Science.gov

Sample records for acids lysine arginine

  1. Study on mutual interactions and electronic structures of hyaluronan with Lysine, 6-Aminocaproic acid and Arginine.

    PubMed

    Chytil, Martin; Trojan, Martin; Kovalenko, Alexander

    2016-05-20

    Interactions between polyelectrolytes and oppositely charged surfactants have been in a great interest for several decades, yet the conventional surfactants may cause a problem in medical applications. Interactivity between polysaccharide hyaluronan (HA) and amino acids Lysine, 6-Aminocaproic acid (6-AcA), and Arginine as an alternative system is reported. The interactions were investigated by means of rheology and electric conductance and the electronic structures were explored by the density functional theory (DFT). Lysine exhibits the strongest interaction of all, which was manifested, e.g. by nearly 6-time drop of the initial viscosity comparing with only 1.3-time lower value in the case of 6-AcA. Arginine interaction with HA was surprisingly weaker in terms of viscosity than that of Lysine due to a lower and delocalized charge density on its guanidine group. According to the DFT calculations, the binding of Lysine to HA was found to be more flexible, while Arginine creates more rigid structure with HA. PMID:26917367

  2. Safety, efficacy and physiological actions of a lysine-free, arginine-rich formula to treat glutaryl-CoA dehydrogenase deficiency: focus on cerebral amino acid influx.

    PubMed

    Strauss, Kevin A; Brumbaugh, Joan; Duffy, Alana; Wardley, Bridget; Robinson, Donna; Hendrickson, Christine; Tortorelli, Silvia; Moser, Ann B; Puffenberger, Erik G; Rider, Nicholas L; Morton, D Holmes

    2011-01-01

    Striatal degeneration from glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type 1, GA1) is associated with cerebral formation and entrapment of glutaryl-CoA and its derivatives that depend on cerebral lysine influx. In 2006 we designed a lysine-free study formula enriched with arginine to selectively block lysine transport across cerebral endothelia and thereby limit glutaryl-CoA production by brain. Between 2006 and present, we treated twelve consecutive children with study formula (LYSx group) while holding all other treatment practices constant. Clinical and biochemical outcomes were compared to 25 GA1 patients (PROx group) treated between 1995 and 2005 with natural protein restriction (dietary lysine/arginine ratio of 1.7±0.3 mg:mg). We used published kinetic parameters of the y+and LAT1 blood-brain barrier transporters to model the influx of amino acids into the brain. Arginine fortification to achieve a mean dietary lysine/arginine ratio of 0.7±0.2 mg:mg was neuroprotective. All 12 LYSx patients are physically and neurologically healthy after 28 aggregate patient-years of follow up (current ages 28±21 months) and there were no adverse events related to formula use. This represents a 36% reduction of neurological risk (95% confidence interval 14-52%, p=0.018) that we can directly attribute to altered amino acid intake. During the first year of life, 20% lower lysine intake and two-fold higher arginine intake by LYSx patients were associated with 50% lower plasma lysine, 3-fold lower plasma lysine/arginine concentration ratio, 42% lower mean calculated cerebral lysine influx, 54% higher calculated cerebral arginine influx, 15-26% higher calculated cerebral influx of several anaplerotic precursors (isoleucine, threonine, methionine, and leucine), 50% less 3-hydroxyglutarate excretion, and a 3-fold lower hospitalization rate (0.8 versus 2.3 hospitalizations per patient per year). The relationship between arginine fortification and plasma lysine

  3. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum.

    PubMed

    Schneider, Jens; Niermann, Karin; Wendisch, Volker F

    2011-07-10

    Amino acid production processes with Corynebacterium glutamicum are based on media containing glucose from starch hydrolysis or fructose and sucrose as present in molasses. Simultaneous utilization of various carbon sources, including glucose, fructose and sucrose, in blends is a typical characteristic of this bacterium. The renewable non-food carbon source arabinose, which is present in hemicellulosic hydrolysates, cannot be utilized by most C. glutamicum strains. Heterologous expression of the araBAD operon from Escherichia coli in the wild-type and in an l-lysine producing strain of C. glutamicum was shown to enable production of l-glutamate and l-lysine, respectively, from arabinose as sole carbon source. l-Ornithine and l-arginine producing strains were constructed and shown to produce l-ornithine and l-arginine from arabinose when araBAD from E. coli was expressed. Moreover, the recombinant strains produced l-glutamate, l-lysine, l-ornithine and l-arginine respectively, from arabinose also when glucose-arabinose blends were used as carbon sources. PMID:20638422

  4. Amino-acid selective experiments on uniformly 13C and 15N labeled proteins by MAS NMR: Filtering of lysines and arginines

    NASA Astrophysics Data System (ADS)

    Jehle, Stefan; Rehbein, Kristina; Diehl, Anne; van Rossum, Barth-Jan

    2006-12-01

    Amino-acid selective magic-angle spinning (MAS) NMR experiments can aid the assignment of ambiguous cross-peaks in crowded spectra of solid proteins. In particular for larger proteins, data analysis can be hindered by severe resonance overlap. In such cases, filtering techniques may provide a good alternative to site-specific spin-labeling to obtain unambiguous assignments that can serve as starting points in the assignment procedure. In this paper we present a simple pulse sequence that allows selective excitation of arginine and lysine residues. To achieve this, we make use of a combination of specific cross-polarization for selective excitation [M. Baldus, A.T. Petkova, J. Herzfeld, R.G. Griffin, Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems, Mol. Phys. 95 (1998) 1197-1207.] and spin diffusion for transfer along the amino-acid side-chain. The selectivity of the filter is demonstrated with the excitation of lysine and arginine side-chain resonances in a uniformly 13C and 15N labeled protein preparation of the α-spectrin SH3 domain. It is shown that the filter can be applied as a building block in a 13C- 13C lysine-only correlation experiment.

  5. Quantum Computational Calculations of the Ionization Energies of Acidic and Basic Amino Acids: Aspartate, Glutamate, Arginine, Lysine, and Histidine

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.

    An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.

  6. A Study on the Effect of Surface Lysine to Arginine Mutagenesis on Protein Stability and Structure Using Green Fluorescent Protein

    PubMed Central

    Sokalingam, Sriram; Raghunathan, Govindan; Soundrarajan, Nagasundarapandian; Lee, Sun-Gu

    2012-01-01

    Two positively charged basic amino acids, arginine and lysine, are mostly exposed to protein surface, and play important roles in protein stability by forming electrostatic interactions. In particular, the guanidinium group of arginine allows interactions in three possible directions, which enables arginine to form a larger number of electrostatic interactions compared to lysine. The higher pKa of the basic residue in arginine may also generate more stable ionic interactions than lysine. This paper reports an investigation whether the advantageous properties of arginine over lysine can be utilized to enhance protein stability. A variant of green fluorescent protein (GFP) was created by mutating the maximum possible number of lysine residues on the surface to arginines while retaining the activity. When the stability of the variant was examined under a range of denaturing conditions, the variant was relatively more stable compared to control GFP in the presence of chemical denaturants such as urea, alkaline pH and ionic detergents, but the thermal stability of the protein was not changed. The modeled structure of the variant indicated putative new salt bridges and hydrogen bond interactions that help improve the rigidity of the protein against different chemical denaturants. Structural analyses of the electrostatic interactions also confirmed that the geometric properties of the guanidinium group in arginine had such effects. On the other hand, the altered electrostatic interactions induced by the mutagenesis of surface lysines to arginines adversely affected protein folding, which decreased the productivity of the functional form of the variant. These results suggest that the surface lysine mutagenesis to arginines can be considered one of the parameters in protein stability engineering. PMID:22792305

  7. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy.

    PubMed

    Yuzyuk, Tatiana; Thomas, Amanda; Viau, Krista; Liu, Aiping; De Biase, Irene; Botto, Lorenzo D; Pasquali, Marzia; Longo, Nicola

    2016-07-01

    Pyridoxine-Dependent Epilepsy (PDE) is a recessive disorder caused by deficiency of α-aminoadipic semialdehyde dehydrogenase in the catabolic pathway of lysine. It is characterized by intractable seizures controlled by the administration of pharmacological doses of vitamin B6. Despite seizure control with pyridoxine, intellectual disability and developmental delays are still observed in some patients with PDE, likely due to the accumulation of toxic intermediates in the lysine catabolic pathway: alpha-aminoadipic semialdehyde (AASA), delta-1-piperideine-6-carboxylate (P6C), and pipecolic acid. Here we evaluate biochemical and clinical parameters in two PDE patients treated with a lysine-restricted diet and arginine supplementation (100-150mg/kg), aimed at reducing the levels of PDE biomarkers. Lysine restriction resulted in decreased accumulation of PDE biomarkers and improved development. Plasma lysine but not plasma arginine, directly correlated with plasma levels of AASA-P6C (p<0.001, r(2)=0.640) and pipecolic acid (p<0.01, r(2)=0.484). In addition, plasma threonine strongly correlated with the levels of AASA-P6C (p<0.0001, r(2)=0.732) and pipecolic acid (p<0.005, r(2)=0.527), suggesting extreme sensitivity of threonine catabolism to pyridoxine availability. Our results further support the use of dietary therapies in combination with pyridoxine for the treatment of PDE. PMID:27324284

  8. Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Kim, Hwanhee; Choi, Youngjin; Paik, Seung R.; Jung, Seunho

    2016-08-01

    Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine.

  9. Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine.

    PubMed

    Cho, Eunae; Kim, Hwanhee; Choi, Youngjin; Paik, Seung R; Jung, Seunho

    2016-01-01

    Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine. PMID:27502314

  10. Polydiacetylenyl β-cyclodextrin based smart vesicles for colorimetric assay of arginine and lysine

    PubMed Central

    Cho, Eunae; Kim, Hwanhee; Choi, Youngjin; Paik, Seung R.; Jung, Seunho

    2016-01-01

    Selective visualization of arginine and lysine has been explored among 20 amino acids using the hybrid conjugate of β-cyclodextrin (β-CD) and polydiacetylene (PDA). The mono pentacosa-10,12-diynyl aminomethyl group was successfully coupled to either the primary or the secondary face of β-CD, where mono-6-amino-6-deoxy-β-CD or mono-3-amino-3-deoxy-β-CD reacted with the N-hydroxysuccinimide ester of 10,12-pentacosadiynoic acid. In this combinatorial system, the cylindrical β-cyclodextrin functions as a channel for the introduction of the cationic amino acids to the artificial membrane. The membrane perturbation and aggregation by the target amino acids could be exclusively visualized as a blue to red color change based on the responsive polydiacetylene domain. These interesting findings demonstrated that the developed β-CD conjugated PDA system may offer a new method of cell-penetrating mechanism, a promising vector system, as well as impact the production industry of arginine or lysine. PMID:27502314

  11. EPR, Endor and DFT Studies on X-Irradiated Single Crystals of L-Lysine HCl 2 H 2O and L-Arginine HCl H2O

    NASA Astrophysics Data System (ADS)

    Zhou, Yiying; Nelson, William H.

    2011-03-01

    When proteins and DNA interact, arginine and lysine are the two amino acids most often in close contact with the DNA. In order to understand the radiation damage to DNA in vivo, which is always associated with protein, it is important to learn the radiation chemistry of arginine and lysine independently, and then complexed to DNA. This work studied X-irradiated single crystals of L- lysine . HCl . 2 H2 O and L- arginine . HCl . H2 O with EPR, ENDOR techniques and DFT calculations. In both crystal types irradiated at 66K, the carboxyl anion radical and the decarboxylation radical were identified. Specifically, the calculations performed on the cluster models for the carboxyl anion radicals reproduced the proton transfers to the carboxyl group from the neighboring molecules through the hydrogen bonds. Moreover, computations supported the identification of one radical type within irradiated arginine as the guanidyl radical anion with an electron trapped by the guanidyl group. Based on the radicals detected in the crystal irradiated at 66K and at 298K, and the annealing experiments from the irradiation at 66K, the mechanisms of the irradiation damage on lysine and arginine were proposed, and the possible effects of irradiated arginine and lysine to the DNA within chromatin were analyzed.

  12. Selection of tRNA(Asp) amber suppressor mutants having alanine, arginine, glutamine, and lysine identity.

    PubMed Central

    Martin, F; Reinbolt, J; Dirheimer, G; Gangloff, J; Eriani, G

    1996-01-01

    Elements that confer identity to a tRNA in the cellular environment, where all aminoacyl-tRNA synthetases are competing for substrates, may be delineated by in vivo experiments using suppressor tRNAs. Here we describe the selection of active Escherichia coli tRNAAsp amber mutants and analyze their identity. Starting from a library containing randomly mutated tRNA(CUA)Asp genes, we isolated four amber suppressors presenting either lysine, alanine, or glutamine activity. Two of them, presenting mainly alanine or lysine activity, were further submitted to a second round of mutagenesis selection in order to improve their efficiency of suppression. Eleven suppressors were isolated, each containing two or three mutations. Ten presented identities of the two parental mutants, whereas one had switched from lysine to arginine identity. Analysis of the different mutants revealed (or confirmed for some nucleotides) their role as positive and/or negative determinants in AlaRS, LysRS, and ArgRS recognition. More generally, it appears that tRNAAsp presents identity characteristics closely related to those of tRNALys, as well as a structural basis for acquiring alanine or arginine identity upon moderate mutational changes; these consist of addition or suppression of the corresponding positive or negative determinants, as well as tertiary interactions. Failure to isolate aspartic acid-inserting suppressors is probably due to elimination of the important G34 identity element and its replacement by an antideterminant when changing the anticodon of the tRNAAsp to the CUA triplet. PMID:8809018

  13. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-01

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. PMID:26721445

  14. Mammalian Protein Arginine Methyltransferase 7 (PRMT7) Specifically Targets RXR Sites in Lysine- and Arginine-rich Regions*

    PubMed Central

    Feng, You; Maity, Ranjan; Whitelegge, Julian P.; Hadjikyriacou, Andrea; Li, Ziwei; Zurita-Lopez, Cecilia; Al-Hadid, Qais; Clark, Amander T.; Bedford, Mark T.; Masson, Jean-Yves; Clarke, Steven G.

    2013-01-01

    The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7. PMID:24247247

  15. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases.

    PubMed

    Walport, Louise J; Hopkinson, Richard J; Chowdhury, Rasheduzzaman; Schiller, Rachel; Ge, Wei; Kawamura, Akane; Schofield, Christopher J

    2016-01-01

    While the oxygen-dependent reversal of lysine N(ɛ)-methylation is well established, the existence of bona fide N(ω)-methylarginine demethylases (RDMs) is controversial. Lysine demethylation, as catalysed by two families of lysine demethylases (the flavin-dependent KDM1 enzymes and the 2-oxoglutarate- and oxygen-dependent JmjC KDMs, respectively), proceeds via oxidation of the N-methyl group, resulting in the release of formaldehyde. Here we report detailed biochemical studies clearly demonstrating that, in purified form, a subset of JmjC KDMs can also act as RDMs, both on histone and non-histone fragments, resulting in formaldehyde release. RDM catalysis is studied using peptides of wild-type sequences known to be arginine-methylated and sequences in which the KDM's methylated target lysine is substituted for a methylated arginine. Notably, the preferred sequence requirements for KDM and RDM activity vary even with the same JmjC enzymes. The demonstration of RDM activity by isolated JmjC enzymes will stimulate efforts to detect biologically relevant RDM activity. PMID:27337104

  16. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases

    PubMed Central

    Walport, Louise J.; Hopkinson, Richard J.; Chowdhury, Rasheduzzaman; Schiller, Rachel; Ge, Wei; Kawamura, Akane; Schofield, Christopher J.

    2016-01-01

    While the oxygen-dependent reversal of lysine Nɛ-methylation is well established, the existence of bona fide Nω-methylarginine demethylases (RDMs) is controversial. Lysine demethylation, as catalysed by two families of lysine demethylases (the flavin-dependent KDM1 enzymes and the 2-oxoglutarate- and oxygen-dependent JmjC KDMs, respectively), proceeds via oxidation of the N-methyl group, resulting in the release of formaldehyde. Here we report detailed biochemical studies clearly demonstrating that, in purified form, a subset of JmjC KDMs can also act as RDMs, both on histone and non-histone fragments, resulting in formaldehyde release. RDM catalysis is studied using peptides of wild-type sequences known to be arginine-methylated and sequences in which the KDM's methylated target lysine is substituted for a methylated arginine. Notably, the preferred sequence requirements for KDM and RDM activity vary even with the same JmjC enzymes. The demonstration of RDM activity by isolated JmjC enzymes will stimulate efforts to detect biologically relevant RDM activity. PMID:27337104

  17. Stimulation of Lysine Decarboxylase Production in Escherichia coli by Amino Acids and Peptides1

    PubMed Central

    Cascieri, T.; Mallette, M. F.

    1973-01-01

    A commercial hydrolysate of casein stimulated production of lysine decarboxylase (EC 4.1.1.18) by Escherichia coli B. Cellulose and gel chromatography of this hydrolysate yielded peptides which were variably effective in this stimulation. Replacement of individual, stimulatory peptides by equivalent amino acids duplicated the enzyme levels attained with those peptides. There was no indication of specific stimulation by any peptide. The peptides were probably taken up by the oligopeptide transport system of E. coli and hydrolyzed intracellularly by peptidases to their constituent amino acids for use in enzyme synthesis. Single omission of amino acids from mixtures was used to screen them for their relative lysine decarboxylase stimulating abilities. Over 100 different mixtures were evaluated in establishing the total amino acid requirements for maximal synthesis of lysine decarboxylase by E. coli B. A mixture containing all of the common amino acids except glutamic acid, aspartic acid, and alanine increased lysine decarboxylase threefold over an equivalent weight of casein hydrolysate. The nine most stimulatory amino acids were methionine, arginine, cystine, leucine, isoleucine, glutamine, threonine, tyrosine, and asparagine. Methionine and arginine quantitatively were the most important. A mixture of these nine was 87% as effective as the complete mixture. Several amino acids were inhibitory at moderate concentrations, and alanine (2.53 mM) was the most effective. Added pyridoxine increased lysine decarboxylase activity 30%, whereas other B vitamins and cyclic adenosine 5′-monophosphate had no effect. PMID:4588201

  18. Why do arginine and lysine organize lipids differently? Insights from coarse-grained and atomistic simulations.

    PubMed

    Wu, Zhe; Cui, Qiang; Yethiraj, Arun

    2013-10-10

    An important puzzle in membrane biophysics is the difference in the behaviors of lysine (Lys) and arginine (Arg) based peptides at the membrane. For example, the translocation of poly-Arg is orders of magnitude faster than that of poly-Lys. Recent experimental work suggests that much of the difference can be inferred from the phase behavior of peptide/lipid mixtures. At similar concentrations, mixtures of phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids display different phases in the presence of these polypeptides, with a bicontinuous phase observed with poly-Arg peptides and an inverted hexagonal phase observed with poly-Lys peptides. Here we show that simulations with the coarse-grained (CG) BMW-MARTINI model reproduce the experimental results. An analysis using atomistic and CG models reveals that electrostatic and glycerol-peptide interactions play a crucial role in determining the phase behavior of peptide-lipid mixtures, with the difference between Arg and Lys arising from the stronger interactions of the former with lipid glycerols. In other words, the multivalent nature of the guanidinium group allows Arg to simultaneously interact with both phosphate and glycerol groups, while Lys engages solely with phosphate; this feature of amino acid/lipid interactions has not been emphasized in previous studies. The Arg peptides colocalize with PS in regions of high negative Gaussian curvature and stabilize the bicontinuous phase. Decreasing the strength of either the electrostatic interactions or the peptide-glycerol interactions causes the inverted hexagonal phase to become more stable. The results highlight the utility of CG models for the investigation of phase behavior but also emphasize the subtlety of the phenomena, with small changes in specific interactions leading to qualitatively different phases. PMID:24024591

  19. Altering dietary lysine: arginine ratio has little effect on cardiovascular risk factors and vascular reactivity in moderately hypercholesterolemic adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The effect of dietary protein type on cardiovascular risk factors and vascular reactivity, with specific focus on the lysine to arginine (Lys:Arg) ratio, has been studied sporadically. Objective: Determine effect of dietary Lys:Arg ratio on cardiovascular risk factors and vascular reacti...

  20. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

    PubMed Central

    Liu, S.; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J.

    1995-01-01

    l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria. These enzymes were present in all heterofermentative lactobacilli and most leuconostocs but were absent in all the homofermentative lactobacilli and pediococci examined. There was a good correlation among arginine degradation, formation of ammonia and citrulline, and the occurrence of arginine deiminase pathway enzymes. Urea was not detected during arginine degradation, suggesting that the catabolism of arginine did not proceed via the arginase-catalyzed reaction, as has been suggested in some earlier studies. Detection of ammonia with Nessler's reagent was shown to be a simple, rapid test to assess the ability of wine lactic acid bacteria to degrade arginine, although in media containing relatively high concentrations (>0.5%) of fructose, ammonia formation is inhibited. PMID:16534912

  1. Improved synthesis of lysine- and arginine-derived Amadori and Heyns products and in vitro measurement of their angiotensin I-converting enzyme inhibitory activity.

    PubMed

    Srinivas, Sudhanva M; Harohally, Nanishankar V

    2012-02-15

    The L-lysine- and L-arginine-derived Amadori and Heyns products consisting of N-(1-deoxy-d-fructos-1-yl)amino acid and N-(2-deoxy-d-glucos-2-yl)amino acid were prepared by reaction of d-fructose and d-glucose with l-lysine hydrochloride and l-arginine hydrochloride using commercial zinc powder as deprotonating reagent and also as catalyst precursor in a simple synthetic route in high yield. These compounds were screened for angiotensin I-converting enzyme (ACE) inhibitory activity using a high-throughput colorimetric assay (utilizing porcine kidney ACE). The IC(50) values fall in the range of 1030-1175 μM, with N(α)-(1-deoxy-d-fructos-1-yl)arginine showing the best IC(50) value (1030 ± 38 μM). This study demonstrates an improved synthetic method for simple Amadori and Heyns products and their moderate ACE inhibitor activity. PMID:22242891

  2. Triple therapy with pyridoxine, arginine supplementation and dietary lysine restriction in pyridoxine-dependent epilepsy: Neurodevelopmental outcome.

    PubMed

    Coughlin, Curtis R; van Karnebeek, Clara D M; Al-Hertani, Walla; Shuen, Andrew Y; Jaggumantri, Sravan; Jack, Rhona M; Gaughan, Sommer; Burns, Casey; Mirsky, David M; Gallagher, Renata C; Van Hove, Johan L K

    2015-01-01

    Pyridoxine-dependent epilepsy (PDE) is an epileptic encephalopathy characterized by response to pharmacologic doses of pyridoxine. PDE is caused by deficiency of α-aminoadipic semialdehyde dehydrogenase resulting in impaired lysine degradation and subsequent accumulation of α-aminoadipic semialdehyde. Despite adequate seizure control with pyridoxine monotherapy, 75% of individuals with PDE have significant developmental delay and intellectual disability. We describe a new combined therapeutic approach to reduce putative toxic metabolites from impaired lysine metabolism. This approach utilizes pyridoxine, a lysine-restricted diet to limit the substrate that leads to neurotoxic metabolite accumulation and L-arginine to compete for brain lysine influx and liver mitochondrial import. We report the developmental and biochemical outcome of six subjects who were treated with this triple therapy. Triple therapy reduced CSF, plasma, and urine biomarkers associated with neurotoxicity in PDE. The addition of arginine supplementation to children already treated with dietary lysine restriction and pyridoxine further reduced toxic metabolites, and in some subjects appeared to improve neurodevelopmental outcome. Dietary lysine restriction was associated with improved seizure control in one subject, and the addition of arginine supplementation increased the objective motor outcome scale in two twin siblings, illustrating the contribution of each component of this treatment combination. Optimal results were noted in the individual treated with triple therapy early in the course of the disease. Residual disease symptoms could be related to early injury suggested by initial MR imaging prior to initiation of treatment or from severe epilepsy prior to diagnosis. This observational study reports the use of triple therapy, which combines three effective components in this rare condition, and suggests that early diagnosis and treatment with this new triple therapy may ameliorate the

  3. Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal- and glyoxal-glycated cysteine, arginine, and lysine residues.

    PubMed

    Richarme, Gilbert; Mihoub, Mouadh; Dairou, Julien; Bui, Linh Chi; Leger, Thibaut; Lamouri, Aazdine

    2015-01-16

    Glycation is an inevitable nonenzymatic covalent reaction between proteins and endogenous reducing sugars or dicarbonyls (methylglyoxal, glyoxal) that results in protein inactivation. DJ-1 was reported to be a multifunctional oxidative stress response protein with poorly defined function. Here, we show that human DJ-1 is a protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins by acting on early glycation intermediates and releases repaired proteins and lactate or glycolate, respectively. DJ-1 deglycates cysteines, arginines, and lysines (the three major glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and aspartate aminotransferase and thus reactivates these proteins. DJ-1 prevented protein glycation in an Escherichia coli mutant deficient in the DJ-1 homolog YajL and restored cell viability in glucose-containing media. These results suggest that DJ-1-associated Parkinsonism results from excessive protein glycation and establishes DJ-1 as a major anti-glycation and anti-aging protein. PMID:25416785

  4. Parkinsonism-associated Protein DJ-1/Park7 Is a Major Protein Deglycase That Repairs Methylglyoxal- and Glyoxal-glycated Cysteine, Arginine, and Lysine Residues

    PubMed Central

    Richarme, Gilbert; Mihoub, Mouadh; Dairou, Julien; Bui, Linh Chi; Leger, Thibaut; Lamouri, Aazdine

    2015-01-01

    Glycation is an inevitable nonenzymatic covalent reaction between proteins and endogenous reducing sugars or dicarbonyls (methylglyoxal, glyoxal) that results in protein inactivation. DJ-1 was reported to be a multifunctional oxidative stress response protein with poorly defined function. Here, we show that human DJ-1 is a protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins by acting on early glycation intermediates and releases repaired proteins and lactate or glycolate, respectively. DJ-1 deglycates cysteines, arginines, and lysines (the three major glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and aspartate aminotransferase and thus reactivates these proteins. DJ-1 prevented protein glycation in an Escherichia coli mutant deficient in the DJ-1 homolog YajL and restored cell viability in glucose-containing media. These results suggest that DJ-1-associated Parkinsonism results from excessive protein glycation and establishes DJ-1 as a major anti-glycation and anti-aging protein. PMID:25416785

  5. Effects of Arginine Supplementation on Amino Acid Profiles in Blood and Tissues in Fed and Overnight-Fasted Rats.

    PubMed

    Holecek, Milan; Sispera, Ludek

    2016-01-01

    Chronic arginine intake is believed to have favorable effects on the body. However, it might be hypothesized that excessive consumption of an individual amino acid exerts adverse effects on distribution and metabolism of other amino acids. We evaluated the effect of chronic intake of arginine on amino acid concentrations in blood plasma, liver, kidneys, and soleus and extensor digitorum longus muscles. Rats were fed a standard diet or a high-arginine diet (HAD) for two months. Half of the animals in each group were sacrificed in the fed state, and the other half after fasting overnight. HAD increased blood plasma concentrations of urea, creatinine, arginine, and ornithine and decreased most other amino acids. Arginine and ornithine also increased in muscles and kidneys; an increase of lysine was observed in both muscle types. Methionine, phenylalanine, threonine, asparagine, glycine, serine, and taurine decreased in most tissues of HAD fed animals. Most of the effects of HAD disappeared after overnight fasting. It is concluded that (i) enhanced dietary arginine intake alters distribution of almost all amino acids; and (ii) to attain a better assessment of the effects of various nutritional interventions, an appropriate number of biochemical measurements must be performed in both postprandial and postabsorptive states. PMID:27070638

  6. Effects of Arginine Supplementation on Amino Acid Profiles in Blood and Tissues in Fed and Overnight-Fasted Rats

    PubMed Central

    Holecek, Milan; Sispera, Ludek

    2016-01-01

    Chronic arginine intake is believed to have favorable effects on the body. However, it might be hypothesized that excessive consumption of an individual amino acid exerts adverse effects on distribution and metabolism of other amino acids. We evaluated the effect of chronic intake of arginine on amino acid concentrations in blood plasma, liver, kidneys, and soleus and extensor digitorum longus muscles. Rats were fed a standard diet or a high-arginine diet (HAD) for two months. Half of the animals in each group were sacrificed in the fed state, and the other half after fasting overnight. HAD increased blood plasma concentrations of urea, creatinine, arginine, and ornithine and decreased most other amino acids. Arginine and ornithine also increased in muscles and kidneys; an increase of lysine was observed in both muscle types. Methionine, phenylalanine, threonine, asparagine, glycine, serine, and taurine decreased in most tissues of HAD fed animals. Most of the effects of HAD disappeared after overnight fasting. It is concluded that (i) enhanced dietary arginine intake alters distribution of almost all amino acids; and (ii) to attain a better assessment of the effects of various nutritional interventions, an appropriate number of biochemical measurements must be performed in both postprandial and postabsorptive states. PMID:27070638

  7. The juxtamembrane lysine and arginine residues of surfactant protein C precursor influence palmitoylation via effects on trafficking.

    PubMed

    ten Brinke, A; Batenburg, J J; Gadella, B M; Haagsman, H P; Vaandrager, A B; van Golde, L M

    2001-08-01

    Surfactant protein (SP)-C propeptide (proSP-C) becomes palmitoylated on cysteines 5 and 6 before mature SP-C is formed by several proteolytic steps. To study the structural requirements for the palmitoylation of proSP-C, his-tagged human proSP-C (his-proSP-C) and his-proSP-C mutants were expressed in Chinese hamster ovary cells and analyzed by metabolic labeling with [(3)H]palmitate and immunocytochemistry. Substitution of cysteines 5 and 6 by serines showed that these were the only two cysteine residues palmitoylated in his-proSP-C. Substitution of the juxtamembrane basic residues lysine and arginine by uncharged glutamines led to a large decrease in palmitoylation level of proSP-C. The addition of brefeldin A nearly abolished this decrease for the lysine and double mutant; the palmitoylation of the arginine mutant increased also, but not to wild-type (WT) levels. Fluorescence immunocytochemistry showed that WT proSP-C was localized in punctate vesicles throughout the cell, whereas the mutant lacking the juxtamembrane positive charges was found more perinuclear, probably in the endoplasmic reticulum (ER). This indicates that the two basic juxtamembrane residues influence palmitoylation of proSP-C by preventing the transport of proSP-C out of the ER, implying that proSP-C becomes palmitoylated normally in a compartment distal to the ER. PMID:11509324

  8. Conditions for the formation of dilysyl-dipyrrolones A and B, and novel yellow dipyrrolone derivatives formed from xylose and amino acids in the presence of lysine.

    PubMed

    Nomi, Yuri; Sakamoto, Junko; Takenaka, Makiko; Ono, Hiroshi; Murata, Masatsune

    2011-01-01

    Foods derived from plants contain pentose in addition to hexose. It is well known that pentose contributes more to browning by the Maillard reaction than hexose does. We have recently found novel yellow compounds formed from xylose and lysine under weakly acidic conditions, named dilysyldipyrrolones (dilysyl-DPLs) A and B. We indicate in this study that dilysyl-DPLs were specifically formed under weakly acidic conditions from pentose, but not hexose. Moreover, we found novel DPL derivatives which were formed from xylose and such amino acids as alanine, arginine, aspartic acid, glutamic acid, isoleucine, leucine, phenylalanine, serine, and valine in the presence of lysine. PMID:21307606

  9. Amphipathicity Determines Different Cytotoxic Mechanisms of Lysine- or Arginine-Rich Cationic Hydrophobic Peptides in Cancer Cells.

    PubMed

    Liu, Xiaoli; Cao, Rui; Wang, Sha; Jia, Junli; Fei, Hao

    2016-06-01

    Cationic amphipathic peptides (CAPs) are known to be able to cause membrane destabilization and induce cell death, yet how the hydrophobicity, amphipathicity, and lysine (K)/arginine (R) composition synergistically affect the peptide activity remains incompletely understood. Here, we designed a panel of peptides based on the well-known anticancer peptide KLA. Increasing hydrophobicity enhanced the cytotoxicities of both the K- and R-rich peptides. Peptides with an intact amphipathic helical interface can cause instant cell death through a membrane lysis mechanism. Interestingly, rearranging the residue positions to minimize amphipathicity caused a great decrease of cytotoxicity to the K-rich peptides but not to the R-rich peptides. The amphipathicity-minimized R-rich peptide 6 (RL2) (RLLRLLRLRRLLRL-NH2) penetrated the cell membrane and induced caspase-3-dependent apoptotic cell death. We found that the modulation of hydrophobicity, amphipathicity, and K/R residues leads to distinct mechanisms of action of cationic hydrophobic peptides. Amphipathicity-reduced, arginine-rich cationic hydrophobic peptides (CHPs) may represent a new class of peptide therapeutics. PMID:27195657

  10. Susceptibility of Gardnerella vaginalis biofilms to natural antimicrobials subtilosin, ε-poly-L-lysine, and lauramide arginine ethyl ester.

    PubMed

    Turovskiy, Yevgeniy; Cheryian, Thomson; Algburi, Ammar; Wirawan, Ruth E; Takhistov, Paul; Sinko, Patrick J; Chikindas, Michael L

    2012-01-01

    Bacterial vaginosis is a common vaginal infection associated with numerous gynecological and obstetric complications. This condition is characterized by the presence of thick adherent vaginal biofilms, composed mainly of Gardnerella vaginalis. This organism is thought to be the primary aetiological cause of the infection paving the way for various opportunists to colonize the niche. Previously, we reported that the natural antimicrobials subtilosin, ε-poly-L-lysine, and lauramide arginine ethyl ester selectively inhibit the growth of this pathogen. In this study, we used plate counts to evaluate the efficacy of these antimicrobials against established biofilms of G. vaginalis. Additionally, we validated and compared two rapid methods (ATP viability and resazurin assays) for the assessment of cell viability in the antimicrobial-treated G. vaginalis biofilms. Out of the tested antimicrobials, lauramide arginine ethyl ester had the strongest bactericidal effect, followed by subtilosin, with clindamycin and polylysine showing the weakest effect. In comparison to plate counts, ATP viability and resazurin assays considerably underestimated the bactericidal effect of some antimicrobials. Our results indicate that these assays should be validated for every new application. PMID:23024575

  11. LHT1, a lysine- and histidine-specific amino acid transporter in arabidopsis.

    PubMed Central

    Chen, L; Bush, D R

    1997-01-01

    We have identified a new amino acid transporter from the Arabidopsis thaliana expressed sequence tag cDNA collection by functional complementation of a yeast amino acid transport mutant. Transport analysis of the expressed protein in yeast shows that it is a high-affinity transporter for both lysine (Lys) and histidine with Michaelis constant values of 175 and 400 microM, respectively. This transporter (LHT1, lysine histidine transporter) has little affinity for arginine when measured directly in uptake experiments or indirectly with substrate competition. The cDNA is 1.7 kb with an open reading frame that codes for a protein with 446 amino acids and a calculated molecular mass of 50.5 kD. Hydropathy analysis shows that LHT1 is an integral membrane protein with 9 to 10 putative membrane-spanning domains. Southern-blot analysis suggests that LHT1 is a single-copy gene in the Arabidopsis genome. RNA gel-blot analysis shows that this transporter is present in all tissues, with the strongest expression in young leaves, flowers, and siliques. Wholemount, in situ hybridization revealed that expression is further localized on the surface of roots in young seedlings and in pollen. Overall, LHT1 belongs to a new class of amino acid transporter that is specific for Lys and histidine, and, given its substrate specificity, it has significant promise as a tool for improving the Lys content of Lys-deficient grains. PMID:9390441

  12. A lysine-to-arginine mutation on NEDD8 markedly reduces the activity of cullin RING E3 ligase through the impairment of neddylation cascades

    SciTech Connect

    Sui, Yiyan; Liu, Yaobin; Xu, Guoqiang

    2015-06-12

    Neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like modifier, which forms covalent conjugates on lysines of its substrates. This post-translational modification, neddylation, plays important roles in tumor cell proliferation and viability. Ubiquitin can form diverse polyubiquitin chains, on its seven lysines, which play important functions in various biological processes. However, the roles of lysines in NEDD8 have not been explored. Here, we generated nine NEDD8 point mutants, each with one lysine replaced by an arginine, to study the putative function of lysines in NEDD8. Our experiments discover that Lys27 in NEDD8 is a critical residue for protein neddylation. Replacement of this residue with arginine almost completely eliminates the conjugation of NEDD8 to its substrates. Furthermore, we find that the K27R mutant impairs NEDD8 conjugation to the E2 enzyme, which normally forms thioester bonds for further transferring NEDD8 to its ligases and substrates. Therefore, this mutation completely inhibits global protein neddylation, including neddylation of cullin family proteins, resulting in decreased activity of cullin-RING E3 ligases. This work sheds new light on the roles of NEDD8 lysines on neddylation cascades and provides a dominant negative mutant for the study of neddylation and its biological functions. - Highlights: • Lys27 in NEDD8 is critical for protein neddylation. • NEDD8 K27R mutant impairs the NEDD8 conjugation. • NEDD8 K27R mutant significantly reduces the activity of cullin-RING E3 ligases.

  13. Polymerization on the rocks: beta-amino acids and arginine

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have studied the accumulation of long oligomers of beta-amino acids on the surface of minerals using the 'polymerization on the rocks' protocol. We find that long oligopeptides of beta-glutamic acid which cannot be formed in homogeneous aqueous solution are accumulated efficiently on the surface of hydroxylapatite using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as condensing agent. The EDAC-induced oligomerization of aspartic acid on hydroxylapatite proceeds even more efficiently. Hydroxylapatite can also facilitate the ligation of the tripeptide (glu)3. The 'polymerization on the rocks' scenario is not restricted to negatively-charged amino acids. Oligoarginines are accumulated on the surface of illite using carbonyldiimidizole (CDI) as condensing agent. We find that FeS2 catalyzes the CDI-induced oligomerization of arginine, although it does not adsorb oligoarginines. These results are relevant to the formation of polypeptides on the primitive earth.

  14. Optimal content and ratio of lysine to arginine in the diet of Pacific white shrimp, Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Feng, Zhengfu; Dong, Chaohua; Wang, Linlin; Hu, Yanjiang; Zhu, Wei

    2013-07-01

    The optimal quantity of dietary lysine (Lys) and arginine (Arg), and the optimal ratio of dietary Lys to Arg for Pacific white shrimp Litopenaeus vannamei were investigated. Coated Lys and Arg were added to a basal diet (37.99% crude protein and 7.28% crude lipid) to provide graded levels of Lys and Arg. The experimental diets contained three Lys levels (2.51%, 2.11%, and 1.70% of total diet), and three Arg levels (1.41%, 1.80%, and 2.21% of total diet) and all combinations of these levels were tested. Pacific white shrimp, with a mean weight of 3.62±0.1 g, were randomly distributed in 36 fiberglass tanks with 30 shrimp per tank and reared on the experimental diets for 50 days. After the feeding trial, the growth performance, survival, feed conversion rate (FCR), body composition and protease and lipase activities in the hepatopancreases of the experimental shrimps were determined. The results show that weight gain (WG), specific growth rate (SGR), FCR, body protein, body Lys and Arg content were significantly affected by dietary Lys and Arg ( P <0.05) and improved when dietary Lys and Arg levels were 2.11% ˜ 2.51% and 1.80%˜2.21%, respectively. Protease and lipase activities in the hepatopancreases of the shrimps appeared higher when dietary Lys and Arg quantities were 2.11% ˜2.51% and 1.80%˜2.21%, although the difference was not statistically significant ( P >0.05). Therefore, according to our results, the optimal Lys and Arg quantities in the diet of Pacific white shrimp, L. vannamei, were considered to be 2.11%-2.51% and 1.80%-2.21%, respectively, and the optimal ratio to be 1:0.88-1:1.05.

  15. Mass Spectrometric Identification of the Arginine and Lysine deficient Proline Rich Glutamine Rich Wheat Storage Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tandem mass spectrometry (MS/MS) of enzymatic digest has made possible identification of a wide variety of proteins and complex samples prepared by such techniques as RP-HPLC or 2-D gel electrophoresis. Success requires peptide fragmentation to be indicative of the peptide amino acid sequence. The f...

  16. A l-Lysine Transporter of High Stereoselectivity of the Amino Acid-Polyamine-Organocation (APC) Superfamily

    PubMed Central

    Kaur, Jagdeep; Olkhova, Elena; Malviya, Viveka Nand; Grell, Ernst; Michel, Hartmut

    2014-01-01

    Membrane proteins of the amino acid-polyamine-organocation (APC) superfamily transport amino acids and amines across membranes and play an important role in the regulation of cellular processes. We report the heterologous production of the LysP-related transporter STM2200 from Salmonella typhimurium in Escherichia coli, its purification, and functional characterization. STM2200 is assumed to be a proton-dependent APC transporter of l-lysine. The functional interaction between basic amino acids and STM2200 was investigated by thermoanalytical methods, i.e. differential scanning and isothermal titration calorimetry. Binding of l-lysine to STM2200 in its solubilized monomer form is entropy-driven. It is characterized by a dissociation constant of 40 μm at pH 5.9 and is highly selective; no evidence was found for the binding of l-arginine, l-ornithine, l-2,4-diaminobutyric acid, and l-alanine. d-Lysine is bound 45 times more weakly than its l-chiral form. We thus postulate that STM2200 functions as a specific transport protein. Based on the crystal structure of ApcT (Shaffer, P. L., Goehring, A., Shankaranarayanan, A., and Gouaux, E. (2009) Science 325, 1010–1014), a proton-dependent amino acid transporter of the APC superfamily, a homology model of STM2200 was created. Docking studies allowed identification of possible ligand binding sites. The resulting predictions indicated that Glu-222 and Arg-395 of STM2200 are markedly involved in ligand binding, whereas Lys-163 is suggested to be of structural and functional relevance. Selected variants of STM2200 where these three amino acid residues were substituted using single site-directed mutagenesis showed no evidence for l-lysine binding by isothermal titration calorimetry, which confirmed the predictions. Molecular aspects of the observed ligand specificity are discussed. PMID:24257746

  17. Evaluating Force Fields for the Computational Prediction of Ionized Arginine and Lysine Side-Chains Partitioning into Lipid Bilayers and Octanol.

    PubMed

    Sun, Delin; Forsman, Jan; Woodward, Clifford E

    2015-04-14

    Abundant peptides and proteins containing arginine (Arg) and lysine (Lys) amino acids can apparently permeate cell membranes with ease. However, the mechanisms by which these peptides and proteins succeed in traversing the free energy barrier imposed by cell membranes remain largely unestablished. Precise thermodynamic studies (both theoretical and experimental) on the interactions of Arg and Lys residues with model lipid bilayers can provide valuable clues to the efficacy of these cationic peptides and proteins. We have carried out molecular dynamics simulations to calculate the interactions of ionized Arg and Lys side-chains with the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer for 10 widely used lipid/protein force fields: CHARMM36/CHARMM36, SLIPID/AMBER99SB-ILDN, OPLS-AA/OPLS-AA, Berger/OPLS-AA, Berger/GROMOS87, Berger/GROMOS53A6, GROMOS53A6/GROMOS53A6, nonpolarizable MARTINI, polarizable MARTINI, and BMW MARTINI. We performed umbrella sampling simulations to obtain the potential of mean force for Arg and Lys side-chains partitioning from water to the bilayer interior. We found significant differences between the force fields, both for the interactions between side-chains and bilayer surface, as well as the free energy cost for placing the side-chain at the center of the bilayer. These simulation results were compared with the Wimley-White interfacial scale. We also calculated the free energy cost for transferring ionized Arg and Lys side-chains from water to both dry and wet octanol. Our simulations reveal rapid diffusion of water molecules into octanol whereby the equilibrium mole fraction of water in the wet octanol phase was ∼25%. Surprisingly, our free energy calculations found that the high water content in wet octanol lowered the water-to-octanol partitioning free energies for cationic residues by only 0.6 to 0.7 kcal/mol. PMID:26574387

  18. Roles of Arginine and Lysine Residues in the Translocation of a Cell-Penetrating Peptide from 13C, 31P and 19F Solid-State NMR

    PubMed Central

    Su, Yongchao; Doherty, Tim; Waring, Alan J.; Ruchala, Piotr; Hong, Mei

    2009-01-01

    Cell-penetrating peptides (CPPs) are small cationic peptides that cross the cell membrane while carrying macromolecular cargoes. We use solid-state NMR to investigate the structure and lipid interaction of two cationic residues, Arg10 and Lys13, in the CPP penetratin. 13C chemical shifts indicate that Arg10 adopts a rigid β-strand conformation in the liquid-crystalline state of anionic lipid membranes. This behavior contrasts with all other residues observed so far in this peptide, which adopt a dynamic β-turn conformation with coil-like chemical shifts at physiological temperature. Low-temperature 13C-31P distances between the peptide and the lipid phosphates indicate that both the Arg10 guanidinium Cζ and the Lys13 Cε lie in close proximity to the lipid 31P (4.0 - 4.2 Å), proving the existence of charge-charge interaction for both Arg10 and Lys13 in the gel-phase membrane. However, since lysine substitution in CPPs are known to reduce their translocation ability, we propose that low temperature stabilizes both lysine and arginine interactions with the phosphates, whereas at high temperature the lysine-phosphate interaction is much weaker than the arginine-phosphate interaction. This is supported by the unusually high rigidity of the Arg10 sidechain and its β-strand conformation at high temperature. The latter is proposed to be important for ion pair formation by allowing close approach of the lipid headgroups to guanidinium sidechains. 19F and 13C spin diffusion experiments indicate that penetratin is oligomerized into β-sheets in gel-phase membranes. These solid-state NMR data indicate that guanidinium-phosphate interactions exist in penetratin, and guanidinium groups play a stronger structural role than ammonium groups in the lipid-assisted translocation of CPPs across liquid-crystalline cell membranes. PMID:19364134

  19. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    PubMed

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  20. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae

    PubMed Central

    Gong, Zheng; Tang, M. Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A.; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  1. Distinct Paths for Basic Amino Acid Export in Escherichia coli: YbjE (LysO) Mediates Export of l-Lysine

    PubMed Central

    Pathania, Amit

    2015-01-01

    ABSTRACT In Escherichia coli, argO encodes an exporter for l-arginine (Arg) and its toxic analogue canavanine (CAN), and its transcriptional activation and repression, by Arg and l-lysine (Lys), respectively, are mediated by the regulator ArgP. Accordingly argO and argP mutants are CAN supersensitive (CANss). We report the identification of ybjE as a gene encoding a predicted inner membrane protein that mediates export of Lys, and our results confirm the previous identification with a different approach of YbjE as a Lys exporter, reported by Ueda and coworkers (T. Ueda, Y. Nakai, Y. Gunji, R. Takikawa, and Y. Joe, U.S. patents 7,629,142 B2 [December 2009] and 8,383,363 B1 [February 2013] and European patent 1,664,318 B1 [September 2009]). ybjE was isolated as a multicopy suppressor of the CANss phenotype of a strain lacking ArgO. The absence of YbjE did not confer a CANss phenotype but instead conferred hypersensitivity to the lysine antimetabolite thialysine and led to growth inhibition by the dipeptide lysylalanine, which is associated with elevated cellular Lys content. YbjE overproduction resulted in Lys excretion and syntrophic cross-feeding of a Lys auxotroph. Constitutive overexpression of argO promoted Lys cross-feeding that is indicative of a latent Lys export potential of ArgO. Arg modestly repressed ybjE transcription in an ArgR-dependent manner, and ArgR displayed Arg-sensitive binding to the ybjE promoter region in vitro. Our studies suggest that the reciprocal repression of argO and ybjE, respectively, by Lys and Arg confers the specificity for basic amino acid export by distinct paths and that such cross-repression contributes to maintenance of cytoplasmic Arg/Lys balance. We propose that YbjE be redesignated LysO. IMPORTANCE This work ascribes a lysine export function to the product of the ybjE gene of Escherichia coli, leading to a physiological scenario wherein two proteins, ArgO and YbjE, perform the task of separately exporting arginine and

  2. The Arginine/Lysine-Rich Element within the DNA-Binding Domain Is Essential for Nuclear Localization and Function of the Intracellular Pathogen Resistance 1.

    PubMed

    Yao, Kezhen; Wu, Yongyan; Chen, Qi; Zhang, Zihan; Chen, Xin; Zhang, Yong

    2016-01-01

    The mouse intracellular pathogen resistance 1 (Ipr1) gene plays important roles in mediating host immunity and previous work showed that it enhances macrophage apoptosis upon mycobacterium infection. However, to date, little is known about the regulation pattern of Ipr1 action. Recent studies have investigated the protein-coding genes and microRNAs regulated by Ipr1 in mouse macrophages, but the structure and the functional motif of the Ipr1 protein have yet to be explored. In this study, we analyzed the domains and functional motif of the Ipr1 protein. The resulting data reveal that Ipr1 protein forms a homodimer and that the Sp100-like domain mediates the targeting of Ipr1 protein to nuclear dots (NDs). Moreover, we found that an Ipr1 mutant lacking the classic nuclear localization signal (cNLS) also translocated into the nuclei, suggesting that the cNLS is not the only factor that directs Ipr1 nuclear localization. Additionally, mechanistic studies revealed that an arginine/lysine-rich element within the DNA-binding domain (SAND domain) is critical for Ipr1 binding to the importin protein receptor NPI-1, demonstrating that this element plays an essential role in mediating the nuclear localization of Ipr1 protein. Furthermore, our results show that this arginine/lysine-rich element contributes to the transcriptional regulation and apoptotic activity of Ipr1. These findings highlight the structural foundations of Ipr1 action and provide new insights into the mechanism of Ipr1-mediated resistance to mycobacterium. PMID:27622275

  3. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH)

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Tang, Yao-Hua; Li, Kai-Long; Yang, Lu; Fu, Qiang; Li, Guo-Qing

    2015-01-01

    Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens. PMID:26000452

  4. Alkylamine-Dependent Amino-Acid Oxidation by Lysine Monooxygenase—Fragmented Substrate of Oxygenase

    PubMed Central

    Yamamoto, Shozo; Yamauchi, Takashi; Hayaishi, Osamu

    1972-01-01

    Lysine monooxygenase catalyzes the oxygenative decarboxylation of L-lysine and produces a corresponding acid amide. L-Alanine was inactive as substrate. However, when propylamine was present, oxidation, but not oxygenation, of alanine was demonstrated with the oxygenase. Alanine was converted to pyruvate, with the liberation of ammonia and hydrogen peroxide, but propylamine remained unchanged. Other α-monoamino acids were also oxidized in the presence of alkylamines with various carbon chain lengths. The highest oxidase activity was observed when the total chain length of both amino acid and amine was nearly identical with that of lysine. Available evidence indicates that the amine-dependent amino-acid oxidase activity is associated with the lysine oxygenase activity. PMID:4509334

  5. Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats.

    PubMed

    Nagao, Kenji; Bannai, Makoto; Seki, Shinobu; Kawai, Nobuhiro; Mori, Masato; Takahashi, Michio

    2010-06-01

    Rats voluntarily run up to a dozen kilometers per night when their cages are equipped with a running wheel. Daily voluntary running is generally thought to enhance protein turnover. Thus, we sought to determine whether running worsens or improves protein degradation caused by a lysine-deficient diet and whether it changes the utilization of free amino acids released by proteolysis. Rats were fed a lysine-deficient diet and were given free access to a running wheel or remained sedentary (control) for 4 wk. Amino acid levels in plasma, muscle, and liver were measured together with plasma insulin levels and tissue weight. The lysine-deficient diet induced anorexia, skeletal muscle loss, and serine and threonine aminoacidemia, and it depleted plasma insulin and essential amino acids in skeletal muscle. Allowing rats to run voluntarily improved these symptoms; thus, voluntary wheel running made the rats less susceptible to dietary lysine deficiency. Amelioration of the declines in muscular leucine and plasma insulin observed in running rats could contribute to protein synthesis together with the enhanced availability of lysine and other essential amino acids in skeletal muscle. These results indicate that voluntary wheel running under lysine-deficient conditions does not enhance protein catabolism; on the contrary, it accelerates protein synthesis and contributes to the maintenance of muscle mass. The intense nocturnal voluntary running that characterizes rodents might be an adaptation of lysine-deficient grain eaters that allows them to maximize opportunities for food acquisition. PMID:20233939

  6. Structural Insights Into Amino Acid Binding and Gene Control by a Lysine Riboswitch

    SciTech Connect

    Serganov, A.; Huang, L; Patel, D

    2008-01-01

    In bacteria, the intracellular concentration of several amino acids is controlled by riboswitches1, 2, 3, 4. One of the important regulatory circuits involves lysine-specific riboswitches, which direct the biosynthesis and transport of lysine and precursors common for lysine and other amino acids. To understand the molecular basis of amino acid recognition by riboswitches, here we present the crystal structure of the 174-nucleotide sensing domain of the Thermotoga maritima lysine riboswitch in the lysine-bound (1.9 A) and free (3.1 A) states. The riboswitch features an unusual and intricate architecture, involving three-helical and two-helical bundles connected by a compact five-helical junction and stabilized by various long-range tertiary interactions. Lysine interacts with the junctional core of the riboswitch and is specifically recognized through shape-complementarity within the elongated binding pocket and through several direct and K+-mediated hydrogen bonds to its charged ends. Our structural and biochemical studies indicate preformation of the riboswitch scaffold and identify conformational changes associated with the formation of a stable lysine-bound state, which prevents alternative folding of the riboswitch and facilitates formation of downstream regulatory elements. We have also determined several structures of the riboswitch bound to different lysine analogues5, including antibiotics, in an effort to understand the ligand-binding capabilities of the lysine riboswitch and understand the nature of antibiotic resistance. Our results provide insights into a mechanism of lysine-riboswitch-dependent gene control at the molecular level, thereby contributing to continuing efforts at exploration of the pharmaceutical and biotechnological potential of riboswitches.

  7. Formation pathways for lysine-arginine cross-links derived from hexoses and pentoses by Maillard processes: unraveling the structure of a pentosidine precursor.

    PubMed

    Biemel, K M; Reihl, O; Conrad, J; Lederer, M O

    2001-06-29

    Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates and their formation pathways are largely unknown. Synthesis and unequivocal structural characterization are reported for the lysine-arginine cross-links N(6)-(2-([(4S)-4-ammonio-5-oxido-5-oxopentyl]amino)-5-[(2S,3R)-2,3,4- trihydroxybutyl]-3,5-dihydro-4H-imidazol-4-ylidene)-l-lysinate (DOGDIC 12), N(6)-(2-([(4S)-4-ammonio-5-oxido-5-oxopentyl]amino)-5-[(2S)-2,3-dihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene)-l-lysinate (DOPDIC 13), and 6-((6S)-2-([(4S)-4-ammonio-5-oxido-5-oxopentyl] amino)-6-hydroxy-5,6,7,7a-tetrahydro-4H-imidazo[4,5-b] pyridin-4-yl)-l-norleucinate (pentosinane 10). For these compounds, as well as for glucosepane 9 and pentosidine 11, the formation pathways could be established by starting from native carbohydrates, Amadori products, and 3-deoxyosones, respectively. Pentosinane 10 was unequivocally proven to be an important precursor of pentosidine 11, which is a well established fluorescent indicator for advanced glycation processes in vivo. The Amadori products are shown to be the pivots in the formation of the various cross-links 9-13. The bicyclic structures 9-11 are directly derived from aminoketoses, whereas 12 and 13 stem from reaction with the 3-deoxyosones. All products 9-13 were identified and quantified from incubations of bovine serum albumin with the respective 3-deoxyosone or carbohydrate. From these results it seems fully justified to expect both glucosepane 9 and DOGDIC 12 to constitute important in vivo cross-links. PMID:11279247

  8. Acute pancreatitis possibly due to arginine use: a case report.

    PubMed

    Saka, Mendane; Tüzün, Ahmet; Ateş, Yüksel; Bağci, Sait; Karaeren, Necmettin; Dağalp, Kemal

    2004-03-01

    Arginine has been used by millions of athletes over the past 20 years to enhance production of human growth hormone. The effects of arginine supplementation include increased fat burning and muscle building, enhanced immunity, and improvement in erectile function in men. Excessive doses of basic amino acids such as ethionine, methionine and lysine are known to damage the rat pancreas. Recent studies have demonstrated that excessive doses of arginine induce necrotizing pancreatitis in rats. In this article, we report a 16-year-old male patient hospitalized in our clinic because of severe pain in upper abdomen, nausea and vomiting who was suspected to have arginine-induced acute pancreatitis. PMID:15264124

  9. Effect of Selectively Introducing Arginine and D-Amino Acids on the Antimicrobial Activity and Salt Sensitivity in Analogs of Human Beta-Defensins

    PubMed Central

    Olli, Sudar; Rangaraj, Nandini; Nagaraj, Ramakrishnan

    2013-01-01

    We have examined the antimicrobial activity of C-terminal analogs of human β-defensins HBD-1and-3 wherein lysines have been selectively replaced by L- and D-arginines and L-isoleucine substituted with its D-enantiomer. The analogs exhibited antibacterial and antifungal activities. Physiological concentration of NaCl did not attenuate the activity of the peptides against Gram-negative bacteria considerably, while some attenuation of activity was observed against S. aureus. Variable attenuation of activity was observed in the presence of Ca2+ and Mg2+. Introduction of D-amino acids abrogated the need for a disulfide bridge for exhibiting activity. Confocal images of carboxyfluorescein (CF) labeled peptides indicated initial localization on the membrane and subsequent translocation into the cell. Analogs corresponding to cationic rich segments of human defensins substituted with L- and D-arginine, could be attractive candidates for development as future therapeutic drugs. PMID:24086767

  10. Camphorquinone-10-sulfonic acid and derivatives: convenient reagents for reversible modification of arginine residues

    SciTech Connect

    Pande, C.S.; Pelzig, M.; Glass, J.D.

    1980-02-01

    Camphorquinone-10-sulfonic acid hydrate was prepared by the action of selenous acid on camphor-10-sulfonic acid. Camphorquinone-10-sulfonylnorleucine was prepared either from the sulfonic acid via the sulfonyl chloride or by selenous acid oxidation of camphor-10-sulfonylnorleucine. These reagents are useful for specific, reversible modification of the guanidino groups of arginine residues. Camphorquinonsulfonic acid is a crystalline water-soluble reagent that is especially suitable for use with small arginine-containing molecules, because the sulfonic acid group of the reagent is a convenient handle for analytical and preparative separation of products. Camphorquinonesulfonylnorleucine is more useful for work with large polypeptides and proteins, because hydrolysates of modified proteins may be analyzed for norleucine to determine the extent of arginine modification. The adducts of the camphorquinone derivatives with the guanidino group are stable to 0.5 M hydroxylamine solutions at pH 7, the recommended conditions for cleavage of the corresponding cyclohexanedione adducts. At pH 8-9 the adducts of the camphorquinone derivatives with the guanidino group are cleaved by o-phenylenediamine. The modification and regeneration of arginine, of the dipeptide arginylaspartic acid, of ribonuclease S-peptide, and of soybean trypsin inhibitor are presented as demonstrations of the use of the reagents.The use of camphorquinonesulfonyl chloride to prepare polymers containing arginine-specific ligands is discussed.

  11. Arginine becomes an essential amino acid after massive resection of rat small intestine.

    PubMed

    Wakabayashi, Y; Yamada, E; Yoshida, T; Takahashi, H

    1994-12-23

    We compared effects of feeding arginine- and/or proline- deficient diets (-Arg, -Pro, and -Arg, Pro) with those of a complete diet (Complete) in rats whose small intestine had been massively resected. After 4 weeks, the rats fed -Arg and -Arg, Pro lost weight (a mean of 28 and 32 g, respectively), whereas those fed Complete and -Pro gained 80 and 58 g, respectively. The average nitrogen balance was about 117,100, -20 and -14 mg/day for Complete, -Pro, -Arg, and -Arg, Pro diets, respectively. The concentration of arginine in skeletal muscle was about 310, 330, 91, and 65 nmol/g for Complete, -Pro, -Arg, and -Arg, Pro, respectively; while plasma arginine concentration averaged 95, 107, 56, and 46 microM, respectively. The weight loss, the negative nitrogen balance, and the markedly reduced arginine concentration in the muscle observed in rats fed -Arg and -Arg, Pro clearly indicate that arginine becomes a strictly essential amino acid in the rats with massive resection of the small intestine. However, sufficient proline can be synthesized from arginine in tissues such as the liver and kidney in the absence of the small intestine. Plasma glutamine, citrulline in the muscle and plasma, urinary excretion of orotic acid and nitrate (to assess nitric oxide formation from arginine) were also measured, and the changes in these metabolites are discussed. PMID:7798273

  12. A Candida guilliermondii lysine hyperproducer capable of elevated citric acid production.

    PubMed

    West, Thomas P

    2016-05-01

    A mutant of the yeast Candida guilliermondii ATCC 9058 exhibiting elevated citric acid production was isolated based upon its ability to overproduce lysine. This method involved the use of a solid medium containing a combination of lysine analogues to identify a mutant that produced a several-fold higher lysine level compared to its parent strain using glucose or glycerol as a carbon source. The mutant strain was also capable of producing more than a fivefold higher citric acid level on glycerol as a carbon source compared to its parent strain. It was concluded that the screening of yeast lysine hyperproducer strains could provide a rapid approach to isolate yeast citric acid hyperproducer strains. PMID:27038943

  13. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance.

    PubMed

    Yang, Qing-Qing; Zhang, Chang-Quan; Chan, Man-Ling; Zhao, Dong-Sheng; Chen, Jin-Zhu; Wang, Qing; Li, Qian-Feng; Yu, Heng-Xiu; Gu, Ming-Hong; Sun, Samuel Sai-Ming; Liu, Qiao-Quan

    2016-07-01

    Rice (Oryza sativa L.), a major staple crop worldwide, has limited levels of the essential amino acid lysine. We previously produced engineered rice with increased lysine content by expressing bacterial aspartate kinase and dihydrodipicolinate synthase and inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase activity. However, the grain quality, field performance, and integration patterns of the transgenes in these lysine-enriched lines remain unclear. In the present study, we selected several elite transgenic lines with endosperm-specific or constitutive regulation of the above key enzymes but lacking the selectable marker gene. All target transgenes were integrated into the intragenic region in the rice genome. Two pyramid transgenic lines (High Free Lysine; HFL1 and HFL2) with free lysine levels in seeds up to 25-fold that of wild type were obtained via a combination of the above two transgenic events. We observed a dramatic increase in total free amino acids and a slight increase in total protein content in both pyramid lines. Moreover, the general physicochemical properties were improved in pyramid transgenic rice, but the starch composition was not affected. Field trials indicated that the growth of HFL transgenic rice was normal, except for a slight difference in plant height and grain colour. Taken together, these findings will be useful for the potential commercialization of high-lysine transgenic rice. PMID:27252467

  14. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    PubMed Central

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-01-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD. PMID:26899474

  15. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    NASA Astrophysics Data System (ADS)

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-02-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.

  16. Theoretical studies on models of lysine-arginine cross-links derived from α-oxoaldehydes: a new mechanism for glucosepane formation.

    PubMed

    Nasiri, Rasoul; Zahedi, Mansour; Jamet, Hélène; Moosavi-Movahedi, Ali Akbar

    2012-04-01

    Availability and high reactivity of α-oxoaldehydes have been approved by experimental techniques not only in vivo systems but also in foodstuffs. In this article we re-examine the mechanism of glucosepane formation by using computational model chemistry. Density functional theory has been applied to propose a new mechanism for glucosepane formation through reaction of α-oxoaldehydes with methyl amine (MA) and methyl guanidine (MGU) models of lysine and arginine residues respectively. This non enzymatic process can be described in three main steps: (1) Schiff base formation from methyl amine, methyl glyoxal (MGO) (2) addition of methyl guanidine and (3) addition of glyceraldehyde. We show that this process is thermodynamically possible and presents a rate-determining step with a reasonable free energy barrier equal to 37.8 kcal mol(-1) in water solvent. Comparisons were done with the mechanism formation of GODIC (glyoxal-derived imidazolium cross-link) and MODIC (methyl glyoxal-derived imidazolium cross-link), two other important cross-links in vivo. PMID:21811778

  17. Structural characterization of arginine-vasopressin and lysine-vasopressin by Fourier- transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation.

    PubMed

    Bianco, Giuliana; Battista, Fabio; Buchicchio, Alessandro; Amarena, Concetta G; Schmitt-Kopplin, Philippe; Guerrieri, Antonio

    2015-01-01

    Arginine-vasopressin (AVP) and lysine-vasopressin (LVP) were analyzed by reversed-phase liquid chromatography/mass spectrometry (LC-MS) using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) electrospray ionization (ESI) in the positive ion mode. LVP and AVP exhibited the protonated adduct [M+H](+) as the predominant ion at m/z 1056.43965 and at m/z 1084.44561, respectively. Infrared multiphoton dissociation (IRMPD), using a CO(2) laser source at a wavelength of 10.6 μm, was applied to protonated vasopressin molecules. The IRMPD mass spectra presented abundant mass fragments essential for a complete structural information. Several fragment ions, shared between two target molecules, are discussed in detail. Some previously unpublished fragments were identified unambiguously utilizing the high resolution and accurate mass information provided by the FT-ICR mass spectrometer. The opening of the disulfide loop and the cleavage of the peptide bonds within the ring were observed even under low-energy fragmentation conditions. Coupling the high-performance FT-ICR mass spectrometer with IRMPD as a contemporary fragmentation technique proved to be very promising for the structural characterization of vasopressin. PMID:26307701

  18. Quantitative comparison between poly(L-arginine) and poly(L-lysine) at each step of polyplex-based gene transfection using a microinjection technique

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tomoko; Kawazu, Takeshi; Nagasaki, Takeshi; Murakami, Akira; Yamaoka, Tetsuji

    2012-02-01

    Among the well-studied polypeptide-type gene carriers, transfection efficiency is empirically known to be higher for poly(L-arginine) (PR) than poly(L-lysine) (PK). The big difference between PR and PK should be determined at one of the intracellular trafficking steps based on the different charge densities, structures or PKa values. However, the endosomal escape and the intranuclear transcription efficiency in living cells have not been clarified yet. In this study, a novel method for quantifying the intranuclear transcription efficiency and the nuclear transport of the polyplex is established based on the nuclear and the cytosolic microinjection technique, and the results for PK and PR with different molecular weights (MWs) are compared in living cells. The intranuclear transcription efficiency is the same in PR and PK and it decreases rapidly with increasing MW, in spite of the commonly measured transfection efficiency. The transcription efficiency is strongly suppressed at high MW and strongly correlates with the polyplex forming ability expressed as a critical ratio of the number of polypeptide cationic groups to the number of pDNA anionic groups. When considered with the results of the cellular uptake and in vitro transfection with or without chloroquine, the rate-limiting step for their gene transfer is the buffering effect-independent endosomal escape.

  19. Mechanisms for stimulation of rat anterior pituitary cells by arginine and other amino acids.

    PubMed Central

    Villalobos, C; Núñez, L; García-Sancho, J

    1997-01-01

    1. Arginine and other amino acids are secretagogues for growth hormone and prolactin in the intact animal, but the mechanism of action is unclear. We have studied the effects of amino acids on cytosolic free calcium concentration ([Ca2+]i) in single rat anterior pituitary (AP) cells. Arginine elicited a large increase of [Ca2+]i) in about 40% of all the AP cells, suggesting that amino acids may modulate hormone secretion by acting directly on the pituitary. 2. Cell typing by immunofluorescence of the hormone the cells store showed that the arginine-sensitive cells are distributed uniformly within all the five AP cell types. The arginine-sensitive cells overlapped closely with the subpopulation of cells sensitive to thyrotrophin-releasing hormone. 3. Other cationic as well as several neutral (dipolar) amino acids had the same effect as arginine. The increase of [Ca2+]i was dependent on extracellular Ca2+ and blocked by dihydropyridine, suggesting that it is due to Ca2+ influx through L-type voltage-gated Ca2+ channels. The [Ca2+]i increase was also blocked by removal of extracellular Na+ but not by tetrodotoxin. The substrate specificity for stimulation of AP cells resembled closely that of the amino acid transport system B0+. We propose that electrogenic amino acid influx through this pathway depolarizes the plasma membrane with the subsequent activation of voltage-gated Ca2+ channels and Ca2+ entry. 4. Amino acids also stimulated prolactin secretion in vitro with a similar substrate specificity to that found for the [Ca2+]i increase. Existing data on the stimulation of secretion of other hormones by amino acids suggest that a similar mechanism could apply to other endocrine glands. PMID:9263921

  20. Topical application of L-arginine blocks advanced glycation by ascorbic acid in the lens of hSVCT2 transgenic mice

    PubMed Central

    Fan, Xingjun; Xiaoqin, Liu; Potts, Breshey; Strauch, Christopher M.; Monnier, Vincent M.

