal hernia. The cut-off point of fasting gastric juice pH determined by receiver operating curve analysis was 2.1. Multivariate regression analyses using these variables, and age, which is known to be associated with hiatal hernia, revealed that increased gastric acid secretion with fasting gastric juice pH <2.1 (OR = 2.60, 95% CI: 1.38–4.90) was independently associated with hiatal hernia. Moreover, previously reported risk factors including male gender (OR = 2.32, 95% CI: 1.23–4.35), body mass index >25 (OR = 3.49, 95% CI: 1.77–6.91) and age >65 years (OR = 1.86, 95% CI: 1.00–3.45), were also significantly associated with hiatal hernia. Conclusions This study suggests that increased gastric acid secretion independently induces the development of hiatal hernia in humans. These results are in accordance with the previously reported hypothesis that high gastric acid itself induces

  6. Minocycline, but not ascorbic acid, increases motor activity and extends the life span of Drosophila melanogaster.

    PubMed

    Mora, Marylhi; Medina-Leendertz, Shirley J; Bonilla, Ernesto; Terán, Raikelin E; Paz, Milagros C; Arcaya, José Luis

    2013-06-01

    In the present study we compared the effects of minocycline and ascorbic acid in the life span, motor activity and lipid peroxidation of Drosophila melanogaster, in an effort to find a substance capable of providing protection against oxidative stress in aging. In the flies treated with minocycline a very significant increase in the life span (101 +/- 1.33 days) was observed when compared to those treated with ascorbic acid and controls (42.3% and 38.4%, respectively). The motor activity of minocycline treated flies also increased significantly with respect to control and ascorbic acid fed flies, from the 3rd to the 9th week of treatment. With regard to lipid peroxidation, it was found that the levels of malondialdehyde (MDA) in flies treated with minocycline showed no statistical differences to the control on the first day of treatment, but a significantly lower content on the day of 50% survival. In contrast, in flies treated with ascorbic acid significantly elevated levels of MDA compared to control and minocycline treated flies were detected throughout. These results suggest a protective effect of minocycline against oxidative stress and aging in D. melanogaster. An inhibitory effect on reactive oxygen species production may be an important contributing factor.

  7. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.

    PubMed

    Brown, Stephen H; Bashkirova, Lena; Berka, Randy; Chandler, Tyler; Doty, Tammy; McCall, Keith; McCulloch, Michael; McFarland, Sarah; Thompson, Sheryl; Yaver, Debbie; Berry, Alan

    2013-10-01

    Malic acid, a petroleum-derived C4-dicarboxylic acid that is used in the food and beverage industries, is also produced by a number of microorganisms that follow a variety of metabolic routes. Several members of the genus Aspergillus utilize a two-step cytosolic pathway from pyruvate to malate known as the reductive tricarboxylic acid (rTCA) pathway. This simple and efficient pathway has a maximum theoretical yield of 2 mol malate/mol glucose when the starting pyruvate originates from glycolysis. Production of malic acid by Aspergillus oryzae NRRL 3488 was first improved by overexpression of a native C4-dicarboxylate transporter, leading to a greater than twofold increase in the rate of malate production. Overexpression of the native cytosolic alleles of pyruvate carboxylase and malate dehydrogenase, comprising the rTCA pathway, in conjunction with the transporter resulted in an additional 27 % increase in malate production rate. A strain overexpressing all three genes achieved a malate titer of 154 g/L in 164 h, corresponding to a production rate of 0.94 g/L/h, with an associated yield on glucose of 1.38 mol/mol (69 % of the theoretical maximum). This rate of malate production is the highest reported for any microbial system.

  8. Ceramides increase the activity of the secretory phospholipase A2 and alter its fatty acid specificity.

    PubMed Central

    Koumanov, Kamen S; Momchilova, Albena B; Quinn, Peter J; Wolf, Claude

    2002-01-01

    Modulation of human recombinant secretory type II phospholipase A(2) activity by ceramide and cholesterol was investigated using model glycerophospholipid substrates composed of phosphatidylethanolamine and phosphatidylserine dispersed in aqueous medium. Enzyme activity was monitored by measurement of released fatty acids using capillary GC-MS. Fatty acids from the sn-2 position of the phospholipids were hydrolysed by the enzyme in proportion to the relative abundance of the phospholipid in the substrate. Addition of increasing amounts of ceramide to the substrate progressively enhanced phospholipase activity. The increased activity was accomplished largely by preferential hydrolysis of polyunsaturated fatty acids, particularly arachidonic acid, derived from phosphatidylethanolamine. The addition of sphingomyelin to the substrate glycerophospholipids inhibited phospholipase activity but its progressive substitution by ceramide, so as to mimic sphingomyelinase activity, counteracted the inhibition. The presence of cholesterol in dispersions of glycerophospholipid-substrate-containing ceramides suppressed activation of the enzyme resulting from the presence of ceramide. The molecular basis of enzyme modulation was investigated by analysis of the phase structure of the dispersed lipid substrate during temperature scans from 46 to 20 degrees C using small-angle synchrotron X-ray diffraction. These studies indicated that intermediate structures created after ceramide-dependent phase separation of hexagonal and lamellar phases represent the most susceptible form of the substrate for enzyme hydrolysis. PMID:11903045

  9. Long-term melatonin administration increases polyunsaturated fatty acid percentage in plasma lipids of hypercholesterolemic rats.

    PubMed

    Pita, Maria L; Hoyos, Marta; Martin-Lacave, Inés; Osuna, Carmen; Fernández-Santos, Jose M; Guerrero, Juan M

    2002-04-01

    This study was designed to investigate the effect of melatonin on the fatty acid composition of plasma and tissue lipids. Melatonin administration to rats fed with a standard diet only increased long-chain n-6 polyunsaturated fatty acids (PUFA) in total plasma lipids and liver phospholipids but induced significant changes in hypercholesterolemic rats. In plasma, palmitoleic and oleic acids increased and n-6 and n-3 PUFA decreased in hypercholesterolemic rats; theses changes were reversed by melatonin administration. The analysis of lipid fractions revealed that only the cholesteryl ester fraction was affected by melatonin. Histological studies of the carotid artery intima revealed the appearance, in hypercholesterolemic rats, of fatty streaks produced by a mass of foam cells covered by the endothelium and by a thin layer of mononucleated cells. These changes were prevented by melatonin. We conclude that long-term melatonin administration modifies the fatty acid composition of rat plasma and liver lipids and ameliorates the arterial fatty infiltration induced by cholesterol.

  10. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  11. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.

    PubMed

    Tang, Xiao Xiao; Ostedgaard, Lynda S; Hoegger, Mark J; Moninger, Thomas O; Karp, Philip H; McMenimen, James D; Choudhury, Biswa; Varki, Ajit; Stoltz, David A; Welsh, Michael J

    2016-03-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3- concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator-dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF.

  12. Spontaneous spinal epidural abscess.

    PubMed

    Ellanti, P; Morris, S

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  13. Increased amino acid supply potentiates glucose-stimulated insulin secretion but does not increase β-cell mass in fetal sheep.

    PubMed

    Gadhia, Monika M; Maliszewski, Anne M; O'Meara, Meghan C; Thorn, Stephanie R; Lavezzi, Jinny R; Limesand, Sean W; Hay, William W; Brown, Laura D; Rozance, Paul J

    2013-02-15

    Amino acids and glucose acutely stimulate fetal insulin secretion. In isolated adult pancreatic islets, amino acids potentiate glucose-stimulated insulin secretion (GSIS), but whether amino acids have this same effect in the fetus is unknown. Therefore, we tested the effects of increased fetal amino acid supply on GSIS and morphology of the pancreas. We hypothesized that increasing fetal amino acid supply would potentiate GSIS. Singleton fetal sheep received a direct intravenous infusion of an amino acid mixture (AA) or saline (CON) for 10-14 days during late gestation to target a 25-50% increase in fetal branched-chain amino acids (BCAA). Early-phase GSIS increased 150% in the AA group (P < 0.01), and this difference was sustained for the duration of the hyperglycemic clamp (105 min) (P < 0.05). Glucose-potentiated arginine-stimulated insulin secretion (ASIS), pancreatic insulin content, and pancreatic glucagon content were similar between groups. β-Cell mass and area were unchanged between groups. Baseline and arginine-stimulated glucagon concentrations were increased in the AA group (P < 0.05). Pancreatic α-cell mass and area were unchanged. Fetal and pancreatic weights were similar. We conclude that a sustained increase of amino acid supply to the normally growing late-gestation fetus potentiated fetal GSIS but did not affect the morphology or insulin content of the pancreas. We speculate that increased β-cell responsiveness (insulin secretion) following increased amino acid supply may be due to increased generation of secondary messengers in the β-cell. This may be enhanced by the paracrine action of glucagon on the β-cell.

  14. Increased amino acid supply potentiates glucose-stimulated insulin secretion but does not increase β-cell mass in fetal sheep

    PubMed Central

    Gadhia, Monika M.; Maliszewski, Anne M.; O'Meara, Meghan C.; Thorn, Stephanie R.; Lavezzi, Jinny R.; Limesand, Sean W.; Hay, William W.; Brown, Laura D.

    2013-01-01

    Amino acids and glucose acutely stimulate fetal insulin secretion. In isolated adult pancreatic islets, amino acids potentiate glucose-stimulated insulin secretion (GSIS), but whether amino acids have this same effect in the fetus is unknown. Therefore, we tested the effects of increased fetal amino acid supply on GSIS and morphology of the pancreas. We hypothesized that increasing fetal amino acid supply would potentiate GSIS. Singleton fetal sheep received a direct intravenous infusion of an amino acid mixture (AA) or saline (CON) for 10–14 days during late gestation to target a 25–50% increase in fetal branched-chain amino acids (BCAA). Early-phase GSIS increased 150% in the AA group (P < 0.01), and this difference was sustained for the duration of the hyperglycemic clamp (105 min) (P < 0.05). Glucose-potentiated arginine-stimulated insulin secretion (ASIS), pancreatic insulin content, and pancreatic glucagon content were similar between groups. β-Cell mass and area were unchanged between groups. Baseline and arginine-stimulated glucagon concentrations were increased in the AA group (P < 0.05). Pancreatic α-cell mass and area were unchanged. Fetal and pancreatic weights were similar. We conclude that a sustained increase of amino acid supply to the normally growing late-gestation fetus potentiated fetal GSIS but did not affect the morphology or insulin content of the pancreas. We speculate that increased β-cell responsiveness (insulin secretion) following increased amino acid supply may be due to increased generation of secondary messengers in the β-cell. This may be enhanced by the paracrine action of glucagon on the β-cell. PMID:23211516

  15. Humic substances increase survival of freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2013-02-01

    Humic substances (HS) are known to decrease the toxicity of heavy metals to aquatic organisms, and it has been suggested that they can provide buffering protection in low pH conditions. Despite this, little is known about the ability for HS to increase survival to acid mine drainage (AMD). In this study, the ability of HS to increase survival of the freshwater shrimp (Caridina sp. D sensu Page et al. in Biol Lett 1:139-142, 2005) to acid mine drainage was investigated using test waters collected from the Mount Morgan open pit in Central Queensland with the addition of Aldrich humic acid (AHA). The AMD water from the Mount Morgan open pit is highly acidic (pH 2.67) as well as contaminated with heavy metals (1780 mg/L aluminum, 101 mg/L copper [Cu], 173 mg/L manganese, 51.8 mg/L zinc [Zn], and 51.8 mg/L iron). Freshwater shrimp were exposed to dilutions in the range of 0.5 % to 5 % AMD water with and without the addition of 10 or 20 mg/L AHA. In the absence of HS, all shrimp died in the 2.5 % AMD treatment. In contrast, addition of HS increased survival in the 2.5 % AMD treatment by ≤66 % as well as significantly decreased the concentration of dissolved Cu, cobalt, cadmium, and Zn. The decreased toxicity of AMD in the presence of HS is likely to be due to complexation and precipitation of heavy metals with the HS; it is also possible that HS caused changes to the physiological condition of the shrimp, thus increasing their survival. These results are valuable in contributing to an improved understanding of potential role of HS in ameliorating the toxicity of AMD environments.

  16. Increasing Fatty Acid Oxidation Remodels the Hypothalamic Neurometabolome to Mitigate Stress and Inflammation

    PubMed Central

    McFadden, Joseph W.; Aja, Susan; Li, Qun; Bandaru, Veera V. R.; Kim, Eun-Kyoung; Haughey, Norman J.; Kuhajda, Francis P.; Ronnett, Gabriele V.

    2014-01-01

    Modification of hypothalamic fatty acid (FA) metabolism can improve energy homeostasis and prevent hyperphagia and excessive weight gain in diet-induced obesity (DIO) from a diet high in saturated fatty acids. We have shown previously that C75, a stimulator of carnitine palmitoyl transferase-1 (CPT-1) and fatty acid oxidation (FAOx), exerts at least some of its hypophagic effects via neuronal mechanisms in the hypothalamus. In the present work, we characterized the effects of C75 and another anorexigenic compound, the glycerol-3-phosphate acyltransferase (GPAT) inhibitor FSG67, on FA metabolism, metabolomics profiles, and metabolic stress responses in cultured hypothalamic neurons and hypothalamic neuronal cell lines during lipid excess with palmitate. Both compounds enhanced palmitate oxidation, increased ATP, and inactivated AMP-activated protein kinase (AMPK) in hypothalamic neurons in vitro. Lipidomics and untargeted metabolomics revealed that enhanced catabolism of FA decreased palmitate availability and prevented the production of fatty acylglycerols, ceramides, and cholesterol esters, lipids that are associated with lipotoxicity-provoked metabolic stress. This improved metabolic signature was accompanied by increased levels of reactive oxygen species (ROS), and yet favorable changes in oxidative stress, overt ER stress, and inflammation. We propose that enhancing FAOx in hypothalamic neurons exposed to excess lipids promotes metabolic remodeling that reduces local inflammatory and cell stress responses. This shift would restore mitochondrial function such that increased FAOx can produce hypothalamic neuronal ATP and lead to decreased food intake and body weight to improve systemic metabolism. PMID:25541737

  17. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia

    PubMed Central

    Brose, Stephen A.; Golovko, Svetlana A.; Golovko, Mikhail Y.

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on NADH2+/NAD+ and NADPH2+/NADP+ ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased NADH2+/NAD+ and NADPH2+/NADP+ ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke. PMID:27965531

  18. Lignosulfonic acid promotes hypertrophy in 3T3-L1 cells without increasing lipid content and increases their 2-deoxyglucose uptake

    PubMed Central

    Hasegawa, Yasushi; Nakagawa, Erina; Kadota, Yukiya; Kawaminami, Satoshi

    2017-01-01

    Objective Adipose tissue plays a key role in the development of obesity and diabetes. We previously reported that lignosulfonic acid suppresses the rise in blood glucose levels through the inhibition of α-glucosidase activity and intestinal glucose absorption. The purpose of this study is to examine further biological activities of lignosulfonic acid. Methods In this study, we examined the effect of lignosulfonic acid on differentiation of 3T3-L1 cells. Results While lignosulfonic acid inhibited proliferation (mitotic clonal expansion) after induction of differentiation, lignosulfonic acid significantly increased the size of accumulated lipid droplets in the cells. Semi-quantitative reverse transcription polymerase chain reaction analysis showed that lignosulfonic acid increased the expression of the adipogenic transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ), leading to increased glucose transporter 4 (Glut-4) expression and 2-deoxyglucose uptake in differentiated 3T3-L1 cells. Additionally, feeding lignosulfonic acid to diabetic KK-Ay mice suppressed increase of blood glucose level. Conclusion Lignosulfonic acid may be useful as a functional anti-diabetic component of food. PMID:27383805

  19. Dicarboxylic acids with limited numbers of hydrocarbons stabilize cell membrane and increase osmotic resistance in rat erythrocytes.

    PubMed

    Mineo, Hitoshi; Amita, Nozomi; Kawawake, Megumi; Higuchi, Ayaka

    2013-11-01

    We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs.

  20. Dietary fatty acid enrichment increases egg size and quality of yellow seahorse Hippocampus kuda.

    PubMed

    Saavedra, M; Masdeu, M; Hale, P; Sibbons, C M; Holt, W V

    2014-02-01

    Seahorses populations in the wild have been declining and to restore them a better knowledge of seahorse reproduction is required. This study examines the effect of dietary quality on seahorse fecundity and egg quality. Two different diets were tested with Hippocampus kuda females: frozen mysis (control) and frozen mysis enriched with a liposome spray containing essential fatty acids. Diets were given to females (two groups of five) over a seven week period. After this period, males (fed the control diet) and females were paired and the eggs dropped by the females were collected. Fatty acid profile were analysed and eggs were counted and measured. Results showed that females fed on enriched mysis had larger eggs and that these had a higher content of total polyunsaturated fatty acids. The size of the egg was especially affected in the first spawn, where egg size for females fed the enriched diet was significantly higher than the egg size from control females. This effect was reduced in the following spawning where no significant differences were found. Egg size is an important quality descriptor as seahorse juveniles originating from smaller eggs and/or eggs of poor quality will have less chances of overcoming adverse conditions in the wild and consequently have lower survival and growth rates. This study shows that enriching frozen mysis with polyunsaturated fatty acids increases egg size and egg quality of H. kuda.

  1. Mechanisms of p-methoxycinnamic acid-induced increase in insulin secretion.

    PubMed

    Adisakwattana, S; Hsu, W H; Yibchok-anun, S

    2011-10-01

    p-Methoxycinnamic acid (p-MCA) is a cinnamic acid derivative that shows various pharmacologic actions such as hepatoprotective and antihyperglycemic activities. The present study was to elucidate the mechanisms by which p-MCA increases [Ca²⁺]i and insulin secretion in INS-1 cells. p-MCA (100 μM) increased [Ca²⁺]i in INS-1 cells. The p-MCA-induced insulin secretion and rise in [Ca²⁺]i were markedly inhibited in the absence of extracellular Ca²⁺ or in the presence of an L-type Ca²⁺ channel blocker nimodipine. These results suggested that p-MCA increased Ca²⁺ influx via the L-type Ca²⁺ channels. Diazoxide, an ATP-sensitive K⁺ channel opener, did not alter p-MCA-induced insulin secretion, nor [Ca²⁺]i response. In addition, p-MCA enhanced glucose-, glibenclamide-induced insulin secretion whereas it also potentiated the increase in insulin secretion induced by arginine, and Bay K 8644, an L-type Ca²⁺ channel agonist. Taken together, our results suggest that p-MCA stimulated insulin secretion from pancreatic β-cells by increasing Ca²⁺ influx via the L-type Ca²⁺ channels, but not through the closure of ATP-sensitive K⁺ channels.

  2. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats.

    PubMed

    Toufektsian, Marie-Claire; Salen, Patricia; Laporte, François; Tonelli, Chiara; de Lorgeril, Michel

    2011-01-01

    Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained ~0.24 ± 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 μL/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60 mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids.

  3. Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells

    PubMed Central

    Armstrong, J L; Ruiz, M; Boddy, A V; Redfern, C P F; Pearson, A D J; Veal, G J

    2005-01-01

    Recent data indicate that isomerisation to all-trans retinoic acid (ATRA) is the key mechanism underlying the favourable clinical properties of 13-cis retinoic acid (13cisRA) in the treatment of neuroblastoma. Retinoic acid (RA) metabolism is thought to contribute to resistance, and strategies to modulate this may increase the clinical efficacy of 13cisRA. The aim of this study was to test the hypothesis that retinoids, such as acitretin, which bind preferentially to cellular retinoic acid binding proteins (CRABPs), or specific inhibitors of the RA hydroxylase CYP26, such as R116010, can increase the intracellular availability of ATRA. Incubation of SH-SY5Y cells with acitretin (50 μM) or R116010 (1 or 10 μM) in combination with either 10 μM ATRA or 13cisRA induced a selective increase in intracellular levels of ATRA, while 13cisRA levels were unaffected. CRABP was induced in SH-SY5Y cells in response to RA. In contrast, acitretin had no significant effect on intracellular retinoid concentrations in those neuroblastoma cell lines that showed little or no induction of CRABP after RA treatment. Both ATRA and 13cisRA dramatically induced the expression of CYP26A1 in SH-SY5Y cells, and treatment with R116010, but not acitretin, potentiated the RA-induced expression of a reporter gene and CYP26A1. The response of neuroblastoma cells to R116010 was consistent with inhibition of CYP26, indicating that inhibition of RA metabolism may further optimise retinoid treatment in neuroblastoma. PMID:15714209

  4. Dietary n-3 polyunsaturated fatty acids increase oxidative stress in rats with intracerebral hemorrhagic stroke.

    PubMed

    Park, Yongsoon; Nam, Somyoung; Yi, Hyeong-Joong; Hong, Hyun-Jong; Lee, Myoungsook

    2009-11-01

    Intake of n-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been suggested to associate with an increased risk of hemorrhagic stroke. The present study was designed to investigate the hypothesis that EPA and DHA increase oxidative stress and hemorrhage volume in rats with intracerebral hemorrhagic (ICH) stroke. Thirty-five-week-old male rats were fed an American Institute of Nutrition-93M diet containing 0% (n = 27), 0.5% (n = 15), or 1% EPA + DHA of total energy for 5 weeks. Of 5 rats fed 1% EPA + DHA (41%), 5 died because of excessive bleeding within 12 hours after ICH surgery. Behavior test score and hemorrhage volume were significantly (P < .05) greater in the 1% EPA + DHA-fed rats than in other rats. Magnetic resonance imaging consistently showed that edema and bleeding were visible in only the rats fed 1% EPA + DHA. Levels of superoxide dismutase and glutathione were significantly (P < .05) lower in rats fed 0.5% and 1% EPA + DHA than those fed 0% EPA + DHA. Thiobarbituric acid-reactive substance content was significantly (P < .05) higher in 1% EPA + DHA-fed rats than in 0% and 0.5% EPA + DHA-fed rats. The level of 8-hydroxydeoxyguanosine was significantly (P < .05) higher in ICH rats with all diets than in sham surgery rats. Brain levels of EPA and DHA were highest in rats fed 1% EPA + DHA than in rats fed 0% and 0.5% EPA + DHA. These results suggested that intake of 1% EPA + DHA of total energy could lead to oxidative damage to the brain and thus increase the risk of intracerebral hemorrhagic stroke in this rat model.

  5. Dietary docosahexaenoic acid ameliorates, but rapeseed oil and safflower oil accelerate renal injury in stroke-prone spontaneously hypertensive rats as compared with soybean oil, which is associated with expression for renal transforming growth factor-beta, fibronectin and renin.

    PubMed

    Miyazaki, M; Takemura, N; Watanabe, S; Hata, N; Misawa, Y; Okuyama, H

    2000-01-03

    We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.

  6. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    PubMed

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid.

  7. Overexpression of PGC-1α Increases Peroxisomal and Mitochondrial Fatty Acid Oxidation in Human Primary Myotubes.

    PubMed

    Huang, Tai-Yu; Zheng, Donghai; Houmard, Joseph A; Brault, Jeffrey J; Hickner, Robert C; Cortright, Ronald N

    2017-01-10

    Peroxisomes are indispensable organelles for lipid metabolism in humans and their biogenesis has been assumed to be under regulation by peroxisome proliferator-activated receptors (PPARs). However, recent studies in hepatocytes suggest that the mitochondrial proliferator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) also acts as an upstream transcriptional regulator for enhancing peroxisomal abundance and associated activity. It is unknown whether the regulatory mechanism(s) for enhancing peroxisomal function is through the same node as mitochondrial biogenesis in human skeletal muscle (HSkM) and whether fatty acid oxidation (FAO) is affected. Primary myotubes from vastus lateralis biopsies from lean donors (BMI =24.0 ± 0.6 kg/m(2), N = 6) were exposed to adenovirus encoding human PGC-1α or GFP control. Peroxisomal biogenesis proteins (Peroxins) and genes (PEXs) responsible for proliferation and functions were assessed by western blotting and real-time qRT-PCR respectively. 1-(14)C palmitic acid and 1-(14)C lignoceric acid (exclusive peroxisomal specific substrate) were used to assess mitochondrial oxidation of peroxisomal derived metabolites. Following overexpression of PGC-1α, 1) Peroxisomal membrane protein 70kD (PMP70), PEX19, and mitochondrial citrate synthetase protein content were significantly elevated (P<0.05) 2) PGC-1α, PMP70, key PEXs, and peroxisomal β-oxidation mRNA expression levels were significantly upregulated (P<0.05) and 3) A concomitant increase in lignoceric acid oxidation by both peroxisomal and mitochondrial activity was observed (P<0.05). These novel findings demonstrate that, in addition to the proliferative effect on mitochondria, PGC-1α can induce peroxisomes and accompanying elevations in long-chain and very-long-chain fatty acid oxidation by a peroxisomal-mitochondrial functional cooperation as observed in HSkM cells.

  8. Increasing Soluble Phosphate Species by Treatment of Phosphate Rocks with Acidic Waste.

    PubMed

    Santos, Wedisson O; Hesterberg, Dean; Mattiello, Edson M; Vergütz, Leonardus; Barreto, Matheus S C; Silva, Ivo R; Souza Filho, Luiz F S

    2016-11-01

    The development of efficient fertilizers with a diminished environmental footprint will help meet the increasing demand for food and nutrients by a growing global population. Our objective was to evaluate whether an acidic mine waste (AMW) could be used beneficially by reacting it with sparingly soluble phosphate rocks (PRs) to produce more soluble P fertilizer materials. Three PRs from Brazil and Peru were reacted with different concentrations of AMW. Changes in mineralogy and P species were determined using a combination of X-ray diffraction and phosphorus K-edge XANES spectroscopy, in addition to extractable P concentrations. Increasing the AMW concentration typically increased extractable P. X-ray diffraction data showed transformation of apatite to other species when PRs were reacted with AMW at ≥50% (v/v) in water, with gypsum or anhydrite forming at AMW concentrations as low as 12.5%. Linear combination fitting analysis of X-ray absorption near edge structure spectra also indicated a progressive transformation of apatite to noncrystalline Fe(III)-phosphate and more soluble Ca-phosphates with increasing AMW concentration. Because this AMW is costly to dispose of, reacting it with PR to produce a higher-grade phosphate fertilizer material could decrease the environmental impacts of the AMW and diminish the consumption of pure acids in conventional P fertilizer production.

  9. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels.

    PubMed

    Park, Woo Hyun

    2017-02-01

    Gallic acid (GA; 3,4,5-triphydroxyl-benzoic acid) is widely dispersed in various plants, fruits and foods and it shows various biological properties including anticancer effects. This study investigated the effects of GA on HeLa cervical cancer cells in relation to cell death, reactive oxygen species (ROS) and glutathione (GSH). GA dose-dependently inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC) at 24 or 72 h. The susceptibility of HeLa cells to GA was higher than that of HUVEC. GA induced apoptosis in HeLa cells, which was accompanied by the loss of mitochondrial membrane potential (MMP; ∆ψm). GA increased ROS levels including O2•- in HeLa cells at 24 h and it also induced GSH depletion. N-acetyl cysteine (NAC) increased the growth inhibition of GA-treated HeLa cells and enhanced the death of these cells. NAC differently influenced ROS levels in GA-treated HeLa cells and significantly increased GSH depletion in these cells. L-buthionine sulfoximine (BSO) increased MMP (∆ψm) loss, ROS levels and GSH depletion in GA-treated HeLa cells. In conclusion, GA significantly inhibited the growth of HeLa cells. GA-induced HeLa cell death was tightly related to GSH depletion rather than ROS level changes.

  10. Increased expression of fatty acid binding protein 4 in preeclamptic Placenta and its relevance to preeclampsia.

    PubMed

    Yan, Yuying; Peng, Huilian; Wang, Peng; Wang, Hanzhi; Dong, Minyue

    2016-03-01

    The aim of this investigation was to determine the expression of fatty acid binding protein 4 (FABP4) in the placenta from women with preeclampsia and normal pregnancy, and to delineate the regulatory effects on thophoblast cell by FABP4. We determined the expression of FABP4 by real-time polymerase chain reaction (PCR) for messenger ribonucleic acid (mRNA) or enzyme-linked immunesorbent assay (ELISA) and Western blotting for protein. Small interference of ribonucleic acid (siRNA) and specific FABP4 inhibitor were used to inhibit FABP4. The proliferation, migration and invasion of trophoblastic cells (Swan-71 and Jar) were evaluated with cell counting kit-8, wound-healing test and transwell analysis respectively. We found the expression of FABP4 was significantly higher in the placenta of preeclamptic women than that of women with normal pregnancy (t = 4.244, P < 0.001 for mRNA; t = 4.536, P < 0.001 for protein). FABP4 siRNA significantly reduced the proliferation of trophoblasts (P < 0.001). The specific inhibition of FABP4 inhibited the proliferation of trophoblasts in a dose-dependent manner (P < 0.001) and the inhibitory effect increased as the concentration of inhibitor increased. FABP4 siRNA and specific inhibitor significantly decreased the migration (P < 0.001) and invasion (P < 0.001) of trophoblasts. We concluded the increase in placental FABP4 expression in preeclampsia may affect the function of trophoblast, and this increase may have a role in the pathogenesis of preeclampsia.

  11. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis.

    PubMed

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D; Browse, John

    2015-05-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies.

  12. Organic amendments increase soil solution phosphate concentrations in an acid soil: A controlled environment study

    SciTech Connect

    Schefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, R.

    2008-04-15

    Soil acidification affects at least 4 million hectares of agricultural land in Victoria, Australia. Low soil pH can inhibit plant growth through increased soluble aluminum (Al) concentrations and decreased available phosphorus (P). The addition of organic amendments may increase P availability through competition for P binding sites, solubilization of poorly soluble P pools, and increased solution pH. The effect of two organic amendments (lignite and compost) on P solubility in an acid soil was determined through controlled environment (incubation) studies. Three days after the addition of lignite and compost, both treatments increased orthophosphate and total P measured in soil solution, with the compost treatments having the greatest positive effect. Increased incubation time (26 days) increased soil solution P concentrations in both untreated and amended soils, with the greatest effect seen in total P concentrations. The measured differences in solution P concentrations between the lignite- and compost-amended treatments were likely caused by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment with lignite or compost also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. Based on the results presented, it is proposed that the measured increase in soil solution P with amendment addition was likely caused by both chemical and biological processes, including biotic and abiotic P solubilization reactions, and the formation of soluble organic-metal complexes.