    2011-01-01

    Purpose Previous experiments from our laboratory showed that the oral intake of selected guanidino compounds could block the formation of crystallin-bound advanced ascorbylation products. Here we tested whether these were also active when applied as eye drops. Methods Two month old hSVCT2 transgenic mice (n=10) were treated twice daily with one drop of 0.1% L-arginine, γ-guanidinobutyric acid (GBA), penicillamine (PA) or N-acetylcysteine (NAC) in one eye and vehicle only in the other eye. After seven months, lens crystallins were isolated, dialyzed, and proteolytically digested to determine the protein-bound fluorescence at 335/385 and 370/440 nm excitation/emission and the advanced glycation/ascorbylation endproducts carboxymethyl-lysine (CML), carboxyethyl-lysine (CEL), glucosepane, glyoxal, and methylglyoxal hydroimidazolones G-H1 and MG-H1. The topical uptake of L-arginine and NAC was also evaluated in vitro and in vivo in rabbit lens. Results In hSVCT2 mice, L-arginine decreased 335/385 and 370/440 nm fluorescence by 40% (p<0.001), CML, CEL, and glucosepane crystallin crosslinks by 35% (p<0.05), 30% (p<0.05), and 37% (p<0.05), respectively, without affecting MG-H1 and G-H1. NAC decreased 335/385 nm fluorescence by 50% (p<0.001) but, like PA and GBA, had no effect on other modifications. L-Arginine uptake into rabbit eyes treated topically reached identical lenticular plateau levels (~400 nmol/g wet weight) at 0.5% and 2.0% but levels remained three times higher at 5 h at 2% versus 0.5% concentration, respectively. In vitro studies showed a 100 fold higher L-arginine level than NAC levels, implicating high affinity uptake of the former. Conclusions L-Arginine when applied both orally and topically is a potent and broad suppressor of advanced ascorbylation in the lens. Its uptake in rabbit lens upon topical application suggests transcorneal uptake into the human lens should be feasible for testing its potential anticataract properties in clinical trials. PMID

  1. Effects of single oral doses of lysine clonixinate and acetylsalicylic acid on platelet functions in man.

    PubMed

    Pallapies, D; Muhs, A; Bertram, L; Rohleder, G; Nagyiványi, P; Peskar, B A

    1996-01-01

    Lysine clonixinate is an analgesic drug with a so far unknown mechanism of action. We have determined its effect on platelet cyclooxygenase in man. Biosynthesis of thromboxane (TX)B2 and prostaglandin (PG)F2 alpha in clotting whole blood ex vivo as well as collagen-induced platelet aggregation measured before and at various time points after oral administration of 125 mg lysine clonixinate were compared to results obtained with 500 mg acetylsalicylic acid (ASA). While biosynthesis of both TXB2 and PGF2 alpha measured radioimmunologically was inhibited significantly 2.5 h, but not 6 h, after administration of lysine clonixinate, inhibition by ASA was much greater and still highly significant after 48 h. Similarly, collagen-induced aggregation of platelet-rich plasma was inhibited for a longer period and to a greater extent after administration of ASA than after lysine clonixinate. Our results indicate that lysine clonixinate is a cyclooxygenase inhibitor of moderate potency. It remains to be investigated whether mechanisms other than inhibition of cyclooxygenase contribute to the analgesic activity of lysine clonixinate. PMID:8866627

  2. 11,12-Epoxyeicosatrienoic acid activates the L-arginine/nitric oxide pathway in human platelets.

    PubMed

    Zhang, Like; Cui, Yuying; Geng, Bing; Zeng, Xiangjun; Tang, Chaoshu

    2008-01-01

    The present study was to test the hypothesis that 11,12-epoxyeicosatrienoic acid (11,12-EET), a metabolic product of arachidonic acid by cytochrome P450 epoxygenase, regulates nitric oxide (NO) generation of the L-arginine/NO synthase (NOS) pathway in human platelets. Human platelets were incubated in the presence or absence of different concentrations of 11,12-EET for 2 h at 37 degrees C, followed by measurements of activities of the L-arginine/NOS pathway. Incubation with 11,12-EET increased the platelet NOS activity, nitrite production, cGMP content, and the platelet uptake of L-[(3)H]arginine in a concentration-dependent manner. In addition, 11,12-EET attenuated intracellular free Ca(2+) accumulation stimulated by collagen, which was at least partly mediated by EET-activated L-arginine/NOS pathway. It is suggested that 11,12-EET regulates platelet function through up-regulating the activity of the L-arginine/NOS/NO pathway. PMID:17932624

  3. Poly-arginine and arginine-rich peptides are neuroprotective in stroke models.

    PubMed

    Meloni, Bruno P; Brookes, Laura M; Clark, Vince W; Cross, Jane L; Edwards, Adam B; Anderton, Ryan S; Hopkins, Richard M; Hoffmann, Katrin; Knuckey, Neville W

    2015-06-01

    Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model; the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of different neuroprotective peptides fused to arginine-rich CPPs. PMID:25669902

  4. Poly-arginine and arginine-rich peptides are neuroprotective in stroke models

    PubMed Central

    Meloni, Bruno P; Brookes, Laura M; Clark, Vince W; Cross, Jane L; Edwards, Adam B; Anderton, Ryan S; Hopkins, Richard M; Hoffmann, Katrin; Knuckey, Neville W

    2015-01-01

    Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model; the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of different neuroprotective peptides fused to arginine-rich CPPs. PMID:25669902

  5. Role of pipecolic acid in the biosynthesis of lysine in Rhodotorula glutinis.

    PubMed

    Kinzel, J J; Bhattacharjee, J K

    1979-05-01

    The role of pipecolic acid in the biosynthesis of lysine was investigated in Rhodotorula glutinis, an aerobic red yeast. Supplementation of pipecolic acid in the minimal medium supported the growth of mutants lys2, lys3, and lys5; alpha-aminoadipic acid supported the growth of lys5; but neither alpha-aminoadipic acid nor pipecolic acid supported the growth of mutants MNNG42 and MNNG37. During the growth of the appropriate mutants, pipecolic acid was removed from the growth medium and the intracellular pool. In tracer experiments, radioactivity from [(14)C]pipecolic acid was selectively incorporated into the cellular lysine of lys5 and the wild-type strain. l-Pipecolic acid-dependent enzyme activity did not require any cofactor and was inhibited by mercuric chloride and potassium cyanide. This activity was present in the wild-type strain and all of the mutants tested and was repressed in mutant lys5 when grown in the presence of higher concentration of lysine. The reaction product of pipecolic acid was converted to saccharopine by lys5 enzyme in the presence of glutamate and reduced nicotin-amide adenine dinucleotide phosphate. Mutant MNNG37 lacked the saccharopine dehydrogenase activity, indicating that this step is involved in the conversion of alpha-aminoadipic acid and pipecolic acid to lysine. Mutants MNNG37 and MNNG42 accumulated a p-dimethylaminobenzaldehyde-reacting product in the culture supernatant and in the intracellular pool. Chromatographic properties of the p-dimethylaminobenzaldehyde adduct and that of the pipecolic acid-dependent reaction product were similar. The reaction product and the accumulation product were characterized on the basis of mass and absorption spectra as alpha-aminoadipic-semialdehyde, which in solution remains in equilibrium with Delta(1)-piperideine-6-carboxylic acid. Since alpha-aminoadipic-semialdehyde is a known intermediate of the alpha-aminoadipic acid pathway for the biosynthesis of lysine, it is concluded that pipecolic

  6. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri.

    PubMed

    Teixeira, Januana S; Seeras, Arisha; Sanchez-Maldonado, Alma Fernanda; Zhang, Chonggang; Su, Marcia Shu-Wei; Gänzle, Michael G

    2014-09-01

    This study aimed to determine whether glutamine deamidation improves acid resistance of Lactobacillus reuteri, and to assess whether arginine, glutamine, and glutamate-mediated acid resistance are redundant or complementary mechanisms of acid resistance. Three putative glutaminase genes, gls1, gls2, and gls3, were identified in L. reuteri 100-23. All three genes were expressed during growth in mMRS and wheat sourdough. L. reuteri consistently over-expressed gls3 and the glutamate decarboxylase gadB. L. reuteri 100-23ΔgadB over-expressed gls3 and the arginine deiminase gene adi. Analysis of the survival of L. reuteri in acidic conditions revealed that arginine conversion is effective at pH of 3.5 while glutamine or glutamate conversion were effective at pH of 2.5. Arginine conversion increased the pHin but not ΔΨ; glutamate decarboxylation had only a minor effect on the pHin but increased the ΔΨ. This study demonstrates that glutamine deamidation increases the acid resistance of L. reuteri independent of glutamate decarboxylase activity. Arginine and glutamine/glutamate conversions confer resistance to lactate at pH of 3.5 and phosphate at pH of 2.5, respectively. Knowledge of L. reuteri's acid resistance improves the understanding of the adaptation of L. reuteri to intestinal ecosystems, and facilitates the selection of probiotic and starter cultures. PMID:24929734

  7. Effects of arginine 10 to lysine substitution on ω-conotoxin CVIE and CVIF block of Cav2.2 channels

    PubMed Central

    Berecki, G; Daly, N L; Huang, Y H; Vink, S; Craik, D J; Alewood, P F; Adams, D J

    2014-01-01

    BACKGROUND AND PURPOSE ω-Conotoxins CVIE and CVIF (CVIE&F) selectively inhibit Cav2.2 channels and are lead molecules in the development of novel analgesics. At physiological membrane potentials, CVIE&F block of Cav2.2 channels is weakly reversible. To improve reversibility, we designed and synthesized arginine CVIE&F analogues in which arginine was substituted for lysine at position 10 ([R10K]CVIE&F), and investigated their serum stability and pharmacological actions on voltage-gated calcium channels (VGCCs). EXPERIMENTAL APPROACH Changes in peptide structure due to R10K substitution were assessed by NMR. Peptide stability in human serum was analysed by reversed-phase HPLC and MS over a 24 h period. Two-electrode voltage-clamp and whole-cell patch clamp techniques were used to study [R10K]CVIE&F effects on VGCC currents in Xenopus oocytes and rat dorsal root ganglion neurons respectively. KEY RESULTS R10K substitution did not change the conserved ω-conotoxin backbone conformations of CVIE&F nor the ω-conotoxin selectivity for recombinant or native Cav2.2 channels, although the inhibitory potency of [R10K]CVIF was better than that of CVIF. At −80 mV, the R10K chemical modification significantly affected ω-conotoxin−channel interaction, resulting in faster onset kinetics than those of CVIE&F. Heterologous and native Cav2.2 channels recovered better from [R10K]CVIE&F block than CVIE&F. In human serum, the ω-conotoxin half-lives were 6−10 h. CVIE&F and [R10K]CVIE&F were more stable than CVID. CONCLUSIONS AND IMPLICATIONS R10K substitution in CVIE&F significantly alters the kinetics of ω-conotoxin action and improves reversibility without diminishing conotoxin potency and specificity for the Cav2.2 channel and without diminishing the serum stability. These results may help generate ω-conotoxins with optimized kinetic profiles for target binding. PMID:24628243

  8. Biological half-lives and organ distribution of tritiated 8-lysine-vasopressin and 1-deamino-8-D-arginine-vasopressin in Brattleboro rats

    SciTech Connect

    Janaky, T.; Laczi, F.; Laszlo, F.A.

    1982-01-01

    The biological half-lives and organ distribution of tritiated 8-lysine-vasopressin and 1-deamino-8-D-arginine-vasopressin were determined in R-Amsterdam rats and in homozygous and heterozygous Brattleboro rats with hereditary central diabetes insipidus. It was found that the biological half-lives of (/sup 3/H)LVP and (/sup 3/H)dDAVP in the Brattleboro rats did not differ significantly from that found in the control R-Amsterdam rats. The half-life of (/sup 3/H)dDAVP proved longer than that of (/sup 3/H)LVP in all three groups of animals. In the case of (/sup 3/H)LVP the highest radioactivities were observed in the neurohypophyses, adenohypophyses, and kidneys of both the R-Amsterdam and Brattleboro rats. The accumulation of tritiated material was higher in the small intestine of the Brattleboro rats than in that of the R-Amsterdam animals. In all three groups of rats, (/sup 3/H)dDAVP was accumulated to the greatest extent in the kidney and the small intestine. The kidney and small intestine contained less radioactivity in homozygous Brattleboro rats than in the controls. There was only a slight radioactivity accumulation in the adenohypophysis and neurohypophysis. From the results it was concluded that the decrease in the rate of enzymatic decomposition may play a role in the increased duration of antidiuretic action of dDAVP. The results have led to the conclusion that the accelerated elimination of vasopressin and its pathologic organ accumulation are probably not involved in the water metabolism disturbance of Brattleboro rats with hereditary diabetes insipidus.

  9. The Natural Antimicrobial Subtilosin A Synergizes with Lauramide Arginine Ethyl Ester (LAE), ε-Poly-L-lysine (Polylysine), Clindamycin Phosphate and Metronidazole, Against the Vaginal Pathogen Gardnerella vaginalis.

    PubMed

    Cavera, Veronica L; Volski, Anna; Chikindas, Michael L

    2015-06-01

    Bacterial vaginosis (BV) is a common, recurrent vaginal infection linked to increased chances of preterm delivery, incidence of sexually transmitted infections and fertility problems. BV is caused by a shift of the vaginal ecosystem from predominately Lactobacillus to a multispecies Actinomyces biofilm with the most common representatives identified as Gardnerella vaginalis and Prevotella spp. Current treatments have been associated with increased resistance as well as negative effects on healthy microbiota. The objective of this study was to evaluate the synergistic potential of ten two-antimicrobial combinations against G. vaginalis and four representative lactobacilli. The four tested antimicrobials were lauramide arginine ethyl ester, ε-poly-L-lysine, clindamycin phosphate, metronidazole and the bacteriocin subtilosin A. The use of bacteriocins as either synergist or alternative treatment positions bacteriocins as an excellent alternative to current antibiotics. The microdilution method was used to determine the minimum inhibitory concentration (MIC) of each of the antimicrobials individually, and the checkerboard assay was used to evaluate these MICs in combination. Clindamycin and subtilosin (CS), and metronidazole and subtilosin were synergistic against G. vaginalis in terms of fractional inhibitory concentration index (FICI). All tested combinations were found to have Bliss synergy. The combination of clindamycin and polylysine (CP) was identified as antagonistic against L. acidophilus in terms of both FICI and Bliss synergy. The combination of clindamycin and metronidazole (CM) was antagonistic against L. vaginalis for both FICI and Bliss synergy. The combinations of CP, clindamycin and LAE, CS, and LAE and polylysine were identified as Bliss antagonistic against L. vaginalis but did not indicate FICI antagonism. PMID:25588687

  10. The first seven amino acids encoded by the v-src oncogene act as a myristylation signal: Lysine 7 is a critical determinant

    SciTech Connect

    Kaplan, J.M.; Mardon, G.; Bishop, J.M.; Varmus, H.E.

    1988-06-01

    The transforming protein of Rous sarcoma virus, pp60/sup v-src/, is covalently coupled to myristic acid by an amide linkage to glycine 2. Myristylation promotes the association of pp60/sup v-src/ with cellular membranes, and this subcellular location is essential for transforming activity. The findings presented here, in conjunction with the previous reports of others, imply that the seventh amino acid encoded by v-src might be important in the myristlyation reaction. Replacement of lysine 7 by asparagine greatly reduced the myristylation, membrane association, and transforming activity of pp60/sup v-src/. In contrast, substitution of arginine at residue 7 had no effect on any of these properties of pp60/sup v-src/. Addition of amino acids 1 to 7 encoded by v-src was sufficient to cause myristylation of a src-pyruvate kinase function protein. The authors conclude that the recognition sequence for myristylation of pp60/sup v-src/ comprises amino acids 1 to 7 and that lysine 7 is a critical component of this sequence.

  11. Amino acid imbalance in cystinuria

    PubMed Central

    Asatoor, A. M.; Freedman, P. S.; Gabriel, J. R. T.; Milne, M. D.; Prosser, D. I.; Roberts, J. T.; Willoughby, C. P.

    1974-01-01

    After oral ingestion of a free amino acid mixture by three cystinuric patients, plasma increments of lysine and arginine were lower and those of many other amino acids were significantly higher than those found in control subjects. Similar results were obtained in control subjects after amino acid imbalance had been artificially induced by the omission of cystine, lysine, and arginine from the amino acid mixture. Especially high increments of alanine and proline provided the best evidence of amino acid imbalance caused by a temporary lysine and, to a lesser extent, arginine and cystine deficit. No such amino acid imbalance was found to occur in the cystinuric patients after ingestion of whole protein, indicating that absorption of oligopeptides produced by protein digestion provided a balanced physiological serum amino acid increment. This is considered to explain the lack of any unequivocal nutritional deficit in cystinuric patients despite poor absorption of the essential free amino acid, lysine. PMID:4411931

  12. Arginine-dependent acid-resistance pathway in Shigella boydii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ability to survive the low pH of the human stomach is considered be an important virulent determinant. Acid tolerance of Shigella boydii 18 CDPH, the strain implicated in an outbreak may have played an important role in surviving the acidic food (bean salad). The strain was capable of inducing arg...

  13. Arginine kinase in the demosponge Suberites domuncula: regulation of its expression and catalytic activity by silicic acid.

    PubMed

    Perovic-Ottstadt, Sanja; Wiens, Matthias; Schröder, Heinz-C; Batel, Renato; Giovine, Marco; Krasko, Anatoli; Müller, Isabel M; Müller, Werner E G

    2005-02-01

    In Demospongiae (phylum Porifera) the formation of the siliceous skeleton, composed of spicules, is an energetically expensive reaction. The present study demonstrates that primmorphs from the demosponge Suberites domuncula express the gene for arginine kinase after exposure to exogenous silicic acid. The deduced sponge arginine kinase sequence displays the two characteristic domains of the ATP:guanido phosphotransferases; it can be grouped to the 'usual' mono-domain 40 kDa guanidino kinases (arginine kinases). Phylogenetic studies indicate that the metazoan guanidino kinases evolved from this ancestral sponge enzyme; among them are also the 'unusual' two-domain 80 kDa guanidino kinases. The high expression level of the arginine kinase gene was already measurable 1 day after addition of silicic acid by northern blot, as well as by in situ hybridization analysis. Parallel determinations of enzyme activity confirmed that high levels of arginine kinase are present in primmorphs that had been exposed for 1-5 days to silicic acid. Finally, transmission electron-microscopical studies showed that primmorphs containing high levels of arginine kinase also produce siliceous spicules. These data highlight that silicic acid is an inorganic morphogenetic factor that induces the expression of the arginine kinase, which in turn probably catalyzes the reversible transfer of high-energy phosphoryl groups. PMID:15695756

  14. Arginine methylation of HSP70 regulates retinoid acid-mediated RARβ2 gene activation

    PubMed Central

    Gao, Wei-wei; Xiao, Rong-quan; Peng, Bing-ling; Xu, Huan-teng; Shen, Hai-feng; Huang, Ming-feng; Shi, Tao-tao; Yi, Jia; Zhang, Wen-juan; Wu, Xiao-nan; Gao, Xiang; Lin, Xiang-zhi; Dorrestein, Pieter C.; Rosenfeld, Michael G.; Liu, Wen

    2015-01-01

    Although “histone” methyltransferases and demethylases are well established to regulate transcriptional programs and to use nonhistone proteins as substrates, their possible roles in regulation of heat-shock proteins in the nucleus have not been investigated. Here, we report that a highly conserved arginine residue, R469, in HSP70 (heat-shock protein of 70 kDa) proteins, an evolutionarily conserved protein family of ATP-dependent molecular chaperone, was monomethylated (me1), at least partially, by coactivator-associated arginine methyltransferase 1/protein arginine methyltransferase 4 (CARM1/PRMT4) and demethylated by jumonji-domain–containing 6 (JMJD6), both in vitro and in cultured cells. Functional studies revealed that HSP70 could directly regulate retinoid acid (RA)-induced retinoid acid receptor β2 (RARβ2) gene transcription through its binding to chromatin, with R469me1 being essential in this process. HSP70’s function in gene transcriptional regulation appears to be distinct from its protein chaperon activity. R469me1 was shown to mediate the interaction between HSP70 and TFIIH, which involves in RNA polymerase II phosphorylation and thus transcriptional initiation. Our findings expand the repertoire of nonhistone substrates targeted by PRMT4 and JMJD6, and reveal a new function of HSP70 proteins in gene transcription at the chromatin level aside from its classic role in protein folding and quality control. PMID:26080448

  15. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling

    PubMed Central

    Alrob, Osama Abo; Sankaralingam, Sowndramalingam; Ma, Cary; Wagg, Cory S.; Fillmore, Natasha; Jaswal, Jagdip S.; Sack, Michael N.; Lehner, Richard; Gupta, Mahesh P.; Michelakis, Evangelos D.; Padwal, Raj S.; Johnstone, David E.; Sharma, Arya M.; Lopaschuk, Gary D.

    2014-01-01

    Aims Lysine acetylation is a novel post-translational pathway that regulates the activities of enzymes involved in both fatty acid and glucose metabolism. We examined whether lysine acetylation controls heart glucose and fatty acid oxidation in high-fat diet (HFD) obese and SIRT3 knockout (KO) mice. Methods and results C57BL/6 mice were placed on either a HFD (60% fat) or a low-fat diet (LFD; 4% fat) for 16 or 18 weeks. Cardiac fatty acid oxidation rates were significantly increased in HFD vs. LFD mice (845 ± 76 vs. 551 ± 87 nmol/g dry wt min, P < 0.05). Activities of the fatty acid oxidation enzymes, long-chain acyl-CoA dehydrogenase (LCAD), and β-hydroxyacyl-CoA dehydrogenase (β-HAD) were increased in hearts from HFD vs. LFD mice, and were associated with LCAD and β-HAD hyperacetylation. Cardiac protein hyperacetylation in HFD-fed mice was associated with a decrease in SIRT3 expression, while expression of the mitochondrial acetylase, general control of amino acid synthesis 5 (GCN5)-like 1 (GCN5L1), did not change. Interestingly, SIRT3 deletion in mice also led to an increase in cardiac fatty acid oxidation compared with wild-type (WT) mice (422 ± 29 vs. 291 ± 17 nmol/g dry wt min, P < 0.05). Cardiac lysine acetylation was increased in SIRT3 KO mice compared with WT mice, including increased acetylation and activity of LCAD and β-HAD. Although the HFD and SIRT3 deletion decreased glucose oxidation, pyruvate dehydrogenase acetylation was unaltered. However, the HFD did increase Akt acetylation, while decreasing its phosphorylation and activity. Conclusion We conclude that increased cardiac fatty acid oxidation in response to high-fat feeding is controlled, in part, via the down-regulation of SIRT3 and concomitant increased acetylation of mitochondrial β-oxidation enzymes. PMID:24966184

  16. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    NASA Astrophysics Data System (ADS)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  17. Role of surface lysine residues of adipocyte fatty acid-binding protein in fatty acid transfer to phospholipid vesicles.

    PubMed

    Liou, H L; Storch, J

    2001-05-29

    The tertiary structure of murine adipocyte fatty acid-binding protein (AFABP) is a flattened 10-stranded beta-barrel capped by a helix-turn-helix segment. This helical domain is hypothesized to behave as a "lid" or portal for ligand entry into and exit from the binding cavity. Previously, we demonstrated that anthroyloxy-labeled fatty acid (AOFA) transfer from AFABP to phospholipid membranes occurs by a collisional process, in which ionic interactions between positively charged lysine residues on the protein surface and negatively charged phospholipid headgroups are involved. In the present study, the role of specific lysine residues located in the portal and other regions of AFABP was directly examined using site-directed mutagenesis. The results showed that isoleucine replacement for lysine in the portal region, including the alphaI- and alphaII-helices and the beta C-D turn, resulted in much slower 2-(9-anthroyloxy)palmitate (2AP) transfer rates to acidic membranes than those of native AFABP. An additive effect was found for mutant K22,59I, displaying the slowest rates of FA transfer. Rates of 2AP transfer from "nonportal" mutants on the beta-G and I strands were affected only moderately; however, a lysine --> isoleucine mutation in the nonportal beta-A strand decreased the 2AP transfer rate. These studies suggest that lysines in the helical cap domain are important for governing ionic interactions between AFABP and membranes. Furthermore, it appears that more than one distinct region, including the alphaI-helix, alphaII-helix, beta C-D turn, and the beta-A strand, is involved in these charge-charge interactions. PMID:11371211

  18. 6th Amino Acid Assessment Workshop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The focus of the 6th workshop is on lysine, arginine, and related amino acids. Functions, metabolic pathways, clinical uses, and upper tolerance intakes are emphasized in the articles that follow. Lysine is arguably the most deficient amino acid in the food supply of countries where poverty exists, ...

  19. Effects of Dietary Lysine Levels on Apparent Nutrient Digestibility and Serum Amino Acid Absorption Mode in Growing Pigs

    PubMed Central

    Zeng, P. L.; Yan, H. C.; Wang, X. Q.; Zhang, C. M.; Zhu, C.; Shu, G.; Jiang, Q. Y.

    2013-01-01

    Two experiments were conducted to determine the effects of different dietary lysine levels on the apparent nutrient digestibility, the serum amino acid (AA) concentration, and the biochemical parameters of the precaval and portal vein blood in growing pigs. In Experiment 1, 15 noncannulated pigs received diets with different lysine densities (0.65%, 0.95%, and 1.25% lysine) for 13 d. A total collection digestion test was performed, and blood samples were collected from the precaval vein at the end of the experiment. In Experiment 2, four cannulated pigs were fed the same diets of Experiment 1. The experiment used a self-control experimental design and was divided into three periods. On d 5 of each period, at 0.5 h before feeding and hourly up to 8 h after feeding, single blood samples were collected from catheters placed in the portal vein. In Experiment 1, some serum AAs (including lysine), serum urinary nitrogen (SUN), and total protein (TP) concentrations were significantly affected by the dietary lysine levels (p<0.05). Moreover, the 0.65% lysine treatment showed a significant lower apparent digestibility of gross energy, dry matter, crude protein, and phosphorus than the other treatments (p<0.05). In Experiment 2, serum lysine, histidine, phenylalanine, threonine, valine, isoleucine (p = 0.0588), triglyceride, and SUN (p = 0.0572) concentrations were significantly affected by the dietary lysine levels (p<0.05). Additionally, almost all of the determined serum AA and total AA concentrations reached their lowest values at 0.5 h before feeding and their highest values at 2 h after feeding (p<0.05). These findings indicate that the greatest absorption of AA occurred at 2 h after feeding and that the dynamic profile of serum AA is affected by the dietary lysine levels. Moreover, when the dietary lysine content was 0.95%, the growing pigs achieved a better nutrient digestibility and serum metabolites levels. PMID:25049879

  20. Cyclic AMP-dependent Protein Lysine Acylation in Mycobacteria Regulates Fatty Acid and Propionate Metabolism*

    PubMed Central

    Nambi, Subhalaxmi; Gupta, Kallol; Bhattacharyya, Moitrayee; Ramakrishnan, Parvathy; Ravikumar, Vaishnavi; Siddiqui, Nida; Thomas, Ann Terene; Visweswariah, Sandhya S.

    2013-01-01

    Acetylation of lysine residues is a posttranslational modification that is used by both eukaryotes and prokaryotes to regulate a variety of biological processes. Here we identify multiple substrates for the cAMP-dependent protein lysine acetyltransferase from Mycobacterium tuberculosis (KATmt). We demonstrate that a catalytically important lysine residue in a number of FadD (fatty acyl CoA synthetase) enzymes is acetylated by KATmt in a cAMP-dependent manner and that acetylation inhibits the activity of FadD enzymes. A sirtuin-like enzyme can deacetylate multiple FadDs, thus completing the regulatory cycle. Using a strain deleted for the KATmt ortholog in Mycobacterium bovis Bacillus Calmette-Guérin (BCG), we show for the first time that acetylation is dependent on intracellular cAMP levels. KATmt can utilize propionyl CoA as a substrate and, therefore, plays a critical role in alleviating propionyl CoA toxicity in mycobacteria by inactivating acyl CoA synthetase (ACS). The precision by which mycobacteria can regulate the metabolism of fatty acids in a cAMP-dependent manner appears to be unparalleled in other biological organisms and is ideally suited to adapt to the complex environment that pathogenic mycobacteria experience in the host. PMID:23553634

  1. Delivery of siRNA Using Cationic Liposomes Incorporating Stearic Acid-modified Octa-Arginine.

    PubMed

    Yang, Dongsheng; Li, Yuhuan; Qi, Yuhang; Chen, Yongzhen; Yang, Xuewei; Li, Yujing; Liu, Songcai; Lee, Robert J

    2016-07-01

    Cationic liposomes incorporating stearic acid-modified octa-arginine (StA-R8) were evaluated for survivin small interfering RNA (siRNA) delivery. StA-R8 was synthesized and incorporated into liposomes. The composition of liposomes was optimized. Physicochemical properties, cytotoxicity, cellular uptake and gene silencing activity of the liposomes complexed to survivin siRNA were investigated. The results showed that StA-R8-containing liposomes had reduced cytotoxicity and improved delivery efficiency of siRNA into cancer cells compared with StA-R8 by itself. PMID:27354583

  2. BASIC AMINO ACID CARRIER 2 gene expression modulates arginine and urea content and stress recovery in Arabidopsis leaves

    PubMed Central

    Planchais, Séverine; Cabassa, Cécile; Toka, Iman; Justin, Anne-Marie; Renou, Jean-Pierre; Savouré, Arnould; Carol, Pierre

    2014-01-01

    In plants, basic amino acids are important for the synthesis of proteins and signaling molecules and for nitrogen recycling. The Arabidopsis nuclear gene BASIC AMINO ACID CARRIER 2 (BAC2) encodes a mitochondria-located carrier that transports basic amino acids in vitro. We present here an analysis of the physiological and genetic function of BAC2 in planta. When BAC2 is overexpressed in vivo, it triggers catabolism of arginine, a basic amino acid, leading to arginine depletion and urea accumulation in leaves. BAC2 expression was known to be strongly induced by stress. We found that compared to wild type plants, bac2 null mutants (bac2-1) recover poorly from hyperosmotic stress when restarting leaf expansion. The bac2-1 transcriptome differs from the wild-type transcriptome in control conditions and under hyperosmotic stress. The expression of genes encoding stress-related transcription factors (TF), arginine metabolism enzymes, and transporters is particularly disturbed in bac2-1, and in control conditions, the bac2-1 transcriptome has some hallmarks of a wild-type stress transcriptome. The BAC2 carrier is therefore involved in controlling the balance of arginine and arginine-derived metabolites and its associated amino acid metabolism is physiologically important in equipping plants to respond to and recover from stress. PMID:25076951

  3. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.

    PubMed

    Pérez-García, Fernando; Peters-Wendisch, Petra; Wendisch, Volker F

    2016-09-01

    The Gram-positive Corynebacterium glutamicum is widely used for fermentative production of amino acids. The world production of L-lysine has surpassed 2 million tons per year. Glucose uptake and phosphorylation by C. glutamicum mainly occur by the phosphotransferase system (PTS) and to lesser extent by inositol permeases and glucokinases. Heterologous expression of the genes for the high-affinity glucose permease from Streptomyces coelicolor and Bacillus subtilis glucokinase fully compensated for the absence of the PTS in Δhpr strains. Growth of PTS-positive strains with glucose was accelerated when the endogenous inositol permease IolT2 and glucokinase from B. subtilis were overproduced with balanced translation initiation rates using plasmid pEKEx3-IolTBest. When the genome-reduced C. glutamicum strain GRLys1 carrying additional in-frame deletions of sugR and ldhA to derepress glycolytic and PTS genes and to circumvent formation of L-lactate as by-product was transformed with this plasmid or with pVWEx1-IolTBest, 18 to 20 % higher volumetric productivities and 70 to 72 % higher specific productivities as compared to the parental strain resulted. The non-proteinogenic amino acid L-pipecolic acid (L-PA), a precursor of immunosuppressants, peptide antibiotics, or piperidine alkaloids, can be derived from L-lysine. To enable production of L-PA by the constructed L-lysine-producing strain, the L-lysine 6-dehydrogenase gene lysDH from Silicibacter pomeroyi and the endogenous pyrroline 5-carboxylate reductase gene proC were overexpressed as synthetic operon. This enabled C. glutamicum to produce L-PA with a yield of 0.09 ± 0.01 g g(-1) and a volumetric productivity of 0.04 ± 0.01 g L(-1) h(-1).To the best of our knowledge, this is the first fermentative process for the production of L-PA from glucose. PMID:27345060

  4. Low molecular weight flaxseed protein-derived arginine-containing peptides reduced blood pressure of spontaneously hypertensive rats faster than amino acid form of arginine and native flaxseed protein.

    PubMed

    Udenigwe, Chibuike C; Adebiyi, Abayomi P; Doyen, Alain; Li, Huan; Bazinet, Laurent; Aluko, Rotimi E

    2012-05-01

    Flaxseed protein isolate (FPI) contains high amount of arginine, which plays important physiological roles especially as nitric oxide precursor in the vascular endothelium. Arginine-rich peptides can be generated from FPI and used as a source of nitric oxide, which can produce in vivo vasodilatory effects during hypertension. Enzymatic hydrolysis of FPI with trypsin and pronase resulted in a hydrolysate that was fractionated using electrodialysis-ultrafiltration (EDUF). EDUF experiment resulted in migration of peptides to the anionic and cationic recovery compartments. Compared to FPI with 11% arginine, about one-third of the cationic fraction was composed of arginine. Thirteen potential peptide sequences were identified to be present in the cationic compartment of which 12 contained at least one arginine residue. None of the peptides identified from the anionic compartment contained arginine. Oral administration of the cationic peptides (200mg/kgbodywt.) to spontaneously hypertensive rats resulted in a more rapid decrease in systolic blood pressure when compared to similar amounts of FPI or the amino acid form of arginine. It was concluded that the rapid effect of the arginine-rich peptide product suggests faster rate of peptide absorption than amino acids and this may be exploited to provide fast relief from hypertension. PMID:26434317

  5. Dynamics of supercooled water in a biological model system of the amino acid L-lysine.

    PubMed

    Cerveny, Silvina; Swenson, Jan

    2014-10-28

    The dynamics of supercooled water in aqueous solutions of the single amino acid L-lysine has been studied by broadband dielectric spectroscopy. The chosen biological system is unique in the sense that the water content is high enough to fully dissolve the amino acid, but low enough to avoid crystallisation to ice at any temperature. This is not possible to achieve for proteins or other larger biomolecules, where either hydrated samples without ice or solutions with large quantities of ice, or a cryoprotectant sugar, have to be studied at low temperatures. Thus, it is a key finding to be able to study water and biomolecular dynamics in a non-crystallized and biologically realistic solution at supercooled temperatures. Here, we focus on the water dynamics in this unique biological solution of L-lysine and water. We show that this unique system also gives rise to unique water dynamics, since, for the first time, a continuation of a cooperative (α-like) water relaxation is observed after a crossover to a more local β-like water relaxation has occurred with decreasing temperature. This implies that the supercooled water in the biological solution shows a twofold relaxation behaviour, with one relaxation identical to the main relaxation of water in hard confinements and one relaxation almost identical to the main water relaxation in ordinary aqueous solutions. PMID:25224819

  6. Risk assessment for the amino acids taurine, L-glutamine and L-arginine.

    PubMed

    Shao, Andrew; Hathcock, John N

    2008-04-01

    Taurine, glutamine and arginine are examples of amino acids which have become increasingly popular as ingredients in dietary supplements and functional foods and beverages. Animal and human clinical research suggests that oral supplementation of these amino acids provides additional health and/or performance benefits beyond those observed from normal intake of dietary protein. The increased consumer awareness and use of these amino acids as ingredients in dietary supplements and functional foods warrant a comprehensive review of their safety through quantitative risk assessment, and identification of a potential safe upper level of intake. The absence of a systematic pattern of adverse effects in humans in response to orally administered taurine (Tau), l-glutamine (Gln) and l-arginine (Arg) precluded the selection of a no observed adverse effect level (NOAEL) or lowest observed adverse effect level (LOAEL). Therefore, by definition, the usual approach to risk assessment for identification of a tolerable upper level of intake (UL) could not be used. Instead, the newer method described as the Observed Safe Level (OSL) or Highest Observed Intake (HOI) was utilized. The OSL risk assessments indicate that based on the available published human clinical trial data, the evidence for the absence of adverse effects is strong for Tau at supplemental intakes up to 3 g/d, Gln at intakes up to 14 g/d and Arg at intakes up to 20 g/d, and these levels are identified as the respective OSLs for normal healthy adults. Although much higher levels of each of these amino acids have been tested without adverse effects and may be safe, the data for intakes above these levels are not sufficient for a confident conclusion of long-term safety, and therefore these values are not selected as the OSLs. PMID:18325648

  7. Role of Arginine and Omega-3 Fatty Acids in Wound Healing and Infection.

    PubMed

    Alexander, J Wesley; Supp, Dorothy M

    2014-11-01

    Significance: Only a few decades ago, the primary focus of nutritional supplementation was to prevent deficiencies of essential nutrients. It is now recognized that, at higher than essential levels, selected nutrients can have a pharmacologic effect to prevent or treat disease. Recent Advances: Two of the most important pharmaconutrients, arginine, and the omega-3 polyunsaturated fatty acids in fish oil, have been shown to have profound effects on wound healing and infections. Critical Issues: Both arginine and fish oils have independent benefits, but the combination appears to be much more effective. This combination has been shown to affect outcomes involving wound healing and infections, as reviewed here, and can also affect incidence and outcomes in cardiovascular disease, diabetes, organ transplant rejection, and other inflammatory conditions. These possibilities have not yet progressed to widespread clinical application. Future Directions: The optimal combinations of immunonutrients, timing of administration, and the doses needed for best results need to be determined in preclinical and clinical studies. Also, the mechanisms involved in the administration of pharmaconutrients need to be established. PMID:25371851

  8. Role of Arginine and Omega-3 Fatty Acids in Wound Healing and Infection

    PubMed Central

    Alexander, J. Wesley; Supp, Dorothy M.

    2014-01-01

    Significance: Only a few decades ago, the primary focus of nutritional supplementation was to prevent deficiencies of essential nutrients. It is now recognized that, at higher than essential levels, selected nutrients can have a pharmacologic effect to prevent or treat disease. Recent Advances: Two of the most important pharmaconutrients, arginine, and the omega-3 polyunsaturated fatty acids in fish oil, have been shown to have profound effects on wound healing and infections. Critical Issues: Both arginine and fish oils have independent benefits, but the combination appears to be much more effective. This combination has been shown to affect outcomes involving wound healing and infections, as reviewed here, and can also affect incidence and outcomes in cardiovascular disease, diabetes, organ transplant rejection, and other inflammatory conditions. These possibilities have not yet progressed to widespread clinical application. Future Directions: The optimal combinations of immunonutrients, timing of administration, and the doses needed for best results need to be determined in preclinical and clinical studies. Also, the mechanisms involved in the administration of pharmaconutrients need to be established. PMID:25371851

  9. Effects of lysine-vasopressin (LVP) and 1-deamino-8-D-arginine-vasopressin (dDAVP) upon electrical potential, short-circuit current and transepithelial D.C. resistance of the frog skin.

    PubMed

    Bakos, P; Ponec, J; Lichardus, B

    1984-08-01

    The synthetic analogue of vasopressin, 1-deamino-8-D-arginine-vasopressin (dDAVP), possesses a protracted antidiuretic activity while having practically no pressoric activity as compared to arginine-vasopressin (AVP) or lysine-vasopressin (LVP). The effects of LVP and dDAVP were studied on the frog skin (Rana temporaria) sodium transport as reflected by the short-circuit current (SCC) level, on an Ussing apparatus. The application two different equimolar doses of LVP or dDAVP (approx. 9.4 X 10(-8) mol X l-1 and 18.8 X 10(-8) mol X l-1 to the inner surface of the skin resulted in identical maximal increases of sodium transport. However, the maximum transport stimulation after the application of dDAVP was delayed by about 30 min as compared to the stimulation by LVP (P less than 0.01). In addition, a protracted recovery of SCC towards its original levels was observed in experiments with dDAVP application after the hormone removal (P less than 0.01). It is concluded that dDAVP stimulates Na+ transport through the frog skin despite its lacking pressoric activity. Thus, the natriferic activity of vasopressin is related to its antidiuretic rather than pressoric activity. Maximum increase in the sodium transport following dDAVP application was delayed and more protracted as compared to the effect of LVP. PMID:6094299

  10. Synthesis of peptides from amino acids and ATP with lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1980-01-01

    The paper examines the synthesis of peptides from aminoacids and ATP with a lysine-rich protenoid. The latter in aqueous solution catalyzes the formation of peptides from free amino acids and ATP; this catalytic activity is not found in acidic protenoids, even though the latter contain a basic aminoacid. The pH optimum for the synthesis is about 11, but it is appreciable below 8 and above 13. Temperature data indicate an optimum at 20 C or above, with little increase in rate up to 60 C. Pyrophosphate can be used instead of ATP, but the yields are lower. The ATP-aided syntheses of peptides in aqueous solution occur with several types of proteinous aminoacids.

  11. Plasma amino-acids in hereditary retinal disease. Ornithine, lysine, and taurine.

    PubMed Central

    Berson, E. L.; Schmidt, S. Y.; Rabin, A. R.

    1976-01-01

    Plasma free amino-acids were measured in 41 patients with hereditary chorio-retinal degenerations including 26 with retinitis pigmentosa and five with gyrate atrophy of the choroid, six relatives of patients with gyrate atrophy, and 13 normal subjects. Patients with gyrate atrophy had very increased levels of ornithine and slightly decreased mean lysine values. Most relatives had slightly increased ornithine. Taurine, known to be deficient in the plasma of casein-fed cats with photoreceptor degeneration, was normal in all patients. Amino-acid precursors and metabolites of ornithine and taurine were also normal in the plasma. Although the association of high ornithine and gyrate atrophy appears constant, high levels of ornithine alone do not necessarily lead to this degeneration; one patient with known hyperammonaemia, homocitrullinuria and a tenfold increase in plasma ornithine was found to have a normal fundus appearance and normal electroretinogram. PMID:1268174

  12. NMR studies of protonation and hydrogen bond states of internal aldimines of pyridoxal 5'-phosphate acid-base in alanine racemase, aspartate aminotransferase, and poly-L-lysine.

    PubMed

    Chan-Huot, Monique; Dos, Alexandra; Zander, Reinhard; Sharif, Shasad; Tolstoy, Peter M; Compton, Shara; Fogle, Emily; Toney, Michael D; Shenderovich, Ilya; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-12-01

    Using (15)N solid-state NMR, we have studied protonation and H-bonded states of the cofactor pyridoxal 5'-phosphate (PLP) linked as an internal aldimine in alanine racemase (AlaR), aspartate aminotransferase (AspAT), and poly-L-lysine. Protonation of the pyridine nitrogen of PLP and the coupled proton transfer from the phenolic oxygen (enolimine form) to the aldimine nitrogen (ketoenamine form) is often considered to be a prerequisite to the initial step (transimination) of the enzyme-catalyzed reaction. Indeed, using (15)N NMR and H-bond correlations in AspAT, we observe a strong aspartate-pyridine nitrogen H-bond with H located on nitrogen. After hydration, this hydrogen bond is maintained. By contrast, in the case of solid lyophilized AlaR, we find that the pyridine nitrogen is neither protonated nor hydrogen bonded to the proximal arginine side chain. However, hydration establishes a weak hydrogen bond to pyridine. To clarify how AlaR is activated, we performed (13)C and (15)N solid-state NMR experiments on isotopically labeled PLP aldimines formed by lyophilization with poly-L-lysine. In the dry solid, only the enolimine tautomer is observed. However, a fast reversible proton transfer involving the ketoenamine tautomer is observed after treatment with either gaseous water or gaseous dry HCl. Hydrolysis requires the action of both water and HCl. The formation of an external aldimine with aspartic acid at pH 9 also produces the ketoenamine form stabilized by interaction with a second aspartic acid, probably via a H-bond to the phenolic oxygen. We postulate that O-protonation is an effectual mechanism for the activation of PLP, as is N-protonation, and that enzymes that are incapable of N-protonation employ this mechanism. PMID:24147985

  13. Stretch-Induced Helical Conformations in Poly(l-lysine)/Hyaluronic Acid Multilayers.

    PubMed

    Zahouani, Sarah; Chaumont, Alain; Senger, Bernard; Boulmedais, Fouzia; Schaaf, Pierre; Jierry, Loïc; Lavalle, Philippe

    2016-06-22

    We investigate the effect of stretching on the secondary structure of cross-linked poly(l-lysine)/hyaluronic acid (PLL/HA) multilayers. We show that stretching these films induces changes in the secondary structure of PLL chains. Our results suggest that not only α- but also 310-helices might form in the film under stretching. Such 310-helices have never been observed for PLL so far. These changes of the secondary structure of PLL are reversible, i.e., when returning to the nonstretched state one recovers the initial film structure. Using molecular dynamics simulations of chains composed of 20 l-lysine residues (PLL20), we find that these chains never adopt a helical conformation in water. In contrast, when the end-to-end distance of the chains is restrained to values smaller than the mean end-to-end distance of free chains, a distance domain rarely explored by the free chains, helical conformations become accessible. Moreover, the formation of not only α- but also 310-helices is predicted by the simulations. These results suggest that the change of the end-to-end distance of PLL chains in the stretched film is at the origin of the helix formation. PMID:26646202

  14. The effect of glutamic acid side chain on acidity constant of lysine in beta-sheet: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Sargolzaei, M.; Afshar, M.; Sadeghi, M. S.; Kavee, M.

    2014-07-01

    In this work, the possibility of proton transfer between side chain of lysine and glutamic acid in peptide of Glu--Ala-Lys+ was demonstrated using density functional theory (DFT). We have shown that the proton transfer takes place between side chain of glutamic and lysine residues through the hydrogen bond formation. The structures of transition state for proton transfer reaction were detected in gas and solution phases. Our kinetic studies show that the proton transfer reaction rate in gas phase is higher than solution phase. The ionization constant (p K a) value of lysine residue in peptide was estimated 1.039 which is lower than intrinsic p K a of lysine amino acid.

  15. The structure, vibrational spectra and nonlinear optical properties of the L-lysine × tartaric acid complex—Theoretical studies

    NASA Astrophysics Data System (ADS)

    Drozd, M.; Marchewka, M. K.

    2006-05-01

    The room temperature X-ray studies of L-lysine × tartaric acid complex are not unambiguous. The disorder of three atoms of carbon in L-lysine molecule is observed. These X-ray studies are ambiguous. The theoretical geometry study performed by DFT methods explain the most doubts which are connected with crystallographic measurements. The theoretical vibrational frequencies and potential energy distribution (PED) of L-lysine × tartaric acid were calculated by B3LYP method. The calculated frequencies were compared with experimental measured IR spectra. The complete assignment of the bands has been made on the basis of the calculated PED. The restricted Hartee-Fock (RHF) methods were used for calculation of the hyperpolarizability for investigated compound. The theoretical results are compared with experimental value of β.

  16. Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids.

    PubMed

    Kato, Takuma; Yamashita, Hiroko; Misawa, Takashi; Nishida, Koyo; Kurihara, Masaaki; Tanaka, Masakazu; Demizu, Yosuke; Oba, Makoto

    2016-06-15

    Cell-penetrating peptides (CPPs) have been developed as drug, protein, and gene delivery tools. In the present study, arginine (Arg)-rich CPPs containing unnatural amino acids were designed to deliver plasmid DNA (pDNA). The transfection ability of one of the Arg-rich CPPs examined here was more effective than that of the Arg nonapeptide, which is the most frequently used CPP. The transfection efficiencies of Arg-rich CPPs increased with longer post-incubation times and were significantly higher at 48-h and 72-h post-incubation than that of the commercially available transfection reagent TurboFect. These Arg-rich CPPs were complexed with pDNA for a long time in cells and effectively escaped from the late endosomes/lysosomes into the cytoplasm. These results will be helpful for designing novel CPPs for pDNA delivery. PMID:27132868

  17. Favored and disfavored pathways of protein crosslinking by glucose: glucose lysine dimer (GLUCOLD) and crossline versus glucosepane

    PubMed Central

    Nemet, Ina; Strauch, Christopher M.

    2010-01-01

    We describe the isolation and molecular characterization of a novel glucose-lysine dimer crosslink 1,3-bis-(5-amino-5-carboxypentyl)-4-(1′,2′,3′,4′-tetrahydroxybutyl)-3H-imidazolium salt, named GLUCOLD. GLUCOLD was easily formed from the Amadori product (fructose–lysine). However, when BSA was incubated with 100 mM glucose for 25 days, the levels of the lysine-lysine glucose crosslinks GLUCOLD and CROSSLINE were only 21 and <1 pmol/mg, respectively, compared to 611 pmol/mg protein for the lysine-arginine GLUCOSEPANE crosslink, in spite of more than 20 potential lysine-lysine crosslinking sites in the protein. Mechanistic investigation revealed that metal-free phosphate ions catalyzed formation of fructose–lysine and all three crosslinks from amino acids, while cationic MOPS buffer had an opposite effect. This together with the rapid formation of N6-1,4-dideoxy-5,6-dioxoglucosone derivatives by dicarbonyl trapping agents, such as 1,2-diaminobenzene or γ-guanidinobutyric acid, strongly suggests that enolization of the Amadori product and trapping of the 5,6-dioxo derivative by arginine residues constitutes the major pathway for glucose-mediated crosslinking in proteins. PMID:20607325

  18. Favored and disfavored pathways of protein crosslinking by glucose: glucose lysine dimer (GLUCOLD) and crossline versus glucosepane.

    PubMed

    Nemet, Ina; Strauch, Christopher M; Monnier, Vincent M

    2011-01-01

    We describe the isolation and molecular characterization of a novel glucose-lysine dimer crosslink 1,3-bis-(5-amino-5-carboxypentyl)-4-(1',2',3',4'-tetrahydroxybutyl)-3H-imidazolium salt, named GLUCOLD. GLUCOLD was easily formed from the Amadori product (fructose-lysine). However, when BSA was incubated with 100 mM glucose for 25 days, the levels of the lysine-lysine glucose crosslinks GLUCOLD and CROSSLINE were only 21 and <1 pmol/mg, respectively, compared to 611 pmol/mg protein for the lysine-arginine GLUCOSEPANE crosslink, in spite of more than 20 potential lysine-lysine crosslinking sites in the protein. Mechanistic investigation revealed that metal-free phosphate ions catalyzed formation of fructose-lysine and all three crosslinks from amino acids, while cationic MOPS buffer had an opposite effect. This together with the rapid formation of N (6)-1,4-dideoxy-5,6-dioxoglucosone derivatives by dicarbonyl trapping agents, such as 1,2-diaminobenzene or γ-guanidinobutyric acid, strongly suggests that enolization of the Amadori product and trapping of the 5,6-dioxo derivative by arginine residues constitutes the major pathway for glucose-mediated crosslinking in proteins. PMID:20607325

  19. Pharmacological PPARα Activation Markedly Alters Plasma Turnover of the Amino Acids Glycine, Serine and Arginine in the Rat

    PubMed Central

    Ericsson, Anette; Turner, Nigel; Hansson, Göran I.; Wallenius, Kristina; Oakes, Nicholas D.

    2014-01-01

    The current study extends previously reported PPARα agonist WY 14,643 (30 µmol/kg/day for 4 weeks) effects on circulating amino acid concentrations in rats fed a 48% saturated fat diet. Steady-state tracer experiments were used to examine in vivo kinetic mechanisms underlying altered plasma serine, glycine and arginine levels. Urinary urea and creatinine excretion were measured to assess whole-body amino acid catabolism. WY 14,643 treated animals demonstrated reduced efficiency to convert food consumed to body weight gain while liver weight was increased compared to controls. WY 14,643 raised total amino acid concentration (38%), largely explained by glycine, serine and threonine increases. 3H-glycine, 14C-serine and 14C-arginine tracer studies revealed elevated rates of appearance (Ra) for glycine (45.5±5.8 versus 17.4±2.7 µmol/kg/min) and serine (21.0±1.4 versus 12.0±1.0) in WY 14,643 versus control. Arginine was substantially decreased (−62%) in plasma with estimated Ra reduced from 3.1±0.3 to 1.2±0.2 µmol/kg/min in control versus WY 14,643. Nitrogen excretion over 24 hours was unaltered. Hepatic arginase activity was substantially decreased by WY 14,643 treatment. In conclusion, PPARα agonism potently alters metabolism of several specific amino acids in the rat. The changes in circulating levels of serine, glycine and arginine reflected altered fluxes into the plasma rather than changes in clearance or catabolism. This suggests that PPARα has an important role in modulating serine, glycine and arginine de novo synthesis. PMID:25486018

  20. Fatty acid modified octa-arginine for delivery of siRNA.

    PubMed

    Li, Yuhuan; Li, Yujing; Wang, Xinmei; Lee, Robert J; Teng, Lesheng

    2015-11-10

    Therapeutic delivery of small interfering RNA (siRNA) is a major challenge that limits its potential clinical application. Four fatty acids derivatives of octa-arginine (R8) were synthesized and evaluated for the delivery of siRNA into hepatocellular carcinoma Hep G2 and human lung adenocarcinoma A549 cells. The results showed that the long chain acid oleic acid or stearic acid derivatives of R8, OA-R8 and StA-R8, were more efficient in siRNA complexation and form nanoparticles with greater stability compared to the native R8. Cellular uptake of fluorescence-labeled siRNA delivered by OA-R8 and StA-R8 in Hep G2 and A549 cells was substantially 40-50 times higher than unmodified R8. A significant reduction in siRNA cellular uptake was observed in the presence of sucrose and cytochalasin D, indicating endocytosis as a primary mechanism of cellular entry. A survivin siRNA was used to prepare nanoparticles with OA-R8 or StA-R8 and evaluated for silencing of survivin mRNA and protein in A549 cells, and the inhibition efficiencies of survivin protein reached to 50.3% and 54.6%, respectively. The results showed greater effectiveness with the derivatized R8. Taken together, these findings showed that long chain fatty acid derivatives of R8 are efficient delivery agents for siRNA and may facilitate its therapeutic application. PMID:26386137

  1. Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation.

    PubMed

    Schulze, A; Ebinger, F; Rating, D; Mayatepek, E

    2001-12-01

    Guanidinoacetate methyltransferase (GAMT) deficiency (McKusick 601240), an inborn error of creatine biosynthesis, is characterized by creatine depletion and accumulation of guanidinoacetate (GAA) in the brain. Treatment by oral creatine supplementation had no effect on the intractable seizures. Based on the possible role of GAA as an epileptogenic agent, we evaluated a dietary treatment with arginine restriction and ornithine supplementation in order to achieve reduction of GAA. In an 8-year-old Kurdish girl with GAMT deficiency arginine intake was restricted to 15 mg/kg/day (0.4 g natural protein/kg/day) and ornithine was supplemented with 100 mg/kg/day over a period of 14 months. The diet was enriched with 0.4 g/kg/day of arginine-free essential amino acid mixture and creatine treatment remained unchanged (1.1 g/kg/day). Guanidino compounds in blood, urine, and CSF were measured by means of cation-exchange chromatography. The combination of arginine restriction and ornithine supplementation led to a substantial and permanent decrease of arginine without disturbance of nitrogen detoxification. Formation of GAA was effectively reduced after 4 weeks of treatment and sustained thereafter. Biochemical effects were accompanied by a marked clinical improvement. Distinctly reduced epileptogenic activities in electroencephalography accompanied by almost complete disappearance of seizures demonstrates the positive effect of GAA reduction. This indicates for the first time that GAA may exert an important epileptogenic potential in man. Arginine restriction in combination with ornithine supplementation represents a new and rationale therapeutic approach in GAMT deficiency. PMID:11749046

  2. Surface lysine residues modulate the collisional transfer of fatty acid from adipocyte fatty acid binding protein to membranes.

    PubMed

    Herr, F M; Matarese, V; Bernlohr, D A; Storch, J

    1995-09-19

    The transfer of unesterified fatty acids (FA) from adipocyte fatty acid binding protein (A-FABP) to phospholipid membranes is proposed to occur via a collisional mechanism involving transient ionic and hydrophobic interactions [Wootan & Storch (1994) J. Biol. Chem. 269, 10517-10523]. In particular, it was suggested that membrane acidic phospholipids might specifically interact with basic residues on the surface of A-FABP. Here we addressed whether lysine residues on the surface of the protein are involved in this collisional transfer mechanism. Recombinant A-FABP was acetylated to neutralize all positively charged surface lysine residues. Protein fluorescence, CD spectra, and chemical denaturant data indicate that acetylation did not substantially alter the conformational integrity of the protein, and nearly identical affinities were obtained for binding of the fluorescently labeled FA [12-(9-anthroyloxy)oleate] to native and acetylated protein. Transfer of 2-(9-anthroyloxy)palmitate (2AP) from acetylated A-FABP to small unilamellar vesicles (SUV) was 35-fold slower than from native protein. In addition, whereas the 2AP transfer rate from native A-FABP was directly dependent on SUV concentration, 2AP transfer from acetylated protein was independent on the concentration of acceptor membranes. Factors which alter aqueous-phase solubility of FA, such as ionic strength and acyl chain length and saturation, affected the AOFA transfer rate from acetylated but not native A-FABP. Finally, an increase in the negative charge density of the acceptor SUV resulted in a marked increase in the rate of transfer from native A-FABP but did not increase the rate from acetylated A-FABP.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7547918

  3. Extracellular matrix-like surfactant polymers containing arginine-glycine-aspartic acid (RGD) peptides.

    PubMed

    Anderson, Eric H; Ruegsegger, Mark A; Murugesan, Gurunathan; Kottke-Marchant, Kandice; Marchant, Roger E

    2004-08-01

    We report on a novel series of biomimetic polymers exhibiting interfacial properties similar to the extracellular matrix. A series of well-defined surfactant polymers were synthesized by simultaneously incorporating arginine-glycine-aspartic acid (RGD) peptide, dextran oligosaccharide, and hexyl ligands with controlled feed ratios onto a poly(vinyl amine) (PVAm) backbone. The peptide sequence was H-GSSSGRGDSPA-NH(2) (Pep) having a hydrophilic extender at the amino terminus and capped carboxy terminus. The peptide-to-dextran (Pep:Dex) ratios were varied to create surfactants having 0, 25, 50, 75, and 100 mol-% peptide relative to dextran. The surfactants were characterized by IR, NMR and atomic force microscopy (AFM) for composition and surface active properties. AFM confirmed full surface coverage of PVAm(Pep)(100%) on graphite, and supported the mechanism of interdigitation of hexyl ligands between surfactant molecules within a specified range of hexyl chain densities. the attachment and growth of human pulmonary artery endothelial cells on the PVAm(Pep)(100%) surface was identical to the fibronectin positive control. Cell adhesion decreased dramatically with decreasing peptide density on the surfactant polymers. Molecular model of a peptide surfactant polymer, consisting of poly(vinyl amine) backbone with peptide, dextran oligosaccharide and hexyl branches coupled to the polymer chain. PMID:15468270

  4. NO synthesis from arginine is favored by α-linolenic acid in mice fed a high-fat diet.

    PubMed

    Hermier, Dominique; Guelzim, Najoua; Martin, Pascal G P; Huneau, Jean-François; Mathé, Véronique; Quignard-Boulangé, Annie; Lasserre, Frédéric; Mariotti, François

    2016-09-01

    Alterations in NO availability and signaling play a pivotal role at early stages of the metabolic syndrome (MetSynd). We hypothesized that dietary α-linolenic acid (ALA, 18:3 n-3) favors NO availability by modulating amino acid metabolism, with a specific impact on the arginine-NO pathway. Mice were fed a hyperlipidic diet (285 g lipid/kg, 51.1 % energy), rich in either saturated fatty acids (SFA, provided by palm oil, PALM group) or ALA (provided by linseed oil, LIN group). We measured whole-body NO synthesis and systemic arginine hydrolysis with a tracer-based method, plasma concentration of related metabolites, and hepatic mRNA level of related enzymes, and the study was completed by a transcriptomic analysis in the liver. As expected with this model, hyperlipidic diets resulted in increased adiposity and glycemia after 5 weeks. As compared to PALM mice, LIN mice had a higher plasma nitrite and nitrate concentration, a higher whole-body conversion of arginine into NO vs urea, and a similar plasma concentration of asymmetric dimethylarginine (ADMA), despite a higher expression of the liver dimethylargininase-1. In LIN mice, there was a higher expression of genes involved in PPARα signaling, but a little impact on gene expression related to amino acids and arginine metabolism. This effect cannot be directly ascribed to changes in arginase activity in the liver or ADMA metabolism, nor to direct regulation of the related target genes. In conclusion, dietary ALA favors NO synthesis, which could contribute to rescue NO availability when jeopardized by the nutritional conditions in relation with the initiation of the MetSynd. PMID:27178023

  5. Important roles for the arginine family of amino acids in swine nutrition and production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine, glutamine, glutamate, proline, aspartate, asparagine, ornithine, and citrulline are interconvertible via complex interorgan metabolism in most mammals (including the pig). The major sites for their metabolism are the small intestine, kidneys, and liver, with cortisol being a key regulatory...

  6. Wet-chemical green synthesis of L-lysine amino acid stabilized biocompatible iron-oxide magnetic nanoparticles.

    PubMed

    Krishna, Rahul; Titus, Elby; Krishna, Rohit; Bardhan, Neelkanth; Bahadur, Dhirendra; Gracio, José

    2012-08-01

    In this paper, we report a novel method for the synthesis of L-Lysine (lys) amino acid coated maghemite (gamma-Fe2O3) magnetic nanoparticles (MNPs). The facile and cost effective method permitted preparation of the high-quality superparamagnetic gamma-Fe2O3 MNPs with hydrophilic and biocompatible nature. For this work, first we synthesized magnetite phase Fe3O4/lys by wet chemical method and oxidized to y-Fe2O3 in controlled oxidizing environment, as evidenced by XRD and VSM magnetometry. The crystallite size and magnetization of gamma-Fe2O3/lys MNPs was found to be 14.5 nm, 40.6 emu/gm respectively. The surface functionalization by L-lysine amino acid and metal-ligand bonding was also confirmed by FTIR spectroscopy. The hydrodynamic diameter, colloidal stability and surface charge on MNPs were characterized by DLS and zeta potential analyser. PMID:22962801

  7. Heterologous Production of Hyaluronic Acid in an ε-Poly-l-Lysine Producer, Streptomyces albulus

    PubMed Central

    Yoshimura, Tomohiro; Shibata, Nobuyuki; Hamano, Yoshimitsu

    2015-01-01

    Hyaluronic acid (HA) is used in a wide range of medical applications, where its performance and therapeutic efficacy are highly dependent on its molecular weight. In the microbial production of HA, it has been suggested that a high level of intracellular ATP enhances the productivity and molecular weight of HA. Here, we report on heterologous HA production in an ε-poly-l-lysine producer, Streptomyces albulus, which has the potential to generate ATP at high level. The hasA gene from Streptococcus zooepidemicus, which encodes HA synthase, was refactored and expressed under the control of a late-log growth phase-operating promoter. The expression of the refactored hasA gene, along with genes coding for UDP-glucose dehydrogenase, UDP-N-acetylglucosamine pyrophosphorylase, and UDP-glucose pyrophosphorylase, which are involved in HA precursor sugar biosynthesis, resulted in efficient production of HA in the 2.0 MDa range, which is greater than typical bacterial HA, demonstrating that a sufficient amount of ATP was provided to support the biosynthesis of the precursor sugars, which in turn promoted HA production. In addition, unlike in the case of streptococcal HA, S. albulus-derived HA was not cell associated. Based on these findings, our heterologous production system appears to have several advantages for practical HA production. We propose that the present system could be applicable to the heterologous production of a wide variety of molecules other than HA in the case their biosynthesis pathways require ATP in vivo. PMID:25795665

  8. Citrulline Protects Streptococcus pyogenes from Acid Stress Using the Arginine Deiminase Pathway and the F1Fo-ATPase

    PubMed Central

    Cusumano, Zachary T.

    2015-01-01

    ABSTRACT A common stress encountered by both pathogenic and environmental bacteria is exposure to a low-pH environment, which can inhibit cell growth and lead to cell death. One major defense mechanism against this stress is the arginine deiminase (ADI) pathway, which catabolizes arginine to generate two ammonia molecules and one molecule of ATP. While this pathway typically relies on the utilization of arginine, citrulline has also been shown to enter into the pathway and contribute to protection against acid stress. In the pathogenic bacterium Streptococcus pyogenes, the utilization of citrulline has been demonstrated to contribute to pathogenesis in a murine model of soft tissue infection, although the mechanism underlying its role in infection is unknown. To gain insight into this question, we analyzed a panel of mutants defective in different steps in the ADI pathway to dissect how arginine and citrulline protect S. pyogenes in a low-pH environment. While protection provided by arginine utilization occurred through the buffering of the extracellular environment, citrulline catabolism protection was pH independent, requiring the generation of ATP via the ADI pathway and a functional F1Fo-ATP synthase. This work demonstrates that arginine and citrulline catabolism protect against acid stress through distinct mechanisms and have unique contributions to virulence during an infection. IMPORTANCE An important aspect of bacterial pathogenesis is the utilization of host-derived nutrients during an infection for growth and virulence. Previously published work from our lab identified a unique role for citrulline catabolism in Streptococcus pyogenes during a soft tissue infection. The present article probes the role of citrulline utilization during this infection and its contribution to protection against acid stress. This work reveals a unique and concerted action between the catabolism of citrulline and the F1Fo-ATPase that function together to provide protection for

  9. Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway--metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Becker, Judith; Wittmann, Christoph

    2013-01-01

    In this study, we demonstrate increased lysine production by flux coupling using the industrial work horse bacterium Corynebacterium glutamicum, which was mediated by the targeted interruption of the tricarboxylic acid (TCA) cycle at the level of succinyl-CoA synthetase. The succinylase branch of the lysine production pathway functions as the bridging reaction to convert succinyl-CoA to succinate in this aerobic bacterium. The mutant C. glutamicum ΔsucCD showed a 60% increase in the yield of lysine when compared to the advanced lysine producer which was used as parent strain. This mutant was highly vital and exhibited only a slightly reduced specific growth rate. Metabolic flux analysis with (13)C isotope studies confirmed that the increase in lysine production was mediated by pathway coupling. The novel strain exhibited an exceptional flux profile, which was closer to the optimum performance predicted by in silico pathway analysis than to the large set of lysine-producing strains analyzed thus far. Fluxomics and transcriptomics were applied as further targets for next-level strain engineering to identify the back-up mechanisms that were activated upon deletion of the enzyme in the mutant strain. It seemed likely that the cells partly recruited the glyoxylate shunt as a by-pass route. Additionally, the α-ketoglutarate decarboxylase pathway emerged as the potential compensation mechanism. This novel strategy appears equally promising for Escherichia coli, which is used in the industrial production of lysine, wherein this bacterium synthesizes lysine exclusively by succinyl-CoA activation of pathway intermediates. The channeling of a high flux pathway into a production pathway by pathway coupling is an interesting metabolic engineering strategy that can be explored to optimize bio-production in the future. PMID:22871505

  10. Needlelike and spherical polyelectrolyte complex nanoparticles of poly(l-lysine) and copolymers of maleic acid.

    PubMed

    Müller, M; Reihs, T; Ouyang, W

    2005-01-01

    We report on the bulk and surface properties of dispersions consisting of nonstoichiometric polyelectrolyte complex (PEC) nanoparticles. PEC nanoparticles were prepared by mixing poly(l-lysine) (PLL) or poly(diallyldimethylammonium chloride) (PDADMAC) with poly(maleic acid-co-alpha-methylstyrene) (PMA-MS) or poly(maleic acid-co-propylene) (PMA-P). The monomolar mixing ratio was n-/n+ = 0.6, and the concentration ranged from 1 to 6 mmol/L. Subsequent centrifugation enabled the separation of the excess polycation, resulting in a stable coacervate phase further used in the experiments. The bulk phase parameters turbidity and hydrodynamic radius (R(h)) of the PEC nanoparticles showed a linear dependence on the total polymer content independently of the mixed polyelectrolytes. This can be interpreted by the increased collision probability of the polyelectrolyte chains when the overlap concentration is approached or exceeded. Different morphologies of the cationic PEC nanoparticles, which were solution-cast onto Si supports, were obtained by atomic force microscopy (AFM). The combinations of PLL/PMA-MS and PDADMAC/PMA-MS revealed more or less hemispherical particle shapes, whereas that of PLL/PMA-P revealed an elongated needlelike particle shape. Circular dichroism and attenuated total reflection Fourier transform infrared (ATR-FTIR) measurements proved the alpha-helical conformation for the PEC PLL/PMA-P and the random coil conformation for the PEC PLL/PMA-MS. We conclude that stiff alpha-helical PLL induces anisotropic elongated PEC nanoparticles, whereas randomly coiled PLL forms isotropic spherical PEC nanoparticles. PMID:15620340

  11. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    PubMed

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. PMID:27362554

  12. Creatine, arginine alpha-ketoglutarate, amino acids, and medium-chain triglycerides and endurance and performance.

    PubMed

    Little, Jonathan P; Forbes, Scott C; Candow, Darren G; Cornish, Stephen M; Chilibeck, Philip D

    2008-10-01

    Creatine (Cr) supplementation increases muscle mass, strength, and power. Arginine a-ketoglutarate (A-AKG) is a precursor for nitric oxide production and has the potential to improve blood flow and nutrient delivery (i.e., Cr) to muscles. This study compared a commercial dietary supplement of Cr, A-AKG, glutamine, taurine, branched-chain amino acids, and medium-chain triglycerides with Cr alone or placebo on exercise performance and body composition. Thirty-five men (approximately 23 yr) were randomized to Cr + A-AKG (0.1 g . kg(-1) . d(-1) Cr + 0.075 g . kg(-1) . d(-1)A-AKG, n = 12), Cr (0.1 g . kg(-1) . d(-1), n = 11), or placebo (1 g . kg(-1) . d(-1) sucrose, n = 12) for 10 d. Body composition, muscle endurance (bench press), and peak and average power (Wingate tests) were measured before and after supplementation. Bench-press repetitions over 3 sets increased with Cr + A-AKG (30.9 +/- 6.6 +/- 34.9 +/- 8.7 reps; p < .01) and Cr (27.6 +/- 5.9 +/- 31.0 +/- 7.6 reps; p < .01), with no change for placebo (26.8 +/- 5.0 +/- 27.1 +/- 6.3 reps). Peak power significantly increased in Cr + A-AKG (741 +/- 112 +/- 794 +/- 92 W; p < .01), with no changes in Cr (722 +/- 138 +/- 730 +/- 144 W) and placebo (696 +/- 63 +/- 705 +/- 77 W). There were no differences in average power between groups over time. Only the Cr-only group increased total body mass (79.9 +/- 13.0 +/- 81.1 +/- 13.8 kg; p < .01), with no significant changes in lean-tissue or fat mass. These results suggest that Cr alone and in combination with A-AKG improves upper body muscle endurance, and Cr + A-AKG supplementation improves peak power output on repeated Wingate tests. PMID:19033611

  13. KDP crystal doped with L-arginine amino acid: growth, structure perfection, optical and strength characteristics

    NASA Astrophysics Data System (ADS)

    Pritula, I. M.; Kostenyukova, E. I.; Bezkrovnaya, O. N.; Kolybaeva, M. I.; Sofronov, D. S.; Dolzhenkova, E. F.; Kanaev, A.; Tsurikov, V.

    2016-07-01

    Potassium Dihydrogen Phosphate (KDP) crystal doped with L-arginine (L-arg) amino acid with 1.4 wt% concentration in the solution was grown onto a point seed by the method of temperature reduction. For the first time an attempt was made to grow large-size (7 × 6 × 8 cm3) optically transparent crystals, which allowed to analyze the effect of L-arg additive on the physical properties of the different growth sectors ({100} and {101}) of KDP. The incorporation of L-arg into both growth sectors of the crystal was confirmed by the methods of optical and IR spectroscopy and found to be caused by the ability of the amino acid to form hydrogen bonds with the face {100} and electrostatically interact with the positively charged face {101} of KDP crystal. A slight variation in the unit cell parameters was reported, the elementary cell volume of KDP:L-arg crystal increased in comparison with the one of pure KDP by 2·10-2 and 2.07·10-2 Å3 in the sectors {100} and {101}, respectively. It was found that the doping of L-arg enhanced the SHG efficiency of KDP and depended on the crystal growth sectors. The SHG efficiency of KDP:L-arg was by a factor 2.53 and 3.95 higher in comparison with those of pure KDP for {101} and {100} growth sector, respectively. The doping was found to lead to softening of both faces by ∼3-10% and ∼14-17% in the sectors {101} and {100}, respectively. Investigation of the influence of L-arg molecules on the bulk laser damage threshold of the crystals showed that the bulk laser damage threshold of the samples of KDP:L-arg crystal was higher than the one of the pure crystal in the sector {101} and lower in the sector {100}. The correlation between microhardness and laser damage threshold were discussed. The study is helpful for further searching, designing and simulation of hybrid NLO materials.

  14. First hyperpolarizability of the natural aromatic amino acids tryptophan, tyrosine, and phenylalanine and the tripeptide lysine-tryptophan-lysine determined by hyper-Rayleigh scattering.

    PubMed

    Duboisset, J; Matar, G; Russier-Antoine, I; Benichou, E; Bachelier, G; Jonin, Ch; Ficheux, D; Besson, F; Brevet, P F

    2010-11-01

    We report the first hyperpolarizability of tryptophan (Trp) and tyrosine (Tyr) and an upper limit for that of phenylalanine (Phe), three natural aromatic amino acids. The measurements were performed with hyper-Rayleigh scattering in an aqueous Tris buffer solution at a pH of 8.5 and 150 mM salt concentration with a fundamental wavelength of 780 nm. A value of (4.7 ± 0.7) × 10(-30) esu is found for Trp and (4.1 ± 0.7) × 10(-30) esu for Tyr whereas the upper limit of 1.4 × 10(-30) esu is found for that of Phe due to its limited solubility. The influence of the presence of lysine (Lys) in close vicinity of Trp is investigated with a measurement of the first hyperpolarizabilty of Trp in an excess of Lys and compared to the first hyperpolarizability obtained for the tripeptide Lys-Trp-Lys. The clear decrease of the values measured in these two cases indicates that the first hyperpolarizabilty of Trp is very sensitive to its local environment. PMID:20939548

  15. Mapping of Post-translational Modifications of Transition Proteins, TP1 and TP2, and Identification of Protein Arginine Methyltransferase 4 and Lysine Methyltransferase 7 as Methyltransferase for TP2*

    PubMed Central

    Gupta, Nikhil; Madapura, M. Pradeepa; Bhat, U. Anayat; Rao, M. R. Satyanarayana

    2015-01-01

    In a unique global chromatin remodeling process during mammalian spermiogenesis, 90% of the nucleosomal histones are replaced by testis-specific transition proteins, TP1, TP2, and TP4. These proteins are further substituted by sperm-specific protamines, P1 and P2, to form a highly condensed sperm chromatin. In spermatozoa, a small proportion of chromatin, which ranges from 1 to 10% in mammals, retains the nucleosomal architecture and is implicated to play a role in transgenerational inheritance. However, there is still no mechanistic understanding of the interaction of chromatin machinery with histones and transition proteins, which facilitate this selective histone replacement from chromatin. Here, we report the identification of 16 and 19 novel post-translational modifications on rat endogenous transition proteins, TP1 and TP2, respectively, by mass spectrometry. By in vitro assays and mutational analysis, we demonstrate that protein arginine methyltransferase PRMT4 (CARM1) methylates TP2 at Arg71, Arg75, and Arg92 residues, and lysine methyltransferase KMT7 (Set9) methylates TP2 at Lys88 and Lys91 residues. Further studies with modification-specific antibodies that recognize TP2K88me1 and TP2R92me1 modifications showed that they appear in elongating to condensing spermatids and predominantly associated with the chromatin-bound TP2. This work establishes the repertoire of post-translational modifications that occur on TP1 and TP2, which may play a significant role in various chromatin-templated events during spermiogenesis and in the establishment of the sperm epigenome. PMID:25818198

  16. Mapping of Post-translational Modifications of Transition Proteins, TP1 and TP2, and Identification of Protein Arginine Methyltransferase 4 and Lysine Methyltransferase 7 as Methyltransferase for TP2.

    PubMed

    Gupta, Nikhil; Madapura, M Pradeepa; Bhat, U Anayat; Rao, M R Satyanarayana

    2015-05-01

    In a unique global chromatin remodeling process during mammalian spermiogenesis, 90% of the nucleosomal histones are replaced by testis-specific transition proteins, TP1, TP2, and TP4. These proteins are further substituted by sperm-specific protamines, P1 and P2, to form a highly condensed sperm chromatin. In spermatozoa, a small proportion of chromatin, which ranges from 1 to 10% in mammals, retains the nucleosomal architecture and is implicated to play a role in transgenerational inheritance. However, there is still no mechanistic understanding of the interaction of chromatin machinery with histones and transition proteins, which facilitate this selective histone replacement from chromatin. Here, we report the identification of 16 and 19 novel post-translational modifications on rat endogenous transition proteins, TP1 and TP2, respectively, by mass spectrometry. By in vitro assays and mutational analysis, we demonstrate that protein arginine methyltransferase PRMT4 (CARM1) methylates TP2 at Arg(71), Arg(75), and Arg(92) residues, and lysine methyltransferase KMT7 (Set9) methylates TP2 at Lys(88) and Lys(91) residues. Further studies with modification-specific antibodies that recognize TP2K88me1 and TP2R92me1 modifications showed that they appear in elongating to condensing spermatids and predominantly associated with the chromatin-bound TP2. This work establishes the repertoire of post-translational modifications that occur on TP1 and TP2, which may play a significant role in various chromatin-templated events during spermiogenesis and in the establishment of the sperm epigenome. PMID:25818198

  17. Guanidination of Soluble Lysine-Rich Cyanophycin Yields a Homoarginine-Containing Polyamide

    PubMed Central

    Frommeyer, Maja; Bergander, Klaus

    2014-01-01

    Soluble cyanobacterial granule polypeptide (CGP), especially that isolated from recombinant Escherichia coli strains, consists of aspartic acid, arginine, and a greater amount of lysine than that in insoluble CGP isolated from cyanobacteria or various other recombinant bacteria. In vitro guanidination of lysine side chains of soluble CGP with o-methylisourea (OMIU) yielded the nonproteinogenic amino acid homoarginine. The modified soluble CGP consisted of 51 mol% aspartate, 14 mol% arginine, and 35 mol% homoarginine. The complete conversion of lysine residues to homoarginine was confirmed by (i) nuclear magnetic resonance spectrometry, (ii) coupled liquid chromatography-mass spectrometry, and (iii) high-performance liquid chromatography. Unlike soluble CGP, this new homoarginine-containing polyamide was soluble only under acidic or alkaline conditions and was insoluble in water or at a neutral pH. Thus, it showed solubility behavior similar to that of the natural insoluble polymer isolated from cyanobacteria, consisting of aspartic acid and arginine only. Polyacrylamide gel electrophoresis revealed similar degrees of polymerization of the native (12- to 40-kDa) and modified (10- to 35-kDa) polymers. This study showed that the chemical structure and properties of a biopolymer could be changed by in vitro introduction of a new functional group after biosynthesis of the native polymer. In addition, the modified CGP could be digested in vitro using the cyanophycinase from Pseudomonas alcaligenes strain DIP1, yielding a new dipeptide consisting of aspartate and homoarginine. PMID:24509932

  18. Crystal growth, structural and thermal studies of amino acids admixtured L-arginine phosphate monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Anandan, P.; Saravanan, T.; Parthipan, G.; Kumar, R. Mohan; Bhagavannarayana, G.; Ravi, G.; Jayavel, R.

    2011-05-01

    To study the improved characteristics of L-arginine phosphate monohydrate (LAP) crystals, amino acids mixed LAP crystals have been grown by slow cooling method. Amino acids like glycine, L-alanine, and L-valine have been selected for doping. Optical quality bulk crystals have been harvested after a typical growth period of about twenty days. The effect of amino acids in the crystal lattice and molecular vibrational frequencies of various functional groups in the crystals have been studied using X-ray powder diffraction and Fourier Transform infrared (FTIR) analyses respectively. Thermal behavior of the amino acids mixed LAP crystals have been studied from the TG and DTG analyses. High-resolution X-ray diffraction studies have been carried out to find the crystalline nature. Optical transmission studies have been carried out by UV-vis spectrophotometer. The cut off wavelength is below 240 nm for the grown crystals.

  19. Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar).

    PubMed

    Andersen, Synne M; Holen, Elisabeth; Aksnes, Anders; Rønnestad, Ivar; Zerrahn, Jens-Erik; Espe, Marit

    2013-12-14

    In the present study, quadruplicate groups of juvenile Atlantic salmon (Salmo salar) were fed plant protein-based diets with increasing arginine inclusions (range 28·8-37·4 g/kg DM) to investigate whether arginine supplementation affects growth and lipid accumulation through an elevated polyamine turnover. Dietary lysine was held at a constant concentration, just below the requirement. All other amino acids were balanced and equal in the diets. Arginine supplementation increased protein and fat accretion, without affecting the hepatosomatic or visceralsomatic indices. Dietary arginine correlated with putrescine in the liver (R 0·78, P= 0·01) and with ornithine in the muscle, liver and plasma (P= 0·0002, 0·003 and 0·0002, respectively). The mRNA of ornithine decarboxylase, the enzyme producing putrescine, was up-regulated in the white adipose tissue of fish fed the high-arginine inclusion compared with those fed the low-arginine diet. Concomitantly, spermidine/spermine-(N1)-acetyltransferase, the rate-limiting enzyme for polyamine turnover that consumes acetyl-CoA, showed an increased activity in the liver of fish fed the arginine-supplemented diets. In addition, lower acetyl-CoA concentrations were observed in the liver of fish fed the high-arginine diet, while ATP, which is used in the process of synthesising spermidine and spermine, did not show a similar trend. Gene expression of the rate-limiting enzyme for β-oxidation of long-chain fatty acids, carnitine palmitoyl transferase-1, was up-regulated in the liver of fish fed the high-arginine diet. Taken together, the data support that increased dietary arginine activates polyamine turnover and β-oxidation in the liver of juvenile Atlantic salmon and may act to improve the metabolic status of the fish. PMID:23656796

  20. Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

    PubMed Central

    Kaur, Randeep; Chitanda, Jackson M; Michel, Deborah; Maley, Jason; Borondics, Ferenc; Yang, Peng; Verrall, Ronald E; Badea, Ildiko

    2012-01-01

    Purpose: Detonation nanodiamonds (NDs) are carbon-based nanomaterials that, because of their size (4–5 nm), stable inert core, alterable surface chemistry, fluorescence, and biocompatibility, are emerging as bioimaging agents and promising tools for the delivery of biochemical molecules into cellular systems. However, diamond particles possess a strong propensity to aggregate in liquid formulation media, restricting their applicability in biomedical sciences. Here, the authors describe the covalent functionalization of NDs with lysine in an attempt to develop nanoparticles able to act as suitable nonviral vectors for transferring genetic materials across cellular membranes. Methods: NDs were oxidized and functionalized by binding lysine moieties attached to a three-carbon-length linker (1,3-diaminopropane) to their surfaces through amide bonds. Raman and Fourier transform infrared spectroscopy, zeta potential measurement, dynamic light scattering, atomic force microscopic imaging, and thermogravimetric analysis were used to characterize the lysine-functionalized NDs. Finally, the ability of the functionalized diamonds to bind plasmid DNA and small interfering RNA was investigated by gel electrophoresis assay and through size and zeta potential measurements. Results: NDs were successfully functionalized with the lysine linker, producing surface loading of 1.7 mmol g−1 of ND. These modified NDs formed highly stable aqueous dispersions with a zeta potential of 49 mV and particle size of approximately 20 nm. The functionalized NDs were found to be able to bind plasmid DNA and small interfering RNA by forming nanosized “diamoplexes”. Conclusion: The lysine-substituted ND particles generated in this study exhibit stable aqueous formulations and show potential for use as carriers for genetic materials. PMID:22904623

  1. Effects of carbohydrate, branched-chain amino acids, and arginine in recovery period on the subsequent performance in wrestlers

    PubMed Central

    2011-01-01

    Many athletes need to participate in multiple events in a single day. The efficient post-exercise glycogen recovery may be critical for the performance in subsequent exercise. This study examined whether post-exercise carbohydrate supplementation could restore the performance in the subsequent simulated wrestling match. The effect of branched-chain amino acids and arginine on glucose disposal and performance was also investigated. Nine well-trained male wrestlers participated in 3 trials in a random order. Each trial contained 3 matches with a 1-hr rest between match 1 and 2, and a 2-hr rest between match 2 and 3. Each match contained 3 exercise periods interspersed with 1-min rests. The subjects alternated 10-s all-out sprints and 20-s rests in each exercise period. At the end of match 2, 3 different supplementations were consumed: 1.2 g/kg glucose (CHO trial), 1 g/kg glucose + 0.1 g/kg Arg + 0.1 g/kg BCAA (CHO+AA trial), or water (placebo trial). The peak and average power in the 3 matches was similar in the 3 trials. After the supplementation, CHO and CHO+AA trial showed significantly higher glucose and insulin, and lower glycerol and non-esterified fatty acid concentrations than the placebo trial. There was no significant difference in these biochemical parameters between the CHO and CHO+AA trials. Supplementation of carbohydrate with or without BCAA and arginine during the post-match period had no effect on the performance in the following simulated match in wrestlers. In addition, BCAA and arginine did not provide additional insulinemic effect. PMID:22107883

  2. L-arginine conjugates of bile acids-a possible treatment for non-alcoholic fatty liver disease

    PubMed Central

    2014-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is a continuum of diseases that include simple steatosis and non-alcoholic steatohepatitis (NASH) ultimately leading to cirrhosis, hepatocellular carcinoma and end stage liver failure. Currently there is no approved treatment for NASH. It is known that bile acids not only have physiological roles in lipid digestion but also have strong hormonal properties. We have synthesized a novel chenodeoxycholyl-arginine ethyl ester conjugate (CDCArg) for the treatment of NAFLD. Methods Chemical synthesis of CDCArg was performed. Experiments for prevention and treatment of NAFLD were carried out on C57BL/6 J male mice that were treated with high fat diet (HFD, 60% calories from fat). CDCArg or cholic acid bile acids were admixture into the diets. Food consumption, weight gain, liver histology, intraperitoneal glucose tolerance test, biochemical analysis and blood parameters were assessed at the end of the experiment after 5 weeks of diet (prevention study) or after 14 weeks of diet (treatment study). In the treatment study CDCArg was admixture into the diet at weeks 10–14. Results In comparison to HFD treated mice, mice treated with HFD supplemented with CDCArg, showed reduced liver steatosis, reduced body weight and decreased testicular fat and liver tissue mass. Blood glucose, cholesterol, insulin and leptin levels were also lower in this group. No evidence of toxicity of CDCArg was recorded. In fact, liver injury, as evaluated using plasma hepatic enzyme levels, was low in mice treated with HFD and CDCArg when compared to mice treated with HFD and cholic acid. Conclusion CDCArg supplementation protected the liver against HFD-induced NAFLD without any toxic effects. These results indicate that basic amino acids e.g., L-arginine and bile acids conjugates may be a potential therapy for NAFLD. PMID:24750587

  3. Lysine and sulfur amino acid utilization in Eimeria acervulina-infected chicks as affected by narasin.

    PubMed

    Izquierdo, O A; Parsons, C M; Baker, D H

    1987-10-01

    The effects of supplemental narasin (80 mg/kg) on several dietary factors were investigated in chicks infected with Eimeria acervulina. In Trial 1, chicks were fed a lysine-deficient corn-corn gluten meal diet containing graded increments of crystalline L-lysine.HCl with or without narasin. Supplemental narasin increased weight gain and feed efficiency at all lysine levels fed. Based upon slope-ratio methodology, efficiency of L-lysine utilization was virtually the same in both narasin-fed and control chicks. Trials 2 and 3 evaluated the effect of narasin on methionine utilization in crossbred chicks fed a methionine-deficient soy-feather meal diet supplemented with graded levels of DL-methionine. Narasin supplementation increased weight gain, feed efficiency, and utilization of supplemental methionine in chicks infected with E. acervulina (Trial 2), but had no effect on any of the performance parameters in uninfected chicks (Trial 3). The effects of dietary protein level and source and dietary electrolyte balance on the narasin response of commercial broiler chicks infected with E. acervulina were studied in Trials 4 and 5, respectively. In Trial 4, narasin supplementation increased performance in all cases, and protein source or level had no effect on the narasin response. In Trial 5, rate and efficiency of gain were improved as the electrolyte balance (meq Na + K-Cl/kg diet) increased from 100 to 250, with no further improvement being observed from 250 to 350 meq. Supplemental narasin improved performance and no interaction between electrolyte balance and narasin was observed. PMID:3124089

  4. Characterization of an Arginine:Pyruvate Transaminase in Arginine Catabolism of Pseudomonas aeruginosa PAO1▿

    PubMed Central

    Yang, Zhe; Lu, Chung-Dar

    2007-01-01

    The arginine transaminase (ATA) pathway represents one of the multiple pathways for l-arginine catabolism in Pseudomonas aeruginosa. The AruH protein was proposed to catalyze the first step in the ATA pathway, converting the substrates l-arginine and pyruvate into 2-ketoarginine and l-alanine. Here we report the initial biochemical characterization of this enzyme. The aruH gene was overexpressed in Escherichia coli, and its product was purified to homogeneity. High-performance liquid chromatography and mass spectrometry (MS) analyses were employed to detect the presence of the transamination products 2-ketoarginine and l-alanine, thus demonstrating the proposed biochemical reaction catalyzed by AruH. The enzymatic properties and kinetic parameters of dimeric recombinant AruH were determined by a coupled reaction with NAD+ and l-alanine dehydrogenase. The optimal activity of AruH was found at pH 9.0, and it has a novel substrate specificity with an order of preference of Arg > Lys > Met > Leu > Orn > Gln. With l-arginine and pyruvate as the substrates, Lineweaver-Burk plots of the data revealed a series of parallel lines characteristic of a ping-pong kinetic mechanism with calculated Vmax and kcat values of 54.6 ± 2.5 μmol/min/mg and 38.6 ± 1.8 s−1. The apparent Km and catalytic efficiency (kcat/Km) were 1.6 ± 0.1 mM and 24.1 mM−1 s−1 for pyruvate and 13.9 ± 0.8 mM and 2.8 mM−1 s−1 for l-arginine. When l-lysine was used as the substrate, MS analysis suggested Δ1-piperideine-2-carboxylate as its transamination product. These results implied that AruH may have a broader physiological function in amino acid catabolism. PMID:17416668

  5. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level

    PubMed Central

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-01

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance. PMID:26806099

  6. Mycobacterium Lysine ε-aminotransferase is a novel alarmone metabolism related persister gene via dysregulating the intracellular amino acid level.

    PubMed

    Duan, Xiangke; Li, Yunsong; Du, Qinglin; Huang, Qinqin; Guo, Siyao; Xu, Mengmeng; Lin, Yanping; Liu, Zhidong; Xie, Jianping

    2016-01-01

    Bacterial persisters, usually slow-growing, non-replicating cells highly tolerant to antibiotics, play a crucial role contributing to the recalcitrance of chronic infections and treatment failure. Understanding the molecular mechanism of persister cells formation and maintenance would obviously inspire the discovery of new antibiotics. The significant upregulation of Mycobacterium tuberculosis Rv3290c, a highly conserved mycobacterial lysine ε-aminotransferase (LAT) during hypoxia persistent model, suggested a role of LAT in persistence. To test this, a lat deleted Mycobacterium smegmatis was constructed. The expression of transcriptional regulator leucine-responsive regulatory protein (LrpA) and the amino acids abundance in M. smegmatis lat deletion mutants were lowered. Thus, the persistence capacity of the deletion mutant was impaired upon norfloxacin exposure under nutrient starvation. In summary, our study firstly reported the involvement of mycobacterium LAT in persister formation, and possibly through altering the intracellular amino acid metabolism balance. PMID:26806099

  7. Gastropod arginine kinases from Cellana grata and Aplysia kurodai. Isolation and cDNA-derived amino acid sequences.

    PubMed

    Suzuki, T; Inoue, N; Higashi, T; Mizobuchi, R; Sugimura, N; Yokouchi, K; Furukohri, T

    2000-12-01

    Arginine kinase (AK) was isolated from the radular muscle of the gastropod molluscs Cellana grata (subclass Prosobranchia) and Aplysia kurodai (subclass Opisthobranchia), respectively, by ammonium sulfate fractionation, Sephadex G-75 gel filtration and DEAE-ion exchange chromatography. The denatured relative molecular mass values were estimated to be 40 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isolated enzyme from Aplysia gave a Km value of 0.6 mM for arginine and a Vmax value of 13 micromole Pi min(-1) mg protein(-1) for the forward reaction. These values are comparable to other molluscan AKs. The cDNAs encoding Cellana and Aplysia AKs were amplified by polymerase chain reaction, and the nucleotide sequences of 1,608 and 1,239 bp, respectively, were determined. The open reading frame for Cellana AK is 1044 nucleotides in length and encodes a protein with 347 amino acid residues, and that for A. kurodai is 1077 nucleotides and 354 residues. The cDNA-derived amino acid sequences were validated by chemical sequencing of internal lysyl endopeptidase peptides. The amino acid sequences of Cellana and Aplysia AKs showed the highest percent identity (66-73%) with those of the abalone Nordotis and turbanshell Battilus belonging to the same class Gastropoda. These AK sequences still have a strong homology (63-71%) with that of the chiton Liolophura (class Polyplacophora), which is believed to be one of the most primitive molluscs. On the other hand, these AK sequences are less homologous (55-57%) with that of the clam Pseudocardium (class Bivalvia), suggesting that the biological position of the class Polyplacophora should be reconsidered. PMID:11281267

  8. The Coding Properties of Lysine-accepting Transfer Ribonucleic Acids from Black-eyed Peas 1

    PubMed Central

    Hague, Donald R.; Kofoid, Eric C.

    1971-01-01

    Lysine-accepting transfer RNA from ungerminated and germinated embryo axes of black-eyed peas (Vigna sinensis L. Savi) was fractionated on benzoylated diethylaminoethyl cellulose and reverse phase Freon columns. Cochromatography indicated the presence of two similar lysyl transfer RNA fractions in each tissue. Ribosome binding studies revealed that the larger of the two fractions in each case is specific for the AAG codon, while the smaller one recognizes AAA and AAG. Possible implications of this difference in quantities of isoacceptors in translation of genetic information are discussed. PMID:16657787

  9. Two proteins with ornithine acetyltransferase activity show different functions in Streptomyces clavuligerus: Oat2 modulates clavulanic acid biosynthesis in response to arginine.

    PubMed

    de la Fuente, A; Martín, J F; Rodríguez-García, A; Liras, P

    2004-10-01

    The oat2 gene, located in the clavulanic acid gene cluster in Streptomyces clavuligerus, is similar to argJ, which encodes N-acetylornithine:glutamic acid acetyltransferase activity. Purified proteins obtained by expression in Escherichia coli of the argJ and oat2 genes of S. clavuligerus posses N-acetyltransferase activity. The kinetics and substrate specificities of both proteins are very similar. Deletion of the oat2 gene did not affect the total N-acetylornithine transferase activity and slightly reduced the formation of clavulanic acid under standard culture conditions. However, the oat2 mutant produced more clavulanic acid than the parental strain in cultures supplemented with high levels (above 1 mM) of arginine. The purified S. clavuligerus ArgR protein bound the arginine box in the oat2 promoter, and the expression of oat2 was higher in mutants with a disruption in argR (arginine-deregulated), confirming that the Arg boxes of oat2 are functional in vivo. Our results suggest that the Oat2 protein or one of its reaction products has a regulatory role that modulates clavulanic acid biosynthesis in response to high arginine concentrations. PMID:15375131

  10. Opposite Associations of Plasma Homoarginine and Ornithine with Arginine in Healthy Children and Adolescents

    PubMed Central

    JaŸwińska-Kozuba, Aleksandra; Martens-Lobenhoffer, Jens; Kruszelnicka, Olga; Rycaj, Jarosław; Chyrchel, Bernadeta; Surdacki, Andrzej; Bode-Böger, Stefanie M.

    2013-01-01

    Homoarginine, a non-proteinogenic amino acid, is formed when lysine replaces ornithine in reactions catalyzed by hepatic urea cycle enzymes or lysine substitutes for glycine as a substrate of renal arginine:glycine amidinotransferase. Decreased circulating homoarginine and elevated ornithine, a downstream product of arginase, predict adverse cardiovascular outcome. Our aim was to investigate correlates of plasma homoarginine and ornithine and their relations with carotid vascular structure in 40 healthy children and adolescents aged 3–18 years without coexistent diseases or subclinical carotid atherosclerosis. Homoarginine, ornithine, arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) were measured by liquid chromatography-tandem mass spectrometry with stable isotope-labeled internal standards. Intima-media thickness (IMT) and extra-medial thickness (EMT) of common carotid arteries were estimated by B-mode ultrasound. Homoarginine correlated with arginine (r = 0.43, p = 0.005), age (r = 0.42, p = 0.007) and, weakly, with an increased arginine-to-ornithine ratio, a putative measure of lower arginase activity (r = 0.31, p = 0.048). Ornithine correlated inversely with arginine (r = −0.64, p < 0.001). IMT, EMT or their sum were unrelated to any of the biochemical parameters (p > 0.12). Thus, opposite associations of plasma homoarginine and ornithine with arginine may partially result from possible involvement of arginase, an enzyme controlling homoarginine degradation and ornithine synthesis from arginine. Age-dependency of homoarginine levels can reflect developmental changes in homoarginine metabolism. However, neither homoarginine nor ornithine appears to be associated with carotid vascular structure in healthy children and adolescents. PMID:24192823

  11. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1.

    PubMed

    Saxton, Robert A; Chantranupong, Lynne; Knockenhauer, Kevin E; Schwartz, Thomas U; Sabatini, David M

    2016-08-11

    The mechanistic Target of Rapamycin Complex 1 (mTORC1) is a major regulator of eukaryotic growth that coordinates anabolic and catabolic cellular processes with inputs such as growth factors and nutrients, including amino acids. In mammals arginine is particularly important, promoting diverse physiological effects such as immune cell activation, insulin secretion, and muscle growth, largely mediated through activation of mTORC1 (refs 4, 5, 6, 7). Arginine activates mTORC1 upstream of the Rag family of GTPases, through either the lysosomal amino acid transporter SLC38A9 or the GATOR2-interacting Cellular Arginine Sensor for mTORC1 (CASTOR1). However, the mechanism by which the mTORC1 pathway detects and transmits this arginine signal has been elusive. Here, we present the 1.8 Å crystal structure of arginine-bound CASTOR1. Homodimeric CASTOR1 binds arginine at the interface of two Aspartate kinase, Chorismate mutase, TyrA (ACT) domains, enabling allosteric control of the adjacent GATOR2-binding site to trigger dissociation from GATOR2 and downstream activation of mTORC1. Our data reveal that CASTOR1 shares substantial structural homology with the lysine-binding regulatory domain of prokaryotic aspartate kinases, suggesting that the mTORC1 pathway exploited an ancient, amino-acid-dependent allosteric mechanism to acquire arginine sensitivity. Together, these results establish a structural basis for arginine sensing by the mTORC1 pathway and provide insights into the evolution of a mammalian nutrient sensor. PMID:27487210

  12. Preparation, characterization, and biocompatibility evaluation of poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid interpenetrating network hydrogels.

    PubMed

    Cui, Ning; Qian, Junmin; Xu, Weijun; Xu, Minghui; Zhao, Na; Liu, Ting; Wang, Hongjie

    2016-01-20

    In the present study, poly(Nɛ-acryloyl-L-lysine)/hyaluronic acid (pLysAAm/HA) interpenetrating network (IPN) hydrogels were successfully fabricated through the combination of hydrazone bond crosslinking and photo-crosslinking reactions. The HA hydrogel network was first synthesized from 3,3'-dithiodipropionate hydrazide-modified HA and polyethylene glycol dilevulinate by hydrazone bond crosslinking. The pLysAAm hydrogel network was prepared from Nɛ-acryloyl-L-lysine and N,N'-bis(acryloyl)-(L)-cystine by photo-crosslinking. The resultant pLysAAm/HA hydrogels had a good shape recovery property after loading and unloading for 1.5 cycles (up to 90%) and displayed a highly porous microstructure. Their compressive moduli were at least 5 times higher than that of HA hydrogels. The pLysAAm/HA hydrogels had an equilibrium swelling ratio of up to 37.9 and displayed a glutathione-responsive degradation behavior. The results from in vitro biocompatibility evaluation with pre-osteoblasts MC3T3-E1 cells revealed that the pLysAAm/HA hydrogels could support cell viability and proliferation. Hematoxylin and eosin staining indicated that the pLysAAm/HA hydrogels allowed cell and tissue infiltration, confirming their good in vivo biocompatibility. Therefore, the novel pLysAAm/HA IPN hydrogels have great potential for bone tissue engineering applications. PMID:26572442

  13. Solid-Phase Synthesis with Attachment of Peptide to Resin through an Amino Acid Side Chain: [8-Lysine]-Vasopressin

    PubMed Central

    Meienhofer, Johannes; Trzeciak, Arnold

    1971-01-01

    It is proposed that the scope of solid-phase peptide synthesis could be considerably broadened by attaching peptides to the solid-phase through functional side-chain groups rather than through the commonly used α-carboxyl groups. Side-chain attachment offers the use of a large variety of chemical linkages to solid supports. Attachment through the ε-amino group of the lysine residue to a polystyrene resin has been applied to a solid-phase synthesis of lysine-vasopressin. Nα-tert-butyl-oxycarbonyl-L-lysyl-glycinamide was condensed with chloroformoxymethyl polystyrene-2% divinylbenzene resin. After removal of the Nα-protecting tert-butyloxycarbonyl group, the peptide chain was elongated by standard Merrifield procedures to give Tos-Cys(Bzl)-Tyr-Phe-Glu-(NH2) - Asp(NH2) - Cys(Bzl) - Pro - Lys(Z - resin) - Gly-NH2. Cleavage from the resin with HBr in dioxane or trifluoroacetic acid gave a partially protected nonapeptide hydrobromide. For purification, it was converted into a fully protected peptide by treatment with benzyl p-nitro-phenyl carbonate and crystallized. Deprotection by sodium in liquid ammonia, oxidative cyclization, IRC-50 desalting, and ion-exchange chromatography gave lysinevasopressin with high potency in a rat-pressor assay. PMID:5280519

  14. Isoxazole-Derived Amino Acids are Bromodomain-Binding Acetyl-Lysine Mimics: Incorporation into Histone H4 Peptides and Histone H3.

    PubMed

    Sekirnik Née Measures, Angelina R; Hewings, David S; Theodoulou, Natalie H; Jursins, Lukass; Lewendon, Katie R; Jennings, Laura E; Rooney, Timothy P C; Heightman, Tom D; Conway, Stuart J

    2016-07-11

    A range of isoxazole-containing amino acids was synthesized that displaced acetyl-lysine-containing peptides from the BAZ2A, BRD4(1), and BRD9 bromodomains. Three of these amino acids were incorporated into a histone H4-mimicking peptide and their affinity for BRD4(1) was assessed. Affinities of the isoxazole-containing peptides are comparable to those of a hyperacetylated histone H4-mimicking cognate peptide, and demonstrated a dependence on the position at which the unnatural residue was incorporated. An isoxazole-based alkylating agent was developed to selectively alkylate cysteine residues in situ. Selective monoalkylation of a histone H4-mimicking peptide, containing a lysine to cysteine residue substitution (K12C), resulted in acetyl-lysine mimic incorporation, with high affinity for the BRD4 bromodomain. The same technology was used to alkylate a K18C mutant of histone H3. PMID:27264992

  15. Asymmetrical transfer of alpha-aminoisobutyric acid (AIB), leucine and lysine across the in vitro perfused human placenta.

    PubMed

    Schneider, H; Proegler, M; Sodha, R; Dancis, J

    1987-01-01

    The mechanism for establishing transplacental gradients for leucine, lysine and alpha-aminoisobutyric acid (AIB) has been investigated in the perfused human placenta. Experiments were done with either the maternal or the fetal circulation closed and the donor circulation open. Transfer of the amino acids towards the fetal side was more rapid than it was in the reverse direction. When the maternal perfusate was recirculated, the amino acid concentrations were maintained at a considerably lower level in the maternal circulation than in the open fetal circuit. When the fetal circuit was closed, the concentrations approached or slightly exceeded those in the maternal perfusate over a period of three hours. Within the placenta, higher concentrations were established during the experiments with transfer towards the fetal side than in the reverse direction. Of the three amino acids, leucine was transferred most rapidly across the placenta while AIB reached the highest concentrations in the placental tissue. The asymmetry of the transplacental amino acid flux is favoured by rapid uptake from the maternal circulation and transfer towards the fetus. Both rates exceed those observed in the reverse direction. The transfer rate of D-leucine was 1.7 times that of L-glucose. For in vitro studies of the transfer rate of physiological compounds a correction for diffusion is required. The results may differ considerably depending on which marker is used as the basis. PMID:3112761

  16. A phosphonic acid appended naphthalene diimide motif for self-assembly into tunable nanostructures through molecular recognition with arginine in water.

    PubMed

    Nandre, Kamalakar P; Bhosale, Sheshanath V; Rama Krishna, K V S; Gupta, Akhil; Bhosale, Sidhanath V

    2013-06-18

    A naphthalene diimide motif bearing phosphonic acid functionalities has been found to be self-assembled with L- and D-arginine through chirality induced molecular recognitions and leads to the formation of micrometre long nanobelts and spherical aggregates at pH 9 in water, respectively. PMID:23589823

  17. Amino Acid Utilization in Seeds of Loblolly Pine during Germination and Early Seedling Growth (I. Arginine and Arginase Activity).

    PubMed Central

    King, J. E.; Gifford, D. J.

    1997-01-01

    The mobilization and utilization of the major storage proteins in loblolly pine (Pinus taeda L.) seeds following imbibition were investigated. Most of the seed protein reserves were contained within the megagametophyte. Breakdown of these proteins occurred primarily following radicle emergence and correlated with a substantial increase in the free amino acid pool in the seedling; the majority of this increase appeared to be the result of export from the megagametophyte. The megagametophyte was able to break down storage proteins and export free amino acids in the absence of the seedling. Arginine (Arg) was the most abundant amino acid among the principal storage proteins of the megagametophyte and was a major component of the free amino acid pools in both the seedling and the megagametophyte. The increase in free Arg coincided with a marked increase in arginase activity, mainly localized within the cotyledons and epicotyl of the seedling. Arginase activity was negligible in isolated seedlings. Experiments with phenylphosphorodiamidate, a urease inhibitor, supported the hypothesis that arginase participates in Arg metabolism in the seedling. The results of this study indicate that Arg could play an important role in the nutrition of loblolly pine during early seedling growth. PMID:12223664

  18. CROP/Luc7A, a novel serine/arginine-rich nuclear protein, isolated from cisplatin-resistant cell line.

    PubMed

    Nishii, Y; Morishima, M; Kakehi, Y; Umehara, K; Kioka, N; Terano, Y; Amachi, T; Ueda, K

    2000-01-14

    A novel putative SR protein, designated cisplatin resistance-associated overexpressed protein (CROP), has been cloned from cisplatin-resistant cell lines by differential display. The N-half of the deduced amino acid sequence of 432 amino acids of CROP contains cysteine/histidine motifs and leucine zipper-like repeats. The C-half consists mostly of charged and polar amino acids: arginine (58 residues or 25%), glutamate (36 residues or 16%), serine (35 residues or 15%), lysine (30 residues, 13%), and aspartate (20 residues or 9%). The C-half is extremely hydrophilic and comprises domains rich in lysine and glutamate residues, rich in alternating arginine and glutamate residues, and rich in arginine and serine residues. The arginine/serine-rich domain is dominated by a series of 8 amino acid imperfect repetitive motif (consensus sequence, Ser-Arg-Ser-Arg-Asp/Glu-Arg-Arg-Arg), which has been found in RNA splicing factors. The RNase protection assay and Western blotting analysis indicate that the expression of CROP is about 2-3-fold higher in mRNA and protein levels in cisplatin-resistant ACHN/CDDP cells than in host ACHN cells. CROP is the human homologue of yeast Luc7p, which is supposed to be involved in 5'-splice site recognition and is essential for vegetative growth. PMID:10631324

  19. Comparison of single-dose ibuprofen lysine, acetylsalicylic acid, and placebo for moderate-to-severe postoperative dental pain.

    PubMed

    Nelson, S L; Brahim, J S; Korn, S H; Greene, S S; Suchower, L J

    1994-01-01

    In a single-dose, double-blind, parallel-group, single-site study, ibuprofen lysine 200 mg (IBL 200) was compared with acetylsalicylic acid 500 mg (ASA 500) and placebo in 183 patients with moderate-to-severe postoperative dental pain. The relative onset of analgesic response, duration and degree of analgesia, and safety were assessed over a 6-hour postdose period. Analgesic efficacy was assessed by patient self-rating of pain intensity, pain relief, time to meaningful pain relief, global evaluation, and requirement for additional analgesic medication; both IBL 200 and ASA 500 were significantly more effective than placebo. IBL 200 also had a significantly faster onset of action, greater peak and overall analgesic effect, and longer duration of analgesia than ASA 500. All treatments were generally well tolerated. PMID:7923312

  20. Peptide Nucleic Acid with a Lysine Side Chain at the β-Position: Synthesis and Application for DNA Cleavage.

    PubMed

    Sugiyama, Toru; Kuwata, Keiko; Imamura, Yasutada; Demizu, Yosuke; Kurihara, Masaaki; Takano, Masashi; Kittaka, Atsushi

    2016-01-01

    This paper reports the synthesis of new β-Lys peptide nucleic acid (PNA) monomers and their incorporation into a 10-residue PNA sequence. PNA containing β-Lys PNA units formed a stable hybrid duplex with DNA. However, incorporation of β-Lys PNA units caused destabilization of PNA-DNA duplexes to some extent. Electrostatic attractions between β-PNA and DNA could reduce this destabilization effect. Subsequently, bipyridine-conjugated β-Lys PNA was prepared and exhibited sequence selective cleavage of DNA. Based on the structures of the cleavage products and molecular modeling, we reasoned that bipyridine moiety locates within the minor groove of the PNA-DNA duplexes. The lysine side chain of β-PNA is a versatile handle for attaching various functional molecules. PMID:27373637

  1. Lysine fluxes across the jejunal epithelium in lysinuric protein intolerance.

    PubMed

    Desjeux, J F; Simell, R O; Dumontier, A M; Perheentupa, J

    1980-06-01

    Lysinuric protein intolerance (LPI) is one of a group of genetic diseases in which intestinal absorption of the diamino acids lysine, arginine, and ornithine is impaired. In LPI, the clinical symptoms are more severe than in the kindred disorders. The mechanism of lysine absorption was, therefore, investigated in vitro on peroral jejunal biopsy specimens in seven patients with LPI and 27 controls. The lysine concentration ratio between cell compartment and medium was significantly higher in the LPI group (mean+/-SEM, 7.17+/-0.60) than in the controls (5.44+/-0.51). This was also true for the intracellular Na concentration (LPI, 73.6+/-10.8 mM; controls 42.3+/-3.7 mM). The rate of unidirectional influx of lysine across the luminal membrane was Na dependent and was the same in the two groups. In the absence of an electrochemical gradient, net transepithelial lysine secretion was observed in LPI. This was entirely the result of a 60% reduction of the unidirectional flux from mucosa to serosa. Calculation of unidirectional fluxes revealed the most striking difference at the basolateral membrane, where the flux from cells to serosa was reduced by 62% and the corresponding permeability coefficient reduced by 71%. A progressive reduction in short-circuit current appeared in the epithelia of all four patients with LPI tested after addition of 3 mM lysine. Thus, LPI appears to be the first disease in which a genetically determined transport defect has been demonstrated at the basolateral membrane. PMID:6773985

  2. L-lysine fermentation.

    PubMed

    Anastassiadis, Savas

    2007-01-01

    Amino acids are the basic bioelements of proteins, which are the most important macromolecules for the functions of humans and animals. Out of the 20 L-amino acids, ecumenically found in most of living organisms, L-lysine is one of the 9 amino acids which are essential for human and animal nutrition. L-lysine is useful as medicament, chemical agent, food material (food industry) and feed additive (animal food). Its demand has been steadily increasing in recent years and several hundred thousands tones of L-lysine (about 800,000 tones/year) are annually produced worldwide almost by microbial fermentation. The stereospecificity of amino acids (the L isomer) makes the fermentation advantageous compared with synthetic processes. Mutant auxotrophic or resistant to certain chemicals strains of so-called gram positive coryneform bacteria are generally used, including the genera Brevibacterium and Corynebacterium, united to the genus. The significance of Research and Development increased rapidly since the discovery of fermentative amino acid production in the fifties (S. Kinoshita et al., Proceedings of the International Symposium on Enzyme Chemistry 2:464-468 (1957)), leading to innovative fermentation processes which replaced the classical manufacturing methods of L-lysine like acid hydrolysis. L-Lysine is separated and purified by suitable downstream processes involving classical separation or extraction methods (ultrafiltration or centrifugation, separation or ion exchange extraction, crystallization, drying) and is sold as a powder. Alternatively, spray dried pellets or liquid fermentation broth can be used as animal feed supplement. On behalf of today's strong competition in amino acid industry, Biotechnology companies are continuously aiming in innovative research developments and use complex management concepts and business strategies, towards gaining market leadership in the field of amino acid production. PMID:19075830

  3. Evidence for an arginine exporter encoded by yggA (argO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli.

    PubMed

    Nandineni, Madhusudan R; Gowrishankar, J

    2004-06-01

    The anonymous open reading frame yggA of Escherichia coli was identified in this study as a gene that is under the transcriptional control of argP (previously called iciA), which encodes a LysR-type transcriptional regulator protein. Strains with null mutations in either yggA or argP were supersensitive to the arginine analog canavanine, and yggA-lac expression in vivo exhibited argP(+)-dependent induction by arginine. Lysine supplementation phenocopied the argP null mutation in that it virtually abolished yggA expression, even in the argP+ strain. The dipeptides arginylalanine and lysylalanine behaved much like arginine and lysine, respectively, to induce and to turn off yggA transcription. Dominant missense mutations in argP (argPd) that conferred canavanine resistance and rendered yggA-lac expression constitutive were obtained. The protein deduced to be encoded by yggA shares similarity with a basic amino acid exporter (LysE) of Corynebacterium glutamicum, and we obtained evidence for increased arginine efflux from E. coli strains with either the argPd mutation or multicopy yggA+. The null yggA mutation abolished the increased arginine efflux from the argPd strain. Our results suggest that yggA encodes an ArgP-regulated arginine exporter, and we have accordingly renamed it argO (for "arginine outward transport"). We propose that the physiological function of argO may be either to prevent the accumulation to toxic levels of canavanine (which is a plant-derived antimetabolite) or arginine or to maintain an appropriate balance between the intracellular lysine and arginine concentrations. PMID:15150242

  4. Interactions between the lysine-rich histone F1 and deoxyribonucleic acid.

    PubMed

    Johns, E W; Forrester, S

    1969-02-01

    1. The interactions of the lysine-rich histone F1 with DNA have been studied at various histone to DNA ratios, in water and in the presence of uni- and bi-valent cations. In water only, histone F1, even in fourfold excess, is unable to precipitate all the DNA. In 0.14m-sodium chloride, 0.8mg. of histone F1 is required to precipitate 1mg. of DNA, whereas in 0.07m-magnesium chloride only 0.4mg. is required. 2. Bivalent cations are also shown to be more effective in dissociating the DNA-histone complex. Histone F1 can be selectively removed from deoxyribonucleoprotein with 0.1m-magnesium chloride. 3. The precipitation of DNA by histone F1 is a reversible process and the complex can be taken in and out of solution by changing the ionic environment. 4. The bearing of these results on the observed ability of various DNA-histone complexes to act as templates for RNA synthesis is discussed. PMID:4975020

  5. Synthesis and cytotoxicity of azo nano-materials as new biosensors for L-Arginine determination.

    PubMed

    Shang, Xuefang; Luo, Leiming; Ren, Kui; Wei, Xiaofang; Feng, Yaqian; Li, Xin; Xu, Xiufang

    2015-06-01

    Inspired from biological counterparts, chemical modification of azo derivatives with function groups may provide a highly efficient method to detect amino acid. Herein, we have designed and prepared a series of azo nano-materials involving -NO2, -COOH, -SO3H and naphthyl group, which showed high response for Arginine (Arg) among normal twenty kinds of (Alanine, Valine, Leucine, Isoleucine, Methionine, Aspartic acid, Glutamic acid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, nano-material 3 exhibited high binding ability for Arg and low cytotoxicity to KYSE450 cells over a concentration range of 5-50μmol·L(-1) which may be used a biosensor for the Arg detection in vivo. PMID:25842136

  6. Poly(L-diaminopropionic acid), a novel non-proteinic amino acid oligomer co-produced with poly(ε-L-lysine) by Streptomyces albulus PD-1.

    PubMed

    Xia, Jun; Xu, Hong; Feng, Xiaohai; Xu, Zhaoxian; Chi, Bo

    2013-09-01

    Poly(ε-L-lysine) (ε-PL) producer strain Streptomyces albulus PD-1 secreted a novel polymeric substance into its culture broth along with ε-PL. The polymeric substance was purified to homogeneity and identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and nuclear magnetic resonance spectroscopy as well as other analytical techniques revealed that the substance was poly(L-diaminopropionic acid) (PDAP). PDAP is an L-α,β-diaminopropionic acid oligomer linking between amino and carboxylic acid functional groups. The molecular weight of PDAP ranged from 500 to 1500 Da, and no co-polymers composed of L-diaminopropionic acid and L-lysine were present in the culture broth. Compared with ε-PL, PDAP exhibited stronger inhibitory activities against yeasts but weaker activities against bacteria. ε-PL and PDAP co-production was also investigated. Both ε-PL and PDAP were synthesized during the stationary phase of growth, and the final ε-PL and PDAP concentration reached 21.7 and 4.8 g L(-1), respectively, in fed-batch fermentation. Citric acid feeding resulted in a maximum ε-PL concentration of 26.1 g L(-1) and a decrease in the final concentration of PDAP to 3.8 g L(-1). No studies on ε-PL and PDAP co-production in Streptomyces albulus have been reported previously, and inhibition of by-products such as PDAP is potentially useful in ε-PL production. PMID:23775267

  7. Protective effect of ω-3 polyunsaturated fatty acids on L-arginine-induced nephrotoxicity and oxidative damage in rat kidney.

    PubMed

    Khan, M W; Priyamvada, S; Khan, S A; Khan, S; Naqshbandi, A; Yusufi, A N K

    2012-10-01

    L-Arginine (ARG), an essential amino acid, is the endogenous source of the deleterious nitric oxide. Dietary ω-3 polyunsaturated fatty acid (PUFA)-enriched fish oil (FO) has been shown to reduce the severity of certain types of cancers, cardiovascular disease, and renal disease. Present study examined whether feeding of FO/flaxseed oil (FXO) would have protective effect against ARG-induced nephrotoxicity. ARG-induced nephrotoxicity was recorded by increased serum creatinine and blood urea nitrogen. ARG significantly altered the activities of metabolic and brush border membrane (BBM) enzymes. ARG caused significant imbalances in the antioxidant system. These alterations were associated with increased lipid peroxidation (LPO) and altered antioxidant enzyme activities. Feeding of FO and FXO with ARG ameliorated the changes in various parameters caused by ARG. Nephrotoxicity parameters lowered and enzyme activities of carbohydrate metabolism, BBM and inorganic phosphate (32Pi) transport were improved to near control values. ARG-induced LPO declined and antioxidant defense mechanism was strengthened by both FO and FXO alike. The results of the present study suggest that ω-3 PUFA-enriched FO and FXO from seafoods and plant sources, respectively, are similarly effective in reducing ARG-induced nephrotoxicity and oxidative damage. Thus, vegetarians who cannot consume FO can have similar health benefits from plant-derived ω-3 PUFA. PMID:22531969

  8. Killing of Mycobacterium avium by Lactoferricin Peptides: Improved Activity of Arginine- and d-Amino-Acid-Containing Molecules

    PubMed Central

    Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G. M.; Rodrigues, Pedro N.; Bastos, Margarida

    2014-01-01

    Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. PMID:24709266

  9. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    SciTech Connect

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.; Tomchick, Diana R.; Goldsmith, Elizabeth J.; Phillips, Margaret A.

    2010-08-26

    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains both a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.

  10. The amino acid transporter SLC38A9 is a key component of a lysosomal membrane complex that signals arginine sufficiency to mTORC1

    PubMed Central

    Wang, Shuyu; Tsun, Zhi-Yang; Wolfson, Rachel; Shen, Kuang; Wyant, Gregory A.; Plovanich, Molly E.; Yuan, Elizabeth D.; Jones, Tony D.; Chantranupong, Lynne; Comb, William; Wang, Tim; Bar-Peled, Liron; Zoncu, Roberto; Straub, Christoph; Kim, Choah; Park, Jiwon; Sabatini, Bernardo L.; Sabatini, David M.

    2015-01-01

    The mTOR complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and v-ATPase-dependent fashion, the translocation of mTORC1 to the lysosomal surface, where it interacts with its activator Rheb. Here, we identify SLC38A9, an uncharacterized protein with sequence similarity to amino acid transporters, as a lysosomal transmembrane protein that interacts with the Rag GTPases and Ragulator in an amino acid-sensitive fashion. SLC38A9 transports arginine with a high Km and loss of SLC38A9 represses mTORC1 activation by amino acids, particularly arginine. Overexpression of SLC38A9 or just its Ragulator-binding domain makes mTORC1 signaling insensitive to amino acid starvation but not to Rag activity. Thus, SLC38A9 functions upstream of the Rag GTPases and is an excellent candidate for being an arginine sensor for the mTORC1 pathway. PMID:25567906

  11. Serum Amino Acids Profile and the Beneficial Effects of L-Arginine or L-Glutamine Supplementation in Dextran Sulfate Sodium Colitis

    PubMed Central

    Wu, Miaomiao; Liu, Gang; Yang, Guan; Xion, Yan; Su, Dingding; Wu, Li; Li, Tiejun; Chen, Shuai; Duan, Jielin; Yin, Yulong; Wu, Guoyao

    2014-01-01

    This study was conducted to investigate serum amino acids profile in dextran sulfate sodium (DSS)-induced colitis, and impacts of graded dose of arginine or glutamine supplementation on the colitis. Using DSS-induced colitis model, which is similar to human ulcerative colitis, we determined serum profile of amino acids at day 3, 7, 10 and 12 (5 days post DSS treatment). Meanwhile, effects of graded dose of arginine (0.4%, 0.8%, and 1.5%) or glutamine (0.5%, 1.0% and 2.0%) supplementation on clinical parameters, serum amino acids, colonic tight junction proteins, colonic anti-oxidative indicators [catalase, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px)], colonic pro-inflammatory cytokines [interleukin-1 beta (IL-1β), IL-6, IL-17 and tumor necrosis factor alpha (TNF-α)] in DSS-induced colitis were fully analyzed at day 7 and 12. Additionally, the activation of signal transduction pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), and myosin light chain kinase (MLCK)- myosin light chain (MLC20), were analyzed using immunoblotting. Serum amino acids analysis showed that DSS treatment changed the serum contents of amino acids, such as Trp, Glu, and Gln (P<0.05). Dietary arginine or glutamine supplementation had significant (P<0.05) influence on the clinical and biochemical parameters (T-SOD, IL-17 and TNF-α) in colitis model. These results were associated with colonic NF-κB, PI3K-Akt and MLCK signaling pathways. In conclusion, arginine or glutamine could be a potential therapy for intestinal inflammatory diseases. PMID:24505477

  12. Arginine transport in catabolic disease states.

    PubMed

    Pan, Ming; Choudry, Haroon A; Epler, Mark J; Meng, Qinghe; Karinch, Anne; Lin, Chengmao; Souba, Wiley

    2004-10-01

    Arginine appears to be a semiessential amino acid in humans during critical illness. Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which exceeds body production, leading to arginine depletion. This is aggravated by the reduced nutrient intake that is associated with critical illness. Arginine depletion may have negative consequences on tissue function under these circumstances. Nutritional regimens containing arginine have been shown to improve nitrogen balance and lymphocyte function, and stimulate arginine transport in the liver. We have studied the effects of stress mediators on arginine transport in vascular endothelium, liver, and gut epithelium. In vascular endothelium, endotoxin stimulates arginine uptake, an effect that is mediated by the cytokine tumor necrosis factor-alpha (TNF-alpha) and by the cyclo-oxygenase pathway. This TNF-alpha stimulation involves the activation of intracellular protein kinase C (PKC). A significant increase in hepatic arginine transport activity also occurs following burn injury and in rats with progressive malignant disease. Surgical removal of the growing tumor results in a normalization of the accelerated hepatic arginine transport within days. Chronic metabolic acidosis and sepsis individually augment intestinal arginine transport in rats and Caco-2 cell culture. PKC and mitogen-activated protein kinases are involved in mediating the sepsis/acidosis stimulation of arginine transport. Understanding the regulation of plasma membrane arginine transport will enhance our knowledge of nutrition and metabolism in seriously ill patients and may lead to the design of improved nutritional support formulas. PMID:15465794

  13. Titanium dioxide nanoparticles modified by salicylic acid and arginine: Structure, surface properties and photocatalytic decomposition of p-nitrophenol

    NASA Astrophysics Data System (ADS)

    Li, Lei; Feng, Yujie; Liu, Youzhi; Wei, Bing; Guo, Jiaxin; Jiao, Weizhou; Zhang, Zhaohan; Zhang, Qiaoling

    2016-02-01

    In this study, titanium dioxide (TiO2) nanoparticles were surface-modified with salicylic acid (SA) and arginine (Arg) using an environmentally friendly and convenient method, and the bonding structure, surface properties and degradation efficiency of p-nitrophenol (PNP) were investigated. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), water contact angle (WCA) measurements, ζ-potentiometric analysis, UV/visible diffuse reflectance spectroscopy (UV-vis DRS), and thermogravimetric analysis (TGA) were performed to evaluate the modification effect. The degradation rates were determined by high-performance liquid chromatography (HPLC). The results show that bidentate or bridging bonds are most likely formed between SA/Arg and TiO2 surface. Surface modification with SA, Arg, or both can improve the lipophilic properties and decrease the zeta potential, and also result in a red shift of the absorption wavelength. TiO2 nanoparticles modified by Arg or both SA and Arg show a large specific surface area and pore volume. Further, degradation experiments under visible light show that Arg modification is most efficient. This simple and versatile synthetic method to produce TiO2 nanoparticles surface-modified with various organic capping agents can be used for novel multifunctional photocatalysts as required for various applications in energy saving and environmental protection.

  14. Arginine-glycine-aspartic acid-conjugated dendrimer-modified quantum dots for targeting and imaging melanoma.

    PubMed

    Li, Zhiming; Huang, Peng; Lin, Jing; He, Rong; Liu, Bing; Zhang, Xiaomin; Yang, Sen; Xi, Peng; Zhang, Xuejun; Ren, Qiushi; Cui, Daxiang

    2010-08-01

    Angiogenesis is essential for the development of malignant tumors and provides important targets for tumor diagnosis and therapy. Quantum dots have been broadly investigated for their potential application in cancer molecular imaging. In present work, CdSe quantum dots were synthesized, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified CdSe quantum dots were conjugated with arginine-glycine-aspartic acid (RGD) peptides. These prepared nanoprobes were injected into nude mice loaded with melanoma (A375) tumor xenografts via tail vessels, IVIS imaging system was used to image the targeting and bio-distribution of as-prepared nanoprobes. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. RGD-conjugated quantum dots can specifically target human umbilical vein endothelial cells (HUVEC) and A375 melanoma cells, as well as nude mice loaded with A735 melanoma cells. High-performance RGD-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as tumor diagnosis and therapy. PMID:21125820

  15. Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes.

    PubMed

    Herr, F M; Aronson, J; Storch, J

    1996-01-30

    The structure of heart fatty acid binding protein (HFABP) is a flattened beta-barrel comprising 10 antiparallel beta-sheets capped by two alpha-helical segments. The helical cap region is hypothesized to behave as a portal "lid" for the entry and release of ligand from the binding pocket. The transfer of fatty acid from HFABP is thought to occur via effective collisional interactions with membranes, and these interactions are enhanced when transfer is to membranes of net negative charge, thus implying that specific basic residues on the surface of HFABP may govern the transfer process [Wootan, M. G., & Storch, J. (1994) J. Biol. Chem. 269, 10517-10523]. To directly examine the role of charged lysine residues on the HFABP surface in specific interactions with membranes, chemical modification and selective mutagenesis of HFABP were used. All surface lysine residues were neutralized by acetylation of recombinant HFABP with acetic anhydride. In addition, seven mutant HFABPs were generated that resulted in charge alterations in five distinct sites of HFABP. Modification of the protein did not significantly alter the structural or ligand binding properties of HFABP, as assessed by circular dichroism, fluorescence quantum yield, and ligand binding analyses. By using a resonance energy transfer assay, transfer of 2-(9-anthroyloxy)palmitate (2AP) from acetylated HFABP to membranes was significantly slower than transfer from native HFABP. In addition, in distinct contrast to transfer from native protein, the 2AP transfer rate from acetylated HFABP was not increased to acceptor membranes of increased negative charge. Transfer of 2AP from HFABP mutants involving K22, located on alpha-helix I (alpha-I) of the helical cap region, was 3-fold slower than transfer from wild-type protein, whereas rates from a mutant involving the K59 residue, located on the beta 2-turn of the barrel near the helical cap, were 2-fold faster than those of wild type. A double mutant involving K22 and K

  16. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depl...

  17. Functional impact of polar and acidic substitutions in the lactose repressor hydrophobic monomer.monomer interface with a buried lysine.

    PubMed

    Zhan, Hongli; Sun, Zhifei; Matthews, Kathleen Shive

    2009-02-17

    Despite predicted energetic penalties, the charged K84 side chains of tetrameric lactose repressor protein (LacI) are found buried within the highly hydrophobic monomer.monomer interface that includes side chains of V94 and V96. Once inducer binding has occurred, these K84 side chains move to interact with the more solvent-exposed side chains of D88 and E100'. Previous studies demonstrated that hydrophobic substitutions for K84 increased protein stability and significantly impaired the allosteric response. These results indicated that enhanced hydrophobic interactions at the monomer.monomer interface remove the energetic driving force of the buried charges, decreasing the likelihood of a robust conformational change and stabilizing the structure. We hypothesized that creating a salt bridge network with the lysine side chains by including nearby negatively charged residues might result in a similar outcome. To that end, acidic residues, D and E, and their neutral amides, N and Q, were substituted for the valines at positions 94 and 96. These variants exhibited one or more of the following functional changes: weakened inducer binding, impaired allosteric response, and diminished protein stability. For V96D and V96E, ion pair formation with K84 appears optimal, and the loss of inducer response exceeds that of the hydrophobic K84A and -L variants. However, impacts on functional properties indicate that stabilizing the buried positive charge with polar or ion pair interactions is not functionally equivalent to structural stabilization via hydrophobic enhancement. PMID:19166325

  18. Intracellular traffic of the lysine and glutamic acid rich protein KERP1 reveals features of endomembrane organization in Entamoeba histolytica.

    PubMed

    Perdomo, Doranda; Manich, Maria; Syan, Sylvie; Olivo-Marin, Jean-Christophe; Dufour, Alexandre C; Guillén, Nancy

    2016-08-01

    The development of amoebiasis is influenced by the expression of the lysine and glutamic acid rich protein 1 (KERP1), a virulence factor involved in Entamoeba histolytica adherence to human cells. Up to date, it is unknown how the protein transits the parasite cytoplasm towards the plasma membrane, specially because this organism lacks a well-defined endoplasmic reticulum (ER) and Golgi apparatus. In this work we demonstrate that KERP1 is present at the cell surface and in intracellular vesicles which traffic in a pathway that is independent of the ER-Golgi anterograde transport. The intracellular displacement of vesicles enriched in KERP1 relies on the actin-rich cytoskeleton activities. KERP1 is also present in externalized vesicles deposited on the surface of human cells. We further report the interactome of KERP1 with its association to endomembrane components and lipids. The model for KERP1 traffic here proposed hints for the first time elements of the endocytic and exocytic paths of E. histolytica. PMID:26857352

  19. Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds.

    PubMed

    Lee, Cho-yin; Lou, Jizhong; Wen, Kuo-kuang; McKane, Melissa; Eskin, Suzanne G; Ono, Shoichiro; Chien, Shu; Rubenstein, Peter A; Zhu, Cheng; McIntire, Larry V

    2013-03-26

    As a key element in the cytoskeleton, actin filaments are highly dynamic structures that constantly sustain forces. However, the fundamental question of how force regulates actin dynamics is unclear. Using atomic force microscopy force-clamp experiments, we show that tensile force regulates G-actin/G-actin and G-actin/F-actin dissociation kinetics by prolonging bond lifetimes (catch bonds) at a low force range and by shortening bond lifetimes (slip bonds) beyond a threshold. Steered molecular dynamics simulations reveal force-induced formation of new interactions that include a lysine 113(K113):glutamic acid 195 (E195) salt bridge between actin subunits, thus suggesting a molecular basis for actin catch-slip bonds. This structural mechanism is supported by the suppression of the catch bonds by the single-residue replacements K113 to serine (K113S) and E195 to serine (E195S) on yeast actin. These results demonstrate and provide a structural explanation for actin catch-slip bonds, which may provide a mechanoregulatory mechanism to control cell functions by regulating the depolymerization kinetics of force-bearing actin filaments throughout the cytoskeleton. PMID:23460697

  20. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    PubMed

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  1. Possible Evidence of Amide Bond Formation Between Sinapinic Acid and Lysine-Containing Bacterial Proteins by Matrix-Assisted Laser Desorption/Ionization (MALDI) at 355 nm

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.; Sultan, Omar; Carter, Michelle Q.

    2012-12-01

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, Hde, and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight-time-of-flight tandem mass spectrometry (TOF-TOF-MS/MS) and post-source decay (PSD). We also reported the absence of adduct formation when using α-cyano-4-hydroxycinnamic acid (CHCA) matrix. Further mass spectrometric analysis of disulfide-intact and disulfide-reduced over-expressed HdeA and HdeB proteins from lysates of gene-inserted E. coli plasmids suggests covalent attachment of SA occurs not at cysteine residues but at lysine residues. In this revised hypothesis, the attachment of SA is preceded by formation of a solid phase ammonium carboxylate salt between SA and accessible lysine residues of the protein during sample preparation under acidic conditions. Laser irradiation at 355 nm of the dried sample spot results in equilibrium retrogradation followed by nucleophilic attack by the amine group of lysine at the carbonyl group of SA and subsequent amide bond formation and loss of water. The absence of CHCA adducts suggests that the electron-withdrawing effect of the α-cyano group of this matrix may inhibit salt formation and/or amide bond formation. This revised hypothesis is supported by dissociative loss of SA (-224 Da) and the amide-bound SA (-206 Da) from SA-adducted HdeA and HdeB ions by MS/MS (PSD). It is proposed that cleavage of the amide-bound SA from the lysine side-chain occurs via rearrangement involving a pentacyclic transition state followed by hydrogen abstraction/migration and loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal (-206 Da).

  2. Nic1 Inactivation Enables Stable Isotope Labeling with 13C615N4-Arginine in Schizosaccharomyces pombe*

    PubMed Central

    Carpy, Alejandro; Patel, Avinash; Tay, Ye Dee; Hagan, Iain M.; Macek, Boris

    2015-01-01

    Stable Isotope Labeling by Amino Acids (SILAC) is a commonly used method in quantitative proteomics. Because of compatibility with trypsin digestion, arginine and lysine are the most widely used amino acids for SILAC labeling. We observed that Schizosaccharomyces pombe (fission yeast) cannot be labeled with a specific form of arginine, 13C615N4-arginine (Arg-10), which limits the exploitation of SILAC technology in this model organism. We hypothesized that in the fission yeast the guanidinium group of 13C615N4-arginine is catabolized by arginase and urease activity to 15N1-labeled ammonia that is used as a precursor for general amino acid biosynthesis. We show that disruption of Ni2+-dependent urease activity, through deletion of the sole Ni2+ transporter Nic1, blocks this recycling in ammonium-supplemented EMMG medium to enable 13C615N4-arginine labeling for SILAC strategies in S. pombe. Finally, we employed Arg-10 in a triple-SILAC experiment to perform quantitative comparison of G1 + S, M, and G2 cell cycle phases in S. pombe. PMID:25368411

  3. When Is It Appropriate to Use Arginine in Critical Illness?

    PubMed

    Patel, Jayshil J; Miller, Keith R; Rosenthal, Cameron; Rosenthal, Martin D

    2016-08-01

    In health, arginine is considered a nonessential amino acid but can become an essential amino acid (ie, conditionally essential amino acid) during periods of metabolic or traumatic stress as endogenous arginine supply is inadequate to meet physiologic demands. Arginine depletion in critical illness is associated with impairments in microcirculatory blood flow, impaired wound healing, and T-cell dysfunction. The purpose of this review is to (1) describe arginine metabolism and role in health and critical illness, (2) describe the relationship between arginine and asymmetric dimethylarginine, and (3) review studies of supplemental arginine in critically ill patients. PMID:27252277

  4. The presence of arginine may be a source of false positive results in the Ames test.

    PubMed

    Khandoudi, Nassirah; Porte, Pierre; Chtourou, Sami; Nesslany, Fabrice; Marzin, Daniel; Le Curieux, Frank

    2009-01-01

    An increase in the number of revertant colonies in the Ames test is generally taken as a strong indication of mutagenic activity of a test compound. However, irrelevant positive findings may constitute a major problem in regulatory drug testing. In this study, mixtures containing only amino acids such as glycine, lysine, arginine and isoleucine, routinely used as peptide preservatives in polypeptide pharmaceutical products, were investigated for mutagenesis in the Ames Salmonella typhimurium test. The results demonstrated that in the presence of metabolic activation, all the solutions containing arginine induced an increase in the number of revertant colonies in strains TA98, TA100 and TA1535 compared with the solvent control. More specifically, for strain TA98, all arginine doses tested, i.e. from 0.4 to 8 mg/plate induced a statistically significant increase in the number of revertants. This increase was biologically significant from 1.2 to 8 mg/plate. For strain TA100, the five highest test doses, i.e., from 1.2 to 8 mg/plate, induced statistically and biologically significant increases in the number of revertants. A statistically significant increase in colony number was also observed in strain TA1535, but only at the maximal test dose of 8 mg/plate arginine. These increases were observed with arginine from two different sources, suggesting that the observed effect would not be due to the presence of potential impurities in the type of arginine used. Our findings show that a functional metabolic activation system was required to induce an increase in the number of colonies. The presence of vitamin C inhibited the arginine-induced increase in the number of revertant colonies in S. typhimurium strain TA98, suggesting a potential involvement of oxidative stress. PMID:19619668

  5. Reduced expression of intestinal N-acetylglutamate synthase in suckling piglets: a novel molecular mechanism for arginine as a nutritionally essential amino acid for neonates.