  13. Night-time sedating H1-antihistamine increases daytime somnolence but not treatment efficacy in chronic spontaneous urticaria: a randomized controlled trial

    PubMed Central

    Staevska, M; Gugutkova, M; Lazarova, C; Kralimarkova, T; Dimitrov, V; Zuberbier, T; Church, MK; Popov, TA

    2014-01-01

    Background Many physicians believe that the most effective way to treat chronic urticaria is to take a nonsedating second-generation H1-antihistamine in the morning and a sedating first-generation H1-antihistamine, usually hydroxyzine, at night to enhance sleep. But is this belief well founded? Objectives To test this belief by comparing the effectiveness and prevalence of unwanted sedative effects when treating patients with chronic spontaneous urticaria (CSU) with levocetirizine 15 mg daily plus hydroxyzine 50 mg at night (levocetirizine plus hydroxyzine) vs. levocetirizine 20 mg daily (levocetirizine monotherapy). Methods In this randomized, double-blind, cross-over study, 24 patients with difficult-to-treat CSU took levocetirizine plus hydroxyzine or levocetirizine monotherapy for periods of 5 days each. At the end of each treatment period, assessments were made of quality of life (Chronic Urticaria Quality of Life Questionnaire, CU-Q2oL), severity of urticaria symptoms (Urticaria Activity Score, UAS), sleep disturbance during the night and daytime somnolence. Results Both treatments significantly decreased UAS, night-time sleep disturbances and CU-Q2oL scores (P < 0·001) without significant differences between the two. Compared with baseline, daytime somnolence was significantly reduced by levocetirizine monotherapy (P = 0·006) but not by levocetirizine plus hydroxyzine (P = 0·218). Direct comparison of the two treatment modalities in terms of daytime somnolence favoured levocetirizine monotherapy (P = 0·026). Conclusions The widespread belief that sleep is aided by the addition of a sedating first-generation H1-antihistamine, usually hydroxyzine, at night is not supported. These results are in line with the urticaria guidelines, which state that first-line treatment for urticaria should be new-generation, nonsedating H1-antihistamines only. PMID:24472058

  14. Reproductive Hazards Still Persist in the Microelectronics Industry: Increased Risk of Spontaneous Abortion and Menstrual Aberration among Female Workers in the Microelectronics Industry in South Korea

    PubMed Central

    Kim, Inah; Kim, Myoung-Hee; Lim, Sinye

    2015-01-01

    Objectives Despite the global expansion of supply chains and changes to the production process, few studies since the mid-1990s and 2000s have examined reproductive risks of the microelectronics industry; we examined the reproductive risks among female microelectronics workers in South Korea. Methods Based on claim data from the National Health Insurance (2008–2012), we estimated age-specific rates of spontaneous abortion (SAB) and menstrual aberration (MA) among women aged 20 to 39 years. We compared data between microelectronics workers and three different control groups: economically inactive women, the working population as a whole, and workers employed in the bank industry. For an effect measure, age-stratified relative risks (RRs) were estimated. Results Female workers in the microelectronics industry showed significantly higher risk for SAB and MA compared to control groups. The RRs for SAB with reference to economically inactive women, working population, and bank workers in their twenties were 1.57, 1.40, and 1.37, respectively, and the RRs for MA among females in their twenties were 1.54, 1.38, and 1.48, respectively. For women in their thirties, RRs for SAB were 1.58, 1.67, and 1.13, and those for MA were 1.25, 1.35, and 1.23 compared to the three control populations, respectively. All RRs were statistically significant at a level of 0.05, except for the SAB case comparison with bank workers in their thirties. Conclusions Despite technical innovations and health and safety measures, female workers in microelectronics industry in South Korea have high rates of SAB and MA, suggesting continued exposure to reproductive hazards. Further etiologic studies based on primary data collection and careful surveillance are required to confirm these results. PMID:25938673

  15. A spontaneously arising mutation in connexin32 with repeated passage of FRTL-5 cells coincides with increased growth rate and reduced thyroxine release

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Murray, D. K.; Tran, D. T.; Nelson, G. A.; Shah, M. M.; Luben, R. A.

    2001-01-01

    In this study we examine changes in the cellular properties of FRTL-5 cells as a function of passage number, with particular emphasis on gap junction expression, karyotype, morphology, growth rate and thyroxine (T(4)) release. Early passage FRTL-5 follicular cells transfer dye through gap junctions from injected cell(s) to third-order neighboring cells and beyond within their respective follicles and have immuno-detectable connexin32 (Cx32) type gap junctional plaques in their lateral contacting plasma membranes. By contrast, FRTL-5 cells established as monolayers, or as follicles from cultures passed more than 15 times, did not transfer microinjected Lucifer Yellow dye to contiguous neighboring cells and did not express any immuno-detectable rat thyroid specific connexins (Cx43, Cx32 or Cx26). Western blots confirmed that total, membrane and cytosolic Cx32 protein was present only in early pass follicular cultures. To better understand the passage-dependent loss of Cx32 expression, RT-PCR primers were made to the most unique sequences of the rat Cx32 molecule, the cytoplasmic and carboxyl-terminal regions. These primers were used to screen FRTL-5 RNA from cultures of various passage numbers. The results revealed that later passage cultures had a single base deletion in the middle of the Cx32 cytoplasmic loop region at nucleotide position 378. This base deletion was in the middle position of the codon for amino acid 116, which is normally a CAC (histidine) but read with the frame shift was a CCC (proline). The four amino acids that followed this deletion were also altered with the fourth one becoming UAA, the ochre translation stop codon. This premature stopping of translation resulted in a truncation of 60% of the protein, which included the remaining cytoplasmic loop, third and fourth transmembrane regions and the carboxyl-terminus. The later passage cultures did not produce a carboxyl-terminal RT-PCR product, indicating that the mRNA was also truncated. These

  16. A spontaneously arising mutation in connexin32 with repeated passage of FRTL-5 cells coincides with increased growth rate and reduced thyroxine release

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Murray, D. K.; Tran, D. T.; Nelson, G. A.; Shah, M. M.; Luben, R. A.

    2001-01-01

    In this study we examine changes in the cellular properties of FRTL-5 cells as a function of passage number, with particular emphasis on gap junction expression, karyotype, morphology, growth rate and thyroxine (T(4)) release. Early passage FRTL-5 follicular cells transfer dye through gap junctions from injected cell(s) to third-order neighboring cells and beyond within their respective follicles and have immuno-detectable connexin32 (Cx32) type gap junctional plaques in their lateral contacting plasma membranes. By contrast, FRTL-5 cells established as monolayers, or as follicles from cultures passed more than 15 times, did not transfer microinjected Lucifer Yellow dye to contiguous neighboring cells and did not express any immuno-detectable rat thyroid specific connexins (Cx43, Cx32 or Cx26). Western blots confirmed that total, membrane and cytosolic Cx32 protein was present only in early pass follicular cultures. To better understand the passage-dependent loss of Cx32 expression, RT-PCR primers were made to the most unique sequences of the rat Cx32 molecule, the cytoplasmic and carboxyl-terminal regions. These primers were used to screen FRTL-5 RNA from cultures of various passage numbers. The results revealed that later passage cultures had a single base deletion in the middle of the Cx32 cytoplasmic loop region at nucleotide position 378. This base deletion was in the middle position of the codon for amino acid 116, which is normally a CAC (histidine) but read with the frame shift was a CCC (proline). The four amino acids that followed this deletion were also altered with the fourth one becoming UAA, the ochre translation stop codon. This premature stopping of translation resulted in a truncation of 60% of the protein, which included the remaining cytoplasmic loop, third and fourth transmembrane regions and the carboxyl-terminus. The later passage cultures did not produce a carboxyl-terminal RT-PCR product, indicating that the mRNA was also truncated. These

  17. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    PubMed

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.

  18. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors.

    PubMed

    Vuille-dit-Bille, Raphael N; Camargo, Simone M; Emmenegger, Luca; Sasse, Tom; Kummer, Eva; Jando, Julia; Hamie, Qeumars M; Meier, Chantal F; Hunziker, Schirin; Forras-Kaufmann, Zsofia; Kuyumcu, Sena; Fox, Mark; Schwizer, Werner; Fried, Michael; Lindenmeyer, Maja; Götze, Oliver; Verrey, François

    2015-04-01

    Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

  19. Saturated fatty acid intake can influence increase in plasminogen activator inhibitor-1 in obese adolescents.

    PubMed

    Masquio, D C L; de Piano, A; Campos, R M S; Sanches, P L; Corgosinho, F C; Carnier, J; Oyama, L M; do Nascimento, C M P O; de Mello, M T; Tufik, S; Dâmaso, A R

    2014-04-01

    The aim of this study was to verify if saturated fatty acid intake adjusted by tertiles can influence metabolic, inflammation, and plasminogen activator inhibitor-1 (PAI-1) in obese adolescents. Body mass, height, body mass index, waist circumference, blood pressure, and body composition of 108 obese adolescents were obtained. Fasting glucose, insulin, PAI-1, and CRP were determined. Insulin resistance was assessed by Homeostasis Model Assessment (HOMA-IR) and insulin sensitivity by Quantitative Insulin Sensitivity Check Index (QUICKI). Dietetic intake was estimated by a 3-day dietary record, and volunteers were divided according to consumption of saturated fatty acids: tertile 1 [Low Saturated Fatty Acid Intake (Low-SFA): ≤12.14 g], tertile 2 [Moderate Saturated Fatty Intake (Moderate SFA intake): 12.15-20.48 g], and tertile 3 [High Saturated Fatty Acid Intake (High-SFA Intake); >20.48 g]. Statistical analysis was performed using STATISTICA 7.0 software and the significance level was set at p<0.05. The most important finding in the present study is that Moderate and High-SFA intakes presented significantly higher values of PAI-1 than Low-SFA Intake. PAI-1 was positively associated with saturated fatty intake, waist circumference, mean blood pressure, and HOMA-IR. SFA intake was predictor of PAI-1 independent of body fat, HOMA-IR and total-cholesterol. In addition, PAI-1 was an independent predictor of blood pressure. HOMA-IR and QUICKI presented significantly higher and lower, respectively, in High-SFA compared to Moderate-SFA intake. High-SFA influenced cardiovascular disease risks, since it increased PAI-1 and insulin resistance, and decreased insulin sensibility, leading to vicious cycle among food ingestion, pro-thrombotic state, and cardiovascular risks in obese adolescents.

  20. Increased d-lactic Acid intestinal bacteria in patients with chronic fatigue syndrome.

    PubMed

    Sheedy, John R; Wettenhall, Richard E H; Scanlon, Denis; Gooley, Paul R; Lewis, Donald P; McGregor, Neil; Stapleton, David I; Butt, Henry L; DE Meirleir, Kenny L

    2009-01-01

    Patients with chronic fatigue syndrome (CFS) are affected by symptoms of cognitive dysfunction and neurological impairment, the cause of which has yet to be elucidated. However, these symptoms are strikingly similar to those of patients presented with D-lactic acidosis. A significant increase of Gram positive facultative anaerobic faecal microorganisms in 108 CFS patients as compared to 177 control subjects (p<0.01) is presented in this report. The viable count of D-lactic acid producing Enterococcus and Streptococcus spp. in the faecal samples from the CFS group (3.5 x 10(7) cfu/L and 9.8 x 10(7) cfu/L respectively) were significantly higher than those for the control group (5.0 x 10(6) cfu/L and 8.9 x 10(4) cfu/L respectively). Analysis of exometabolic profiles of Enterococcus faecalis and Streptococcus sanguinis, representatives of Enterococcus and Streptococcus spp. respectively, by NMR and HPLC showed that these organisms produced significantly more lactic acid (p<0.01) from (13)C-labeled glucose, than the Gram negative Escherichia coli. Further, both E. faecalis and S. sanguinis secrete more D-lactic acid than E. coli. This study suggests a probable link between intestinal colonization of Gram positive facultative anaerobic D-lactic acid bacteria and symptom expressions in a subgroup of patients with CFS. Given the fact that this might explain not only neurocognitive dysfunction in CFS patients but also mitochondrial dysfunction, these findings may have important clinical implications.

  1. Phosphatidic acid increases intracellular free Ca2+ and cardiac contractile force.

    PubMed

    Xu, Y J; Panagia, V; Shao, Q; Wang, X; Dhalla, N S

    1996-08-01

    Although phosphatidic acid (PA) is mainly formed due to the hydrolysis of phosphatidylcholine by myocardial phospholipase D, its functional significance in the heart is not fully understood. The present study was designed to determine the effects of PA on intracellular free Ca2+ level ([Ca2+]i) in freshly isolated adult rat cardiomyocytes by using fura 2-acextoxmethylester and free fura 2 technique. Addition of PA at concentrations of 1-200 microM produced a concentration-dependent increase in [Ca2+]i from the basal level of 117 +/- 8 nM; maximal increase in [Ca2+]i was 233 +/- 50 nM, whereas median effective concentration (EC50) for PA was 45 +/- 1.2 microM. This increase in [Ca2+]i was abolished by the removal of extracellular Ca2+ with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and was partially attenuated by Ca2+ channel blockers, verapamil or diltiazem. Preincubation of cardiomyocytes with cyclopiazonic acid and thapsigargin or with ryanodine [to deplete sarcoplasmic reticulum (SR) Ca2+] attenuated the PA-induced increase in [Ca2+]i by 66, 37, and 43%, respectively. Furthermore, the response of [Ca2+]i to PA was blunted by 2-nitro-4 carboxyphenylcarbonate, an inhibitor of phospholipase C, but was unaffected by staurosporine, a protein kinase C inhibitor. PA was also observed to induce Ca2+ efflux from the myocytes. In addition, an injection of PA (0.34 microgram/100 g body wt i.v.) in rats produced a significant increase of the left ventricular developed pressure as well as the maximum rates of cardiac contraction and relaxation within 5 min. These data suggest that the PA-induced increase in [Ca2+]i in cardiomyocytes is a consequence of both Ca2+ influx from the extracellular source and Ca2+ release from the intracellular SR stores. Furthermore, these in vitro data suggest the possibility that PA may regulate [Ca2+]i and contractile parameters in the heart.

  2. Improvement of daptomycin production via increased resistance to decanoic acid in Streptomyces roseosporus.

    PubMed

    Lee, Sung-Kwon; Kim, Hong Rip; Jin, Ying-Yu; Yang, Seung Hwan; Suh, Joo-Won

    2016-10-01

    Daptomycin, a cyclic anionic lipopeptide compound produced by Streptomyces roseosporus, is used to treat skin infections caused by multi-drug resistant gram-positive pathogens. The biosynthesis of daptomycin is initiated by the condensation of decanoic acid (DA, a 10-carbon unit fatty acid) and the N-terminal l-tryptophan. So, the addition of DA to the fermentation medium is essential for increasing daptomycin production. However, increasing of DA concentration in the fermentation medium was not possible due to the high toxicity of DA. The previous studies reported that the cell growth of S. roseosporus was halted from 1 mM DA. In order to improve daptomycin production with increasing DA concentration in the medium, the DA-resistant S. roseosporus was developed via a sequential-adaptation method. The DA-resistant strain (DAR) showed complete resistance to 1 mM DA, and the daptomycin production was increased 1.4-fold (40.5 ± 0.7 mg/L) compared with the wild-type (28.5 ± 0.8 mg/L) at 1 mM DA. Additionally, the initial step of the daptomycin biosynthesis was enhanced by the overexpression of dptE and dptF in DAR. The dptEF overexpression DAR showed 3.9-fold (156.3 ± 8.2 mg/L) increase in the daptomycin production compared with DAR (40.1 ± 2.6 mg/L) at 1 mM DA.

  3. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    SciTech Connect

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V. )

    1990-06-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3.

  4. Acute suppression of spontaneous neurotransmission drives synaptic potentiation

    PubMed Central

    Nosyreva, Elena; Szabla, Kristen; Autry, Anita E.; Ryazanov, Alexey G.; Monteggia, Lisa M.; Kavalali, Ege T.

    2013-01-01

    The impact of spontaneous neurotransmission on neuronal plasticity remains poorly understood. Here, we show that acute suppression of spontaneous N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission potentiates synaptic responses in the CA1 regions of rat and mouse hippocampus. This potentiation requires protein synthesis, brain-derived neurotrophic factor (BDNF) expression, eukaryotic elongation factor-2 kinase (eEF2K) function and increased surface expression of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptors. Our behavioral studies link this same synaptic signaling pathway to the fast-acting antidepressant responses elicited by ketamine. We also show that selective neurotransmitter depletion from spontaneously recycling vesicles triggers synaptic potentiation via the same pathway as NMDA receptor blockade, demonstrating that presynaptic impairment of spontaneous release, without manipulation of evoked neurotransmission, is sufficient to elicit postsynaptic plasticity. These findings uncover an unexpectedly dynamic impact of spontaneous glutamate release on synaptic efficacy and provide new insight into a key synaptic substrate for rapid antidepressant action. PMID:23595756

  5. The effect of transient increases in kynurenic acid and quinolinic acid levels early in life on behavior in adulthood: Implications for schizophrenia.

    PubMed

    Iaccarino, Hannah F; Suckow, Raymond F; Xie, Shan; Bucci, David J

    2013-11-01

    Kynurenic acid is a tryptophan metabolite that is synthesized and released in the brain by astrocytes and acts as an antagonist of nicotinic acetylcholine receptors and N-methyl-d-aspartate glutamate receptors, both of which are critically involved in cognition as well as neural plasticity and brain development. The concentration of kynurenic acid is increased in the brains of persons with schizophrenia and this increase has been implicated in the cognitive and social impairments associated with the disease. In addition, growing evidence suggests that the increase in kynurenic acid may begin early in life. For example, exposure to influenza A virus during development results in a transient increase in kynurenic acid concentration that could disrupt normal brain development and lead to cognitive deficits later in life. Changes in kynurenic acid may thus provide a link between developmental exposure to viruses and the increased risk of subsequently developing schizophrenia. To test this, we mimicked the effects of influenza A exposure by treating rats with kynurenine, the precursor of kynurenic acid, on postnatal days 7-10. We observed a transient increase in both kynurenic acid and quinolinic acid during treatment. When rats were subsequently behaviorally tested as adults, those previously treated with kynurenine exhibited decreased social behavior and locomotor activity. In contrast, attentional function and fear conditioning were not affected. Together with other recent findings, these data have several implications for understanding how viral-induced changes in tryptophan metabolism during development may contribute to schizophrenia-related symptoms later in life.

  6. Increased sodium and fluctuations in minerals in acid limes expressing witches' broom symptoms.

    PubMed

    Al-Ghaithi, Aisha G; Hanif, Muhammad Asif; Al-Busaidi, Walid M; Al-Sadi, Abdullah M

    2016-01-01

    Witches' broom disease of lime (WBDL), caused by 'Candidatus Phytoplasma aurantifolia', is a very serious disease of acid limes. The disease destroyed more than one million lime trees in the Middle East. WBDL results in the production of small, clustered leaves in some branches of lime trees. Branches develop symptoms with time and become unproductive, until the whole tree collapses within 4-8 years of first symptom appearance. This study was conducted to investigate differences in minerals between symptomatic and asymptomatic leaves of infected lime trees. The study included one set of leaves from uninfected trees and two sets of infected leaves: symptomatic leaves and asymptomatic leaves obtained from randomly selected acid lime trees. Nested polymerase chain reaction detected phytoplasma in the symptomatic and asymptomatic leaves from the six infected trees, but not from the uninfected trees. Phylogenetic analysis showed that all phytoplasmas belong to the 16S rRNA group II-B. Mineral analysis revealed that the level of Na significantly increased by four times in the symptomatic leaves compared to the non-symptomatic leaves and to the uninfected leaves. In addition, symptom development resulted in a significant increase in the levels of P and K by 1.6 and 1.5 times, respectively, and a significant decrease in the levels of Ca and B by 1.2 and 1.8 times, respectively. There was no significant effect of WBDL on the levels of N, Cu, Zn, and Fe. The development of witches' broom disease symptoms was found to be associated with changes in some minerals. The study discusses factors and consequences of changes in the mineral content of acid limes infected by phytoplasma.

  7. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    PubMed Central

    Samman, Samir; Crossett, Ben; Somers, Miles; Bell, Kirstine J; Lai, Nicole T; Sullivan, David R; Petocz, Peter

    2014-01-01

    Amino acid (AA) status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM) or chicken (CM), and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014), with consistently higher changes observed after 60 minutes (P<0.001). Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the postprandial state. The sustained increase in histidine following the consumption of a PM is consistent with the reported effects of lean pork on cardiometabolic risk factors. PMID:24971025

  8. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork.

    PubMed

    Samman, Samir; Crossett, Ben; Somers, Miles; Bell, Kirstine J; Lai, Nicole T; Sullivan, David R; Petocz, Peter

    2014-01-01

    Amino acid (AA) status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM) or chicken (CM), and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014), with consistently higher changes observed after 60 minutes (P<0.001). Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the postprandial state. The sustained increase in histidine following the consumption of a PM is consistent with the reported effects of lean pork on cardiometabolic risk factors.

  9. Data mining in spontaneous reports.

    PubMed

    Bate, Andrew; Edwards, I R

    2006-03-01

    The increasing size of spontaneous report data sets and the increasing capability for screening such data due to increases in computational power has led to a recent increase in interest and use of data mining on such data. While data mining plays an important role in the analysis of spontaneous reports, there is general debate on how and when data mining should be best performed. While the cornerstone principles for data mining of spontaneous reports have been in place since the 1960s, several significant changes have occurred to make their use widespread. Superficially the Bayesian methods seem unnecessarily complex, particularly given the nature of the data, but in practice implementation in Bayesian framework gives clear benefits. There are difficulties evaluating the performance of the methods, but they work and save resources in managing large data sets. The use of neural networks allows more sophisticated pattern recognition to be performed.

  10. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism.

    PubMed

    Grassian, Alexandra R; Parker, Seth J; Davidson, Shawn M; Divakaruni, Ajit S; Green, Courtney R; Zhang, Xiamei; Slocum, Kelly L; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D; Straub, Christopher; Growney, Joseph D; Vander Heiden, Matthew G; Murphy, Anne N; Pagliarini, Raymond; Metallo, Christian M

    2014-06-15

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation.

  11. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation

    PubMed Central

    Herms, Albert; Bosch, Marta; Reddy, Babu J.N.; Schieber, Nicole L.; Fajardo, Alba; Rupérez, Celia; Fernández-Vidal, Andrea; Ferguson, Charles; Rentero, Carles; Tebar, Francesc; Enrich, Carlos; Parton, Robert G.; Gross, Steven P.; Pol, Albert

    2015-01-01

    Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity. PMID:26013497

  12. Hyaluronic acid is increased in the skin and urine in patients with amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Imai, T.; Yamauchi, M.; Nagao, K.

    1996-01-01

    We performed morphological studies of skin and measured glycosaminoglycans in the urine from patients with sporadic amyotrophic lateral sclerosis (ALS) and control subjects. The wide spaces separating collagen bundles reacted strongly with alcian blue stain in ALS patients and stained more markedly as ALS progressed. Staining with alcian blue was virtually eliminated by Streptomyces hyaluronidase. The urinary excretion of hyaluronic acid (HA) (mg/day) was significantly increased (P < 0.01) in ALS patients compared with that of control subjects, and there was a significant positive correlation between the excreted amount of HA and the duration of illness in advanced ALS patients with a duration of more than 2 years from clinical onset (r = 0.72, P < 0.02). We suggest that sporadic ALS includes a metabolic disorder of HA in which an accumulation of HA in the skin is linked to an increased urinary excretion of HA.

  13. IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism

    PubMed Central

    Grassian, Alexandra R.; Parker, Seth J.; Davidson, Shawn M.; Divakarun, Ajit S.; Green, Courtney R.; Zhang, Xiamei; Slocum, Kelly L.; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D.; Straub, Christopher; Growney, Joseph D.; Vander Heiden, Matthew G.; Murphy, Anne N.; Pagliarini, Raymond; Metallo, Christian M.

    2016-01-01

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed 13C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation. PMID:24755473

  14. Zoledronic acid in vivo increases in vitro proliferation of rat mesenchymal stromal cells

    PubMed Central

    Heino, Terhi J; Alm, Jessica J; Halkosaari, Heikki J; Välimäki, Ville-Valtteri

    2016-01-01

    Background and purpose Bisphosphonates are widely used in the treatment of bone loss, but they might also have positive effects on osteoblastic cells and bone formation. We evaluated the effect of in vivo zoledronic acid (ZA) treatment and possible concomitant effects of ZA and fracture on the ex vivo osteogenic capacity of rat mesenchymal stromal cells (MSCs). Methods A closed femoral fracture model was used in adult female rats and ZA was administered as a single bolus or as weekly doses up to 8 weeks. Bone marrow MSCs were isolated and cultured for in vitro analyses. Fracture healing was evaluated by radiography, micro-computed tomography (μCT), and histology. Results Both bolus and weekly ZA increased fracture-site bone mineral content and volume. MSCs from weekly ZA-treated animals showed increased ex vivo proliferative capacity, while no substantial effect on osteoblastic differentiation was observed. Fracture itself did not have any substantial effect on cell proliferation or differentiation at 8 weeks. Serum biochemical markers showed higher levels of bone formation in animals with fracture than in intact animals, while no difference in bone resorption was observed. Interestingly, ex vivo osteoblastic differentiation of MSCs was found to correlate with in vivo serum bone markers. Interpretation Our data show that in vivo zoledronic acid treatment can influence ex vivo proliferation of MSCs, indicating that bisphosphonates can have sustainable effects on cells of the osteoblastic lineage. Further research is needed to investigate the mechanisms. PMID:27196705

  15. Safflower oil consumption does not increase plasma conjugated linoleic acid concentrations in humans.

    PubMed

    Herbel, B K; McGuire, M K; McGuire, M A; Shultz, T D

    1998-02-01

    Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of linoleic acid (LA) with conjugated double bonds. CLA has anticarcinogenic properties and has been identified in human tissues, dairy products, meats, and certain vegetable oils. A variety of animal products are good sources of CLA, but plant oils contain much less. However, plant oils are a rich source of LA, which may be isomerized to CLA by intestinal microorganisms in humans. To investigate the effect of triacylglycerol-esterified LA consumption on plasma concentrations of esterified CLA in total lipids, a dietary intervention (6 wk) was conducted with six men and six women. During the intervention period a salad dressing containing 21 g safflower oil providing 16 g LA/d was added to the subjects' daily diets. Three-day diet records and fasting blood were obtained initially and during dietary and postdietary intervention periods. Although LA intake increased significantly during the dietary intervention, plasma CLA concentrations were not affected. Plasma total cholesterol and LDL-cholesterol concentrations were significantly lower after addition of safflower oil to the diet. In summary, consumption of triacylglycerol-esterified LA in safflower oil did not increase plasma concentrations of esterified CLA in total lipids.

  16. Capric acid and hydroxypropylmethylcellulose increase the immunogenicity of nasally administered peptide vaccines.

    PubMed

    Nordone, Sushila K; Peacock, James W; Kirwan, Shaun M; Staats, Herman F

    2006-06-01

    Immunization by the nasal route is an established method for the induction of mucosal and systemic humoral and cell-mediated antigen-specific responses. However, the effectiveness of nasal immunization is often hampered by the need for increased doses of antigen. Bioadhesives and absorption enhancers were investigated for their ability to enhance immune responses in mice after nasal immunization with model HIV-1 peptide and protein immunogens. Two additives, hydroxypropylmethylcellulose (HPMC) and capric acid, consistently enhanced antigen-specific serum IgG endpoint titers under conditions in which antigen dose was limiting. Nasal immunization of mice with 20 microg of an HIV-1 peptide immunogen plus cholera toxin (CT) as adjuvant induced serum antipeptide IgG titers of 1:9.5log2 after four immunizations while the addition of CA or HPMC to the vaccine formulation increased serum antipeptide IgG titers to 1:15.4log2 and 1:17.6log2, respectively. When 5 microg recombinant HIV-1 gp41 was used as the immunogen, the addition of CA or HPMC to the vaccine formulation increased serum anti-gp41 IgG titers to 1:11.6log2 and 1:8.8log2, respectively, compared to 1:5.2log2 after three nasal immunizations with 5 microg gp41 + CT alone. Thus, HPMC and capric acid may be useful additives that increase the immunogenicity of nasally administered vaccines and permit less antigen to be used with each immunization.

  17. Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature.

    PubMed

    Proietti, Simona; Moscatello, Stefano; Famiani, Franco; Battistelli, Alberto

    2009-08-01

    The effect of acclimation to 10 degrees C on the leaf content of ascorbic and oxalic acids, was investigated in spinach (Spinacia oleracea L.). At 10 degrees C the content of ascorbic acid in leaves increased and after 7 days it was about 41% higher than in plants remaining under a 25 degrees C/20 degrees C day/night temperature regime. In contrast, the content of oxalate, remained unchanged. Transfer to 10 degrees C increased the ascorbic but not the oxalic acid content of the leaf intercellular washing fluid (IWF). Oxalate oxidase (OXO EC 1.2.3.4) activity was not detected in extracts of leaf blades. Therefore, oxalic acid degradation via OXO was not involved in the control of its content. Our results show that low temperature acclimation increases nutritional quality of spinach leaves via a physiological rise of ascorbic acid that does not feed-forward on the content of oxalic acid.

  18. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on the engineering of industrial FAs, specifically hydroxy fatty acids (HFA) and conjugated polyenoic fatty acids (a-eleostearic acid, ESA), using Arabidopsis (Arabidopsis thaliana) as a m...

  19. Consumption of a high-fat diet abrogates inhibitory effects of methylseleninic acid on spontaneous metastasis of Lewis lung carcinoma in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the effect of dietary supplementation with selenium (Se) on spontaneous metastasis of Lewis lung carcinoma (LLC) in male C57BL/6 mice fed a high-fat diet. Mice were fed the AIN93G diet or that diet modified with 45% calories from fat supplemented with or without 2.5 mg Se/4029 kCal ...

  20. Salivary total sialic acid levels increase in breast cancer patients: a preliminary study.

    PubMed

    Oztürk, Leyla Koç; Emekli-Alturfan, Ebru; Kaşikci, Emel; Demir, Gokhan; Yarat, Aysen

    2011-09-01

    Breast cancer is the most common cancer in women living in the Western world, even though it occurs worldwide. Cancer and cancer therapy induce multiple oral complications including dental and periodontal disease. Saliva is a complex and dynamic biologic fluid, which reflects both oral and systemic changes. While saliva is easily accessible body fluid, there has been little effort to study its value in cancer diagnosis. Sialic acids (SA), the end moieties of the carbohydrate chains, are biologically important and essential for functions of glycoconjugates that are reported to be altered in both blood and saliva of various cancer patients. Increased sialylation has been shown to be a characteristic feature in cancer tissue and blood in breast cancer patients. However, there is no data about salivary SA in breast cancer. The aim of this study was to evaluate salivary total sialic acid (TSA) levels in breast cancer patients who were under chemotheraphy. The study included 15 breast cancer patients in different stages and 10 healthy individuals as age-matched controls. Unstimulated whole saliva was collected. Salivary total protein and SA levels were determined. Flow rate was calculated from salivary volume by the time of secretion. Salivary SA was significantly higher and total protein was lower in breast cancer patients compared to controls. It is concluded that sialylation may be increased in saliva of patients with breast cancer as the same way for cancer tissue and for blood . Increased salivary SA may therefore be useful as a non-invasive predictive marker for breast cancer patients and for the prevention and management of oral complications of cancer and cancer therapy to improve oral function and quality-of-life. The effects of different types of chemotherapies and different stages of the disease on salivary SA levels and salivary sialo-glycomic are worthy of being further investigated in breast cancer patients.