    PubMed

    Geng, Meimei; Li, Tiejun; Kong, Xiangfeng; Song, Xiaoyan; Chu, Wuying; Huang, Ruilin; Yin, Yulong; Wu, Guoyao

    2011-05-01

    The objective of this study was to determine developmental changes in mRNA and protein levels for N-acetylglutamate synthase (NAGS; a key enzyme in synthesis of citrulline and arginine from glutamine/glutamate and proline) in the small intestine of suckling piglets. The porcine NAGS gene was cloned using the real-time polymerase-chain reaction (RT-PCR) method. The porcine NAGS gene encoded 368 amino acid residues and had a high degree of sequence similarity to the "conserved domain" of human and mouse NAGS genes. The porcine NAGS gene was expressed in E. coli BL21 and a polyclonal antibody against the porcine NAGS protein was developed. Real-time RT-PCR and western-blot analyses were performed to quantify NAGS mRNA and protein, respectively, in the jejunum and ileum of 1- to 28-day-old pigs. Results indicated that intestinal NAGS mRNA levels were lower in 7- to 28-day-old than in 1-day-old pigs. Immunochemical analysis revealed that NAGS protein was localized in enterocytes of the gut. Notably, intestinal NAGS protein abundance declined progressively during the 28-day suckling period. The postnatal decrease in NAGS protein levels was consistent with the previous report of reduced NAGS enzymatic activity as well as reduced synthesis of citrulline and arginine in the small intestine of 7- to 28-day-old pigs. Collectively, these results suggest that intestinal NAGS expression is regulated primarily at the post-transcriptional level. The findings also provide a new molecular basis to explain that endogenous synthesis of arginine is impaired in sow-reared piglets and arginine is a nutritionally essential amino acid for the neonates. PMID:20931344

  6. The regulatory effect of citric acid on the co-production of poly(ε-lysine) and poly(L-diaminopropionic acid) in Streptomyces albulus PD-1.

    PubMed

    Xia, Jun; Xu, Zhaoxian; Xu, Hong; Feng, Xiaohai; Bo, Fangfang

    2014-10-01

    Streptomyces albulus PD-1 can co-produce antimicrobial homo-polymers poly(ε-lysine) (ε-PL) and poly(L-diaminopropionic acid) (PDAP). In this study, a novel feeding strategy of citric acid coupled with glucose-(NH4)2SO4 feeding was employed to S. albulus PD-1. When the pH of the culture broth dropped to 4.0, the feeding solution was added continuously to maintain the concentrations of glucose and citric acid at 10 and 4 g L(-1), respectively. As a result, the final concentration of ε-PL increased from 21.7 to 29.7 g L(-1) and the final concentration of PDAP decreased from 4.8 to 3.2 g L(-1). Assays on intracellular nucleotide levels and key enzyme activities were performed to elucidate the underlying regulation mechanism. The addition of citric acid increased NADH/NAD(+) ratio and decreased intracellular ATP level; meanwhile, the activities of pyruvate kinase, citrate synthase and isocitrate dehydrogenase decreased while aspartate aminotransferase activity increased. Therefore, we deduced that citric acid feeding resulted in metabolic flux redistribution at the node of phosphoenolpyruvate; the metabolic pathway from phosphoenolpyruvate directed into tricarboxylic acid cycle was weakened and thus PDAP production was inhibited. On the other hand, the metabolic pathway from phosphoenolpyruvate directed into oxaloacetate and L-aspartate was enhanced, thereby improving ε-PL production. This fermentation strategy may be potentially useful in ε-PL production because it can effectively inhibit the formation of by-products, such as PDAP. PMID:24752482

  7. Complexation of carboxylate anions with the arginine gas-phase amino acid: Effects of chain length on the geometry of extended ion binding

    NASA Astrophysics Data System (ADS)

    Luxford, Thomas F. M.; Milner, Edward M.; Yoshikawa, Naruo; Bullivant, Chad; Dessent, Caroline E. H.

    2013-07-01

    Complexation of deprotonated carboxylic acids with arginine was investigated using collision-induced dissociation to probe the nature of isolated carboxylate-amino acid interactions as a function of anion size. Monocarboxylic CH3(CH2)nCOO-·Arg (n = 3-7, 9, 10) and dicarboxylic acid COOH(CH2)nCOO-·Arg (n = 3-5, 7-10) complexes were investigated. For the dicarboxylic acid clusters, chain length has a significant effect on the %fragmentation energies with the n = 9, 10 systems fragmenting at significantly lower energies than the corresponding shorter chain systems. Molecular mechanics calculations suggest that this fragmentation energy shift is associated with the longer-chain dicarboxylic acid-Arg clusters switching to ring structures.

  8. Efficacy of a Complex of 5-Aminolevulinic Acid and Glycyl-Histidyl-Lysine Peptide on Hair Growth

    PubMed Central

    Sim, Hyun Bo; Jang, Yong Hyun; Lee, Seok-Jong; Kim, Do Won; Yim, Soon-Ho

    2016-01-01

    Background Pattern hair loss is a very common problem. Although effective therapeutics for the treatment of pattern hair loss have been used, novel therapeutic modalities are still required to enhance hair growth. Objective We investigated the efficacy and safety of a complex (ALAVAX) of 5-aminolevulinic acid (5-ALA) and glycyl-histidyl-lysine (GHK) peptide for the treatment of pattern hair loss. Methods Forty-five patients with male pattern hair loss were treated with ALAVAX 100 mg/ml (group A), ALAVAX 50 mg/ml (group B) or placebo (group C) once a day for 6 months. Total hair count, hair length, hair thickness, patient's assessment and adverse events were evaluated at month 1, 3, and 6. Results An increase in hair count for 6 months was 52.6 (p<0.05) in group A, 71.5 (p<0.05) in group B, and 9.6 in group C. The ratio of changes in hair count between group B (2.38) and group C (1.21) at 6 months showed a statistically significant difference (p<0.05). The proportion above good satisfaction was higher in group A (26.7%) than in the other groups (group B: 14.3%, group C: 7.1%). There was no statistically significant difference in hair length and hair thickness among 3 groups at 6 months. There was no adverse event in 3 groups. Conclusion Our study showed that a complex of 5-ALA and GHK peptide may be considered as one of the complementary agents for the treatment of male pattern hair loss. PMID:27489425

  9. Cationic Amino Acid Uptake Constitutes a Metabolic Regulation Mechanism and Occurs in the Flagellar Pocket of Trypanosoma cruzi

    PubMed Central

    Bouvier, León A.; Cámara, María de los Milagros; Montserrat, Javier; Pereira, Claudio A.

    2012-01-01

    Trypanosomatids' amino acid permeases are key proteins in parasite metabolism since they participate in the adaptation of parasites to different environments. Here, we report that TcAAP3, a member of a Trypanosoma cruzi multigene family of permeases, is a bona fide arginine transporter. Most higher eukaryotic cells incorporate cationic amino acids through a single transporter. In contrast, T. cruzi can recognize and transport cationic amino acids by mono-specific permeases since a 100-fold molar excess of lysine could not affect the arginine transport in parasites that over-express the arginine permease (TcAAP3 epimastigotes). In order to test if the permease activity regulates downstream processes of the arginine metabolism, the expression of the single T. cruzi enzyme that uses arginine as substrate, arginine kinase, was evaluated in TcAAP3 epimastigotes. In this parasite model, intracellular arginine concentration increases 4-folds and ATP level remains constant until cultures reach the stationary phase of growth, with decreases of about 6-folds in respect to the controls. Interestingly, Western Blot analysis demonstrated that arginine kinase is significantly down-regulated during the stationary phase of growth in TcAAP3 epimastigotes. This decrease could represent a compensatory mechanism for the increase in ATP consumption as a consequence of the displacement of the reaction equilibrium of arginine kinase, when the intracellular arginine concentration augments and the glucose from the medium is exhausted. Using immunofluorescence techniques we also determined that TcAAP3 and the specific lysine transporter TcAAP7 co-localize in a specialized region of the plasma membrane named flagellar pocket, staining a single locus close to the flagellar pocket collar. Taken together these data suggest that arginine transport is closely related to arginine metabolism and cell energy balance. The clinical relevance of studying trypanosomatids' permeases relies on the

  10. Dietary supplementation with cholesterol and docosahexaenoic acid increases the activity of the arginine-nitric oxide pathway in tissues of young pigs

    PubMed Central

    Li, Peng; Woo Kim, Sung; Li, Xilong; Datta, Sujay; Pond, Wilson G.; Wu, Guoyao

    2008-01-01

    Nitric oxide (NO), synthesized from L-arginine by tetrahydrobiopterin (BH4)-dependent NO synthase (NOS), is critical for neurological and muscular development and function. This study was designed to test the hypothesis that cholesterol and docosahexaenoic acid (DHA) may modulate the arginine-NO pathway in tissues of the young pig. Sixteen newborn pigs were nursed by sows for 24 h and then assigned to one of 4 treatment groups, representing supplementation with 0.0%, 0.2% cholesterol, 0.2% DHA, or cholesterol plus DHA to the basal milk-formula. All piglets were euthanized at 49 days of age. Brain, liver and gastrocnemius muscle were analyzed for BH4, NADPH and arginine, GTP cyclohydrolase-I (GTP-CH) and NOS activities, and NOS protein isoforms. Hepatic NOS activity was below the detection limit in all pigs. DHA supplementation (P<0.01) increased GTP-CH activities, as well as BH4 and NADPH concentrations in brain, liver, and muscle by 24–46%, while enhancing (P<0.05) NOS activities by 45–48% in brain and muscle. Dietary cholesterol supplementation increased (P<0.05) NOS and GTP-CH activities by 17–26% in brain but had no effect in liver or muscle. The enhanced NOS activity in the brain or muscle of cholesterol- or DHA-supplemented piglets was attributable to the combined effects of increased eNOS and nNOS activation (changes in phosphorylation levels) and total iNOS protein. Additionally, DHA and cholesterol enhanced (P>0.05) arginine concentrations in brain (35–42%), but not in liver or muscle. These tissue-specific effects of cholesterol and DHA on NO synthesis may play an important role in postnatal growth and development. PMID:18555806

  11. Analysis of cyclic pyrolysis products formed from amino acid monomer.

    PubMed

    Choi, Sung-Seen; Ko, Ji-Eun

    2011-11-18

    Amino acid was mixed with silica and tetramethylammonium hydroxide (TMAH) to favor pyrolysis of amino acid monomer. The pyrolysis products formed from amino acid monomer were using GC/MS and GC. 20 amino acids of alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were analyzed. The pyrolysis products were divided into cyclic and non-cyclic products. Among the 20 amino acids, arginine, asparagine, glutamic acid, glutamine, histidine, lysine, and phenylalanine generated cyclic pyrolysis products of the monomer. New cyclic pyrolysis products were formed by isolation of amino acid monomers. They commonly had polar side functional groups to 5-, 6-, or 7-membered ring structure. Arginine, asparagine, glutamic acid, glutamine, histidine, and phenylalanine generated only 5- or 6-membered ring products. However, lysine generated both 6- and 7-membered ring compounds. Variations of the relative intensities of the cyclic pyrolysis products with the pyrolysis temperature and amino acid concentration were also investigated. PMID:21993510

  12. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    PubMed

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides. PMID:27003128

  13. Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation.

    PubMed

    Colak, Gozde; Pougovkina, Olga; Dai, Lunzhi; Tan, Minjia; Te Brinke, Heleen; Huang, He; Cheng, Zhongyi; Park, Jeongsoon; Wan, Xuelian; Liu, Xiaojing; Yue, Wyatt W; Wanders, Ronald J A; Locasale, Jason W; Lombard, David B; de Boer, Vincent C J; Zhao, Yingming

    2015-11-01

    The protein substrates of sirtuin 5-regulated lysine malonylation (Kmal) remain unknown, hindering its functional analysis. In this study, we carried out proteomic screening, which identified 4042 Kmal sites on 1426 proteins in mouse liver and 4943 Kmal sites on 1822 proteins in human fibroblasts. Increased malonyl-CoA levels in malonyl-CoA decarboxylase (MCD)-deficient cells induces Kmal levels in substrate proteins. We identified 461 Kmal sites showing more than a 2-fold increase in response to MCD deficiency as well as 1452 Kmal sites detected only in MCD-/- fibroblast but not MCD+/+ cells, suggesting a pathogenic role of Kmal in MCD deficiency. Cells with increased lysine malonylation displayed impaired mitochondrial function and fatty acid oxidation, suggesting that lysine malonylation plays a role in pathophysiology of malonic aciduria. Our study establishes an association between Kmal and a genetic disease and offers a rich resource for elucidating the contribution of the Kmal pathway and malonyl-CoA to cellular physiology and human diseases. PMID:26320211

  14. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    PubMed Central

    Sarker, Satya Ranjan; Aoshima, Yumiko; Hokama, Ryosuke; Inoue, Takafumi; Sou, Keitaro; Takeoka, Shinji

    2013-01-01

    Background Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt) in the arginine head group. Methods Cationic lipids were hydrated in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt) that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p) DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the highest transfection efficiency in PC-12 cells. However, arginine-based cationic liposomes with TFA salt showed the highest transfection efficiency in HeLa cells, regardless of the presence of serum, with very low associated cytotoxicity. Conclusion The gene

  15. Arginine Metabolism in Developing Soybean Cotyledons

    PubMed Central

    Micallef, Barry J.; Shelp, Barry J.

    1989-01-01

    Tracerkinetic experiments were performed using l-[guanidino-14C]arginine, l-[U-14C]arginine, l-[ureido-14C]citrulline, and l-[1-14C]ornithine to investigate arginine utilization in developing cotyledons of Glycine max (L.) Merrill. Excised cotyledons were injected with carrier-free 14C compounds and incubated in sealed vials containing a CO2 trap. The free and protein amino acids were analyzed using high performance liquid chromatography and arginine-specific enzyme-linked assays. After 4 hours, 75% and 90% of the 14C metabolized from [guanidino-14C]arginine and [U-14C]arginine, respectively, was in protein arginine. The net protein arginine accumulation rate, calculated from the depletion of nitrogenous solutes in the cotyledon during incubation, was 17 nanomoles per cotyledon per hour. The data indicated that arginine was also catabolized by the arginase-urease reactions at a rate of 5.5 nanomoles per cotyledon per hour. Between 2 and 4 hours 14CO2 was also evolved from carbons other than C-6 of arginine at a rate of 11.0 nanomoles per cotyledon per hour. It is suggested that this extra 14CO2 was evolved during the catabolism of ornithine-derived glutamate; 14C-ornithine was a product of the arginase reaction. A model for the estimated fluxes associated with arginine utilization in developing soybean cotyledons is presented. The maximum specific radioactivity ratios between arginine in newly synthesized protein and total free arginine in the 14C-citrulline and 14C-ornithine experiments indicated that only 3% of the free arginine was in the protein precursor pool, and that argininosuccinate and citrulline were present in multiple pools. PMID:16666991

  16. Linkages in thermal copolymers of lysine

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Suzuki, F.

    1975-01-01

    The thermal copolymerization of lysine with other alpha-amino acids was studied. The identity of the second amino acid influences various properties of the polymer obtained, including the proportion of alpha and epsilon linkages of lysine. A review of linkages in proteinoids indicates alpha and beta linkages for aspartic acid, alpha and gamma linkages for glutamic acid, alpha and epsilon linkages for lysine, and alpha linkages for other amino acids. Thermal proteinoids are thus more complex in types of linkage than are proteins.

  17. Linkages in thermal copolymers of lysine

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Suzuki, F.

    1976-01-01

    The thermal copolymerization of lysine with other alpha-amino acids has been studied further. The identity of the second amino acid influences various properties of the polymer obtained, including the proportion of alpha and epsilon linkages of lysine. A review of linkages in proteinoids indicates alpha and beta linkages for aspartic acid, alpha and gamma linkages for glutamic acid, alpha and epsilon linkages for lysine, and alpha linkages for other amino acids. Thermal proteinoids are thus more complex in types of linkage than are proteins

  18. Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein.

    PubMed

    Bergt, Constanze; Fu, Xiaoyun; Huq, Nabiha P; Kao, Jeff; Heinecke, Jay W

    2004-02-27

    Oxidized lipoproteins may play an important role in the pathogenesis of atherosclerosis. Elevated levels of 3-chlorotyrosine, a specific end product of the reaction between hypochlorous acid (HOCl) and tyrosine residues of proteins, have been detected in atherosclerotic tissue. Thus, HOCl generated by the phagocyte enzyme myeloperoxidase represents one pathway for protein oxidation in humans. One important target of the myeloperoxidase pathway may be high density lipoprotein (HDL), which mobilizes cholesterol from artery wall cells. To determine whether activated phagocytes preferentially chlorinate specific sites in HDL, we used tandem mass spectrometry (MS/MS) to analyze apolipoprotein A-I that had been oxidized by HOCl. The major site of chlorination was a single tyrosine residue located in one of the protein's YXXK motifs (where X represents a nonreactive amino acid). To investigate the mechanism of chlorination, we exposed synthetic peptides to HOCl. The peptides encompassed the amino acid sequences YKXXY, YXXKY, or YXXXY. MS/MS analysis demonstrated that chlorination of tyrosine in the peptides that contained lysine was regioselective and occurred in high yield if the substrate was KXXY or YXXK. NMR and MS analyses revealed that the N(epsilon) amino group of lysine was initially chlorinated, which suggests that chloramine formation is the first step in tyrosine chlorination. Molecular modeling of the YXXK motif in apolipoprotein A-I demonstrated that these tyrosine and lysine residues are adjacent on the same face of an amphipathic alpha-helix. Our observations suggest that HOCl selectively targets tyrosine residues that are suitably juxtaposed to primary amino groups in proteins. This mechanism might enable phagocytes to efficiently damage proteins when they destroy microbial proteins during infection or damage host tissue during inflammation. PMID:14660678

  19. Biosynthesis of Protein Amino Acids in Plant Tissue Culture. III. Studies on the Biosynthesis of Arginine 123

    PubMed Central

    Dougall, Donald K.; Fulton, Michael M.

    1967-01-01

    Evidence from isotope competition studies and enzymic studies indicates that n-acetyl glutamic semialdehyde, α-n-acetyl-l-ornithine, l-ornithine and l-citrulline are intermediates between glucose and arginine in cells of Paul's Scarlet Rose. Evidence for the presence of α-n-acetyl-ornithine aminotransferase (E. C. 2.6.1.11) in cell-free extracts was obtained. PMID:6045297

  20. Mechanism of arginine regulation of acetylglutamate synthase, the first enzyme of arginine synthesis.

    PubMed

    Sancho-Vaello, Enea; Fernández-Murga, María L; Rubio, Vicente

    2009-01-01

    N-acetyl-L-glutamate synthase (NAGS), the first enzyme of arginine biosynthesis in bacteria/plants and an essential urea cycle activator in animals, is, respectively, arginine-inhibited and activated. Arginine binds to the hexameric ring-forming amino acid kinase (AAK) domain of NAGS. We show that arginine inhibits Pseudomonas aeruginosa NAGS by altering the functions of the distant, substrate binding/catalytic GCN5-related N-acetyltransferase (GNAT) domain, increasing K(m)(Glu), decreasing V(max) and triggering substrate inhibition by AcCoA. These effects involve centrally the interdomain linker, since we show that linker elongation or two-residue linker shortening hampers and mimics, respectively, arginine inhibition. We propose a regulatory mechanism in which arginine triggers the expansion of the hexameric NAGS ring, altering AAK-GNAT domain interactions, and the modulation by these interactions of GNAT domain functions, explaining arginine regulation. PMID:19084009

  1. Physiological implications of arginine metabolism in plants.

    PubMed

    Winter, Gudrun; Todd, Christopher D; Trovato, Maurizio; Forlani, Giuseppe; Funck, Dietmar

    2015-01-01

    Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO), although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions. PMID:26284079

  2. Physiological implications of arginine metabolism in plants

    PubMed Central

    Winter, Gudrun; Todd, Christopher D.; Trovato, Maurizio; Forlani, Giuseppe; Funck, Dietmar

    2015-01-01

    Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO), although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions. PMID:26284079

  3. Branched-Chain Amino Acids and Arginine Improve Performance in Two Consecutive Days of Simulated Handball Games in Male and Female Athletes: A Randomized Trial

    PubMed Central

    Chang, Chen-Kang; Chang Chien, Kun-Ming; Chang, Jung-Hsien; Huang, Mei-Hsuan; Liang, Ya-Chuan; Liu, Tsung-Han

    2015-01-01

    The central nervous system plays a crucial role in the development of physical fatigue. The purpose of this study is to investigate the effect of combined supplementation of branched-chain amino acids (BCAA) and arginine on intermittent sprint performance in simulated handball games on 2 consecutive days. Methods: Fifteen male and seven female handball players consumed 0.17 g/kg BCAA and 0.04 g/kg arginine together (AA trial), or placebo (PB trial) before exercise. Each trial contained two 60-min simulated handball games on consecutive days. The game was consisted of 30 identical 2-min blocks and a 20 m all-out sprint was performed at the end of each block. The performance, measured by percentage changes of sprint time between day 1 and 2, was significantly better in the AA trial (first half: AA trial: -1.34±0.60%, PB trial: -0.21±0.69%; second half: AA trial: -1.68±0.58%, PB trial: 0.49±0.42%). The average ratings of perceive exertion throughout the 2-day trial was significantly lower in the AA trial (14.2±0.3) than the PB trial (15.1±0.4). Concurrently, post-exercise tryptophan/BCAA ratio on both days in the AA trial was significantly lower than the baseline. This study showed that BCAA and arginine supplementation could improve performance in intermittent sprints on the second consecutive day of simulated handball games in well-trained athletes by potentially alleviating central fatigue. PMID:25803783

  4. N-alpha-Cocoyl-L-arginine ethyl ester, DL-pyroglutamic acid salt, as an inactivator of hepatitis B surface antigen.

    PubMed Central

    Sugimoto, Y; Toyoshima, S

    1979-01-01

    N-alpha-Cocoyl-L-arginine ethyl ester, DL-pyroglutamic acid salt (CAE), exhibited a strong inactivating effect on hepatitis B surface antigen. Concentrations of CAE required for 50 and 100% inactivation of the antigen were 0.01 to 0.025% and 0.025 to 0.05% respectively. CAE completely inactivated hepatitis B surface antigen at the lowest concentration compared with various compounds including about 500 amino acid derivatives, sodium hypochlorite, 2,4,4'-trichloro-2'-hydroxydiphenyl ether, and some detergents. Furthermore, CAE inactivated vaccinia virus, herpes simplex virus, and influenza virus, whereas poliovirus was not inactivated at all. The results suggest that the inactivating effects of CAE are related to interaction with lipid-containing viral envelopes. PMID:228595

  5. Watermelon consumption increases plasma arginine concentrations in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon is a good source of citrulline, an amino acid that can be converted to arginine in the human body. Arginine helps in cardiovascular and immune health. No studies have been conducted to evaluate plasma arginine response in humans following consumption of citrulline from natural plant so...

  6. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    PubMed Central

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2008-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymers under mild coupling conditions has been achieved utilising the coupling reagent O-benzotriazolyl-N,N,N′,N′-tetramethyluronium hexafluorophosphate to promote formation of the biodegradable amide bond. Even though the parent antineoplastic ferrocene and phthalocyanine derivatives are themselves insoluble in water at pH < 7, the new carrier-drug conjugates that were obtained are well water-soluble. PMID:18288243

  7. Amino acids (L-arginine and L-alanine) passivated CdS nanoparticles: Synthesis of spherical hierarchical structure and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Talwatkar, S. S.; Tamgadge, Y. S.; Sunatkari, A. L.; Gambhire, A. B.; Muley, G. G.

    2014-12-01

    CdS nanoparticles (NPs) passivated with amino acids (L-alanine and L-arginine) having spherical hierarchical morphology were synthesized by room temperature wet chemical method. Synthesized NPs were characterized by ultraviolet-visible (UV-vis) spectroscopy to study the variation of band gaps with concentration of surface modifying agents. Increase in band gap has been observed with the increase in concentration of surface modifying agents and was found more prominent for CdS NPs passivated with L-alanine. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were carried out for the study of crystal structure and morphology of CdS NPs. The average particle size of CdS NPs calculated from Debye-Scherer formula was found to less than 5 nm and agrees well with those determined from UV-vis spectra and TEM data. Fourier transform infrared (FT-IR) spectroscopy was performed to know the functional groups of the grown NPs. Peaks in FT-IR spectra indicate the formation of CdS NPs and capping with L-alanine and L-arginine. Photoluminescence spectra of these NPs were also studied. Finally, colloidal solution of CdS-PVAc was subjected to Z-scan experiment under low power cw laser illumination to characterize them for third order nonlinear optical properties. CdS-PVAc colloidal solution shows enhanced nonlinear absorption due to RSA and weak FCA on account of two photon absorption processes triggered by thermal effect.

  8. Identification of essential residues for the catalytic function of 85-kDa cytosolic phospholipase A2. Probing the role of histidine, aspartic acid, cysteine, and arginine.

    PubMed

    Pickard, R T; Chiou, X G; Strifler, B A; DeFelippis, M R; Hyslop, P A; Tebbe, A L; Yee, Y K; Reynolds, L J; Dennis, E A; Kramer, R M; Sharp, J D

    1996-08-01

    Cytosolic phospholipase A2 (cPLA2) hydrolyzes the sn-2-acyl ester bond of phospholipids and shows a preference for arachidonic acid-containing substrates. We found previously that Ser-228 is essential for enzyme activity and is likely to function as a nucleophile in the catalytic center of the enzyme (Sharp, J. D., White, D. L., Chiou, X. G., Goodson, T., Gamboa, G. C., McClure, D., Burgett, S., Hoskins, J., Skatrud, P. L., Sportsman, J. R., Becker, G. W., Kang, L. H., Roberts, E. F., and Kramer, R. M.(1991) J. Biol. Chem. 266, 14850-14853). cPLA2 contains a catalytic aspartic acid motif common to the subtilisin family of serine proteases. Substitution within this motif of Ala for Asp-549 completely inactivated the enzyme, and substitutions with either glutamic acid or asparagine reduced activity 2000- and 300-fold, respectively. Additionally, using mutants with cysteine replaced by alanine, we found that Cys-331 is responsible for the enzyme's sensitivity to N-ethylmaleimide. Surprisingly, substituting alanine for any of the 19 histidines did not produce inactive enzyme, demonstrating that a classical serine-histidine-aspartate mechanism does not operate in this hydrolase. We found that substituting alanine or histidine for Arg-200 did produce inactive enzyme, while substituting lysine reduced activity 200-fold. Results obtained with the lysine mutant (R200K) and a coumarin ester substrate suggest no specific interaction between Arg-200 and the phosphoryl group of the phospholipid substrate. Arg-200, Ser-228, and Asp-549 are conserved in cPLA2 from six species and also in four nonmammalian phospholipase B enzymes. Our results, supported by circular dichroism, provide evidence that Asp-549 and Arg-200 are critical to the enzyme's function and suggest that the cPLA2 catalytic center is novel. PMID:8702602

  9. A combination of both arginine- and lysine-specific gingipain activity of Porphyromonas gingivalis is necessary for the generation of the micro-oxo bishaem-containing pigment from haemoglobin.

    PubMed Central

    Smalley, John W; Thomas, Michael F; Birss, Andrew J; Withnall, Robert; Silver, Jack

    2004-01-01

    The black pigment of Porphyromonas gingivalis is composed of the mu-oxo bishaem complex of Fe(III) protoporphyrin IX (mu-oxo oligomer, dimeric haem), namely [Fe(III)PPIX]2O. P. gingivalis W50 and Rgp (Arg-gingipain)- and Kgp (Lys-gingipain)-deficient mutants K1A, D7, E8 and W501 [Aduse-Opoku, Davies, Gallagher, Hashim, Evans, Rangarajan, Slaney and Curtis (2000) Microbiology 146, 1933-1940] were grown on horse blood/agar for 14 days and examined for the production of mu-oxo bishaem. Mu-oxo Bishaem was detected by UV-visible, Mössbauer and Raman spectroscopies in wild-type W50 and in the black-pigmented RgpA- and RgpB-deficient mutants (W501 and D7 respectively), whereas no haem species were detected in the straw-coloured colonies of Kgp-deficient strain K1A. The dark brown pigment of the double RgpA/RgpB knockout mutant (E8) was not composed of mu-oxo bishaem, but of a high-spin monomeric Fe(III) protoporphyrin IX species (possibly a haem-albumin complex). In vitro incubation of oxyhaemoglobin with cells of the W50 strain and the RgpA- and RgpB-deficient mutants (W501 and D7) resulted in the formation of mu-oxo bishaem via methaemoglobin as an intermediate. Although the Kgp-deficient strain K1A converted oxyhaemoglobin into methaemoglobin, this was not further degraded into mu-oxo bishaem. The double RgpA/RgpB knockout was also not capable of producing mu-oxo bishaem from oxyhaemoglobin, but instead generated a haemoglobin haemichrome. Inhibition of Arg-X protease activity of W50, W501, D7 and K1A with leupeptin, under conditions where Lys-X protease activity was unaffected, prevented the production of mu-oxo bishaem from oxyhaemoglobin, but resulted in the formation of a haemoglobin haemichrome. These results show that one or both of RgpA and RgpB gingipains, in addition to the lysine-specific gingipain, is necessary for the production of mu-oxo bishaem from haemoglobin by whole cells of P. gingivalis. PMID:14741050

  10. L-arginine

    MedlinePlus

    ... Talk with your health provider.Medications that slow blood clotting (Anticoagulant / Antiplatelet drugs)L-arginine seems to slow blood clotting. Taking L-arginine along with medications that also ...

  11. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  12. Protein loop compaction and the origin of the effect of arginine and glutamic acid mixtures on solubility, stability and transient oligomerization of proteins.

    PubMed

    Blobel, Jascha; Brath, Ulrika; Bernadó, Pau; Diehl, Carl; Ballester, Lidia; Sornosa, Alejandra; Akke, Mikael; Pons, Miquel

    2011-12-01

    Addition of a 50 mM mixture of L: -arginine and L: -glutamic acid (RE) is extensively used to improve protein solubility and stability, although the origin of the effect is not well understood. We present Small Angle X-ray Scattering (SAXS) and Nuclear Magnetic Resonance (NMR) results showing that RE induces protein compaction by collapsing flexible loops on the protein core. This is suggested to be a general mechanism preventing aggregation and improving resistance to proteases and to originate from the polyelectrolyte nature of RE. Molecular polyelectrolyte mixtures are expected to display long range correlation effects according to dressed interaction site theory. We hypothesize that perturbation of the RE solution by dissolved proteins is proportional to the volume occupied by the protein. As a consequence, loop collapse, minimizing the effective protein volume, is favored in the presence of RE. PMID:21390527

  13. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium.

    PubMed

    Yang, Zhenquan; Meng, Xia; Breidt, Frederick; Dean, Lisa L; Arritt, Fletcher M

    2015-04-01

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known about the growth and metabolism of this organism in these products. To clarify the mechanisms of pH change and growth of B. licheniformis in vegetable broth under acidic conditions, a cucumber juice medium representative of a noninhibitory vegetable broth was used to monitor changes in pH, cell growth, and catabolism of sugars and amino acids. For initial pH values between pH 4.1 to 6.0, pH changes resulted from both fermentation of sugar (lowering pH) and ammonia production (raising pH). An initial pH elevation occurred, with starting pH values of pH 4.1 to 4.9 under both aerobic and anaerobic conditions, and was apparently mediated by the arginine deiminase reaction of B. licheniformis. This initial pH elevation was prevented if 5 mM or greater acetic acid was present in the brine at the same pH. In laboratory media, under favorable conditions for growth, data indicated that growth of the organism was inhibited at pH 4.6 with protonated acetic acid concentrations of 10 to 20 mM, corresponding to 25 to 50 mM total acetic acid; however, growth inhibition required greater than 300 mM citric acid (10-fold excess of the amount in processed tomato products) products under similar conditions. The data indicate that growth and pH increase by B. licheniformis may be inhibited by the acetic acid present in most commercial acidified vegetable products but not by the citric acid in many tomato products. PMID:25836398

  14. Polymer resins with amino acid containing pendants for sorption of bilirubin. II. Polyamide resins with various basic amino acids.

    PubMed

    Henning, D S; Brown, G R; St-Pierre, L E

    1986-01-01

    Short peptides, three to eight amino acids in length, containing various combinations of alanine, arginine, lysine, histidine and tyrosine have been synthesized onto water-swellable polyamide resin by the solid phase peptide synthesis method. The amount of bilirubin adsorbed from aqueous buffer solution (pH = 7.8) by the resins increases with increasing basicity of the amino acids in the pendant. As the number of basic amino acids on the pendant is increased from one to five a 4.7 fold enhancement in the adsorption capacity is seen for arginine while a 9.3 fold enhancement is obtained for lysine. A corresponding increase in length for the non-basic histidine results in a 6 fold enhancement. With alanine the adsorption capacity is uneffected by an increase in pendant length. PMID:3957453

  15. Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans

    PubMed Central

    Moore, Eli K.; Hopmans, Ellen C.; Rijpstra, W. Irene C.; Sánchez-Andrea, Irene; Villanueva, Laura; Wienk, Hans; Schoutsen, Frans; Stams, Alfons J. M.; Sinninghe Damsté, Jaap S.

    2015-01-01

    Microbial decomposition of organic matter is an essential process in the global carbon cycle. The soil bacteria Pseudopedobacter saltans and Flavobacterium johnsoniae are both able to degrade complex organic molecules, but it is not fully known how their membrane structures are adapted to their environmental niche. The membrane lipids of these species were extracted and analyzed using high performance liquid chromatography-electrospray ionization/ion trap/mass spectrometry (HPLC-ESI/IT/MS) and high resolution accurate mass/mass spectrometry (HRAM/MS). Abundant unknown intact polar lipids (IPLs) from P. saltans were isolated and further characterized using amino acid analysis and two dimensional nuclear magnetic resonance (NMR) spectroscopy. Ornithine IPLs (OLs) with variable (hydroxy) fatty acid composition were observed in both bacterial species. Lysine-containing IPLs (LLs) were also detected in both species and were characterized here for the first time using HPLC-MS. Novel LLs containing hydroxy fatty acids and novel hydroxylysine lipids with variable (hydroxy) fatty acid composition were identified in P. saltans. The confirmation of OL and LL formation in F. johnsoniae and P. saltans and the presence of OlsF putative homologs in P. saltans suggest the OlsF gene coding protein is possibly involved in OL and LL biosynthesis in both species, however, potential pathways of OL and LL hydroxylation in P. saltans are still undetermined. Triplicate cultures of P. saltans were grown at three temperature/pH combinations: 30°C/pH 7, 15°C/pH 7, and 15°C/pH 9. The fractional abundance of total amino acid containing IPLs containing hydroxylated fatty acids was significantly higher at higher temperature, and the fractional abundance of lysine-containing IPLs was significantly higher at lower temperature and higher pH. These results suggest that these amino acid-containing IPLs, including the novel hydroxylysine lipids, could be involved in temperature and pH stress

  16. Arginine metabolism in developing soybean cotyledons

    SciTech Connect

    Micallef, B.J.; Shelp, B.J. )

    1989-09-01

    Tracerkinetic experiments were performed using L-(guanidino-{sup 14}C)arginine, L-(U-{sup 14}C)arginine, L-(ureido-{sup 14}C)citrulline, and L-(1-{sup 14}C)ornithine to investigate arginine utilization in developing cotyledons of Gycine max (L.) Merrill. Excised cotyledons were injected with carrier-free {sup 14}C compounds and incubated in sealed vials containing a CO{sub 2} trap. The free and protein amino acids were analyzed using higher performance liquid chromatography and arginine-specific enzyme-linked assays. After 4 hours, 75% and 90% of the {sup 14}C metabolized from (guanidino-{sup 14}C)arginine and (U-{sup 14}C)arginine, respectively, was in protein arginine. The net protein arginine accumulation rate, calculated from the depletion of nitrogenous solutes in the cotyledon during incubation, was 17 nanomoles per cotyledon per hour. The data indicated that arginine was also catabolized by the arginase-urease reactions at a rate of 5.5 nanomoles per cotyledon per hour. Between 2 and 4 hours {sup 14}CO{sub 2} was also evolved from carbons other than C-6 of arginine at a rate of 11.0 nanomoles per cotyledon per hour. It is suggested that this extra {sup 14}CO{sub 2} was evolved during the catabolism of ornithine-derived glutamate; {sup 14}C-ornithine was a product of the arginase reaction. A model for the estimated fluxes associated with arginine utilization in developing soybean cotyledons is presented.

  17. Granulocyte functions are independent of arginine availability.

    PubMed

    Kapp, Katharina; Prüfer, Steve; Michel, Christian S; Habermeier, Alice; Luckner-Minden, Claudia; Giese, Thomas; Bomalaski, John; Langhans, Claus-Dieter; Kropf, Pascale; Müller, Ingrid; Closs, Ellen I; Radsak, Markus P; Munder, Markus

    2014-12-01

    Arginine depletion via myeloid cell arginase is critically involved in suppression of the adaptive immune system during cancer or chronic inflammation. On the other hand, arginine depletion is being developed as a novel anti-tumor metabolic strategy to deprive arginine-auxotrophic cancer cells of this amino acid. In human immune cells, arginase is mainly expressed constitutively in PMNs. We therefore purified human primary PMNs from healthy donors and analyzed PMN function as the main innate effector cell and arginase producer in the context of arginine deficiency. We demonstrate that human PMN viability, activation-induced IL-8 synthesis, chemotaxis, phagocytosis, generation of ROS, and fungicidal activity are not impaired by the absence of arginine in vitro. Also, profound pharmacological arginine depletion in vivo via ADI-PEG20 did not inhibit PMN functions in a mouse model of pulmonary invasive aspergillosis; PMN invasion into the lung, activation, and successful PMN-dependent clearance of Aspergillus fumigatus and survival of mice were not impaired. These novel findings add to a better understanding of immunity during inflammation-associated arginine depletion and are also important for the development of therapeutic arginine depletion as anti-metabolic tumor therapy. PMID:25104794

  18. Lysine catabolism in Rhizoctonia leguminicola and related fungi.

    PubMed Central

    Guengerich, F P; Broquist, H P

    1976-01-01

    The catabolism of lysine was studied in several yeasts and fungi. Results with cell-free extracts of Rhizoctonia leguminicola support a proposed pathway involving (D- and L-) EPSILON-N-acetyllysine, alpha-keto-epsilon-acetamidohexanoic acid, delta-acetamidovaleric acid, and delta-aminovaleric acid in the conversion of L-lysine to shortchain organic acids. Label from radioactive L-lysine was found to accumulate in D- and L-epsilon-N-acetyllysine, delta-acetamidovaleric acid, delta-aminovaleric acid, and glutaric acid in cultures of R. leguminicola, Neurospora crassa, Saccharomyces cerevisiae, and Hansenula saturnus, suggesting that the proposed omega-acetyl pathway of lysine catabolism is generalized among yeasts and fungi. In N. crassa, as is the case in R. leguminicola, the major precursor of L-pipecolic acid was the L-isomer of lysine; 15N experiments were consistent with delta1-piperideine-2-carboxylic acid as an intermediate in the transformation. PMID:131119

  19. l-Arginine currents in rat cardiac ventricular myocytes

    PubMed Central

    Peluffo, R Daniel

    2007-01-01

    l-Arginine (l-Arg) is a basic amino acid that plays a central role in the biosynthesis of nitric oxide, creatine, agmantine, polyamines, proline and glutamate. Most tissues, including myocardium, must import l-Arg from the circulation to ensure adequate intracellular levels of this amino acid. This study reports novel l-Arg-activated inward currents in whole-cell voltage-clamped rat ventricular cardiomyocytes. Ion-substitution experiments identified extracellular l-Arg as the charge-carrying cationic species responsible for these currents, which, thus, represent l-Arg import into cardiac myocytes. This result was independently confirmed by an increase in myocyte nitric oxide production upon extracellular application of l-Arg. The inward movement of Arg molecules was found to be passive and independent of Na2+, K2+, Ca2+ and Mg2+. The process displayed saturation and membrane potential (Vm)-dependent kinetics, with a K0.5 for l-Arg that increased from 5 mm at hyperpolarizing Vm to 20 mm at +40 mV. l-Lysine and l-ornithine but not d-Arg produced currents with characteristics similar to that activated by l-Arg indicating that the transport process is stereospecific for cationic l-amino acids. l-Arg current was fully blocked after brief incubation with 0.2 mmN-ethylmaleimide. These features suggest that the activity of the low-affinity, high-capacity CAT-2A member of the y2+ family of transporters is responsible for l-Arg currents in acutely isolated cardiomyocytes. Regardless of the mechanism, we hypothesize that a low-affinity arginine transport process in heart, by ensuring substrate availability for sustained NO production, might play a cardio-protective role during catabolic states known to increase Arg plasma levels severalfold. PMID:17303641

  20. Detection of non-protein amino acids in the presence of protein amino acids. II.

    NASA Technical Reports Server (NTRS)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  1. Enzymatic Modification of Soluble Cyanophycin Using the Type II Peptidyl Arginine Deiminase from Oryctolagus cuniculus.

    PubMed

    Wiefel, Lars; Steinbüchel, Alexander

    2016-07-01

    An increased structural variety expands the number of putative applications for cyanophycin (multi-l-arginyl-poly-[l-aspartic acid], CGP). Therefore, structural modifications of CGP are of major interest; these are commonly obtained by modification and optimization of the bacterial producing strain or by chemical modification. In this study, an enzymatic modification of arginine side chains from lysine-rich CGP is demonstrated using the peptidyl arginine deiminase from Oryctolagus cuniculus, purified from Escherichia coli after heterologous expression. About 10% of the arginine side chains are converted to citrulline which corresponds to 4% of the polymer's total side chains. An inhibition of the reaction in the presence of small amounts of l-citrulline is observed, thereby explaining the low conversion rate. CGP dipeptides can be modified with about 7.5 mol% of the Asp-Arg dipeptides being converted to Asp-Cit. These results show that the enzymatic modification of CGP is feasible, opening up a whole new area of possible CGP modifications for further research. PMID:26953800

  2. Arginine metabolism: nitric oxide and beyond.

    PubMed Central

    Wu, G; Morris, S M

    1998-01-01

    Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine. Of the enzymes that catalyse rate-controlling steps in arginine synthesis and catabolism, argininosuccinate synthase, the two arginase isoenzymes, the three nitric oxide synthase isoenzymes and arginine decarboxylase have been recognized in recent years as key factors in regulating newly identified aspects of arginine metabolism. In particular, changes in the activities of argininosuccinate synthase, the arginases, the inducible isoenzyme of nitric oxide synthase and also cationic amino acid transporters play major roles in determining the metabolic fates of arginine in health and disease, and recent studies have identified complex patterns of interaction among these enzymes. There is growing interest in the potential roles of the arginase isoenzymes as regulators of the synthesis of nitric oxide, polyamines, proline and glutamate. Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ (e.g. liver, small intestine and kidney) and subcellular (cytosol and mitochondria) levels, as well as to changes in expression during development and in response to diet, hormones and cytokines. The ongoing development of new cell lines and animal models using cDNA clones and genes for key arginine metabolic enzymes will provide new approaches more clearly elucidating the physiological roles of these enzymes. PMID:9806879

  3. Starvation induced alterations in hepatic lysine metabolism in different families of rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lysine is the second limiting amino acid in fish meal based diets, second only to methionine. However, little is known about lysine metabolism in rainbow trout (RBT). Therefore, lysine catabolism by the lysine alpha-ketoglutarate reductase (LKR) pathway was studied. Additionally, since genetically i...

  4. A pH-responsive drug nanovehicle constructed by reversible attachment of cholesterol to PEGylated poly(l-lysine) via catechol-boronic acid ester formation.

    PubMed

    Yang, Bin; Lv, Yin; Zhu, Jing-Yi; Han, Yun-Tao; Jia, Hui-Zhen; Chen, Wei-Hai; Feng, Jun; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2014-08-01

    The present work reports the construction of a drug delivery nanovehicle via a pH-sensitive assembly strategy for improved cellular internalization and intracellular drug liberation. Through spontaneous formation of boronate linkage in physiological conditions, phenylboronic acid-modified cholesterol was able to attach onto catechol-pending methoxypoly(ethylene glycol)-block-poly(l-lysine). This comb-type polymer can self-organize into a micellar nanoconstruction that is able to effectively encapsulate poorly water-soluble agents. The blank micelles exhibited negligible in vitro cytotoxicity, yet doxorubicin (DOX)-loaded micelles could effectively induce cell death at a level comparable to free DOX. Owing to the acid-labile feature of the boronate linkage, a reduction in environmental pH from pH 7.4 to 5.0 could trigger the dissociation of the nanoconstruction, which in turn could accelerate the liberation of entrapped drugs. Importantly, the blockage of endosomal acidification in HeLa cells by NH4Cl treatment significantly decreased the nuclear uptake efficiency and cell-killing effect mediated by the DOX-loaded nanoassembly, suggesting that acid-triggered destruction of the nanoconstruction is of significant importance in enhanced drug efficacy. Moreover, confocal fluorescence microscopy and flow cytometry assay revealed the effective internalization of the nanoassemblies, and their cellular uptake exhibited a cholesterol dose-dependent profile, indicating the contribution of introduced cholesterol functionality to the transmembrane process of the nanoassembly. PMID:24879311

  5. Arginine and Citrulline and the Immune Response in Sepsis

    PubMed Central

    Wijnands, Karolina A.P.; Castermans, Tessy M.R.; Hommen, Merel P.J.; Meesters, Dennis M.; Poeze, Martijn

    2015-01-01

    Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target. PMID:25699985

  6. Clinical pharmacokinetics of ibuprofen arginine.

    PubMed

    Cattaneo, Dario; Clementi, Emilio

    2010-11-01

    Currently, several ibuprofen compounds are available on the market, mainly differing in terms of pharmaceutical composition that influence the pharmacokinetic profile and eventually the onset of drug action. This review will mainly deal with the clinical pharmacokinetics of ibuprofen arginine, an alternative formulation specifically designed to improve the absorption of ibuprofen. Indeed, available data from studies in healthy volunteers have consistently shown that the formulation of ibuprofen arginine is characterized by prompt absorption of ibuprofen as compared to the conventional formulation at all tested doses with higher peak plasma concentration and lower Tmax values. This trend has been confirmed also in studies dealing with chiral ibuprofen pharmacokinetics. Most importantly, the shortening in the absorption time observed either with racemic mixture or with the S(+)-enantiomer of ibuprofen arginine did not imply a faster drug elimination eventually leading to inadequate daily drug exposure, as documented by T1/2 and AUC values being comparable to those measured with the free acid form. Taken together, the pharmacokinetic/dynamic characteristics of ibuprofen arginine can be considered particularly favorable for several clinical conditions, such as moderate/severe pain, in which a rapid pharmacologic effect is required. PMID:20925647

  7. Diminished L-arginine bioavailability in hypertension.

    PubMed

    Moss, Monique B; Brunini, Tatiana M C; Soares De Moura, Roberto; Novaes Malagris, Lúcia E; Roberts, Norman B; Ellory, J Clive; Mann, Giovanni E; Mendes Ribeiro, Antônio C

    2004-10-01

    L-Arginine is the precursor of NO (nitric oxide), a key endogenous mediator involved in endothelium-dependent vascular relaxation and platelet function. Although the concentration of intracellular L-arginine is well above the Km for NO synthesis, in many cells and pathological conditions the transport of L-arginine is essential for NO production (L-arginine paradox). The present study was designed to investigate the modulation of L-arginine/NO pathway in systemic arterial hypertension. Transport of L-arginine into RBCs (red blood cells) and platelets, NOS (NO synthase) activity and amino acid profiles in plasma were analysed in hypertensive patients and in an animal model of hypertension. Influx of L-arginine into RBCs was mediated by the cationic amino acid transport systems y+ and y+L, whereas, in platelets, influx was mediated only via system y+L. Chromatographic analyses revealed higher plasma levels of L-arginine in hypertensive patients (175+/-19 micromol/l) compared with control subjects (137+/-8 micromol/l). L-Arginine transport via system y+L, but not y+, was significantly reduced in RBCs from hypertensive patients (60+/-7 micromol.l(-1).cells(-1).h(-1); n=16) compared with controls (90+/-17 micromol.l(-1).cells(-1).h(-1); n=18). In human platelets, the Vmax for L-arginine transport via system y+L was 86+/-17 pmol.10(9) cells(-1).min(-1) in controls compared with 36+/-9 pmol.10(9) cells(-1).min(-1) in hypertensive patients (n=10; P<0.05). Basal NOS activity was decreased in platelets from hypertensive patients (0.12+/-0.02 pmol/10(8) cells; n=8) compared with controls (0.22+/-0.01 pmol/10(8) cells; n=8; P<0.05). Studies with spontaneously hypertensive rats demonstrated that transport of L-arginine via system y+L was also inhibited in RBCs. Our findings provide the first evidence that hypertension is associated with an inhibition of L-arginine transport via system y+L in both humans and animals, with reduced availability of L-arginine limiting NO synthesis

  8. ArcD1 and ArcD2 Arginine/Ornithine Exchangers Encoded in the Arginine Deiminase Pathway Gene Cluster of Lactococcus lactis

    PubMed Central

    Noens, Elke E. E.; Kaczmarek, Michał B.; Żygo, Monika

    2015-01-01

    ABSTRACT The arginine deiminase (ADI) pathway gene cluster in Lactococcus lactis contains two copies of a gene encoding an l-arginine/l-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. Deletion of arcD1 resulted in loss of the growth advantage observed in the presence of high l-arginine in different growth media. Uptake of l-arginine and l-ornithine by resting cells was reduced to the low level observed for an ArcD1/ArcD2 double deletion mutant. Deletion of the arcD2 gene did not affect the growth enhancement, and uptake activities were slightly reduced. Nevertheless, recombinant expression of ArcD2 in the ArcD1/ArcD2 double mutant did recover the growth advantage. Kinetic characterization of ArcD1 and ArcD2 showed high affinities for both l-arginine and l-ornithine (Km in the micromolar range). A difference between the two transporters was the significantly lower affinity of ArcD2 for the cationic amino acids l-ornithine, l-lysine, and l-histidine. In contrast, the affinity of ArcD2 was higher for the neutral amino acid l-alanine. Moreover, ArcD2 efficiently translocated l-alanine, while ArcD1 did not. Both transporters revealed affinities in the mM range for agmatine, cadaverine, histamine, and putrescine. These amines bind but are not translocated. It is concluded that ArcD1 is the main l-arginine/l-ornithine exchanger in the ADI pathway and that ArcD2 is not functionally expressed in the media used. ArcD2 is proposed to function together with the arcT gene that encodes a putative transaminase and is found adjacent to the arcD2 gene. IMPORTANCE The arginine deiminase (ADI) pathway gene cluster in Lactococcus lactis contains two copies of a gene encoding an l-arginine/l-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. It is concluded that ArcD1 is the main l-arginine/l-ornithine exchanger in the

  9. Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis.

    PubMed

    Ramón-Maiques, Santiago; Marina, Alberto; Gil-Ortiz, Fernando; Fita, Ignacio; Rubio, Vicente

    2002-03-01

    N-Acetyl-L-glutamate kinase (NAGK), a member of the amino acid kinase family, catalyzes the second and frequently controlling step of arginine synthesis. The Escherichia coli NAGK crystal structure to 1.5 A resolution reveals a 258-residue subunit homodimer nucleated by a central 16-stranded molecular open beta sheet sandwiched between alpha helices. In each subunit, AMPPNP, as an alphabetagamma-phosphate-Mg2+ complex, binds along the sheet C edge, and N-acetyl-L-glutamate binds near the dyadic axis with its gamma-COO- aligned at short distance from the gamma-phosphoryl, indicating associative phosphoryl transfer assisted by: (1) Mg2+ complexation; (2) the positive charges on Lys8, Lys217, and on two helix dipoles; and (3) by hydrogen bonding with the y-phosphate. The structural resemblance with carbamate kinase and the alignment of the sequences suggest that NAGK is a structural and functional prototype for the amino acid kinase family, which differs from other acylphosphate-making devices represented by phosphoglycerate kinase, acetate kinase, and biotin carboxylase. PMID:12005432

  10. Arginine metabolism in asthma.

    PubMed

    Scott, Jeremy A; Grasemann, Hartmut

    2014-11-01

    Nitric oxide (NO) is important in the regulation of airway tone and airway responsiveness. Alterations in the L-arginine metabolism resulting in reduced availability of the substrate L-arginine for NO synthases, as well as the presence of NO synthase inhibitors such as asymmetric dimethylarginine, contribute to the reduced NO formation and airway dysfunction in asthma. Therapeutic interventions aiming to modulate the impaired L-arginine metabolism may help correct the enhanced airway tone and responsiveness in asthma. PMID:25282289

  11. Economical production of poly(ε-l-lysine) and poly(l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1.

    PubMed

    Xia, Jun; Xu, Zhaoxian; Xu, Hong; Liang, Jinfeng; Li, Sha; Feng, Xiaohai

    2014-07-01

    Poly(ε-L-lysine) (ε-PL) and poly(L-diaminopropionic acid) (PDAP) co-production by Streptomyces albulus PD-1 from cane molasses and hydrolysate of strepyomyces cells (HSC) was investigated for the first time in this study. The optimal initial total sugar concentration of the cane molasses pretreated with sulfuric acid was determined to be 20 g L(-1), and HSC could substitute for yeast extract for ε-PL and PDAP co-production. When fed-batch fermentation was performed in 1t fermentor with pretreated cane molasses and HSC, 20.6 ± 0.5 g L(-1) of ε-PL and 5.2 ± 0.6 g L(-1) of PDAP were obtained. The amount of strepyomyces cells obtained in one fed-batch fermentation is sufficient to prepare the HSC to satisfy the demand of subsequent fermentations, thus the self-cycling of organic nitrogen source becomes available. These results suggest that the low-cost cane molasses and HSC can be used for the economical production of ε-PL and PDAP by S. albulus PD-1. PMID:24861999

  12. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC.

    PubMed

    Ju, Zhe; Cao, Jun-Zhe; Gu, Hong

    2016-05-21

    As a new type of post-translational modification, lysine phosphoglycerylation plays a key role in regulating glycolytic process and metabolism in cells. Due to the traditional experimental methods are time-consuming and labor-intensive, it is important to develop computational methods to identify the potential phosphoglycerylation sites. However, the prediction performance of the existing phosphoglycerylation site predictor is not satisfactory. In this study, a novel predictor named CKSAAP_PhoglySite is developed to predict phosphoglycerylation sites by using composition of k-spaced amino acid pairs and fuzzy support vector machine. On the one hand, after many aspects of assessments, we find the composition of k-spaced amino acid pairs is more suitable for representing the protein sequence around the phosphoglycerylation sites than other encoding schemes. On the other hand, the proposed fuzzy support vector machine algorithm can effectively handle the imbalanced and noisy problem in phosphoglycerylation sites training dataset. Experimental results indicate that CKSAAP_PhoglySite outperforms the existing phosphoglycerylation site predictor Phogly-PseAAC significantly. A matlab software package for CKSAAP_PhoglySite can be freely downloaded from https://github.com/juzhe1120/Matlab_Software/blob/master/CKSAAP_PhoglySite_Matlab_Software.zip. PMID:26908349

  13. Use of External, Biosynthetic, and Organellar Arginine by Neurospora

    PubMed Central

    Subramanian, K. N.; Weiss, Richard L.; Davis, Rowland H.

    1973-01-01

    The fate of very low amounts of 14C-arginine derived from the medium or from biosynthesis was studied in Neurospora cells grown in minimal medium. In both cases, the label enters the cytoplasm, where it is very briefly used with high efficiency for protein synthesis without mixing with the bulk of the large, endogenous pool of 12C-arginine. The soluble 14C-arginine which is not used for protein synthesis is sequestered in a vesicle with the bulk of the endogenous arginine pool. After this time, it is selectively excluded from use in protein synthesis except by exchange with cytoplasmic arginine. The data suggest that in vivo, the non-organellar cytoplasm contains less than 5% of the soluble, cellular arginine. The cellular organization of Neurospora described here also prevents the catabolism of arginine. Our results are discussed in relation to previous work on amino acid pools of other eukaryotic systems. PMID:4717516

  14. Weight gain, feed conversion efficiency and plasma free lysine as response criteria in evaluating supplements of lysine plus threonine and lysine plus tryptophan to deficient diets for rats.

    PubMed

    Frydrych, Z; Heger, J

    1986-08-01

    Two experiments were conducted on growing male SPF-rats to compare weight gain, feed conversion efficiency and plasma free lysine concentration as response criteria in evaluating adequacy of lysine plus threonine and lysine plus tryptophan supplements to the deficient diets. Two basal semisynthetic diets were prepared limiting in lysine and threonine (Expt. 1) and lysine and tryptophan (Expt. 2). The addition of graded supplements to the basal diets of L-lysine X HCl alone (0.2; 0.4; 0.6; 0.8 and 1.0% of diet) induced imbalance of amino acids resulting in low level of daily weight gain and feed conversion efficiency. Plasma free lysine concentration started to grow linearly from the first supplement of L-lysine X HCl. If rats were fed the diets containing identical supplements of L-lysine X HCl in combination with two supplements of L-threonine (0.2 and 0.4% of diet, Expt. 1) or L-tryptophan (0.05 and 0.1% of diet, Expt. 2), plasma free lysine started to increase before supplements of amino acids were adequate to support maximum weight gain and feed conversion efficiency. this difference in response seems to be caused by different feeding regiment during the growth period of the experiments (ad libitum) and training period prior to blood sampling (feeding twice daily). PMID:3098208

  15. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    PubMed

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. PMID:24446756

  16. Two Arginine Residues of Streptococcus gordonii Sialic Acid-Binding Adhesin Hsa Are Essential for Interaction to Host Cell Receptors

    PubMed Central

    Urano-Tashiro, Yumiko; Takahashi, Yukihiro; Oguchi, Riyo; Konishi, Kiyoshi

    2016-01-01

    Hsa is a large, serine-rich protein of Streptococcus gordonii DL1 that mediates binding to α2-3-linked sialic acid termini of glycoproteins, including platelet glycoprotein Ibα, and erythrocyte membrane protein glycophorin A, and band 3. The binding of Hsa to platelet glycoprotein Ibα contributes to the pathogenesis of infective endocarditis. This interaction appears to be mediated by a second non-repetitive region (NR2) of Hsa. However, the molecular details of the interaction between the Hsa NR2 region and these glycoproteins are not well understood. In the present study, we identified the amino acid residues of the Hsa NR2 region that are involved in sialic acid recognition. To identify the sialic acid-binding site of Hsa NR2 region, we prepared various mutants of Hsa NR2 fused with glutathione transferase. Fusion proteins harboring Arg340 to Asn (R340N) or Arg365 to Asn (R365N) substitutions in the NR2 domain exhibited significantly reduced binding to human erythrocytes and platelets. A sugar-binding assay showed that these mutant proteins abolished binding to α2-3-linked sialic acid. Furthermore, we established S. gordonii DL1 derivatives that encoded the corresponding Hsa mutant protein. In whole-cell assays, these mutant strains showed significant reductions in hemagglutination, in platelet aggregation, and in adhesion to human leukocytes. These results indicate that the Arg340 and Arg365 residues of Hsa play an important role in the binding of Hsa to α2-3-linked sialic acid-containing glycoproteins. PMID:27101147

  17. Two Arginine Residues of Streptococcus gordonii Sialic Acid-Binding Adhesin Hsa Are Essential for Interaction to Host Cell Receptors.

    PubMed

    Urano-Tashiro, Yumiko; Takahashi, Yukihiro; Oguchi, Riyo; Konishi, Kiyoshi

    2016-01-01

    Hsa is a large, serine-rich protein of Streptococcus gordonii DL1 that mediates binding to α2-3-linked sialic acid termini of glycoproteins, including platelet glycoprotein Ibα, and erythrocyte membrane protein glycophorin A, and band 3. The binding of Hsa to platelet glycoprotein Ibα contributes to the pathogenesis of infective endocarditis. This interaction appears to be mediated by a second non-repetitive region (NR2) of Hsa. However, the molecular details of the interaction between the Hsa NR2 region and these glycoproteins are not well understood. In the present study, we identified the amino acid residues of the Hsa NR2 region that are involved in sialic acid recognition. To identify the sialic acid-binding site of Hsa NR2 region, we prepared various mutants of Hsa NR2 fused with glutathione transferase. Fusion proteins harboring Arg340 to Asn (R340N) or Arg365 to Asn (R365N) substitutions in the NR2 domain exhibited significantly reduced binding to human erythrocytes and platelets. A sugar-binding assay showed that these mutant proteins abolished binding to α2-3-linked sialic acid. Furthermore, we established S. gordonii DL1 derivatives that encoded the corresponding Hsa mutant protein. In whole-cell assays, these mutant strains showed significant reductions in hemagglutination, in platelet aggregation, and in adhesion to human leukocytes. These results indicate that the Arg340 and Arg365 residues of Hsa play an important role in the binding of Hsa to α2-3-linked sialic acid-containing glycoproteins. PMID:27101147

  18. Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen.

    PubMed

    Chang, Hsin-Hou; Shyu, Huey-Fen; Wang, Yo-Ming; Sun, Der-Shan; Shyu, Rong-Hwa; Tang, Shiao-Shek; Huang, Yao-Shine

    2002-09-15

    Dengue virus infection causes life-threatening hemorrhagic fever. Increasing evidence implies that dengue viral nonstructural protein 1 (NS1) exhibits a tendency to elicit potentially hazardous autoantibodies, which show a wide spectrum of specificity against extracellular matrix and platelet antigens. How NS1 elicits autoantibodies remains unclear. To address the hypothesis that NS1 and matrix proteins may have structural and functional similarity, cell-matrix and cell-NS1 interactions were evaluated using a cell-adhesion assay. The present study showed that dengue NS1 immobilized on coverslips resulted in more cell adhesion than did the control proteins. This cell adhesion was inhibited by peptides containing arginine-glycine-aspartic acid (RGD), a motif important for integrin-mediated cell adhesion. In addition, anti-NS1 antibodies blocked RGD-mediated cell adhesion. Although there is no RGD motif in the NS1 protein sequence, these data indicate that RGD structural mimicry exists within the NS1 antigen. PMID:12198607

  19. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo.

    PubMed

    Miraki-Moud, Farideh; Ghazaly, Essam; Ariza-McNaughton, Linda; Hodby, Katharine A; Clear, Andrew; Anjos-Afonso, Fernando; Liapis, Konstantinos; Grantham, Marianne; Sohrabi, Fareeda; Cavenagh, Jamie; Bomalaski, John S; Gribben, John G; Szlosarek, Peter W; Bonnet, Dominique; Taussig, David C

    2015-06-25

    The strategy of enzymatic degradation of amino acids to deprive malignant cells of important nutrients is an established component of induction therapy of acute lymphoblastic leukemia. Here we show that acute myeloid leukemia (AML) cells from most patients with AML are deficient in a critical enzyme required for arginine synthesis, argininosuccinate synthetase-1 (ASS1). Thus, these ASS1-deficient AML cells are dependent on importing extracellular arginine. We therefore investigated the effect of plasma arginine deprivation using pegylated arginine deiminase (ADI-PEG 20) against primary AMLs in a xenograft model and in vitro. ADI-PEG 20 alone induced responses in 19 of 38 AMLs in vitro and 3 of 6 AMLs in vivo, leading to caspase activation in sensitive AMLs. ADI-PEG 20-resistant AMLs showed higher relative expression of ASS1 than sensitive AMLs. This suggests that the resistant AMLs survive by producing arginine through this metabolic pathway and ASS1 expression could be used as a biomarker for response. Sensitive AMLs showed more avid uptake of arginine from the extracellular environment consistent with their auxotrophy for arginine. The combination of ADI-PEG 20 and cytarabine chemotherapy was more effective than either treatment alone resulting in responses in 6 of 6 AMLs tested in vivo. Our data show that arginine deprivation is a reasonable strategy in AML that paves the way for clinical trials. PMID:25896651

  20. Biochemical Constraints in a Protobiotic Earth Devoid of Basic Amino Acids: The "BAA(-) World"

    NASA Astrophysics Data System (ADS)

    McDonald, Gene D.; Storrie-Lombardi, Michael C.

    2010-12-01

    It has been hypothesized in this journal and elsewhere, based on surveys of published data from prebiotic synthesis experiments and carbonaceous meteorite analyses, that basic amino acids such as lysine and arginine were not abundant on prebiotic Earth. If the basic amino acids were incorporated only rarely into the first peptides formed in that environment, it is important to understand what protobiotic chemistry is possible in their absence. As an initial test of the hypothesis that basic amino acid negative [BAA(-)] proteins could have performed at least a subset of protobiotic chemistry, the current work reports on a survey of 13 archaeal and 13 bacterial genomes that has identified 61 modern gene sequences coding for known or putative proteins not containing arginine or lysine. Eleven of the sequences found code for proteins whose functions are well known and important in the biochemistry of modern microbial life: lysine biosynthesis protein LysW, arginine cluster proteins, copper ion binding proteins, bacterial flagellar proteins, and PE or PPE family proteins. These data indicate that the lack of basic amino acids does not prevent peptides or proteins from serving useful structural and biochemical functions. However, as would be predicted from fundamental physicochemical principles, we see no fossil evidence of prebiotic BAA(-) peptide sequences capable of interacting directly with nucleic acids.

  1. Lysine-doped polypyrrole/spider silk protein/poly(l-lactic) acid containing nerve growth factor composite fibers for neural application.

    PubMed

    Zhang, Hong; Wang, Kefeng; Xing, Yiming; Yu, Qiaozhen

    2015-11-01

    Lysine-doped polypyrrole (PPy)/regenerated spider silk protein (RSSP)/poly(l-lactic) acid (PLLA)/nerve growth factor (NGF) (L-PRPN) composite scaffold was fabricated by co-axial electrospraying and electrospinning. This L-PRPN composite scaffold had a structure of microfibers with a core-shell structure as the stems and nanofibers as branches. Assessment in vitro demonstrated that the L-PRPN composite micro/nano-fibrous scaffold could maintain integrated structure for at least 4months and the pH value of PBS at about 7.28. It had good biocompatibility and cell adhesion and relatively stable conductivity. PC 12 cells cultured on this scaffold, anisotropic cell-neurite-cell-neurite or neurite-neurite sheets were formed after being cultured for 6days. Evaluations in vivo also showed that L-PRPN composite fibrous conduit was effective at bridging 2.0cm sciatic nerve gap in adult rat within 10months. This conduit and electrical stimulation (ES) through it promoted Schwann cell migration and axonal regrowth. PMID:26249628

  2. Extracellular matrix-mediated control of aortic smooth muscle cell growth and migration by a combination of ascorbic acid, lysine, proline, and catechins.

    PubMed

    Ivanov, Vadim; Ivanova, Svetlana; Roomi, M Waheed; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2007-11-01

    Extracellular matrix (ECM) function and structure are severely compromised at atherosclerotic lesion sites, contributing to initiation and progression of the disease. This study investigated whether ECM biological properties would be beneficially affected by exposure to nutrients essential for collagen synthesis and posttranslational modification. Confluent layers of human aortic smooth muscle cells (SMC) grown on collagen substrate were cultured in the presence of the tested compounds for 7 to 10 days. Pretreated cells were removed from the ECM surface by differential treatment and replaced with secondary innocent SMC cultures. Secondary SMC growth rate and invasiveness were assayed in standard growth medium. ECM protein composition was assayed immunochemically. ECM produced in the presence of ascorbic acid reduced SMC proliferation in a dose-dependent manner. Plant-derived phenolic extracts expressed different degrees of SMC growth inhibition when present during ECM production. A combination of selected nutrients had a greater effect than did individual components. The ECM deposited by SMC in the presence of ascorbate, lysine, proline, and green tea catechins inhibited SMC migration rate up to 70%. The ECM produced under conditions of chronic essential nutrient deficiency can support proatherosclerotic SMC behavior. A combination of selected nutrients can counteract these adverse effects stronger than individual components. PMID:18030064

  3. Effect of acidity on the equilibria of formation of mixed Co2+ complexes with heparin and arginine in aqueous solutions at 37°C

    NASA Astrophysics Data System (ADS)

    Feofanova, M. A.; Frantseva, Yu. V.; Semenov, A. N.; Baranova, N. V.; Zhuravlev, E. V.

    2014-02-01

    Results from studying interactions in the heparin-Co2+ ion-arginine system are presented. The constants of formation of mixed Co2+ complexes with heparin and arginine in aqueous solutions in a broad pH range at 37°C are determined potentiometrically. The chemical equilibria in the system are simulated and the stoichiometry of formation of the complex forms is determined.

  4. Preferential interactions between protein and arginine: effects of arginine on tertiary conformational and colloidal stability of protein solution.

    PubMed

    Wen, Lili; Chen, Yan; Liao, Jie; Zheng, Xianxian; Yin, Zongning

    2015-01-30

    The purpose of this study was to better understand the preferential binding behavior of arginine to protein as well as the impact of arginine on the conformational and colloidal stability of protein solution. Physical stabilities of model proteins, bovine serum albumin (BSA) and ovalbumin (OVA), were investigated by fluorescence-based and dynamic light scattering techniques in the absence and presence of arginine. We investigated the interactions between arginine and tryptophan or tyrosine residues by conducting solubility and fluorescence studies of two amino acid derivatives, N-acetyl-l-tryptophanamide (NATA) and N-acetyl-l-tyrosinamide (NAYA), in arginine solutions. The result showed that arginine preferentially bond to the aromatic amino acids of proteins mainly through hydrogen bonds and Van der Waals' forces, while the binding constant K of arginine with BSA and OVA at 298K was 41.92 and 5.77L/mol, respectively. The fluorescence quenching, the decreased fluorescence lifetime and the red-shifted ANS peak position revealed that arginine perturbed the local environment of tryptophan and tyrosine residues. We also found the attenuated electrostatic repulsion among BSA and OVA molecules after adding arginine. These findings provided strong evidence that arginine possessed negative effects on tertiary conformational and colloidal stability of BSA and OVA during the preferential binding process. PMID:25529432

  5. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases.

    PubMed

    Duncan, Anna L; Robinson, Alan J; Walker, John E

    2016-08-01

    The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme. PMID:27382158

  6. Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases

    PubMed Central

    Duncan, Anna L.

    2016-01-01

    The anionic lipid cardiolipin is an essential component of active ATP synthases. In metazoans, their rotors contain a ring of eight c-subunits consisting of inner and outer circles of N- and C-terminal α-helices, respectively. The beginning of the C-terminal α-helix contains a strictly conserved and fully trimethylated lysine residue in the lipid head-group region of the membrane. Larger rings of known structure, from c9-c15 in eubacteria and chloroplasts, conserve either a lysine or an arginine residue in the equivalent position. In computer simulations of hydrated membranes containing trimethylated or unmethylated bovine c8-rings and bacterial c10- or c11-rings, the head-groups of cardiolipin molecules became associated selectively with these modified and unmodified lysine residues and with adjacent polar amino acids and with a second conserved lysine on the opposite side of the membrane, whereas phosphatidyl lipids were attracted little to these sites. However, the residence times of cardiolipin molecules with the ring were brief and sufficient for the rotor to turn only a fraction of a degree in the active enzyme. With the demethylated c8-ring and with c10- and c11-rings, the density of bound cardiolipin molecules at this site increased, but residence times were not changed greatly. These highly specific but brief interactions with the rotating c-ring are consistent with functional roles for cardiolipin in stabilizing and lubricating the rotor, and, by interacting with the enzyme at the inlet and exit of the transmembrane proton channel, in participation in proton translocation through the membrane domain of the enzyme. PMID:27382158

  7. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    PubMed Central

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  8. L-Arginine transport in disease.

    PubMed

    Mendes Ribeiro, Antônio Cláudio; Brunini, Tatiana M C

    2004-04-01

    The importance of membrane transport in normal physiological cell function is unquestionable. However, to what extent alterations in the transport of amino acids are the cause and/or consequence of pathological changes observed in disease states is a question not yet completely clarified. Kinetic experiments with blood cells provide a simple and useful model for researching alterations in amino acid transport. The cationic amino acid L-arginine is the precursor of nitric oxide (NO), a key second messenger involved in functions such as endothelium-dependent vascular relaxation, immune defence and platelet activation. The transport of L-arginine, being rate-limiting for nitric oxide production, is extremely relevant to pathological conditions where NO synthesis and/or actions are affected. The current review provides an overview of L-arginine transport in disease, specifically in uraemia, heart failure, hypertension, diabetes mellitus, septic shock and sickle cell disease. PMID:15320795

  9. Gene expression, serum amino acid levels, and growth performance of pigs fed dietary leucine and lysine at different ratios.

    PubMed

    García, H; Morales, A; Araiza, A; Htoo, J K; Cervantes, M

    2015-01-01

    We examined 96 pigs (28.1 ± 0.83 kg) to analyze the effect of Leu:Lys ratios on expression of the cationic amino acid transporters b(0,+) and CAT-1 in the jejunum and liver as well as myosin expression in 2 muscles to estimate the optimum standardized ileal digestible (SID) Leu:Lys ratio for growth rate and efficiency. A wheat-and wheat bran-based diets were formulated to meet the requirements of SID amino acids other than Leu (0.70%) and Lys (0.80%). L-Leu was added to the basal diet in 5 SID Leu:Lys ratios (88, 100, 120, 140, and 160% in diets 1-5). Tissue samples were collected from 8 pigs with ratios of 88, 120, and 160%. Relative expression of b(0,+), CAT-1, and myosin was analyzed. b(0,+) expression in the jejunum was higher but lower in the liver of pigs with the 120% ratio compared to those with the 88 or 160% ratio; myosin expression in longissimus dorsi was also higher in pigs with the 120% ratio (P < 0.05). CAT-1 was lower in the jejunum and longissimus dorsi of pigs with 120 or 160% ratios than in pigs with 88%. Serum concentration of nearly all amino acids decreased with excess dietary Leu (P < 0.05). The SID Leu:Lys of 104 and 109% optimized average daily gain and feed conversion ratio, respectively. Thus, the dietary Leu:Lys ratio affects the expression of genes coding for amino acid transporters and myosin, the availability of Lys, and the growth rate and efficiency in pigs. PMID:25867302

  10. Effect of steaming, blanching, and high temperature/high pressure processing on the amino Acid contents of commonly consumed korean vegetables and pulses.

    PubMed

    Kim, Su-Yeon; Kim, Bo-Min; Kim, Jung-Bong; Shanmugavelan, Poovan; Kim, Heon-Woong; Kim, So-Young; Kim, Se-Na; Cho, Young-Sook; Choi, Han-Seok; Park, Ki-Moon

    2014-09-01

    In the present report, the effects of blanching, steaming, and high temperature/high pressure processing (HTHP) on the amino acid contents of commonly consumed Korean root vegetables, leaf vegetables, and pulses were evaluated using an Automatic Amino Acid Analyzer. The total amino acid content of the samples tested was between 3.38 g/100 g dry weight (DW) and 21.32 g/100 g DW in raw vegetables and between 29.36 g/100 g DW and 30.55 g/100 g DW in raw pulses. With HTHP, we observed significant decreases in the lysine and arginine contents of vegetables and the lysine, arginine, and cysteine contents of pulses. Moreover, the amino acid contents of blanched vegetables and steamed pulses were more similar than the amino acid contents of the HTHP vegetables and HTHP pulses. Interestingly, lysine, arginine, and cysteine were more sensitive to HTHP than the other amino acids. Partial Least Squares-Discriminate Analyses were also performed to discriminate the clusters and patterns of amino acids. PMID:25320720

  11. Effect of Steaming, Blanching, and High Temperature/High Pressure Processing on the Amino Acid Contents of Commonly Consumed Korean Vegetables and Pulses

    PubMed Central

    Kim, Su-Yeon; Kim, Bo-Min; Kim, Jung-Bong; Shanmugavelan, Poovan; Kim, Heon-Woong; Kim, So-Young; Kim, Se-Na; Cho, Young-Sook; Choi, Han-Seok; Park, Ki-Moon

    2014-01-01

    In the present report, the effects of blanching, steaming, and high temperature/high pressure processing (HTHP) on the amino acid contents of commonly consumed Korean root vegetables, leaf vegetables, and pulses were evaluated using an Automatic Amino Acid Analyzer. The total amino acid content of the samples tested was between 3.38 g/100 g dry weight (DW) and 21.32 g/100 g DW in raw vegetables and between 29.36 g/100 g DW and 30.55 g/100 g DW in raw pulses. With HTHP, we observed significant decreases in the lysine and arginine contents of vegetables and the lysine, arginine, and cysteine contents of pulses. Moreover, the amino acid contents of blanched vegetables and steamed pulses were more similar than the amino acid contents of the HTHP vegetables and HTHP pulses. Interestingly, lysine, arginine, and cysteine were more sensitive to HTHP than the other amino acids. Partial Least Squares-Discriminate Analyses were also performed to discriminate the clusters and patterns of amino acids. PMID:25320720

  12. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum.

    PubMed

    Zhou, Li-Bang; Zeng, An-Ping

    2015-06-19

    Riboswitch, a regulatory part of an mRNA molecule that can specifically bind a metabolite and regulate gene expression, is attractive for engineering biological systems, especially for the control of metabolic fluxes in industrial microorganisms. Here, we demonstrate the use of lysine riboswitch and intracellular l-lysine as a signal to control the competing but essential metabolic by-pathways of lysine biosynthesis. To this end, we first examined the natural lysine riboswitches of Eschericia coli (ECRS) and Bacillus subtilis (BSRS) to control the expression of citrate synthase (gltA) and thus the metabolic flux in the tricarboxylic acid (TCA) cycle in E. coli. ECRS and BSRS were then successfully used to control the gltA gene and TCA cycle activity in a lysine producing strain Corynebacterium glutamicum LP917, respectively. Compared with the strain LP917, the growth of both lysine riboswitch-gltA mutants was slower, suggesting a reduced TCA cycle activity. The lysine production was 63% higher in the mutant ECRS-gltA and 38% higher in the mutant BSRS-gltA, indicating a higher metabolic flux into the lysine synthesis pathway. This is the first report on using an amino acid riboswitch for improvement of lysine biosynthesis. The lysine riboswitches can be easily adapted to dynamically control other essential but competing metabolic pathways or even be engineered as an "on-switch" to enhance the metabolic fluxes of desired metabolic pathways. PMID:25575181

  13. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress

    PubMed Central

    Cheng, Yanfei; Du, Zhaoli; Zhu, Hui; Guo, Xuena; He, Xiuping

    2016-01-01

    Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation. PMID:27507154

  14. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress.

    PubMed

    Cheng, Yanfei; Du, Zhaoli; Zhu, Hui; Guo, Xuena; He, Xiuping

    2016-01-01

    Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation. PMID:27507154

  15. Effect of feeding guanidinoacetic acid and L-arginine on the fertility rate and sperm penetration in the perivitelline layer of aged broiler breeder hens.

    PubMed

    Sharideh, H; Esmaeile Neia, L; Zaghari, M; Zhandi, M; Akhlaghi, A; Lotfi, L

    2016-04-01

    Two experiments were conducted to evaluate the effects of feeding guanidinoacetic acid (GAA) and L-arginine (ARG) on fertility and sperm penetration (SP) rate of broiler breeder hens. In the first experiment, a total of 200 broiler breeder hens (Ross 308) aged 53 weeks were randomly allotted to four dietary treatments (0, 0.6, 1.2 and 1.8 g GAA/kg diet) with five replicates of 10 birds each. In the second experiment, 320 broiler breeder hens (Ross 308) were used from 53 to 62 weeks of age in a 2 × 4 factorial arrangement (0 or 1.2 g GAA/kg diet along with 0, 3, 6 or 9 g ARG/kg diet). The hens received a diet containing 2800 kcal ME/kg and 14% CP. Sixteen sexually mature Ross 308 breeder roosters (34 weeks old) were used to artificially inseminate the hens. Fertility of the hens was determined in 61 and 62 weeks of age. The sperm penetration holes in the inner perivitelline layer (IPL) overlying the germinal disc were enumerated on days 3 and 7 following each insemination. Adding GAA to the breeder diet increased the number of SPs in the IPL and fertility in both experiments (p < 0.01). The interactive effect of ARG and GAA on the SP and fertility was significant. Supplementary ARG increased the SP rate in the IPL (p < 0.01). In conclusion, dietary supplementation of GAA and ARG might be potentially used to improve the fertility of broiler breeder hens at the later phase of the egg production period. PMID:26216477

  16. Optical imaging of head and neck squamous cell carcinoma in vivo using arginine-glycine-aspartic acid peptide conjugated near-infrared quantum dots

    PubMed Central

    Huang, Hao; Bai, Yun-Long; Yang, Kai; Tang, Hong; Wang, You-Wei

    2013-01-01

    Molecular imaging plays a key role in personalized medicine and tumor diagnosis. Quantum dots with near-infrared emission spectra demonstrate excellent tissue penetration and photostability, and have recently emerged as important tools for in vivo tumor imaging. Integrin αvβ3 has been shown to be highly and specifically expressed in endothelial cells of tumor angiogenic vessels in almost all types of tumors, and specifically binds to the peptide containing arginine-glycine-aspartic acid (RGD). In this study, we conjugated RGD with quantum dots with emission wavelength of 800 nm (QD800) to generate QD800-RGD, and used it via intravenous injection as a probe to image tumors in nude mice bearing head and neck squamous cell carcinoma (HNSCC). Twelve hours after the injection, the mice were still alive and were sacrificed to isolate tumors and ten major organs for ex vivo analysis to localize the probe in these tissues. The results showed that QD800-RGD was specifically targeted to integrin αvβ3 in vitro and in vivo, producing clear tumor fluorescence images after the intravenous injection. The tumor-to-background ratio and size of tumor image were highest within 6 hours of the injection and declined significantly at 9 hours after the injection, but there was still a clearly visible tumor image at 12 hours. The greatest amount of QD800-RGD was found in liver and spleen, followed by tumor and lung, and a weak fluorescence signal was seen in tibia. No detectable signal of QD800-RGD was found in brain, heart, kidney, testis, stomach, or intestine. Our study demonstrated that using integrin αvβ3 as target, it is possible to use intravenously injected QD800-RGD to generate high quality images of HNSCC, and the technique offers great potential in the diagnosis and personalized therapy for HNSCC. PMID:24324343

  17. L-arginine

    MedlinePlus

    ... L-arginine is used in combination with a number of over-the-counter and prescription medications for ... to help reduce the recovery time, reduce the number of infections, and improve wound healing after surgery. ...

  18. Effect of L-lysine on expression of selected genes, serum concentration of amino acids, muscle growth and performance of growing pigs.

    PubMed

    Morales, A; García, H; Arce, N; Cota, M; Zijlstra, R T; Araiza, B A; Cervantes, M

    2015-08-01

    Lysine (Lys) is the first limiting amino acid (AA) in most feed formulations for pigs and most abundant, along with leucine, in muscle proteins. An experiment was conducted with 17 pigs (17.7 ± 0.05 kg initial BW) to identify a role of dietary Lys in the control of protein synthesis in pigs. Fourteen pigs were randomly assigned to one of the two wheat-based dietary treatments: Lys-deficient, 3.0 g/kg (DEF) and Lys-adequate, 10.8 g/kg (ADE). Samples from jejunum mucosa, liver, Longissumus and Semitendinosus muscles, and blood were collected. The other three pigs were sacrificed at the beginning of the trial to measure basal carcass composition. Weight gain, gain:feed ratio, Lys intake and loin eye area were greater in ADE than in DEF pigs (p < 0.01). Muscle-related carcass characteristics were better, and myosin heavy chain IIb expression (MyHC IIb) in Semitendinosus was higher in ADE than in DEF pigs. Expression of AA transporters CAT-1 was lower (p < 0.05), serum Lys was higher and serum Val was lower in pigs fed the ADE diet. The higher muscularity, MyHC IIb expression in Semitendinosus muscle and Lys serum of pigs fed the ADE diet suggest that Lys increases growth rate not only by functioning as protein construction unit but also as potential control of the protein synthesis process. PMID:25354230

  19. Identification of essential arginine residues of Escherichia coli DedA/Tvp38 family membrane proteins YqjA and YghB.

    PubMed

    Kumar, Sujeet; Bradley, Cersten L; Mukashyaka, Patience; Doerrler, William T

    2016-07-01

    Escherichia coli DedA/Tvp38 family proteins YghB and YqjA are putative membrane transporters with 62% amino acid identity and overlapping functions. An E. coli strain (BC202) with nonpolar ΔyghB and ΔyqjA mutations displays cell-division defects and temperature sensitivity and is sensitive to antibiotics and alkaline pH. In this study, we performed site-directed mutagenesis on conserved, charged amino acids of YqjA and YghB. We discovered two conserved predicted membrane-embedded arginines (R130 and R136) that are critical for function in both proteins as defined by their ability to complement BC202 phenotypes, when expressed from a plasmid. Lysine can substitute for arginine at position R130 indicating a charge dependence at this position, but could not substitute at R136. In light of the established role that arginine plays in the translocation mechanism of numerous membrane transporters, we hypothesize that these amino acids play a role in the transport mechanism of these DedA/Tvp38 family proteins. PMID:27190159

  20. Escherichia coli O157:H7 Glutamate- and Arginine-dependent Acid Resistance Systems Protect Against Oxidative Stress During Extreme Acid Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the protection that several known Escherichia coli O157:H7 acid resistance systems provide against oxidative stress, the addition of diamide or hydrogen peroxide were used concomitant with acid challenge at pH 2.5 to determine bacterial survival. Diamide and hydrogen peroxide both de...

  1. Escherichia coli O157:H7 Glutamate- and Arginine-dependent Acid Resistance Systems Protect Against Oxidative Stress During Extreme Acid Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms may simultaneously encounter multiple stresses in their environment. To investigate the protection that several known Escherichia coli O157:H7 acid resistance systems might provide against both oxidative and acid stress, the addition of diamide, a membrane-permeable thiol-specific ox...

  2. Arginine, scurvy and Cartier's "tree of life"

    PubMed Central

    Durzan, Don J

    2009-01-01

    Several conifers have been considered as candidates for "Annedda", which was the source for a miraculous cure for scurvy in Jacques Cartier's critically ill crew in 1536. Vitamin C was responsible for the cure of scurvy and was obtained as an Iroquois decoction from the bark and leaves from this "tree of life", now commonly referred to as arborvitae. Based on seasonal and diurnal amino acid analyses of candidate "trees of life", high levels of arginine, proline, and guanidino compounds were also probably present in decoctions prepared in the severe winter. The semi-essential arginine, proline and all the essential amino acids, would have provided additional nutritional benefits for the rapid recovery from scurvy by vitamin C when food supply was limited. The value of arginine, especially in the recovery of the critically ill sailors, is postulated as a source of nitric oxide, and the arginine-derived guanidino compounds as controlling factors for the activities of different nitric oxide synthases. This review provides further insights into the use of the candidate "trees of life" by indigenous peoples in eastern Canada. It raises hypotheses on the nutritional and synergistic roles of arginine, its metabolites, and other biofactors complementing the role of vitamin C especially in treating Cartier's critically ill sailors. PMID:19187550

  3. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase

    PubMed Central

    Bowles, Tawnya L.; Kim, Randie; Galante, Joseph; Parsons, Colin M.; Virudachalam, Subbulakshmi; Kung, Hsing-Jien; Bold, Richard J.

    2009-01-01

    Eukaryotic cells can synthesize the non-essential amino acid arginine from aspartate and citrulline using the enzyme argininosuccinate synthetase (ASS). It has been observed that ASS is under-expressed in various types of cancers ASS, for which arginine become auxotrophic. Arginine deiminase (ADI) is a prokaryotic enzyme that metabolizes arginine to citrulline and has been found to inhibit melanoma and hepatoma cancer cells deficient of ASS. We tested the hypothesis that pancreatic cancers have low ASS expression and therefore arginine deprivation by ADI will inhibit cell growth. ASS expression was examined in 47 malignant and 20 non-neoplastic pancreatic tissues as well as a panel of human pancreatic cancer cell lines. Arginine deprivation was achieved by treatment with a recombinant form of ADI formulated with polyethylene glycol (PEG-ADI). Effects on caspase activation, cell growth and cell death were examined. Furthermore, the effect of PEG-ADI on the in vivo growth of pancreatic xenografts was examined. Eighty-seven percent of the tumors lacked ASS expression; 5 of 7 cell lines similarly lacked ASS expression. PEG-ADI specifically inhibited growth of those cell lines lacking ASS. PEG-ADI treatment induced caspase activation and induction of apoptosis. PEG-ADI was well tolerated in mice despite complete elimination of plasma arginine; tumor growth was inhibited by ∼50%. Reduced expression of ASS occurs in pancreatic cancer and predicts sensitivity to arginine deprivation achieved by PEG-ADI treatment. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of pancreatic cancer, a malignancy in which new therapy is desperately needed. PMID:18661517

  4. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site.

    PubMed

    Bharathi, Sivakama S; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E; Rardin, Matthew J; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W; Hirschey, Matthew D; Goetzman, Eric S

    2013-11-22

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  5. Sirtuin 3 (SIRT3) Protein Regulates Long-chain Acyl-CoA Dehydrogenase by Deacetylating Conserved Lysines Near the Active Site

    PubMed Central

    Bharathi, Sivakama S.; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E.; Rardin, Matthew J.; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W.; Hirschey, Matthew D.; Goetzman, Eric S.

    2013-01-01

    Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500

  6. Use of a tritium release assay to measure 6-N-trimethyl-L-lysine hydroxylase activity: synthesis of 6-N-(3-/sup 3/H)Trimethyl-DL-lysine

    SciTech Connect

    Stein, R.; England, S.

    1981-09-01

    6-N-(3-/sup 3/H)Trimethyl-DL-lysine was synthesized from 6-N-acetyl-L-lysine by the following chemical scheme: 6-N-acetyl-L-lysine ..-->.. 2-keto-6-N-acetylcaproic acid ..-->.. 2-(3-/sup 3/H)keto-6-N-acetylcaproic acid ..-->.. 2-(3-/sup 3/H)keto-6-N-acetylcaproic acid oxime ..-->.. 6-N-(3-/sup 3/H)acetyl-DL-lysine ..-->.. DL-(3-/sup 3/H)lysine ..-->.. 2-N-(3-/sup 3/H)formyl-DL-lysine ..-->.. 2-(3-/sup 3/H)formyl-6-N-trimethyl-DL-lysine ..-->.. 6-N-(3-/sup 3/H)trimethyl-DL-lysine. Using a 70% ammonium sulfate fraction obtained from a high-speed rate kidney supernatant, the cosubstrate and cofactor requirements for 6-N-trimethyl-L-lysine hydroxylase activity as measured by tritium release from 6-N-(3-/sup 3/H)trimethyl-DL-lysine were: ..cap alpha..-ketoglutarate, ferrous ions, L-ascorbate, and oxygen, with added catalase showing a slight but distinct stimulatory effect. On incubation with the crude rat kidney preparation, the release of tritium from 6-N-(3-/sup 3/H)trimethyl-DL-lysine was linear with both time of incubation and protein concentration. Hydroxylation of 6-N-trimethyl-L-lysine, as measured by tritium release from the labeled substrate, was examined in rat kidney, heart, liver, and skeletal muscle tissues, and found to be most active in the kidney.

  7. Intestinal trophic effect of enteral arginine is independent of blood flow in neonatal piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine is an indispensable amino acid in neonates. Arginine is synthesized by gut epithelial cells and may have a protective role in preventing necrotizing enterocolitis. We hypothesized our method included that enteral arginine is a stimulus for intestinal blood flow and subsequent mucosal growth...

  8. Purification of free arginine from chickpea (Cicer arietinum) seeds.

    PubMed

    Cortés-Giraldo, Isabel; Megías, Cristina; Alaiz, Manuel; Girón-Calle, Julio; Vioque, Javier

    2016-02-01

    Chickpea is a grain legume widely consumed in the Mediterranean region and other parts of the world. Chickpea seeds are rich in proteins but they also contain a substantial amount of free amino acids, especially arginine. Hence chickpea may represent a useful source of free amino acids for nutritional or pharmaceutical purposes. Arginine is receiving great attention in recent years because it is the substrate for the synthesis of nitric oxide, an important signaling molecule involved in numerous physiological and pathological processes in mammals. In this work we describe a simple procedure for the purification of arginine from chickpea seeds, using nanofiltration technology and an ion-exchange resin, Amberlite IR-120. Arginine was finally purified by precipitation or crystallization, yielding preparations with purities of 91% and 100%, respectively. Chickpea may represent an affordable green source of arginine, and a useful alternative to production by fermentation or protein hydrolysis. PMID:26304327

  9. ARGININE AND COCCIDIOSIS RESPONSES IN BROILER CHICKS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine (Arg) is an essential amino acid in broilers that has numerous physiological and immunological functions, in addition to being required for growth. The experiment was a 3 x 2 factorial design of dietary Arg (1.00, 1.25, and 1.50% of diet) and coccidiosis (with and with out a field isolate ...

  10. Evaluation of protein content, lysine and sulfur-containing amino acids content and electrophoretic patterns of soluble proteins for gamma-irradiated semolina before and after milling of durum wheat

    NASA Astrophysics Data System (ADS)

    Azzeh, F. S.; Amr, A. S.

    2009-11-01

    Influenced of gamma irradiation (0, 0.25, 1, 2.5, 5 and 10 kGy) on total nitrogen, lysine and sulfur-containing amino acids content and electrophoretic patterns of soluble proteins of semolina was studied. The effect of irradiation before and after milling on previous parameters was also investigated. Protein content of semolina was not affected with gamma irradiation before and after milling. Up to 10 kGy dose, cystine and methionine were not significantly changed, although they increased slightly with increasing irradiation dose. Lysine content decreased significantly ( P≤0.05) at irradiation dose higher than 5 kGy. At 10 kGy dose, lysine decreased 5% and 14% for irradiated semolina and that obtained from irradiated wheat grains, respectively. The bands number and intensity of soluble proteins decreased with increasing irradiation dose higher than 5 kGy, as shown on SDS-PAGE electrophoresis. Irradiated semolina and semolina obtained from irradiated wheat grains at 10 kGy showed 13 and 15 bands, respectively. Unirradiated sample showed 19 bands.

  11. Involvement of L-arginine/NO/cGMP/K(ATP) channel pathway in the peripheral antinociceptive actions of ellagic acid in the rat formalin test.

    PubMed

    Ghorbanzadeh, Behnam; Mansouri, Mohammad Taghi; Hemmati, Ali Asghar; Naghizadeh, Bahareh; Mard, Seyyed Ali; Rezaie, Anahita

    2014-11-01

    The present study was conducted to evaluate the local antinociceptive actions of EA and the possible involvement of l-arginine/NO/cGMP/KATP channel pathway in this effect using formalin test in rats. To evaluate the involvement of l-arginine/NO/cGMP/KATP channel pathway in the antinociceptive action of EA, rats were pre-treated intraplantarlly with l-NAME (NOS inhibitor, 25-100μg/paw), methylene blue (guanylyl cyclase inhibitor, 100-400μg/paw), glibenclamide (ATP-sensitive K(+) channel blocker, 25-100μg/paw), l-arginine (a nitric oxide precursor, 25-100μg/paw) and sodium nitroprusside (125-500μg/paw). The local peripheral ipsilateral, but not contralateral, administration of EA into the right paw (30-300μg/paw) produced a dose-related antinociception during both early and late phases of formalin test which is comparable with morphine (25μg/paw). Moreover, local pre-treatment with l-NAME, methylene blue and glibenclamide dose-dependently prevented EA (100μg/paw)-induced antinociception in late phase. Additionally, administration of l-arginine and sodium nitroprusside significantly potentiated the antinociception induced by EA in the late phase. However, these treatments had no significant effect on antinociceptive response of EA in the early phase of the formalin test. The results of the present study showed that EA-induced local peripheral antinociception during the both phases of formalin test. Also, our data suggested the activation of the l-arginine/NO/cGMP/KATP channels pathway in EA-induced antinociception in late phase of formalin test. Topical application of EA by ointment or jelly might be a useful method to relieving the inflammatory pain states. PMID:25278343

  12. Influence of dietary protein level and the amino acids methionine and lysine on leather properties of blue fox (Alopex lagopus) pelts.

    PubMed

    Dahlman, Tuula; Mäntysalo, Marja; Rasmussen, Palle V; Skovløkke, L L

    2002-12-01

    The influence of dietary protein, methionine, and lysine on leather quality in blue fox pelts was studied. The pelt material originated from animals in two consecutive feeding trials (Exp. 1 and Exp. 2) with three protein levels: conventional, slightly lowered, and very low. The two lowest protein diets were fed as such or as supplemented with methionine or with lysine (lysine only in Exp. 2). The following physical leather properties were measured: breaking load (BRL), tensile strength (TEN), relative elongation at break (PEB), straining of skins at pelting, and shrinkage at dressing. A decline in the dietary protein content reduced BRL and, hence, leather firmness, and increased straining and the corresponding shrinking in Exp. 1. The supplemented methionine tended to improve leather strength and elasticity by increasing TEN and PEB in Exp. 1, whereas lysine elicited no response. Methionine supplementation at the slightly lowered protein level increased BRL in both experiments by almost 10% as compared with the respective non-supplemented diet. We conclude that with high protein quality diets, a level of 200 g/kg DM (as digestible protein) appears to be adequate for producing pelts with firm, elastic leather, provided that an adequate amount of methionine is included in the diet. PMID:12553694

  13. Arginine and nitrogen storage.

    PubMed

    Llácer, José L; Fita, Ignacio; Rubio, Vicente

    2008-12-01

    When nitrogen is abundant, prokaryotic and eukaryotic oxygen-producing photosynthetic organisms store nitrogen as arginine, by relieving feedback inhibition of the arginine biosynthesis controlling enzyme, N-acetylglutamate kinase (NAGK). The signalling protein PII, an ancient and widely distributed nitrogen/carbon/ADP/ATP sensor, mediates feedback inhibition relief of NAGK by binding to this enzyme. PII phosphorylation or PII binding of ADP or 2-oxoglutarate prevents PII-NAGK complex formation. Crystal structures of NAGK, cyanobacterial and plant PII and corresponding PII-NAGK complexes have been recently determined. In these complexes, two polar PII trimers sandwich one ring-like NAGK hexamer. Each PII subunit contacts one NAGK subunit, triggering a symmetry-restricted narrowing of the NAGK ring, with concomitant adoption by the arginine sites of a low-affinity conformation. PMID:19013524

  14. Arginine: Its pKa value revisited

    PubMed Central

    Fitch, Carolyn A; Platzer, Gerald; Okon, Mark; Garcia-Moreno E, Bertrand; McIntosh, Lawrence P

    2015-01-01

    Using complementary approaches of potentiometry and NMR spectroscopy, we have determined that the equilibrium acid dissociation constant (pKa value) of the arginine guanidinium group is 13.8 ± 0.1. This is substantially higher than that of ∼12 often used in structure-based electrostatics calculations and cited in biochemistry textbooks. The revised intrinsic pKa value helps explains why arginine side chains in proteins are always predominantly charged, even at pH values as great as 10. The high pKa value also reinforces the observation that arginine side chains are invariably protonated under physiological conditions of near neutral pH. This occurs even when the guanidinium moiety is buried in a hydrophobic micro-environment, such as that inside a protein or a lipid membrane, thought to be incompatible with the presence of a charged group. PMID:25808204

  15. Arginine: Its pKa value revisited.

    PubMed

    Fitch, Carolyn A; Platzer, Gerald; Okon, Mark; Garcia-Moreno, Bertrand E; McIntosh, Lawrence P

    2015-05-01

    Using complementary approaches of potentiometry and NMR spectroscopy, we have determined that the equilibrium acid dissociation constant (pKa value) of the arginine guanidinium group is 13.8 ± 0.1. This is substantially higher than that of ∼ 12 often used in structure-based electrostatics calculations and cited in biochemistry textbooks. The revised intrinsic pKa value helps explains why arginine side chains in proteins are always predominantly charged, even at pH values as great as 10. The high pKa value also reinforces the observation that arginine side chains are invariably protonated under physiological conditions of near neutral pH. This occurs even when the guanidinium moiety is buried in a hydrophobic micro-environment, such as that inside a protein or a lipid membrane, thought to be incompatible with the presence of a charged group. PMID:25808204

  16. Effects of three permeases on arginine utilization in Saccharomyces cerevisiae.

    PubMed

    Zhang, Peng; Du, Guocheng; Zou, Huijun; Chen, Jian; Xie, Guangfa; Shi, Zhongping; Zhou, Jingwen

    2016-01-01

    Arginine plays an important role in cellular function and metabolism. Arginine uptake mainly occurs through three amino acid permeases, Alp1p, Gap1p and Can1p, which act as both transporters and receptors for amino acid utilization. In this study, seven mutants were constructed with different combinations of permease deficiencies that inhibit arginine utilization. Their effects on arginine metabolism were measured. The three amino acid permeases were also individually overexpressed in wild-type (WT), Δalp1Δgap1Δcan1 and Δnpr1 strains. The growth and arginine utilization of Δcan1, Δgap1Δcan1 and Δalp1Δgap1Δcan1 mutants were suppressed in YNB medium when arginine was the sole nitrogen source. Meanwhile, overexpression of Alp1p and Can1p enhanced growth and arginine utilization in WT, Δalp1Δgap1Δcan1 and Δnpr1. Besides, overexpression of Can1p caused a 26.7% increase in OD600 and 29.3% increase in arginine utilization compared to that of Alp1p in Δalp1Δgap1Δcan1. Transcription analysis showed that the effects of three amino acid permeases on the arginine utilization and the regulation of related genes, were tightly related to their individual characteristics. However, their overall effects were different for different combinations of mutants. The results presented here suggest some possible synergistic effects of different amino acid permeases on regulation of amino acid utilization and metabolism. PMID:26865023

  17. Human milk nonprotein nitrogen components: changing patterns of free amino acids and urea in the course of early lactation.

    PubMed

    Harzer, G; Franzke, V; Bindels, J G

    1984-08-01

    Free amino acids and urea were analyzed in 78 human milk samples obtained during the first 5 wk of lactation from 10 mothers delivering at term. Significant differences (p less than 0.05) in the concentrations between colostral and mature milk were found for glutamic acid, glutamine, alanine, glycine, cystine, and phosphoethanolamine which increased, and with serine, phosphoserine, aspartic acid + asparagine, arginine, lysine, isoleucine, phenylalanine, proline, methionine, tryptophan, and beta-alanine which decreased. Some of these changes occurred within the first 5 days of lactation, so that differences between transitional and mature milk became negligible (glutamic acid, alanine, and serine, aspartic acid + asparagine, lysine, isoleucine, methionine, tryptophan, respectively). No significant differences between any of the three stages of lactation were found regarding the concentrations of total free amino acids, urea, taurine, threonine, valine, leucine, histidine, and tyrosine. Possible relevances for free amino acids, including nonprotein ones, in human milk are discussed. PMID:6147084

  18. Ileal digestibility of nutrients and amino acids in low quality soybean meal sources treated with β-mannanase for growing pigs.

    PubMed

    Upadhaya, S D; Park, J W; Lee, J H; Kim, I H

    2016-07-01

    Apparent ileal digestibility (AID) of energy, dry matter (DM), nitrogen (N) and amino acids and standardized ileal digestibility (SID) of amino acids in low quality soybean meals with different CP concentration (SBM 44% CP and SBM 48% CP) with or without 400 U β-mannanase/kg supplementation were evaluated in 20 cannulated barrows ((Landrace×Yorkshire)×Duroc) with an average BW of 25.08±3.42 kg. A N-free diet was used to determine basal endogenous losses of amino acids. The supplementation of β-mannanase improved (P0.05) AID of N and energy. The type of SBM (SBM 44% CP v. SBM 48% CP) had no effect on AID of DM, N and energy. β-mannanase improved (P<0.05) AID of sum of essential amino acids, arginine, histidine, lysine, valine and glycine. The SID of lysine was higher (P<0.05) in enzyme supplemented than in non-supplemented diets. Larger AID and SID of threonine and proline (P<0.05) were observed in SBM 48% CP than in SBM 44% CP. In conclusion, the supplementation of enzyme improved AID of arginine, histidine, lysine, valine and glycine, but it did not cause marked difference in SID of these amino acids except for lysine. The low nutrient digestibility of the SBM sources used in the present experiment might have favoured the positive effect of β-mannanase supplementation. PMID:26857033

  19. Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.

    PubMed

    Ikeda, Masato; Mitsuhashi, Satoshi; Tanaka, Kenji; Hayashi, Mikiro

    2009-03-01

    Toward the creation of a robust and efficient producer of L-arginine and L-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92(up), and argG45) in one producer and one point mutation (argB26 or argB31) in each of the other two producers. Reconstitution of the former three mutations or of each argB mutation on a wild-type genome led to no production. Combined introduction of argB26 or argB31 with argR123 into a wild type gave rise to arginine/citrulline production. When argR123 was replaced by an argR-deleted mutation (Delta argR), the production was further increased. The best mutation set, Delta argR and argB26, was used to screen for the highest productivity in the backgrounds of different wild-type strains of C. glutamicum. This yielded a robust producer, RB, but the production was still one-third of that of the best classical producer. Transcriptome analysis revealed that the arg operon of the classical producer was much more highly upregulated than that of strain RB. Introduction of leuC456, a mutation derived from a classical L-lysine producer and provoking global induction of the amino acid biosynthesis genes, including the arg operon, into strain RB led to increased production but incurred retarded fermentation. On the other hand, replacement of the chromosomal argB by heterologous Escherichia coli argB, natively insensitive to arginine, caused a threefold-increased production without retardation, revealing that the limitation in strain RB was the activity of the argB product. To overcome this, in addition to argB26, the argB31 mutation was introduced into strain RB, which caused higher deregulation of the enzyme and resulted in dramatically increased production, like the strain with E. coli argB. This reconstructed strain displayed an enhanced performance

  20. Prolonged incubation time in sheep with prion protein containing lysine at position 171

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheep scrapie susceptibility or resistance is a function of genotype with polymorphisms at codon 171 in the sheep prion gene playing a major role. Glutamine (Q) at 171 contributes to scrapie susceptibility while arginine (R) is associated with resistance. In some breeds, lysine (K) occurs at codon 1...

  1. Interfacing protein lysine acetylation and protein phosphorylation

    PubMed Central

    Tran, Hue T.; Uhrig, R. Glen; Nimick, Mhairi; Moorhead, Greg B.

    2012-01-01

    Recognition that different protein covalent modifications can operate in concert to regulate a single protein has forced us to re-think the relationship between amino acid side chain modifications and protein function. Results presented by Tran et al. 2012 demonstrate the association of a protein phosphatase (PP2A) with a histone/lysine deacetylase (HDA14) on plant microtubules along with a histone/lysine acetyltransferase (ELP3). This finding reveals a regulatory interface between two prevalent covalent protein modifications, protein phosphorylation and acetylation, emphasizing the integrated complexity of post-translational protein regulation found in nature. PMID:22827947

  2. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  3. Growth and antioxidant status of broilers fed supplemental lysine and pyridoxine under high ambient temperature

    PubMed Central

    Khakpour Irani, Farzaneh; Daneshyar, Mohsen; Najafi, Ramin

    2015-01-01

    Three levels of lysine (90, 100 and 110% of Ross requirement) and of pyridoxine (3, 6 and 9 mg kg-1) were used in a 3 × 3 factorial experiment to investigate the growth and blood antioxidant ability of broilers under high ambient temperature. None of the dietary supplements affected the weight gain during the starter and grower periods. Although no significant differences were detected between the treatments during the entire period, high lysine level fed birds had a lower weight gain. At any levels of pyridoxine, high lysine fed birds were lighter than others. Neither the lysine nor pyridoxine changed the feed intake or feed conversion ratio during the starter, grower and entire period. However there was no significant difference between the treatments for blood malondialdehyde (MDA) concentration, medium lysine fed birds had lower blood MDA than other ones. No significant effects on blood triglyceride, total protein and blood superoxide dismutase activity were indicated with addition of any lysine or pyridoxine level. Medium lysine fed birds had decreased blood glutathione peroxidase activity compared to the birds of other treatments. It was concluded that providing the proposed dietary lysine requirement of Ross strain during heat stress ensuring the best body weight gain and body antioxidant ability. Higher lysine level causes the retarded weight gain due to higher excretion of arginine from the body and consequently higher lipid peroxidation. PMID:26261713

  4. Arginine metabolism in wounds

    SciTech Connect

    Albina, J.E.; Mills, C.D.; Barbul, A.; Thirkill, C.E.; Henry, W.L. Jr.; Mastrofrancesco, B.; Caldwell, M.D.

    1988-04-01

    Arginine metabolism in wounds was investigated in the rat in 1) lambda-carrageenan-wounded skeletal muscle, 2) Schilling chambers, and 3) subcutaneous polyvinyl alcohol sponges. All showed decreased arginine and elevated ornithine contents and high arginase activity. Arginase could be brought to the wound by macrophages, which were found to contain arginase activity. However, arginase was expressed by macrophages only after cell lysis and no arginase was released by viable macrophages in vitro. Thus the extracellular arginase of wounds may derive from dead macrophages within the injured tissue. Wound and peritoneal macrophages exhibited arginase deiminase activity as demonstrated by the conversion of (guanido-/sup 14/C)arginine to radiolabeled citrulline during culture, the inhibition of this reaction by formamidinium acetate, and the lack of prokaryotic contamination of the cultures. These findings and the known metabolic fates of the products of arginase and arginine deiminase in the cellular populations of the wound suggest the possibility of cooperativity among cells for the production of substrates for collagen synthesis.

  5. In vitro degradation of lysine by ruminal fluid-based fermentations and by Fusobacterium necrophorum.

    PubMed

    Elwakeel, E A; Amachawadi, R G; Nour, A M; Nasser, M E A; Nagaraja, T G; Titgemeyer, E C

    2013-01-01

    The objective of these studies was to characterize some factors affecting lysine degradation by mixed ruminal bacteria and by ruminal Fusobacterium necrophorum. Mixed ruminal bacteria degraded lysine, and addition of pure cultures of F. necrophorum did not increase lysine degradation. Addition of acetic or propionic acid strikingly reduced NH(3) production from lysine by mixed ruminal bacteria at pH 6, but not at pH 7. Although typical ruminal environments with acidic pH and normal concentrations of volatile fatty acids might inhibit lysine degradation by F. necrophorum, ruminal fluid contained enough bacteria with a lysine-degrading capacity to ferment 50 mM lysine in vitro. Of 7 strains of ruminal F. necrophorum tested, all grew on both lactate and lysine as the primary energy source. Both subspecies of ruminal F. necrophorum (necrophorum and funduliforme) used lysine as a primary C and energy source. Lysine and glutamic acid were effectively fermented by F. necrophorum, but alanine and tryptophan were not, and histidine and methionine were fermented only to a minor extent. The end products of lactate fermentation by F. necrophorum were propionate and acetate, and those of lysine degradation were butyrate and acetate. Fermentation of glutamic acid by F. necrophorum yielded acetate and butyrate in a ratio near to 2:1. The minimum inhibitory concentration of tylosin for F. necrophorum was not dependent on whether bacteria were grown with lactate or lysine, but F. necrophorum was more susceptible to monensin when grown on lysine than on lactate. Although F. necrophorum is generally resistant to monensin, the ionophore may reduce lysine degradation by F. necrophorum in the rumen. The essential oil components limonene, at 20 or 100 μg/mL, and thymol, at 100 μg/mL, inhibited F. necrophorum growth, whereas eugenol, guaiacol, and vanillin had no effect. Our findings may lead to ways to minimize ruminal lysine degradation and thus increase its availability to the animal

  6. Pegylated arginine deiminase: a novel anticancer enzyme agent

    PubMed Central

    Feun, Lynn; Savaraj, Niramol

    2011-01-01

    Pegylated arginine deiminase (ADI-PEG20) is a novel anticancer enzyme that produces depletion of arginine, which is a nonessential amino acid in humans. Certain tumours, such as malignant melanoma and hepatocellular carcinoma, are auxotrophic for arginine. These tumours that are sensitive to arginine depletion do not express argininosuccinate synthetase, a key enzyme in the synthesis of arginine from citrulline. ADI-PEG20 inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Phase I – II trials in patients with melanoma and hepatocellular carcinomas have shown the drug to have antitumour activity and tolerable side effects. Large Phase II trials and randomised, controlled Phase III trials are needed to determine its overall efficacy in the treatment of these malignancies and others. PMID:16787144

  7. The effect of amino acids on the intestinal absorption of immunoglobulins in the neonatal rat

    PubMed Central

    Bamford, D. R.; Donnelly, H.

    1974-01-01

    An in vitro preparation of 10-day-old rat intestine was used to examine the absorption of a number of amino acids and immunoglobulins. Evidence was obtained for the active absorption of alanine, leucine, methionine, histidine and lysine, but not for aspartic acid. A selective absorption of the homologous molecule was found in experiments where 131I-labelled rat and bovine IgG were presented to the ileum in 10-minute incubations. The greater uptake of rat IgG was unrelated to the relative rates of catabolism of the two molecules. Although the uptake of rat IgG was unaffected by 100 mM concentrations of neutral and acidic amino acids, the basic amino acids arginine and lysine significantly stimulated uptake. PMID:4854740

  8. Altered brain arginine metabolism in schizophrenia.

    PubMed

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-01-01

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease. PMID:27529679

  9. The plasma flux and oxidation rate of ornithine adaptively decline with restricted arginine intake.

    PubMed Central

    Castillo, L; Sánchez, M; Chapman, T E; Ajami, A; Burke, J F; Young, V R

    1994-01-01

    We hypothesized recently that arginine homeostasis is achieved in humans largely by modulating the rate of arginine degradation. We have tested this hypothesis further by measuring in vivo the whole body rate of conversion of arginine to ornithine and ornithine oxidation in six healthy young adults. Subjects received for 6 days an L-amino acid-based diet supplying an arginine-rich or arginine-free intake and on day 7, following an overnight fast, an 8-h tracer protocol (first 3 h, fast state; next 5 h, fed state) was conducted; L-[guanidino-15N2; 5,5-2H]arginine and L-[5-13C]ornithine were given as primed, constant intravenous tracers; measurements of the abundances of various isotopologs of arginine, ornithine, and citrulline in plasma were made, and from these the various kinetic parameters of the metabolism of these amino acids were derived. Arginine and ornithine fluxes were significantly (P < 0.001) reduced in the fed state with arginine-free feeding. The rates of conversion (mumol.kg-1.h-1; mean +/- SD) of plasma arginine to ornithine for arginine-rich were 12.9 +/- 2.6 and 24.7 +/- 4.8 for fast and fed states. These values were 11.1 +/- 3.5 and 9.6 +/- 1.2 (P > 0.05 and P < 0.001), respectively, with an arginine-free diet. [13C]Ornithine oxidation was reduced (P < 0.001) by 46% during the fed state when the arginine-free diet was given. The findings strengthen our hypothesis that homeostasis of arginine metabolism in the human host depends importantly upon a regulation in the rate of arginine degradation with, perhaps, little involvement in the de novo net rate of arginine synthesis. PMID:8022794

  10. Arginine Depletion by Arginine Deiminase Does Not Affect Whole Protein Metabolism or Muscle Fractional Protein Synthesis Rate in Mice

    PubMed Central

    Marini, Juan C.; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L), and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight. PMID:25775142

  11. Effects of dietary salt intake on plasma arginine.

    PubMed

    Kitiyakara, C; Chabrashvili, T; Jose, P; Welch, W J; Wilcox, C S

    2001-04-01

    Because L-arginine is degraded by hepatic arginase to ornithine and urea and is transported by the regulated 2A cationic amino acid y(+) transporter (CAT2A), hepatic transport may regulate plasma arginine concentration. Groups of rats (n = 6) were fed a diet of either low salt (LS) or high salt (HS) for 7 days to test the hypothesis that dietary salt intake regulates plasma arginine concentration and renal nitric oxide (NO) generation by measuring plasma arginine and ornithine concentrations, renal NO excretion, and expression of hepatic CAT2A, and arginase. LS rats had lower excretion of NO metabolites and cGMP, lower plasma arginine concentration (LS: 83 +/- 7 vs. HS: 165 +/- 10 micromol/l, P < 0.001), but higher plasma ornithine concentration (LS: 82 +/- 6 vs. HS: 66 +/- 4 micromol/l, P < 0.05) and urea excretion. However, neither the in vitro hepatic arginase activity nor the mRNA for hepatic arginase I was different between groups. In contrast, LS rats had twice the abundance of mRNA for hepatic CAT2A (LS: 3.4 +/- 0.4 vs. HS: 1.6 +/- 0.5, P < 0.05). The reduced plasma arginine concentration with increased plasma ornithine concentration and urea excretion during LS indicates increased arginine metabolism by arginase. This cannot be ascribed to changes in hepatic arginase expression but may be a consequence of increased hepatic arginine uptake via CAT2A. PMID:11247829

  12. An engineered L-arginine sensor of Chlamydia pneumoniae enables arginine-adjustable transcription control in mammalian cells and mice.

    PubMed

    Hartenbach, Shizuka; Daoud-El Baba, Marie; Weber, Wilfried; Fussenegger, Martin

    2007-01-01

    For optimal compatibility with biopharmaceutical manufacturing and gene therapy, heterologous transgene control systems must be responsive to side-effect-free physiologic inducer molecules. The arginine-inducible interaction of the ArgR repressor and the ArgR-specific ARG box, which synchronize arginine import and synthesis in the intracellular human pathogen Chlamydia pneumoniae, was engineered for arginine-regulated transgene (ART) expression in mammalian cells. A synthetic arginine-responsive transactivator (ARG), consisting of ArgR fused to the Herpes simplex VP16 transactivation domain, reversibly adjusted transgene transcription of chimeric ARG box-containing mammalian minimal promoters (P(ART)) in an arginine-inducible manner. Arginine-controlled transgene expression showed rapid induction kinetics in a variety of mammalian cell lines and was adjustable and reversible at concentrations which were compatible with host cell physiology. ART variants containing different transactivation domains, variable spacing between ARG box and minimal promoter and several tandem ARG boxes showed modified regulation performance tailored for specific expression scenarios and cell types. Mice implanted with microencapsulated cells engineered for ART-inducible expression of the human placental secreted alkaline phosphatase (SEAP) exhibited adjustable serum phosphatase levels after treatment with different arginine doses. Using a physiologic inducer, such as the amino acid l-arginine, to control heterologous transgenes in a seamless manner which is devoid of noticeable metabolic interference will foster novel opportunities for precise expression dosing in future gene therapy scenarios as well as the manufacturing of difficult-to-produce protein pharmaceuticals. PMID:17947334

  13. The Amino Acid Arginine 210 of the Response Regulator HrpG of Xanthomonas citri subsp. citri Is Required for HrpG Function in Virulence.

    PubMed

    Ficarra, Florencia A; Garofalo, Cecilia G; Gottig, Natalia; Ottado, Jorgelina

    2015-01-01

    Xanthomonas citri subsp. citri colonizes its hosts through the trafficking of effector proteins to the plant cell by the type III protein secretion system. In X. citri subsp. citri, as in other plant pathogens, the hrp cluster encodes the type III protein secretion system and is regulated by the transcription factors HrpG and HrpX. HrpG belongs to the OmpR family's response regulator of EnvZ/OmpR two-component signal transduction system. Here, we show that the arginine 210 residue is crucial for the transcriptional activity of HrpG revealed by the absence of disease in host plants and hypersensitive response in non-host plants when a strain carrying this point mutation is used in plant infiltration assays. Also, this strain showed decreased expression levels of hrp genes in bacteria grown in culture or when they were recovered from citrus leaves. Moreover, we show for the first time that HrpG binds to both hrpX and its own promoter, and the change of the arginine 210 by a cysteine does not prevent the binding to both promoters. Nevertheless, in vitro hrpX transcription was observed only with HrpG whereas no transcription was detected with the R210C mutant. HrpG was able to interact with itself as well as with the mutant R210C suggesting that it functions as a dimer. The mutant protein R210C showed altered protease sensitivity, suggesting that Arg210 is essential for protein active conformation and thus for transcriptional activity. Our results indicate that arginine 210 in HrpG, as it may occur with this conserved residue in other members of this family of response regulators, is not required for DNA binding whereas is essential for hrp genes transcription and therefore for pathogenicity and HR induction. PMID:25961560

  14. The Amino Acid Arginine 210 of the Response Regulator HrpG of Xanthomonas citri subsp. citri Is Required for HrpG Function in Virulence

    PubMed Central

    Gottig, Natalia; Ottado, Jorgelina

    2015-01-01

    Xanthomonas citri subsp. citri colonizes its hosts through the trafficking of effector proteins to the plant cell by the type III protein secretion system. In X. citri subsp. citri, as in other plant pathogens, the hrp cluster encodes the type III protein secretion system and is regulated by the transcription factors HrpG and HrpX. HrpG belongs to the OmpR family’s response regulator of EnvZ/OmpR two-component signal transduction system. Here, we show that the arginine 210 residue is crucial for the transcriptional activity of HrpG revealed by the absence of disease in host plants and hypersensitive response in non-host plants when a strain carrying this point mutation is used in plant infiltration assays. Also, this strain showed decreased expression levels of hrp genes in bacteria grown in culture or when they were recovered from citrus leaves. Moreover, we show for the first time that HrpG binds to both hrpX and its own promoter, and the change of the arginine 210 by a cysteine does not prevent the binding to both promoters. Nevertheless, in vitro hrpX transcription was observed only with HrpG whereas no transcription was detected with the R210C mutant. HrpG was able to interact with itself as well as with the mutant R210C suggesting that it functions as a dimer. The mutant protein R210C showed altered protease sensitivity, suggesting that Arg210 is essential for protein active conformation and thus for transcriptional activity. Our results indicate that arginine 210 in HrpG, as it may occur with this conserved residue in other members of this family of response regulators, is not required for DNA binding whereas is essential for hrp genes transcription and therefore for pathogenicity and HR induction. PMID:25961560

  15. Expression and function of arginine-producing and consuming-enzymes in the kidney.

    PubMed

    Levillain, Olivier

    2012-04-01

    The kidney plays a key role in arginine metabolism. Arginine production is controlled by argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) which metabolize citrulline and aspartate to arginine and fumarate whereas arginine consumption is dependent on arginine:glycine amidinotransferase (GAT), which mediates creatine and ornithine synthesis. Histological and biochemical techniques have been used to study the distribution and activity of these enzymes in anatomically dissected segments, in isolated fragments of tubules and in whole tissues. ASS and ASL mRNAs and proteins are expressed in the proximal tubule. Within this nephron segment, the proximal convoluted tubule has a higher arginine synthesis capacity than the proximal straight tubules. Furthermore, this arginine-synthesizing portion of the nephron matches perfectly with the site of citrulline reabsorption from the glomerular filtrate. The kidney itself can produce citrulline from methylated arginine, but this capacity is limited. Therefore, intestinal citrulline synthesis is required for renal arginine production. Although the proximal convoluted tubule also expresses a significant amount of GAT, only 10% of renal arginine synthesis is metabolized to guanidinoacetic acid, possibly because GAT has a mitochondrial localization. Kidney arginase (AII) is expressed in the cortical and outer medullary proximal straight tubules and does not degrade significant amounts of newly synthesized arginine. The data presented in this review identify the proximal convoluted tubule as the main site of endogenous arginine biosynthesis. PMID:21567240

  16. CE-LIF determination of salivary cadaverine and lysine concentration ratio as an indicator of lysine decarboxylase enzyme activity.

    PubMed

    Tábi, Tamás; Lohinai, Zsolt; Pálfi, Melinda; Levine, Martin; Szöko, Eva

    2008-05-01

    Salivary bacteria produce the enzyme lysine decarboxylase which converts lysine to cadaverine. In the absence of appropriate oral hygiene, overgrowth of these bacteria depletes lysine. This may contribute to gingival inflammation, while cadaverine contributes to oral malodor. A selective and sensitive capillary electrophoresis method with laser-induced fluorescence detection has been developed for the determination of cadaverine and lysine in saliva, as an indicator of lysine decarboxylase enzyme activity. The diamino compounds were separated in acidic background electrolyte in their mono-labeled form after derivatization with 4-fluoro-7-nitrobenz-2-oxa-1,3-diazole (NBD-F). Linearity and reproducibility of the method in the range 1-50 μmol L(-1) have been demonstrated using saliva samples. The method was applied for the measurement of cadaverine and lysine in the saliva of healthy volunteers with or without proper oral hygiene. In the absence of oral hygiene, the mol fraction of cadaverine to cadaverine plus lysine in saliva increased significantly (0.65 ± 0.13 vs. 0.39 ± 0.18, P < 0.001), indicating the presence of higher amount of bacterial lysine decarboxylase, that may contribute to periodontal diseases. PMID:18389226

  17. Transport of free and peptide-bound glycated amino acids: synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins.

    PubMed

    Hellwig, Michael; Geissler, Stefanie; Matthes, René; Peto, Anett; Silow, Christoph; Brandsch, Matthias; Henle, Thomas

    2011-05-16

    In glycation reactions, the side chains of protein-bound nucleophilic amino acids such as lysine and arginine are post-translationally modified to a variety of derivatives also known as Maillard reaction products (MRPs). Considerable amounts of MRPs are taken up in food. Here we have studied the interactions of free and dipeptide-bound MRPs with intestinal transport systems. Free and dipeptide-bound derivatives of N(6)-(1-fructosyl)lysine (FL), N(6)-(carboxymethyl)lysine (CML), N(6)-(1-carboxyethyl)lysine (CEL), formyline, argpyrimidine, and methylglyoxal-derived hydroimidazolone 1 (MG-H1) were synthesized. The inhibition of L-[(3)H]lysine and [(14) C]glycylsarcosine uptakes was measured in Caco-2 cells which express the H(+)/peptide transporter PEPT1 and lysine transport system(s). Glycated amino acids always displayed lower affinities than their unmodified analogues towards the L-[(3)H]lysine transporter(s). In contrast, all glycated dipeptides except Ala-FL were medium- to high-affinity inhibitors of [(14)C]Gly-Sar uptake. The transepithelial flux of the derivatives across Caco-2 cell monolayers was determined. Free amino acids and intact peptides derived from CML and CEL were translocated to very small extents. Application of peptide-bound MRPs, however, led to elevation (up to 80-fold) of the net flux and intracellular accumulation of glycated amino acids, which were hydrolyzed from the dipeptides inside the cells. We conclude 1) that free MRPs are not substrates for the intestinal lysine transporter(s), and 2) that dietary MRPs are absorbed into intestinal cells in the form of dipeptides, most likely by the peptide transporter PEPT1. After hydrolysis, hydrophobic glycated amino acids such as pyrraline, formyline, maltosine, and argpyrimidine undergo basolateral efflux, most likely by simple diffusion down their concentration gradients. PMID:21538757

  18. Changes in N-acetylglutamate are involved in regulating urea synthesis in rats given a low gluten diet supplemented with L-lysine, L-methinone and L-threonine.

    PubMed

    Tujioka, Kazuyo; Tuchiya, Tamami; Shi, Xianglan; Ohsumi, Miho; Hayase, Kazutoshi; Yokogoshi, Hidehiko

    2009-01-01

    We have shown that urinary urea excretion decreased in rats fed a low gluten diet supplemented with dietary limiting amino acids. The purpose of present study was to determine whether the addition of dietary limiting amino acids to a low gluten diet affected the synthesis and degradation of N-acetylglutamate and regulated urea synthesis. Experiments were done on two groups of rats, given diets containing 10% gluten or 10% gluten+0.5% L-lysine, 0.2% L-threonine and 0.2% L-methionine for 10 d. The urinary excretion of urea, and the liver concentration of N-acetylglutamate, and the liver activity of N-acetylglutamate synthetase decreased with the addition of dietary L-lysine, L-threonine and L-methionine. N-Acetylglutamate concentration in the liver was closely correlated with the N-acetylglutamate synthetase activity in the liver and excretion of urea. The greater degradation of N-acetylglutamate was observed in the group fed the 10% gluten+L-lysine, L-threonine and L-methionine. The hepatic concentration of glutamate and plasma concentration of arginine were not related to the N-acetylglutamate concentration in the liver. These results suggest that the addition of limiting amino acids to the low gluten diet controls the synthesis and degradation of N-acetylglutamate in the liver and lowers urea synthesis. PMID:19926928

  19. Mutants of Saccharomycopsis lipolytica defective in lysine catabolism.

    PubMed Central

    Gaillardin, C; Fournier, P; Sylvestre, G; Heslot, H

    1976-01-01

    Wild-type strains of Saccharomycopsis lipolytica are able to use lysine as a carbon or a nitrogen source, but not as a unique source for both. Mutants were selected that could not use lysine either as a nitrogen or as a carbon source. Some of them, however, utilized N-6-acetyllysine or 5-aminovaleric acid. Many of the mutants appeared to be blocked in both utilizations, suggesting a unique pathway for lysine degradation (either as a carbon or as a nitrogen source). Genetic characterization of these mutants was achieved by complementation and recombination tests. PMID:1245461

  20. An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion

    PubMed Central

    Strasser, Rona; Zeituni-Molad, Michal; Bendelak, Keren; Rentsch, Doris; Ephros, Moshe; Wiese, Martin; Jardim, Armando; Myler, Peter J.; Zilberstein, Dan

    2016-01-01

    Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade. PMID:27043018

  1. An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion.

    PubMed

    Goldman-Pinkovich, Adele; Balno, Caitlin; Strasser, Rona; Zeituni-Molad, Michal; Bendelak, Keren; Rentsch, Doris; Ephros, Moshe; Wiese, Martin; Jardim, Armando; Myler, Peter J; Zilberstein, Dan

    2016-04-01

    Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade. PMID:27043018

  2. Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey.

    PubMed

    Barrett, Eoin; Stanton, Catherine; Zelder, Oskar; Fitzgerald, Gerald; Ross, R Paul

    2004-05-01

    The genetic determinants for lactose utilization from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and galactose utilization from Lactococcus lactis subsp. cremoris MG 1363 were heterologously expressed in the lysine-overproducing strain Corynebacterium glutamicum ATCC 21253. The C. glutamicum strains expressing the lactose permease and beta-galactosidase genes of L. delbrueckii subsp. bulgaricus exhibited beta-galactosidase activity in excess of 1000 Miller units/ml of cells and were able to grow in medium in which lactose was the sole carbon source. Similarly, C. glutamicum strains containing the lactococcal aldose-1-epimerase, galactokinase, UDP-glucose-1-P-uridylyltransferase, and UDP-galactose-4-epimerase genes in association with the lactose permease and beta-galactosidase genes exhibited beta-galactosidase levels in excess of 730 Miller units/ml of cells and were able to grow in medium in which galactose was the sole carbon source. When grown in whey-based medium, the engineered C. glutamicum strain produced lysine at concentrations of up to 2 mg/ml, which represented a 10-fold increase over the results obtained with the lactose- and galactose-negative control, C. glutamicum 21253. Despite their increased catabolic flexibility, however, the modified corynebacteria exhibited slower growth rates and plasmid instability. PMID:15128544

  3. Rapid hydrophilic interaction chromatography determination of lysine in pharmaceutical preparations with fluorescence detection after postcolumn derivatization with o-phtaldialdehyde.

    PubMed

    Douša, Michal; Břicháč, Jiří; Gibala, Petr; Lehnert, Petr

    2011-04-01

    A rapid procedure for the determination of lysine based on hydrophilic interaction chromatography (HILIC) separation of arginine and lysine with fluorescence detection has been developed. The separation conditions and parameters of lysine postcolumn derivatization with o-phtaldialdehyde (OPA)/2-mercaptoethanol were studied. The various HILIC columns were employed using isocratic elution. Fluorescence detection was performed at excitation and emission wavelength of 345 nm and 450 nm, respectively. An advantage of the reported method is a simple sample pre-treatment and a quick and very sensitive HPLC method. The developed method was successfully applied for analysis of commercial samples of Ibalgin Fast tablets (Zentiva, Czech Republic). PMID:21163603

  4. Arginine: New Insights into Growth Performance and Urinary Metabolomic Profiles of Rats.

    PubMed

    Liu, Guangmang; Wu, Xianjian; Jia, Gang; Chen, Xiaoling; Zhao, Hua; Wang, Jing; Wu, Caimei; Cai, Jingyi

    2016-01-01

    Arginine regulates growth performance, nutrient metabolism and health effects, but the underlying mechanism remains unknown. This study aims to investigate the effect of dietary arginine supplementation on rat growth performance and urinary metabolome through ¹H-NMR spectroscopy. Twenty rats were randomly assigned to two groups supplemented with 0% or 1.0% l-arginine for 4 weeks. Urine samples were analyzed through NMR-based metabolomics. Arginine supplementation significantly increased the urine levels of 4-aminohippurate, acetate, creatine, creatinine, ethanolamine, formate, hippurate, homogentisate, indoxyl sulfate, and phenylacetyglycine. Conversely, arginine decreased the urine levels of acetamide, β-glucose, cirtulline, ethanol, glycine, isobutyrate, lactate, malonate, methymalonate, N-acetylglutamate, N-methylnicotinamide, and propionate. Results suggested that arginine can alter common systemic metabolic processes, including energy metabolism, amino acid metabolism, and gut microbiota metabolism. Moreover, the results also imply a possible physiological role of the metabolism in mediating the arginine supplementation-supported growth of rats. PMID:27589702

  5. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production.

    PubMed

    Man, Zaiwei; Xu, Meijuan; Rao, Zhiming; Guo, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong

    2016-01-01

    L-arginine is an important amino acid in food and pharmaceutical industries. Until now, the main production method of L-arginine in China is the highly polluting keratin acid hydrolysis. The industrial level L-arginine production by microbial fermentation has become an important task. In previous work, we obtained a new L-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through screening and mutation breeding. In this work, we performed systems pathway engineering of C. crenatum for improved L-arginine production, involving amplification of L-arginine biosynthetic pathway flux by removal of feedback inhibition and overexpression of arginine operon; optimization of NADPH supply by modulation of metabolic flux distribution between glycolysis and pentose phosphate pathway; increasing glucose consumption by strengthening the preexisting glucose transporter and exploitation of new glucose uptake system; channeling excess carbon flux from glycolysis into tricarboxylic acid cycle to alleviate the glucose overflow metabolism; redistribution of carbon flux at α-ketoglutarate metabolic node to channel more flux into L-arginine biosynthetic pathway; minimization of carbon and cofactor loss by attenuation of byproducts formation. The final strain could produce 87.3 g L(-1) L-arginine with yield up to 0.431 g L-arginine g(-1) glucose in fed-batch fermentation. PMID:27338253

  6. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production

    PubMed Central

    Man, Zaiwei; Xu, Meijuan; Rao, Zhiming; Guo, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong

    2016-01-01

    L-arginine is an important amino acid in food and pharmaceutical industries. Until now, the main production method of L-arginine in China is the highly polluting keratin acid hydrolysis. The industrial level L-arginine production by microbial fermentation has become an important task. In previous work, we obtained a new L-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through screening and mutation breeding. In this work, we performed systems pathway engineering of C. crenatum for improved L-arginine production, involving amplification of L-arginine biosynthetic pathway flux by removal of feedback inhibition and overexpression of arginine operon; optimization of NADPH supply by modulation of metabolic flux distribution between glycolysis and pentose phosphate pathway; increasing glucose consumption by strengthening the preexisting glucose transporter and exploitation of new glucose uptake system; channeling excess carbon flux from glycolysis into tricarboxylic acid cycle to alleviate the glucose overflow metabolism; redistribution of carbon flux at α-ketoglutarate metabolic node to channel more flux into L-arginine biosynthetic pathway; minimization of carbon and cofactor loss by attenuation of byproducts formation. The final strain could produce 87.3 g L−1 L-arginine with yield up to 0.431 g L-arginine g−1 glucose in fed-batch fermentation. PMID:27338253

  7. Arginine depletion increases susceptibility to serious infections in preterm newborns

    PubMed Central

    Badurdeen, Shiraz; Mulongo, Musa; Berkley, James A.

    2015-01-01

    Preterm newborns are highly susceptible to bacterial infections. This susceptibility is regarded as being due to immaturity of multiple pathways of the immune system. However, it is unclear whether a mechanism that unifies these different, suppressed pathways exists. Here, we argue that the immune vulnerability of the preterm neonate is critically related to arginine depletion. Arginine, a “conditionally essential” amino acid, is depleted in acute catabolic states, including sepsis. Its metabolism is highly compartmentalized and regulated, including by arginase-mediated hydrolysis. Recent data suggest that arginase II-mediated arginine depletion is essential for the innate immune suppression that occurs in newborn models of bacterial challenge, impairing pathways critical for the immune response. Evidence that arginine depletion mediates protection from immune activation during first gut colonization suggests a regulatory role in controlling gut-derived pathogens. Clinical studies show that plasma arginine is depleted during sepsis. In keeping with animal studies, small clinical trials of L-arginine supplementation have shown benefit in reducing necrotizing enterocolitis in premature neonates. We propose a novel, broader hypothesis that arginine depletion during bacterial challenge is a key factor limiting the neonate's ability to mount an adequate immune response, contributing to the increased susceptibility to infections, particularly with respect to gut-derived sepsis. PMID:25360828

  8. Synthesis of lysine methyltransferase inhibitors

    PubMed Central

    Hui, Chunngai; Ye, Tao

    2015-01-01

    Lysine methyltransferase which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery. PMID:26258118

  9. Intestinal absorption of an arginine-containing peptide in cystinuria

    PubMed Central

    Asatoor, A. M.; Harrison, B. D. W.; Milne, M. D.; Prosser, D. I.