  1. Soil Drench Treatment with ß-Aminobutyric Acid Increases Drought Tolerance of Potato

    PubMed Central

    Sós-Hegedűs, Anita; Juhász, Zsófia; Poór, Péter; Kondrák, Mihály; Antal, Ferenc; Tari, Irma; Mauch-Mani, Brigitte; Bánfalvi, Zsófia

    2014-01-01

    The non-protein amino acid β-aminobutyric acid (BABA) is known to be a priming agent for a more efficient activation of cellular defence responses and a potent inducer of resistance against biotic and abiotic stresses in plants. Nevertheless, most of the studies on priming have been carried out in Arabidopsis. In potato, the effect of BABA was demonstrated only on biotic stress tolerance. We investigated the effect of BABA on the drought tolerance of potato and found that soil drenched with BABA at a final concentration of 0.3 mM improves the drought tolerance of potato. Water loss from the leaves of the primed plants is attenuated and the yield is increased compared to the unprimed drought-stressed plants. The metabolite composition of the tubers of the BABA-treated plants is less affected by drought than the tuber composition of the non-treated plants. Nitric oxide and ROS (reactive oxygen species) production is increased in the BABA-treated roots but not in the leaves. In the leaves of the BABA-treated plants, the expression of the drought-inducible gene StDS2 is delayed, but the expression of ETR1, encoding an ethylene receptor, is maintained for a longer period under the drought conditions than in the leaves of the non-treated, drought-stressed control plants. This result suggests that the ethylene-inducible gene expression remains suppressed in primed plants leading to a longer leaf life and increased tuber yield compared to the non-treated, drought-stressed plants. The priming effect of BABA in potato, however, is transient and reverts to an unprimed state within a few weeks. PMID:25489951

  2. Increased cholesterol 7α-hydroxylase expression and size of the bile acid pool in the lactating rat

    PubMed Central

    Wooton-Kee, Clavia Ruth; Cohen, David E.; Vore, Mary

    2008-01-01

    Maximal bile acid secretory rates and expression of bile acid transporters in liver and ileum are increased in lactation, possibly to facilitate increased enterohepatic recirculation of bile acids. We determined changes in the size and composition of the bile acid pool and key enzymes of the bile acid synthetic pathway [cholesterol 7α-hydroxylase (Cyp7a1), sterol 27-hydroxylase (Cyp27a1), and sterol 12α-hydroxylase (Cyp8b1)] in lactating rats relative to female virgin controls. The bile acid pool increased 1.9 to 2.5-fold [postpartum (PP) days 10, 14, and 19–23], compared with controls. A 1.5-fold increase in cholic acids and a 14 to 20% decrease in muricholic acids in lactation significantly increased the hydrophobicity index. In contrast, the hepatic concentration of bile acids and small heterodimer partner mRNA were unchanged in lactation. A 2.8-fold increase in Cyp7a1 mRNA expression at 16 h (10 h of light) demonstrated a shift in the diurnal rhythm at day 10 PP; Cyp7a1 protein expression and cholesterol 7α-hydroxylase activity were significantly increased at this time and remained elevated at day 14 PP but decreased to control levels by day 21 PP. There was an overall decrease in Cyp27a1 mRNA expression and a 20% decrease in Cyp27a1 protein expression, but there was no change in Cyp8b1 mRNA or protein expression at day 10 PP. The increase in Cyp7a1 expression PP provides a mechanism for the increase in the bile acid pool. PMID:18292185

  3. Optical clearing of skin enhanced with hyaluronic acid for increased contrast of optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Liopo, Anton; Su, Richard; Tsyboulski, Dmitri A.; Oraevsky, Alexander A.

    2016-08-01

    Enhanced delivery of optical clearing agents (OCA) through skin may improve sensitivity of optical and optoacoustic (OA) methods of imaging, sensing, and monitoring. This report describes a two-step method for enhancement of light penetration through skin. Here, we demonstrate that topical application of hyaluronic acid (HA) improves skin penetration of hydrophilic and lipophilic OCA and thus enhances their performance. We examined the OC effect of 100% polyethylene and polypropylene glycols (PPGs) and their mixture after pretreatment by HA, and demonstrated significant increase in efficiency of light penetration through skin. Increased light transmission resulted in a significant increase of OA image contrast in vitro. Topical pretreatment of skin for about 30 min with 0.5% HA in aqueous solution offers effective delivery of low molecular weight OCA such as a mixture of PPG-425 and polyethylene glycol (PEG)-400. The developed approach of pretreatment by HA prior to application of clearing agents (PEG and PPG) resulted in a ˜47-fold increase in transmission of red and near-infrared light and significantly enhanced contrast of OA images.

  4. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype.

    PubMed

    Hénique, Carole; Mansouri, Abdelhak; Vavrova, Eliska; Lenoir, Véronique; Ferry, Arnaud; Esnous, Catherine; Ramond, Elodie; Girard, Jean; Bouillaud, Frédéric; Prip-Buus, Carina; Cohen, Isabelle

    2015-06-01

    Adult skeletal muscle is a dynamic, remarkably plastic tissue, which allows myofibers to switch from fast/glycolytic to slow/oxidative types and to increase mitochondrial fatty acid oxidation (mFAO) capacity and vascularization in response to exercise training. mFAO is the main muscle energy source during endurance exercise, with carnitine palmitoyltransferase 1 (CPT1) being the key regulatory enzyme. Whether increasing muscle mFAO affects skeletal muscle physiology in adulthood actually remains unknown. To investigate this, we used in vivo electrotransfer technology to express in mouse tibialis anterior (TA), a fast/glycolytic muscle, a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA, its physiologic inhibitor. In young (2-mo-old) adult mice, muscle CPT1mt expression enhanced mFAO (+40%), but also increased the percentage of oxidative fibers (+28%), glycogen content, and capillary-to-fiber density (+45%). This CPT1mt-induced muscle remodeling, which mimicked exercise-induced oxidative phenotype, led to a greater resistance to muscle fatigue. In the context of aging, characterized by sarcopenia and reduced oxidative capacity, CPT1mt expression in TAs from aged (20-mo-old) mice partially reversed aging-associated sarcopenia and fiber-type transition, and increased muscle capillarity. These findings provide evidence that mFAO regulates muscle phenotype and may be a potential target to combat age-related decline in muscle function.

  5. Increased BDNF expression in fetal brain in the valproic acid model of autism.

    PubMed

    Almeida, Luis E F; Roby, Clinton D; Krueger, Bruce K

    2014-03-01

    Human fetal exposure to valproic acid (VPA), a widely-used anti-epileptic and mood-stabilizing drug, leads to an increased incidence of behavioral and intellectual impairments including autism; VPA administration to pregnant rats and mice at gestational days 12.5 (E12.5) or E13.5 leads to autistic-like symptoms in the offspring and is widely used as an animal model for autism. We report here that this VPA administration protocol transiently increased both BDNF mRNA and BDNF protein levels 5-6-fold in the fetal mouse brain. VPA exposure in utero induced smaller increases in the expression of mRNA encoding the other neurotrophins, NT3 (2.5-fold) and NT4 (2-fold). Expression of the neurotrophin receptors, trkA, trkB and trkC were minimally affected, while levels of the low-affinity neurotrophin receptor, p75(NTR), doubled. Of the nine 5'-untranslated exons of the mouse BDNF gene, only expression of exons I, IV and VI was stimulated by VPA in utero. In light of the well-established role of BDNF in regulating neurogenesis and the laminar fate of postmitotic neurons in the developing cortex, an aberrant increase in BDNF expression in the fetal brain may contribute to VPA-induced cognitive disorders by altering brain development.

  6. Fecal steroid excretion is increased in rats by oral administration of gymnemic acids contained in Gymnema sylvestre leaves.

    PubMed

    Nakamura, Y; Tsumura, Y; Tonogai, Y; Shibata, T

    1999-06-01

    Gymnemic acids are the saponins with a triterpenoid structure contained in Gymnema sylvestre leaves and have the hypoglycemic effects. In spite of the cholesterol-binding properties of saponins, the effect of gymnemic acids on cholesterol metabolism has not been elucidated to date. We investigated the effects of gymnemic acids on fecal steroid excretion in rats. Three kinds of extracts from Gymnema sylvestre leaves, extract (GSE), acid precipitate (GSA) and column fractionate (GSF), of which the gymnemagenin (an aglycone of gymnemic acids) concentrations are 58.87, 161.6, and 363.3 mg/g respectively, were used for the experiments. These were administered to rats orally at the dose of 0.05-1.0 g/kg for 22 d. Rats were given free access to water and nonpurified diet without cholesterol, and the differences in fecal excretion of steroids and gymnemic acids were investigated. Although there were no significant effects of GSE, GSA and GSF decreased body weight gain and food intakes in a dose-dependent manner (P < 0.01). GSF (1.0 g/kg) significantly increased fecal excretion of neutral steroids and bile acids in a dose-dependent manner (P < 0.05), especially those of cholesterol and cholic acid (CA)-derived bile acids. The increases in fecal steroid excretion of cholesterol, total neutral steroids, total bile acids and CA-related bile acids were acute and significantly correlated with fecal gymnemagenin levels (r2 = 0.2316-0.9861, P < 0. 05). These results demonstrated for the first time that a high dose of gymnemic acids increases fecal cholesterol and CA-derived bile acid excretion. Further studies are needed to clarify the effect of gymnemic acids on cholesterol metabolism.

  7. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan12

    PubMed Central

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Obando, Alina Soto; Hoxha, Sany; Ja, William W

    2015-01-01

    Background: Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. Objectives: We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. Methods: We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. Results: An acidic diet increased Drosophila gustatory responses (40–230%) and food intake (5–50%) and extended survival (10–160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5–20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Conclusions: Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and

  8. Low ascorbic acid and increased oxidative stress in gulo−/− mice during development

    PubMed Central

    Harrison, Fiona E.; Meredith, M. Elizabeth; Dawes, Sean M.; Saskowski, Jeanette L.; May, James M.

    2010-01-01

    Vitamin C (ascorbic acid, AA) depletion during pre-natal and post-natal development can lead to oxidative stress in the developing brains and other organs. Such damage may lead to irreversible effects on later brain function. We studied the relationship between AA deficiency and oxidative stress during development in gulonolactone oxidase (gulo) knockout mice that are unable to synthesize their own ascorbic acid. Heterozygous gulo(+/−) mice can synthesize AA and typically have similar tissue levels to wild-type mice. Gulo(+/−) dams were mated with gulo(+/−) males to provide offspring of each possible genotype. Overall, embryonic day 20 (E20) and post-natal day 1 (P1) pups were protected against oxidative stress by sufficient AA transfer during pregnancy. On post-natal day 10 (P10) AA levels were dramatically lower in liver and cerebellum in gulo (−/−) mice and malondialdehyde (MDA) levels were significantly increased. In post-natal day 18 pups (P18) AA levels decreased further in gulo(−/−) mice and oxidative stress was observed in the accompanying elevations in MDA in liver, and F2-isoprostanes in cortex. Further, total glutathione levels were higher in gulo(−/−) mice in cortex, cerebellum and liver, indicating that a compensatory antioxidant system was activated. These data show a direct relationship between AA level and oxidative stress in the gulo(−/−) mice. They reinforce the critical role of ascorbic acid in preventing oxidative stress in the developing brain in animals that, like humans, cannot synthesize their own AA. PMID:20599829

  9. Hepatic bile acid metabolism in the neonatal hamster: expansion of the bile acid pool parallels increased Cyp7a1 expression levels.

    PubMed

    Burke, Katie T; Horn, Paul S; Tso, Patrick; Heubi, James E; Woollett, Laura A

    2009-07-01

    Intraluminal concentrations of bile acids are low in newborn infants and increase rapidly after birth, at least partly owing to increased bile acid synthesis rates. The expansion of the bile acid pool is critical since bile acids are required to stimulate bile flow and absorb lipids, a major component of newborn diets. The purpose of the present studies was to determine the mechanism responsible for the increase in bile acid synthesis rates and the subsequent enlargement of bile acid pool sizes (BAPS) during the neonatal period, and how changes in circulating hormone levels might affect BAPS. In the hamster, pool size was low just after birth and increased modestly until 10.5 days postpartum (dpp). BAPS increased more significantly ( approximately 3-fold) between 10.5 and 15.5 dpp. An increase in mRNA and protein levels of cholesterol 7alpha-hydroxylase (Cyp7a1), the rate-limiting step in classical bile acid synthesis, immediately preceded an increase in BAPS. In contrast, levels of oxysterol 7alpha-hydroxylase (Cyp7b1), a key enzyme in bile acid synthesis by the alternative pathway, were relatively elevated by 1.5 dpp. farnesyl X receptor (FXR) and short heterodimeric partner (SHP) mRNA levels remained relatively constant at a time when Cyp7a1 levels increased. Finally, although simultaneous increases in circulating cortisol and Cyp7a1 levels occurred, precocious expression of Cyp7a1 could not be induced in neonatal hamsters with dexamethasone. Thus the significant increase in Cyp7a1 levels in neonatal hamsters is due to mechanisms independent of the FXR and SHP pathway and cortisol.

  10. Adaptation of in vivo amino acid kinetics facilitates increased amino acid availability for fetal growth in adolescent and adult pregnancies alike

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During pregnancy, adult women with a normal BMI synthesize extra amino acids after an overnight fast by increasing body protein breakdown and decreasing amino acid oxidation. It is not known whether adolescent girls can make these adaptations during pregnancy. The present study aimed to measure and ...

  11. The type and concentration of milk increase the in vitro bioaccessibility of coffee chlorogenic acids.

    PubMed

    Tagliazucchi, Davide; Helal, Ahmed; Verzelloni, Elena; Conte, Angela

    2012-11-07

    Coffee with different types and concentrations of milk was digested with pepsin (2 h) and pancreatin (2 h) to simulate gastropancreatic digestion. Chlorogenic acids (CGAs) were determined by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry in ultrafiltrate (cutoff 3 kDa) to evaluate their bioaccessibility. After digestion, bioaccessible CGAs decreased from 80.2 to 53.0 and 69.5 μmol/200 mL in coffee without milk and coffee-whole milk, respectively. When whole, semiskimmed, skimmed, or diluted milk were present, the increase in bioaccessibility was dependent on fat content (r = 0.99, p < 0.001). No relationship was observed between bioaccessibility and proteins, carbohydrates, and calcium content. The addition of milk to coffee caused an immediate decrease in the bioaccessibility due to CGAs binding to proteins. After digestion, 86-94% of bound CGAs remained in the high molecular weight fraction. Casein bound 5-caffeoylquinic acid with high affinity (K(D) of 37.9 ± 2.3 μmol/L; n = 0.88 ± 0.06).

  12. GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Baek, Seung-Ho; Kwon, Eunice Y.; Kim, Seon-Young; Hahn, Ji-Sook

    2016-01-01

    Improving lactic acid (LA) tolerance is important for cost-effective microbial production of LA under acidic fermentation conditions. Previously, we generated LA-tolerant D-LA-producing S. cerevisiae strain JHY5310 by laboratory adaptive evolution of JHY5210. In this study, we performed whole genome sequencing of JHY5310, identifying four loss-of-function mutations in GSF2, SYN8, STM1, and SIF2 genes, which are responsible for the LA tolerance of JHY5310. Among the mutations, a nonsense mutation in GSF2 was identified as the major contributor to the improved LA tolerance and LA production in JHY5310. Deletion of GSF2 in the parental strain JHY5210 significantly improved glucose uptake and D-LA production levels, while derepressing glucose-repressed genes including genes involved in the respiratory pathway. Therefore, more efficient generation of ATP and NAD+ via respiration might rescue the growth defects of the LA-producing strain, where ATP depletion through extensive export of lactate and proton is one of major reasons for the impaired growth. Accordingly, alleviation of glucose repression by deleting MIG1 or HXK2 in JHY5210 also improved D-LA production. GSF2 deletion could be applied to various bioprocesses where increasing biomass yield or respiratory flux is desirable. PMID:27708428

  13. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    PubMed

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity.

  14. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    PubMed

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  15. Placement in an acidic environment increase the solubility of white mineral trioxide aggregate

    PubMed Central

    Yavari, Hamid Reza; Borna, Zahra; Rahimi, Saeed; Shahi, Shahriar; Valizadeh, Hadi; Ghojazadeh, Morteza

    2013-01-01

    Aims: The aim of the present study was to evaluate solubility of white mineral trioxide aggregate (WMTA) in an acidic environment. Materials and Methods: Twenty-four metal rings were prepared, filled with WMTA and randomly divided into two groups. The samples in groups 1 and 2 were set in synthetic tissue fluid with pH values of 7.4 and 4.4, respectively and then were transferred to beakers containing synthetic tissue fluid with pH values of 7.7 and 4.4. Solubility of WMTA samples were calculated at the 9 experimental intervals. Data was analyzed with two-factor ANOVA and Bonferroni test (P < 0.03). Results: The total solubility of WMTA in groups 1 and 2 were −9.1796 ± 1.9158% and −1.1192 ± 2.6236%, (P = 0.028) with weight changes of 9.1574 ± 2.1432% and 7.3276 ± 1.5823%, respectively (P = 0.002). Statistical analysis revealed significant differences between the two groups. Conclusions: It was concluded that solubility of WMTA increases in acidic environments and additional therapeutic precautions should be taken to decrease inflammation in endodontic treatment. PMID:23833462

  16. Transgenic expression of TGF-beta on thyrocytes inhibits development of spontaneous autoimmune thyroiditis and increases regulatory T cells in thyroids of NOD.H-2h4 mice.

    PubMed

    Yu, Shiguang; Fang, Yujiang; Sharp, Gordon C; Braley-Mullen, Helen

    2010-05-01

    Transgenic NOD.H-2h4 mice expressing TGF-beta under control of the thyroglobulin promoter were generated to assess the role of TGF-beta in the development of thyrocyte hyperplasia. In contrast to nontransgenic littermates, which develop lymphocytic spontaneous autoimmune thyroiditis (L-SAT), all TGF-beta transgenic (Tg) mice given NaI water for 2-7 mo developed thyroid lesions characterized by severe thyroid epithelial cell hyperplasia and proliferation, with fibrosis and less lymphocyte infiltration than in nontransgenic mice. Most Tg mice produced less anti-mouse thyroglobulin autoantibody than did wild type (WT) mice. T cells from Tg and WT mice were equivalent in their ability to induce L-SAT after transfer to SCID or TCRalpha(-/-) mice. WT lymphocytes could transfer experimental autoimmune thyroiditis or L-SAT to Tg mice, indicating that the transgenic environment did not prevent migration of lymphocytes to the thyroid. Thyroids of Tg mice had higher frequencies of Foxp3(+) regulatory T cells (Tregs) compared with nontransgenic WT mice. Transient depletion of Tregs by anti-CD25 resulted in increased infiltration of inflammatory cells into thyroids of transgenic mice. Treg depletion also resulted in increased anti-mouse thyroglobulin autoantibody responses and increased expression of IFN-gamma and IFN-gamma-inducible chemokines in thyroids of Tg mice. The results suggest that spontaneous autoimmune thyroiditis is inhibited in mice expressing transgenic TGF-beta on thyrocytes, at least in part, because there is an increased frequency of Tregs in their thyroids.

  17. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.

    PubMed

    Gao, R S; Popp, P J; Fahey, D W; Marcy, T P; Herman, R L; Weinstock, E M; Baumgardner, D G; Garrett, T J; Rosenlof, K H; Thompson, T L; Bui, P T; Ridley, B A; Wofsy, S C; Toon, O B; Tolbert, M A; Kärcher, B; Peter, Th; Hudson, P K; Weinheimer, A J; Heymsfield, A J

    2004-01-23

    In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  18. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Popp, P. J.; Fahey, D. W.; Marcy, T. P.; Herman, R. L.; Weinstock, E. M.; Baumgardner, D. G.; Garrett, T. J.; Rosenlof, K. H.; Thompson, T. L.

    2004-01-01

    In situ measurements of the relative humidity with respect to ice (RH(sub(i)) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RH(sub i) values show a sharp increase to average values of over 130% in both cloud types. These enhanced RH(sub i) values are attributed to the presence of a new class of NHO3- containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  19. Effects of increasing acidity on metal(loid) bioprecipitation in groundwater: column studies

    SciTech Connect

    Alexander C. Davis; Bradley M. Patterson; Michelle E. Grassi; Blair S. Robertson; Henning Prommer; Allan J. McKinley

    2007-10-15

    Large-scale column experiments were carried out over a period of 545 days to assess the effect of increasing acidity on bacterial denitrification, sulfate reduction, and metal(loid) bioprecipitation in groundwater affected by acid mine drainage. At a groundwater pH of 5.5, denitrification and Cu{sup 2+} removal, probably via malachite (Cu{sub 2}(OH){sub 2}CO{sub 3}) precipitation, were observed in the ethanol-amended column. Sulfate reduction, sulfide production, and Zn{sup 2+} removal were also observed, with Zn{sup 2+} removal observed in the zone of sulfate reduction, indicating likely precipitation as sphalerite (ZnS). Se{sup 6+} removal was also observed in the sulfate reducing zone, probably as direct bioreduction to elemental selenium via ethanol/acetate oxidation or sulfide oxidation precipitating elemental sulfur. A step decrease in groundwater pH from 5.5 to 4.25 resulted in increased denitrification and sulfate reduction half-lives, migration of both these redox zones along the ethanol-amended column, and the formation of an elevated Cu{sup 2+} plume. Additionally, an elevated Zn{sup 2+} plume formed in the previous sulfate reducing zone of the ethanol-amended column, suggesting dissolution of precipitated sphalerite as a result of the reduction in groundwater pH. As Cu{sup 2+} passed through the zone of sphalerite dissolution, SEM imaging and EDS detection suggested that Cu{sup 2+} removal had occurred via chalcocite (Cu{sub 2}S) or covellite (CuS) precipitation. 23 refs., 8 figs.

  20. In vitro availability of zinc from infant foods with increasing phytic acid contents.

    PubMed

    Bosscher, D; Lu, Z; Janssens, G; Van Caillie-Bertrand, M; Robberecht, H; De Rycke, H; De Wilde, R; Deelstra, H

    2001-08-01

    An in vitro method was used to determine the availability of Zn from infant foods containing increasing amounts of phytate, and to quantify the effect of the phytate:Zn molar ratio on the availability. During the in vitro assay, digestive conditions of infants, younger and older than 4 months of age, were carefully simulated since the solubility of phytate-Zn complexes during digestion is pH dependent. Availability was measured with a continuous flow dialysis in vitro procedure with previous intralumen digestive stage. Zn concentrations were determined with flame atomic absorption spectrometry. Phytic acid content was measured with HPLC. Adding phytate to infant formula lowered Zn availability to 2.84 (sd 0.17) % when the phytate:Zn molar ratio increased to 2.2 as compared with cows' milk-based formula (6.65 (sd 0.55) %). Availability from vegetables (23.83 (sd 2.17) %) significantly decreased at a ratio > 7.9 (15.12 (sd 1.63) %). Zn availability from soyabean-based formula (2.26 (sd 0.36) %) was lower compared with cows' milk-based formula (6.65 (sd 0.55) %). Availability between soyabean- and cows' milk-based formula was similar when a phytate:Zn ratio of 2.2 (2.84 (sd 0.17) %) was obtained in the cows' milk formula. The negative effect of phytic acid on Zn availability was dependent on the type of the food and the phytate content, and should be considered when using soyabean-based formulas during early infancy.

  1. Staphylococcus epidermidis Polysaccharide Intercellular Adhesin Production Significantly Increases during Tricarboxylic Acid Cycle Stress

    PubMed Central

    Vuong, Cuong; Kidder, Joshua B.; Jacobson, Erik R.; Otto, Michael; Proctor, Richard A.; Somerville, Greg A.

    2005-01-01

    Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production. PMID:15838022

  2. Drought-Induced Increases in Abscisic Acid Levels in the Root Apex of Sunflower 1

    PubMed Central

    Robertson, J. Mason; Pharis, Richard P.; Huang, Yan Y.; Reid, David M.; Yeung, Edward C.

    1985-01-01

    Abscisic acid (ABA) levels in 3-mm apical root segments of slowly droughted sunflower plants (Helianthus annuus L. cv Russian Giant) were analyzed as the methyl ester by selected ion monitoring gas chromatography-mass spectrometry using characteristic ions. An internal standard, hexadeuterated ABA (d6ABA) was used for quantitative analysis. Sunflower seedlings, grown in aeroponic chambers, were slowly droughted over a 7-day period. Drought stress increased ABA levels in the root tips at 24, 72, and 168 hour sample times. Control plants had 57 to 106 nanograms per gram ABA dry weight in the root tips (leaf water potential, −0.35 to −0.42 megapascals). The greatest increase in ABA, about 20-fold, was found after 72 hours of drought (leaf water potential, −1.34 to −1.47 megapascals). Levels of ABA also increased (about 7− to 54-fold) in 3-mm apical root segments which were excised and then allowed to dessicate for 1 hour at room temperature. PMID:16664535

  3. Increased urinary lysophosphatidic acid in mouse with subtotal nephrectomy: potential involvement in chronic kidney disease.

    PubMed

    Mirzoyan, Koryun; Baïotto, Anna; Dupuy, Aude; Marsal, Dimitri; Denis, Colette; Vinel, Claire; Sicard, Pierre; Bertrand-Michel, Justine; Bascands, Jean-Loup; Schanstra, Joost P; Klein, Julie; Saulnier-Blache, Jean-Sébastien

    2016-12-01

    Increased incidence of chronic kidney disease (CKD) with consecutive progression to end-stage renal disease represents a significant burden to healthcare systems. Renal tubulointerstitial fibrosis (TIF) is a classical hallmark of CKD and is well correlated with the loss of renal function. The bioactive lysophospholipid lysophosphatidic acid (LPA), acting through specific G-protein-coupled receptors, was previously shown to be involved in TIF development in a mouse model of unilateral ureteral obstruction. Here, we study the role of LPA in a mouse subjected to subtotal nephrectomy (SNx), a more chronic and progressive model of CKD. Five months after surgical nephron reduction, SNx mice showed massive albuminuria, extensive TIF, and glomerular hypertrophy when compared to sham-operated animals. Urinary and plasma levels of LPA were analyzed using liquid chromatography tandem mass spectrometry. LPA was significantly increased in SNx urine, not in plasma, and was significantly correlated with albuminuria and TIF. Moreover, SNx mice showed significant downregulation in the renal expression of lipid phosphate phosphohydrolases (LPP1, 2, and 3) that might be involved in reduced LPA bioavailability through dephosphorylation. We concluded that SNx increases urinary LPA through a mechanism that could involve co-excretion of plasma LPA with albumin associated with a reduction of its catabolism in the kidney. Because of the previously demonstrated profibrotic activity of LPA, the association of urinary LPA with TIF suggests the potential involvement of LPA in the development of advanced CKD in the SNx mouse model. Targeting LPA metabolism might represent an interesting approach in CKD treatment.

  4. Suberoylanilide hydroxamic acid (SAHA) at subtoxic concentrations increases the adhesivity of human leukemic cells to fibronectin.

    PubMed

    Kuzelová, Katerina; Pluskalová, Michaela; Brodská, Barbora; Otevrelová, Petra; Elknerová, Klára; Grebenová, Dana; Hrkal, Zbynek

    2010-01-01

    Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) which is being introduced into clinic for the treatment of hematological diseases. We studied the effect of this compound on six human hematopoietic cell lines (JURL-MK1, K562, CML-T1, Karpas-299, HL-60, and ML-2) as well as on normal human lymphocytes and on leukemic primary cells. SAHA induced dose-dependent and cell type-dependent cell death which displayed apoptotic features (caspase-3 activation and apoptotic DNA fragmentation) in most cell types including the normal lymphocytes. At subtoxic concentrations (0.5-1 microM), SAHA increased the cell adhesivity to fibronectin (FN) in all leukemia/lymphoma-derived cell lines but not in normal lymphocytes. This increase was accompanied by an enhanced expression of integrin beta1 and paxillin, an essential constituent of focal adhesion complexes, both at the protein and mRNA level. On the other hand, the inhibition of ROCK protein, an important regulator of cytoskeleton structure, had no consistent effect on SAHA-induced increase in the cell adhesivity. The promotion of cell adhesivity to FN seems to be specific for SAHA as we observed no such effects with other HDAC inhibitors (trichostatin A and sodium butyrate).

  5. (-)-Hydroxycitric acid ingestion increases fat utilization during exercise in untrained women.

    PubMed

    Lim, Kiwon; Ryu, Sungpil; Nho, Ho-Sung; Choi, Sung-Keun; Kwon, Taedong; Suh, Heajung; So, Jaemoo; Tomita, Kyoko; Okuhara, Yasuhide; Shigematsu, Norihiro

    2003-06-01

    (-)-Hydroxycitric acid (HCA) is a competitive inhibitor of the enzyme ATPcitrate-lyase, which inhibits lipogenesis in the body. Moreover, HCA increases endurance exercise performance in trained mice and athletes. However, had not been investigated in untrained animals and humans. Therefore, we investigated the effects of short-term HCA ingestion on endurance exercise performance and fat metabolism in untrained women. In two experiments designed as a double-blind crossover test, six subjects ingested 250 mg of HCA or placebo (same amount of dextrin) via capsule for 5 d and then participated in cycle ergometer exercise. They cycled at 40% VO2max for 1 h and then the exercise intensity was increased to 60% VO2max until exhaustion on day 5 of each experiment. HCA tended to decrease the respiratory exchange ratio (RER) and carbohydrate oxidation during 1 h of exercise. In addition, exercise time to exhaustion was significantly enhanced (p<0.05). These results suggest that HCA increases fat metabolism, which may be associated with a decrease in glycogen utilization during the same intensity exercise and enhanced exercise performance.

  6. Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics.

    PubMed

    Gravesen, A; Sørensen, K; Aarestrup, F M; Knøchel, S

    2001-01-01

    A concern regarding the use of bacteriocins, as for example the lantibiotic nisin, for biopreservation of certain food products is the possibility of resistance development and potential cross-resistance to antibiotics in the target organism. The genetic basis for nisin resistance development is as yet unknown. We analyzed changes in gene expression following nisin resistance development in Listeria monocytogenes 412 by restriction fragment differential display. The mutant had increased expression of a protein with strong homology to the glycosyltransferase domain of high-molecular-weight penicillin-binding proteins (PBPs), a histidine protein kinase, a protein of unknown function, and ClpB (putative functions from homology). The three former proteins had increased expression in a total of six out of 10 independent mutants originating from five different wild-type strains, indicating a prevalent nisin resistance mechanism under the employed isolation conditions. Increased expression of the putative PBP may affect the cell wall composition and thereby alter the sensitivity to cell wall-targeting compounds. The mutants had an isolate-specific increase in sensitivity to different beta-lactams and a slight decrease in sensitivity to another lantibiotic, mersacidin. A model incorporating these observations is proposed based on current knowledge of nisin's mode of action.

  7. "Spontaneous" CSF Fistula due to Transtegmental Brain Herniation in Combination with Signs of Increased Intracranial Pressure and Petrous Bone Hyperpneumatization: An Illustrative Case Report.

    PubMed

    Rivera, Diones; Fermin-Delgado, Rafael; Stoeter, Peter

    2014-12-01

    Background and Importance Transtegmental brain herniation into the petrous bone is a rare cause of rhinoliquorrhea. Our case presents a combination of several typical clinical and imaging findings illustrating the ongoing etiologic discussion of such cerebrospinal fluid (CSF) fistulas. Clinical Presentation A 53-year-old man presented with nasal discharge after a strong effort to suppress coughing. Imaging revealed a transtegmental herniation of parts of the inferior temporal gyrus into the petrous bone and in addition a combination of signs of chronically increased intracranial pressure and a hyperpneumatization of the petrous bone. The fistula was closed by a middle cranial fossa approach. Conclusion The case illustrates the two main predisposing factors for development of petrous bone CSF fistulas: increased intracranial pressure and thinning of the tegmental roof due to extensive development of air cells. Because the CSF leakage repair does not change the underlying cause, patients have to be informed about the possibility of developing increased intracranial pressure and recurrences of brain herniations at other sites.

  8. Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina.

    PubMed

    Hao, Guangfei; Chen, Haiqin; Du, Kai; Huang, Xiaoyun; Song, Yuanda; Gu, Zhennan; Wang, Lei; Zhang, Hao; Chen, Wei; Chen, Yong Q

    2014-09-01

    Malic enzyme (ME) catalyses the oxidative decarboxylation of L-malate to pyruvate and provides NADPH for intracellular metabolism, such as fatty acid synthesis. Here, the mitochondrial ME (mME) gene from Mortierella alpina was homologously over-expressed. Compared with controls, fungal arachidonic acid (ARA; 20:4 n-6) content increased by 60 % without affecting the total fatty acid content. Our results suggest that enhancing mME activity may be an effective mean to increase industrial production of ARA in M. alpina.

  9. A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds

    PubMed Central

    Zhang, Chunyu; Iskandarov, Umidjon; Cahoon, Edgar B.

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45–50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to >50% of total fatty acids. In addition, >2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions. PMID:23814277

  10. A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds.

    PubMed

    Zhang, Chunyu; Iskandarov, Umidjon; Klotz, Elliott T; Stevens, Robyn L; Cahoon, Rebecca E; Nazarenus, Tara J; Pereira, Suzette L; Cahoon, Edgar B

    2013-08-01

    Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45-50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to >50% of total fatty acids. In addition, >2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions.

  11. Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins

    PubMed Central

    Hannukainen, Jarna C; Nuutila, Pirjo; Ronald, Borra; Kaprio, Jaakko; Kujala, Urho M; Janatuinen, Tuula; Heinonen, Olli J; Kapanen, Jukka; Viljanen, Tapio; Haaparanta, Merja; Rönnemaa, Tapani; Parkkola, Riitta; Knuuti, Juhani; Kalliokoski, Kari K

    2007-01-01

    Exercise is considered to be beneficial for free fatty acid (FFA) metabolism, although reports of the effects of increased physical activity on FFA uptake and oxidation in different tissues in vivo in humans have been inconsistent. To investigate the heredity-independent effects of physical activity and fitness on FFA uptake in skeletal muscle, the myocardium, and liver we used positron emission tomography (PET) in nine healthy young male monozygotic twin pairs discordant for physical activity and fitness. The cotwins with higher physical activity constituting the more active group had a similar body mass index but less body fat and 18 ± 10% higher V˙O2,max (P < 0.001) compared to the less active brothers with lower physical activity. Low-intensity knee-extension exercise increased skeletal muscle FFA and oxygen uptake six to 10 times compared to resting values but no differences were observed between the groups at rest or during exercise. At rest the more active group had lower hepatic FFA uptake compared to the less active group (5.5 ± 4.3 versus 9.0 ± 6.1 μmol (100 ml)−1 min−1, P = 0.04). Hepatic FFA uptake associated significantly with body fat percentage (P = 0.05). Myocardial FFA uptake was similar between the groups. In conclusion, in the absence of the confounding effects of genetic factors, moderately increased physical activity and aerobic fitness decrease body adiposity even in normal-weighted healthy young adult men. Further, increased physical activity together with decreased intra-abdominal adiposity seems to decrease hepatic FFA uptake but has no effects on skeletal muscle or myocardial FFA uptake. PMID:17053033

  12. Awareness of folic acid use increases its consumption, and reduces the risk of spina bifida.

    PubMed

    Kondo, Atsuo; Morota, Nobuhito; Date, Hiroaki; Yoshifuji, Kazuhisa; Morishima, Toshibumi; Miyazato, Minoru; Shirane, Reizo; Sakai, Hideki; Pooh, Kyong Hon; Watanabe, Tomoyuki

    2015-07-14

    The majority of neural tube defects were believed to be folic acid (FA)-preventable in the 1990s. The Japanese government recommended women planning pregnancy to take FA supplements of 400 μg/d in 2000, but the incidence of spina bifida has not decreased. We aimed to evaluate the OR of having an infant with spina bifida for women who periconceptionally took FA supplements and the association between an increase in supplement use and possible promoters for the increase. This is a case-control study which used 360 case women who gave birth to newborns afflicted with spina bifida, and 2333 control women who gave birth to healthy newborns during the first 12 years of this century. They were divided into two 6-year periods; from 2001 to 2006 and from 2007 to 2012. Logistic regression analyses were conducted to compute OR between cases and controls. The adjusted OR of having an infant with spina bifida for supplement users was 0.48 in the first period, and 0.53 in the second period. The proportion of women who periconceptionally consumed supplements significantly increased from 10 % in the first period to 30 % in the second period. Awareness of the preventive role of FA was a promoter for an increase in supplement use, and thus an FA campaign in high school seems rational and effective. The failure of the current public health policy is responsible for an epidemic of spina bifida. Mandatory food fortification with FA is urgent and long overdue in Japan.

  13. Developmental PCB Exposure Increases Audiogenic Seizures and Decreases Glutamic Acid Decarboxylase in the Inferior Colliculus

    PubMed Central

    Bandara, Suren B.; Eubig, Paul A.; Sadowski, Renee N.; Schantz, Susan L.

    2016-01-01

    Previously, we observed that developmental polychlorinated biphenyl (PCB) exposure resulted in an increase in audiogenic seizures (AGSs) in rats. However, the rats were exposed to loud noise in adulthood, and were not tested for AGS until after 1 year of age, either of which could have interacted with early PCB exposure to increase AGS susceptibility. This study assessed susceptibility to AGS in young adult rats following developmental PCB exposure alone (without loud noise exposure) and investigated whether there was a decrease in GABA inhibitory neurotransmission in the inferior colliculus (IC) that could potentially explain this effect. Female Long-Evans rats were dosed orally with 0 or 6 mg/kg/day of an environmentally relevant PCB mixture from 28 days prior to breeding until the pups were weaned at postnatal day 21. One male-female pair from each litter was retained for the AGS study whilst another was retained for Western blot analysis of glutamic acid decarboxylase (GAD) and GABAAα1 receptor in the IC, the site in the auditory midbrain where AGS are initiated. There was a significant increase in the number and severity of AGSs in the PCB groups, with females somewhat more affected than males. GAD65 was decreased but there was no change in GAD67 or GABAAα1 in the IC indicating decreased inhibitory regulation in the PCB group. These results confirm that developmental PCB exposure alone is sufficient to increase susceptibility to AGS, and provide the first evidence for a possible mechanism of action at the level of the IC. PMID:26543103

  14. Increased production of γ-lactones from hydroxy fatty acids by whole Waltomyces lipofer cells induced with oleic acid.

    PubMed

    An, Jung-Ung; Oh, Deok-Kun

    2013-09-01

    Among several fatty acids tested, oleic acid was selected as the most efficient inducer for the production of 4-hydroxydodecanoic acid, a metabolite of β-oxidation, by Waltomyces lipofer. Cells were induced by incubation for 12 h in a medium containing 10 g l(-1) yeast extract, 10 g l(-1) peptone, 5 g l(-1) oleic acid, 1 g l(-1) glucose, and 0.05 % (w/v) Tween 80. The optimal reaction conditions for the production of γ-lactones by induced cells were pH 6.5, 35 °C, 200 rpm, 0.71 M Tris, 60 g l(-1) hydroxy fatty acid, and 20 g l(-1) cells. Non-induced cells produced 38 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 63 % (w/w) and a productivity of 1.3 g l(-1) h(-1) under the optimized conditions, whereas induced cells produced 51 g l(-1) γ-dodecalactone from 60 g l(-1) 10-hydroxystearic acid after 30 h, with a conversion yield of 85 % (w/w) and a productivity of 1.7 g l(-1) h(-1). The conversion yield and productivity of induced cells were 22 % and 1.3-fold higher, respectively, than those of non-induced cells. Induced cells also produced 28 g l(-1) γ-decalactone and 12 g l(-1) γ-butyrolactone from 60 g l(-1) 12-hydroxystearic acid and 60 g l(-1) 10-hydroxydecanoic acid, respectively, after 30 h. The concentration, conversion yield, and productivity of γ-dodecalactone and γ-decalactone are the highest reported thus far. This is the first study on the biotechnological production of γ-butyrolactone.

  15. Method for construction of bacterial strains with increased succinic acid production

    DOEpatents

    Donnelly, Mark I.; Sanville-Millard, Cynthia; Chatterjee, Ranjini

    2000-01-01

    A fermentation process for producing succinic acid is provided comprising selecting a bacterial strain that does not produce succinic acid in high yield, disrupting the normal regulation of sugar metabolism of said bacterial strain, and combining the mutant bacterial strain and selected sugar in anaerobic conditions to facilitate production of succinic acid. Also provided is a method for changing low yield succinic acid producing bacteria to high yield succinic acid producing bacteria comprising selecting a bacterial strain having a phosphotransferase system and altering the phosphotransferase system so as to allow the bacterial strain to simultaneously metabolize different sugars.

  16. Dietary Conjugated Linoleic Acid (CLA) increases milk yield without losing body weight in lactating sows.

    PubMed

    Lee, Sung-Hoon; Joo, Young-Kuk; Lee, Jin-Woo; Ha, Young-Joo; Yeo, Joon-Mo; Kim, Wan-Young

    2014-01-01

    This study was conducted to evaluate the effects of dietary conjugated linoleic acid (CLA) on the performance of lactating sows and piglets as well as the immunity of piglets suckling from sows fed CLA. Eighteen multiparous Duroc sows with an average body weight (BW) of 232.0 ± 6.38 kg were randomly selected and assigned to two dietary treatments (n = 9 for each treatment), control (no CLA addition) and 1% CLA supplementation. For the control diet, CLA was replaced with soybean oil. Experimental diets were fed to sows during a 28-day lactation period. Litter size for each sow was standardized to nine piglets by cross-fostering within 24 hours after birth. Sow milk and blood samples were taken from sows and piglets after 21 and 27 days of lactation, respectively. Loss of BW was significantly (p < 0.05) higher in sows fed control diet compared to sows fed CLA diet. Piglet weights at weaning and weight gain during suckling were significantly (p < 0.05) higher in sows fed CLA compared to sows fed control diet. Serum non-esterified fatty acid (NEFA) and urea nitrogen concentrations were significantly (p < 0.05) lower in sows fed CLA than in sows fed soybean oil. IgG concentrations of the groups supplemented with CLA increased by 49% in sow serum (p < 0.0001), 23% in milk (p < 0.05), and 35% in piglet serum (p < 0.05) compared with the control group. Sows fed CLA showed an increase of 10% in milk yield compared with sows fed soybean oil (p < 0.05), even though there was no difference in daily feed intake between the treatments. Milk fat content was significantly (p < 0.05) lower in sows fed CLA than in sows fed soybean oil. Solid-not-fat yield was significantly (p < 0.05) higher in sows supplemented with CLA than in sows fed control diet and also protein-to-fat ratio in milk was significantly (p < 0.05) higher in sows fed CLA compared with the control group. The results show that CLA supplementation to sows increased milk yield without losing BW during

  17. Increased adhesion between neutral lipid bilayers: interbilayer bridges formed by tannic acid.

    PubMed Central

    Simon, S A; Disalvo, E A; Gawrisch, K; Borovyagin, V; Toone, E; Schiffman, S S; Needham, D; McIntosh, T J

    1994-01-01

    Tannic acid (TA) is a naturally occurring polyphenolic compound that aggregates membranes and neutral phosolipid vesicles and precipitates many proteins. This study analyzes TA binding to lipid membranes and the ensuing aggregation. The optical density of dispersions of phosphatidylcholine (PC) vesicles increased upon the addition of TA and electron micrographs showed that TA caused the vesicles to aggregate and form stacks of tightly packed disks. Solution calorimetry showed that TA bound to PC bilayers with a molar binding enthalpy of -8.3 kcal/mol and zeta potential measurements revealed that TA imparted a small negative charge to PC vesicles. Monolayer studies showed that TA bound to PC with a dissociation constant of 1.5 microM and reduced the dipole potential by up to 250 mV. Both the increase in optical density and decrease in dipole potential produced by TA could be reversed by the addition of polyvinylpyrrolidone, a compound that chelates TA by providing H-bond acceptor groups. NMR, micropipette aspiration, and x-ray diffraction experiments showed that TA incorporated into liquid crystalline PC membranes, increasing the area per lipid molecule and decreasing the bilayer thickness by 2 to 4%. 2H-NMR quadrupole splitting measurements also showed that TA associated with a PC molecule for times much less than 10(-4) s. In gel phase bilayers, TA caused the hydrocarbon chains from apposing monolayers to fully interdigitate. X-ray diffraction measurements of both gel and liquid crystalline dispersions showed that TA, at a critical concentration of about 1 mM, reduced the fluid spacing between adjacent bilayers by 8-10 A. These data place severe constraints on how TA can pack between adjacent bilayers and cause vesicles to adhere. We conclude that TA promotes vesicle aggregation by reducing the fluid spacing between bilayers by the formation of transient interbilayer bridges by inserting its digallic acid residues into the interfacial regions of adjacent bilayers

  18. Valproic acid increases conservative homologous recombination frequency and reactive oxygen species formation: a potential mechanism for valproic acid-induced neural tube defects.

    PubMed

    Defoort, Ericka N; Kim, Perry M; Winn, Louise M

    2006-04-01

    Valproic acid, a commonly used antiepileptic agent, is associated with a 1 to 2% incidence of neural tube defects when taken during pregnancy; however, the molecular mechanism by which this occurs has not been elucidated. Previous research suggests that valproic acid exposure leads to an increase in reactive oxygen species (ROS). DNA damage due to ROS can result in DNA double-strand breaks, which can be repaired through homologous recombination (HR), a process that is not error-free and can result in detrimental genetic changes. Because the developing embryo requires tight regulation of gene expression to develop properly, we propose that the loss or dysfunction of genes involved in embryonic development through aberrant HR may ultimately cause neural tube defects. To determine whether valproic acid induces HR, Chinese hamster ovary 3-6 cells, containing a neomycin direct repeat recombination substrate, were exposed to valproic acid for 4 or 24 h. A significant increase in HR after exposure to valproic acid (5 and 10 mM) for 24 h was observed, which seems to occur through a conservative HR mechanism. We also demonstrated that exposure to valproic acid (5 and 10 mM) significantly increased intracellular ROS levels, which were attenuated by preincubation with polyethylene glycol-conjugated (PEG)-catalase. A significant change in the ratio of 8-hydroxy-2'-deoxyguanosine/2'-de-oxyguanosine, a measure of DNA oxidation, was not observed after valproic acid exposure; however, preincubation with PEG-catalase significantly blocked the increase in HR. These data demonstrate that valproic acid increases HR frequency and provides a possible mechanism for valproic acid-induced neural tube defects.

  19. Goat milk fat naturally enriched with conjugated linoleic acid increased lipoproteins and reduced triacylglycerol in rats.

    PubMed

    Rodrigues, Raphaela; Soares, Juliana; Garcia, Hugo; Nascimento, Claudenice; Medeiros, Maria; Bomfim, Marco; Medeiros, Maria Carmo; Queiroga, Rita

    2014-03-24

    Goat milk is source of different lipids, including conjugated linoleic acid (CLA). CLA reduces body fat and protect against cardiovascular diseases. In the present study fat from goat milk naturally enriched with CLA was used. Male Wistar rats were divided into three groups that received during a 10 week diet with different lipid sources: soybean oil (CON), coconut oil (CO) and goat milk fat naturally enriched with CLA (GM-CLA). We evaluated the effects of a GM-CLA on biochemistry parameters--high density lipoprotein (HDL), triacylglycerol (TAG), TAG/HDL ratio, total cholesterol and glucose, body weight and histopathological aspects of the intestine and liver. GM-CLA increased body weight from the second to the fifth week of the experiment compared to CON. Feed intake differed between the CON group and GM-CLA early in the first to third week of the experiments and later between the ninth and tenth week. The CLA-diet group showed increased levels of HDL, reduced levels of TAG and TAG/HDL ratio and no effect on LDL, but enhanced total cholesterol. Serum glucose of the GM-CLA group showed no difference from the control group. Thus, a GM-CLA diet promoted growth in young rats and acted as protector of cardiovascular function, but further studies are still needed to clarify these effects.

  20. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana

    PubMed Central

    Zhang, Nana; Tonsor, Stephen J; Traw, M Brian

    2015-01-01

    Salicylic acid (SA) occupies a key role as a hormone central to both plant resistance to bacterial pathogens and tolerance of abiotic stresses. Plants at high elevation experience colder temperatures and elevated UV levels. While it has been predicted that SA concentrations will be higher in plants from high elevation populations, few studies have addressed this question. Here, we asked how concentrations of SA vary in natural populations of Arabidopsis thaliana collected across an elevational gradient on the Iberian Peninsula. In a series of common garden experiments, we found that constitutive SA concentrations were highest in genotypes from the low elevation populations. This result was in the opposite direction from our prediction and is an exception to the general finding that phenolic compounds increase with increasing elevation. These data suggest that high constitutive SA is not associated with resistance to cold temperatures in these plants. Furthermore, we also found that leaf constitutive camalexin concentrations, an important defense against some bacterial and fungal enemies, were highest in the low elevation populations, suggesting that pathogen pressures may be important. Further examination of this elevational cline will likely provide additional insights into the interplay between phenolic compounds and biotic and abiotic stress. PMID:25875692

  1. Staphylococcal lipoteichoic acid promotes osteogenic differentiation of mouse mesenchymal stem cells by increasing autophagic activity.

    PubMed

    Liu, Xin; Wang, Yuan; Cao, Zhen; Dou, Ce; Bai, Yun; Liu, Chuan; Dong, Shiwu; Fei, Jun

    2017-02-16

    This study sought to explore the effect of staphylococcal lipoteichoic acid (LTA) on autophagy in mouse mesenchymal stem cells (MSCs), and then influence osteogenesis through the change of autophagy. C3H10T1/2 cells were induced by osteogenic medium with the treatment of LTA at different concentrations (1, 5, 10 μg/mL); 3-methyladenine (3-MA) were used as the autophagy inhibitor, and rapamycin (rapamycin, Rap) were used to activate autophagy; the effects on osteogenesis were detected by alkaline phosphatase staining, alizarin red staining, real-time quantitative PCR, and western blotting; autophagic activity was investigated by the expression of LC3-Ⅱand p62 proteins. Compared with control group, the expression of osteogenesis markers was significantly up-regulated with the LTA treatment on the mRNA and protein level; the positive rate of alkaline phosphatase was enhanced in the LTA groups; and the formation of calcium nodules was increased simultaneously. The expression of LC3-Ⅱ protein was increased in LTA groups, while the expression of p62 protein was decreased. Inhibition of autophagy significantly reduced the effect of LTA on osteogenesis of MSCs; the promotion of LTA on osteogenic differentiation was further enhanced when adding rapamycin to activate autophagic activity. It provides new insight of prevention and treatment for bone infection.

  2. Retinoic acid increases zif268 early gene expression in rat preosteoblastic cells.

    PubMed Central

    Suva, L J; Ernst, M; Rodan, G A

    1991-01-01

    In this study we demonstrate that retinoic acid (RA) increases the expression of transcription factor zif268 mRNA in primary cultures of fetal rat calvarial cells and in simian virus 40-immortalized clonal rat calvarial preosteoblastic cells (RCT-1), which differentiate in response to RA, but not in the more differentiated RCT-3 and ROS 17/2.8 cells. The increased expression of zif268 mRNA is rapid (maximal within 1 h), transient (returns to basal levels by 3 h), detectable at RA doses of 10(-12)M, and independent of protein synthesis. The relative stimulation of zif268 mRNA by RA was much larger than that of other early genes, including c-fos, c-jun, and junB. The rate of transcription of RA-stimulated RCT-1 cells, estimated by nuclear run-on assays, was elevated, suggesting that RA regulation of zif268 gene transcription was at least in part transcriptional. Moreover, RA stimulated the transcriptional activity of a Zif268CAT (chloramphenicol acetyltransferase) plasmid containing 632 bp of zif268 5' regulatory sequences in RCT-1 cells but not in the more differentiated RCT-3 cells. These in vitro data support the in vivo observations which localize zif268 and RA receptor-gamma transcripts to bone and cartilage during development, suggesting that both RA and zif268 may play a role in osteoblast differentiation. Images PMID:1708092

  3. Increased presence of monounsaturated fatty acids in the stratum corneum of human skin equivalents.

    PubMed

    Thakoersing, Varsha S; van Smeden, Jeroen; Mulder, Aat A; Vreeken, Rob J; El Ghalbzouri, Abdoelwaheb; Bouwstra, Joke A

    2013-01-01

    Previous results showed that our in-house human skin equivalents (HSEs) differ in their stratum corneum (SC) lipid organization compared with human SC. To elucidate the cause of the altered SC lipid organization in the HSEs, a recently developed liquid chromatography/mass spectrometry method was used to study the free fatty acid (FFA) and ceramide composition in detail. In addition, the SC lipid composition of the HSEs and human skin was examined quantitatively with high-performance thin-layer chromatography. Our results reveal that all our HSEs have an increased presence of monounsaturated FFAs compared with human SC. Moreover, the HSEs display the presence of ceramide species with a monounsaturated acyl chain, which are not detected in human SC. All HSEs also exhibit an altered expression of stearoyl-CoA desaturase, the enzyme that converts saturated FFAs to monounsaturated FFAs. Furthermore, the HSEs show the presence of 12 ceramide subclasses, similar to native human SC. However, the HSEs have increased levels of ceramides EOS and EOH and ceramide species with short total carbon chains and a reduced FFA level compared with human SC. The presence of unsaturated lipid chains in HSE offers new opportunities to mimic the lipid properties of human SC more closely.

  4. Is increased arachidonic acid release a cause or a consequence of replicative senescence?

    PubMed

    Lorenzini, A; Hrelia, S; Bordoni, A; Biagi, P; Frisoni, L; Marinucci, T; Cristofalo, V J

    2001-01-01

    Arachidonic acid (AA) has been related to both stimulation and inhibition of cellular proliferation. During replicative senescence of human fibroblasts, increased levels of AA have been thought to play a causal role in the limited proliferative capacity of the cells. To clarify the role of AA in the proliferation of normal fibroblasts and in cellular senescence, we examined uptake from and release of AA into the culture media and its effects on DNA synthesis. Our results indicate that some aspects of AA metabolism in normal human fibroblasts aged in culture are significantly different in comparison to early passage cells. Particularly, AA release following different mitogenic stimulation is higher in senescent than in young cells. Notwithstanding this significant difference, AA, at the concentration used, has no inhibitory effect on fibroblast DNA synthesis. Moreover AA and prostaglandins are responsible for the proliferative block in neither senescent cells nor mediate ceramide inhibition of DNA synthesis. So our results suggest that the increasing AA release is not causal, but rather the result of in vitro aging.

  5. Extreme soil acidity from biodegradable trap and skeet targets increases severity of pollution at shooting ranges.

    PubMed

    McTee, Michael R; Mummey, Daniel L; Ramsey, Philip W; Hinman, Nancy W

    2016-01-01

    Lead pollution at shooting ranges overshadows the potential for contamination issues from trap and skeet targets. We studied the environmental influence of targets sold as biodegradable by determining the components of the targets and sampling soils at a former sporting clay range. Targets comprised approximately 53% CaCO3, 41% S(0), and 6% modifiers, and on a molar basis, there was 2.3 times more S(0) than CaCO3. We observed a positive correlation between target cover and SO4(2-) (ρ=0.82, P<0.001), which indicated the oxidation of S(0) to H2SO4. Sulfate was negatively correlated with pH (ρ=-0.93, P<0.001) because insufficient CaCO3 existed in the targets to neutralize all the acid produced from S(0) oxidation. Plant cover decreased with decreasing soil pH (ρ=0.62, P=0.006). For sites that had pH values below 3, 24tons of lime per 1000tons of soil would be required to raise soil pH to 6.5. Lime-facilitated pH increases would be transitory because S(0) would continue to oxidize to H2SO4 until the S(0) is depleted. This study demonstrates that biodegradable trap and skeet targets can acidify soil, which has implications for increasing the mobility of Pb from shotgun pellets.

  6. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation.

    PubMed

    Bot, Martine; de Jager, Saskia C A; MacAleese, Luke; Lagraauw, H Maxime; van Berkel, Theo J C; Quax, Paul H A; Kuiper, Johan; Heeren, Ron M A; Biessen, Erik A L; Bot, Ilze

    2013-05-01

    Lysophosphatidic acid (LPA), a bioactive lysophospholipid, accumulates in the atherosclerotic plaque. It has the capacity to activate mast cells, which potentially exacerbates plaque progression. In this study, we thus aimed to investigate whether LPA contributes to plaque destabilization by modulating mast cell function. We here show by an imaging mass spectrometry approach that several LPA species are present in atherosclerotic plaques. Subsequently, we demonstrate that LPA is a potent mast cell activator which, unlike other triggers, favors release of tryptase. Local perivascular administration of LPA to an atherosclerotic carotid artery segment increases the activation status of perivascular mast cells and promotes intraplaque hemorrhage and macrophage recruitment without impacting plaque cell apoptosis. The mast cell stabilizer cromolyn could prevent intraplaque hemorrhage elicited by LPA-mediated mast cell activation. Finally, the involvement of mast cells in these events was further emphasized by the lack of effect of perivascular LPA administration in mast cell deficient animals. We demonstrate that increased accumulation of LPA in plaques induces perivascular mast cell activation and in this way contributes to plaque destabilization in vivo. This study points to local LPA availability as an important factor in atherosclerotic plaque stability.

  7. Increased norepinephrine release during sympathetic nerve stimulation and its inhibition by adenosine in the isolated perfused kidney of spontaneously hypertensive rats

    SciTech Connect

    Ekas, R.D. Jr.; Steenberg, M.L.; Lokhandwala, M.F.

    1983-01-01

    The present study was performed to measure norepinephrine release during sympathetic nerve stimulation and determine the inhibitory action of adenosine on stimulus-induced release of norepinephrine in the isolated perfused kidney of WKY and SHR. Norepinephrine release during periarterial nerve stimulation was measured as total /sup 3/H-overflow since greater than 75% of total /sup 3/H-overflow was /sup 3/H-norepinephrine in both the WKY and SHR. A significantly greater increase in /sup 3/H-norepinephrine overflow was observed during periarterial nerve stimulation in SHR in comparison with WKY. Adenosine (0.3, 1.0, 3.0 and 10.0 micrograms/ml) produced dose-dependent inhibition of /sup 3/H-norepinephrine overflow elicited by periarterial nerve stimulation. However, the effect of adenosine on transmitter release was more pronounced in the SHR in that the threshold dose required to cause inhibition of stimulus-induced release of /sup 3/H-norepinephrine was smaller in the SHR. These results demonstrate that while norepinephrine release during sympathetic nerve stimulation is greater in the SHR, this finding can not be explained on the basis of a decrease in the presynaptic inhibitory action of adenosine. Therefore, the mechanism responsible for the increased release of norepinephrine in the SHR remains to be determined.

  8. Antagonizing Retinoic Acid Receptors Increases Myeloid Cell Production by Cultured Human Hematopoietic Stem Cells.

    PubMed

    Brown, Geoffrey; Marchwicka, Aleksandra; Cunningham, Alan; Toellner, Kai-Michael; Marcinkowska, Ewa

    2017-02-01

    Activities of the retinoic acid receptor (RAR)α and RARγ are important to hematopoiesis. Here, we have investigated the effects of receptor selective agonists and antagonists on the primitive human hematopoietic cell lines KG1 and NB-4 and purified normal human hematopoietic stem cells (HSCs). Agonizing RARα (by AGN195183) was effective in driving neutrophil differentiation of NB-4 cells and this agonist synergized with a low amount (10 nM) of 1α,25-dihydroxyvitamin D3 to drive monocyte differentiation of NB-4 and KG1 cells. Treatment of cultures of human HSCs (supplemented with stem cell factor ± interleukin 3) with an antagonist of all RARs (AGN194310) or of RARα (AGN196996) prolonged the lifespan of cultures, up to 55 days, and increased the production of neutrophils and monocytes. Slowing down of cell differentiation was not observed, and instead, hematopoietic stem and progenitor cells had expanded in number. Antagonism of RARγ (by AGN205728) did not affect cultures of HSCs. Studies of CV-1 and LNCaP cells transfected with RAR expression vectors and a reporter vector revealed that RARγ and RARβ are activated by sub-nM all-trans retinoic acid (EC50-0.3 nM): ~50-fold more is required for activation of RARα (EC50-16 nM). These findings further support the notion that the balance of expression and activity of RARα and RARγ are important to hematopoietic stem and progenitor cell expansion and differentiation.