    1972-01-01

    Separate tolerance tests involving oral intake of the dipeptide, L-arginyl-L-aspartate, and of a corresponding free amino acid mixture, were carried out in a single type 2 cystinuric patient. Absorption of aspartate was within normal limits, whilst that of arginine was normal after the peptide but considerably reduced after the amino acid mixture. The results are compared with the increments of serum arginine found in eight normal subjects after the oral intake of the free amino acid mixture. Analyses of urinary pyrrolidine and of tetramethylenediamine in urine samples obtained after the two tolerance tests in the patient support the view that arginine absorption was subnormal after the amino acid mixture but within normal limits after the dipeptide. PMID:5045711

  10. Insights into the regulatory landscape of the lysine riboswitch

    PubMed Central

    Garst, Andrew D.; Porter, Ely B.; Batey, Robert T.

    2012-01-01

    A prevalent means of regulating gene expression in bacteria is by riboswitches found within mRNA leader sequences. Like protein repressors these RNA elements must bind an effector molecule with high specificity against a background of other cellular metabolites of similar chemical structure to elicit the appropriate regulatory response. Current crystal structures of the lysine riboswitch do not provide a complete understanding of selectivity as recognition is substantially mediated through main chain atoms of the amino acid. Using a directed set of lysine analogs and other amino acids, the relative contributions of the polar functional groups to binding affinity and the regulatory response have been determined. Our results reveal that the lysine riboswitch has >1,000-fold specificity for lysine over other amino acids. To achieve this specificity, the aptamer is highly sensitive to the precise placement of the ε-amino group and relatively tolerant of alterations to the main chain functional groups. At low NTP concentrations, we observe good agreement between the half-maximal regulatory activity (T50) and the affinity of the receptor for lysine (KD) as well many of its analogs. However, above 400 µM [NTP] the concentration of lysine required to elicit transcription termination rises, moving into the riboswitch into a kinetic control regime. These data demonstrate that under physiologically relevant conditions riboswitches can integrate both effector and NTP concentrations to generate a regulatory response appropriate for global metabolic state of the cell. PMID:22771573

  11. Insights into the regulatory landscape of the lysine riboswitch.

    PubMed

    Garst, Andrew D; Porter, Ely B; Batey, Robert T

    2012-10-12

    A prevalent means of regulating gene expression in bacteria is by riboswitches found within mRNA leader sequences. Like protein repressors, these RNA elements must bind an effector molecule with high specificity against a background of other cellular metabolites of similar chemical structure to elicit the appropriate regulatory response. Current crystal structures of the lysine riboswitch do not provide a complete understanding of selectivity as recognition is substantially mediated through main-chain atoms of the amino acid. Using a directed set of lysine analogs and other amino acids, we have determined the relative contributions of the polar functional groups to binding affinity and the regulatory response. Our results reveal that the lysine riboswitch has >1000-fold specificity for lysine over other amino acids. The aptamer is highly sensitive to the precise placement of the ε-amino group and relatively tolerant of alterations to the main-chain functional groups in order to achieve this specificity. At low nucleotide triphosphate (NTP) concentrations, we observe good agreement between the half-maximal regulatory activity (T(50)) and the affinity of the receptor for lysine (K(d)), as well as many of its analogs. However, above 400 μM [NTP], the concentration of lysine required to elicit transcription termination rises, moving into the riboswitch into a kinetic control regime. These data demonstrate that, under physiologically relevant conditions, riboswitches can integrate both effector and NTP concentrations to generate a regulatory response appropriate for global metabolic state of the cell. PMID:22771573

  12. Solubility Behavior of Cyanophycin Depending on Lysine Content

    PubMed Central

    Wiefel, Lars

    2014-01-01

    Study of the synthesis of cyanophycin (CGP) in recombinant organisms focused for a long time mostly on the insoluble form of CGP, due to its easy purification and its putative use as a precursor for biodegradable chemicals. Recently, another form of CGP, which, in contrast to the insoluble form, was soluble at neutral pH, became interesting due to its high lysine content, which was also assumed to be the reason for the solubility of the polymer. In this study, we demonstrate that lysine incorporated into insoluble CGP affected the solubility of the polymer in relation to its lysine content. Insoluble CGP can be separated along a temperature gradient of 90°C to 30°C, where CGP showed an increasing lysine content corresponding to a decreasing temperature needed for solubilization. CGP with less than 3 to 4 mol% lysine did not become soluble even at 90°C, while CGP with 31 mol% lysine was soluble at 30°C. In lysine fractions at higher than 31 mol%, CGP was soluble. The temperature separation will be suitable for improving the downstream processing of CGP synthesized in large-scale fermentations, including faster and more efficient purification of CGP, as well as enrichment and separation of dipeptides and CGP with specific amino acid compositions. PMID:24271185

  13. GABAAergic stimulation modulates intracellular protein arginine methylation.

    PubMed

    Denman, Robert B; Xie, Wen; Merz, George; Sung, Ying-Ju

    2014-06-20

    Changes in cytoplasmic pH are known to regulate diverse cellular processes and influence neuronal activities. In neurons, the intracellular alkalization is shown to occur after stimulating several channels and receptors. For example, it has previously demonstrated in P19 neurons that a sustained intracellular alkalinization can be mediated by the Na(+)/H(+) antiporter. In addition, the benzodiazepine binding subtypes of the γ-amino butyric acid type A (GABAA) receptor mediate a transient intracellular alkalinization when they are stimulated. Because the activities of many enzymes are sensitive to pH shift, here we investigate the effects of intracellular pH modulation resulted from stimulating GABAA receptor on the protein arginine methyltransferases (PRMT) activities. We show that the major benzodiazepine subtype (2α1, 2β2, 1γ2) is constitutively expressed in both undifferentiated P19 cells and retinoic acid (RA) differentiated P19 neurons. Furthermore stimulation with diazepam and, diazepam plus muscimol produce an intracellular alkalinization that can be detected ex vivo with the fluorescence dye. The alkalinization results in significant perturbation in protein arginine methylation activity as measured in methylation assays with specific protein substrates. Altered protein arginine methylation is also observed when cells are treated with the GABAA agonist muscimol but not an antagonist, bicuculline. These data suggest that pH-dependent and pH-independent methylation pathways can be activated by GABAAergic stimulation, which we verified using hippocampal slice preparations from a mouse model of fragile X syndrome. PMID:24793772

  14. Arginine production in the neonate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endogenous arginine synthesis in adults is a complex multiorgan process, in which citrulline is synthesized in the gut, enters the general circulation, and is converted into arginine in the kidney, by what is known as the intestinal-renal axis. In neonates, the enzymes required to convert citrulline...

  15. Arginine catabolism in Aphanocapsa 6308.

    PubMed

    Weathers, P J; Chee, H L; Allen, M M

    1978-07-01

    The catabolic products of arginine metabolism were observed in Aphanocapsa 6308, a unicellular cyanobacterium, by thin layer chromatography of growth media, by limiting growth conditions, and by enzymatic analysis. Of the organic, nitrogenous compounds examined, only arginine supported growth in CO2-free media. The excretion of ornithine at a concentration level greater than citrulline suggested the existence in Aphanocapsa 6308 of the arginine dihydrolase pathway which produced ornithine, CO2,NH4,+ adenosine 5'-triphosphate. Its existence was confirmed by enzymatic analysis. Although cells could not grow on urea as a sole carbon source a very active urease and subsequently an arginase were also demonstrated, indicating that Aphanocapsa can metabolize arginine via the arginase pathway. The level of enzymes for both pathways indicates a lack of genetic control. It is suggested that the arginase pathway provides only nitrogen for the cells wheras the arginine dihydrolase pathway provides not only nitrogen, but also CO2 and adenosine 5'-triphosphate. PMID:100070

  16. Reactions of lysine with montmorillonite at 80 degrees C: implications for optical activity, H+ transfer and lysine-montmorillonite binding.

    PubMed

    Cuadros, Javier; Aldega, Luca; Vetterlein, Jonathan; Drickamer, Kurt; Dubbin, William

    2009-05-01

    Amino acid-smectite interaction may have catalyzed prebiotic reactions essential for the emergence of life. Lysine solutions (0.05 M) were reacted with Na-smectite in adsorption-desorption experiments. The lysine-smectite complexes were heated at 80 degrees C for 10 days to investigate (1) possible slow processes taking place at surface temperature that would be accelerated at higher temperature and (2) processes taking place in hydrothermal systems. Three sets of experiments were performed: thermal treatment in closed tubes and water added regularly; thermal treatment in closed tubes without adding water; and thermal treatment in open tubes and no added water. After lysine desorption (displacement with 0.1 M CaCl(2)), the solutions were investigated using circular dichroism (CD) and the smectite samples using FTIR and CHN elemental analysis. CD spectra were dependent on the solution pH, which was controlled by lysine protonation state. The lysine protonation state was altered by the adsorption-desorption process, with a higher Lys(+)/Lys(+/-) ratio after desorption. The CD and CHN analyses show that the thermal treatment in a moist state causes stronger smectite-lysine binding. FTIR data suggest that the stronger binding is caused by more or stronger H bonds between -NH(3)(+) lysine groups and smectite basal O atoms. PMID:19185874

  17. Determination of amino acids in Chinese rice wine by fourier transform near-infrared spectroscopy.

    PubMed

    Shen, Fei; Niu, Xiaoying; Yang, Danting; Ying, Yibin; Li, Bobin; Zhu, Geqing; Wu, Jian

    2010-09-01

    Chinese rice wine is abundant in amino acids. The possibility of quantitative detection of 16 free amino acids (aspartic acid, threonine, serine, glutamic acid, proline, glycine, alanine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, and arginine) in Chinese rice wine by Fourier transform near-infrared (NIR) spectroscopy was investigated for the first time in this study. A total of 98 samples from vintage 2007 rice wines with different aging times were analyzed by NIR spectroscopy in transmission mode. Calibration models were developed using partial least-squares regression (PLSR) with high-performance liquid chromatography (HPLC) by postcolumn derivatization and diode array detection as a reference method. To validate the calibration models, full cross (leave-one-out) validation was employed. The results showed that the calibration statistics were good (rcal>0.94) for all amino acids except proline, histidine, and arginine. The correlation coefficient in cross validation (rcv) was >0.81 for 12 amino acids. The residual predictive deviation (RPD) value obtained was >1.5 in all amino acids except proline and arginine, and it was >2.0 in 6 amino acids. The results obtained in this study indicated that NIR spectroscopy could be used as an easy, rapid, and novel tool to quantitatively predict free amino acids in Chinese rice wine without sophisticated methods. PMID:20707307

  18. Lysine Biosynthesis in Barley (Hordeum vulgare L.) 1

    PubMed Central

    Møller, Birger Lindberg

    1974-01-01

    Lysine biosynthesis in seedlings of barley (Hordeum vulgare L. var. Emir) was studied by direct injection of the following precursors into the endosperm of the seedlings: acetate-1-14C; acetate-2-14C; pyruvate-1-14C; pyruvate-2-14C; pyruvate-3-14C; alanine-1-14C; aspartic acid-1-14C; aspartic acid-2-14C; aspartic acid-3-14C; aspartic acid-4-14C; α-aminoadipic acid-1-14C; and α, ε-diaminopimelic acid-1-(7)-14C. The distribution of activity in the individual carbon atoms of lysine in the different biosynthetic experiments was determined by chemical degradation. The incorporation percentages and labeling patterns obtained are in agreement with the occurrence of the diaminopimelic acid pathway. The results do not fit the incorporation percentages and labeling patterns expected if the α-aminoadipic acid pathway was operating. However, the results show that barley seedlings are able to convert a small part of the α-aminoadipic acid administered directly to lysine. The labeling pattern of lysine was found to be symmetrical around carbon 4. This indicates that the biosynthetic pathway proceeds via a symmetrical intermediate like ll-α, ε-diaminopimelic acid, or includes compounds as 2, 3-dihydrodipicolinic acid or Δ1-piperideine-2, 6-dicarboxylic acid which probably isomerise with concomitant lack of asymmetry in the labeling. The percentages of incorporation show that both the mesoand ll-forms of α, ε-diaminopimelic acid are metabolically convertible to lysine in seedlings of barley. PMID:16658942

  19. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    SciTech Connect

    Dwyer, B.P. )

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  20. Lysine mediation of neuroendocrine food regulation in guinea fowl.

    PubMed

    Payne, A; Wang, X; Ivy, M T; Stewart, A; Nelson, K; Darris, C; Nahashon, S N

    2016-02-01

    In poultry, obesity is partly influenced by food intake, and is increasingly becoming a nationwide problem. Hypothalamic food intake mechanisms are involved metabolically and neurologically via two peptide hormones, leptin and ghrelin, and the amino acid glutamate, which is enzymatically derived from lysine metabolism. We hypothesize that lysine homeostasis mediates regulation of feed intake and performance characteristics via the brain-liver axis through glutamate sensing. The objective was to examine the effects of lysine homeostasis in avian food regulation and performance through neuroendocrine signaling. One-day-old male French Guinea fowl (GF) keets (n = 270) were weighed and randomly assigned to 5 dietary treatments (0.80%, 0.86%, 0.92%, 1.10% control, and 1.22% lysine) in 3 replicates. At 4 and 8 wk of age 20% of experimental birds were randomly selected, weighed and euthanatized. The liver, pancreas, and hypothalamus were excised, snap frozen in liquid nitrogen and stored at -80°C until use. Tissue mRNA was extracted and cDNA synthesized for qPCR assays. Lysine at 0.80 and 0.86% hindered growth, development of digestive organs, expression of brain and liver glutamate and leptin receptors, and caused high mortality in GF. The fold change for metabotropic glutamate receptor I was lower (P < 0.05) in liver and higher in brain at 0.86 and 0.92% than the control (1.10%) and 1.22% lysine. The 1.22% lysine exhibited highest expression of ionotropic glutamate receptor, while brain ghrelin receptor expression was highest at 0.86 and 0.92% lysine. Therefore, dietary lysine concentration may influence signaling pathways regulating food intake in brain-liver axis via glutamate synthesis. PMID:26614682

  1. Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli

    PubMed Central

    2010-01-01

    Background H-NS regulates the acid stress resistance. The present study aimed to characterize the H-NS-dependent cascade governing the acid stress resistance pathways and to define the interplay between the different regulators. Results We combined mutational, phenotypic and gene expression analyses, to unravel the regulatory hierarchy in acid resistance involving H-NS, RcsB-P/GadE complex, HdfR, CadC, AdiY regulators, and DNA-binding assays to separate direct effects from indirect ones. RcsB-P/GadE regulatory complex, the general direct regulator of glutamate-, arginine- and lysine-dependent acid resistance pathways plays a central role in the regulatory cascade. However, H-NS also directly controls specific regulators of these pathways (e.g. cadC) and genes involved in general stress resistance (hdeAB, hdeD, dps, adiY). Finally, we found that in addition to H-NS and RcsB, a third regulator, HdfR, inversely controls glutamate-dependent acid resistance pathway and motility. Conclusions H-NS lies near the top of the hierarchy orchestrating acid response centred on RcsB-P/GadE regulatory complex, the general direct regulator of glutamate-, arginine- and lysine-dependent acid resistance pathways. PMID:21034467

  2. Improving the Reliability of Optimal In-Feed Amino Acid Ratios Based on Individual Amino Acid Efficiency Data from N Balance Studies in Growing Chicken.

    PubMed

    Wecke, Christian; Liebert, Frank

    2013-01-01

    Three consecutive nitrogen balance experiments with fast-growing male broiler chickens (ROSS 308), both during starter and grower periods, were conducted to determine the ideal ratios of several indispensable amino acids relative to lysine. The control diets based on corn, wheat, fishmeal, field peas, wheat gluten and soybean oil were formulated by computer optimizing to meet the assumed ideal amino acid ratios and to fulfill both the energy and nutrient requirements of growing chicken. According to principles of the diet dilution technique, balanced control diets were diluted by wheat starch and refilled by crystalline amino acids and remaining feed ingredients, except the amino acid under study. The lysine, threonine, tryptophan, arginine, isoleucine and valine diluted diets resulted in significantly lower protein quality as compared to control diet, especially following increased dietary lysine supply (experiments II and III) and stronger amino acid dilution (experiment III). Accordingly, the limiting position of individual amino acids was confirmed, and the derived amino acid efficiency data were utilized to derive ideal amino acid ratios for the starter period: Lys (100): Thr (60): Trp (19): Arg (105): Ile (55): Val (63); and the grower period: Lys (100): Thr (62): Trp (17): Arg (105): Ile (65): Val (79). PMID:26479521

  3. Biofortification of rice with lysine using endogenous histones.

    PubMed

    Wong, H W; Liu, Q; Sun, S S M

    2015-02-01

    Rice is the most consumed cereal grain in the world, but deficient in the essential amino acid lysine. Therefore, people in developing countries with limited food diversity who rely on rice as their major food source may suffer from malnutrition. Biofortification of stable crops by genetic engineering provides a fast and sustainable method to solve this problem. In this study, two endogenous rice lysine-rich histone proteins, RLRH1 and RLRH2, were over-expressed in rice seeds to achieve lysine biofortification. Their protein sequences passed an allergic sequence-based homology test. Their accumulations in rice seeds were raised to a moderate level by the use of a modified rice glutelin 1 promoter with lowered expression strength to avoid the occurrence of physiological abnormalities like unfolded protein response. The expressed proteins were further targeted to protein storage vacuoles for stable storage using a glutelin 1 signal peptide. The lysine content in the transgenic rice seeds was enhanced by up to 35 %, while other essential amino acids remained balanced, meeting the nutritional standards of the World Health Organization. No obvious unfolded protein response was detected. Different degrees of chalkiness, however, were detected in the transgenic seeds, and were positively correlated with both the levels of accumulated protein and lysine enhancement. This study offered a solution to the lysine deficiency in rice, while at the same time addressing concerns about food safety and physiological abnormalities in biofortified crops. PMID:25512028

  4. Simultaneous detection of lysine metabolites by a single LC-MS/MS method: monitoring lysine degradation in mouse plasma.

    PubMed

    Pena, Izabella A; Marques, Lygia A; Laranjeira, Angelo B A; Yunes, José A; Eberlin, Marcos N; Arruda, Paulo

    2016-01-01

    Detection and quantification of lysine degradation metabolites in plasma is necessary for the diagnosis and follow-up of diseases such as pyridoxine-dependent epilepsy. The principal metabolites involved in the disease are related to the first steps of lysine oxidation, either through the saccharopine or the pipecolate pathways. Currently, there are three different analytical methods used to assess the content of these metabolites in urine and plasma, but they require different sample preparations and analytical equipment. Here, we describe a protocol that calls for a simple sample preparation and uses liquid chromatography tandem mass spectrometry (LC-MS/MS) that allows simultaneous detection and quantification of underivatized l-saccharopine, l-aminoadipic acid, l-pipecolic acid, piperideine-6-carboxylate, l-glutamic acid, and pyridoxal-5-phosphate in plasma samples. To validate the method we analyzed the time course degradation after intraperitoneal injection of l-lysine in C57BL/6/J mice. We observed that the degradation of lysine through the saccharopine pathway reached a maximum within the first 2 h. At this time point there was an increase in the levels of the metabolites saccharopine, aminoadipic acid, and pipecolic acid by 3-, 24- and 3.4-fold, respectively, compared to time zero levels. These metabolites returned to basal levels after 4-6 h. In conclusion, we have developed a LC-MS/MS approach, which allows simultaneous analysis of lysine degradation metabolites without the need for derivatization. PMID:27026869

  5. Arginine behaviour after arginine or citrulline administration in older subjects.

    PubMed

    Moinard, C; Maccario, J; Walrand, S; Lasserre, V; Marc, J; Boirie, Y; Cynober, L

    2016-02-14

    Arginine (ARG) and its precursor citrulline (CIT) are popular dietary supplements, especially for the elderly. However, age-related reductions in lean body mass and alterations in organ functions could change their bioavailability. Pharmacokinetics and tolerance to amino acid (AA) loads are poorly documented in elderly subjects. The objective here was to characterise the plasma kinetics of CIT and ARG in a single-dosing study design. Eight fasting elderly men underwent two separate isomolar oral loading tests (10 g of CIT or 9·94 g of ARG). Blood was withdrawn over an 8-h period to measure plasma AA concentrations. Only CIT, ornithine and ARG plasma concentrations were changed. Volume of distribution was not dependent on AA administered. Conversely, parameters related to ARG kinetics were strongly dependent on AA administered: after ARG load, elimination was higher (ARG>CIT; P=0·041) and admission period+time at peak concentration was lower (ARG

  6. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.

    PubMed

    Xu, Jianzhong; Han, Mei; Zhang, Junlan; Guo, Yanfeng; Zhang, Weiguo

    2014-09-01

    The experiments presented here were based on the conclusions of our previous results. In order to avoid introduction of expression plasmid and to balance the NADH/NAD ratio, the NADH biosynthetic enzyme, i.e., NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GADPH), was replaced by NADP-dependent GADPH, which was used to biosynthesize NADPH rather than NADH. The results indicated that the NADH/NAD ratio significantly decreased, and glucose consumption and L-lysine production drastically improved. Moreover, increasing the flux through L-lysine biosynthetic pathway and disruption of ilvN and hom, which involve in the branched amino acid and L-methionine biosynthesis, further improved L-lysine production by Corynebacterium glutamicum. Compared to the original strain C. glutamicum Lys5, the L-lysine production and glucose conversion efficiency (α) were enhanced to 81.0 ± 6.59 mM and 36.45% by the resulting strain C. glutamicum Lys5-8 in shake flask. In addition, the by-products (i.e., L-threonine, L-methionine and L-valine) were significantly decreased as results of genetic modification in homoserine dehydrogenase (HSD) and acetohydroxyacid synthase (AHAS). In fed-batch fermentation, C. glutamicum Lys5-8 began to produce L-lysine at post-exponential growth phase and continuously increased over 36 h to a final titer of 896 ± 33.41 mM. The L-lysine productivity was 2.73 g l(-1) h(-1) and the α was 47.06% after 48 h. However, the attenuation of MurE was not beneficial to increase the L-lysine production because of decreasing the cell growth. Based on the above-mentioned results, we get the following conclusions: cofactor NADPH, precursor, the flux through L-lysine biosynthetic pathway and DCW are beneficial to improve L-lysine production in C. glutamicum. PMID:24879631

  7. Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products.

    PubMed

    Ren, Xi-Dong; Chen, Xu-Sheng; Zeng, Xin; Wang, Liang; Tang, Lei; Mao, Zhong-Gui

    2015-06-01

    ε-Poly-L-lysine (ε-PL) is produced by Streptomyces as a secondary metabolite with wide industrial applications, but its production still needs to be further enhanced. Environmental stress is an important approach for the promotion of secondary metabolites production by Streptomyces. In this study, the effect of acidic pH shock on enhancing ε-PL production by Streptomyces sp. M-Z18 was investigated in a 5-L fermenter. Based on the evaluation of acidic pH shock on mycelia metabolic activity and shock parameters optimization, an integrated pH-shock strategy was developed as follows: pre-acid-shock adaption at pH 5.0 to alleviate the damage caused by the followed pH shock, and then acidic pH shock at 3.0 for 12 h (including pH decline from 4.0 to 3.0) to positively regulate mycelia metabolic activity, finally restoring pH to 4.0 to provide optimal condition for ε-PL production. After 192 h of fed-batch fermentation, the maximum ε-PL production and productivity reached 54.70 g/L and 6.84 g/L/day, respectively, which were 52.50 % higher than those of control without pH shock. These results demonstrated that acidic pH shock is an efficient approach for improving ε-PL production. The information obtained should be useful for ε-PL production by other Streptomyces. PMID:25605030

  8. Molecular Basis for Lysine Specificity in the Yeast Ubiquitin-Conjugating Enzyme Cdc34 ▿

    PubMed Central

    Sadowski, Martin; Suryadinata, Randy; Lai, Xianning; Heierhorst, Jörg; Sarcevic, Boris

    2010-01-01

    Ubiquitin (Ub)-conjugating enzymes (E2s) and ubiquitin ligases (E3s) catalyze the attachment of Ub to lysine residues in substrates and Ub during monoubiquitination and polyubiquitination. Lysine selection is important for the generation of diverse substrate-Ub structures, which provides versatility to this pathway in the targeting of proteins to different fates. The mechanisms of lysine selection remain poorly understood, with previous studies suggesting that the ubiquitination site(s) is selected by the E2/E3-mediated positioning of a lysine(s) toward the E2/E3 active site. By studying the polyubiquitination of Sic1 by the E2 protein Cdc34 and the RING E3 Skp1/Cul1/F-box (SCF) protein, we now demonstrate that in addition to E2/E3-mediated positioning, proximal amino acids surrounding the lysine residues in Sic1 and Ub are critical for ubiquitination. This mechanism is linked to key residues composing the catalytic core of Cdc34 and independent of SCF. Changes to these core residues altered the lysine preference of Cdc34 and specified whether this enzyme monoubiquitinated or polyubiquitinated Sic1. These new findings indicate that compatibility between amino acids surrounding acceptor lysine residues and key amino acids in the catalytic core of ubiquitin-conjugating enzymes is an important mechanism for lysine selection during ubiquitination. PMID:20194622

  9. Recombinant arginine-degrading enzymes in metabolic anticancer therapy and bioanalytics.

    PubMed

    Stasyk, Oleh V; Boretsky, Yuriy R; Gonchar, Mykhailo V; Sibirny, Andriy A

    2015-03-01

    Tumor cells often exhibit specific metabolic defects due to the aberrations in oncogene-dependent regulatory and/or signaling pathways that distinguish them from normal cells. Among others, many malignant cells are deficient in biosynthesis of certain amino acids and concomitantly exhibit elevated sensitivity to deprivation of these amino acids. Although the underlying causes of such metabolic changes are still not fully understood, this feature of malignant cells is exploited in metabolic enzymotherapies based on single amino acid, e.g., arginine, deprivation. To achieve efficient arginine depletion in vivo, two recombinant enzymes, bacterial arginine deiminase and human arginase I have been evaluated and are undergoing further development. This review is aimed to summarize the current knowledge on the application of arginine-degrading enzymes as anticancer agents and as bioanalytical tools for arginine assays. The problems that have to be solved to optimize this therapy for clinical application are discussed. PMID:25231409

  10. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism.

    PubMed

    Qian, Lili; Nie, Litong; Chen, Ming; Liu, Ping; Zhu, Jun; Zhai, Linhui; Tao, Sheng-Ce; Cheng, Zhongyi; Zhao, Yingming; Tan, Minjia

    2016-06-01

    Protein lysine malonylation is a recently identified post-translational modification (PTM), which is evolutionarily conserved from bacteria to mammals. Although analysis of lysine malonylome in mammalians suggested that this modification was related to energy metabolism, the substrates and biological roles of malonylation in prokaryotes are still poorly understood. In this study, we performed qualitative and quantitative analyses to globally identify lysine malonylation substrates in Escherichia coli. We identified 1745 malonylation sites in 594 proteins in E. coli, representing the first and largest malonylome data set in prokaryotes up to date. Bioinformatic analyses showed that lysine malonylation was significantly enriched in protein translation, energy metabolism pathways and fatty acid biosynthesis, implying the potential roles of protein malonylation in bacterial physiology. Quantitative proteomics by fatty acid synthase inhibition in both auxotrophic and prototrophic E. coli strains revealed that lysine malonylation is closely associated with E. coli fatty acid metabolism. Protein structural analysis and mutagenesis experiment suggested malonylation could impact enzymatic activity of citrate synthase, a key enzyme in citric acid (TCA) cycle. Further comparative analysis among lysine malonylome, succinylome and acetylome data showed that these three modifications could participate in some similar enriched metabolism pathways, but they could also possibly play distinct roles such as in fatty acid synthesis. These data expanded our knowledge of lysine malonylation in prokaryotes, providing a resource for functional study of lysine malonylation in bacteria. PMID:27183143

  11. Dietary arginine requirements for growth are dependent on the rate of citrulline production in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many species, including humans, arginine is considered a semiessential amino acid because under certain conditions endogenous synthesis cannot meet its demand. The requirements of arginine for growth in mice are ill defined and seem to vary depending on the genetic background of the mice. The obj...

  12. Possible evidence of amide bond formation between sinapinic acid and lysine-containing bacterial proteins by matrix-assisted laser desorption/ionization (MALDI) at 355 nm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported the apparent formation of matrix adducts of 3,5-dimethoxy-4-hydroxy-cinnamic acid (sinapinic acid or SA) via covalent attachment to disulfide bond-containing proteins (HdeA, HdeB and YbgS) from bacterial cell lysates ionized by matrix-assisted laser desorption/ionization (MALD...

  13. Selective cleavage enhanced by acetylating the side chain of lysine.

    PubMed

    Fu, Leixiaomeng; Chen, Tingting; Xue, Gaiqing; Zu, Lily; Fang, Weihai

    2013-01-01

    Selective cleavage is of great interest in mass spectrometry studies as it can help sequence identification by promoting simple fragmentation pattern of peptides and proteins. In this work, the collision-induced dissociation of peptides containing internal lysine and acetylated lysine residues were studied. The experimental and computational results revealed that multiple fragmentation pathways coexisted when the lysine residue was two amino acid residues away from N-terminal of the peptide. After acetylation of the lysine side-chain, b(n)+ ions were the most abundant primary fragment products and the Lys(Ac)-Gly amide bond became the dominant cleavage site via an oxazolone pathway. Acetylating the side-chain of lysine promoted the selective cleavage of Lys-Xxx amide bond and generated much more information of the peptide backbone sequence. The results re-evaluate the selective cleavage due to the lysine basic side-chain and provide information for studying the post-translational modification of proteins and other bio-molecules containing Lys residues. PMID:23303756

  14. Tropomyosin lysine reactivities and relationship to coiled-coil structure.

    PubMed

    Hitchcock-DeGregori, S E; Lewis, S F; Chou, T M

    1985-06-18

    We have carried out a detailed analysis of tropomyosin structure using lysines as specific probes for the protein surface in regions of the molecule that have not been investigated by other methods. We have measured the relative reactivities of lysines in rabbit skeletal muscle alpha, alpha-tropomyosin with acetic anhydride using a competitive labeling procedure. We have identified 37 of 39 lysines and find that they range 20-fold in reactivity. The observed reactivities are related to the coiled-coil model of the tropomyosin molecule [Crick, F.H.C. (1953) Acta Crystallogr. 6, 689-697; McLachlan, A.D., Stewart, M., & Smillie, L.B. (1975) J. Mol. Biol. 98, 281-291] and other available chemical and physical information about the structure. In most cases, the observed lysine reactivities can be explained by allowable interactions with neighboring amino acid side chains on the same or facing alpha-helix. However, we found no correlation between reactivity and helical position of a given lysine. For example, lysines in the outer helical positions included lysines of low as well as high reactivity, indicating that they vary widely in their accessibility to solvent and that the coiled coil is heterogeneous along its length. Furthermore, the middle of the molecule (residues 126-182) that is susceptible to proteolysis and known to be the least stable region of the protein also contains some of the least and most reactive lysines. We have discussed the implications of our results on our understanding the structures of tropomyosin and other coiled-coil proteins as well as globular proteins containing helical regions. PMID:3927977

  15. Adaptation to a long term (4 weeks) arginine- and precursor (glutamate, proline and aspartate)-free diet☆

    PubMed Central

    Tharakan, John F.; Yu, Yong M.; Zurakowski, David; Roth, Rachel M.; Young, Vernon R.; Castillo, Leticia

    2008-01-01

    Summary Background & aims It is not known whether arginine homeostasis is negatively affected by a “long term” dietary restriction of arginine and its major precursors in healthy adults. To assess the effects of a 4-week arginine- and precursor-free dietary intake on the regulatory mechanisms of arginine homeostasis in healthy subjects. Methods Ten healthy adults received a complete amino acid diet for 1 week (control diet) and following a break period, six subjects received a 4-week arginine, proline, glutamate and aspartate-free diet (APF diet). The other four subjects continued for 4 weeks with the complete diet. On days 4 and 7 of the first week and days 25 and 28 of the 4-week period, the subjects received 24-h infusions of arginine, citrulline, leucine and urea tracers. Results During the 4-week APF, plasma arginine fluxes for the fed state, were significantly reduced. There were no significant differences for citrulline, leucine or urea fluxes. Arginine de novo synthesis was not affected by the APF intake. However, arginine oxidation was significantly decreased. Conclusions In healthy adults, homeostasis of arginine under a long term arginine- and precursor-free intake is achieved by decreasing catabolic rates, while de novo arginine synthesis is maintained. PMID:18590940

  16. The role of the arginine metabolome in pain: implications for sickle cell disease

    PubMed Central

    Bakshi, Nitya; Morris, Claudia R

    2016-01-01

    Sickle cell disease (SCD) is the most common hemoglobinopathy in the US, affecting approximately 100,000 individuals in the US and millions worldwide. Pain is the hallmark of SCD, and a subset of patients experience pain virtually all of the time. Of interest, the arginine metabolome is associated with several pain mechanisms highlighted in this review. Since SCD is an arginine deficiency syndrome, the contribution of the arginine metabolome to acute and chronic pain in SCD is a topic in need of further attention. Normal arginine metabolism is impaired in SCD through various mechanisms that contribute to endothelial dysfunction, vaso-occlusion, pulmonary complications, risk of leg ulcers, and early mortality. Arginine is a semiessential amino acid that serves as a substrate for protein synthesis and is the precursor to nitric oxide (NO), polyamines, proline, glutamate, creatine, and agmatine. Since arginine is involved in multiple metabolic processes, a deficiency of this amino acid has the potential to disrupt many cellular and organ functions. NO is a potent vasodilator that is depleted in SCD and may contribute to vaso-occlusive pain. As the obligate substrate for NO production, arginine also plays a mechanistic role in SCD-related pain, although its contribution to pain pathways likely extends beyond NO. Low global arginine bioavailability is associated with pain severity in both adults and children with SCD as well as other non-SCD pain syndromes. Preliminary clinical studies of arginine therapy in SCD demonstrate efficacy in treating acute vaso-occlusive pain, as well as leg ulcers and pulmonary hypertension. Restoration of arginine bioavailability through exogenous supplementation of arginine is, therefore, a promising therapeutic target. Phase II clinical trials of arginine therapy for sickle-related pain are underway and a Phase III randomized controlled trial is anticipated in the near future. PMID:27099528

  17. The role of the arginine metabolome in pain: implications for sickle cell disease.

    PubMed

    Bakshi, Nitya; Morris, Claudia R

    2016-01-01

    Sickle cell disease (SCD) is the most common hemoglobinopathy in the US, affecting approximately 100,000 individuals in the US and millions worldwide. Pain is the hallmark of SCD, and a subset of patients experience pain virtually all of the time. Of interest, the arginine metabolome is associated with several pain mechanisms highlighted in this review. Since SCD is an arginine deficiency syndrome, the contribution of the arginine metabolome to acute and chronic pain in SCD is a topic in need of further attention. Normal arginine metabolism is impaired in SCD through various mechanisms that contribute to endothelial dysfunction, vaso-occlusion, pulmonary complications, risk of leg ulcers, and early mortality. Arginine is a semiessential amino acid that serves as a substrate for protein synthesis and is the precursor to nitric oxide (NO), polyamines, proline, glutamate, creatine, and agmatine. Since arginine is involved in multiple metabolic processes, a deficiency of this amino acid has the potential to disrupt many cellular and organ functions. NO is a potent vasodilator that is depleted in SCD and may contribute to vaso-occlusive pain. As the obligate substrate for NO production, arginine also plays a mechanistic role in SCD-related pain, although its contribution to pain pathways likely extends beyond NO. Low global arginine bioavailability is associated with pain severity in both adults and children with SCD as well as other non-SCD pain syndromes. Preliminary clinical studies of arginine therapy in SCD demonstrate efficacy in treating acute vaso-occlusive pain, as well as leg ulcers and pulmonary hypertension. Restoration of arginine bioavailability through exogenous supplementation of arginine is, therefore, a promising therapeutic target. Phase II clinical trials of arginine therapy for sickle-related pain are underway and a Phase III randomized controlled trial is anticipated in the near future. PMID:27099528

  18. Selective Deletion of the Internal Lysine Residue from the Peptide Sequence by Collisional Activation

    NASA Astrophysics Data System (ADS)

    Banerjee, Shibdas; Mazumdar, Shyamalava

    2012-11-01

    The gas-phase peptide ion fragmentation chemistry is always the center of attraction in proteomics to analyze the amino acid sequence of peptides and proteins. In this work, we describe the formation of an anomalous fragment ion, which corresponds to the selective deletion of the internal lysine residue from a series of lysine containing peptides upon collisional activation in the ion trap. We detected several water-loss fragment ions and the maximum number of water molecules lost from a particular fragment ion was equal to the number of lysine residues in that fragment. As a consequence of this water-loss phenomenon, internal lysine residues were found to be deleted from the peptide ion. The N,N-dimethylation of all the amine functional groups of the peptide stopped the internal lysine deletion reaction, but selective N-terminal α-amino acetylation had no effect on this process indicating involvement of the side chains of the lysine residues. The detailed mechanism of the lysine deletion was investigated by multistage CID of the modified and unmodified peptides, by isotope labeling and by energy resolved CID studies. The results suggest that the lysine deletion might occur through a unimolecular multistep mechanism involving a seven-membered cyclic imine intermediate formed by the loss of water from a lysine residue in the protonated peptide. This intermediate subsequently undergoes degradation reaction to deplete the interior imine ring from the peptide backbone leading to the deletion of an internal lysine residue.

  19. Carbohydrate and amino acid metabolism of Spironucleus vortens.

    PubMed

    Millet, Coralie O M; Lloyd, David; Coogan, Michael P; Rumsey, Joanna; Cable, Joanne

    2011-09-01

    The metabolism of Spironucleus vortens, a parasitic, diplomonad flagellate related to Giardia intestinalis, was investigated using a combination of membrane inlet mass spectrometry, (1)H NMR, (13)C NMR, bioscreen continuous growth monitoring, and ion exchange chromatography. The products of glucose-fuelled and endogenous metabolism were identified by (1)H NMR and (13)C NMR as ethanol, acetate, alanine and lactate. Mass spectrometric monitoring of gas metabolism in buffered cell suspensions showed that glucose and ethanol could be used by S. vortens as energy-generating substrates, but bioscreen automated monitoring of growth in culture medium, as well as NMR analyses, suggested that neither of these compounds are the substrates of choice for this organism. Ion-exchange chromatographic analyses of free amino-acid and amino-acid hydrolysate of growth medium revealed that, despite the availability of large pools of free amino-acids in the medium, S. vortens hydrolysed large amounts of proteins during growth. The organism produced alanine and aspartate, and utilised lysine, arginine, leucine, cysteine and urea. However, mass spectrometric and bioscreen investigations showed that addition of the utilised amino acids to diluted culture medium did not induce any significant increase in metabolic or growth rates. Moreover, as no significant amounts of ornithine were produced, and addition of arginine under aerobic conditions did not generate NO production, there was no evidence of the presence of an energy-generating, arginine dihydrolase pathway in S. vortens under in vitro conditions. PMID:21679707

  20. Proton affinity of several basic non-standard amino acids

    NASA Astrophysics Data System (ADS)

    Rožman, Marko

    2012-08-01

    The structures and absolute proton affinities of several arginine (2-amino-3-guanidinopropionic acid, 2-amino-4-guanidinobutyric acid, homoarginine, citrulline and canavanine), histidine (1-methylhistidine and 3-methylhistidine) and lysine (2,3-diaminopropanoic acid, 2,4-diaminobutanoic acid, ornithine, 5-hydroxylysine, canaline and thialysine) homologues and analogues have been estimated using composite G3MP2B3 computational protocol. For a majority of here studied non-standard amino acids the gas-phase proton affinities were established for the first time, while for the others obtained values are used to improve the accuracy of the computational and experimental proton affinities reported previously. In addition, structures and proton affinities are discussed in order to rationalize their biological activity.

  1. EFFECT OF TETRACYCLINES ON THE INTRACELLULAR AMINO ACIDS OF MOLDS.

    PubMed

    FREEMAN, B A; CIRCO, R

    1963-07-01

    Freeman, Bob A. (University of Chicago, Chicago, Ill.) and Richard Circo. Effect of tetracyclines on the intracellular amino acids of molds. J. Bacteriol. 86:38-44. 1963.-The tetracycline antibiotics were shown to alter the amino acid metabolism of molds whose growth is not markedly affected. Eight molds were grown in the presence of these antiobiotics; four exhibited a general reduction in the concentration of the intracellular amino acids, except for glutamic acid and alanine. In most of these four cultures, the tetracyclines also caused the complete disappearance of arginine, lysine, proline, phenylalanine, and tyrosine from the intracellular amino acid pool. The significance of these observations and the usefulness of the method in the study of the mechanisms of antibiotic action are discussed. PMID:14051820

  2. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. V. Like-charged side chains.

    PubMed

    Makowski, Mariusz; Liwo, Adam; Sobolewski, Emil; Scheraga, Harold A

    2011-05-19

    A new model of side-chain-side-chain interactions for charged side-chains of amino acids, to be used in the UNRES force-field, has been developed, in which a side chain consists of a nonpolar and a charged site. The interaction energy between the nonpolar sites is composed of a Gay-Berne and a cavity term; the interaction energy between the charged sites consists of a Lennard-Jones term, a Coulombic term, a generalized-Born term, and a cavity term, while the interaction energy between the nonpolar and charged sites is composed of a Gay-Berne and a polarization term. We parametrized the energy function for the models of all six pairs of natural like-charged amino-acid side chains, namely propionate-propionate (for the aspartic acid-aspartic acid pair), butyrate-butyrate (for the glutamic acid-glutamic acid pair), propionate-butyrate (for the aspartic acid-glutamic acid pair), pentylamine cation-pentylamine cation (for the lysine-lysine pair), 1-butylguanidine cation-1-butylguanidine cation (for the arginine-arginine pair), and pentylamine cation-1-butylguanidine cation (for the lysine-arginine pair). By using umbrella-sampling molecular dynamics simulations in explicit TIP3P water, we determined the potentials of mean force of the above-mentioned pairs as functions of distance and orientation and fitted analytical expressions to them. The positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the orientation of the molecules were well represented by analytical expressions for all systems. The values of the parameters of all the energy components are physically reasonable, which justifies use of such potentials in coarse-grain protein-folding simulations. PMID:21500792

  3. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. V. Like-charged side chains

    PubMed Central

    Makowski, Mariusz; Liwo, Adam; Sobolewski, Emil; Scheraga, Harold A.

    2011-01-01

    A new model of side-chain – side-chain interactions for charged side-chains of amino acids, to be used in the UNRES force-field, has been developed, in which a side chain consists of a nonpolar and a charged site. The interaction energy between the nonpolar sites is composed of a Gay-Berne and a cavity term; the interaction energy between the charged sites consists of a Lennard-Jones term, a Coulombic term, a Generalized-Born term, and a cavity term, while the interaction energy between the nonpolar and charged sites is composed of a Gay-Berne and a polarization term. We parameterized the energy function for the models of all six pairs of natural like-charged amino-acid side chains, namely propionate-propionate (for the aspartic acid-aspartic acid pair), butyrate-butyrate (for the glutamic acid-glutamic acid pair), propionate-butyrate (for the aspartic acid-glutamic acid pair), pentylamine cation-pentylamine cation (for the lysine-lysine pair), 1-butylguanidine cation-1-butylguanidine cation (for the arginine-arginine pair), and pentylamine cation-1-butylguanidine cation (for the lysine-arginine pair). By using umbrella-sampling molecular dynamics simulations in explicit TIP3P water, we determined the potentials of mean force of the above-mentioned pairs as functions of distance and orientation and fitted analytical expressions to them. The positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the orientation of the molecules were well represented by analytical expressions for all systems. The values of the parameters of all the energy components are physically reasonable, which justifies use of such potentials in coarse-grain protein-folding simulations. PMID:21500792

  4. Characterization and crystal structure of lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase (cDHDPS) protein

    SciTech Connect

    Rice, E.A.; Bannon, G.A.; Glenn, K.C.; Jeong, S.S.; Sturman, E.J.; Rydel, T.J.

    2008-11-21

    The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysine revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.

  5. Terahertz broadband spectroscopic investigations of amino acid

    NASA Astrophysics Data System (ADS)

    Zhu, De-chong; Zhang, Liang-liang; Zhong, Hua; Zhang, Cun-lin

    2011-08-01

    We present an experimental terahertz (THz) spectroscopic investigation of amino acid using an air-breakdown-coherent detection (ABCD) system. The strong and ultra-broadband (0.1 to 10THz) terahertz radiations generated by two-color laser induced air plasma and measured by coherent heterodyne detection. The broadband THz reflection spectra of L-Lysine (C6H14N2O2) and L-Arginine (C6H14N2O2) are obtained. To solve the phase-retrieval problem in RTDS, the absorption signatures of the materials are extracted directly from the first derivative of the relative reflectance with respect to frequency. The absorption features of the two amino acids are characterized in the 0.5~6 THz region. It is found that both the two amino acids have an absorption peak at 1.10 THz.

  6. Basis of arginine sensitivity of microbial N-acetyl-L-glutamate kinases: mutagenesis and protein engineering study with the Pseudomonas aeruginosa and Escherichia coli enzymes.

    PubMed

    Fernández-Murga, M Leonor; Rubio, Vicente

    2008-04-01

    N-acetylglutamate kinase (NAGK) catalyzes the second step of arginine biosynthesis. In Pseudomonas aeruginosa, but not in Escherichia coli, this step is rate limiting and feedback and sigmoidally inhibited by arginine. Crystal structures revealed that arginine-insensitive E. coli NAGK (EcNAGK) is homodimeric, whereas arginine-inhibitable NAGKs, including P. aeruginosa NAGK (PaNAGK), are hexamers in which an extra N-terminal kinked helix (N-helix) interlinks three dimers. By introducing single amino acid replacements in PaNAGK, we prove the functionality of the structurally identified arginine site, as arginine site mutations selectively decreased the apparent affinity for arginine. N-helix mutations affecting R24 and E17 increased and decreased, respectively, the apparent affinity of PaNAGK for arginine, as predicted from enzyme structures that revealed the respective formation by these residues of bonds favoring inaccessible and accessible arginine site conformations. N-helix N-terminal deletions spanning > or = 16 residues dissociated PaNAGK to active dimers, those of < or = 20 residues decreased the apparent affinity for arginine, and complete N-helix deletion (26 residues) abolished arginine inhibition. Upon attachment of the PaNAGK N-terminal extension to the EcNAGK N terminus, EcNAGK remained dimeric and arginine insensitive. We concluded that the N-helix and its C-terminal portion after the kink are essential but not sufficient for hexamer formation and arginine inhibition, respectively; that the N-helix modulates NAGK affinity for arginine and mediates signal transmission between arginine sites, thus establishing sigmoidal arginine inhibition kinetics; that the mobile alphaH-beta16 loop of the arginine site is the modulatory signal receiver; and that the hexameric architecture is not essential for arginine inhibition but is functionally essential for physiologically relevant arginine control of NAGK. PMID:18263723

  7. Basis of Arginine Sensitivity of Microbial N-Acetyl-l-Glutamate Kinases: Mutagenesis and Protein Engineering Study with the Pseudomonas aeruginosa and Escherichia coli Enzymes▿

    PubMed Central

    Fernández-Murga, M. Leonor; Rubio, Vicente

    2008-01-01

    N-Acetylglutamate kinase (NAGK) catalyzes the second step of arginine biosynthesis. In Pseudomonas aeruginosa, but not in Escherichia coli, this step is rate limiting and feedback and sigmoidally inhibited by arginine. Crystal structures revealed that arginine-insensitive E. coli NAGK (EcNAGK) is homodimeric, whereas arginine-inhibitable NAGKs, including P. aeruginosa NAGK (PaNAGK), are hexamers in which an extra N-terminal kinked helix (N-helix) interlinks three dimers. By introducing single amino acid replacements in PaNAGK, we prove the functionality of the structurally identified arginine site, as arginine site mutations selectively decreased the apparent affinity for arginine. N-helix mutations affecting R24 and E17 increased and decreased, respectively, the apparent affinity of PaNAGK for arginine, as predicted from enzyme structures that revealed the respective formation by these residues of bonds favoring inaccessible and accessible arginine site conformations. N-helix N-terminal deletions spanning ≥16 residues dissociated PaNAGK to active dimers, those of ≤20 residues decreased the apparent affinity for arginine, and complete N-helix deletion (26 residues) abolished arginine inhibition. Upon attachment of the PaNAGK N-terminal extension to the EcNAGK N terminus, EcNAGK remained dimeric and arginine insensitive. We concluded that the N-helix and its C-terminal portion after the kink are essential but not sufficient for hexamer formation and arginine inhibition, respectively; that the N-helix modulates NAGK affinity for arginine and mediates signal transmission between arginine sites, thus establishing sigmoidal arginine inhibition kinetics; that the mobile αH-β16 loop of the arginine site is the modulatory signal receiver; and that the hexameric architecture is not essential for arginine inhibition but is functionally essential for physiologically relevant arginine control of NAGK. PMID:18263723

  8. Integrin αvβ3 as a Promising Target to Image Neoangiogenesis Using In-House Generator-Produced Positron Emitter (68)Ga-Labeled DOTA-Arginine-Glycine-Aspartic Acid (RGD) Ligand.

    PubMed

    Vatsa, Rakhee; Bhusari, Priya; Kumar, Sunil; Chakraborty, Sudipta; Dash, Ashutosh; Singh, Gurpreet; Dhawan, Devinder Kumar; Shukla, Jaya; Mittal, Bhagwant Rai

    2015-06-01

    For the growth and spread of a tumor beyond 2 mm, angiogenesis plays a crucial role, and association of various integrins with angiogenesis is evidential. The aim of the study was radiolabeling of DOTA-chelated RGD (arginine-glycine-aspartic acid) peptide with (68)Ga for PET imaging in locally advanced breast carcinoma. DOTA-RGD was incubated with (68)GaCl3, eluted in 0.05 m HCl. Elution volume, peptide amount, and reaction pH were studied. Radio-ITLC, gas chromatography, endotoxin, and sterility testing were performed. Serial (n=3) and whole-body (n=2) PET/CT imaging was done on patients post i.v. injection of 111-185 MBq of (68)Ga-DOTA-RGD. Maximum radiolabeling yield was achieved with 3 mL elution volume of 15-20 μg peptide at pH 3.5-4.0 with 10 minutes of incubation at 95°C. Product samples were sterile having 99.5% radiochemical purity with residual ethanol content and endotoxins in injectable limits. Intense radiotracer uptake was noticed in the tumor with SUVmax 15.3 at 45 minutes in serial images. Physiological radiotracer uptake was seen in the liver, spleen, ventricles, and thyroid with excretion through the kidneys. The authors concluded that (68)Ga-DOTA-RGD has the potential for imaging α,vβ3 integrin-expressing tumors. PMID:26083951

  9. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site.

    PubMed

    Zhu, Wen-Jing; Li, Miao; Wang, Xiao-Yun

    2007-12-01

    Chemical modification was used to elucidate the essential amino acids in the catalytic activity of arginine kinase (AK) from Migratoria manilensis. Among six cysteine (Cys) residues only one Cys residue was determined to be essential in the active site by Tsou's method. Furthermore, the AK modified by DTNB can be fully reactivated by dithiothreitol (DTT) in a monophasic kinetic course. At the same time, this reactivation can be slowed down in the presence of ATP, suggesting that the essential Cys is located near the ATP binding site. The ionizing groups at the AK active site were studied and the standard dissociation enthalpy (DeltaH degrees ) was 12.38kcal/mol, showing that the dissociation group may be the guanidino of arginine (Arg). Using the specific chemical modifier phenylglyoxal (PG) demonstrated that only one Arg, located near the ATP binding site, is essential for the activity of AK. PMID:17765964

  10. Unbalance of L-lysine flux in Corynebacterium glutamicum and its use for the isolation of excretion-defective mutants.

    PubMed Central

    Vrljic, M; Kronemeyer, W; Sahm, H; Eggeling, L

    1995-01-01

    We found that the simple addition of L-methionine to the wild type of Corynebacterium glutamicum results in excretion of the cellular building block L-lysine up to rates of 2.5 nmol/min/mg (dry weight). Biochemical analyses revealed that L-methionine represses the homoserine dehydrogenase activity and reduces the intracellular L-threonine level from 7 to less than 2 mM. Since L-lysine synthesis is regulated mainly by L-threonine (plus L-lysine) availability, the result is enhanced flux towards L-lysine. This indicates a delicate and not well controlled type of flux control at the branch point of aspartate semialdehyde conversion to either L-lysine or L-threonine, probably due to the absence of isoenzymes in C. glutamicum. The inducible system of L-lysine excretion discovered was used to isolate mutants defective in the excretion of this amino acid. One such mutant characterized in detail accumulated 174 mM L-lysine in its cytosol without extracellular excretion of L-lysine, whereas the wild type accumulated 53 mM L-lysine in the cytosol and 5.9 mM L-lysine in the medium. The mutant was unaffected in L-lysine uptake or L-isoleucine or L-glutamate excretion, and also the membrane potential was unaltered. This mutant therefore represents a strain with a defect in an excretion system for the primary metabolite L-lysine. PMID:7608075

  11. Severe dietary lysine restriction affects growth and body composition and hepatic gene expression for nitrogen metabolism in growing rats.

    PubMed

    Kim, J; Lee, K S; Kwon, D-H; Bong, J J; Jeong, J Y; Nam, Y S; Lee, M S; Liu, X; Baik, M

    2014-02-01

    Dietary lysine restriction may differentially affect body growth and lipid and nitrogen metabolism, depending on the degree of lysine restriction. This study was conducted to examine the effect of dietary lysine restriction on growth and lipid and nitrogen metabolism with two different degree of lysine restriction. Isocaloric amino acid-defined diets containing 1.4% lysine (adequate), 0.70% lysine (50% moderate lysine restriction) and 0.35% lysine (75% severe lysine restriction) were fed from the age of 52 to 77 days for 25 days in male Sprague-Dawley rats. The 75% severe lysine restriction increased (p < 0.05) food intake, but retarded (p < 0.05) growth, increased (p < 0.05) liver and muscle lipid contents and abdominal fat accumulation, increased (p < 0.05) blood urea nitrogen levels and mRNA levels of the serine-synthesizing 3-phosphoglycerate dehydrogenase gene, but decreased (p < 0.05) urea cycle arginase gene mRNA levels. In contrast, the 50% lysine restriction did not significantly (p > 0.05) affect body growth and lipid and nitrogen metabolism. Our results demonstrate that severe 75% lysine restriction has detrimental effects on body growth and deregulate lipid and nitrogen metabolism. PMID:23441935

  12. Corynebacterium glutamicum as a host for synthesis and export of D-Amino Acids.

    PubMed

    Stäbler, Norma; Oikawa, Tadao; Bott, Michael; Eggeling, Lothar

    2011-04-01

    A number of d-amino acids occur in nature, and there is growing interest in their function and metabolism, as well as in their production and use. Here we use the well-established l-amino-acid-producing bacterium Corynebacterium glutamicum to study whether d-amino acid synthesis is possible and whether mechanisms for the export of these amino acids exist. In contrast to Escherichia coli, C. glutamicum tolerates d-amino acids added extracellularly. Expression of argR (encoding the broad-substrate-specific racemase of Pseudomonas taetrolens) with its signal sequence deleted results in cytosolic localization of ArgR in C. glutamicum. The isolated enzyme has the highest activity with lysine (100%) but also exhibits activity with serine (2%). Upon overexpression of argR in an l-arginine, l-ornithine, or l-lysine producer, equimolar mixtures of the d- and l-enantiomers accumulated extracellularly. Unexpectedly, argR overexpression in an l-serine producer resulted in extracellular accumulation of a surplus of d-serine (81 mM d-serine and 37 mM l-serine) at intracellular concentrations of 125 mM d-serine plus 125 mM l-serine. This points to a nonlimiting ArgR activity for intracellular serine racemization and to the existence of a specific export carrier for d-serine. Export of d-lysine relies fully on the presence of lysE, encoding the exporter for l-lysine, which is apparently promiscuous with respect to the chirality of lysine. These data show that d-amino acids can also be produced with C. glutamicum and that in special cases, due to specific carriers, even a preferential extracellular accumulation of this enantiomer is possible. PMID:21257776

  13. Estimation of the standardized ileal digestible valine to lysine ratio required for 25- to 120-kilogram pigs fed low crude protein diets supplemented with crystalline amino acids.

    PubMed

    Liu, X T; Ma, W F; Zeng, X F; Xie, C Y; Thacker, P A; Htoo, J K; Qiao, S Y

    2015-10-01

    Four 28-d experiments were conducted to determine the standardized ileal digestible (SID) valine (Val) to lysine (Lys) ratio required for 26- to 46- (Exp. 1), 49- to 70- (Exp. 2), 71- to 92- (Exp. 3), and 94- to 119-kg (Exp. 4) pigs fed low CP diets supplemented with crystalline AA. The first 3 experiments utilized 150 pigs (Duroc × Landrace × Large White), while Exp. 4 utilized 90 finishing pigs. Pigs in all 4 experiments were randomly allocated to 1 of 5 diets with 6 pens per treatment (3 pens of barrows and 3 pens of gilts) and 5 pigs per pen for the first 3 experiments and 3 pigs per pen for Exp. 4. Diets for all experiments were formulated to contain SID Val to Lys ratios of 0.55, 0.60, 0.65, 0.70, or 0.75. In Exp. 1 (26 to 46 kg), ADG increased (linear, = 0.039; quadratic, = 0.042) with an increasing dietary Val:Lys ratio. The SID Val:Lys ratio to maximize ADG was 0.62 using a linear broken-line model and 0.71 using a quadratic model. In Exp. 2 (49 to 70 kg), ADG increased (linear, = 0.021; quadratic, = 0.042) as the SID Val:Lys ratio increased. G:F improved (linear, = 0.039) and serum urea nitrogen (SUN) decreased (linear, = 0.021; quadratic, = 0.024) with an increased SID Val:Lys ratio. The SID Val:Lys ratios to maximize ADG as well as to minimize SUN levels were 0.67 and 0.65, respectively, using a linear broken-line model and 0.72 and 0.71, respectively, using a quadratic model. In Exp. 3 (71 to 92 kg), ADG increased (linear, = 0.007; quadratic, = 0.022) and SUN decreased (linear, = 0.011; quadratic, = 0.034) as the dietary SID Val:Lys ratio increased. The SID Val:Lys ratios to maximize ADG as well as to minimize SUN levels were 0.67 and 0.67, respectively, using a linear broken-line model and 0.72 and 0.74, respectively, using a quadratic model. In Exp. 4 (94 to 119 kg), ADG increased (linear, = 0.041) and G:F was improved (linear, = 0.004; quadratic, = 0.005) as the dietary SID Val:Lys ratio increased. The SID Val:Lys ratio to maximize G:F was 0

  14. Potential ergogenic effects of arginine and creatine supplementation.

    PubMed

    Paddon-Jones, Douglas; Børsheim, Elisabet; Wolfe, Robert R

    2004-10-01

    The rationale for the use of nutritional supplements to enhance exercise capacity is based on the assumption that they will confer an ergogenic effect above and beyond that afforded by regular food ingestion alone. The proposed or advertised ergogenic effect of many supplements is based on a presumptive metabolic pathway and may not necessarily translate to quantifiable changes in a variable as broadly defined as exercise performance. L-arginine is a conditionally essential amino acid that has received considerable attention due to potential effects on growth hormone secretion and nitric oxide production. In some clinical circumstances (e.g., burn injury, sepsis) in which the demand for arginine cannot be fully met by de novo synthesis and normal dietary intake, exogenous arginine has been shown to facilitate the maintenance of lean body mass and functional capacity. However, the evidence that supplemental arginine may also confer an ergogenic effect in normal healthy individuals is less compelling. In contrast to arginine, numerous studies have reported that supplementation with the arginine metabolite creatine facilitates an increase in anaerobic work capacity and muscle mass when accompanied by resistance training programs in both normal and patient populations. Whereas improvement in the rate of phosphocreatine resynthesis is largely responsible for improvements in acute work capacity, the direct effect of creatine supplementation on skeletal muscle protein synthesis is less clear. The purpose of this review is to summarize the role of arginine and its metabolite creatine in the context of a nutrition supplement for use in conjunction with an exercise stimulus in both healthy and patient populations. PMID:15465806

  15. l-Arginine Supplementation and Metabolism in Asthma

    PubMed Central

    Kenyon, Nicholas J.; Last, Michael; Bratt, Jennifer M.; Kwan, Vivian W.; O'Roark, Erin; Linderholm, Angela

    2011-01-01

    l-Arginine, the amino acid substrate for nitric oxide synthase, has been tested as a therapeutic intervention in a variety of chronic diseases and is commonly used as a nutritional supplement. In this study, we hypothesized that a subset of moderate to severe persistent asthma patients would benefit from supplementation with l-arginine by transiently increasing nitric oxide levels, resulting in bronchodilation and a reduction in inflammation. The pilot study consisted of a 3 month randomized, double-blind, placebo-controlled trial of l-arginine (0.05 g/kg twice daily) in patients with moderate to severe asthma. We measured spirometry, exhaled breath nitric oxide, serum arginine metabolites, questionnaire scores, daily medication use and PEFR with the primary endpoint being the number of minor exacerbations at three months. Interim analysis of the 20 subjects showed no difference in the number of exacerbations, exhaled nitric oxide levels or lung function between groups, though participants in the l-arginine group had higher serum l-arginine at day 60 (2.0 ± 0.6 × 10−3 vs. 1.1 ± 0.2 × 10−3 μmol/L, p < 0.05), ornithine at day 30 (2.4 ± 0.9 vs. 1.2 ± 0.3 μmol/L serum, p < 0.05) and ADMA at day 30 (6.0 ± 1.5 × 10−1 vs. 2.6 ± 0.6 × 10−1 μmol/L serum, p < 0.05) on average compared to the placebo group. The study was terminated prematurely. Supplementing asthma subjects with l-arginine increases plasma levels; whether subgroups might benefit from such supplementation requires further study.

  16. Inhibition of lytic infection of pseudorabies virus by arginine depletion

    SciTech Connect

    Wang, H.-C.; Kao, Y.-C.; Chang, T-J.; Wong, M.-L. . E-mail: mlwong@dragon.nchu.edu.tw

    2005-08-26

    Pseudorabies virus (PRV) is a member of Alphahepesviruses; it is an enveloped virus with a double-stranded DNA genome. Polyamines (such as spermine and spermidine) are ubiquitous in animal cells and participate in cellular proliferation and differentiation. Previous results of our laboratory showed that the PRV can accomplish lytic infection either in the presence of exogenous spermine (or spermidine) or depletion of cellular polyamines. The amino acid arginine is a precursor of polyamine biosynthesis. In this work, we investigated the role of arginine in PRV infection. It was found that the plaque formation of PRV was inhibited by arginase (enzyme catalyzing the conversion of arginine into ornithine and urea) treatment whereas this inhibition can be reversed by exogenous arginine, suggesting that arginine is essential for PRV proliferation. Western blotting was conducted to study the effect of arginine depletion on the levels of structural proteins of PRV in virus-infected cells. Four PRV structural proteins (gB, gE, UL47, and UL48) were chosen for examination, and results revealed that the levels of viral proteins were obviously reduced in long time arginase treatment. However, the overall protein synthesis machinery was apparently not influenced by arginase treatment either in mock or PRV-infected cells. Analyzing with native gel, we found that arginase treatment affected the mobility of PRV structural proteins, suggesting the conformational change of viral proteins by arginine depletion. Heat shock proteins, acting as molecular chaperons, participate in protein folding and translocation. Our results demonstrated that long time arginase treatment could reduce the expression of cellular heat shock proteins 70 (hsc70 and hsp70), and transcriptional suppression of heat shock protein 70 gene promoter was one of the mechanisms involved in this reduced expression.

  17. The microbiome, intestinal function, and arginine metabolism of healthy Indian women are different from those of American and Jamaican women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indian women have slower arginine flux during pregnancy compared with American and Jamaican women. Arginine is a semi-essential amino acid that becomes essential during periods of rapid lean tissue deposition. It is synthesized only from citrulline, a nondietary amino acid produced mainly in the gut...

  18. The CASTOR proteins are arginine sensors for the mTORC1 pathway

    PubMed Central

    Chantranupong, Lynne; Scaria, Sonia M.; Saxton, Robert A.; Gygi, Melanie P.; Shen, Kuang; Wyant, Gregory A.; Wang, Tim; Harper, J. Wade; Gygi, Steven P.; Sabatini, David M.

    2016-01-01

    Amino acids signal to the mTOR complex I (mTORC1) growth pathway through the Rag GTPases. Multiple distinct complexes regulate the Rags, including GATOR1, a GTPase activating protein (GAP), and GATOR2, a positive regulator of unknown molecular function. Arginine stimulation of cells activates mTORC1, but how it is sensed is not well understood. Recently, SLC38A9 was identified as a putative lysosomal arginine sensor required for arginine to activate mTORC1 but how arginine deprivation represses mTORC1 is unknown. Here, we show that CASTOR1, a previously uncharacterized protein, interacts with GATOR2 and is required for arginine deprivation to inhibit mTORC1. CASTOR1 homodimerizes and can also heterodimerize with the related protein, CASTOR2. Arginine disrupts the CASTOR1-GATOR2 complex by binding to CASTOR1 with a dissociation constant of ~30 μM, and its arginine-binding capacity is required for arginine to activate mTORC1 in cells. Collectively, these results establish CASTOR1 as an arginine sensor for the mTORC1 pathway. PMID:26972053

  19. The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway.

    PubMed

    Chantranupong, Lynne; Scaria, Sonia M; Saxton, Robert A; Gygi, Melanie P; Shen, Kuang; Wyant, Gregory A; Wang, Tim; Harper, J Wade; Gygi, Steven P; Sabatini, David M

    2016-03-24

    Amino acids signal to the mTOR complex I (mTORC1) growth pathway through the Rag GTPases. Multiple distinct complexes regulate the Rags, including GATOR1, a GTPase activating protein (GAP), and GATOR2, a positive regulator of unknown molecular function. Arginine stimulation of cells activates mTORC1, but how it is sensed is not well understood. Recently, SLC38A9 was identified as a putative lysosomal arginine sensor required for arginine to activate mTORC1 but how arginine deprivation represses mTORC1 is unknown. Here, we show that CASTOR1, a previously uncharacterized protein, interacts with GATOR2 and is required for arginine deprivation to inhibit mTORC1. CASTOR1 homodimerizes and can also heterodimerize with the related protein, CASTOR2. Arginine disrupts the CASTOR1-GATOR2 complex by binding to CASTOR1 with a dissociation constant of ∼30 μM, and its arginine-binding capacity is required for arginine to activate mTORC1 in cells. Collectively, these results establish CASTOR1 as an arginine sensor for the mTORC1 pathway. PMID:26972053

  20. Determining the Optimum Dietary Tryptophan to Lysine Ratio in Growing Pigs Fed Diets Formulated with Hhigher Levels of Other Essential Amino Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies on amino acid (AA) ratios require the first limiting AA (generally Lys) to be set below the requirement estimate. Graded levels of the AA being investigated are then fed to determine the required ratio. Essential AA (EAA) not under investigation are often set at their presumed requirement ra...

  1. Oral L-arginine supplementation impacts several reproductive parameters during the postpartum period in mares.

    PubMed

    Kelley, Dale E; Warren, Lori K; Mortensen, Christopher J

    2013-05-01

    L-arginine is an amino acid which can alter pituitary function and increase blood flow to the reproductive tract. The objective was to determine the effect of supplementing 100g of L-arginine on plasma arginine concentrations, follicular dynamics and ovarian and uterine artery blood flow during the estrus that occurs subsequent to foaling. In Experiment 1, mares were fed 100g L-arginine for 1 day during the last 3 weeks of pregnancy and plasma samples taken for every hour for the first 4h and every other hour until 12h.L-arginine supplementation elevated plasma arginine concentrations from 1 to 8h post feeding; arginine peaked at 6h (arginine: 515±33μmol/L; control: 80±33μmol/L). In Experiment 2, mares received either 100g L-arginine or control diets beginning 21 d before the expected foaling date and continued for 30 d postpartum. The reproductive tract was evaluated by transrectal Doppler ultrasonography from Day 1 postpartum through Day 30. There were no differences in ovarian follicular dynamics, ovarian or uterine resistance indices between groups. Vascular perfusion of the F1 follicular wall was greater in L-arginine supplemented mares (37.3±2.6%) than controls (25.4±2.7%; P<0.05). L-arginine supplemented mares had a smaller uterine body and horns and accumulated less uterine fluid than controls (P<0.05). The combination of reducing uterine fluid accumulation, while not altering follicular development, raises the possible use of L-arginine supplementation as a breeding management tool during the postpartum period to increase reproductive success. PMID:23523236

  2. Exploration of the binding modes of buffalo PGRP1 receptor complexed with meso-diaminopimelic acid and lysine-type peptidoglycans by molecular dynamics simulation and free energy calculation.