  9. High folic acid increases cell turnover and lowers differentiation and iron content in human HT29 colon cancer cells.

    PubMed

    Pellis, Linette; Dommels, Yvonne; Venema, Dini; Polanen, Ab van; Lips, Esther; Baykus, Hakan; Kok, Frans; Kampman, Ellen; Keijer, Jaap

    2008-04-01

    Folate, a water-soluble B vitamin, is a cofactor in one-carbon metabolism and is essential for DNA synthesis, amino acid interconversion, methylation and, consequently, normal cell growth. In animals with existing pre-neoplastic and neoplastic lesions, folic acid supplementation increases the tumour burden. To identify processes that are affected by increased folic acid levels, we compared HT29 human colon cancer cells exposed to a chronic supplemental (100 ng/ml) level of folic acid to cells exposed to a normal (10 ng/ml) level of folic acid, in the presence of vitamin B12 and other micronutrients involved in the folate-methionine cycle. In addition to higher intracellular folate levels, HT29 cells at 100 ng folic acid/ml displayed faster growth and higher metabolic activity. cDNA microarray analysis indicated an effect on cell turnover and Fe metabolism. We fully confirmed these effects at the physiological level. At 100 ng/ml, cell assays showed higher proliferation and apoptosis, while gene expression analysis and a lower E-cadherin protein expression indicated decreased differentiation. These results are in agreement with the promoting effect of folic acid supplementation on established colorectal neoplasms. The lower expression of genes related to Fe metabolism at 100 ng folic acid/ml was confirmed by lower intracellular Fe levels in the cells exposed to folic acid at 100 ng/ml. This suggests an effect of folate on Fe metabolism.

  10. Increased hippocampal cell density and enhanced spatial memory in the valproic acid rat model of autism.

    PubMed

    Edalatmanesh, Mohammad Amin; Nikfarjam, Haniyeh; Vafaee, Farzaneh; Moghadas, Marzieh

    2013-08-14

    Autism is characterized by behavioral impairments in three main domains: social interaction; language, communication and imaginative play; and the range of interests and activities. However, neuronal processing studies have suggested that hyper-perception, hyper-attention, and enhanced memory, which may lie at the heart of most autistic symptoms. Pregnant Wistar rats were administered by either Valproic Acid (VPA, 500mg/kg) or Phosphate Buffer Saline (PBS) during fetal neural tube development on embryonic day 12.5. All offspring were subjected to various tests. The present study examined social interaction, repetitive behaviors, nociception and tactile threshold, anxiety as well as spatial memory. Histological analyses of cells in five regions of the hippocampus were done to determine neuronal density in both groups. A single intra-peritoneal injection of VPA to pregnant rats produced severe autistic-like symptoms in the offspring. The results showed significant behavioral impairments such as a lower tendency to initiate social interactions, enhanced stereotyped, repetitive behaviors, increased nociception threshold and anxiety at postnatal day (PND) 30 and PND 60. The Morris water maze learning paradigm revealed enhanced spatial memory at PND 60. Furthermore, histological analysis showed that the neuronal density in five separate regions of hippocampus (CA1, CA2, CA3, Dentate gyrus and Subiculum) were increased at PND 67. This work suggests that early embryonic exposure to VPA in rats provides a good model for several specific aspects of autism and should help to continue to explore pathophysiological and neuroanatomical hypotheses. This study provides further evidence to support the notion that spatial memory and hippocampal cell density are increased in this animal model of autism.

  11. Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis.

    PubMed

    Svahn, Sara L; Ulleryd, Marcus A; Grahnemo, Louise; Ståhlman, Marcus; Borén, Jan; Nilsson, Staffan; Jansson, John-Olov; Johansson, Maria E

    2016-04-01

    Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics,S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival.

  12. Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis

    PubMed Central

    Ulleryd, Marcus A.; Grahnemo, Louise; Ståhlman, Marcus; Borén, Jan; Nilsson, Staffan; Jansson, John-Olov

    2016-01-01

    Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics, S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus. Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival. PMID:26857576

  13. Primary Action of Indole-3-acetic Acid in Crown Gall Tumors: Increase of Solute Uptake.

    PubMed

    Rausch, T; Kahl, G; Hilgenberg, W

    1984-06-01

    Exogenously added indole-3-acetic acid at a concentration of 100 micromolars stimulates d-glucose uptake (or 3-O-methyl-d-glucose uptake) by 25% in crown gall tumors induced on potato tuber tissue by Agrobacterium tumefaciens strain C 58. The titration of the endogenous IAA with the auxin antagonist 2-naphthaleneacetic acid at 100 micromolars reduces d-glucose uptake by about 80%. The apparent inhibition constant K(i) is 21 micromolars. Other auxin antagonists like 1-naphthoxyacetic acid and 2-(p-chlorophenoxy)-2-methylpropionic acid show similar effects. The uptake of the amino acids leucine, methionine, tryptophan, lysine, and aspartic acid is also inhibited by 2-naphthaleneacetic acid to similar degrees. The auxins 1-naphthaleneacetic acid and 2-naphthoxyacetic acid at concentrations between 10 and 100 micromolars inhibit solute uptake only slightly (inhibition less than 20%). The impact of the results on the postulated role of indole-3-acetic acid as a modifier of the electrochemical proton gradient across the plasmalemma in crown gall tumor tissue is discussed.

  14. Long Withdrawal of Methylphenidate Induces a Differential Response of the Dopaminergic System and Increases Sensitivity to Cocaine in the Prefrontal Cortex of Spontaneously Hypertensive Rats.

    PubMed

    dos Santos Pereira, Maurício; Sathler, Matheus Figueiredo; Valli, Thais da Rosa; Marques, Richard Souza; Ventura, Ana Lucia Marques; Peccinalli, Ney Ronner; Fraga, Mabel Carneiro; Manhães, Alex C; Kubrusly, Regina

    2015-01-01

    Methylphenidate (MPD) is one of the most prescribed drugs for alleviating the symptoms of Attention Deficit/Hyperactivity Disorder (ADHD). However, changes in the molecular mechanisms related to MPD withdrawal and susceptibility to consumption of other psychostimulants in normal individuals or individuals with ADHD phenotype are not completely understood. The aims of the present study were: (i) to characterize the molecular differences in the prefrontal dopaminergic system of SHR and Wistar strains, (ii) to establish the neurochemical consequences of short- (24 hours) and long-term (10 days) MPD withdrawal after a subchronic treatment (30 days) with Ritalin® (Methylphenidate Hydrochloride; 2.5 mg/kg orally), (iii) to investigate the dopaminergic synaptic functionality after a cocaine challenge in adult MPD-withdrawn SHR and Wistar rats. Our results indicate that SHR rats present reduced [3H]-Dopamine uptake and cAMP accumulation in the prefrontal cortex (PFC) and are not responsive to dopaminergic stimuli in when compared to Wistar rats. After a 24-hour withdrawal of MPD, SHR did not present any alterations in [3H]-Dopamine Uptake, [3H]-SCH 23390 binding and cAMP production; nonetheless, after a 10-day MPD withdrawal, the results showed a significant increase of [3H]-Dopamine uptake, of the quantity of [3H]-SCH 23390 binding sites and of cAMP levels in these animals. Finally, SHR that underwent a 10-day MPD withdrawal and were challenged with cocaine (10 mg/kg i.p.) presented reduced [3H]-Dopamine uptake and increased cAMP production. Wistar rats were affected by the 10-day withdrawal of MPD in [3H]-dopamine uptake but not in cAMP accumulation; in addition, cocaine was unable to induce significant modifications in [3H]-dopamine uptake and in cAMP levels after the 10-day withdrawal of MPD. These results indicate a mechanism that could explain the high comorbidity between ADHD adolescent patients under methylphenidate treatment and substance abuse in adult life.

  15. Long Withdrawal of Methylphenidate Induces a Differential Response of the Dopaminergic System and Increases Sensitivity to Cocaine in the Prefrontal Cortex of Spontaneously Hypertensive Rats

    PubMed Central

    dos Santos Pereira, Maurício; Sathler, Matheus Figueiredo; Valli, Thais da Rosa; Marques, Richard Souza; Ventura, Ana Lucia Marques; Peccinalli, Ney Ronner; Fraga, Mabel Carneiro; Manhães, Alex C.; Kubrusly, Regina

    2015-01-01

    Methylphenidate (MPD) is one of the most prescribed drugs for alleviating the symptoms of Attention Deficit/Hyperactivity Disorder (ADHD). However, changes in the molecular mechanisms related to MPD withdrawal and susceptibility to consumption of other psychostimulants in normal individuals or individuals with ADHD phenotype are not completely understood. The aims of the present study were: (i) to characterize the molecular differences in the prefrontal dopaminergic system of SHR and Wistar strains, (ii) to establish the neurochemical consequences of short- (24 hours) and long-term (10 days) MPD withdrawal after a subchronic treatment (30 days) with Ritalin® (Methylphenidate Hydrochloride; 2.5 mg/kg orally), (iii) to investigate the dopaminergic synaptic functionality after a cocaine challenge in adult MPD-withdrawn SHR and Wistar rats. Our results indicate that SHR rats present reduced [3H]-Dopamine uptake and cAMP accumulation in the prefrontal cortex (PFC) and are not responsive to dopaminergic stimuli in when compared to Wistar rats. After a 24-hour withdrawal of MPD, SHR did not present any alterations in [3H]-Dopamine Uptake, [3H]-SCH 23390 binding and cAMP production; nonetheless, after a 10-day MPD withdrawal, the results showed a significant increase of [3H]-Dopamine uptake, of the quantity of [3H]-SCH 23390 binding sites and of cAMP levels in these animals. Finally, SHR that underwent a 10-day MPD withdrawal and were challenged with cocaine (10 mg/kg i.p.) presented reduced [3H]-Dopamine uptake and increased cAMP production. Wistar rats were affected by the 10-day withdrawal of MPD in [3H]-dopamine uptake but not in cAMP accumulation; in addition, cocaine was unable to induce significant modifications in [3H]-dopamine uptake and in cAMP levels after the 10-day withdrawal of MPD. These results indicate a mechanism that could explain the high comorbidity between ADHD adolescent patients under methylphenidate treatment and substance abuse in adult life

  16. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    EPA Science Inventory

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  17. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity

    PubMed Central

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M.; Park, Jin-Byung

    2016-01-01

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass. PMID:27681369

  18. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.

    PubMed

    Woo, Ji-Min; Kim, Ji-Won; Song, Ji-Won; Blank, Lars M; Park, Jin-Byung

    The biosynthesis of carboxylic acids including fatty acids from biomass is central in envisaged biorefinery concepts. The productivities are often, however, low due to product toxicity that hamper whole-cell biocatalyst performance. Here, we have investigated factors that influence the tolerance of Escherichia coli to medium chain carboxylic acid (i.e., n-heptanoic acid)-induced stress. The metabolic and genomic responses of E. coli BL21(DE3) and MG1655 grown in the presence of n-heptanoic acid indicated that the GadA/B-based glutamic acid-dependent acid resistance (GDAR) system might be critical for cellular tolerance. The GDAR system, which is responsible for scavenging intracellular protons by catalyzing decarboxylation of glutamic acid, was inactive in E. coli BL21(DE3). Activation of the GDAR system in this strain by overexpressing the rcsB and dsrA genes, of which the gene products are involved in the activation of GadE and RpoS, respectively, resulted in acid tolerance not only to HCl but also to n-heptanoic acid. Furthermore, activation of the GDAR system allowed the recombinant E. coli BL21(DE3) expressing the alcohol dehydrogenase of Micrococcus luteus and the Baeyer-Villiger monooxygenase of Pseudomonas putida to reach 60% greater product concentration in the biotransformation of ricinoleic acid (i.e., 12-hydroxyoctadec-9-enoic acid (1)) into n-heptanoic acid (5) and 11-hydroxyundec-9-enoic acid (4). This study may contribute to engineering E. coli-based biocatalysts for the production of carboxylic acids from renewable biomass.

  19. Spontaneous triplet, tubal ectopic gestation.

    PubMed Central

    Nwanodi, Oroma; Berry, Robert

    2006-01-01

    Only six cases of spontaneous, unilateral, triplet ectopic gestations have previously been reported. We now present a seventh case. The patient's prior obstetrical history was significant for a term stillbirth and a term cesarean section for breech. Quantitative betahCG was normal for gestational age; however, the increased trophoblastic mass of an inappropriately implanted multiple gestation may produce sufficient betahCG to mimic an intrauterine singleton gestation. Resolution was achieved via salpingostomy. This case is significant for being spontaneously conceived and not the result of assisted reproductive technologies. Furthermore, this case supports an association between prior cesarean section and ectopic gestation. Images Figure 1 PMID:16775922

  20. The influence of thermal processing on the fatty acid profile of pork and lamb meat fed diet with increased levels of unsaturated fatty acids.

    PubMed

    Janiszewski, Piotr; Grześkowiak, Eugenia; Lisiak, Dariusz; Borys, Bronisław; Borzuta, Karol; Pospiech, Edward; Poławska, Ewa

    2016-01-01

    The research was carried out on 32 crossbred pigs of Polish Large White × Danish Landrace with Duroc and 80 rams, crossbreds of the Prolific-Dairy Koludzka Sheep with the Ile de France, a meat sheep. The fodder for the animals was enriched with the unsaturated fatty acids originated mainly from linseed and rapeseed oils. The fatty acid profile was determined in cooked longissimus lumborum, roasted triceps brachii and raw ripened rump from pigs as well as in grilled lambs' legs and their corresponding raw materials. Roasting caused the most pronounced increase of the saturated fatty acids and decrease in the polyunsaturated fatty acids of heated pork muscles. The smallest changes were observed in grilled lamb legs. The heating processes applied in this study, in most cases, did not cause essential changes in the indices of pro-health properties of fatty acid, therefore meat in the majority fulfil the latest recommendations of EFSA and FAO/WHO according to human health.

  1. Mice deficient in poly(C)-binding protein 4 are susceptible to spontaneous tumors through increased expression of ZFP871 that targets p53 for degradation

    PubMed Central

    Yan, Wensheng; Scoumanne, Ariane; Jung, Yong-Sam; Xu, Enshun; Zhang, Jin; Zhang, Yanhong; Ren, Cong; Sun, Pei; Chen, Xinbin

    2016-01-01

    Poly(C)-binding protein 4 (PCBP4), also called MCG10 and a target of p53, plays a role in the cell cycle and is implicated in lung tumor suppression. Here, we found that PCBP4-deficient mice are prone to lung adenocarcinoma, lymphoma, and kidney tumor and that PCBP4-deficient mouse embryo fibroblasts (MEFs) exhibit enhanced cell proliferation but decreased cellular senescence. We also found that p53 expression is markedly reduced in PCBP4-deficient MEFs and mouse tissues, suggesting that PCBP4 in turn regulates p53 expression. To determine how PCBP4 regulates p53 expression, PCBP4 targets were identified by RNA immunoprecipitation followed by RNA sequencing (RNA-seq). We found that the transcript encoding ZFP871 (zinc finger protein 871; also called ZNF709 in humans) interacts with and is regulated by PCBP4 via mRNA stability. Additionally, we found that ZFP871 physically interacts with p53 and MDM2 proteins. Consistently, ectopic expression of ZFP871 decreases—whereas knockdown of ZFP871 increases—p53 protein stability through a proteasome-dependent degradation pathway. Moreover, loss of ZFP871 reverses the reduction of p53 expression by lack of PCBP4, and thus increased expression of ZFP871 is responsible for decreased expression of p53 in the PCBP4-deficient MEFs and mouse tissues. Interestingly, we found that, like PCBP4, ZFP871 is also regulated by DNA damage and p53. Finally, we showed that knockdown of ZFP871 markedly enhances p53 expression, leading to growth suppression and apoptosis in a p53-dependent manner. Thus, the p53–PCBP4–ZFP871 axis represents a novel feedback loop in the p53 pathway. Together, we hypothesize that PCBP4 is a potential tissue-specific tumor suppressor and that ZFP871 is part of MDM2 and possibly other ubiquitin E3 ligases that target p53 for degradation. PMID:26915821

  2. A spontaneous deletion of α-synuclein is associated with an increase in CB1 mRNA transcript and receptor expression in the hippocampus and amygdala: effects on alcohol consumption

    PubMed Central

    López-Jiménez, Alejandro; Walter, Nicole A. R.; Giné, Elena; Santos, Ángel; Echeverry-Alzate, Victor; Bühler, Kora-Mareen; Olmos, Pedro; Giezendanner, Stéphanie; Moratalla, Rosario; Montoliu, Lluis; Buck, Kari J.; López-Moreno, Jose Antonio

    2014-01-01

    α-Synuclein (α-syn) protein and endocannabinoid CB1 receptors are primarily located in presynaptic terminals. An association between α-syn and CB1 receptors has recently been established in Parkinson’s disease, but it is completely unknown whether there is an association between these two proteins in alcohol addiction. Therefore, we aimed to examine the α-syn mRNA transcript and protein expression levels in the prefrontal cortex, striatum, amygdala and hippocampus. These brain regions are the most frequently implicated in alcohol and other drug addiction. In these studies, we used C57BL/6 mice carrying a spontaneous deletion of the α-syn gene (C57BL/6Snca−/−) and their respective controls (C57BL/6Snca+/+). These animals were monitored for spontaneous alcohol consumption (3–10%) and their response to a hypnotic-sedative dose of alcohol (3 g/kg) was also assessed. Compared with the C57BL/6Snca+/+ mice, we found that the C57BL/6Snca−/− mice exhibited a higher expression level of the CB1 mRNA transcript and CB1 receptor in the hippocampus and amygdala. Furthermore, C57BL/6Snca−/− mice showed an increase in alcohol consumption when offered a 10% alcohol solution. There was no significant difference in sleep time after the injection of 3 g/kg alcohol. These results are the first to reveal an association between α-syn and the CB1 receptor in the brain regions that are most frequently implicated in alcohol and other drug addictions. PMID:23345080

  3. Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acid composites

    NASA Astrophysics Data System (ADS)

    Liu, Huinan; Slamovich, Elliott B.; Webster, Thomas J.

    2005-07-01

    The design of nanophase titania/poly-lactic-co-glycolic acid (PLGA) composites offers an exciting approach to combine the advantages of a degradable polymer with nano-size ceramic grains to optimize physical and biological properties for bone regeneration. Importantly, nanophase titania mimics the size scale of constituent components of bone since it is a nanostructured composite composed of nanometre dimensioned hydroxyapatite well dispersed in a mostly collagen matrix. For these reasons, the objective of the present in vitro study was to investigate osteoblast (bone-forming cell) adhesion and long-term functions on nanophase titania/PLGA composites. Since nanophase titania tended to significantly agglomerate when added to polymers, different sonication output powers were applied in this study to improve titania dispersion. Results demonstrated that the dispersion of titania in PLGA was enhanced by increasing the intensity of sonication and that greater osteoblast adhesion correlated with improved nanophase titania dispersion in PLGA. Moreover, results correlated better osteoblast long-term functions, such as alkaline phosphatase activity and calcium-containing mineral deposition, on nanophase titania/PLGA composites compared to plain PLGA. In fact, the greatest collagen production by osteoblasts occurred when cultured on nanophase titania sonicated in PLGA at the highest powers. In this manner, the present study demonstrates that PLGA composites with well dispersed nanophase titania can enhance osteoblast functions necessary for improved bone tissue engineering applications.

  4. α-lipoic acid reduces hypertension and increases baroreflex sensitivity in renovascular hypertensive rats.

    PubMed

    Queiroz, Thyago M; Guimarães, Drielle D; Mendes-Junior, Leônidas G; Braga, Valdir A

    2012-11-09

    Renovascular hypertension has robust effects on control of blood pressure, including an impairment in baroreflex mechanisms, which involves oxidative stress. Although α-lipoic acid (LA) has been described as a potent antioxidant, its effect on renovascular hypertension and baroreflex sensitivity (BRS) has not been investigated. In the present study we analyzed the effects caused by chronic treatment with LA on blood pressure, heart rate and baroreflex sensitivity (sympathetic and parasympathetic components) in renovascular hypertensive rats. Male Wistar rats underwent 2-Kidney-1-Clip (2K1C) or sham surgery and were maintained untouched for four weeks to develop hypertension. Four weeks post-surgery, rats were treated with LA (60 mg/kg) or saline for 14 days orally. On the 15th day mean arterial pressure (MAP) and heart rate (HR) were recorded. In addition, baroreflex sensitivity test using phenylephrine (8 µg/kg, i.v.) and sodium nitroprusside (25 µg/kg, i.v.) was performed. Chronic treatment with LA decreased blood pressure in hypertensive animals; however, no significant changes in baseline HR were observed. Regarding baroreflex, LA treatment increased the sensitivity of both the sympathetic and parasympathetic components. All parameters studied were not affected by treatment with LA in normotensive animals. Our data suggest that chronic treatment with LA promotes antihypertensive effect and improves baroreflex sensitivity in rats with renovascular hypertension.

  5. Metabolic rates associated with membrane fatty acids in mice selected for increased maximal metabolic rate

    PubMed Central

    Wone, Bernard W. M.; Donovan, Edward R.; Cushman, John C.; Hayes, Jack P.

    2014-01-01

    Aerobic metabolism of vertebrates is linked to membrane fatty acid (FA) composition. Although the membrane pacemaker hypothesis posits that desaturation of FAs accounts for variation in resting or basal metabolic rate (BMR), little is known about the FA profiles that underpin variation in maximal metabolic rate (MMR). We examined membrane FA composition of liver and skeletal muscle in mice after seven generations of selection for increased MMR. In both liver and skeletal muscle, unsaturation index did not differ between control and high-MMR mice. We also examined membrane FA composition at the individual-level of variation. In liver, 18:0, 20:3 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In gastrocnemius muscle, 18:2 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In addition, muscle 16:1 n-7, 18:1 n-9, and 22:5 n-3 FAs were significant predictors of BMR, whereas no liver FAs were significant predictors of BMR. Our findings indicate that (i) individual variation in MMR and BMR appear to be linked to membrane FA composition in the skeletal muscle and liver, and (ii) FAs that differ between selected and control lines are involved in pathways that can affect MMR or BMR. PMID:23422919

  6. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.

  7. Valproic Acid Increases Expression of Neuronal Stem/Progenitor Cell in Spinal Cord Injury

    PubMed Central

    Bang, Woo-Seok; Cho, Dae-Chul; Kim, Hye-Jeong; Sung, Joo-Kyung

    2013-01-01

    Objective This study investigates the effect of valproic acid (VPA) on expression of neural stem/progenitor cells (NSPCs) in a rat spinal cord injury (SCI) model. Methods Adult male rats (n=24) were randomly and blindly allocated into three groups. Laminectomy at T9 was performed in all three groups. In group 1 (sham), only laminectomy was performed. In group 2 (SCI-VPA), the animals received a dose of 200 mg/kg of VPA. In group 3 (SCI-saline), animals received 1.0 mL of the saline vehicle solution. A modified aneurysm clip with a closing force of 30 grams was applied extradurally around the spinal cord at T9, and then rapidly released with cord compression persisting for 2 minutes. The rats were sacrificed and the spinal cord were collected one week after SCI. Immunohistochemistry (IHC) and western blotting sample were obtained from 5 mm rostral region to the lesion and prepared. We analyzed the nestin immunoreactivity from the white matter of ventral cord and the ependyma of central canal. Nestin and SOX2 were used for markers for NSPCs and analyzed by IHC and western blotting, respectively. Results Nestin and SOX2 were expressed significantly in the SCI groups but not in the sham group. Comparing SCI groups, nestin and SOX2 expression were much stronger in SCI-VPA group than in SCI-saline group. Conclusion Nestin and SOX2 as markers for NSPCs showed increased expression in SCI-VPA group in comparison with SCI-saline group. This result suggests VPA increases expression of spinal NSPCs in SCI. PMID:24044073

  8. Exercise and a High Fat Diet Synergistically Increase the Pantothenic Acid Requirement in Rats.

    PubMed

    Takahashi, Kei; Fukuwatari, Tsutomu; Shibata, Katsumi

    2015-01-01

    It is thought that both exercise and dietary composition increase the utilization of, and thus the requirement for, certain water-soluble vitamins. However, there have been no studies evaluating the combined impacts of exercise and dietary composition on vitamin utilization. In this experiment, rats were fed a pantothenic acid (PaA)-restricted (0.004 g PaA-Ca/kg diet) diet containing 5% (ordinary amount of dietary fat) or 20% fat (high fat), and were forced to swim until exhaustion every other day for 22 d. PaA status was assessed by urinary excretion, which reflects body stores of water-soluble vitamins. The urinary excretion of PaA in rats fed a 5% fat diet was not affected by swimming (5% fat + non-swimming vs. 5% fat + swim; p>0.05). Excretion of PaA was decreased by the high-fat diet (5% fat + non-swim vs. 20% fat + non-swim; p<0.05) and synergistically decreased by exercise (20% fat + non-swim vs. 20% fat + swim; p<0.05). There was a significant interaction between exercise and a high-fat diet. Plasma PaA concentrations showed changes similar to those seen for urinary excretion. The experiment was then repeated using rats fed a PaA-sufficient (0.016 g PaA-Ca/kg diet) diet, and PaA excretion was again synergistically decreased by the combination of exercise and a high-fat diet (p<0.05). These results suggest that the combination of exercise and a high-fat diet synergistically increases the requirement for PaA.

  9. Increased production of apolipoprotein B and its lipoproteins by oleic acid in Caco-2 cells.

    PubMed

    Dashti, N; Smith, E A; Alaupovic, P

    1990-01-01

    The production of lipids, apolipoproteins (apo), and lipoproteins induced by oleic acid has been examined in Caco-2 cells. The rates of accumulation in the control medium of 15-day-old Caco-2 cells of triglycerides, unesterified cholesterol, and cholesteryl esters were 102 +/- 8, 73 +/- 5, and 11 +/- 1 ng/mg cell protein/h, respectively; the accumulation rates for apolipoproteins A-I, B, C-III, and E were 111 +/- 9, 53 +/- 4, 13 +/- 1, and 63 +/- 4 ng/mg cell protein/h, respectively. Whereas apolipoproteins A-IV and C-II were detected by immunoblotting, apoA-II was absent in most culture media. In contrast to an early production of apolipoproteins A-I and E occurring 2 days after plating, the apoB expression appeared to be differentiation-dependent and was not measurable in the medium until the sixth day post-confluency. In the control medium, very low density lipoproteins (VLDL), low density lipoproteins (LDL), high density lipoproteins (HDL), and lipid-poor very high density lipoproteins (VHDL) accounted for 12%, 46%, 18%, and 24% of the total lipid and apolipoprotein contents, respectively. The triglyceride-rich VLDL contained mainly apoE (75%) and apoB (23%), while the protein moiety of LDL was composed of apoB (59%), apoE (20%), apoA-I (15%), and apoC-III (6%). The cholesterol-rich HDL contained mainly apoA-I (69%) and apoE (27%). In the control medium, major portions of apolipoproteins B and C-III (93-97%) were present in LDL, whereas the main parts of apoA-I (92%) and apoE (76%) were associated with HDL and VHDL. Oleate increased the production of triglycerides 10-fold, cholesteryl esters 7-fold, and apoB 2- to 4-fold. There was also a moderate increase (39%) in the production of apoC-III but no significant changes in those of apolipoproteins A-I and E. These increases were reflected mainly in a 55-fold elevation in the concentration of VLDL, and a 2-fold increase in the level of LDL; there were no significant changes in HDL and VHDL. VLDL contained the

  10. Humic substances of varying types increase survivorship of the freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2014-07-01

    Differences relating to the ability of various types of humic substances (HS) to influence toxicity of pollutants have been reported in the literature, but there still remains a gap in understanding whether various HS will have the same influence on the toxicity of acid mine drainage (AMD). This study investigated differences in the ability of Aldrich humic acid (AHA), Suwannee River humic acid and Suwannee River fulvic acid to decrease toxicity of AMD to the freshwater shrimp (Caridina sp. D). Toxicity tests were conducted over 96 h and used Mount Morgan open pit water as source of AMD and Dee River water as control/diluents. Concentrations of 0-4 % AMD at 0 mg/L HS, 10 mg/L AHA, 10 mg/L Suwannee River humic acid and 10 mg/L Suwannee River fulvic acid were used. Significantly higher survival of shrimp was recorded in the HS treatments compared with the treatment containing no HS. No significant differences were found among HS type. HS considerably increased LC50 values irrespective of type, from 1.29 (0 mg/L HS) to 2.12 % (AHA); 2.19 (Suwannee River humic acid) and 2.22 % (Suwannee River fulvic acid). These results support previous work that HS decrease the toxicity of AMD to freshwater organisms, but with the novel finding that this ability occurs irrespective of HS type. These results increase the stock of knowledge regarding HS and may contribute to a possible remediation option for AMD environments.

  11. Acetylsalicylic acid and ascorbic acid combination improves cognition; via antioxidant effect or increased expression of NMDARs and nAChRs?

    PubMed

    Kara, Yusuf; Doguc, Duygu Kumbul; Kulac, Esin; Gultekin, Fatih

    2014-05-01

    Chronic inflammation occurs systematically in the central nervous system during ageing, it has been shown that neuroinflammation plays an important role in the pathogenesis of many neurodegenerative disorders. Aspirin, a nonselective COX inhibitor, as well as ascorbic acid, has been purported to protect cerebral tissue. We investigated the effects of subchronic aspirin and ascorbic acid usage on spatial learning, oxidative stress and expressions of NR2A, NR2B, nAChRα7, α4 and β2. Forty male rats (16-18 months) were divided into 4 groups, namely, control, aspirin-treated, ascorbic acid-treated, aspirin+ascorbic acid-treated groups. Following 10-weeks administration period, rats were trained and tested in the Morris water maze. 8-Hydroxy-2-deoxyguanosine and malondialdehyde were evaluated by ELISA and HPLC, respectively. Receptor expressions were assessed by western blotting of hippocampi. Spatial learning performance improved partially in the aspirin group, but significant improvement was seen in the aspirin+ascorbic acid group (p < 0.05). While 8-hydroxy-2-deoxyguanosine and malondialdehyde levels were significantly decreased, NR2B and nAChRα7 expressions were significantly increased in the aspirin+ascorbic acid group as compared to the control group (p < 0.05). Subchronic treatment with aspirin+ascorbic acid in aged rats was shown to enhance cognitive performance and increase the expressions of several receptors related to learning and memory process.

  12. Fifteen weeks of dietary n-3 polyunsaturated fatty acid deprivation increases turnover of n-6 docosapentaenoic acid in rat-brain phospholipids

    PubMed Central

    Igarashi, Miki; Kim, Hyung-Wook; Gao, Fei; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I.

    2012-01-01

    Docosapentaenoic acid (DPAn-6, 22:5n-6) is an n-6 polyunsaturated fatty acid (PUFA) whose brain concentration can be increased in rodents by dietary n-3 PUFA deficiency, which may contribute to their behavioral dysfunction. We used our in vivo intravenous infusion method to see if brain DPAn-6 turnover and metabolism also were altered with deprivation. We studied male rats that had been fed for 15 weeks post-weaning an n-3 PUFA adequate diet containing 4.6% alpha-linolenic acid (α-LNA, 18:3n-3) or a deficient diet (0.2% α-LNA), each lacking docosahexaenoic acid (22:6n-3) and arachidonic acid (AA, 20:4n-6). [1-14C]DPAn-6 was infused intravenously for 5 min in unanesthetized rats, after which the brain underwent high-energy microwaving, and then was analyzed. The n-3 PUFA deficient compared with adequate diet increased DPAn-6 and decreased DHA concentrations in plasma and brain, while minimally changing brain AA concentration. Incorporation rates of unesterified DPAn-6 from plasma into individual brain phospholipids were increased 5.2–7.7 fold, while turnover rates were increased 2.1–4.7 fold. The observations suggest that increased metabolism and brain concentrations of DPAn-6 and its metabolites, together with a reduced brain DHA concentration, contribute to behavioral and functional abnormalities reported with dietary n-3 PUFA deprivation in rodents. PMID:22142872

  13. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    PubMed Central

    Kelly, Karen B.; Kennelly, John P.; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J.; Jacobs, René L.

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  14. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  15. Eicosapentaenoic acid increases cytochrome P-450 2J2 gene expression and epoxyeicosatrienoic acid production via peroxisome proliferator-activated receptor γ in endothelial cells.

    PubMed

    Wang, Dahai; Hirase, Tetsuaki; Nitto, Takeaki; Soma, Masaaki; Node, Koichi

    2009-12-01

    ω-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on cardiovascular diseases. Cytochrome P-450 (CYP) 2J2 that is expressed in endothelial cells metabolizes arachidonic acids to biologically active epoxyeicosatrienoic acids (EETs) that possess anti-inflammatory and anti-thrombotic effects. We studied the effects of EPA and DHA on the expression of CYP 2J2 mRNA by reverse transcription-polymerase chain reaction in cultured human umbilical vein endothelial cells and found that EPA, but not DHA, increased the expression of CYP 2J2 mRNA in a dose-dependent and a time-dependent manner. EPA-induced CYP 2J2 expression was significantly inhibited by pretreatment with a peroxisome proliferator-activated receptor (PPAR) γ antagonist, GW9662. EPA, but not DHA, caused a significant increase in cellular levels of 11,12-dihydroxyeicosatrienoic acid that is a stable metabolite of 11,12-EET, which was blocked by pretreatment with GW9662. These data demonstrate that EPA increases CYP 2J2 mRNA expression and 11,12-EET production via PPARγ in endothelial cells and indicate a novel protective role of EPA and PPARγ against vascular inflammation.

  16. CPT1{alpha} over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    SciTech Connect

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika . E-mail: monika.leonhardt@inw.agrl.ethz.ch

    2005-12-16

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.

  17. Glycyrrhetinic acid might increase the nephrotoxicity of bakuchiol by inhibiting cytochrome P450 isoenzymes

    PubMed Central

    Zhao, Zijing; Yuan, Mei

    2016-01-01

    Background Licorice, a popular traditional Chinese medicine (TCM), is widely used to moderate the effects (detoxification) of other herbs in TCM and often combined with Fructus Psoraleae. However, the classical TCM book states that Fructus Psoraleae is incompatible with licorice; the mechanism underlying this incompatibility has not been identified. Glycyrrhetinic acid (GA), the active metabolite of licorice, may increase the toxicity of bakuchiol (BAK), the main chemical ingredient in Psoralea corylifolia, by inhibiting its detoxification enzymes CYP450s. Methods The effect of concomitant GA administration on BAK-induced nephrotoxicity was investigated, and the metabolic interaction between BAK and GA was further studied in vitro and in vivo. The cytotoxicity was assessed using an MTT assay in a co-culture model of HK-2 cell and human liver microsomes (HLMs). The effect of GA on the metabolism of BAK, and on the activities of CYP isoforms were investigated in HLMs. The toxicokinetics and tissue exposure of BAK as well as the renal and hepatic functional markers were measured after the administration of a single oral dose in rats. Results In vitro studies showed that the metabolic detoxification of BAK was significantly reduced by GA, and BAK was toxic to HK-2 cells, as indicated by 25∼40% decreases in viability when combined with GA. Further investigation revealed that GA significantly inhibited the metabolism of BAK in HLMs in a dose-dependent manner. GA strongly inhibits CYP3A4 and weakly inhibits CYP2C9 and CYP1A2; these CYP isoforms are involved in the metabolism of BAK. In vivo experiment found that a single oral dose of BAK combined with GA or in the presence of 1-aminobenzotriazole (ABT), altered the toxicokinetics of BAK in rats, increased the internal exposure, suppressed the elimination of BAK prototype, and therefore may have enhanced the renal toxicity. Conclusion The present study demonstrated that GA inhibits CYP isoforms and subsequently may

  18. Increase in the ozone decay time in acidic ozone water and its effects on sterilization of biological warfare agents.

    PubMed

    Uhm, Han S; Hong, Yi F; Lee, Han Y; Park, Yun H

    2009-09-15

    The sterilization properties of ozone in acidic water are investigated in this study. Acidification of water increases the ozone decay time by several times compared to the decay time in neutral water, thereby enhancing the sterilization strength of ozone in acidic water. A simple analytical model involving the viable microbial counts after contact with acidic ozone water was derived, and a sterilization experiment was conducted on bacterial cells using the acidic ozone water. The acidic ozone water was found to kill very effectively endospores of Bacillus atrophaeus ATCC 9372, thereby demonstrating the potential for disinfection of a large surface area in a very short time and for reinstating the contaminated environment as free from toxic biological agents.

  19. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro.

    PubMed

    Frajese, Giovanni Vanni; Benvenuto, Monica; Fantini, Massimo; Ambrosin, Elena; Sacchetti, Pamela; Masuelli, Laura; Giganti, Maria Gabriella; Modesti, Andrea; Bei, Roberto

    2016-06-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro.

  20. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro

    PubMed Central

    FRAJESE, GIOVANNI VANNI; BENVENUTO, MONICA; FANTINI, MASSIMO; AMBROSIN, ELENA; SACCHETTI, PAMELA; MASUELLI, LAURA; GIGANTI, MARIA GABRIELLA; MODESTI, ANDREA; BEI, ROBERTO

    2016-01-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro. PMID:27313770

  1. Amelioration of acidic soil increases the toxicity of the weak base carbendazim to the earthworm Eisenia fetida.

    PubMed

    Liu, Kailin; Wang, Shaoyun; Luo, Kun; Liu, Xiangying; Yu, Yunlong

    2013-12-01

    Ameliorating acidic soils is a common practice and may affect the bioavailability of an ionizable organic pollutant to organisms. The toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) was studied in an acidic soil (pH-H₂O, 4.6) and in the ameliorated soil (pH-H₂O, 7.5). The results indicated that the median lethal concentration of carbendazim for E. fetida decreased from 21.8 mg/kg in acidic soil to 7.35 mg/kg in the ameliorated soil. To understand why the amelioration increased carbendazim toxicity to the earthworm, the authors measured the carbendazim concentrations in the soil porewater. The authors found increased carbendazim concentrations in porewater, resulting in increased toxicity of carbendazim to earthworms. The increased pore concentrations result from decreased adsorption because of the effects of pH and calcium ions.

  2. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma

    PubMed Central

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133− populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133− cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2’-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  3. Fish oil at low dietary levels enhances physiological activity of sesamin to increase hepatic fatty acid oxidation in rats.

    PubMed

    Ide, Takashi

    2012-11-01

    We previously demonstrated that a diet containing fish oil at a level of 80 g/kg strongly stimulated the physiological activity of a sesame sesamin preparation containing sesamin and episesamin at equal amounts to increase hepatic fatty acid oxidation. This study was conducted to clarify whether fish oil at lower dietary levels enhances the physiological activity of sesamin to increase hepatic fatty acid oxidation. Rats were fed experimental diets supplemented with 0 or 2 g sesamin/kg, and containing 0, 15 or 30 g fish oil/kg for 15 days. Among rats fed sesamin-free diets, diets containing 15 and 30 g fish oil/kg slightly increased the activity of enzymes involved in hepatic fatty acid oxidation. Sesamin increased these values irrespective of the presence or absence of fish oil in diets; however, the extent of the increase of many parameters was much greater in rats given fish oil-containing diets than in those fed a fish oil-free diet. Diets simultaneously containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes in a synergistic manner; but they were ineffective in causing a synergistic increase in mRNA levels of mitochondrial fatty acid oxidation enzymes. The extent of the synergistic increase in the activity of hepatic fatty acid oxidation enzymes and mRNA levels of the peroxisomal enzymes was indistinguishable between diets containing 15 and 30 g fish oil/kg and appeared comparable to that observed previously with a diet containing 80 g fish oil/kg.

  4. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.

    PubMed

    Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild

    2015-01-01

    The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.

  5. CYP2J2 Overexpression Ameliorates Hyperlipidemia via Increased Fatty Acid Oxidation Mediated by the AMPK Pathway

    PubMed Central

    Zhang, Shasha; Chen, Guangzhi; Li, Ning; Dai, Meiyan; Chen, Chen; Wang, Peihua; Tang, Huiru; Hoopes, Samantha L.; Zeldin, Darryl C.; Wang, Dao Wen; Xu, Xizhen

    2015-01-01

    Objective The study aims to investigate the effect of Cytochrome P450 2J2 (CYP2J2) overexpression on hyperlipidemia in mice and further to explore their effect on fatty acid oxidation in vivo and in vitro. Methods The effects and mechanisms of endothelial-specific CYP2J2 transgene (Tie2-CYP2J2-Tr) on lipid and fatty acids metabolism were investigated in high fat diet (HFD)-treated mice. HepG2, LO2 cells and HUVECs were exposed to 0.4 mM free fatty acid (FFA) for 24h and used as a model to investigate the roles of CYP2J2 overexpression and epoxyeicosatrienoic acids (EETs) on fatty acid β oxidation in vitro. Results Tie2-CYP2J2-Tr mice had significantly lower plasma and liver triglycerides, lower liver cholesterol and fatty acids, and the reduction in HFD-induced lipid accumulation. CYP2J2 overexpression resulted in activation of the hepatic and endothelial AMPKα, increased ACC phosphorylation, increased expression of CPT-1 and PPARα, which were all reduced by HFD treatment. In FFA-treated HepG2, LO2 and HUVECs, both CYP2J2 overexpression and EETs significantly decreased lipid accumulation and increased fatty acid oxidation via activating the AMPK and PPARα pathway. Conclusions Endothelial specific CYP2J2 overexpression alleviates HFD–induced hyperlipidemia in vivo. CYP2J2 ameliorates FFA-induced dyslipidemia via increased fatty acid oxidation mediated by the AMPK and PPARα pathway. PMID:26053032

  6. Preadaptation to Cold Stress in Salmonella enterica Serovar Typhimurium Increases Survival during Subsequent Acid Stress Exposure

    PubMed Central

    Shah, Jigna; Desai, Prerak T.; Chen, Dong; Stevens, John R.

    2013-01-01

    Salmonella is an important cause of bacterial food-borne gastroenteritis. Salmonella encounters multiple abiotic stresses during pathogen elimination methods used in food processing, and these stresses may influence its subsequent survivability within the host or in the environment. Upon ingestion, Salmonella is exposed to gastrointestinal acidity, a first line of the host innate defense system. This study tested the hypothesis that abiotic stresses encountered during food processing alter the metabolic mechanisms in Salmonella that enable survival and persistence during subsequent exposure to the host gastrointestinal acidic environment. Out of the four different abiotic stresses tested, viz., cold, peroxide, osmotic, and acid, preadaptation of the log-phase culture to cold stress (5°C for 5 h) significantly enhanced survival during subsequent acid stress (pH 4.0 for 90 min). The gene expression profile of Salmonella preadapted to cold stress revealed induction of multiple genes associated with amino acid metabolism, oxidative stress, and DNA repair, while only a few of the genes in the above-mentioned stress response and repair pathways were induced upon exposure to acid stress alone. Preadaptation to cold stress decreased the NAD+/NADH ratio and hydroxyl (OH·) radical formation compared with those achieved with the exposure to acid stress alone, indicating alteration of aerobic respiration and the oxidative state of the bacteria. The results from this study suggest that preadaptation to cold stress rescues Salmonella from the deleterious effect of subsequent acid stress exposure by induction of genes involved in stress response and repair pathways, by modification of aerobic respiration, and by redox modulation. PMID:24056458

  7. Not all cases of neural-tube defect can be prevented by increasing the intake of folic acid.

    PubMed

    Heseker, Helmut B; Mason, Joel B; Selhub, Jacob; Rosenberg, Irwin H; Jacques, Paul F

    2009-07-01

    Some countries have introduced mandatory folic acid fortification, whereas others support periconceptional supplementation of women in childbearing age. Several European countries are considering whether to adopt a fortification policy. Projections of the possible beneficial effects of increased folic acid intake assume that the measure will result in a considerable reduction in neural-tube defects (NTD) in the target population. Therefore, the objective of the present study is to evaluate the beneficial effects of different levels of folic acid administration on the prevalence of NTD. Countries with mandatory fortification achieved a significant increase in folate intake and a significant decline in the prevalence of NTD. This was also true for supplementation trials. However, the prevalence of NTD at birth declined to approximately five cases at birth per 10 000 births and seven to eight cases at birth or abortion per 10 000 births. This decline was independent of the amount of folic acid administered and apparently reveals a 'floor effect' for folic acid-preventable NTD. This clearly shows that not all cases of NTD are preventable by increasing the folate intake. The relative decline depends on the initial NTD rate. Countries with NTD prevalence close to the observed floor may have much smaller reductions in NTD rates with folic acid fortification. Additionally, potential adverse effects of fortification on other vulnerable population groups have to be seriously considered. Policy decisions concerning national mandatory fortification programmes must take into account realistically projected benefits as well as the evidence of risks to all vulnerable groups.

  8. Neutral detergent fiber increases endogenous ileal losses but has no effect on ileal digestibility of amino acids in growing pigs.

    PubMed

    Mariscal-Landín, Gerardo; Reis de Souza, Tércia Cesária; Bayardo Uribe, Alejandro

    2017-02-01

    Two experiments were conducted to determine the effect of neutral detergent fiber (NDF) on endogenous amino acids and protein ileal losses; and also apparent ileal digestibility (AID), and standardized ileal digestibility (SID) of amino acids and crude protein. Sixteen barrows were fed four protein-free diets containing graded NDF levels in Experiment 1. NDF was a mixture of sugarcane bagasse and corn leaves (SBCL). Twenty-four barrows were fed diets with soybean protein concentrate (SPC) or casein as protein sources and SBCL or corncobs (CC) as NDF sources in Experiment 2. In Experiment 1, a linear increase (P < 0.05) in endogenous amino acid and protein ileal losses was observed with increased NDF levels, except for arginine, histidine, methionine and proline. In Experiment 2, protein (P < 0.001) and NDF (P < 0.01) sources significantly affected AID of dry matter, which was higher in casein diets (71.7%) and CC diets (70.7%). Protein and NDF sources significantly affected (P < 0.05) SID of crude protein, which was higher in casein diets (92.8%) and CC diets (92.7%). NDF source had no effect (P > 0.05) on SID of amino acids. Overall, this study showed that NDF increased endogenous amino acid and protein ileal losses, but did not affect ileal digestibility of amino acids.

  9. Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yoghurts.

    PubMed

    do Espírito Santo, Ana Paula; Cartolano, Nathalie S; Silva, Thaiane F; Soares, Fabiana A S M; Gioielli, Luiz A; Perego, Patrizia; Converti, Attilio; Oliveira, Maricê N

    2012-03-15

    This study evaluated the effect of the supplementation of total dietary fiber from apple, banana or passion fruit processing by-products on the post-acidification, total titratable acidity, bacteria counts and fatty acid profiles in skim milk yoghurts co-fermented by four different probiotics strains: Lactobacillus acidophilus L10 and Bifidobacterium animalis subsp. lactis BL04, HN019 and B94. Apple and banana fibers increased the probiotic viability during shelf-life. All the fibers were able to increase the short chain and polyunsaturated fatty acid contents of yoghurts compared to their respective controls. A synergistic effect between the type of fiber and the probiotic strain on the conjugated linoleic acid content was observed, and the amount of α-linolenic acid was increased by banana fiber. The results of this study demonstrate, for the first time, that fruit fibers can improve the fatty acid profile of probiotic yoghurts and point out the suitability of using fibers from fruit processing the by-products to develop new high value-added fermented dairy products.

  10. Effects of sevoflurane and clonidine on acid base status and long-term emotional and cognitive outcomes in spontaneously breathing rat pups

    PubMed Central

    Valeri, Daniela; Palmery, Maura; Trezza, Viviana

    2017-01-01

    Background Numerous experiments in rodents suggest a causative link between exposure to general anaesthetics during brain growth spurt and poor long-lasting neurological outcomes. Many of these studies have been questioned with regard of their translational value, mainly because of extremely long anaesthesia exposure. Therefore, the aim of the present study was to assess the impact of a short sevoflurane anaesthesia, alone or combined with clonidine treatment, on respiratory function in spontaneously breathing rat pups and overall effects on long-lasting emotional and cognitive functions. Methods At postnatal day (PND) 7, male Sprague Dawley rat pups were randomized into four groups and exposed to sevoflurane for one hour, to a single dose of intraperitoneal clonidine or to a combination of both and compared to a control group. Blood gas analysis was performed at the end of sevoflurane anaesthesia and after 60 minutes from clonidine or saline injection. Emotional and cognitive outcomes were evaluated in different group of animals at infancy (PND12), adolescence (PND 30–40) and adulthood (PND 70–90). Results Rat pups exposed to either sevoflurane or to a combination of sevoflurane and clonidine developed severe hypercapnic acidosis, but maintained normal arterial oxygenation. Emotional and cognitive outcomes were not found altered in any of the behavioural task used either at infancy, adolescence or adulthood. Conclusions Sixty minutes of sevoflurane anaesthesia in newborn rats, either alone or combined with clonidine, caused severe hypercapnic acidosis in spontaneously breathing rat pups, but was devoid of long-term behavioural dysfunctions in the present setting. PMID:28319126

  11. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage.

    PubMed

    Zhu, Yuyan; Yu, Jie; Brecht, Jeffrey K; Jiang, Tianjia; Zheng, Xiaolin

    2016-01-01

    Kiwifruit (Actinidia deliciosa cv. Bruno) fruits were sprayed with 5mM oxalic acid (OA) at 130, 137, and 144 days after full blossom, and then harvested at commercial maturity [soluble solid content (SSC) around 10.0%] and stored at room temperature (20 ± 1 °C). Pre-harvest application of OA led to fruit with higher ascorbic acid content at harvest, slowed the decreases in fruit firmness and ascorbic acid content and increase in SSC during storage, and also decreased the natural disease incidence, lesion diameter, and patulin accumulation in fruit inoculated with Penicillium expansum, indicating that the OA treatment increased quality and induced disease resistance in kiwifruit. It was suggested that the increase in activities of defense-related enzymes and in levels of substances related to disease resistance might collectively contribute to resistance in kiwifruit against fungi such as P. expansum in storage.

  12. Changes in plasma amino acid concentrations with increasing age in patients with propionic acidemia.

    PubMed

    Scholl-Bürgi, Sabine; Sass, Jörn Oliver; Heinz-Erian, Peter; Amann, Edda; Haberlandt, Edda; Albrecht, Ursula; Ertl, Claudia; Sigl, Sara Baumgartner; Lagler, Florian; Rostasy, Kevin; Karall, Daniela

    2010-05-01

    The objective of the study is to analyze plasma amino acid concentrations in propionic acidemia (PA) for the purpose of elucidating possible correlations between propionyl-CoA carboxylase deficiency and distinct amino acid behavior. Plasma concentrations of 19 amino acids were measured in 240 random samples from 11 patients (6 families) with enzymatically and/or genetically proven propionic acidemia (sampling period, January 2001-December 2007). They were compared with reference values from the literature and correlated with age using the Pearson correlation coefficient test. Decreased plasma concentrations were observed for glutamine, histidine, threonine, valine, isoleucine, leucine, phenylalanine and arginine. Levels of glycine, alanine and aspartate were elevated, while values of serine, asparagine, ornithine and glutamate were normal. For lysine, proline and methionine a clear association was not possible. Significant correlations with age were observed for 13 amino acids (positive correlation: asparagine, glutamine, proline, alanine, histidine, threonine, methionine, arginine; negative correlation: leucine, phenylalanine, ornithine, glutamate and aspartate). This study gives new insight over long-term changes in plasma amino acid concentrations and may provide options for future therapies (e.g., substitution of anaplerotic substances) in PA patients.

  13. Cassava interspecific hybrids with increased protein content and improved amino acid profiles.

    PubMed

    Gomes, P T C; Nassar, N M A

    2013-04-12

    Cassava (Manihot esculenta) is a principal food for large populations of poor people in the tropics and subtropics. Its edible roots are poor in protein and lack several essential amino acids. Interspecific hybrids may acquire high protein characteristics from wild species. We analyzed 19 hybrids of M. esculenta with its wild relative, M. oligantha, for crude protein, amino acid profile, and total cyanide. Some hybrids produced roots with high protein content of up to 5.7%, while the common cultivar that we examined had just 2.3% crude protein. The essential amino acids alanine, phenylalanine, and valine were detected in the hybrids. The sulfur-containing amino acids cysteine and methionine were found at relatively high concentrations in the roots of 4 hybrids. The proportion of lysine in one hybrid was 20 times higher than in the common cultivar. The levels of total cyanide ranged from 19.73 to 172.56 mg/kg and most of the roots analyzed were classified as "non-toxic" and "low toxic". Furthermore, 2 progenies showed reasonable levels of cyanide, but higher protein content and amino acid profile more advantageous than the common cassava.

  14. [Evaluation of the possibilities to increase the content of conjugated linoleic acid (CLA) in meat and meat product].

    PubMed

    Piotrowska, Anna; Swiader, Katarzyna; Waszkiewicz-Robak, Bozena; Swiderski, Franciszek

    2012-01-01

    The paper characterizes pro-health properties of conjugated linoleic acid (CLA) and assesses the possibility of increasing their content in pork and pork meat products. Studies conducted on animals indicate antitumor, antiatherosclerotic and antiinflammatory effect ofCLA, also find impact on reducing body fat and increasing muscle growth. However, the number of observations concerning human populations is insufficient to fully evaluate the relationship between CLA intake and reducing the risk of lifestyle diseases. Therefore, it is necessary to conduct further research. Literature data indicate that the use in pigs feed suplementation with CLA preparations, can increase the content of these compounds in the meat and also show, that isomer cis-9, trans-11 is accumulated at significantly higher level. However, these changes were accompanied by increased the share of saturated fatty acids at the expense of monounsaturated which is unfavorable for human health. A better way to increase the CLA content in pork meat appears to be the addition of CLA preparation during the production process, because it does not affect the level of saturated fats. Pork and pork meat products enriched in CLA are characterized by low susceptibility to oxidation, which may result from the coupling of double bonds, antioxidantive properties of conjugated linoleic acid and the increased content of saturated fatty acids. The issue of beneficial effects on human health of pork and pork products with a higher content of CLA, requires further studies conducted on humans. Only then these products can be classified as a functional foods.

  15. Treatment of flaxseed to reduce biohydrogenation of a-linolenic acid by ruminal microbes in sheep and cattle and increase n-3 fatty acid concentrations in red meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our study determined if flaxseed treated with a formaldehyde-free process increased n-3 fatty acid (FA) levels in ruminant muscle. Twenty-four lambs (initial BW 43.8 ± 4.4 kg) were randomly divided into 4 groups for a 90-d trial. One treatment group (FLX) was fed 136 g/d of non-treated ground flaxse...

  16. Chronically Increased Amino Acids Improve Insulin Secretion, Pancreatic Vascularity, and Islet Size in Growth-Restricted Fetal Sheep.

    PubMed

    Brown, Laura D; Davis, Melissa; Wai, Sandra; Wesolowski, Stephanie R; Hay, William W; Limesand, Sean W; Rozance, Paul J

    2016-10-01

    Placental insufficiency is associated with reduced supply of amino acids to the fetus and leads to intrauterine growth restriction (IUGR). IUGR fetuses are characterized by lower glucose-stimulated insulin secretion, smaller pancreatic islets with less β-cells, and impaired pancreatic vascularity. To test whether supplemental amino acids infused into the IUGR fetus could improve these complications of IUGR we used acute (hours) and chronic (11 d) direct fetal amino acid infusions into a sheep model of placental insufficiency and IUGR near the end of gestation. IUGR fetuses had attenuated acute amino acid-stimulated insulin secretion compared with control fetuses. These results were confirmed in isolated IUGR pancreatic islets. After the chronic fetal amino acid infusion, fetal glucose-stimulated insulin secretion and islet size were restored to control values. These changes were associated with normalization of fetal pancreatic vascularity and higher fetal pancreatic vascular endothelial growth factor A protein concentrations. These results demonstrate that decreased fetal amino acid supply contributes to the pathogenesis of pancreatic islet defects in IUGR. Moreover, the results show that pancreatic islets in IUGR fetuses retain their ability to respond to increased amino acids near the end of gestation after chronic fetal growth restriction.

  17. Spontaneous closure of stoma.

    PubMed

    Pandit, Narendra; Singh, Harjeet; Kumar, Hemanth; Gupta, Rajesh; Verma, G R

    2016-11-01

    Intestinal loop stoma is a common surgical procedure performed for various benign and malignant abdominal problems, but it rarely undergoes spontaneous closure, without surgical intervention. Two male patients presented to our emergency surgical department with acute abdominal pain. One of them was diagnosed as having rectosigmoid perforation and underwent diversion sigmoid loop colostomy after primary closure of the perforation. The other was a known case of carcinoma of the rectum who had already undergone low anterior resection with covering loop ileostomy; the patient underwent second loop ileostomy, this time for complicated intestinal obstruction. To our surprise, both the loop colostomy and ileostomy closed spontaneously at 8 weeks and 6 weeks, respectively, without any consequences. Spontaneous stoma closure is a rare and interesting event. The exact etiology for spontaneous closure remains unknown, but it may be hypothesized to result from slow retraction of the stoma, added to the concept of a tendency towards spontaneous closure of enterocutaneous fistula.

  18. Camelina meal increases egg n-3 fatty acid content without altering quality or production in laying hens.

    PubMed

    Kakani, Radhika; Fowler, Justin; Haq, Akram-Ul; Murphy, Eric J; Rosenberger, Thad A; Berhow, Mark; Bailey, Christopher A

    2012-05-01

    Camelina sativa is an oilseed plant rich in n-3 and n-6 fatty acids and extruding the seeds results in high protein meal (*40%) containing high levels of n-3 fatty acids. In this study, we examined the effects of feeding extruded defatted camelina meal to commercial laying hens, measuring egg production, quality, and fatty acid composition. Lohmann White Leghorn hens (29 weeks old) were randomly allocated to three dietary treatment groups (n = 25 per group) and data was collected over a 12 week production period. All the treatment groups were fed a corn soy based experimental diet containing 0% (control), 5, or 10% extruded camelina meal. We found no significant differences in percent hen-day egg production and feed consumed per dozen eggs. Egg shell strength was significantly higher in both camelina groups compared to the controls. Egg total n-3 fatty acid content increased 1.9- and 2.7-fold in 5 and 10% camelina groups respectively relative to the control. A similar increase in DHA content also occurred. Further camelina meal did not alter glucosinolate levels and no detectable glucosinolates or metabolic product isothiocyanates were found in the eggs from either the 5 or 10% camelina groups. These results indicate that camelina meal is a viable dietary source of n-3 fatty acids for poultry and its dietary inclusion results in eggs enriched with n-3 fatty acids.

  19. Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows.

    PubMed

    Rico, J E; Allen, M S; Lock, A L

    2014-02-01

    The effects of dietary palmitic and stearic acids on feed intake, yields of milk and milk components, and feed efficiency of dairy cows were evaluated in an experiment with a crossover arrangement of treatments with a covariate period. Cows with a wide range of milk production (38 to 65 kg/d) were used to determine if response to fat supplementation varied according to production level. Thirty-two Holstein cows (143 ± 61 d in milk) were assigned randomly to a treatment sequence within level of milk production. Treatments were diets supplemented (2% of diet dry matter) with palmitic acid (PA; 97.9% C16:0) or stearic acid (SA; 97.4% C18:0). Treatment periods were 21 d and cows were fed a nonfat supplemented diet for 14 d immediately before the first treatment period. The final 4d of each period were used for sample and data collection. Milk production measured during the covariate period (preliminary milk yield) was used as the covariate. No interactions were detected between treatment and preliminary milk yield for the production response variables measured. Compared with SA, the PA treatment increased milk fat concentration (3.66 vs. 3.55%) and yield (1.68 vs. 1.59 kg/d), and 3.5% fat-corrected milk yield (47.5 vs. 45.6 kg/d). Treatment did not affect dry matter intake, milk yield, milk protein yield, body weight, or body condition score. Milk protein concentration was lower for PA compared with SA treatment (3.24 vs. 3.29%). The PA treatment increased feed efficiency (3.5% fat-corrected milk yield/dry matter intake) compared with SA (1.48 vs. 1.40). The increase in milk fat yield by PA was entirely accounted for by a 24% increase in 16-carbon fatty acid output into milk. Yields of de novo (3.2%) and preformed fatty acids (2.9%) were only slightly decreased by PA relative to SA. The PA treatment increased plasma concentration of nonesterified fatty acids (96.3 vs. 88.2 μEq/L) and glucose (56.6 vs. 55.7 mg/dL) compared with SA, but insulin and

  20. Role of a single amino acid substitution of VP3 H142D for increased acid resistance of foot-and-mouth disease virus serotype A.

    PubMed

    Biswal, Jitendra K; Das, Biswajit; Sharma, Gaurav K; Khulape, Sagar A; Pattnaik, Bramhadev

    2016-04-01

    Foot-and-mouth disease virus (FMDV) particles lose infectivity due to their dissociation into pentamers at pH value below 6.5. After the uptake of FMDV by receptor-mediated endocytosis, the acid-dependent dissociation process is required for the release of FMDV genome inside endosomes. Nevertheless, dissociation of FMDV particles in mildly acidic conditions renders the inactivated FMD vaccine less effective. To improve the acid stability of inactivated FMD vaccine during the manufacturing process, a serotype A IND 40/2000 (in-use vaccine strain) mutant with increased resistance to acid inactivation was generated through reverse genetics approach. Based upon the earlier reports, the crucial amino acid residue, H142 of VP3 capsid protein was substituted separately to various amino acid residues Arg (R), Phe (F), Ala (A), and Asp (D) on the full-genome length cDNA clone. While the H142 → R or H142 → F or H142 → A substitutions resulted in non-infectious FMDV, H142 → D mutation on VP3 protein (H3142D) resulted in the generation of mutant virus with enhanced resistance to acid-induced inactivation. In addition, H3142D substitution did not alter the replication ability and antigenicity of mutant as compared to the parental virus. However, the virus competition experiments revealed that the H3142D substitution conferred a loss of fitness for the mutant virus. Results from this study demonstrate that the H3142D substitution is the molecular determinant of acid-resistant phenotype in FMDV serotype A.