    PubMed

    Sahoo, Bikash Ranjan; Dubey, Praveen Kumar; Goyal, Shubham; Bhoi, Gopal Krushna; Lenka, Santosh Kumar; Maharana, Jitendra; Pradhan, Sukanta Kumar; Kataria, Ranjit Singh

    2014-09-01

    The peptidoglycan recognition proteins (PGRPs) are the key components of innate-immunity, and are highly specific for the recognition of bacterial peptidoglycans (PGN). Among different mammalian PGRPs, the PGRP1 binds to murein PGN of Gram-positive bacteria (lysine-type) and also have bactericidal activity towards Gram-negative bacteria (diaminopimelic acid or Dap-type). Buffaloes are the major sources of milk and meat in Asian sub-continents and are highly exposed to bacterial infections. The PGRP activates the innate-immune signaling, but their studies has been confined to limited species due to lack of structural and functional information. So, to understand the structural constituents, 3D model of buffalo PGRP1 (bfPGRP1) was constructed and conformational and dynamics properties of bfPGRP1 was studied. The bfPGRP1 model highly resembled human and camel PGRP structure, and shared a highly flexible N-terminus and centrally placed L-shaped cleft. Docking simulation of muramyl-tripeptide, tetrapeptide, pentapeptide-Dap-(MTP-Dap, MTrP-Dap and MPP-Dap) and lysine-type (MTP-Lys, MTrP-Lys and MPP-Lys) in AutoDock 4.2 and ArgusLab 4.0.1 anticipated β1, α2, α4, β4, and loops connecting β1-α2, α2-β2, β3-β4 and α4-α5 as the key interacting domains. The bfPGRP1-ligand complex molecular dynamics simulation followed by free binding energy (BE) computation conceded BE values of -18.30, -35.53, -41.80, -25.03, -24.62 and -22.30 kJ mol(-1) for MTP-Dap, MTrP-Dap, MPP-Dap, MTP-Lys, MTrP-Lys and MPP-Lys, respectively. The groove-surface and key binding residues involved in PGN-Dap and Lys-type interaction intended by the molecular docking, and were also accompanied by significant BE values directed their importance in pharmacogenomics, and warrants further in vivo studies for drug targeting and immune signaling pathways exploration. PMID:25014416

  3. Stable Isotope Peptide Mass Spectrometry To Decipher Amino Acid Metabolism in Dehalococcoides Strain CBDB1

    PubMed Central

    Marco-Urrea, Ernest; Seifert, Jana; von Bergen, Martin

    2012-01-01

    Dehalococcoides species are key players in the anaerobic transformation of halogenated solvents at contaminated sites. Here, we analyze isotopologue distributions in amino acid pools from peptides of Dehalococcoides strain CBDB1 after incubation with 13C-labeled acetate or bicarbonate as a carbon source. The resulting data were interpreted with regard to genome annotations to identify amino acid biosynthesis pathways. In addition to using gas chromatography-mass spectrometry (GC-MS) for analyzing derivatized amino acids after protein hydrolysis, we introduce a second, much milder method, in which we directly analyze peptide masses after tryptic digest and peptide fragments by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry (nano-LC-ESI-MS/MS). With this method, we identify isotope incorporation patterns for 17 proteinaceous amino acids, including proline, cysteine, lysine, and arginine, which escaped previous analyses in Dehalococcoides. Our results confirmed lysine biosynthesis via the α-aminoadipate pathway, precluding lysine formation from aspartate. Similarly, the isotopologue pattern obtained for arginine provided biochemical evidence of its synthesis from glutamate. Direct peptide MS/MS analysis of the labeling patterns of glutamine and asparagine, which were converted to glutamate and aspartate during protein hydrolysis, gave biochemical evidence of their precursors and confirmed glutamate biosynthesis via a Re-specific citrate synthase. By addition of unlabeled free amino acids to labeled cells, we show that in strain CBDB1 none of the 17 tested amino acids was incorporated into cell mass, indicating that they are all synthesized de novo. Our approach is widely applicable and provides a means to analyze amino acid metabolism by studying specific proteins even in mixed consortia. PMID:22661690

  4. Stability and resilience of oral microcosms toward acidification and Candida outgrowth by arginine supplementation.

    PubMed

    Koopman, Jessica E; Röling, Wilfred F M; Buijs, Mark J; Sissons, Christopher H; ten Cate, Jacob M; Keijser, Bart J F; Crielaard, Wim; Zaura, Egija

    2015-02-01

    Dysbiosis induced by low pH in the oral ecosystem can lead to caries, a prevalent bacterial disease in humans. The amino acid arginine is one of the pH-elevating agents in the oral cavity. To obtain insights into the effect of arginine on oral microbial ecology, a multi-plaque "artificial mouth" (MAM) biofilm model was inoculated with saliva from a healthy volunteer and microcosms were grown for 4 weeks with 1.6 % (w/v) arginine supplement (Arginine) or without (Control), samples were taken at several time-points. A cariogenic environment was mimicked by sucrose pulsing. The bacterial composition was determined by 16S rRNA gene amplicon sequencing, the presence and amount of Candida and arginine deiminase system genes arcA and sagP by qPCR. Additionally, ammonium and short-chain fatty acid concentrations were determined. The Arginine microcosms were dominated by Streptococcus, Veillonella, and Neisseria and remained stable in time, while the composition of the Control microcosms diverged significantly in time, partially due to the presence of Megasphaera. The percentage of Candida increased 100-fold in the Control microcosms compared to the Arginine microcosms. The pH-raising effect of arginine was confirmed by the pH and ammonium results. The abundances of sagP and arcA were highest in the Arginine microcosms, while the concentration of butyrate was higher in the Control microcosms. We demonstrate that supplementation with arginine serves a health-promoting function; it enhances microcosm resilience toward acidification and suppresses outgrowth of the opportunistic pathogen Candida. Arginine facilitates stability of oral microbial communities and prevents them from becoming cariogenic. PMID:25433583

  5. Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli

    PubMed Central

    Mukai, Takahito; Yamaguchi, Atsushi; Ohtake, Kazumasa; Takahashi, Mihoko; Hayashi, Akiko; Iraha, Fumie; Kira, Satoshi; Yanagisawa, Tatsuo; Yokoyama, Shigeyuki; Hoshi, Hiroko; Kobayashi, Takatsugu; Sakamoto, Kensaku

    2015-01-01

    The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to l-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize l-homoarginine and l-N6-(1-iminoethyl)lysine (l-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNAPylCCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host's ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to l-homoarginine or l-NIL. The assignment of AGG to l-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code. PMID:26240376

  6. Argininosuccinate synthase: at the center of arginine metabolism

    PubMed Central

    Haines, Ricci J.; Pendleton, Laura C.; Eichler, Duane C.

    2011-01-01

    The levels of L-arginine, a cationic, semi-essential amino acid, are often controlled within a cell at the level of local availability through biosynthesis. The importance of this temporal and spatial control of cellular L-arginine is highlighted by the tissue specific roles of argininosuccinate synthase (argininosuccinate synthetase) (EC 6.3.4.5), as the rate-limiting step in the conversion of L-citrulline to L-arginine. Since its discovery, the function of argininosuccinate synthase has been linked almost exclusively to hepatic urea production despite the fact that alternative pathways involving argininosuccinate synthase were defined, such as its role in providing arginine for creatine and for polyamine biosynthesis. However, it was the discovery of nitric oxide that meaningfully extended our understanding of the metabolic importance of non-hepatic argininosuccinate synthase. Indeed, our knowledge of the number of tissues that manage distinct pools of arginine under the control of argininosuccinate synthase has expanded significantly. PMID:21494411

  7. Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy.

    PubMed

    Xiong, Lifeng; Teng, Jade L L; Botelho, Michael G; Lo, Regina C; Lau, Susanna K P; Woo, Patrick C Y

    2016-01-01

    Antibacterial resistance to infectious diseases is a significant global concern for health care organizations; along with aging populations and increasing cancer rates, it represents a great burden for government healthcare systems. Therefore, the development of therapies against bacterial infection and cancer is an important strategy for healthcare research. Pathogenic bacteria and cancer have developed a broad range of sophisticated strategies to survive or propagate inside a host and cause infection or spread disease. Bacteria can employ their own metabolism pathways to obtain nutrients from the host cells in order to survive. Similarly, cancer cells can dysregulate normal human cell metabolic pathways so that they can grow and spread. One common feature of the adaption and disruption of metabolic pathways observed in bacterial and cancer cell growth is amino acid pathways; these have recently been targeted as a novel approach to manage bacterial infections and cancer therapy. In particular, arginine metabolism has been illustrated to be important not only for bacterial pathogenesis but also for cancer therapy. Therefore, greater insights into arginine metabolism of pathogenic bacteria and cancer cells would provide possible targets for controlling of bacterial infection and cancer treatment. This review will summarize the recent progress on the relationship of arginine metabolism with bacterial pathogenesis and cancer therapy, with a particular focus on arginase and arginine deiminase pathways of arginine catabolism. PMID:26978353

  8. Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy

    PubMed Central

    Xiong, Lifeng; Teng, Jade L. L.; Botelho, Michael G.; Lo, Regina C.; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2016-01-01

    Antibacterial resistance to infectious diseases is a significant global concern for health care organizations; along with aging populations and increasing cancer rates, it represents a great burden for government healthcare systems. Therefore, the development of therapies against bacterial infection and cancer is an important strategy for healthcare research. Pathogenic bacteria and cancer have developed a broad range of sophisticated strategies to survive or propagate inside a host and cause infection or spread disease. Bacteria can employ their own metabolism pathways to obtain nutrients from the host cells in order to survive. Similarly, cancer cells can dysregulate normal human cell metabolic pathways so that they can grow and spread. One common feature of the adaption and disruption of metabolic pathways observed in bacterial and cancer cell growth is amino acid pathways; these have recently been targeted as a novel approach to manage bacterial infections and cancer therapy. In particular, arginine metabolism has been illustrated to be important not only for bacterial pathogenesis but also for cancer therapy. Therefore, greater insights into arginine metabolism of pathogenic bacteria and cancer cells would provide possible targets for controlling of bacterial infection and cancer treatment. This review will summarize the recent progress on the relationship of arginine metabolism with bacterial pathogenesis and cancer therapy, with a particular focus on arginase and arginine deiminase pathways of arginine catabolism. PMID:26978353

  9. Amino acid-containing membrane lipids in bacteria.

    PubMed

    Geiger, Otto; González-Silva, Napoleón; López-Lara, Isabel M; Sohlenkamp, Christian

    2010-01-01

    In the bacterial model organism Escherichia coli only the three major membrane lipids phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin occur, all of which belong to the glycerophospholipids. The amino acid-containing phosphatidylserine is a major lipid in eukaryotic membranes but in most bacteria it occurs only as a minor biosynthetic intermediate. In some bacteria, the anionic glycerophospholipids phosphatidylglycerol and cardiolipin can be decorated with aminoacyl residues. For example, phosphatidylglycerol can be decorated with lysine, alanine, or arginine whereas in the case of cardiolipin, lysine or d-alanine modifications are known. In few bacteria, diacylglycerol-derived lipids can be substituted with lysine or homoserine. Acyl-oxyacyl lipids in which the lipidic part is amide-linked to the alpha-amino group of an amino acid are widely distributed among bacteria and ornithine-containing lipids are the most common version of this lipid type. Only few bacterial groups form glycine-containing lipids, serineglycine-containing lipids, sphingolipids, or sulfonolipids. Although many of these amino acid-containing bacterial membrane lipids are produced in response to certain stress conditions, little is known about the specific molecular functions of these lipids. PMID:19703488

  10. Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5.

    PubMed

    Svennerstam, Henrik; Ganeteg, Ulrika; Näsholm, Torgny

    2008-01-01

    * Specific transporters mediate uptake of amino acids by plant roots. Earlier studies have indicated that the lysine histidine transporter 1 and amino acid permease 1 participate in this process, but although plant roots have been shown to absorb cationic amino acids with high affinity, neither of these transporters seems to mediate transport of L-arginine (L-Arg) or L-lysine (L-Lys). * Here, a collection of T-DNA knockout mutants were screened for alterations in Arabidopsis root uptake rates of L-Arg and it was found that only the AAP5 mutant displayed clear phenotypic divergence on high concentrations of L-Arg. A second screen using low concentrations of (15)N-labelled L-Arg in the growth media also identified AAP5 as being involved in L-Arg acquisition. * Momentaneous root uptake of basic amino acids was strongly affected in AAP5 mutant lines, but their uptake of other types of amino acids was only marginally affected. Comparisons of the root uptake characteristics of AAP5 and LHT1 mutants corroborated the hypothesis that the two transporters have distinct affinity spectra in planta. * Root uptake of all tested amino acids, except L-aspartic acid (L-Asp), was significantly affected in double AAP5*LHT1 mutants, suggesting that these two transporters account for a major proportion of roots' uptake of amino acids at low concentrations. PMID:18681934

  11. Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G).

    PubMed

    Han, Ruizhi; Liu, Long; Shin, Hyun-dong; Chen, Rachel R; Du, Guocheng; Chen, Jian

    2013-07-01

    In this work, the site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase towards maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the enzymatic synthesis of 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) by CGTase. When using maltodextrin as glycosyl donor, four mutants K47F (lysine→ phenylalanine), K47L (lysine→ leucine), K47V (lysine→ valine) and K47W (lysine→ tryptophan) showed higher AA-2G yield as compared with that produced by the wild-type CGTase. The transformation conditions (temperature, pH and the mass ratio of L-ascorbic acid to maltodextrin) were optimized and the highest titer of AA-2G produced by the mutant K47L could reach 1.97 g/l, which was 64.2% higher than that (1.20 g/l) produced by the wild-type CGTase. The reaction kinetics analysis confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, the four mutants had relatively lower cyclization activities and higher disproportionation activities, which was favorable for AA-2G synthesis. The mechanism responsible for the enhanced substrate specificity was further explored by structure modeling and it was indicated that the enhancement of maltodextrin specificity may be due to the short residue chain and the removal of hydrogen bonding interactions between the side chain of residue 47 and the sugar at -3 subsite. Here the obtained mutant CGTases, especially the K47L, has a great potential in the production of AA-2G with maltodextrin as a cheap and easily soluble substrate. PMID:23129181

  12. Comparative nutrition and metabolism: Explication of open questions with emphasis on protein and amino acids

    PubMed Central

    Baker, David H.

    2005-01-01

    The 20th century saw numerous important discoveries in the nutritional sciences. Nonetheless, many unresolved questions still remain. Fifteen questions dealing with amino acid nutrition and metabolism are posed in this review. The first six deal with the functionality of sulfur amino acids (methionine and cysteine) and related compounds. Other unresolved problems that are discussed include priorities of use for amino acids having multiple functions; interactions among lysine, niacin and tryptophan; amino acid contributions to requirements from gut biosynthesis; the potential for gluconeogenesis to divert amino acids away from protein synthesis; the unique nutritional and metabolic idiosyncrasies of feline species, with emphasis on arginine; controversies surrounding human amino acid requirements; and the potential for maternal diet to influence sex ratio of offspring. PMID:16326801

  13. Sugar Substrates for l-Lysine Fermentation by Ustilago maydis

    PubMed Central

    Sánchez-Marroquín, A.; Ledezma, M.; Carreño, R.

    1970-01-01

    The extracellular production of l-lysine in media with cane sugar, blackstrap molasses, or clarified sugar-cane juice by a previously obtained mutant of Ustilago maydis was studied. Enzymatically inverted clarified juice (medium J-3) gave 2.9 g of lysine per liter under the following conditions: inoculum, 5%; pH 5.8; temperature, 30 C; KLa in the fermentors, 0.41 mmoles of O2 per liter per min; fermentation time, 72 hr. The concentrate, obtained by direct evaporation and drying of the fermentation broth, could be used as a possible feed supplement because of its amino-acid and vitamin content. PMID:5485081

  14. Sugar substrates for L-lysine fermentation by Ustilago maydis.

    PubMed

    Sánchez-Marroquín, A; Ledezma, M; Carreño, R

    1970-11-01

    The extracellular production of l-lysine in media with cane sugar, blackstrap molasses, or clarified sugar-cane juice by a previously obtained mutant of Ustilago maydis was studied. Enzymatically inverted clarified juice (medium J-3) gave 2.9 g of lysine per liter under the following conditions: inoculum, 5%; pH 5.8; temperature, 30 C; K(La) in the fermentors, 0.41 mmoles of O(2) per liter per min; fermentation time, 72 hr. The concentrate, obtained by direct evaporation and drying of the fermentation broth, could be used as a possible feed supplement because of its amino-acid and vitamin content. PMID:5485081

  15. Understanding metabolism of arginine in biological systems via MALDI imaging.

    PubMed

    Walker, Heather J; Steels, Chloe; Bendell, Lilias; Clench, Malcolm R; Read, David J; Cameron, Duncan D; Burrell, Michael M

    2016-06-01

    Arginine is an important amino acid but has been barely studied in plants. The little research that has been done indicates that the pathways of synthesis are similar to those found in animals and procaryotes. However little is known about the cellular and tissue localization of the amino acid in plants. The research reported in this paper was designed to examine whether MALDI-MSI was sufficiently sensitive to examine the distribution of this amino acid in plant material, and whether the synthetic pathways were co-located. In wheat and orchid roots, the amount of arginine in tissues varies greatly and the pathways for its synthesis were not always detected with the amino acid. PMID:27061027

  16. Characterization of the fibrinogen binding domain of bacteriophage lysin from Streptococcus mitis.

    PubMed

    Seo, Ho Seong; Sullam, Paul M

    2011-09-01

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. Platelet binding by Streptococcus mitis SF100 is mediated in part by a lysin encoded by the lysogenic bacteriophage SM1. In addition to its role in the phage life cycle, lysin mediates the binding of S. mitis to human platelets via its interaction with fibrinogen on the platelet surface. To better define the region of lysin mediating fibrinogen binding, we tested a series of purified lysin truncation variants for their abilities to bind this protein. These studies revealed that the fibrinogen binding domain of lysin is contained within the region spanned by amino acid residues 102 to 198 (lysin(102-198)). This region has no sequence homology to other known fibrinogen binding proteins. Lysin(102-198) bound fibrinogen comparably to full-length lysin and with the same selectivity for the fibrinogen Aα and Bβ chains. Lysin(102-198) also inhibited the binding in vitro of S. mitis to human fibrinogen and platelets. When assessed by platelet aggregometry, the disruption of the lysin gene in SF100 resulted in a significantly longer time to the onset of aggregation of human platelets than that of the parent strain. The preincubation of platelets with purified lysin(102-198) also delayed the onset of aggregation by SF100. These results indicate that the binding of lysin to fibrinogen is mediated by a specific domain of the phage protein and that this interaction is important for both platelet binding and aggregation by S. mitis. PMID:21690235

  17. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    PubMed

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%. PMID:15120115

  18. Enhancement of L-lysine production in methylotroph Methylophilus methylotrophus by introducing a mutant LysE exporter.

    PubMed

    Gunji, Yoshiya; Yasueda, Hisashi

    2006-12-15

    The obligate methylotroph Methylophilus methylotrophus AS1 expressing a mutant form of dapA (dapA24) encoding a dihydrodipicolinate synthase desensitized from feedback inhibition by L-lysine could secrete L-lysine into the medium, but also maintained a high concentration of intracellular L-lysine. To improve the yield from excretion, we attempted to introduce an L-lysine/L-arginine exporter (LysE) from Corynebacterium glutamicum 2256 into M. methylotrophus. We were unable to stably transform M. methylotrophus with a plasmid expressing the wild type lysE gene, but happened to obtain a transformant carrying a spontaneously mutated lysE gene (designated lysE24) which could induce L-lysine production even in the wild type strain. The transformant also possessed increased tolerance to S-(2-aminoethyl)-L-cysteine (an L-lysine analog). lysE24 has a single-base insertion mutation in the middle of the lysE gene, and its product is presumably quite different in structure from wild-type LysE. When lysE24 was introduced into an L-lysine producer of M. methylotrophus carrying dapA24, the level of intracellular L-lysine fell. During fermentation, M. methylotrophus carrying both lysE24 and dapA24 produced 10-fold more L-lysine (11.3 gl(-1) in jar-fermentation) than the parent producer carrying only dapA24 or lysE24. These results show the importance of the factor (lysE24) involved in the excretion of L-lysine on its overproduction in M. methylotrophus. PMID:16870294

  19. Dietary Arginine Requirements for Growth Are Dependent on the Rate of Citrulline Production in Mice123

    PubMed Central

    Marini, Juan C; Agarwal, Umang; Didelija, Inka C

    2015-01-01

    Background: In many species, including humans, arginine is considered a semiessential amino acid because under certain conditions endogenous synthesis cannot meet its demand. The requirements of arginine for growth in mice are ill defined and seem to vary depending on the genetic background of the mice. Objective: The objective of this study was to determine the metabolic and molecular basis for the requirement of arginine in 2 mouse strains. Methods: Institute of Cancer Research (ICR) and C57BL/6 (BL6) male mice were fed arginine-free or arginine-sufficient diets (Expt. 1) or 1 of 7 diets with increasing arginine concentration (from 0- to 8-g/kg diet, Expt. 2) between day 24 and 42 of life to determine the arginine requirements for growth. Citrulline production and “de novo” arginine synthesis were measured with use of stable isotopes, and arginine requirements were determined by breakpoint analysis and enzyme expression by reverse transcriptase-polymerase chain reaction. Results: In Expt. 1, ICR mice grew at the same rate regardless of the arginine concentration of the diet (mean ± SE: 0.66 ± 0.04 g/d, P = 0.80), but BL6 mice had a reduced growth rate when fed the arginine-free diet (0.25 ± 0.02 g/d, P < 0.001) compared to the 8-g arginine/kg diet (0.46 ± 0.03 g/d). ICR mice showed at least a 2-fold greater expression (P < 0.001) of ornithine transcarbamylase (OTC) than BL6 mice, which translated into a greater rate of citrulline (25%) and arginine synthesis (49%, P < 0.002). In Expt. 2, breakpoint analysis showed that the requirement for growth of BL6 mice was met with 2.32 ± 0.39 g arginine/kg diet; for ICR mice, however, no breakpoint was found. Conclusion: Our data indicate that a reduced expression of OTC in BL6 mice translates into a reduced production of citrulline and arginine compared with ICR mice, which results in a dietary arginine requirement for growth in BL6 mice, but not in ICR mice. PMID:25855119

  20. Transport of dibasic amino acids, cystine, and tryptophan by cultured human fibroblasts: absence of a defect in cystinuria and Hartnup disease

    PubMed Central

    Groth, Ulrich; Rosenberg, Leon E.

    1972-01-01

    Transport of lysine, arginine, cystine, and tryptophan was studied in cultured skin fibroblasts from normal controls and from patients with cystinuria and Hartnup disease. Each of these amino acids was accumulated against concentration gradients by energy-dependent, saturable mechanisms. Lysine and arginine were each transported by two distinct processes which they shared with each other and with ornithine. In contrast, cystine was taken up by a different transport system with no demonstrable affinity for the dibasic amino acids. The time course and Michaelis-Menten kinetics of lysine and cystine uptake by cells from three cystinuric patients differed in no way from those found in control cells. Similarly, the characteristics of tryptophan uptake by cells from a child with Hartnup disease were identical to those noted in control cells. These findings indicate that the specific transport defects observed in gut and kidney in cystinuria and Hartnup disease are not expressed in cultured human fibroblasts, thus providing additional evidence of the important role that cellular differentiation plays in the regulation of expression of the human genome. PMID:5054467

  1. Multiple lysine methylation of PCAF by Set9 methyltransferase

    SciTech Connect

    Masatsugu, Toshihiro; Yamamoto, Ken

    2009-03-27

    The molecular functions of several non-histone proteins are regulated through lysine modification by histone methyltransferases. The p300/CBP-associated factor (PCAF) is an acetyltransferase that has been implicated in many cellular processes. Here, we report that PCAF is a novel substrate of Set9 methyltransferase. In vitro mapping experiments revealed six lysine residues could be methylated by Set9. A comparison of amino acid sequences of target sites revealed the novel consensus motif which differs from previously identified Set9-consensus sequence. Further methyltransferase assays focusing on the six lysine residues showed that K78 and K89 are preferentially methylated in full-length PCAF in vitro. Using specific antibodies recognizing mono-methylated K89, in vivo PCAF methylation and its nuclear localization were demonstrated. Our data may lead to a new insight into PCAF functions and provide additional information to identify unknown targets of Set9.

  2. Mutagenicity of Maillard browning reaction products from various nitrosated amino acid-glucose mixtures.

    PubMed

    Yen, G C; Lee, T C

    1988-01-01

    Ten different amino acid-glucose Maillard browning products before and after reaction with nitrite were evaluated by the Ames mutagenicity assay. No mutagenic response was observed in the methylene chloride extracts of any browning products tested before nitrosation. However, mutagenicity was showed in most of the browning mixtures, e.g., glycine-glucose, lysine-glucose (I), arginine-glucose, phenylalanine-glucose (II), and methionine-glucose after nitrosation when examined by Salmonella typhimurium strains TA98 and TA100 either with or without S-9 metabolic activation. Among the browning mixtures, (I) and (II) showed the greatest mutagenic activity after reaction with nitrite. The mutagenicity of lysine-glucose with nitrite was dependent on browning intensity, nitrosation pH, nitrosation time, nitrite level and blocking agents. PMID:3406207

  3. The conserved lysine of the catalytic domain of protein kinases is actively involved in the phosphotransfer reaction and not required for anchoring ATP.

    PubMed Central

    Carrera, A C; Alexandrov, K; Roberts, T M

    1993-01-01

    The study of the various protein kinases reveals that, despite their considerably diversity, they have evolved from a common origin. Eleven conserved subdomains have been described that encompass the catalytic core of these enzymes. One of these conserved regions, subdomain II, contains an invariant lysine residue present in all known protein kinase catalytic domains. Two facts have suggested that this conserved lysine of subdomain II is essential for binding ATP: (i) several investigators have demonstrated that this residue is physically proximal to the ATP molecule, and (ii) conservative substitutions at this site render the kinase inactive. However, these results are also consistent with a functional role of the conserved lysine of subdomain II in orienting or facilitating the transfer of phosphate. To study in more detail the role of subdomain II, we have generated mutants of the protein-tyrosine kinase pp56lck that have single amino acid substitutions within the area surrounding the conserved residue Lys-273 in subdomain II. When compared with wild-type pp56lck, these mutants displayed profound reductions in their phosphotransfer efficiencies and small differences in their affinities for ATP. Further, the substitution of arginine for Lys-273 resulted in a mutant protein unable to transfer the gamma-phosphate of ATP but able to bind 8-azido-ATP with an efficiency similar to that of wild-type pp56lck. These results suggest that the region including Lys-273 of subdomain II is involved in the enzymatic process of phosphate transfer, rather than in anchoring ATP. Images PMID:8421674

  4. pH dependent growth of poly( L-lysine)/poly( L-glutamic) acid multilayer films and their cell adhesion properties

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Arntz, Youri; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2004-10-01

    The short-term interaction of chondrosarcoma cells with (PGA/PLL) polyelectrolyte multilayers was investigated in a serum-containing medium for films built at different pHs and subsequently exposed to the culture medium. The buildup of the films and their stability was first investigated by means of optical waveguide lightmode spectroscopy, quartz crystal microbalance, streaming potential measurements and atomic force microscopy. While film growth is linear at all pHs, after a few layers have been deposited the growth is much larger for the films built at basic pH and even more pronounced for those built at acidic pH. However, these latter films remain stable in the culture medium only if they have been crosslinked prior to the ionic strength and pH jumps. The films built at acidic pH were found to swell in water by about 200% whereas those built at other pHs did not swell in a physiological buffer. For thin films (≈20 nm) built at pH = 7.4, the detachment forces were dependent on the outermost layer, the forces being significantly higher on PLL-ending films than on PGA-ending ones. In contrast, for the thick films built at pH = 4.4 and at pH = 10.4 (thickness of the order of few hundred of nanometers), the detachment forces were independent of the outermost layer of the film. The films built at pH = 10.4, which shrink in contact with salt containing solutions, were highly cell adhesive whereas those built at acidic pH were highly cell resistant. Protein adsorption and film roughness (as measured by AFM) could not explain these striking differences. The high adhesion observed on the film built at pH 10.4 may rather be related to the secondary structure of the film and to its relatively low swellability in water, whereas the cell resistance of the films built at pH 4.4 may be linked to their high swellability. Therefore, for the PGA/PLL films, the cell adhesion properties can be tuned depending on the deposition pH of the polyelectrolyte solutions. This study

  5. 21 CFR 582.5145 - Arginine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arginine. 582.5145 Section 582.5145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5145 Arginine. (a) Product. Arginine...

  6. A Potent, Selective, and Cell-Active Inhibitor of Human Type I Protein Arginine Methyltransferases.

    PubMed

    Eram, Mohammad S; Shen, Yudao; Szewczyk, Magdalena M; Wu, Hong; Senisterra, Guillermo; Li, Fengling; Butler, Kyle V; Kaniskan, H Ümit; Speed, Brandon A; dela Seña, Carlo; Dong, Aiping; Zeng, Hong; Schapira, Matthieu; Brown, Peter J; Arrowsmith, Cheryl H; Barsyte-Lovejoy, Dalia; Liu, Jing; Vedadi, Masoud; Jin, Jian

    2016-03-18

    Protein arginine methyltransferases (PRMTs) play a crucial role in a variety of biological processes. Overexpression of PRMTs has been implicated in various human diseases including cancer. Consequently, selective small-molecule inhibitors of PRMTs have been pursued by both academia and the pharmaceutical industry as chemical tools for testing biological and therapeutic hypotheses. PRMTs are divided into three categories: type I PRMTs which catalyze mono- and asymmetric dimethylation of arginine residues, type II PRMTs which catalyze mono- and symmetric dimethylation of arginine residues, and type III PRMT which catalyzes only monomethylation of arginine residues. Here, we report the discovery of a potent, selective, and cell-active inhibitor of human type I PRMTs, MS023, and characterization of this inhibitor in a battery of biochemical, biophysical, and cellular assays. MS023 displayed high potency for type I PRMTs including PRMT1, -3, -4, -6, and -8 but was completely inactive against type II and type III PRMTs, protein lysine methyltransferases and DNA methyltransferases. A crystal structure of PRMT6 in complex with MS023 revealed that MS023 binds the substrate binding site. MS023 potently decreased cellular levels of histone arginine asymmetric dimethylation. It also reduced global levels of arginine asymmetric dimethylation and concurrently increased levels of arginine monomethylation and symmetric dimethylation in cells. We also developed MS094, a close analog of MS023, which was inactive in biochemical and cellular assays, as a negative control for chemical biology studies. MS023 and MS094 are useful chemical tools for investigating the role of type I PRMTs in health and disease. PMID:26598975

  7. Structure-function relationships in the Na,K-ATPase. cap alpha. subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme

    SciTech Connect

    Price, E.M.; Lingrel, J.B.

    1988-11-01

    Na,K-ATPases from various species differ greatly in their sensitivity to cardiac glycosides such as ouabain. The sheep and human enzymes are a thousand times more sensitive than the corresponding ones from rat and mouse. To define the region of the ..cap alpha..1 subunit responsible for this differential sensitivity, chimeric cDNAs of sheep and rat were constructed and expressed in ouabain-sensitive HeLa cells. The construct containing the amino-terminal half of the rat ..cap alpha..1 subunit coding region and carboxyl-terminal half of the sheep conferred the ouabain-resistant phenotype to HeLa cells while the reverse construct did not. This indicates that the determinants involved in ouabain sensitivity are located in the amino-terminal half of the Na,K-ATPase ..cap alpha.. subunit. By use of site-directed mutagenesis, the amino acid sequence of the first extracellular domain (H1-H2) of the sheep ..cap alpha..1 subunit was changed to that of the rat. When expressed in HeLa cells, this mutated sheep ..cap alpha..1 construct, like the rat/sheep chimera, was able to confer ouabain resistance to these cells. Furthermore, similar results were observed when HeLa cells were transfected with a sheep ..cap alpha..1 cDNA containing only two amino acid substitutions. The resistant cells, whether transfected with the rat ..cap alpha..1 cDNA, the rat/sheep chimera, or the mutant sheep ..cap alpha..1 cDNAs, exhibited identical biochemical characteristics including ouabain-inhibitable cell growth, /sup 86/Rb/sup +/ uptake, and Na,K-ATPase activity. These results demonstrate that the presence of arginine and aspartic acid on the amino end and carboxyl end, respectively, of the H1-H2 extracellular domain of the Na,K-ATPase ..cap alpha.. subunit together is responsible for the ouabain-resistant character of the rat enzyme and the corresponding residues in the sheep ..cap alpha..1 subunit (glutamine and asparagine) are somehow involved in ouabain binding.

  8. Targeting histone lysine demethylases — Progress, challenges, and the future☆

    PubMed Central

    Thinnes, Cyrille C.; England, Katherine S.; Kawamura, Akane; Chowdhury, Rasheduzzaman; Schofield, Christopher J.; Hopkinson, Richard J.

    2014-01-01

    N-Methylation of lysine and arginine residues has emerged as a major mechanism of transcriptional regulation in eukaryotes. In humans, Nε-methyllysine residue demethylation is catalysed by two distinct subfamilies of demethylases (KDMs), the flavin-dependent KDM1 subfamily and the 2-oxoglutarate- (2OG) dependent JmjC subfamily, which both employ oxidative mechanisms. Modulation of histone methylation status is proposed to be important in epigenetic regulation and has substantial medicinal potential for the treatment of diseases including cancer and genetic disorders. This article provides an introduction to the enzymology of the KDMs and the therapeutic possibilities and challenges associated with targeting them, followed by a review of reported KDM inhibitors and their mechanisms of action from kinetic and structural perspectives. This article is part of a Special Issue entitled: Methylation: A Multifaceted Modification — looking at transcription and beyond. PMID:24859458

  9. Porphyromonas gingivalis-derived lysine gingipain enhances osteoclast differentiation induced by tumor necrosis factor-α and interleukin-1β but suppresses that by interleukin-17A: importance of proteolytic degradation of osteoprotegerin by lysine gingipain.

    PubMed

    Akiyama, Tomohito; Miyamoto, Yoichi; Yoshimura, Kentaro; Yamada, Atsushi; Takami, Masamichi; Suzawa, Tetsuo; Hoshino, Marie; Imamura, Takahisa; Akiyama, Chie; Yasuhara, Rika; Mishima, Kenji; Maruyama, Toshifumi; Kohda, Chikara; Tanaka, Kazuo; Potempa, Jan; Yasuda, Hisataka; Baba, Kazuyoshi; Kamijo, Ryutaro

    2014-05-30

    Periodontitis is a chronic inflammatory disease accompanied by alveolar bone resorption by osteoclasts. Porphyromonas gingivalis, an etiological agent for periodontitis, produces cysteine proteases called gingipains, which are classified based on their cleavage site specificity (i.e. arginine (Rgps) and lysine (Kgps) gingipains). We previously reported that Kgp degraded osteoprotegerin (OPG), an osteoclastogenesis inhibitory factor secreted by osteoblasts, and enhanced osteoclastogenesis induced by various Toll-like receptor (TLR) ligands (Yasuhara, R., Miyamoto, Y., Takami, M., Imamura, T., Potempa, J., Yoshimura, K., and Kamijo, R. (2009) Lysine-specific gingipain promotes lipopolysaccharide- and active-vitamin D3-induced osteoclast differentiation by degrading osteoprotegerin. Biochem. J. 419, 159-166). Osteoclastogenesis is induced not only by TLR ligands but also by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-17A, in inflammatory conditions, such as periodontitis. Although Kgp augmented osteoclastogenesis induced by TNF-α and IL-1β in co-cultures of mouse osteoblasts and bone marrow cells, it suppressed that induced by IL-17A. In a comparison of proteolytic degradation of these cytokines by Kgp in a cell-free system with that of OPG, TNF-α and IL-1β were less susceptible, whereas IL-17A and OPG were equally susceptible to degradation by Kgp. These results indicate that the enhancing effect of Kgp on cytokine-induced osteoclastogenesis is dependent on the difference in degradation efficiency between each cytokine and OPG. In addition, elucidation of the N-terminal amino acid sequences of OPG fragments revealed that Kgp primarily cleaved OPG in its death domain homologous region, which might prevent dimer formation of OPG required for inhibition of receptor activator of nuclear factor κB ligand. Collectively, our results suggest that degradation of OPG by Kgp is a crucial event in the development of

  10. Sequestration and metabolism of host cell arginine by the intraerythrocytic malaria parasite Plasmodium falciparum.

    PubMed

    Cobbold, Simon A; Llinás, Manuel; Kirk, Kiaran

    2016-06-01

    Human erythrocytes have an active nitric oxide synthase, which converts arginine into citrulline and nitric oxide (NO). NO serves several important functions, including the maintenance of normal erythrocyte deformability, thereby ensuring efficient passage of the red blood cell through narrow microcapillaries. Here, we show that following invasion by the malaria parasite Plasmodium falciparum the arginine pool in the host erythrocyte compartment is sequestered and metabolized by the parasite. Arginine from the extracellular medium enters the infected cell via endogenous host cell transporters and is taken up by the intracellular parasite by a high-affinity cationic amino acid transporter at the parasite surface. Within the parasite arginine is metabolized into citrulline and ornithine. The uptake and metabolism of arginine by the parasite deprive the erythrocyte of the substrate required for NO production and may contribute to the decreased deformability of infected erythrocytes. PMID:26633083

  11. Dietary arginine and linear growth: the Copenhagen School Child Intervention Study.

    PubMed

    van Vught, Anneke J A H; Dagnelie, Pieter C; Arts, Ilja C W; Froberg, Karsten; Andersen, Lars B; El-Naaman, Bianca; Bugge, Anna; Nielsen, Birgit M; Heitman, Berit L

    2013-03-28

    The amino acid arginine is a well-known growth hormone (GH) stimulator and GH is an important modulator of linear growth. The aim of the present study was to investigate the effect of dietary arginine on growth velocity in children between 7 and 13 years of age. Data from the Copenhagen School Child Intervention Study during 2001-2 (baseline), and at 3-year and 7-year follow-up, were used. Arginine intake was estimated via a 7 d precoded food diary at baseline and 3-year follow-up. Data were analysed in a multilevel structure in which children were embedded within schools. Random intercept and slopes were defined to estimate the association between arginine intake and growth velocity, including the following covariates: sex; age; baseline height; energy intake; puberty stage at 7-year follow-up and intervention/control group. The association between arginine intake and growth velocity was significant for the third and fourth quintile of arginine intake (2.5-2.8 and 2.8-3.2 g/d, respectively) compared with the first quintile ( < 2.2 g/d) (P for trend = 0.04). Protein intake (excluding arginine) was significantly associated with growth velocity; however, the association was weaker than the association between arginine intake and growth velocity (P for trend = 0.14). The results of the present study suggest a dose-dependent physiological role of habitual protein intake, and specifically arginine intake, on linear growth in normally growing children. However, since the study was designed in healthy children, we cannot firmly conclude whether arginine supplementation represents a relevant clinical strategy. Further research is needed to investigate whether dietary arginine may represent a nutritional strategy potentially advantageous for the prevention and treatment of short stature. PMID:23046689

  12. Measurements of radiological data of some amino acids in the energy range 0.122-1.330MeV

    NASA Astrophysics Data System (ADS)

    Lokhande, Rajkumar M.; More, Chaitali V.; Surung, Bharat S.; Raut, Siddheshwar D.; Pawar, Pravina P.

    2016-05-01

    Radiological parameters such as μm, σt, σe, Zeff and Neff of amino acids, namely Lysine (C6H15N2O2), Histidine (C6H9N3O2) and Arginine (C6H15N4O2), were measured using NaI (Tl)-based gamma spectrometry. Radioactive sources used in the study are 57Co, 133Ba, 137Cs, 54Mn, 60Co and 22Na. Gamma ray transmission method in a narrow beam good geometry set up was used in the study. The measured data were compared against XCOM-based data. The agreement is within 2%.

  13. Nitrogen fertilizer factory effects on the amino acid and nitrogen content in the needles of Scots pine.

    PubMed

    Kupsinskiene, E

    2001-12-01

    The aim of the research was to evaluate the content of amino acids in the needles of Pinus sylvestris growing in the area affected by a nitrogen fertilizer factory and to compare them with other parameters of needles, trees, and sites. Three young-age stands of Scots pine were selected at a distance of 0.5 km, 5 km, and 17 km from the factory. Examination of the current-year needles in winter of the year 2000 revealed significant (p < 0.05) differences between the site at a 0.5-km distance from the factory and the site at a 17-km distance from the factory--with the site closest to the factory showing the highest concentrations of protein (119%), total arginine (166%), total other amino acids (depending on amino acid, the effect ranged between 119 and 149%), free arginine (771%), other free amino acids (glutamic acid, threonine, serine, lysine--depending on amino acid, the effect ranged between 162 and 234%), also the longest needles, widest diameter, largest surface area, and heaviest dry weight (respectively, 133, 110, 136, and 169%). The gradient of nitrogen concentration in the needles was assessed on the selected plots over the period of 1995-2000, with the highest concentration (depending on year, 119 to 153%) documented in the site located 0.5 km from the factory. Significant correlations were determined between the total amino acid contents (r = 0.448 -0.939, p < 0.05), some free amino acid (arginine, aspartic acid, glutamic acid, lysine, threonine, and serine) contents (r = 0.418 - 0.975, p < 0.05), and air pollutant concentration at the sites, the distance between the sites and the factory, and characteristics of the needles. No correlation was found between free or total arginine content and defoliation or retention of the needles. In conclusion, it was revealed that elevated mean monthly concentration of ammonia (26 microg m(-3)) near the nitrogen fertilizer factory caused changes in nitrogen metabolism, especially increasing (nearly eight times

  14. Arginine-related guanidino compounds and nitric oxide synthase in the brain of ornithine transcarbamylase deficient spf mutant mouse: effect of metabolic arginine deficiency.

    PubMed

    Ratnakumari, L; Qureshi, I A; Butterworth, R F; Marescau, B; De Deyn, P P

    1996-09-13

    The sparse-fur (spf) mouse, with an X-linked hepatic ornithine transcarbamylase (OTC, E.C.2.1.3.3) deficiency, exhibits significantly lower levels of arginine in the brain as compared to normal controls. In the present study, the effect of a sustained lower metabolic arginine was studied by measuring the levels of several arginine-related guanidino compounds in brain. The concentrations of gamma-guanidinobutyric acid (gamma-GBA), N-alpha-acetylarginine (N-alpha-AA), argininic acid (Arg-A), guanidinoacetic acid (GAA), and creatine were significantly lower in spf mice as compared to controls. Since arginine is the precursor for nitric oxide, we also measured the activity of nitric oxide synthase which was significantly reduced in cerebellum, striatum, hippocampus and cerebral cortex of spf mice. The changes seen in cerebral guanidino compound and nitric oxide metabolism of spf mice could be due to a sustained deficiency of arginine, caused by a metabolic block in the area cycle. PMID:8899736

  15. Bioactive products of arginine in sepsis: tissue and plasma composition after LPS and iNOS blockade.

    PubMed

    Lortie, M J; Ishizuka, S; Schwartz, D; Blantz, R C

    2000-06-01

    Blockade or gene deletion of inducible nitric oxide synthase (iNOS) fails to fully abrogate all the sequelae leading to the high morbidity of septicemia. An increase in substrate uptake may be necessary for the increased production of nitric oxide (NO), but arginine is also a precursor for other bioactive products. Herein, we demonstrate an increase in alternate arginine products via arginine and ornithine decarboxylase in rats given lipopolysaccharide (LPS). The expression of iNOS mRNA in renal tissue was evident 60 but not 30 min post-LPS, yet a rapid decrease in blood pressure was obtained within 30 min that was completely inhibited by selective iNOS blockade. Plasma levels of arginine and ornithine decreased by at least 30% within 60 min of LPS administration, an effect not inhibited by the iNOS blocker L-N(6)(1-iminoethyl)lysine (L-NIL). Significant increases in plasma nitrates and citrulline occurred only 3-4 h post-LPS, an effect blocked by L-NIL pretreatment. The intracellular composition of organs harvested 6 h post-LPS reflected tissue-specific profiles of arginine and related metabolites. Tissue arginine concentration, normally an order of magnitude higher than in plasma, did not decrease after LPS. Pretreatment with L-NIL had a significant impact on the disposition of tissue arginine that was organ specific. These data demonstrate changes in arginine metabolism before and after de novo iNOS activity. Selective blockade of iNOS did not prevent uptake and can deregulate the production of other bioactive arginine metabolites. PMID:10837347

  16. Effect alteration of methamphetamine by amino acids or their salts on ambulatory activity in mice.

    PubMed

    Kuribara, H; Tadokoro, S

    1983-02-01

    Effect alterations of methamphetamine by pretreatment of amino acids or their salts on ambulatory activity in mice were investigated to confirm a fact that certain amino acids, particularly monosodium L-glutamate, are added to methamphetamine by the street users, and that the amino acids augment the effect of methamphetamine. The ambulatory activity of mouse was measured by a tilting-type round activity cage of 25 cm in diameter. The amino acids or their salts tested were monosodium L-glutamate, monosodium L-aspartate, gamma-amino-butyric acid, L-alanine, L-lysine hydrochloride and L-arginine hydrochloride. A single administration of each chemical at doses of 1 and 2 g/kg i.p. did not induce a marked change in the ambulatory activity in mice. Methamphetamine 2 mg/kg s.c. induced an increase in the ambulatory activity with a peak at 40 min after the administration, and the increased ambulatory activity persisted for 3 hr. The ambulation-increasing effect of methamphetamine was augmented by the pretreatment of monosodium L-glutamate and monosodium L-aspartate at 30 min before the methamphetamine administration, while attenuated by the pretreatment of L-lysine hydrochloride and L-arginine hydrochloride in a dose-dependent manner. Gamma-aminobutyric acid and L-alanine did not affect the effect of methamphetamine. Similar augmentation and attenuation in the ambulation-increasing effect of methamphetamine were induced by the pretreatment of sodium bicarbonate 0.9 g/kg i.p. (urinary alkalizer) and ammonium chloride 0.07 g/kg i.p. (urinary acidifier), respectively. The urinary pH level was elevated by the administration of monosodium L-glutamate, monosodium L-aspartate and sodium bicarbonate, and decreased by L-lysine hydrochloride, L-arginine hydrochloride and ammonium chloride. Gamma-aminobutyric acid and L-alanine did not elicit a marked change in the urinary pH level. The present experiment confirms the fact in human that monosodium L-glutamate augments the effect of

  17. L-Arginine and its metabolites in kidney and cardiovascular disease.

    PubMed

    Popolo, Ada; Adesso, Simona; Pinto, Aldo; Autore, Giuseppina; Marzocco, Stefania

    2014-10-01

    L-Arginine is a semi essential amino acid synthesised from glutamine, glutamate and proline via the intestinal-renal axis in humans and most mammals. L-Arginine degradation occurs via multiple pathways initiated by arginase, nitric-oxide synthase, Arg: glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine and agmatine with each having enormous biological importance. Several disease are associated to an L-arginine impaired levels and/or to its metabolites: in particular various L-arginine metabolites may participate in pathogenesis of kidney and cardiovascular disease. L-Arginine and its metabolites may constitute both a marker of pathology progression both the rationale for manipulating L-arginine metabolism as a strategy to ameliorate these disease. A large number of studies have been performed in experimental models of kidney disease with sometimes conflicting results, which underlie the complexity of Arg metabolism and our incomplete knowledge of all the mechanisms involved. Moreover several lines of evidence demonstrate the role of L-arg metabolites in cardiovascular disease and that L-arg administration role in reversing endothelial dysfunction, which is the leading cause of cardiovascular diseases, such as hypertension and atherosclerosis. This review will discuss the implication of the mains L-arginine metabolites and L-arginine-derived guanidine compounds in kidney and cardiovascular disease considering the more recent literature in the field. PMID:25161088

  18. Optimization of a gas chromatography-mass spectrometry method with methyl chloroformate derivatization for quantification of amino acids in plant tissue.

    PubMed

    Vancompernolle, Bram; Croes, Kim; Angenon, Geert

    2016-04-01

    Rapid, easy and reliable quantification of amino acids is crucial in research on plant amino acid metabolism and nutritional improvement of crops via enrichment of essential amino acids. A recently reported analysis method, based on solid phase extraction (SPE), derivatization with methyl chloroformate and gas chromatography-mass spectrometry was optimized and tested on three-week-old Arabidopsis thaliana leaf tissues. Optimization of the SPE cleanup yielded recovery rates of minimum 95% for all amino acids (except arginine). Variations in accuracy and precision did not exceed 12.5%, except for cysteine, histidine and tryptophane, which were excluded from analysis. Quantification of overlapping peaks for isoleucine/threonine and proline/asparagine was possible by selection of two specific fragment ions for each amino acid. Of the 16 selected amino acids, 14 were quantified successfully in at least 75% of the samples, while methionine and tyrosine were only quantifiable in 6% and 42%, respectively. A case study on the aspartate super pathway confirmed the applicability of the optimized method on wild type and genetically modified plants: external supplementation of methionine or lysine yielded a 146-fold or 27-fold increase in the respective absolute amino acid levels compared with the control treatment. Induced expression of dhdps-r1 (a mutated lysine biosynthesis gene encoding a feedback insensitive enzyme) caused an 83-fold increase in absolute lysine levels. PMID:26994331

  19. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control.

    PubMed

    Kwak, E-J; Lim, S-I

    2004-08-01

    The color intensities was determined of Maillard reaction products (MRPs) prepared by heating each of five sugars (maltose, fructose, glucose, arabinose, and xylose) with each of 12 amino acids (aspartic acid, glutamic acid, alanine, leucine, isoleucine, valine, proline, serine, cysteine, phenylalanine, arginine, and lysine). The remaining percentages of glucose and rate of change of color intensity due to the addition of a metal ion and NaCl were monitored for nine MRPs that had been formed between glucose and each of nine amino acids (aspartic acid, glutamic acid, alanine, valine, serine, cysteine, phenylalanine, arginine, and lysine). Model MRPs were prepared in a block heater at 100 degrees C for 1-12 h with the pH value controlled at 6.5. The resulting color intensity of each MRPs formed from the basic amino acids was greater due to the higher reactivity than those from the acidic amino acids. The remaining percentage of glucose in each MRPs from the basic amino acids was lower than those from the acidic amino acids. The MRPs from the nonpolar amino acids showed an intermediate color intensity and remaining percentages of glucose between those formed from the basic and acidic amino acids. Browning tended to be accelerated in the presence of metal ions, especially Fe2+ and Cu2+, although it was affected by the property of the amino acid and heating time as well as by the type of metal ion. On the other hand, browning was greatly inhibited by a high concentration of NaCl. PMID:15309575

  20. Aminocella lysinolytica gen. nov., sp. nov., a L-lysine-degrading, strictly anaerobic bacterium in the class Clostridia isolated from a methanogenic reactor of cattle farms.

    PubMed

    Ueki, Atsuko; Shibuya, Toru; Kaku, Nobuo; Ueki, Katsuji

    2015-01-01

    A strictly anaerobic bacterial strain (WN037(T)) was isolated from a methanogenic reactor. Cells were Gram-positive rods. Strain WN037(T) was asaccharolytic. The strain fermented L-lysine in the presence of B-vitamin mixture or vitamin B12 and produced acetate and butyrate. L-arginine and casamino acids poorly supported the growth. Strain WN037(T) used neither other amino acids nor organic acids examined. The strain had C18:1 ω7c, C16:0 and C18:1 ω7c DMA as the predominant cellular fatty acids. The genomic DNA G + C content was 44.2 mol %. Phylogenetic analysis based on the 16S rRNA gene sequence placed strain WN037(T) in the family Eubacteriaceae in the class Clostridia. The closest relative was Eubacterium pyruvativorans (sequence similarity, 92.8 %). Based on the comprehensive analyses, the novel genus and species, Aminocella lysinolytica gen. nov., sp. nov. was proposed to accommodate the strain. The type strain is WN037(T) (= JCM 19863(T) = DSM 28287(T)). PMID:25449329

  1. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates.

    PubMed

    Futaki, S; Ueno, H; Martinez del Pozo, A; Pospischil, M A; Manning, J M; Ringe, D; Stoddard, B; Tanizawa, K; Yoshimura, T; Soda, K

    1990-12-25

    In bacterial D-amino acid transaminase, Lys-145, which binds the coenzyme pyridoxal 5'-phosphate in Schiff base linkage, was changed to Gln-145 by site-directed mutagenesis (K145Q). The mutant enzyme had 0.015% the activity of the wild-type enzyme and was capable of forming a Schiff base with D-alanine; this external aldimine was formed over a period of minutes depending upon the D-alanine concentration. The transformation of the pyridoxal-5'-phosphate form of the enzyme to the pyridoxamine-5'-phosphate form (i.e. the half-reaction of transamination) occurred over a period of hours with this mutant enzyme. Thus, information on these two steps in the reaction and on the factors that influence them can readily be obtained with this mutant enzyme. In contrast, these reactions with the wild-type enzyme occur at much faster rates and are not easily studied separately. The mutant enzyme shows distinct preference for D- over L-alanine as substrates but it does so about 50-fold less effectively than the wild-type enzyme. Thus, Lys-145 probably acts in concert with the coenzyme and other functional side chain(s) to lead to efficient and stereochemically precise transamination in the wild-type enzyme. The addition of exogenous amines, ethanolamine or methyl amine, increased the rate of external aldimine formation with D-alanine and the mutant enzyme but the subsequent transformation to the pyridoxamine-5'-phosphate form of the enzyme was unaffected by exogenous amines. The wild-type enzyme displayed a large negative trough in the circular dichroic spectrum at 420 nm, which was practically absent in the mutant enzyme. However, addition of D-alanine to the mutant enzyme generated this negative Cotton effect (due to formation of the external aldimine with D-alanine). This circular dichroism band gradually collapsed in parallel with the transformation to the pyridoxamine-5'-phosphate enzyme. Further studies on this mutant enzyme, which displays the characteristics of the wild

  2. Importance of glutamate 87 and the substrate α-amine for the reaction catalyzed by D-arginine dehydrogenase.

    PubMed

    Ball, Jacob; Bui, Quan V V; Gannavaram, Swathi; Gadda, Giovanni

    2015-02-15

    Pseudomonas aeruginosa D-arginine dehydrogenase (PaDADH) catalyzes the oxidation of D-arginine to iminoarginine, which is non-enzymatically hydrolyzed to 2-ketoarginine and ammonia. Here, site-directed mutagenesis and pH effects were used to investigate binding and catalysis of zwitterionic and cationic substrates for the enzyme. An unprotonated group with apparent pKa value ⩾7.9 is required for binding D-arginine or D-lysine, but not D-methionine or D-leucine. This group is E87, as suggested by its replacement with leucine. An unprotonated group with pKa of 9.5, which persists in the H48F and E87L variants, is required for amine oxidation with all substrates. Since Y53 and Y249 were previously ruled out, the pKa is assigned to the substrate α-NH3(+) group, which previous QM/MM and Kd pH-profile demonstrated to be protonated for preferred binding to the enzyme. Lack of pH effects on the (D)kred with D-leucine established 9.5 as the intrinsic pKa, and D-leucine as a non-sticky substrate. D-Arginine, D-lysine and D-methionine and their corresponding iminoproducts were significantly stickier than D-leucine, as indicated by apparent pKa values <9.5 in both kcat/Km and kcat. Restricted proton movements in catalysis were established from hollowed kcat pH profiles in wild-type PaDADH with D-lysine and in the H48F and E87L enzymes with D-arginine. PMID:25637657

  3. Arginine-Ornithine Antiporter ArcD Controls Arginine Metabolism and Interspecies Biofilm Development of Streptococcus gordonii*♦

    PubMed Central

    Sakanaka, Akito; Kuboniwa, Masae; Takeuchi, Hiroki; Hashino, Ei; Amano, Atsuo

    2015-01-01

    Arginine is utilized by the oral inhabitant Streptococcus gordonii as a substrate of the arginine deiminase system (ADS), eventually producing ATP and NH3, the latter of which is responsible for microbial resistance to pH stress. S. gordonii expresses a putative arginine-ornithine antiporter (ArcD) whose function has not been investigated despite relevance to the ADS and potential influence on inter-bacterial communication with periodontal pathogens that utilize amino acids as a main energy source. Here, we generated an S. gordonii ΔarcD mutant to explore the role of ArcD in physiological homeostasis and bacterial cross-feeding. First, we confirmed that S. gordonii ArcD plays crucial roles for mediating arginine uptake and promoting bacterial growth, particularly under arginine-limited conditions. Next, metabolomic profiling and transcriptional analysis of the ΔarcD mutant revealed that deletion of this gene caused intracellular accumulation of ornithine leading to malfunction of the ADS and suppression of de novo arginine biosynthesis. The mutant strain also showed increased susceptibility to low pH stress due to reduced production of ammonia. Finally, accumulation of Fusobacterium nucleatum was found to be significantly decreased in biofilm formed by the ΔarcD mutant as compared with the wild-type strain, although ornithine supplementation restored fusobacterium biovolume in dual-species biofilms with the ΔarcD mutant and also enhanced single species biofilm development by F. nucleatum. Our results are the first direct evidence showing that S. gordonii ArcD modulates not only alkali and energy production but also interspecies interaction with F. nucleatum, thus initiating a middle stage of periodontopathic biofilm formation, by metabolic cross-feeding. PMID:26085091

  4. Arginine metabolic endotypes in pulmonary arterial hypertension

    PubMed Central

    Wedes, Samuel H.; Hsu, Jean W.; Bohren, Kurt M.; Comhair, Suzy A. A.; Jahoor, Farook; Erzurum, Serpil C.

    2015-01-01

    Abstract Decreased synthesis of nitric oxide (NO) by NO synthases (NOS) is believed to play an important role in the pathogenesis of pulmonary arterial hypertension (PAH). Multiple factors may contribute to decreased NO bioavailability, including increased activity of arginase, the enzyme that converts arginine to ornithine and urea, which may compete with NOS for arginine; inadequate de novo arginine production from citrulline; and increased concentration of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NOS. We hypothesized that PAH patients with the lowest arginine availability secondary to increased arginase activity and/or inadequate de novo arginine synthesis might have a slower rate of NO synthesis and greater pulmonary vascular resistance. Nine patients with group 1 PAH and 10 healthy controls were given primed, constant intravenous infusions of 15N2-arginine, 13C,2H4-citrulline, 15N2-ornithine, and 13C-urea in the postabsorptive state. The results showed that, compared with healthy controls, PAH patients had a tendency toward increased arginine clearance and ornithine flux but no difference in arginine and citrulline flux, de novo arginine synthesis, or NO synthesis. Arginine-to-ADMA ratio was increased in PAH patients. Two endotypes of patients with low and high arginase activity were identified; compared with the low-arginase group, the patients with high arginase had increased arginine flux, slower NO synthesis, and lower plasma concentrations of ADMA. These results demonstrate that increased breakdown of arginine by arginase occurs in PAH and affects NO synthesis. Furthermore, there is no compensatory increase in de novo arginine synthesis to overcome this increased utilization of arginine by arginase. PMID:25992277

  5. RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids.

    PubMed Central

    Wang, W; Riedel, K; Lynch, P; Chien, C Y; Montelione, G T; Krug, R M

    1999-01-01

    The RNA-binding/dimerization domain of the NS1 protein of influenza A virus (73 amino acids in length) exhibits a novel dimeric six-helical fold. It is not known how this domain binds to its specific RNA targets, one of which is double-stranded RNA. To elucidate the mode of RNA binding, we introduced single alanine replacements into the NS1 RNA-binding domain at specific positions in the three-dimensional structure. Our results indicate that the dimer structure is essential for RNA binding, because any alanine replacement that causes disruption of the dimer also leads to the loss of RNA-binding activity. Surprisingly, the arginine side chain at position 38, which is in the second helix of each monomer, is the only amino-acid side chain that is absolutely required only for RNA binding and not for dimerization, indicating that this side chain probably interacts directly with the RNA target. This interaction is primarily electrostatic, because replacement of this arginine with lysine had no effect on RNA binding. A second basic amino acid, the lysine at position 41, which is also in helix 2, makes a strong contribution to the affinity of binding. We conclude that helix 2 and helix 2', which are antiparallel and next to each other in the dimer conformation, constitute the interaction face between the NS1 RNA-binding domain and its RNA targets, and that the arginine side chain at position 38 and possibly the lysine side chain at position 41 in each of these antiparallel helices contact the phosphate backbone of the RNA target. PMID:10024172

  6. Formation and reduction of 5-hydroxymethylfurfural at frying temperature in model system as a function of amino acid and sugar composition.

    PubMed

    Kavousi, Parviz; Mirhosseini, Hamed; Ghazali, Hasanah; Ariffin, Abdul Azis

    2015-09-01

    5-Hydroxymethylfurfural (HMF) is formed during heat treatment of carbohydrate-containing foods, especially in a deep-fat frying process. This study aimed to investigate the effect of amino acids on the formation and reduction of HMF from glucose, fructose and sucrose at frying temperature in model systems containing binary mixtures of an amino acid and a sugar in equal concentrations (0.3M). The results revealed that the formation of HMF from sugars accelerated in the presence of acidic amino acids (i.e. glutamic and aspartic acids). Conversely, the presence of basic amino acids (i.e. lysine, arginine and histidine) led to reduced concentrations of HMF to non-detectable levels in model systems. The results showed that both pH and heating time significantly affected the formation of HMF from fructose in the presence of glutamic acid. In this regard, a higher amount of HMF was formed at lower pH. PMID:25842323

  7. Correlation of carnitine levels to methionine and lysine intake.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Babinská, K; Béder, I

    2000-01-01

    Plasma carnitine levels were measured in two alternative nutrition groups--strict vegetarians (vegans) and lactoovovegetarians (vegetarians consuming limited amounts of animal products such as milk products and eggs). The results were compared to an average sample of probands on mixed nutrition (omnivores). Carnitine levels were correlated with the intake of essential amino acids, methionine and lysine (as substrates of its endogenous synthesis), since the intake of carnitine in food is negligible in the alternative nutrition groups (the highest carnitine content is in meat, lower is in milk products, while fruit, cereals and vegetables contain low or no carnitine at all). An average carnitine level in vegans was significantly reduced with hypocarnitinemia present in 52.9% of probands. Similarly, the intake of methionine and lysine was significantly lower in this group due to the exclusive consumption of plant proteins with reduced content of these amino acids. Carnitine level in lactoovovegetarians was also significantly reduced, but the incidence of values below 30 micromol/l was lower than in vegans representing 17.8% vs. 3.3% in omnivores. Intake of methionine and lysine was also significantly reduced in this group, but still higher compared to vegans (73% of protein intake covered by plant proteins). Significant positive correlation of carnitine levels with methionine and lysine intake in alternative nutrition groups indicates that a significant portion of carnitine requirement is covered by endogenous synthesis. Approximately two thirds of carnitine requirement in omnivores comes from exogenous sources. The results demonstrate the risks of alternative nutrition with respect to the intake of essential amino acids, methionine and lysine, and with respect to the intake and biosynthesis of carnitine. PMID:11043928

  8. Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel

    PubMed Central

    Niemeyer, María Isabel; González-Nilo, Fernando D.; Zúñiga, Leandro; González, Wendy; Cid, L. Pablo; Sepúlveda, Francisco V.

    2007-01-01

    Potassium channels share a common selectivity filter that determines the conduction characteristics of the pore. Diversity in K+ channels is given by how they are gated open. TASK-2, TALK-1, and TALK-2 are two-pore region (2P) KCNK K+ channels gated open by extracellular alkalinization. We have explored the mechanism for this alkalinization-dependent gating using molecular simulation and site-directed mutagenesis followed by functional assay. We show that the side chain of a single arginine residue (R224) near the pore senses pH in TASK-2 with an unusual pKa of 8.0, a shift likely due to its hydrophobic environment. R224 would block the channel through an electrostatic effect on the pore, a situation relieved by its deprotonation by alkalinization. A lysine residue in TALK-2 fulfills the same role but with a largely unchanged pKa, which correlates with an environment that stabilizes its positive charge. In addition to suggesting unified alkaline pH-gating mechanisms within the TALK subfamily of channels, our results illustrate in a physiological context the principle that hydrophobic environment can drastically modulate the pKa of charged amino acids within a protein. PMID:17197424

  9. Metabolic and secretory responses of parotid cells to cationic amino acids. Oxidation of the amino acids and interference with the oxidation of D-glucose or endogenous nutrients.

    PubMed

    Sener, A; Mourtada, A; Blachier, F; Malaisse, W J

    1990-09-01

    Cationic amino acids were recently found to stimulate amylase release from rat parotid cells. The possible relevance of their oxidative catabolism to such a secretory stimulation was investigated. D-Glucose, which was efficiently metabolized in parotid cells and which augmented O2 uptake above basal value, failed to affect basal or stimulated amylase release. L-Arginine, L-lysine and L-histidine failed to stimulate the oxidation of either exogenous D-[6-14C]glucose or endogenous nutrients in cells pre-labelled with [U-14C]palmitate or L-[U-14C]glutamine. The oxidation of L-[U-14C]arginine, L-[U-14C]ornithine, L-[U-14C]lysine and L-[U-14C]histidine, all tested at a 10 mM concentration, was much lower than that of D-[U-14C]glucose (5.6 mM). These findings argue against the view that the stimulation of amylase release by cationic amino acids would be related to their role as a source of energy in the parotid cells. PMID:1703792

  10. Dietary L-arginine supplementation during mouse gestation enhances reproductive performance and Vegfr2 transcription activity in the fetoplacental unit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regarded as one of the most versatile amino acids, arginine serves as a precursor for many molecules and has been reported to improve the reproductive performance of rats and pigs. To this end, we sought to determine if dietary L-arginine alters fetoplacental vascular endothelial growth factor recep...

  11. L-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-arginine is considered to be one of the most versatile amino acids due to the fact that it serves as a precursor for many important molecules in cellular physiology. When supplemented in the diet, L-arginine can increase the number of implantation sites in mice and rats, suggesting an effect at th...

  12. Enteral arginine does not increase superior mesenteric arterial blood flow and but induces mucosal growth in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine is an essential amino acid in neonates synthesized by gut epithelial cells and a precursor for nitric oxide (NO) that regulates vasodilatation and blood flow. Arginine supplementation has been shown to improve intestinal integrity in ischemia-reperfusion models and low plasma levels are ass...

  13. Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds.

    PubMed

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-10-01

    Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions. PMID:27234496

  14. Biosynthesis of amino acids in Clostridium pasteurianum

    PubMed Central

    Dainty, R. H.; Peel, J. L.

    1970-01-01

    1. Clostridium pasteurianum was grown on a synthetic medium with the following carbon sources: (a) 14C-labelled glucose, alone or with unlabelled aspartate or glutamate, or (b) unlabelled glucose plus 14C-labelled aspartate, glutamate, threonine, serine or glycine. The incorporation of 14C into the amino acids of the cell protein was examined. 2. In both series of experiments carbon from exogenous glutamate was incorporated into proline and arginine; carbon from aspartate was incorporated into glutamate, proline, arginine, lysine, methionine, threonine, isoleucine, glycine and serine. Incorporations from the other exogenous amino acids indicated the metabolic sequence: aspartate → threonine → glycine ⇌ serine. 3. The following activities were demonstrated in cell-free extracts of the organism: (a) the formation of aspartate by carboxylation of phosphoenolpyruvate or pyruvate, followed by transamination; (b) the individual reactions of the tricarboxylic acid route to 2-oxoglutarate from oxaloacetate; glutamate dehydrogenase was not detected; (c) the conversion of aspartate into threonine via homoserine; (d) the conversion of threonine into glycine by a constitutive threonine aldolase; (e) serine transaminase, phosphoserine transaminase, glycerate dehydrogenase and phosphoglycerate dehydrogenase. This last activity was abnormally high. 4. The combined evidence indicates that in C. pasteurianum the biosynthetic role of aspartate and glutamate is generally similar to that in aerobic and facultatively aerobic organisms, but that glycine is synthesized from glucose via aspartate and threonine. PMID:5419750

  15. Deterioration of polyamino acid-coated alginate microcapsules in vivo.

    PubMed

    van Raamsdonk, J M; Cornelius, R M; Brash, J L; Chang, P L

    2002-01-01

    The implantation of immuno-isolated recombinant cell lines secreting a therapeutic protein in alginate microcapsules presents an alternative approach to gene therapy. Its clinical efficacy has recently been demonstrated in treating several genetic diseases in murine models. However, its application to humans will depend on the long-term structural stability of the microcapsules. Based on previous implantations in canines, it appears that survival of alginate-poly-L-lysine-alginate microcapsules in such large animals is short-lived. This article reports on the biological factors that may have contributed to the degradation of these microcapsules after implantation in dogs. Alginate microcapsules coated with poly-L-lysine or poly-L-arginine were implanted in subcutaneous or intraperitoneal sites. The retrieved microcapsules showed a loss of mechanical stability, as measured by resistance to osmotic stress. The polyamino acid coats were rendered fragile and easily lost, particularly when poly-L-lysine was used for coating and the intraperitoneal site was used for implantation. Various plasma proteins were associated with the retrieved microcapsules and identified with western blotting to include Factor XI, Factor XII, prekallikrein, HMWK, fibrinogen, plasminogen, ATIII, transferrin, alpha-1-antitrypsin, fibronectin, IgG, alpha-2-macroglobulin, vitronectin, prothrombin, apolipoprotein A1, and particularly albumin, a major Ca-transporting plasma protein. Complement proteins (C3, Factor B, Factor H, Factor I) and C3 activation fragments were detected. Release of the amino acids from the microcapsule polyamino acid coats was observed after incubation with plasma. indicating the occurrence of proteolytic degradation. Hence, the loss of long-term stability of the polyamino acid-coated alginate microcapsules is associated with activation of the complement system, degradation of the polyamino acid coating, and destabilization of the alginate core matrix, probably through loss

  16. Administration of Exogenous Growth Hormone Is Associated with Changes in Plasma and Intracellular Mammary Amino Acid Profiles and Abundance of the Mammary Gland Amino Acid Transporter SLC3A2 in Mid-Lactation Dairy Cows

    PubMed Central

    Sciascia, Quentin L.; Pacheco, David; McCoard, Susan A.

    2015-01-01

    The objectives of this study were to (1) identify changes in plasma and mammary intracellular amino acid (AA) profiles in dairy cows treated with growth hormone (GH), and (2) evaluate the expression of mammary gland genes involved in the transport of AA identified in (1). Eight non-pregnant (n = 4 per group) lactating dairy cows were treated with a single subcutaneous injection of either a slow-release formulation of commercially available GH (Lactotropin 500 mg) or physiological saline solution. Six days after treatment, cows were milked and blood collected from the jugular vein for the analysis of free AA in the plasma. Cows were euthanized and mammary tissue harvested. Treatment with GH increased milk, protein, fat and lactose yields, with no effect on dry matter intake. Plasma concentrations of lysine and group I AA decreased significantly, and arginine, methionine, tyrosine and arginine-family AA tended to decrease in GH-treated cows. Concentrations of intracellular glycine, serine and glutamate increased significantly, with a trend for decreased arginine observed in the mammary gland of GH-treated cows. A trend for increased concentrations of intracellular total AA, NEAA and arginine-family AA were observed in the mammary gland of GH-treated cows. Variance in the concentration of plasma methionine, tyrosine, valine, alanine, ornithine, BCAA, EAA was significantly different between treatments. Variance in the concentration of intracellular lysine, valine, glutamine, EAA and group II was significantly different between treatments. AA changes were associated with increased mRNA abundance of the mammary gland AA transporter SLC3A2. We propose that these changes occur to support increased milk protein and fatty acid production in the mammary gland of GH-treated cows via potential mTOR pathway signaling. PMID:26226162

  17. Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity.

    PubMed

    Huang, Yuanyuan; Li, Cheng; Zhang, Hao; Liang, Shuli; Han, Shuangyan; Lin, Ying; Yang, Xiaorong; Zheng, Suiping

    2016-02-01

    N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of L-arginine, and L-arginine-sensitive NAGK typically has hexameric architecture. Defining the relationship between this architecture and L-arginine inhibition can provide a foundation to identify the key amino acids involved in the allosteric regulation network of L-arginine. In the present study, the key amino acids in the N-terminal helix (N-helix) of Corynebacterium glutamicum (Cg) NAGK required for hexamer formation were determined using structural homology modeling and site-directed mutagenesis. It was also verified that hexameric architecture is required for the positive cooperativity of inhibition by L-arginine and for efficient catalysis, but that it is not the determinant of inhibition by L-arginine. Monomeric mutants retained a similar sensitivity to L-arginine as the hexameric form, indicating that monomers contain an independent, sensitive signal transduction network of L-arginine to mediate allosteric regulation. Mutation studies of CgNAGKs also revealed that amino acid residues 18-23 of the N-helix are required for inhibition by L-arginine, and that E19 may be an essential amino acid influencing the apparent affinity of L-arginine. Collectively, these studies may illuminate the basic mechanism of metabolic homeostasis of C. glutamicum. PMID:26512006

  18. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids.

    PubMed

    Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando

    2014-05-01

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation. PMID:24652292

  19. Amino Acid Racemization in Pseudomonas putida KT2440

    PubMed Central

    Radkov, Atanas D.

    2013-01-01

    d-Amino acids have been shown to play an increasingly diverse role in bacterial physiology, yet much remains to be learned about their synthesis and catabolism. Here we used the model soil- and rhizosphere-dwelling organism Pseudomonas putida KT2440 to elaborate on the genomics and enzymology of d-amino acid metabolism. P. putida KT2440 catabolized the d-stereoisomers of lysine, phenylalanine, arginine, alanine, and hydroxyproline as the sole carbon and nitrogen sources. With the exception of phenylalanine, each of these amino acids was racemized by P. putida KT2440 enzymes. Three amino acid racemases were identified from a genomic screen, and the enzymes were further characterized in vitro. The putative biosynthetic alanine racemase Alr showed broad substrate specificity, exhibiting measurable racemase activity with 9 of the 19 chiral amino acids. Among these amino acids, activity was the highest with lysine, and the kcat/Km values with l- and d-lysine were 3 orders of magnitude greater than the kcat/Km values with l- and d-alanine. Conversely, the putative catabolic alanine racemase DadX showed narrow substrate specificity, clearly preferring only the alanine stereoisomers as the substrates. However, DadX did show 6- and 9-fold higher kcat/Km values than Alr with l- and d-alanine, respectively. The annotated proline racemase ProR of P. putida KT2440 showed negligible activity with either stereoisomer of the 19 chiral amino acids but exhibited strong epimerization activity with hydroxyproline as the substrate. Comparative genomic analysis revealed differences among pseudomonads with respect to alanine racemase genes that may point to different roles for these genes among closely related species. PMID:23995642

  20. NOVEL ANTI-MICROBIAL PEPTIDE, NK-LYSIN, IS PRODUCED LOCALLY IN THE GUT OF EIMERIA-INFECTED HOST

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NK-lysin is an anti-microbial and anti-tumor protein produced by NK cells and T lymphocytes in mammals and is considered to be an important component of the local innate immune response to pathogens. Chicken NK-lysin consists of an 868 bp DNA sequence with an ORF of 140 amino acids with a predicted ...

  1. Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea.

    PubMed

    Zhou, Qi-Jia; Wang, Jun; Liu, Min; Qiao, Ying; Hong, Wan-Shu; Su, Yong-Quan; Han, Kun-Huang; Ke, Qiao-Zhen; Zheng, Wei-Qiang

    2016-08-01

    As fundamental immunologic mechanism, the innate immunity system is more important than the specific immunity system in teleost fishes during pathogens infection. Antimicrobial peptides are integral parts of the innate immune system, and play significant roles against pathogens infection. NK-lysin, the compounds of the natural killer cells and cytotoxic T cells, are potent and effective antimicrobial peptides widely distributed in animals. In this study, we reported the sequence characteristics, expression profiles and antibacterial activities of a NK-lysin gene (Lc-NK-lysin) from a commercially important marine fish, the large yellow croaker (Larimichthys crocea). The open reading frame of Lc-NK-lysin cDNA sequence was 447 bp in length, coding 148 amino acids. The genomic DNA of Lc-NK-lysin has the common features of NK-lysin family, consisting of five exons and four introns, and in its deduced mature peptide, there are six well-conserved cysteine residues and a Saposin B domain. Lc-NK-lysin was expressed in all tested tissues (skin, muscle, gill, brain, head kidney, heart, liver, spleen, stomach and intestine) with different expression patterns. In pathogens infection the expression profiles of Lc-NK-lysin varied significantly in gill, head kidney, spleen and liver, indicating its role in immune response. Two peptides (Lc-NK-lysin-1 and Lc-NK-lysin-2) divided from the core region of the Lc-NK-lysin mature polypeptide were chemically synthesized and their antibacterial activities were examined; the potential function on the inhibition of bacteria propagation was revealed. Our results suggested that Lc-NK-lysin is a typical member of the NK-lysin family and as an immune-related gene it involves in the immune response when pathogens invasion. PMID:27238427

  2. Light-activated amino acid transport in Halobacterium halobium envelope vesicles

    NASA Technical Reports Server (NTRS)

    Macdonald, R. E.; Lanyi, J. K.

    1977-01-01

    Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na+ gradient. On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids: arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.

  3. Learned olfactory discrimination versus innate taste responses to amino acids in channel catfish (Ictalurus punctatus).

    PubMed

    Valentincic, T; Wegert, S; Caprio, J

    1994-05-01

    Intact channel catfish conditioned to the L-amino acids, proline, arginine, alanine, and lysine, discriminated these stimuli from all other amino acids tested. Behavioral structure-activity tests indicated that L-pipecolate was the only effective agonist of the L-proline conditioned response. For channel catfish in which one of the paired olfactory organs was surgically removed, the number of turns to the conditioned stimulus was 40% fewer than those of intact catfish; however, these semiosmic channel catfish discriminated the conditioned from nonconditioned stimuli, as evidenced by their responding to the conditioned amino acid, with a two- to threefold greater number of turns than to the nonconditioned amino acids. Irrespective of the number of conditioning trials attempted, catfish with both olfactory organs removed were unable to discriminate the conditioned from the nonconditioned stimuli. PMID:8022906

  4. Targeted disruption of murine ornithine aminotransferase gene: Surprising neonatal lethality rescued by arginine therapy and possible mouse model for gyrate atrophy

    SciTech Connect

    Wang, T.; Steel, G.; Valle, D.

    1994-09-01

    Deficiency of ornithine-{delta}-aminotransferase (OAT) in humans results in gyrate atrophy (GA), an autosomal recessive blinding disorder characterized by progressive chorioretinal degeneration and hyperornithinemia. GA patients are otherwise asymptomatic. The explanation for the unique susceptibility of retina to this inborn error is not known. Poor understanding of the pathophysiology hampers development of effective therapy. To address these problems, we undertook targeted disruption of the murine OAT gene. We isolated a 13 kb genomic DNA fragment containing the first five exons of OAT from an AB1 mini-genomic library and made a replacement type targeting vector with the NEOR gene inserted into OAT exon 3 at codon 40. Following electroporation and selection, 4.4% of G418 resistant ES clones had undergone homologous recombination. Chimeric animals produced by blastocyst injection transmitted the disrupted OAT allele. Mice homozygous for OAT disruption (-/-) have no detectable OAT activity in their tissues. Although normal at birth, they die within 10 to 48 hrs. We hypothesize this lethality results from a block in gut arginine biosynthesis, a pathway that requires {open_quotes}reverse{close_quotes} OAT flux and is apparently critical for rapidly growing neonatal mice. Amino acid measurements reveal extreme reduction in urea cycle intermediates in dying mice. With i.p. arginine administration for the first 14 days of life, we have successfully obtained adult (-/-) mice. Plasma amino acids on these mice show a 10-15 fold increase in ornithine and a 2 fold decrease in lysine, biochemical hallmarks of GA. ERG and retinal histopathologic studies are in progress to examine the ocular phenotypes. These mice will provide an invaluable model to test strategies to reduce ornithine accumulation and should also prove useful in understanding the pathophysiology of retina degeneration.

  5. Compartmentalization of amino acids in surfactant aggregates - Partitioning between water and aqueous micellar sodium dodecanoate and between hexane and dodecylammonium propionate trapped water in hexane

    NASA Technical Reports Server (NTRS)

    Fendler, J. H.; Nome, F.; Nagyvary, J.

    1975-01-01

    The partitioning of amino acids (glycine, alanine, leucine, phenylalanine, histidine, aspartic acid, glutamic acid, lysine, isoleucine, threonine, serine, valine, proline, arginine) in aqueous and nonaqueous micellar systems was studied experimentally. Partitioning from neat hexane into dodecylammonium propionate trapped water in hexane was found to be dependent on both electrostatic and hydrophobic interactions, which implies that the interior of dodecylammonium propionate aggregates is negatively charged and is capable of hydrogen bonding in addition to providing a hydrophobic environment. Unitary free energies of transfer of amino acid side chains from hexane to water were determined and solubilities of amino acids in neat hexane substantiated the amino acid hydrophobicity scale. The relevance of the experiments to prebiotic chemistry was examined.

  6. Protein lysine methylation by seven-β-strand methyltransferases.

    PubMed

    Falnes, Pål Ø; Jakobsson, Magnus E; Davydova, Erna; Ho, Angela; Małecki, Jędrzej

    2016-07-15

    Methylation of biomolecules is a frequent biochemical reaction within the cell, and a plethora of highly specific methyltransferases (MTases) catalyse the transfer of a methyl group from S-adenosylmethionine (AdoMet) to various substrates. The posttranslational methylation of lysine residues, catalysed by numerous lysine (K)-specific protein MTases (KMTs), is a very common and important protein modification, which recently has been subject to intense studies, particularly in the case of histone proteins. The majority of KMTs belong to a class of MTases that share a defining 'SET domain', and these enzymes mostly target lysines in the flexible tails of histones. However, the so-called seven-β-strand (7BS) MTases, characterized by a twisted beta-sheet structure and certain conserved sequence motifs, represent the largest MTase class, and these enzymes methylate a wide range of substrates, including small metabolites, lipids, nucleic acids and proteins. Until recently, the histone-specific Dot1/DOT1L was the only identified eukaryotic 7BS KMT. However, a number of novel 7BS KMTs have now been discovered, and, in particular, several recently characterized human and yeast members of MTase family 16 (MTF16) have been found to methylate lysines in non-histone proteins. Here, we review the status and recent progress on the 7BS KMTs, and discuss these enzymes at the levels of sequence/structure, catalytic mechanism, substrate recognition and biological significance. PMID:27407169

  7. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. VI. Oppositely-charged side chains

    PubMed Central

    Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A.

    2011-01-01

    The two-site coarse-grained model for the interactions of charged side chains, to be used with our coarse-grained UNRES force field for protein simulations proposed in the accompanying paper, has been extended to pairs of oppositely-charged side chains. The potentials of mean force of four pairs of molecules modeling charged amino-acid side chains, i.e., propionate – n-pentylamine cation (for aspartic acidlysine), butyrate…n-pentylamine cation (for glutamic acidlysine), propionate –1-butylguanidine (for aspartic acidarginine), and butyrate – 1-butylguanidine (for glutamic acidarginine) pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expression was fitted to the potentials of mean force. Compared to pairs of like-charged side chains discussed in the accompanying paper, an average quadrupole-quadrupole interaction term had to be introduced to reproduce the Coulombic interactions, and a multi-state model of charge distribution had to be introduced to fit the potentials of mean force of all oppositely-charged pairs well. The model reproduces all salt-bridge minima and, consequently, is likely to improve the performance of the UNRES force field. PMID:21500791

  8. Coacervate-like microspheres from lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Rohlfing, D. L.

    1975-01-01

    Microspheres form isothermally from lysine-rich proteinoid when the ionic strength of the solution is increased with NaCl or other salts. Studies with different monovalent anions and with polymers of different amino acid composition indicate that charge neutralization and hydrophobic bonding contribute to microsphere formation. The particles also form in sea water, especially if heated or made slightly alkaline. The microspheres differ from those made from acidic proteinoid but resemble coacervate droplets in some ways (isothermal formation, limited stability, stabilization by quinone, uptake of dyes). Because the constituent lysine-rich proteinoid is of simulated prebiotic origin, the study is interpreted to add emphasis to and suggest an evolutionary continuity for coacervation phenomena.

  9. Depletion of arginine in yeast cells decreases the resistance to hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru

    2015-07-01

    High hydrostatic pressure (HP) inhibits growth and inactivates microorganisms by destabilizing non-covalent molecular interactions. Arginine contributes to stress resistance because it has a guanidine side chain, which assists in the refolding of aggregated proteins. We attempted to analyze the contribution of arginine to high HP stress using a pressure-sensitive mutant strain of Saccharomyces cerevisiae and a metabolomics approach. Our results showed that the content of 136 out of 250 detected metabolites differed in the mutant and parent strains. Decreased metabolites were involved in the tricarboxylic acid cycle and arginine biosynthesis. The expression of genes contributing to arginine biosynthesis was significantly lower in the mutant strain than in the parent strain. When arginine was supplemented to the medium, the mutant strain showed more tolerance to pressure. These results suggest that yeast cells survived due to the contribution of arginine to high pressure resistance. This indicates that depletion of arginine caused by decreased activity of the biosynthesis pathway confers sensitivity to HP.

  10. Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway

    PubMed Central

    Mandal, Abhishek; Das, Sushmita; Roy, Saptarshi; Ghosh, Ayan Kumar; Sardar, Abul Hasan; Verma, Sudha; Saini, Savita; Singh, Ruby; Abhishek, Kumar; Kumar, Ajay; Mandal, Chitra; Das, Pradeep

    2016-01-01

    The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis. PMID:26808657

  11. Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway.

    PubMed

    Mandal, Abhishek; Das, Sushmita; Roy, Saptarshi; Ghosh, Ayan Kumar; Sardar, Abul Hasan; Verma, Sudha; Saini, Savita; Singh, Ruby; Abhishek, Kumar; Kumar, Ajay; Mandal, Chitra; Das, Pradeep

    2016-01-01

    The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis. PMID:26808657

  12. Effects of endotoxin exposure on cationic amino acid transporter function in ovine peripheral blood mononuclear cells.

    PubMed

    Clark, Megan F; Reade, Michael C; Boyd, C A R; Young, J Duncan

    2003-03-01

    Rodent models of sepsis differ from clinical human disease in that humans make substantially less whole-body nitric oxide and have different cellular responses to endotoxin. Sheep, when exposed to endotoxin, behave in a manner more similar to humans. Many studies of rodent peripheral blood mononuclear cells (PBMCs) exposed to endotoxin demonstrate increased cationic amino acid transporter function (particularly through the y+ transporter) to supply arginine substrate to upregulated nitric oxide synthase. Whether this is true in sheep is not known. We have studied cationic amino acid transport in sheep PBMCs stimulated with endotoxin, using labelled lysine. PBMCs stimulated both in vitro and in vivo show an initial reduction in total and y+ lysine transport (after 1-2 h exposure to endotoxin): a previously undescribed effect of endotoxin. In in vitro activated cells, the reduction in y+ transport was prevented by the lipoxygenase inhibitor, nordihydroguaretic acid (NDGA), and the phospholipase inhibitor 4-bromophenacyl bromide (4-BPAB), but not cyclohexamide or a number of other inhibitors of intracellular second-messenger pathways. In contrast after 14 h incubation, the expected increase in total and y+ lysine transport was seen. The increase in y+ transport could be prevented by cyclohexamide, dexamethasone, ibuprofen, the protein kinase C inhibitor sphingosine, NDGA and 4-BPAB. These results suggest that in response to endotoxin exposure there is an initial decrease in y+ activity mediated by a lipoxygenase product, followed by a substantial increase in y+ activity mediated by the products of either cyclo-oxygenase or lipoxygenase. Cyclo-oxygenase and/or lipoxygenase inhibition might be useful in reducing arginine transport, and hence nitric oxide production, in these cells. PMID:12621525

  13. Supplementation with apple enriched with L-arginine may improve metabolic control and survival rate in alloxan-induced diabetic rats.

    PubMed

    Escudero, Andrea; Petzold, Guillermo; Moreno, Jorge; Gonzalez, Marcelo; Junod, Julio; Aguayo, Claudio; Acurio, Jesenia; Escudero, Carlos

    2013-01-01

    Supplementation with L-arginine or fresh food with high content of this amino acid is associated with favorable effects in the metabolic control of diabetes. We aimed to determine whether supplementation with apples enriched with L-arginine offer additional benefits compared to L-arginine by itself in a preclinical study of diabetes. This study combines food-engineer technologies with in vivo and in vitro analysis. In vitro experiments show that cells derived from non-diabetic animals and exposed to high glucose (25 mM, 12 H) and cells isolated from alloxan-induced diabetic animals exhibited a reduction (∼50%) in the L-arginine uptake. This effect was reverted by L-arginine pretreatment (12 H) in both the normal and diabetes-derived cells. In preclinical studies, normoglycemic (n = 25) and diabetic groups (n = 50) were divided into subgroups that received either L-arginine (375 mg/kg per 10 days) or apple enriched with L-arginine or vehicle (control). In a preliminary analysis, supplementation with L-arginine by itself (50%) or apple enriched with L-arginine (100%) improve survival rate in the diabetic group compared to control (0%) at the end of the follow up (17 days). This phenomenon was associated with a partial but sustained high plasma level of L-arginine, as well as plasma concentration of nitrites and insulin in the L-arginine or apple + L-arginine groups after supplementation. Apple + L-arginine supplementation in diabetic animals induced the highest and longest effects in the level of these three markers among the studied groups. Therefore, apple enriched by L-arginine offers more benefits than L-arginine by itself in this preclinical study. PMID:23553786

  14. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity.

    PubMed

    Carroll, Bernadette; Maetzel, Dorothea; Maddocks, Oliver Dk; Otten, Gisela; Ratcliff, Matthew; Smith, Graham R; Dunlop, Elaine A; Passos, João F; Davies, Owen R; Jaenisch, Rudolf; Tee, Andrew R; Sarkar, Sovan; Korolchuk, Viktor I

    2016-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is the key signaling hub that regulates cellular protein homeostasis, growth, and proliferation in health and disease. As a prerequisite for activation of mTORC1 by hormones and mitogens, there first has to be an available pool of intracellular amino acids. Arginine, an amino acid essential during mammalian embryogenesis and early development is one of the key activators of mTORC1. Herein, we demonstrate that arginine acts independently of its metabolism to allow maximal activation of mTORC1 by growth factors via a mechanism that does not involve regulation of mTORC1 localization to lysosomes. Instead, arginine specifically suppresses lysosomal localization of the TSC complex and interaction with its target small GTPase protein, Rheb. By interfering with TSC-Rheb complex, arginine relieves allosteric inhibition of Rheb by TSC. Arginine cooperates with growth factor signaling which further promotes dissociation of TSC2 from lysosomes and activation of mTORC1. Arginine is the main amino acid sensed by the mTORC1 pathway in several cell types including human embryonic stem cells (hESCs). Dependence on arginine is maintained once hESCs are differentiated to fibroblasts, neurons, and hepatocytes, highlighting the fundamental importance of arginine-sensing to mTORC1 signaling. Together, our data provide evidence that different growth promoting cues cooperate to a greater extent than previously recognized to achieve tight spatial and temporal regulation of mTORC1 signaling. PMID:26742086

  15. Adding a Lysine Mimic in the Design of Potent Inhibitors of Histone Lysine Methyltransferases

    SciTech Connect

    Chang, Yanqi; Ganesh, Thota; Horton, John R.; Spannhoff, Astrid; Liu, Jin; Sun, Aiming; Zhang, Xing; Bedford, Mark T.; Shinkai, Yoichi; Snyder, James P.; Cheng, Xiaodong

    2010-07-19

    Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the histone code. One common feature of these activities is the recognition of lysines in methylated and unmethylated states, whether they are substrates, reaction products, or binding partners. We applied the concept of adding a lysine mimic to an established inhibitor (BIX-01294) of histone H3 lysine 9 methyltransferases G9a and G9a-like protein by including a 5-aminopentyloxy moiety, which is inserted into the target lysine-binding channel and becomes methylated by G9a-like protein, albeit slowly. The compound enhances its potency in vitro and reduces cell toxicity in vivo. We suggest that adding a lysine or methyl-lysine mimic should be considered in the design of small-molecule inhibitors for other methyl-lysine writers, erasers, and readers.

  16. CPLM: a database of protein lysine modifications

    PubMed Central

    Liu, Zexian; Wang, Yongbo; Gao, Tianshun; Pan, Zhicheng; Cheng, Han; Yang, Qing; Cheng, Zhongyi; Guo, Anyuan; Ren, Jian; Xue, Yu

    2014-01-01

    We reported an integrated database of Compendium of Protein Lysine Modifications (CPLM; http://cplm.biocuckoo.org) for protein lysine modifications (PLMs), which occur at active ε-amino groups of specific lysine residues in proteins and are critical for orchestrating various biological processes. The CPLM database was updated from our previously developed database of Compendium of Protein Lysine Acetylation (CPLA), which contained 7151 lysine acetylation sites in 3311 proteins. Here, we manually collected experimentally identified substrates and sites for 12 types of PLMs, including acetylation, ubiquitination, sumoylation, methylation, butyrylation, crotonylation, glycation, malonylation, phosphoglycerylation, propionylation, succinylation and pupylation. In total, the CPLM database contained 203 972 modification events on 189 919 modified lysines in 45 748 proteins for 122 species. With the dataset, we totally identified 76 types of co-occurrences of various PLMs on the same lysine residues, and the most abundant PLM crosstalk is between acetylation and ubiquitination. Up to 53.5% of acetylation and 33.1% of ubiquitination events co-occur at 10 746 lysine sites. Thus, the various PLM crosstalks suggested that a considerable proportion of lysines were competitively and dynamically regulated in a complicated manner. Taken together, the CPLM database can serve as a useful resource for further research of PLMs. PMID:24214993

  17. Arginines Plasma Concentration and Oxidative Stress in Mild to Moderate COPD

    PubMed Central

    Zinellu, Angelo; Fois, Alessandro Giuseppe; Sotgia, Salvatore; Sotgiu, Elisabetta; Zinellu, Elisabetta; Bifulco, Fabiana; Mangoni, Arduino A; Pirina, Pietro; Carru, Ciriaco

    2016-01-01

    Background Elevated plasma concentrations of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) have been observed in respiratory conditions such as asthma and cystic fibrosis. Since oxidative stress has been shown to increase the activity of arginine methylating enzymes, hence increased ADMA synthesis, and to reduce ADMA degrading enzymes, hence increased ADMA concentrations, we assessed methylated arginines concentrations in chronic obstructive pulmonary disease (COPD), a disease characterized by increased oxidative stress. Methods Plasma arginine, ADMA and symmetric dimethylarginine (SDMA), oxidative stress markers (thiobarbituric acid reactive substances, TBARS, and plasma proteins SH, PSH) and antioxidants (taurine and paraoxonase 1, PON1, activity) were measured in 43 COPD patients with mild (n = 29) or moderate (n = 14) disease and 43 age- and sex-matched controls. Results TBARS significantly increased with COPD presence and severity (median 2.93 vs 3.18 vs 3.64 μmol/L, respectively in controls, mild and moderate group, p<0.0001 by ANOVA) whereas PSH decreased (6.69±1.15 vs 6.04±0.85 vs 5.33±0.96 μmol/gr prot, p<0.0001 by ANOVA). Increased ADMA/arginine ratio, primarily due to reduced arginine concentrations, was also observed with COPD presence and severity (median 0.0067 vs 0.0075 vs 0.0100, p<0.0001 by ANOVA). In multiple logistic regression analysis, only TBARS (OR 0.44, 95% CI 0.25–0.77; p = 0.0045) and ADMA/Arginine ratio (OR 1.72, 95% CI 2.27–13.05; p = 0.02) were independently associated with COPD severity. Conclusion COPD presence and severity are associated with increased oxidative stress and alterations in arginine metabolism. The reduced arginine concentrations in COPD may offer a new target for therapeutic interventions increasing arginine availability. PMID:27479314

  18. European Sea Bass (Dicentrarchus labrax) Immune Status and Disease Resistance Are Impaired by Arginine Dietary Supplementation

    PubMed Central

    Azeredo, Rita; Pérez-Sánchez, Jaume; Sitjà-Bobadilla, Ariadna; Fouz, Belén; Tort, Lluis; Aragão, Cláudia; Oliva-Teles, Aires; Costas, Benjamín

    2015-01-01

    Infectious diseases and fish feeds management are probably the major expenses in the aquaculture business. Hence, it is a priority to define sustainable strategies which simultaneously avoid therapeutic procedures and reinforce fish immunity. Currently, one preferred approach is the use of immunostimulants which can be supplemented to the fish diets. Arginine is a versatile amino acid with important mechanisms closely related to the immune response. Aiming at finding out how arginine affects the innate immune status or improve disease resistance of European seabass (Dicentrarchus labrax) against vibriosis, fish were fed two arginine-supplemented diets (1% and 2% arginine supplementation). A third diet meeting arginine requirement level for seabass served as control diet. Following 15 or 29 days of feeding, fish were sampled for blood, spleen and gut to assess cell-mediated immune parameters and immune-related gene expression. At the same time, fish from each dietary group were challenged against Vibrio anguillarum and survival was monitored. Cell-mediated immune parameters such as the extracellular superoxide and nitric oxide decreased in fish fed arginine-supplemented diets. Interleukins and immune-cell marker transcripts were down-regulated by the highest supplementation level. Disease resistance data were in accordance with a generally depressed immune status, with increased susceptibility to vibriosis in fish fed arginine supplemented diets. Altogether, these results suggest a general inhibitory effect of arginine on the immune defences and disease resistance of European seabass. Still, further research will certainly clarify arginine immunomodulation pathways thereby allowing the validation of its potential as a prophylactic strategy. PMID:26447480

  19. Genome-Wide Analysis of the Lysine Biosynthesis Pathway Network during Maize Seed Development

    PubMed Central

    Liu, Yuwei; Xie, Shaojun; Yu, Jingjuan

    2016-01-01

    Lysine is one of the most limiting essential amino acids for humans and livestock. The nutritional value of maize (Zea mays L.) is reduced by its poor lysine content. To better understand the lysine biosynthesis pathway in maize seed, we conducted a genome-wide analysis of the genes involved in lysine biosynthesis. We identified lysine biosynthesis pathway genes (LBPGs) and investigated whether a diaminopimelate pathway variant exists in maize. We analyzed two genes encoding the key enzyme dihydrodipicolinate synthase, and determined that they contribute differently to lysine synthesis during maize seed development. A coexpression network of LBPGs was constructed using RNA-sequencing data from 21 developmental stages of B73 maize seed. We found a large set of genes encoding ribosomal proteins, elongation factors and zein proteins that were coexpressed with LBPGs. The coexpressed genes were enriched in cellular metabolism terms and protein related terms. A phylogenetic analysis of the LBPGs from different plant species revealed different relationships. Additionally, six transcription factor (TF) families containing 13 TFs were identified as the Hub TFs of the LBPGs modules. Several expression quantitative trait loci of LBPGs were also identified. Our results should help to elucidate the lysine biosynthesis pathway network in maize seed. PMID:26829553

  20. Structural Basis for l-Lysine Feedback Inhibition of Homocitrate Synthase

    SciTech Connect

    Bulfer, Stacie L.; Scott, Erin M.; Pillus, Lorraine; Trievel, Raymond C.

    2010-09-02

    The {alpha}-aminoadipate pathway of lysine biosynthesis is modulated at the transcriptional and biochemical levels by feedback inhibition. The first enzyme in the {alpha}-aminoadipate pathway, homocitrate synthase (HCS), is the target of the feedback regulation and is strongly inhibited by L-lysine. Here we report the structure of Schizosaccharomyces pombe HCS (SpHCS) in complex with L-lysine. The structure illustrates that the amino acid directly competes with the substrate 2-oxoglutarate for binding within the active site of HCS. Differential recognition of the substrate and inhibitor is achieved via a switch position within the ({alpha}/{beta}){sub 8} TIM barrel of the enzyme that can distinguish between the C5-carboxylate group of 2-oxoglutarate and the {epsilon}-ammonium group of L-lysine. In vitro and in vivo assays demonstrate that mutations of the switch residues, which interact with the L-lysine {epsilon}-ammonium group, abrogate feedback inhibition, as do substitutions of residues within the C-terminal domain that were identified in a previous study of L-lysine-insensitive HCS mutants in Saccharomyces cerevisiae. Together, these results yield new insights into the mechanism of feedback regulation of an enzyme central to lysine biosynthesis.

  1. Uncovering the Protein Lysine and Arginine Methylation Network in Arabidopsis Chloroplasts

    PubMed Central

    Mininno, Morgane; Brugière, Sabine; Gilgen, Annabelle; Ma, Sheng; Mazzoleni, Meryl; Gigarel, Océane; Martin-Laffon, Jacqueline; Ferro, Myriam; Ravanel, Stéphane

    2014-01-01

    Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology. PMID:24748391

  2. Uncovering the protein lysine and arginine methylation network in Arabidopsis chloroplasts.

    PubMed

    Alban, Claude; Tardif, Marianne; Mininno, Morgane; Brugière, Sabine; Gilgen, Annabelle; Ma, Sheng; Mazzoleni, Meryl; Gigarel, Océane; Martin-Laffon, Jacqueline; Ferro, Myriam; Ravanel, Stéphane

    2014-01-01

    Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology. PMID:24748391

  3. Purification and Characterization of an Arginine Aminopeptidase from Lactobacillus sakei

    PubMed Central

    Sanz, Yolanda; Toldrá, Fidel

    2002-01-01

    An arginine aminopeptidase (EC 3.4.11.6) that exclusively hydrolyzes basic amino acids from the amino (N) termini of peptide substrates has been purified from Lactobacillus sakei. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps, which included hydrophobic interaction, gel filtration, and anion-exchange chromatography. This procedure resulted in a recovery rate of 4.2% and a 500-fold increase in specific activity. The aminopeptidase appeared to be a trimeric enzyme with a molecular mass of 180 kDa. The activity was optimal at pH 5.0 and 37°C. The enzyme was inhibited by sulfhydryl group reagents and several divalent cations (Cu2+, Hg2+, and Zn2+) but was activated by reducing agents, metal-chelating agents, and sodium chloride. The enzyme showed a preference for arginine at the N termini of aminoacyl derivatives and peptides. The Km values for Arg-7-amido-4-methylcoumarin (AMC) and Lys-AMC were 15.9 and 26.0 μM, respectively. The nature of the amino acid residue at the C terminus of dipeptides has an effect on hydrolysis rates. The activity was maximal toward dipeptides with Arg, Lys, or Ala as the C-terminal residue. The properties of the purified enzyme, its potential function in the release of arginine, and its further metabolism are discussed because, as a whole, it could constitute a survival mechanism for L. sakei in the meat environment. PMID:11916721

  4. Amazing stability of the arginine-phosphate electrostatic interaction.

    PubMed

    Woods, Amina S; Ferré, Sergi

    2005-01-01

    Electrostatic interactions between a basic epitope containing adjacent arginine residues and an acidic epitope containing a phosphorylated serine are involved in receptor heteromerization. In the present study, we demonstrate that this arginine-phosphate electrostatic interaction possesses a "covalent-like" stability. Hence, these bonds can withstand fragmentation by mass spectrometric collision-induced dissociation at energies similar to those that fragment covalent bonds and they demonstrate an extremely low dissociation constant by plasmon resonance. The present work also highlights the importance of phosphorylation-dephosphorylation events in the modulation of this electrostatic attraction. Phosphorylation of the acidic epitope, a casein kinase one consensus site, makes it available to interact with the basic epitope. On the other hand, phosphorylation of serine and/or threonine residues adjacent to the basic epitope, a protein kinase A consensus site, slows down the attraction between the epitopes. Although analyzed here in the frame of receptor heteromerization, the arginine-phosphate electrostatic interaction most likely represents a general mechanism in protein-protein interactions. PMID:16083292

  5. Hemoglobin Labeled by Radioactive Lysine

    DOE R&D Accomplishments Database

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  6. New enzymatic methods for selective assay of L-lysine using an L-lysine specific decarboxylase/oxidase from Burkholderia sp. AIU 395.

    PubMed

    Sugawara, Asami; Matsui, Daisuke; Yamada, Miwa; Asano, Yasuhisa; Isobe, Kimiyasu

    2015-03-01

    We developed new enzymatic methods for the selective assay of L-lysine by utilizing an oxidase reaction and a decarboxylation reaction by the L-lysine-specific decarboxylase/oxidase (L-Lys-DC/OD) from Burkholderia sp. AIU 395. The method utilizing the oxidase reaction of this enzyme was useful for determination of high concentrations of L-lysine. The method utilizing the decarboxylase reaction, which proceeded via the combination of the L-Lys-DC/OD and putrescine oxidase (PUO) from Micrococcus rubens, was effective for determination of low concentrations of L-lysine. Both methods showed good linearity, and neither was affected by other amino acids or amines. In addition, the within-assay and between-assay precisions of both methods were within the allowable range. The coupling of L-Lys-DC/OD with PUO was also useful for the differential assay of L-lysine and cadaverine. These newly developed methods were applied to the assay of L-lysine in biological samples and found to be effective. PMID:25282636

  7. Hydrogenosome-localization of arginine deiminase in Trichomonas vaginalis.

    PubMed

    Morada, Mary; Smid, Ondrej; Hampl, Vladimir; Sutak, Robert; Lam, Brian; Rappelli, Paola; Dessì, Daniele; Fiori, Pier L; Tachezy, Jan; Yarlett, Nigel

    2011-03-01

    The arginine dihydrolase (ADH) pathway has an analogous function to the urea cycle in mitochondria-containing cells, by removing nitrogen from amino acids and generating ATP. Subcellular localization of the ADH pathway enzymes in Trichomonas vaginalis revealed that arginine deiminase (ADI) localizes to the hydrogenosome, a mitochondrion-like organelle of anaerobic protists. However the other enzymes of the ADH pathway, ornithine carbamyltransferase and carbamate kinase localize to the cytosol. Three gene sequences of T. vaginalis ADI (ADI 1-3) were identified in the T. vaginalis genome, all having putative mitochondrial targeting sequences. The ADI sequences were cloned and used to probe T. vaginalis using a carboxyterminal di-hemogglutinin epitope tag which demonstrated co-localization with malic enzyme confirming the hydrogenosome localization of this enzyme. PMID:21074581

  8. The development and amino acid binding ability of nano-materials based on azo derivatives: theory and experiment.

    PubMed

    Shang, Xuefang; Du, Jinge; Yang, Wancai; Liu, Yun; Fu, Zhiyuan; Wei, Xiaofang; Yan, Ruifang; Yao, Ningcong; Guo, Yaping; Zhang, Jinlian; Xu, Xiufang

    2014-05-01

    Two nano-material-containing azo groups have been designed and developed, and the binding ability of nano-materials with various amino acids has been characterized by UV-vis and fluorescence titrations. Results indicated that two nano-materials showed the strongest binding ability for homocysteine among twenty normal kinds of amino acids (alanine, valine, leucine, isoleucine, methionine, aspartic acid, glutamic acid, arginine, glycine, serine, threonine, asparagine, phenylalanine, histidine, tryptophan, proline, lysine, glutamine, tyrosine and homocysteine). The reason for the high sensitivity for homocysteine was that two nano-materials containing an aldehyde group reacted with SH in homocysteine and afforded very stable thiazolidine derivatives. Theoretical investigation further illustrated the possible binding mode in host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. Thus, the two nano-materials can be used as optical sensors for the detection of homocysteine. PMID:24656358

  9. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water.

    PubMed

    Sener, Gulsu; Uzun, Lokman; Denizli, Adil

    2014-01-01

    A facile colorimetric sensor array for detection of multiple toxic heavy metal ions (Hg(2+), Cd(2+), Fe(3+), Pb(2+), Al(3+), Cu(2+), and Cr(3+)) in water is demonstrated using 11-mercaptoundecanoic acid (MUA)-capped gold nanoparticles (AuNPs) and five amino acids (lysine, cysteine, histidine, tyrosine, and arginine). The presence of amino acids (which have functional groups that can form complexes with metal ions and MUA) regulates the aggregation of MUA-capped particles; it can either enhance or diminish the particle aggregation. The combinatorial colorimetric response of all channels of the sensor array (i.e., color change in each of AuNP and amino acid couples) enables naked-eye discrimination of all of the metal ions tested in this study with excellent selectivity. PMID:25330256

  10. Role of Environmental Conditions on the Interaction of L-Arginine with Oxide Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Klochko, K.; Jonsson, C. M.; Jonsson, C. L.; Lee, N.; Cleaves, H. J., II; Sverjensky, D. A.; Hazen, R. M.

    2010-04-01

    The current study is focused on surface interactions between L-arginine, the most basic protein amino acid, and rutile in NaCl media over a wide range of solution pH conditions, amino acid concentrations, and solution ionic strengths.

  11. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.

    PubMed

    Blombach, Bastian; Schreiner, Mark E; Moch, Matthias; Oldiges, Marco; Eikmanns, Bernhard J

    2007-09-01

    Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on L-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the L-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and L-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific L-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific L-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific L-lysine yield by 6 and 56%, respectively. In addition to L-lysine, significant amounts of pyruvate, L-alanine and L-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve L-lysine production by engineering the L-lysine biosynthetic pathway. PMID:17333167

  12. Adsorption of Lysine on Na-Montmorillonite and Competition with Ca(2+): A Combined XRD and ATR-FTIR Study.

    PubMed

    Yang, Yanli; Wang, Shengrui; Liu, Jingyang; Xu, Yisheng; Zhou, Xiaoyun

    2016-05-17

    Lysine adsorption at clay/aqueous interfaces plays an important role in the mobility, bioavailability, and degradation of amino acids in the environment. Knowledge of these interfacial interactions facilitates our full understanding of the fate and transport of amino acids. Here, X-ray diffraction (XRD) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) measurements were used to explore the dynamic process of lysine adsorption on montmorillonite and the competition with Ca(2+) at the molecular level. Density functional theory (DFT) calculations were employed to determine the peak assignments of dissolved lysine in the solution phase. Three surface complexes, including dicationic, cationic, and zwitterionic structures, were observed to attach to the clay edge sites and penetrate the interlayer space. The increased surface coverage and Ca(2+) competition did not affect the interfacial lysine structures at a certain pH, whereas an elevated lysine concentration contributed to zwitterionic-type coordination at pH 10. Moreover, clay dissolution at pH 4 could be inhibited at a higher surface coverage with 5 and 10 mM lysine, whereas the inhibition effect was inconspicuous or undetected at pH 7 and 10. The presence of Ca(2+) not only could remove a part of the adsorbed lysine but also could facilitate the readsorption of dissolved Si(4+) and Al(3+) and surface protonation. Our results provide new insights into the process of lysine adsorption and its effects on montmorillonite surface sites. PMID:27118104

  13. Species-specific sequences of abalone lysin, the sperm protein that creates a hole in the egg envelope.

    PubMed Central

    Vacquier, V D; Carner, K R; Stout, C D

    1990-01-01

    Abalone eggs are contained within a rigid, elevated vitelline envelope through which the sperm must pass before reaching the egg cell membrane. Abalone spermatozoa possess an acrosomal protein called lysin that creates a hole in the egg vitelline envelope by a nonenzymatic mechanism. Lysins from two species of abalone, termed pink and red, which share the same habitat, exhibit species specificity in the dissolution of isolated egg envelopes. Cloning and sequencing the cDNAs for pink and red abalone lysins reveal transcript lengths of approximately 660 nucleotides. The open reading frames of 465 (pink) and 462 (red) nucleotides show a 13% difference. The 3' untranslated regions before the poly(A) tails are 170 (pink) and 165 (red) nucleotides long and differ from each other by about 7%. The protein sequences show nearly identical signal sequences of 18 amino acids for both lysins. The mature protein is 137 amino acids in the pink abalone and 136 in the red abalone; the two mature lysins differ in 29 of 137 amino acids (21%). The most variable region, which may account for lysin's species specificity, is at the NH2 terminus, where 11 of the 15 amino acids differ between the two species. Predictions of secondary structure indicate that both lysins contain four homologous amphiphilic alpha-helices. Images PMID:2377618

  14. Partitioning of amino-acid analogues in a five-slab membrane model

    SciTech Connect

    Sengupta, D; Smith, Jeremy C; Ullmann, G. Matthias

    2008-09-01

    The positional preferences of the twenty amino-acid residues in a phospholipid bilayer are investigated by calculating the solvation free energy of the corresponding side chain analogues using a five-slab continuum electrostatic model. The side-chain analogues of the aromatic residues tryptophan and tyrosine are found to partition in the head-group region, due to compensation between the increase of the non-polar component of the solvation free energy at the boundary with the aqueous region and the decrease in the electrostatic component. The side chain analogue of phenylalanine differs from the other aromatic molecules by being able to partition in both the head-group region and the membrane core. This finding is consistent with experimental findings of the position of phenylalanine in membrane helices. Interestingly, the charged side-chain analogues of arginine and lysine are shown to prefer the head-group region in an orientation that allows the charged moiety to interact with the aqueous layer. The orientation adopted is similar to the 'snorkelling' effect seen in lysine and arginine residues in membrane helices. In contrast, the preference of the charged side-chain analogues of histidine (protonated) and aspartate (deprotonated) for the aqueous layer is shown to be due to a steep decrease in the electrostatic component of the solvation free energy at the boundary to the aqueous region. The calculations allow an understanding of the origins of side chain positioning in membranes and are thus useful in understanding membrane-protein:lipid thermodynamics.

  15. The Arginine Methyltransferase PRMT6 Cooperates with Polycomb Proteins in Regulating HOXA Gene Expression

    PubMed Central

    Bouchard, Caroline; Bauer, Uta-Maria

    2016-01-01

    Protein arginine methyltransferase 6 (PRMT6) catalyses asymmetric dimethylation of histone H3 at arginine 2 (H3R2me2a), which has been shown to impede the deposition of histone H3 lysine 4 trimethylation (H3K4me3) by blocking the binding and activity of the MLL1 complex. Importantly, the genomic occurrence of H3R2me2a has been found to coincide with histone H3 lysine 27 trimethylation (H3K27me3), a repressive histone mark generated by the Polycomb repressive complex 2 (PRC2). Therefore, we investigate here a putative crosstalk between PRMT6- and PRC-mediated repression in a cellular model of neuronal differentiation. We show that PRMT6 and subunits of PRC2 as well as PRC1 are bound to the same regulatory regions of rostral HOXA genes and that they control the differentiation-associated activation of these genes. Furthermore, we find that PRMT6 interacts with subunits of PRC1 and PRC2 and that depletion of PRMT6 results in diminished PRC1/PRC2 and H3K27me3 occupancy and in increased H3K4me3 levels at these target genes. Taken together, our data uncover a novel, additional mechanism of how PRMT6 contributes to gene repression by cooperating with Polycomb proteins. PMID:26848759

  16. Transcriptome analysis reveals global expression changes in an industrial L-lysine producer of Corynebacterium glutamicum.

    PubMed

    Hayashi, Mikiro; Ohnishi, Junko; Mitsuhashi, Satoshi; Yonetani, Yoshiyuki; Hashimoto, Shin-Ichi; Ikeda, Masato

    2006-02-01

    Toward the elucidation of advanced mechanisms of L-lysine production by Corynebacterium glutamicum, a highly developed industrial strain B-6 was analyzed from the viewpoint of gene expression. Northern blot analysis showed that the lysC gene encoding aspartokinase, the key enzyme of L-lysine biosynthesis, was up-regulated by several folds in strain B-6, while no repression mechanism exists in L-lysine biosynthesis of this bacterium. To analyze the underlying mechanisms of the up-regulation, we compared the transcriptome between strain B-6 and its parental wild-type, finding that not only lysC but also many other amino acid-biosynthetic genes were up-regulated in the producer. These results suggest that a certain global regulatory mechanism is involved in the industrial levels of L-lysine production. PMID:16495679

  17. epsilon-Poly-L: -lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase.

    PubMed

    Hamano, Y; Nicchu, I; Shimizu, T; Onji, Y; Hiraki, J; Takagi, H

    2007-09-01

    Streptomyces albulus NBRC14147 produces epsilon-poly-L: -lysine (epsilon-PL), which is an amino acid homopolymer antibiotic. Despite the commercial importance of epsilon-PL, limited information is available regarding its biosynthesis; the L: -lysine molecule is directly utilized for epsilon-PL biosynthesis. In most bacteria, L: -lysine is biosynthesized by an aspartate pathway. Aspartokinase (Ask), which is the first enzyme in this pathway, is subject to complex regulation such as through feedback inhibition by the end-product amino acids such as L: -lysine and/or L: -threonine. S. albulus NBRC14147 can produce a large amount of epsilon-PL (1-3 g/l). We therefore suspected that Ask(s) of S. albulus could be resistant to feedback inhibition to provide sufficient L: -lysine for epsilon-PL biosynthesis. To address this hypothesis, in this study, we cloned the ask gene from S. albulus and investigated the feedback inhibition of its gene product. As predicted, we revealed the feedback resistance of the Ask; more than 20% relative activity of Ask was detected in the assay mixture even with extremely high concentrations of L: -lysine and L: -threonine (100 mM each). We further constructed a mutated ask gene for which the gene product Ask (M68V) is almost fully resistant to feedback inhibition. The homologous expression of Ask (M68V) further demonstrated the increase in epsilon-PL productivity. PMID:17611754

  18. Dysregulated expression of arginine metabolic enzymes in human intestinal tissues of necrotizing enterocolitis and response of CaCO2 cells to bacterial components.

    PubMed

    Leung, Kam Tong; Chan, Kathy Yuen Yee; Ma, Terence Ping Yuen; Yu, Jasmine Wai Sum; Tong, Joanna Hung Man; Tam, Yuk Him; Cheung, Hon Ming; To, Ka Fai; Lam, Hugh Simon; Lee, Kim Hung; Li, Karen; Ng, Pak Cheung

    2016-03-01

    The small intestine is the exclusive site of arginine synthesis in neonates. Low levels of circulating arginine have been associated with the occurrence of necrotizing enterocolitis (NEC) but the mechanism of arginine dysregulation has not been fully elucidated. We aimed to investigate (i) expressional changes of arginine synthesizing and catabolic enzymes in human intestinal tissues of NEC, spontaneous intestinal perforation (SIP) and noninflammatory surgical conditions (Surg-CTL) and to investigate the (ii) mechanisms of arginine dysregulation and enterocyte proliferation upon stimulation by bacterial components, arginine depletion, ARG1 overexpression and nitric oxide (NO) supplementation. Our results showed that expressions of arginine synthesizing enzymes ALDH18A1, ASL, ASS1, CPS1, GLS, OAT and PRODH were significantly decreased in NEC compared with Surg-CTL or SIP tissues. Catabolic enzyme ARG1 was increased (>100-fold) in NEC tissues and histologically demonstrated to be expressed by infiltrating neutrophils. No change in arginine metabolic enzymes was observed between SIP and Surg-CTL tissues. In CaCO2 cells, arginine metabolic enzymes were differentially dysregulated by lipopolysaccharide or lipoteichoic acid. Depletion of arginine reduced cell proliferation and this phenomenon could be partially rescued by NO. Overexpression of ARG1 also reduced enterocyte proliferation. We provided the first expressional profile of arginine metabolic enzymes at the tissue level of NEC. Our findings suggested that arginine homeostasis was severely disturbed and could be triggered by inflammatory responses of enterocytes and infiltrating neutrophils as well as bacterial components. Such reactions could reduce arginine and NO, resulting in mucosal damage. The benefit of arginine supplementation for NEC prophylaxis merits further clinical evaluation. PMID:26895666

  19. Tuning interionic interaction by rationally controlling solution pH for highly selective colorimetric sensing of arginine.

    PubMed

    Qian, Qin; Hao, Jie; Ma, Wenjie; Yu, Ping; Mao, Lanqun

    2016-04-01

    Direct selective sensing of arginine in central nervous systems remains very essential to understanding of the molecular basis of some physiological events. This study presents the first demonstration on a simple yet effective method for arginine sensing with gold nanoparticles (Au-NPs) as the signal readout. The rationale for the method is based on the pH-dependent feature of the interionic interaction between cysteine and arginine. At pH 6.0, cysteine can only interact with arginine through the ion-pair interaction and such interaction can lead to the changes in both the solution color and UV-vis spectrum of the cysteine-protected Au-NPs upon the addition of arginine. These changes are further developed into an analytical strategy for effective sensing of arginine by rationally controlling the pH values of Au-NP dispersions with the ratio of the absorbance at 650 nm (A 650) to that at 520 nm (A 520) (A 650/A 520) as a parameter for analysis. The method is responsive to arginine without the interference from other species in the cerebral system; under the optimized conditions, the A 650/A 520 values are linear with the concentration of arginine within a concentration range from 0.80 to 64 μM, yet remain unchanged with the addition of other kinds of amino acids or the species in the central nervous system into the Au-NPs dispersion containing cysteine. The method demonstrated here is reliable and robust and could thus be used for detection of the increase of arginine in central nervous systems. Graphical Abstract A simple yet highly selective method for arginine sensing with gold nanoparticles (Au-NPs) as the signal readout was developed based on the interionic interaction between cysteine and arginine. PMID:26800978

  20. Whole body nitric oxide synthesis in healthy men determined from [15N] arginine-to-[15N]citrulline labeling.

    PubMed Central

    Castillo, L; Beaumier, L; Ajami, A M; Young, V R

    1996-01-01

    The rates of whole body nitric oxide (NO) synthesis, plasma arginine flux, and de novo arginine synthesis and their relationships to urea production, were examined in a total of seven healthy adults receiving an L-amino acid diet for 6 days. NO synthesis was estimated by the rate of conversion of the [15N] guanidino nitrogen of arginine to plasma [15N] ureido citrulline and compared with that based on urinary nitrite (NO2-)/nitrate (NO3-) excretion. Six subjects received on dietary day 7, a 24-hr (12-hr fed/12-hr fasted) primed, constant, intravenous infusion of L-[guanidino-15N2]arginine and [13C]urea. A similar investigation was repeated with three of these subjects, plus an additional subject, in which they received L-[ureido-13C]citrulline, to determine plasma citrulline fluxes. The estimated rates (mean +/- SD) of NO synthesis over a period of 24 hr averaged 0.96 +/- 0.1 mumol .kg-1.hr-1 and 0.95 +/- 0.1 mumol.kg-1.hr-1, for the [15N]citrulline and the nitrite/nitrate methods, respectively. About 15% of the plasma arginine turnover was associated with urea formation and 1.2% with NO formation. De novo arginine synthesis averaged 9.2 +/- 1.4 mumol. kg-1.hr-1, indicating that approximately 11% of the plasma arginine flux originates via conversion of plasma citrulline to arginine. Thus, the fraction of the plasma arginine flux associated with NO and also urea synthesis in healthy humans is small, although the plasma arginine compartment serves as a significant precursor pool (54%) for whole body NO formation. This tracer model should be useful for exploring these metabolic relationships in vivo, under specific pathophysiologic states where the L-arginine-NO pathway might be altered. Images Fig. 4 PMID:8876157

  1. A Jump-from-Cavity Pyrophosphate Ion Release Assisted by a Key Lysine Residue in T7 RNA Polymerase Transcription Elongation

    PubMed Central

    Da, Lin-Tai; E, Chao; Duan, Baogen; Zhang, Chuanbiao; Zhou, Xin; Yu, Jin

    2015-01-01

    Pyrophosphate ion (PPi) release during transcription elongation is a signature step in each nucleotide addition cycle. The kinetics and energetics of the process as well as how it proceeds with substantial conformational changes of the polymerase complex determine the mechano-chemical coupling mechanism of the transcription elongation. Here we investigated detailed dynamics of the PPi release process in a single-subunit RNA polymerase (RNAP) from bacteriophage T7, implementing all-atom molecular dynamics (MD) simulations. We obtained a jump-from-cavity kinetic model of the PPi release utilizing extensive nanosecond MD simulations. We found that the PPi release in T7 RNAP is initiated by the PPi dissociation from two catalytic aspartic acids, followed by a comparatively slow jump-from-cavity activation process. Combining with a number of microsecond long MD simulations, we also found that the activation process is hindered by charged residue associations as well as by local steric and hydrogen bond interactions. On the other hand, the activation is greatly assisted by a highly flexible lysine residue Lys472 that swings its side chain to pull PPi out. The mechanism can apply in general to single subunit RNA and DNA polymerases with similar molecular structures and conserved key residues. Remarkably, the flexible lysine or arginine residue appears to be a universal module that assists the PPi release even in multi-subunit RNAPs with charge facilitated hopping mechanisms. We also noticed that the PPi release is not tightly coupled to opening motions of an O-helix on the fingers domain of T7 RNAP according to the microsecond MD simulations. Our study thus supports the Brownian ratchet scenario of the mechano-chemical coupling in the transcription elongation of the single-subunit polymerase. PMID:26599007

  2. A Jump-from-Cavity Pyrophosphate Ion Release Assisted by a Key Lysine Residue in T7 RNA Polymerase Transcription Elongation.

    PubMed

    Da, Lin-Tai; E, Chao; Duan, Baogen; Zhang, Chuanbiao; Zhou, Xin; Yu, Jin

    2015-11-01

    Pyrophosphate ion (PPi) release during transcription elongation is a signature step in each nucleotide addition cycle. The kinetics and energetics of the process as well as how it proceeds with substantial conformational changes of the polymerase complex determine the mechano-chemical coupling mechanism of the transcription elongation. Here we investigated detailed dynamics of the PPi release process in a single-subunit RNA polymerase (RNAP) from bacteriophage T7, implementing all-atom molecular dynamics (MD) simulations. We obtained a jump-from-cavity kinetic model of the PPi release utilizing extensive nanosecond MD simulations. We found that the PPi release in T7 RNAP is initiated by the PPi dissociation from two catalytic aspartic acids, followed by a comparatively slow jump-from-cavity activation process. Combining with a number of microsecond long MD simulations, we also found that the activation process is hindered by charged residue associations as well as by local steric and hydrogen bond interactions. On the other hand, the activation is greatly assisted by a highly flexible lysine residue Lys472 that swings its side chain to pull PPi out. The mechanism can apply in general to single subunit RNA and DNA polymerases with similar molecular structures and conserved key residues. Remarkably, the flexible lysine or arginine residue appears to be a universal module that assists the PPi release even in multi-subunit RNAPs with charge facilitated hopping mechanisms. We also noticed that the PPi release is not tightly coupled to opening motions of an O-helix on the fingers domain of T7 RNAP according to the microsecond MD simulations. Our study thus supports the Brownian ratchet scenario of the mechano-chemical coupling in the transcription elongation of the single-subunit polymerase. PMID:26599007

  3. Engineering a Lysine-ON Riboswitch for Metabolic Control of Lysine Production in Corynebacterium glutamicum.

    PubMed

    Zhou, Li-Bang; Zeng, An-Ping

    2015-12-18

    Riboswitches are natural RNA elements that regulate gene expression by binding a ligand. Here, we demonstrate the possibility of altering a natural lysine-OFF riboswitch from Eschericia coli (ECRS) to a synthetic lysine-ON riboswitch and using it for metabolic control. To this end, a lysine-ON riboswitch library was constructed using tetA-based dual genetic selection. After screening the library, the functionality of the selected lysine-ON riboswitches was examined using a report gene, lacZ. Selected lysine-ON riboswitches were introduced into the lysE gene (encoding a lysine transport protein) of Corynebacterium glutamicum and used to achieve dynamic control of lysine transport in a recombinant lysine-producing strain, C. glutamicum LPECRS, which bears a deregulated aspartokinase and a lysine-OFF riboswitch for dynamic control of the enzyme citrate synthase. Batch fermentation results of the strains showed that the C. glutamicum LPECRS strain with an additional lysine-ON riboswitch for the control of lysE achieved a 21% increase in the yield of lysine compared to that of the C. glutamicum LPECRS strain and even a 89% increase in yield compared to that of the strain with deregulated aspartokinase. This work provides a useful approach to generate lysine-ON riboswitches for C. glutamicum metabolic engineering and demonstrates for the first time a synergetic effect of lysine-ON and -OFF riboswitches for improving lysine production in this industrially important microorganism. The approach can be used to dynamically control other genes and can be applied to other microorganisms. PMID:26300047

  4. Role of a helix B lysine residue in the photoactive site in channelrhodopsins.

    PubMed

    Li, Hai; Govorunova, Elena G; Sineshchekov, Oleg A; Spudich, John L

    2014-04-15

    In most studied microbial rhodopsins two conserved carboxylic acid residues (the homologs of Asp-85 and Asp-212 in bacteriorhodopsin) and an arginine residue (the homolog of Arg-82) form a complex counterion to the protonated retinylidene Schiff base, and neutralization of the negatively charged carboxylates causes red shifts of the absorption maximum. In contrast, the corresponding neutralizing mutations in some relatively low-efficiency channelrhodopsins (ChRs) result in blue shifts. These ChRs do not contain a lysine residue in the second helix, conserved in higher efficiency ChRs (Lys-132 in the crystallized ChR chimera). By action spectroscopy of photoinduced channel currents in HEK293 cells and absorption spectroscopy of detergent-purified pigments, we found that in tested ChRs the Lys-132 homolog controls the direction of spectral shifts in the mutants of the photoactive site carboxylic acid residues. Analysis of double mutants shows that red spectral shifts occur when this Lys is present, whether naturally or by mutagenesis, and blue shifts occur when it is replaced with a neutral residue. A neutralizing mutation of the Lys-132 homolog alone caused a red spectral shift in high-efficiency ChRs, whereas its introduction into low-efficiency ChR1 from Chlamydomonas augustae (CaChR1) caused a blue shift. Taking into account that the effective charge of the carboxylic acid residues is a key factor in microbial rhodopsin spectral tuning, these findings suggest that the Lys-132 homolog modulates their pKa values. On the other hand, mutation of the Arg-82 homolog that fulfills this role in bacteriorhodopsin caused minimal spectral changes in the tested ChRs. Titration revealed that the pKa of the Asp-85 homolog in CaChR1 lies in the alkaline region unlike in most studied microbial rhodopsins, but is substantially decreased by introduction of a Lys-132 homolog or neutralizing mutation of the Asp-212 homolog. In the three ChRs tested the Lys-132 homolog also alters

  5. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate.

    PubMed

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  6. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate

    PubMed Central

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  7. Arginine Relieves the Inflammatory Response and Enhances the Casein Expression in Bovine Mammary Epithelial Cells Induced by Lipopolysaccharide

    PubMed Central

    Wu, Tianyou; Wang, Chao; Ding, Luoyang; Shen, Yizhao; Cui, Huihui; Wang, Mengzhi; Wang, Hongrong

    2016-01-01

    As one of functional active amino acids, L-arginine holds a key position in immunity. However, the mechanism that arginine modulates cow mammary inflammatory response in ruminant is unclear. Therefore, this study was conducted to investigate the effects of L-arginine on inflammatory response and casein expression after challenging the bovine mammary epithelial cells (BMECs) with lipopolysaccharide (LPS). The cells were divided into four groups, stimulated with or without LPS (10 μg/mL) and treated with or without arginine (100 μg/mL) for 12 h. The concentration of proinflammatory cytokines, inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and Toll-like receptor 4 (TLR4) signaling pathways as well as the casein was determined. The results showed that arginine reduced the LPS-induced production like IL-1β, IL-6, TNF-α, and iNOS. Though the expression of NF-κB was attenuated and the mTOR signaling pathway was upregulated, arginine had no effect on TLR4 expression. In addition, our results show that the content of β-casein and the total casein were enhanced after arginine was supplemented in LPS-induced BMECs. In conclusion, arginine could relieve the inflammatory reaction induced by LPS and enhance the concentration of β-casein and the total casein in bovine mammary epithelial cells. PMID:27110069

  8. Mitochondrial transporters for ornithine and related amino acids: a review.

    PubMed

    Monné, Magnus; Miniero, Daniela Valeria; Daddabbo, Lucia; Palmieri, Luigi; Porcelli, Vito; Palmieri, Ferdinando

    2015-09-01

    Among the members of the mitochondrial carrier family, there are transporters that catalyze the translocation of ornithine and related substrates, such as arginine, homoarginine, lysine, histidine, and citrulline, across the inner mitochondrial membrane. The mitochondrial carriers ORC1, ORC2, and SLC25A29 from Homo sapiens, BAC1 and BAC2 from Arabidopsis thaliana, and Ort1p from Saccharomyces cerevisiae have been biochemically characterized by transport assays in liposomes. All of them transport ornithine and amino acids with side chains terminating at least with one amine. There are, however, marked differences in their substrate specificities including their affinity for ornithine (KM values in the mM to μM range). These differences are most likely reflected by minor differences in the substrate binding sites of these carriers. The physiological role of the above-mentioned mitochondrial carriers is to link several metabolic pathways that take place partly in the cytosol and partly in the mitochondrial matrix and to provide basic amino acids for mitochondrial translation. In the liver, human ORC1 catalyzes the citrulline/ornithine exchange across the mitochondrial inner membrane, which is required for the urea cycle. Human ORC1, ORC2, and SLC25A29 are likely to be involved in the biosynthesis and transport of arginine, which can be used as a precursor for the synthesis of NO, agmatine, polyamines, creatine, glutamine, glutamate, and proline, as well as in the degradation of basic amino acids. BAC1 and BAC2 are implicated in some processes similar to those of their human counterparts and in nitrogen and amino acid metabolism linked to stress conditions and the development of plants. Ort1p is involved in the biosynthesis of arginine and polyamines in yeast. PMID:26002808

  9. Fluorometric enzymatic assay of l-arginine.

    PubMed

    Stasyuk, Nataliya; Gayda, Galina; Yepremyan, Hasmik; Stepien, Agnieszka; Gonchar, Mykhailo

    2017-01-01

    The enzymes of l-arginine (further - Arg) metabolism are promising tools for elaboration of selective methods for quantitative Arg analysis. In our study we propose an enzymatic method for Arg assay based on fluorometric monitoring of ammonia, a final product of Arg splitting by human liver arginase I (further - arginase), isolated from the recombinant yeast strain, and commercial urease. The selective analysis of ammonia (at 415nm under excitation at 360nm) is based on reaction with o-phthalaldehyde (OPA) in the presence of sulfite in alkali medium: these conditions permit to avoid the reaction of OPA with any amino acid. A linearity range of the fluorometric arginase-urease-OPA method is from 100nM to 6μМ with a limit of detection of 34nM Arg. The method was used for the quantitative determination of Arg in the pooled sample of blood serum. The obtained results proved to be in a good correlation with the reference enzymatic method and literature data. The proposed arginase-urease-OPA method being sensitive, economical, selective and suitable for both routine and micro-volume formats, can be used in clinical diagnostics for the simultaneous determination of Arg as well as urea and ammonia in serum samples. PMID:27450117

  10. Arginine: A Potent Prey Attractant to Predatory Newts in Mountain Streams

    NASA Astrophysics Data System (ADS)

    Ferrer, R. P.; Zimmer, R. K.

    2005-05-01

    Chemoreception of aquatic organisms has been well-studied in the laboratory, but rarely in the field. The California newt, Taricha torosa, in natural stream habitats is an excellent animal for exploring behavioral responses to prey odors. Here, we selected 13 amino acids for field bioassays based on their concentrations in prey tissue extracts. Bioassays were calibrated for stimulus dilution by means of fluorescent dye releases and flow-through spectrofluorometry. Moreover, hydrodynamic properties of stream flows were determined using an electromagnetic current meter. Of all amino acids tested, only arginine, alanine and glycine were significantly attractive (relative to stream water controls). These three substances caused free-ranging newts to turn upstream and swim towards the odor sources. Additional experiments showed that arginine was the most effective attractant, evoking plume-tracking behavior at concentrations as low as 10 nM. In subsequent trials, nine arginine analogs were tested, but each compound failed to elicit a significant response. Even subtle changes to arginine, such as the addition of a single carbon to the side chain, destroyed all bioactivity. Within its natural habitat, the California newt thus exhibits keen sensitivity and narrow tuning to the free amino acid, arginine, a chemical signal of its prey.

  11. Role of L-arginine in the biological effects of blue light

    NASA Astrophysics Data System (ADS)

    Makela, Anu M.

    2005-11-01

    Arginine, a semi-essential amino acid, and metabolites of arginine exert multiple biological effects. It has been known that arginine causes the release of various hormones such as insulin, glucagon, growth hormone, prolactin, and adrenal catecholamines. Arginine infusion also produces vasodilation, and in the kidney increased plasma flow accompanied by increases in glomerular filtration rate (GFR). Recent studies have showed that blue and red light irradiation in vitro and in vivo can increase production of nitric oxide (NO), superoxide anion, and related reactive oxygen species (ROS). These then can modulate the production and secretion of several cytokines and other mediators and play an important role as regulatory mediators in signaling processes which can then modulate the production, mobilization and homing of stem cells. It is proposed that some of the therapeutic effects of light can be considered to be due to the changes in the metabolism of L-arginine. The regulation of L-arginine turnover by the use of light at blue wavelengths between 400nm and 510nm can be the explanation for some of the observed effects of blue light: lowering of blood pressure, pain killing effect, regulating insulin production, anti-inflammatory action, and possible effects on the release and homing of stem cells.

  12. Evaluation of the Effects of Charged Amino Acids on Uncontrolled Seizures

    PubMed Central

    Ebrahimi, Hossein Ali; Ebrahimi, Saeed

    2015-01-01

    Introduction. Epilepsy is one of the most common diseases of the central nervous system. The prevalence of epilepsy throughout the world is 0.5 to 1%, and the same rate is 7.8 per 1000 in Kerman. Almost 20 to 30% of epileptic patients do not respond properly to common medications. The present study investigated patients who did not respond to common and, even in some cases, adjuvant therapies, with two seizures or more per week, regardless of the type of the inflicted epilepsy. Methodology. The participants of the present double-blind study were randomly selected into three 10-member groups of uncontrolled epileptic patients (arginine, glutamic acid, and lysine). The patients used amino acid powder dissolved in water (three times the daily need) every day for two weeks before breakfast. The number of seizures was recorded one week prior to commencing amino acid use, as well as the first and the second weeks subsequent to use. Results. A total of 32 patients were studied in three groups. The decline rates of seizures were 53%, 41%, and 13%, and the P value was 0.013, 0.027, and 0.720, respectively. Conclusion. Administration of the charged amino acids, arginine, and glutamic acid can decrease the seizures of patients suffering from uncontrolled epilepsy. PMID:26240759

  13. The scent of danger: arginine as an olfactory cue of reduced predation risk.

    PubMed

    Ferrer, Ryan P; Zimmer, Richard K

    2007-05-01

    Animal perception of chemosensory cues is a function of ecological context. Larvae of the California newt (Taricha torosa), for example