  1. Increased Amoxicillin–Clavulanic Acid Resistance in Escherichia coli Blood Isolates, Spain

    PubMed Central

    Oteo, Jesús; Lázaro, Edurne; Cuevas, Óscar; García-Cobos, Silvia; Pérez-Vázquez, María; de Abajo, F. J.

    2008-01-01

    To determine the evolution and trends of amoxicillin–clavulanic acid resistance among Escherichia coli isolates in Spain, we tested 9,090 blood isolates from 42 Spanish hospitals and compared resistance with trends in outpatient consumption. These isolates were collected by Spanish hospitals that participated in the European Antimicrobial Resistance Surveillance System network from April 2003 through December 2006. PMID:18680650

  2. Increased amoxicillin-clavulanic acid resistance in Escherichia coli blood isolates, Spain.

    PubMed

    Oteo, Jesús; Campos, José; Lázaro, Edurne; Cuevas, Oscar; García-Cobos, Silvia; Pérez-Vázquez, María; de Abajo, F J

    2008-08-01

    To determine the evolution and trends of amoxicillin-clavulanic acid resistance among Escherichia coli isolates in Spain, we tested 9,090 blood isolates from 42 Spanish hospitals and compared resistance with trends in outpatient consumption. These isolates were collected by Spanish hospitals that participated in the European Antimicrobial Resistance Surveillance System network from April 2003 through December 2006.

  3. Pros and cons of increasing folic acid and vitamin B12 intake by fortification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is no doubt that folic acid fortification can be effective for reducing the incidence of neural tube defects (NTDs). The degree of efficacy depends on both the level of folate depletion and other, yet to be fully characterized, genetic and/or environmental factors. This article summarizes brie...

  4. Increased urinary excretion of beta-aminoisobutyric acid in a Danish family.

    PubMed

    Sjølin, K E

    1988-08-01

    During collection of a control material for determination of urinary excretion of beta-aminoisobutyric acid (beta-AIB), female high excretors were found in four generations in a Danish family. The heredity seemed to be sex related and dominant, unlike previous communications about genetically conditioned high excretors of beta-AIB.

  5. Wheat rolls fortified with microencapsulated L-5-methyltetrahydrofolic acid or equimolar folic acid increase blood folate concentrations to a similar extent in healthy men and women.

    PubMed

    Green, Timothy J; Liu, Yazheng; Dadgar, Samira; Li, Wangyang; Böhni, Ruth; Kitts, David D

    2013-06-01

    Mandatory folic acid fortification of grains such as wheat flour has been introduced in several countries to reduce the incidence of neural tube defects. There are concerns, however, that folic acid could mask the hematologic signs of vitamin B-12 deficiency and lead to other adverse health outcomes in the population. Calcium L-5-methyltetrahydrofolic acid (L-5-MTHF), a synthetic form of reduced folate, should not mask vitamin B-12 deficiency and may be safer than folic acid. Unfortunately, L-5-MTHF is not stable in most food matrices such as bread. Microencapsulation of L-5-MTHF with sodium ascorbate and a modified starch is effective at preventing loss of the vitamin during baking and storage. Our aim was to assess the efficacy of wheat rolls fortified with microencapsulated L-5-MTHF or equimolar folic acid compared with wheat rolls containing no added folate (placebo) at increasing blood folate concentrations during 16 wk. Healthy men and women aged 18-45 y (n = 45) were randomly assigned to consume wheat rolls that contained L-5-MTHF (452 μg/d), the molar equivalent of folic acid (400 μg/d), or placebo. At 16 wk, the mean (95% CI) erythrocyte folate was 0.48 (0.27, 0.71) and 0.37 (0.17, 0.57) μmol/L higher in the L-5-MTHF (P < 0.001) and folic acid wheat roll (P = 0.001) groups, respectively, than in the placebo group. Likewise, the mean plasma folate was 23 (12, 34) and 23 (12, 34) nmol/L higher in the L-5-MTHF (P < 0.001) and folic acid wheat roll (P < 0.001) groups, respectively, than in the placebo group. There were no significant differences in blood folate concentrations between the L-5-MTHF and folic acid wheat roll groups. Both microencapsulated L-5-MTHF and folic acid-fortified wheat rolls increased blood folate concentrations compared with placebo.

  6. n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats.

    PubMed

    Hashimoto, Michio; Katakura, Masanori; Tanabe, Yoko; Al Mamun, Abdullah; Inoue, Takayuki; Hossain, Shahdat; Arita, Makoto; Shido, Osamu

    2015-02-01

    We investigated whether a highly purified eicosapentaenoic acid (EPA) and a concentrated n-3 fatty acid formulation (prescription TAK-085) containing EPA and docosahexaenoic acid (DHA) ethyl ester could improve the learning ability of aged rats and whether this specific outcome had any relation with the brain levels of EPA-derived eicosanoids and DHA-derived docosanoids. The rats were tested for reference memory errors (RMEs) and working memory errors (WMEs) in an eight-arm radial maze. Fatty acid compositions were analyzed by GC, whereas brain eicosanoid/docosanoids were measured by LC-ESI-MS-MS-based analysis. The levels of lipid peroxides (LPOs) were measured by thiobarbituric acid reactive substances. The administration of TAK-085 at 300 mg·kg⁻¹day⁻¹ for 17 weeks reduced the number of RMEs in aged rats compared with that in the control rats. Both TAK-085 and EPA administration increased plasma EPA and DHA levels in aged rats, with concurrent increases in DHA and decreases in arachidonic acid in the corticohippocampal brain tissues. TAK-085 administration significantly increased the formation of EPA-derived 5-HETE and DHA-derived 7-, 10-, and 17-HDoHE, PD1, RvD1, and RvD2. ARA-derived PGE2, PGD2, and PGF2α significantly decreased in TAK-085-treated rats. DHA-derived mediators demonstrated a significantly negative correlation with the number of RMEs, whereas EPA-derived mediators did not exhibit any relationship. Furthermore, compared with the control rats, the levels of LPO in the plasma, cerebral cortex, and hippocampus were significantly reduced in TAK-085-treated rats. The findings of the present study suggest that long-term EPA+DHA administration may be a possible preventative strategy against age-related cognitive decline.

  7. Adaptation and transcriptome analysis of Aureobasidium pullulans in corncob hydrolysate for increased inhibitor tolerance to malic acid production.

    PubMed

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress.

  8. Adaptation and Transcriptome Analysis of Aureobasidium pullulans in Corncob Hydrolysate for Increased Inhibitor Tolerance to Malic Acid Production

    PubMed Central

    Zou, Xiang; Wang, Yongkang; Tu, Guangwei; Zan, Zhanquan; Wu, Xiaoyan

    2015-01-01

    Malic acid is a dicarboxylic acid widely used in the food industry, and is also a potential C4 platform chemical. Corncob is a low-cost renewable feedstock from agricultural industry. However, side-reaction products (furfural, 5-hydroxymethylfurfural (HMF), formic acid, and acetic acid) that severely hinder fermentation are formed during corncob pretreatment. The process for producing malic acid from a hydrolysate of corncob was investigated with a polymalic acid (PMA)-producing Aureobasidium pullulans strain. Under the optimal hydrolysate sugar concentration 110 g/L, A. pullulans was further adapted in an aerobic fibrous bed bioreactor (AFBB) by gradually increasing the sugar concentration of hydrolysate. After nine batches of fermentation, the production and productivity of malic acid reached 38.6 g/L and 0.4 g/L h, respectively, which was higher than that in the first batch (27.6 g/L and 0.29 g/L h, respectively). The adapted strain could grow under the stress of 0.5 g/L furfural, 3 g/L HMF, 2g/L acetic acid, and 0.5 g/L formic acid, whereas the wild type did not. Transcriptome analysis revealed that the differentially expressed genes were related to carbohydrate transport and metabolism, lipid transport and metabolism, signal transduction mechanism, redox metabolism, and energy production and conversion under 0.5 g/L furfural and 3 g/L HMF stress conditions. In total, 42 genes in the adapted strain were upregulated by 15-fold or more, and qRT-PCR also confirmed that the expression levels of key genes (i.e. SIR, GSS, CYS, and GSR) involved in sulfur assimilation pathway were upregulated by over 10-fold in adapted strain for cellular protection against oxidative stress. PMID:25793624

  9. Long-term ritonavir exposure increases fatty acid and glycerol recycling in 3T3-L1 adipocytes as compensatory mechanisms for increased triacylglycerol hydrolysis.

    PubMed

    Adler-Wailes, Diane C; Guiney, Evan L; Wolins, Nathan E; Yanovski, Jack A

    2010-05-01

    Lipodystrophy with high nonesterified fatty acid (FA) efflux is reported in humans receiving highly active antiretroviral therapy (HAART) to treat HIV infection. Ritonavir, a common component of HAART, alters adipocyte FA efflux, but the mechanism for this effect is not established. To investigate ritonavir-induced changes in FA flux and recycling through acylglycerols, we exposed differentiated murine 3T3-L1 adipocytes to ritonavir for 14 d. FA efflux, uptake, and incorporation into acylglycerols were measured. To identify a mediator of FA efflux, we measured adipocyte triacylglycerol lipase (ATGL) transcript and protein. To determine whether ritonavir-treated adipocytes increased glycerol backbone synthesis for FA reesterification, we measured labeled glycerol and pyruvate incorporation into triacylglycerol (TAG). Ritonavir-treated cells had increased FA efflux, uptake, and incorporation into TAG (all P < 0.01). Ritonavir increased FA efflux without consistently increasing glycerol release or changing TAG mass, suggesting increased partial TAG hydrolysis. Ritonavir-treated adipocytes expressed significantly more ATGL mRNA (P < 0.05) and protein (P < 0.05). Ritonavir increased glycerol (P < 0.01) but not pyruvate (P = 0.41), utilization for TAG backbone synthesis. Consistent with this substrate utilization, glycerol kinase transcript (required for glycerol incorporation into TAG backbone) was up-regulated (P < 0.01), whereas phosphoenolpyruvate carboxykinase transcript (required for pyruvate utilization) was down-regulated (P < 0.001). In 3T3-L1 adipocytes, long-term ritonavir exposure perturbs FA metabolism by increasing ATGL-mediated partial TAG hydrolysis, thus increasing FA efflux, and leads to compensatory increases in FA reesterification with glycerol and acylglycerols. These changes in FA metabolism may, in part, explain the increased FA efflux observed in ritonavir-associated lipodystrophy.

  10. Effects of step-wise increases in dietary carbohydrate on circulating saturated Fatty acids and palmitoleic Acid in adults with metabolic syndrome.

    PubMed

    Volk, Brittanie M; Kunces, Laura J; Freidenreich, Daniel J; Kupchak, Brian R; Saenz, Catherine; Artistizabal, Juan C; Fernandez, Maria Luz; Bruno, Richard S; Maresh, Carl M; Kraemer, William J; Phinney, Stephen D; Volek, Jeff S

    2014-01-01

    Recent meta-analyses have found no association between heart disease and dietary saturated fat; however, higher proportions of plasma saturated fatty acids (SFA) predict greater risk for developing type-2 diabetes and heart disease. These observations suggest a disconnect between dietary saturated fat and plasma SFA, but few controlled feeding studies have specifically examined how varying saturated fat intake across a broad range affects circulating SFA levels. Sixteen adults with metabolic syndrome (age 44.9±9.9 yr, BMI 37.9±6.3 kg/m2) were fed six 3-wk diets that progressively increased carbohydrate (from 47 to 346 g/day) with concomitant decreases in total and saturated fat. Despite a distinct increase in saturated fat intake from baseline to the low-carbohydrate diet (46 to 84 g/day), and then a gradual decrease in saturated fat to 32 g/day at the highest carbohydrate phase, there were no significant changes in the proportion of total SFA in any plasma lipid fractions. Whereas plasma saturated fat remained relatively stable, the proportion of palmitoleic acid in plasma triglyceride and cholesteryl ester was significantly and uniformly reduced as carbohydrate intake decreased, and then gradually increased as dietary carbohydrate was re-introduced. The results show that dietary and plasma saturated fat are not related, and that increasing dietary carbohydrate across a range of intakes promotes incremental increases in plasma palmitoleic acid, a biomarker consistently associated with adverse health outcomes.

  11. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.

    PubMed

    Hernández, Martín A; Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo; Alvarez, Héctor M

    2015-03-01

    Oleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria. In this work, we identified and characterized a putative PAP type 2 (PAP2) encoded by the ro00075 gene in Rhodococcus jostii RHA1. Heterologous expression of ro00075 in Escherichia coli resulted in a fourfold increase in PAP activity and twofold in DAG content. The conditional deletion of ro00075 in RHA1 led to a decrease in the content of DAG and TAG, whereas its overexpression in both RHA1 and Rhodococcus opacus PD630 promoted an increase up to 10 to 15 % by cellular dry weight in TAG content. On the other hand, expression of ro00075 in the non-oleaginous strain Rhodococcus fascians F7 promoted an increase in total fatty acid content up to 7 % at the expense of free fatty acid (FFA), DAG, and TAG fractions. Moreover, co-expression of ro00075/atf2 genes resulted in a fourfold increase in total fatty acid content by a further increase of the FFA and TAG fractions. The results of this study suggest that ro00075 encodes for a PAP2 enzyme actively involved in TAG biosynthesis. Overexpression of this gene, as single one or with an atf gene, provides an alternative approach to increase the biosynthesis and accumulation of bacterial oils as a potential source of raw material for biofuel production.

  12. Chronic xerostomia increases esophageal acid exposure and is associated with esophageal injury

    SciTech Connect

    Korsten, M.A.; Rosman, A.S.; Fishbein, S.; Shlein, R.D.; Goldberg, H.E.; Biener, A. )

    1991-06-01

    OBJECTIVES: To assess the effects of chronic xerostomia on parameters of gastroesophageal reflux and esophagitis. DESIGN: Observational study of a cohort of male patients with xerostomia and age-matched control subjects. SETTING: Tertiary-care Veterans Affairs Medical Center. SUBJECTS: Sixteen male patients with chronic xerostomia secondary to radiation for head and neck cancers or medications. Nineteen age-matched male control subjects with comparable alcohol and smoking histories. MEASUREMENTS AND MAIN RESULTS: Esophageal motility was similar in patients with xerostomia and controls. Clearance of acid from the esophagus and 24-hour intraesophageal pH were markedly abnormal in patients with xerostomia. Symptoms and signs of esophagitis were significantly more frequent in subjects with xerostomia. CONCLUSIONS: Chronic xerostomia may predispose to esophageal injury, at least in part, by decreasing the clearance of acid from the esophagus and altering 24-hour intraesophageal pH. Esophageal injury is a previously unreported complication of long-term salivary deficiency.

  13. Studies on the increase in serum concentrations of urea cycle amino acids among subjects exposed to cadmium

    SciTech Connect

    Nishino, H.; Shiroishi, K. ); Kagamimori, S.; Naruse, Y. ); Watanabe, M. )

    1988-05-01

    Itai-itai disease (I disease) is a combination of renal tubular damage and osteomalacia accompanied by osteoporosis among subjects exposed to cadmium (Cd). When the renal tubular damage progresses, the excretion of amino acids, especially, threonine, hydroxyproline, proline, citrulline, ornithine, arginine, etc. increase in urine. It was reported that the increase in urinary excretion of citrulline, arginine and ornithine may be associated with an inhibition of urea synthesis in the urea cycle. The authors have found that serum citrulline, arginine and ornithine also increased in I disease patients. In order to investigate the mechanism of the increase in these serum amino acids, comparative studies were performed using both healthy subjects and patients with renal disease as control groups.

  14. Effect of penicillin on the increase in membrane conductance induced by γ-aminobutyric acid at the crab neuromuscular junction

    PubMed Central

    Earl, Janet; Large, W. A.

    1973-01-01

    The effects of penicillin and picrotoxin on the increase in membrane conductance produced by γ-aminobutyric acid (GABA) at the hermit crab neuromuscular junction were investigated. Penicillin failed to block the effects of GABA, while picrotoxin proved to be a potent antagonist. PMID:4733733

  15. Will Increasing Folic Acid in Fortified Grain Products Further Reduce Neural Tube Defects without Causing Harm?: Consideration of the Evidence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Will Increasing Folic Acid in Fortified Grain Products Further Reduce Neural Tube Defects without Causing Harm?: Consideration of the Evidence. In the January issue of this journal, Johnston (1) includes our group’s recent analysis of data from the 1999-2002 National Health and Nutrition Examination...

  16. Exercise capacity in patients supported with rotary blood pumps is improved by a spontaneous increase of pump flow at constant pump speed and by a rise in native cardiac output.

    PubMed

    Jacquet, Luc; Vancaenegem, Olivier; Pasquet, Agnès; Matte, Pascal; Poncelet, Alain; Price, Joel; Gurné, Olivier; Noirhomme, Philippe

    2011-07-01

    Exercise capacity is improved in patients supported with continuous flow rotary blood pumps (RP). The aim of this study was to investigate the mechanisms underlying this improvement. Ten patients implanted with a RP underwent cardiopulmonary exercise testing (CPET) at 6 months after surgery with hemodynamic and metabolic measurements (RP group). A group of 10 matched heart failure patients were extracted from our heart transplant database, and the results of their last CPET before transplantation were used for comparison (heart failure [HF] group). Peak VO(2) was significantly higher in RP than in HF patients (15.8 ± 6.2 vs. 10.9 ± 3 mL O(2)/kg.min) reaching 52 ± 16% of their predicted peak VO(2). The total output measured by a Swan-Ganz catheter increased from 5.6 ± 1.6 to 9.2 ± 1.8 L/min in the RP group and was significantly higher at rest and at peak exercise than in the HF group, whose output increased from 3.5 ± 0.4 to 5.6 ± 1.6 L/min. In the RP group, the estimated pump flow increased from 5.3 ± 0.4 to 6.2 ± 0.8, whereas the native cardiac output increased from 0.0 ± 0.5 to 3 ± 1.7 L/min. Cardiac output at peak exercise was inversely correlated with age (r = -0.86, P = 0.001) and mean pulmonary artery pressure (r = -0.75, P = 0.012). Maximal exercise capacity is improved in patients supported by RP as compared to matched HF patients and reaches about 50% of the expected values. Both a spontaneous increase of pump flow at constant pump speed and an increase of the native cardiac output contribute to total flow elevation. These findings may suggest that an automatic pump speed adaptation during exercise would further improve the exercise capacity. This hypothesis should be examined.

  17. Increased dietary sodium chloride concentrations reduce endogenous amino acid flow and influence the physiological response to the ingestion of phytic acid by broiler chickens.

    PubMed

    Cowieson, A J; Bedford, M R; Ravindran, V; Selle, P H

    2011-10-01

    A total of 240 Ross 308 broilers were used to investigate the effect of sodium (1·5 or 2·5 g/kg), phytate-P (0 or 3·2 g/kg), and phytase (0 or 1000 FTU/kg; 2x2x2 factorial) on endogenous amino acid flow using the enzyme-hydrolysed casein method. The ingestion of phytate increased endogenous amino acid flow (∼30%) compared with the phytate-free control diets. Phytase reduced endogenous amino acid flow only when fed in concert with phytate, resulting in a significant phytate x phytase interaction. Increasing dietary sodium concentration from 1·5 to 2·5 g/kg reduced endogenous amino acid flow by around 10%. This reduction of endogenous flow was particularly evident in diets which contained phytate, resulting in a significant sodium x phytate interaction for several amino acids, including Thr and Ser. Further, high sodium concentrations muted the effect of phytase resulting in a significant sodium x phytase interaction for some amino acids. The concentration of Asp, Thr, Ser and some other amino acids was increased in the endogenous protein in response to the ingestion of phytate. Both sodium and phytase essentially restored the composition of endogenous protein to that of the phytate-free control. Further, as both sodium and phytase had similar effects there were significant interactions between sodium and phytase for most amino acids, such that one was only effective in the absence of the other. These data confirm previous reports that phytate is a nutritional aggressor, causing quantitative and qualitative changes in endogenous protein flow. However, this is the first report which has shown that dietary sodium concentrations play a role in the severity of this antinutritional effect and consequently may blunt the efficacy of exogenous phytase. The mechanism is obscure, though it has been previously demonstrated that sodium can disrupt phytate:protein complexes, thus mitigating one of the mechanisms by which phytate exerts its antinutritional effect.

  18. High-intensity interval training increases intrinsic rates of mitochondrial fatty acid oxidation in rat red and white skeletal muscle.

    PubMed

    Hoshino, Daisuke; Yoshida, Yuko; Kitaoka, Yu; Hatta, Hideo; Bonen, Arend

    2013-03-01

    High-intensity interval training (HIIT) can increase mitochondrial volume in skeletal muscle. However, it is unclear whether HIIT alters the intrinsic capacity of mitochondrial fatty acid oxidation, or whether such changes are associated with changes in mitochondrial FAT/CD36, a regulator of fatty acid oxidation, or with reciprocal changes in the nuclear receptor coactivator (peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α)) and the corepressor (receptor-interacting protein 140 (RIP140)). We examined whether HIIT alters fatty acid oxidation rates in the isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria of red and white skeletal muscle and (or) induces changes in muscle PGC-1α and RIP140 proteins and mitochondrial FAT/CD36 protein content. Rats were divided into untrained or HIIT-trained groups. HIIT animals performed 10 bouts of 1-min high-intensity treadmill running (30-55 m·min(-1)), separated by 2 min of rest, for 5 days a week for 4 weeks. As expected, after the training period, HIIT increased mitochondrial enzymes (citrate synthase, COXIV, and β-hydroxyacyl CoA dehydrogenase) in red and white muscle, indicating that muscle mitochondrial volume had increased. HIIT also increased the rates of palmitate oxidation in mitochondria of red (37% for SS and 19% for IMF) and white (36% for SS and 12% for IMF) muscle. No changes occurred in SS and IMF mitochondrial FAT/CD36 proteins, despite increasing FAT/CD36 at the whole-muscle level (27% for red and 22% for white). Concurrently, muscle PGC-1α protein was increased in red (22%) and white (16%) muscle, but RIP140 was not altered. These results indicate that increases in SS and IMF mitochondrial fatty acid oxidation induced by HIIT are accompanied by an increase in PGC-1α, but not RIP140 or FAT/CD36.

  19. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice.

    PubMed

    Peng, Shanshan; Shi, Zhe; Su, Huanxing; So, Kwok-Fai; Cui, Qi

    2016-07-01

    Injury to the central nervous system causes progressive degeneration of injured axons, leading to loss of the neuronal bodies. Neuronal survival after injury is a prerequisite for successful regeneration of injured axons. In this study, we investigated the effects of increased production of omega-3 fatty acids and elevation of cAMP on retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) crush injury in adult mice. We found that increased production of omega-3 fatty acids in mice enhanced RGC survival, but not axonal regeneration, over a period of 3 weeks after ON injury. cAMP elevation promoted RGC survival in wild type mice, but no significant difference in cell survival was seen in mice over-producing omega-3 fatty acids and receiving intravitreal injections of CPT-cAMP, suggesting that cAMP elevation protects RGCs after injury but does not potentiate the actions of the omega-3 fatty acids. The observed omega-3 fatty acid-mediated neuroprotection is likely achieved partially through ERK1/2 signaling as inhibition of this pathway by PD98059 hindered, but did not completely block, RGC protection. Our study thus enhances our current understanding of neural repair after CNS injury, including the visual system.

  20. The effects of excitatory amino acids and their antagonists on the generation of motor activity in the isolated chick spinal cord.

    PubMed

    Barry, M J; O'Donovan, M J

    1987-12-01

    We have investigated the action of excitatory amino acids and their antagonists on spontaneous motor activity produced by an isolated preparation of the chick lumbosacral cord. Bath application of N-methyl-DL-aspartic acid (NMDA) or D-glutamate increased the occurrence and duration of spontaneous episodes of motor activity. Both NMDA-induced and spontaneous activity were reversibly inhibited by several excitatory amino acid antagonists including 2-amino-5-phosphono valeric acid and gamma-D-glutamyl glycine in a dose-dependent manner. These results suggest that motor activity in the chick spinal cord may be regulated by the release of endogenous excitatory amino acids from spinal interneurons.

  1. Spontaneous emission in stimulated Raman adiabatic passage

    SciTech Connect

    Ivanov, P. A.; Vitanov, N. V.; Bergmann, K.

    2005-11-15

    This work explores the effect of spontaneous emission on the population transfer efficiency in stimulated Raman adiabatic passage (STIRAP). The approach uses adiabatic elimination of weakly coupled density matrix elements in the Liouville equation, from which a very accurate analytic approximation is derived. The loss of population transfer efficiency is found to decrease exponentially with the factor {omega}{sub 0}{sup 2}/{gamma}, where {gamma} is the spontaneous emission rate and {omega}{sub 0} is the peak Rabi frequency. The transfer efficiency increases with the pulse delay and reaches a steady value. For large pulse delay and large spontaneous emission rate STIRAP degenerates into optical pumping.

  2. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging) of Escherichia coli.

    PubMed

    Clark, Michelle W; Yie, Anna M; Eder, Elizabeth K; Dennis, Richard G; Basting, Preston J; Martinez, Keith A; Jones, Brian D; Slonczewski, Joan L

    2015-01-01

    Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2-7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.

  3. Application of a Hyaluronic Acid Gel after Intrauterine Surgery May Improve Spontaneous Fertility: A Randomized Controlled Trial in New Zealand White Rabbits

    PubMed Central

    Huberlant, Stephanie; Fernandez, Herve; Vieille, Pierre; Khrouf, Mohamed; Ulrich, Daniela; deTayrac, Renaud; Letouzey, Vincent

    2015-01-01

    Objective Intrauterine adhesions (IUAs) are the most common complication after hysteroscopy in patients of reproductive age. Intra-abdominal anti-adhesion gel reduces the incidence of adhesions, but effects on fertility after uterine surgery are not known. The objective of our work was to evaluate the effect of intrauterine anti-adhesion gel on spontaneous fertility after repeated intrauterine surgery with induced experimental synechiae in the rabbit model. Materials and Methods Twenty New Zealand White rabbits underwent a double uterine curettage 10 days apart and were randomized into two groups. Each rabbit served as its own control: one uterine tube was the treatment group (A), the second uterine tube was the control group (B) to avoid bias through other causes of infertility. Group A received a post curettage intrauterine instillation of anti-adhesion gel whereas group B, the control group, underwent curettage without instillation of the gel. After a recovery period, the rabbits were mated. An abdominal ultrasound performed 21 days after mating allowed us to diagnose pregnancy and quantify the number of viable fetuses. Results There was a significant difference in total fetuses in favor of group A, with an average of 3.7 (range, 0–9) total fetuses per tube against 2.1 (0–7) in group B (p = .04). The number of viable fetuses shows a trend in favor of group A, with an average of 3.4 (0–7) viable fetuses per tube against 1.9 (0–6) viable fetuses per tube in group B (p = .05). Conclusion The use of immediate postoperative anti-adhesion gel improved fertility in an animal model after intrauterine surgery likely to cause uterine synechiae. This experimental model will permit comparison of different anti-adhesion solutions, including assessment of their tolerance and potential mucosal toxicity on embryonic development. PMID:25961307

  4. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.).

    PubMed

    Martínez-Esplá, Alejandra; Zapata, Pedro Javier; Valero, Daniel; García-Viguera, Cristina; Castillo, Salvador; Serrano, María

    2014-04-16

    Trees of 'Sweet Heart' and 'Sweet Late' sweet cherry cultivars (Prunus avium L.) were treated with oxalic acid (OA) at 0.5, 1.0, and 2.0 mM at 98, 112, and 126 days after full blossom. Results showed that all treatments increased fruit size at harvest, manifested by higher fruit volume and weight in cherries from treated trees than from controls, the higher effect being found with 2.0 mM OA (18 and 30% higher weight for 'Sweet Heart' and 'Sweet Late', respectively). Other quality parameters, such as color and firmness, were also increased by OA treatments, although no significant differences were found in total soluble solids or total acidity, showing that OA treatments did not affect the on-tree ripening process of sweet cherry. However, the increases in total anthocyanins, total phenolics, and antioxidant activity associated with the ripening process were higher in treated than in control cherries, leading to fruit with high bioactive compounds and antioxidant potential at commercial harvest (≅45% more anthocyanins and ≅20% more total phenolics). In addition, individual anthocyanins, flavonols, and chlorogenic acid derivatives were also increased by OA treatment. Thus, OA preharvest treatments could be an efficient and natural way to increase the quality and functional properties of sweet cherries.

  5. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients.

    PubMed

    Morel, Agnieszka; Miller, Elzbieta; Bijak, Michal; Saluk, Joanna

    2016-09-01

    Platelet activation is increasingly postulated as a possible component of the pathogenesis of multiple sclerosis (MS), especially due to the increased risk of cardiovascular events in MS. Arachidonic acid cascade metabolized by cyclooxygenase (COX) is a key pathway of platelet activation. The aim of our study was to investigate the COX-dependent arachidonic acid metabolic pathway in blood platelets from secondary progressive multiple sclerosis (SP MS) patients. The blood samples were obtained from 50 patients (man n = 22; female n = 28), suffering from SP MS, diagnosed according to the revised McDonald criteria. Platelet aggregation was measured in platelet-rich plasma after arachidonic acid stimulation. The level of COX activity and thromboxane B2 concentration were determined by ELISA method. Lipid peroxidation was assessed by measuring the level of malondialdehyde. The results were compared with a control group of healthy volunteers. We found that blood platelets obtained from SP MS patients were more sensitive to arachidonic acid and their response measured as platelet aggregation was stronger (about 14 %) relative to control. We also observed a significantly increased activity of COX (about 40 %) and synthesis of thromboxane B2 (about 113 %). The generation of malondialdehyde as a marker of lipid peroxidation was about 10 % higher in SP MS than in control. Cyclooxygenase-dependent arachidonic acid metabolism is significantly increased in blood platelets of patients with SP MS. Future clinical studies are required to recommend the use of low-dose aspirin, and possibly other COX inhibitors in the prevention of cardiovascular risk in MS.

  6. Duodenal acidity may increase the risk of pancreatic cancer in the course of chronic pancreatitis: an etiopathogenetic hypothesis.

    PubMed

    Talamini, Giorgio

    2005-03-10

    Chronic pancreatitis patients have an increased risk of developing pancreatic cancer. The cause of this increase has yet to be fully explained but smoking and inflammation may play an important role. To these, we must now add a new potential risk factor, namely duodenal acidity. Patients with chronic pancreatitis very often present pancreatic exocrine insufficiency combined with a persistently low duodenal pH in the postprandial period. The duodenal mucosa in chronic pancreas patients with pancreatic insufficiency has a normal concentration of s-cells and, therefore, the production of secretin is preserved. Pancreatic ductal cells are largely responsible for the amount of bicarbonate and water secretion in response to secretin stimulation. When gastric acid in the duodenum is not well-balanced by alkaline pancreatic secretions, it may induce a prolonged secretin stimulus which interacts with the pancreatic ductal cells resulting in an increased rate of ductular cell activity and turnover. N-Nitroso compounds from tobacco, identified in human pancreatic juice and known to be important carcinogens, may then act on these active cells, thereby increasing the risk of cancer. Duodenal acidity is probably of particular concern in patients who have undergone a duodenum-preserving pancreatic head resection, since, in this anatomic situation, pancreatic juice transits directly via the jejunal loop, bypassing the duodenum. Patients undergoing a Whipple procedure or side-to-side pancreaticojejunostomy are probably less critically affected because secretions transit, at least in part, via the papilla. If the duodenal acidity hypothesis proves correct, then, in addition to stopping smoking, reduction of duodenal acid load in patients with pancreatic insufficiency may help decrease the risk of pancreatic cancer.

  7. Spray-dried milk supplemented with alpha-linolenic acid or eicosapentaenoic acid and docosahexaenoic acid decreases HMG Co A reductase activity and increases biliary secretion of lipids in rats.

    PubMed

    Ramaprasad, Talahalli R; Srinivasan, Krishnapura; Baskaran, Vallikannan; Sambaiah, Kari; Lokesh, Belur R

    2006-05-01

    In our earlier study, we have shown that rats fed spray-dried milk containing alpha-linolenic acid (LNA 18:3 n-3) or eicosapentaenoic acid (EPA 20:5 n-3) and docosahexaenoic acid (DHA 22:6 n-3) had significantly lower amounts of serum and liver cholesterol. To evaluate the mechanism for hypocholesterolemic effect of n-3 fatty acids containing milk formulation, we fed male Wistar rats with spray-dried milk containing linseed oil (LSO) (source of LNA) or fish oil (FO) (source of EPA+DHA) for 8 weeks. Feeding n-3 fatty acid containing milk formulation lowered the hepatic 3-hydroxy-methylglutaryl coenzyme A (HMG Co A) activity by 17-22% compared to rats given control diet devoid of n-3 fatty acids. The cholesterol level in liver microsomes was found to be decreased by 16% and 20%, respectively, in LSO and FO containing formulation fed rats. The bile flow was enhanced to an extent of 19-23% in experimental groups compared to control animals. The biliary cholesterol and phospholipid secretion was increased to an extent of 49-55% and 140-146%, respectively, in rats fed n-3 fatty acid containing formulation. The increase in the total bile acids secretion in bile was mainly reflected on an increase in the levels of taurine conjugated bile acids. These results indicated that n-3 fatty acid containing spray-dried milk formulation would bring about the hypocholesterolemic effect by lowering HMG Co A reductase activity in liver and by increasing the secretion of bile constituents.

  8. Spontaneous combustion of hydrogen

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm; Pothmann, PH

    1923-01-01

    It is shown by the author's experiments that hydrogen which escapes to the atmosphere through openings in the system may burn spontaneously if it contains dust. Purely thermal reasoning can not account for the combustion. It seems to be rather an electrical ignition. In order to determine whether the cause of the spontaneous ignition was thermo-chemical, thermo-mechanical, or thermo-electrical, the experiments in this paper were performed.

  9. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    PubMed

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  10. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance

    NASA Astrophysics Data System (ADS)

    Swogger, Steven W.; Everill, Paul; Dubey, D. P.; Sugumaran, Nanjan

    2014-09-01

    Performance demands placed upon lead acid batteries have outgrown the technology's ability to deliver. These demands, typically leading to Negative Active Material (NAM) failure, include: short, high-current surges; prolonged, minimal, overvoltage charging; repeated, Ah deficit charging; and frequent deep discharges. Research shows these failure mechanisms are attenuated by inclusion of carbon allotropes into the NAM. Addition of significant quantities of carbon, however, produces detrimental changes in paste rheology, leading to lowered industrial throughput. Additionally, capacity, cold-cranking performance, and other battery metrics are negatively affected at high carbon loads. Presented here is Molecular Rebar® Lead Negative, a new battery additive comprising discrete carbon nanotubes (dCNT) which uniformly disperse within battery pastes during mixing. NS40ZL batteries containing dCNT show enhanced charge acceptance, reserve capacity, and cold-cranking performance, decreased risk of polarization, and no detrimental changes to paste properties, when compared to dCNT-free controls. This work focuses on the dCNT as NAM additives only, but early-stage research is underway to test their functionality as a PAM additive. Batteries infused with Molecular Rebar® Lead Negative address the needs of modern lead acid battery applications, produce none of the detrimental side effects associated with carbon additives, and require no change to existing production lines.

  11. Epileptic Activity Increases Cerebral Amino Acid Transport Assessed by 18F-Fluoroethyl-l-Tyrosine Amino Acid PET: A Potential Brain Tumor Mimic.

    PubMed

    Hutterer, Markus; Ebner, Yvonne; Riemenschneider, Markus J; Willuweit, Antje; McCoy, Mark; Egger, Barbara; Schröder, Michael; Wendl, Christina; Hellwig, Dirk; Grosse, Jirka; Menhart, Karin; Proescholdt, Martin; Fritsch, Brita; Urbach, Horst; Stockhammer, Guenther; Roelcke, Ulrich; Galldiks, Norbert; Meyer, Philipp T; Langen, Karl-Josef; Hau, Peter; Trinka, Eugen

    2017-01-01

    O-(2-(18)F-fluoroethyl)-l-tyrosine ((18)F-FET) PET is a well-established method increasingly used for diagnosis, treatment planning, and monitoring in gliomas. Epileptic activity, frequently occurring in glioma patients, can influence MRI findings. Whether seizures also affect (18)F-FET PET imaging is currently unknown. The aim of this retrospective analysis was to investigate the brain amino acid metabolism during epileptic seizures by (18)F-FET PET and to elucidate the pathophysiologic background.

  12. Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR

    PubMed Central

    Rosario, Fredrick J.; Shehab, Majida Abu; Powell, Theresa L.; Gupta, Madhulika B.; Jansson, Thomas

    2015-01-01

    Placental amino acid transport is decreased in intrauterine growth restriction (IUGR); however, the underlying mechanisms remain largely unknown. We have shown that mechanistic target of rapamycin (mTOR) signalling regulates system A amino acid transport by modulating the ubiquitination and plasma membrane trafficking of sodium-coupled neutral amino acid transporter 2 (SNAT-2) in cultured primary human trophoblast cells. We hypothesize that IUGR is associated with (1) inhibition of placental mTORC1 and mTORC2 signalling pathways, (2) increased amino acid transporter ubiquitination in placental homogenates and (3) decreased protein expression of SNAT-2 in the syncytiotrophoblast microvillous plasma membrane (MVM). To test this hypothesis, we collected placental tissue and isolated MVM from women with pregnancies complicated by IUGR (n=25) and gestational age-matched women with appropriately grown control infants (n=19, birth weights between the twenty-fifth to seventy-fifth percentiles). The activity of mTORC1 and mTORC2 was decreased whereas the protein expression of the ubiquitin ligase NEDD4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2; +72%, P<0.0001) and the ubiquitination of SNAT-2 (+180%, P<0.05) were increased in homogenates of IUGR placentas. Furthermore, IUGR was associated with decreased system A amino acid transport activity (–72%, P<0.0001) and SNAT-1 (–42%, P<0.05) and SNAT-2 (–31%, P<0.05) protein expression in MVM. In summary, these findings are consistent with the possibility that decreased placental mTOR activity causes down-regulation of placental system A activity by shifting SNAT-2 trafficking towards proteasomal degradation, thereby contributing to decreased fetal amino acid availability and restricted fetal growth in IUGR. PMID:26374858

  13. Increased Serum Uric Acid Levels Blunt the Antihypertensive Efficacy of Lifestyle Modifications in Children at Cardiovascular Risk.

    PubMed

    Viazzi, Francesca; Rebora, Paola; Giussani, Marco; Orlando, Antonina; Stella, Andrea; Antolini, Laura; Valsecchi, Maria Grazia; Pontremoli, Roberto; Genovesi, Simonetta

    2016-05-01

    Primary hypertension is a growing concern in children because of the obesity epidemic largely attributable to western lifestyles. Serum uric acid is known to be influenced by dietary habits, correlates with obesity, and could represent a risk factor for hypertension. Preliminary studies in children highlighted uric acid as a potentially modifiable risk factor for the prevention and treatment of hypertension. The effect of lifestyle changes (increase of physical activity and dietary modifications) on blood pressure values, weight status, and serum uric acid levels in a cohort of 248 children referred for cardiovascular risk assessment were evaluated over a mean 1.5-year follow-up. At baseline, 48% of children were obese and 50% showed blood pressure values >90th percentile. At follow-up, a significant improvement in weight class (24% obese;P<0.0001) and blood pressure category (22% >90th percentile;P<0.0001) was found. Systolic blood pressure z-score (P<0.0001), uric acid value (P=0.0056), and puberty at baseline (P=0.0048) were independently associated with higher systolic blood pressure z-score at follow-up, whereas a negative association was observed with body mass index z-score decrease during follow-up (P=0.0033). The risk of hypertension at follow-up was associated with body mass index (P=0.0025) and systolic blood pressure (P<0.0001) z-score at baseline and inversely related to delta body mass index (P=0.0002), whereas the risk of showing hypertension ≥99th percentile was more than doubled for each baseline 1 mg/dL increase of serum uric acid (P=0.0130). Uric acid is a powerful determinant of blood pressure over time, independent of lifestyle modifications.

  14. Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR.

    PubMed

    Chen, Yi-Yung; Rosario, Fredrick J; Shehab, Majida Abu; Powell, Theresa L; Gupta, Madhulika B; Jansson, Thomas

    2015-12-01

    Placental amino acid transport is decreased in intrauterine growth restriction (IUGR); however, the underlying mechanisms remain largely unknown. We have shown that mechanistic target of rapamycin (mTOR) signalling regulates system A amino acid transport by modulating the ubiquitination and plasma membrane trafficking of sodium-coupled neutral amino acid transporter 2 (SNAT-2) in cultured primary human trophoblast cells. We hypothesize that IUGR is associated with (1) inhibition of placental mTORC1 and mTORC2 signalling pathways, (2) increased amino acid transporter ubiquitination in placental homogenates and (3) decreased protein expression of SNAT-2 in the syncytiotrophoblast microvillous plasma membrane (MVM). To test this hypothesis, we collected placental tissue and isolated MVM from women with pregnancies complicated by IUGR (n=25) and gestational age-matched women with appropriately grown control infants (n=19, birth weights between the twenty-fifth to seventy-fifth percentiles). The activity of mTORC1 and mTORC2 was decreased whereas the protein expression of the ubiquitin ligase NEDD4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2; +72%, P<0.0001) and the ubiquitination of SNAT-2 (+180%, P<0.05) were increased in homogenates of IUGR placentas. Furthermore, IUGR was associated with decreased system A amino acid transport activity (-72%, P<0.0001) and SNAT-1 (-42%, P<0.05) and SNAT-2 (-31%, P<0.05) protein expression in MVM. In summary, these findings are consistent with the possibility that decreased placental mTOR activity causes down-regulation of placental system A activity by shifting SNAT-2 trafficking towards proteasomal degradation, thereby contributing to decreased fetal amino acid availability and restricted fetal growth in IUGR.

  15. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3.

    PubMed

    Akbas, F; Aydin, Z

    2012-04-03

    Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels.

  16. Increasing palmitic acid intake enhances milk production and prevents glucose-stimulated fatty acid disappearance without modifying systemic glucose tolerance in mid-lactation dairy cows.

    PubMed

    Mathews, A T; Rico, J E; Sprenkle, N T; Lock, A L; McFadden, J W

    2016-11-01

    Feeding saturated fatty acids may enhance milk yield in part by decreasing insulin sensitivity and shifting glucose utilization toward the mammary gland. Our objective was to evaluate the effects of palmitic acid (C16:0) on milk production and insulin sensitivity in cows. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows received a common sorghum silage-based diet and were randomly assigned to a diet containing no supplemental fat (control; n=10; 138±45d in milk) or C16:0 at 4% of ration DM (PALM; 98% C16:0; n=10; 136±44d in milk). Blood and milk were collected at routine intervals. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield by wk 7. Furthermore, PALM increased milk fat yield and energy-corrected milk at wk 3 and 7. Changes in milk production occurred in parallel with enhanced energy intake. Increased milk fat yield during PALM treatment was due to increased C16:0 and C16:1 incorporation; PALM had no effect on concentration of milk components, BW, or body condition score. Two weeks posttreatment, energy-corrected milk and milk fat yield remained elevated in PALM-fed cows whereas yields of milk were similar between treatments. Increased milk fat yield after PALM treatment was due to increased de novo lipogenesis and uptake of preformed fatty acids. The basal concentration of nonesterified fatty acids (NEFA) in plasma increased by d 4, 6, and 8 of PALM treatment, a response not observed thereafter. Although PALM supplementation did not modify insulin, glucose, or triacylglycerol levels in plasma, total cholesterol in plasma was elevated by wk 3. Estimated insulin sensitivity was lower during the

  17. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity

    PubMed Central

    Patterson, Rainey E.; Kalavalapalli, Srilaxmi; Williams, Caroline M.; Nautiyal, Manisha; Mathew, Justin T.; Martinez, Janie; Reinhard, Mary K.; McDougall, Danielle J.; Rocca, James R.; Yost, Richard A.; Cusi, Kenneth; Garrett, Timothy J.

    2016-01-01

    The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by 13C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P < 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of “lipotoxic” metabolites in the liver and could hasten inflammation and the metabolic transition to NASH. PMID:26814015

  18. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity.

    PubMed

    Patterson, Rainey E; Kalavalapalli, Srilaxmi; Williams, Caroline M; Nautiyal, Manisha; Mathew, Justin T; Martinez, Janie; Reinhard, Mary K; McDougall, Danielle J; Rocca, James R; Yost, Richard A; Cusi, Kenneth; Garrett, Timothy J; Sunny, Nishanth E

    2016-04-01

    The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by(13)C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P< 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of "lipotoxic" metabolites in the liver and could hasten inflammation and the metabolic transition to NASH.

  19. Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes

    PubMed Central

    Oxenkrug, Gregory F

    2015-01-01

    About 350 million people worldwide have type 2 diabetes (T2D). The major risk factor of T2D is impaired glucose tolerance (pre-diabetes) with 10% of pre-diabetes subjects develop T2D every year. Understanding of mechanisms of development of T2D from pre-diabetes is important for prevention and treatment of T2D. Chronic stress and chronic low grade inflammation are prominent risk factors for T2D development in pre-diabetic subjects. However, molecular mechanisms mediating effect of stress and inflammation on development of T2D from pre-diabetes remain unknown. One of such mechanisms might involve kynurenine (KYN) pathway (KP) of tryptophan (TRP) metabolism. We suggested that chronic stress- or chronic low grade inflammation-induced upregulation of formation of upstream KTP metabolites, KYN and 3-hydroxyKYN, combined with chronic stress or chronic low grade inflammation-induced deficiency of pyridoxal 5'-phosphate, a cofactor of downstream enzymes of KTP, triggers overproduction of diabetogenic downstream KYN metabolites, kynurenic acid (KYNA) and 3-hydroxyKYNA (also known as xanthurenic acid (XA)). As the initial assessment of our working hypothesis, we evaluated plasma levels of up- and down-stream KP metabolites in the same samples of T2D patients. KYN, XA and KYNA levels in plasma samples of T2D patients were higher than in samples of non-diabetic subjects. Our results provide further support of “kynurenine hypothesis of insulin resistance and its progression to T2D” that suggested that overproduction of diabetogenic KP metabolites, induced by chronic stress- or chronic low grade inflammation, is one of the mechanisms promoting development of T2D from pre-diabetes. Downstream metabolites of KP might serve as biomarkers of T2D and targets for clinical intervention. PMID:26055228

  20. β-TCP granules mixed with reticulated hyaluronic acid induce an increase in bone apposition.

    PubMed

    Aguado, Eric; Pascaretti-Grizon, Florence; Gaudin-Audrain, Christine; Goyenvalle, Eric; Chappard, Daniel

    2014-02-01

    β beta-tricalcium phosphate (β-TCP) granules are suitable for repair of bone defects. They have an osteoconductive effect shortly after implantation. However, dry granules are difficult to handle in the surgical room because of low weight and lack of cohesion. Incorporation of granules in a hydrogel could be a satisfactory solution. We have investigated the use of hyaluronic acid (HyA) as an aqueous binder of the granules. β-TCP granules were prepared by the polyurethane foam technology. Commercially available linear (LHya) and reticulated hyaluronic acid (RHyA) in aqueous solution were used to prepare a pasty mixture that can be handled more easily than granules alone. Thirteen New Zealand White rabbits (3.5-3.75 kg) were used; a 4 mm hole was drilled in each femoral condyle. After flushing, holes were filled with either LHyA, RHyA, dry β-TCP granules alone, β-TCP granules + LHyA and β-TCP granules + RHyA. Rabbits were allowed to heal for one month, sacrificed and femurs were harvested and analysed by microCT and histomorphometry. The net amount of newly formed bone was derived from measurements done after thresholding the microCT images for the material and for the material+bone. LHyA and RHyA did not result in healing of the grafted area. LHyA was rapidly eluted from the grafted zone but allowed deposition of more granules, although the amount of formed bone was not significantly higher than with β-TCP granules alone. RHyA permitted the deposition of more granules which induced significantly more bone trabeculae without inducing an inflammatory reaction. RHyA appears to be a good vehicle to implant granules of β-TCP, since HyA does not interfere with bone remodeling.

  1. Lead acid battery performance and cycle life increased through addition of discrete carbon nanotubes to both electrodes

    NASA Astrophysics Data System (ADS)

    Sugumaran, Nanjan; Everill, Paul; Swogger, Steven W.; Dubey, D. P.

    2015-04-01

    Contemporary applications are changing the failure mechanisms of lead acid batteries. Sulfation at the negative electrode, acid stratification, and dendrite formation now precede positive electrode failures such as grid corrosion and active material shedding. To attenuate these failures, carbon has been explored as a negative electrode additive to increase charge acceptance, eliminate sulfation, and extend cycle life. Frequently, however, carbon incorporation decreases paste density and hinders manufacturability. Discrete carbon nanotubes (dCNT), also known as Molecular Rebar®, are lead acid battery additives which can be stably incorporated into either electrode to increase charge acceptance and cycle life with no change to paste density and without impeding the manufacturing process. Here, full-scale automotive batteries containing dCNT in the negative electrode or both negative and positive electrodes are compared to control batteries. dCNT batteries show little change to Reserve Capacity, improved Cold Cranking, increased charge acceptance, and enhanced overall system efficiency. Life cycle tests show >60% increases when dCNT are incorporated into the negative electrode (HRPSoC/SBA) and up to 500% when incorporated into both electrodes (SBA), with water loss per cycle reduced >20%. Failure modes of cycled batteries are discussed and a hypothesis of dCNT action is introduced: the dCNT/Had Overcharge Reaction Mechanism.

  2. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration.

    PubMed

    Zaytseva, Yekaterina Y; Harris, Jennifer W; Mitov, Mihail I; Kim, Ji Tae; Butterfield, D Allan; Lee, Eun Y; Weiss, Heidi L; Gao, Tianyan; Evers, B Mark

    2015-08-07

    Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells and orthotopic CRCs. Immunohistochemical evaluation demonstrated increased expression of FASN and p62, a marker of autophagy inhibition, in primary CRCs and liver metastases compared to matched normal colonic mucosa. Our findings indicate that overexpression of FASN plays a crucial role in maintaining energy homeostasis in CRC via increased oxidation of endogenously synthesized lipids. Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key adaptation mechanisms that mediate the effects of FASN on cancer cell survival and metastasis, providing a strong rationale for targeting this pathway in advanced CRC.

  3. High-fat Diet-induced Intestinal Hyperpermeability is Associated with Increased Bile Acids in the Large Intestine of Mice.

    PubMed

    Murakami, Yuki; Tanabe, Soichi; Suzuki, Takuya

    2016-01-01

    Metabolic syndrome is characterized by low-grade chronic systemic inflammation, which is associated with intestinal hyperpermeability. This study examined the effects of 3 high-fat diets (HFDs) composed of different fat sources (soybean oil and lard) on the intestinal permeability, tight junction (TJ) protein expression, and cecal bile acid (BA) concentrations in mice, and then analyzed their interrelations. C57/BL6 mice were fed the control diet, HFD (soybean oil), HFD (lard), and HFD (mix; containing equal concentrations of soybean oil and lard) for 8 wk. Glucose tolerance, intestinal permeability, TJ protein expression, and cecal BA concentration were evaluated. Feeding with the 3 HDFs similarly increased body weight, liver weight, and fat pad weight, and induced glucose intolerance and intestinal hyperpermeability. The expression of TJ proteins, zonula occludens-2 and junctional adhesion molecule-A, were lower in the colons of the 3 HFD groups than in the control group (P < 0.05), and these changes appeared to be related to intestinal hyperpermeability. Feeding with HFDs increased total secondary BA (SBA) and total BA concentrations along with increases in some individual BAs in the cecum. Significant positive correlations between intestinal permeability and the concentrations of most SBAs, such as deoxycholic acid and ω-muricholic acids, were detected (P < 0.05). These results suggest that the HFD-induced intestinal hyperpermeability is associated with increased BA secretion. The abundance of SBAs in the large intestine may be responsible for the hyperpermeability.

  4. The ketogenic diet component decanoic acid increases mitochondrial citrate synthase and complex I activity in neuronal cells.

    PubMed

    Hughes, Sean David; Kanabus, Marta; Anderson, Glenn; Hargreaves, Iain P; Rutherford, Tricia; O'Donnell, Maura; Cross, J Helen; Rahman, Shamima; Eaton, Simon; Heales, Simon J R

    2014-05-01

    The Ketogenic diet (KD) is an effective treatment with regards to treating pharmaco-resistant epilepsy. However, there are difficulties around compliance and tolerability. Consequently, there is a need for refined/simpler formulations that could replicate the efficacy of the KD. One of the proposed hypotheses is that the KD increases cellular mitochondrial content which results in elevation of the seizure threshold. Here, we have focussed on the medium-chain triglyceride form of the diet and the observation that plasma octanoic acid (C8) and decanoic acid (C10) levels are elevated in patients on the medium-chain triglyceride KD. Using a neuronal cell line (SH-SY5Y), we demonstrated that 250-μM C10, but not C8, caused, over a 6-day period, a marked increase in the mitochondrial enzyme, citrate synthase along with complex I activity and catalase activity. Increased mitochondrial number was also indicated by electron microscopy. C10 is a reported peroxisome proliferator activator receptor γ agonist, and the use of a peroxisome proliferator activator receptor γ antagonist was shown to prevent the C10-mediated increase in mitochondrial content and catalase. C10 may mimic the mitochondrial proliferation associated with the KD and raises the possibility that formulations based on this fatty acid could replace a more complex diet. We propose that decanoic acid (C10) results in increased mitochondrial number. Our data suggest that this may occur via the activation of the PPARγ receptor and its target genes involved in mitochondrial biogenesis. This finding could be of significant benefit to epilepsy patients who are currently on a strict ketogenic diet. Evidence that C10 on its own can modulate mitochondrial number raises the possibility that a simplified and less stringent C10-based diet could be developed.

  5. Genetic Adaptation of Fatty-Acid Metabolism: A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain Omega-3 and Omega-6 Fatty Acids

    PubMed Central

    Ameur, Adam; Enroth, Stefan; Johansson, Åsa; Zaboli, Ghazal; Igl, Wilmar; Johansson, Anna C.V.; Rivas, Manuel A.; Daly, Mark J.; Schmitz, Gerd; Hicks, Andrew A.; Meitinger, Thomas; Feuk, Lars; van Duijn, Cornelia; Oostra, Ben; Pramstaller, Peter P.; Rudan, Igor; Wright, Alan F.; Wilson, James F.; Campbell, Harry; Gyllensten, Ulf

    2012-01-01

    Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LC-PUFAs) are essential for the development and function of the human brain. They can be obtained directly from food, e.g., fish, or synthesized from precursor molecules found in vegetable oils. To determine the importance of genetic variability to fatty-acid biosynthesis, we studied FADS1 and FADS2, which encode rate-limiting enzymes for fatty-acid conversion. We performed genome-wide genotyping (n = 5,652 individuals) and targeted resequencing (n = 960 individuals) of the FADS region in five European population cohorts. We also analyzed available genomic data from human populations, archaic hominins, and more distant primates. Our results show that present-day humans have two common FADS haplotypes—defined by 28 closely linked SNPs across 38.9 kb—that differ dramatically in their ability to generate LC-PUFAs. No independent effects on FADS activity were seen for rare SNPs detected by targeted resequencing. The more efficient, evolutionarily derived haplotype appeared after the lineage split leading to modern humans and Neanderthals and shows evidence of positive selection. This human-specific haplotype increases the efficiency of synthesizing essential long-chain fatty acids from precursors and thereby might have provided an advantage in environments with limited access to dietary LC-PUFAs. In the modern world, this haplotype has been associated with lifestyle-related diseases, such as coronary artery disease. PMID:22503634

  6. High ω-3:ω-6 fatty acids ratio increases fatty acid binding protein 4 and extracellular secretory phospholipase A2IIa in human ectopic endometrial cells

    PubMed Central

    Khanaki, Korosh; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mehdi; Darabi, Masoud; Mehdizadeh, Amir; Shabani, Mahdi; Rahimipour, Ali; Nouri, Mohammad

    2014-01-01

    Background: Endometriosis, a common chronic inflammatory disorder, is defined by the atypical growth of endometrium- like tissue outside of the uterus. Secretory phospholipase A2 group IIa (sPLA2-IIa) and fatty acid binding protein4 (FABP4) play several important roles in the inflammatory diseases. Objective: Due to reported potential anti-inflammatory effects of ω-3 and ω-6 fatty acids, the purpose of the present study was to investigate the effects of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) on fatty acid binding protein 4 and extracellular secretory phospholipase A2IIa in cultured endometrial cells. Materials and Methods: Ectopic and eutopic endometrial tissues obtained from 15 women were snap frozen. After thawing and tissue digestion, primary mixed stromal and endometrial epithelial cell culture was performed for 8 days in culture mediums supplemented with normal and high ratios of ω-3 and ω-6 PUFA. sPLA2-IIa in the culture medium and FABP4 level was determined using enzyme immuno assay (EIA) technique. Results: Within ectopic endometrial cells group, the level of cellular FABP4 and extracellular sPLA2-IIa were remarkably increased under high ω-3 PUFA exposure compared with control condition (p=0.014 and p=0.04 respectively). Conclusion: ω-3 PUFAs may increase the level of cellular FABP4 and extracellular sPLA2-IIa in ectopic endometrial cells, since sPLAIIa and FABP4 may affect endometriosis via several mechanisms, more relevant studies are encouraged to know the potential effect of increased cellular FABP4 and extracellular sPLA2-IIa on endometriosis. PMID:25709631

  7. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum.

    PubMed

    Cheng, Xingguo; Zhang, Youcai; Klaassen, Curtis D

    2014-10-01

    NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice.

  8. Chlorogenic Acid Decreases Intestinal Permeability and Increases Expression of Intestinal Tight Junction Proteins in Weaned Rats Challenged with LPS

    PubMed Central

    Ruan, Zheng; Liu, Shiqiang; Zhou, Yan; Mi, Shumei; Liu, Gang; Wu, Xin; Yao, Kang; Assaad, Houssein; Deng, Zeyuan; Hou, Yongqing; Wu, Guoyao; Yin, Yulong

    2014-01-01

    Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA) could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS) challenge. Thirty-two weaned male Sprague Dawley rats (21±1 d of age; 62.26±2.73 g) were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA) supplemented group (orally 20 mg/kg and 50 mg/kg body). Dietary supplementation with CHA decreased (P<0.05) the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05) in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05) villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05) intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05) by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05) in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS. PMID:24887396

  9. Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS.

    PubMed

    Ruan, Zheng; Liu, Shiqiang; Zhou, Yan; Mi, Shumei; Liu, Gang; Wu, Xin; Yao, Kang; Assaad, Houssein; Deng, Zeyuan; Hou, Yongqing; Wu, Guoyao; Yin, Yulong

    2014-01-01

    Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA) could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS) challenge. Thirty-two weaned male Sprague Dawley rats (21 ± 1 d of age; 62.26 ± 2.73 g) were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA) supplemented group (orally 20 mg/kg and 50 mg/kg body). Dietary supplementation with CHA decreased (P<0.05) the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05) in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05) villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05) intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05) by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05) in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS.

  10. Hydroxyiminodisuccinic acid (HIDS): A novel biodegradable chelating ligand for the increase of iron bioavailability and arsenic phytoextraction.

    PubMed

    Rahman, M Azizur; Hasegawa, H; Kadohashi, K; Maki, T; Ueda, K

    2009-09-01

    The influence of biodegradable chelating ligands on arsenic and iron uptake by hydroponically grown rice seedlings (Oryza sativa L.) was investigated. Even though the growth solution contained sufficient Fe, the growth of rice seedlings gradually decreased up to 76% with the increase of pH of the solution from 7 to 11. Iron forms insoluble ferric hydroxide complexes at neutral or alkaline pH in oxic condition. Chelating ligands produce soluble 'Fe-ligand complex' which assist Fe uptake in plants. The biodegradable chelating ligand hydroxyiminodisuccinic acid (HIDS) was more efficient then those of ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), and iminodisuccinic acid (IDS) in the increase of Fe uptake and growth of rice seedling. A total of 79+/-20, 87+/-6, 116+/-15, and 63+/-18mg dry biomass of rice seedlings were produced with the addition of 0.5mM of EDDS, EDTA, HIDS, and IDS in the nutrient solution, respectively. The Fe concentrations in rice tissues were 117+/-15, 82+/-8, 167+/-25, and 118+/-22micromolg(-1) dry weights when 0.25mM of EDDS, EDTA, HIDS, and IDS were added to the nutrient solution, respectively. Most of the Fe accumulated in rice tissues was stored in roots after the addition of chelating ligands in the solution. The results indicate that the HIDS would be a potential alternative to environmentally persistent EDTA for the increase of Fe uptake and plant growth. The HIDS also increased As uptake in rice root though its translocation from root to shoot was not augmented. This study reports HIDS for the first time as a promising chelating ligand for the enhancement of Fe bioavailability and As phytoextraction.

  11. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    SciTech Connect

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardi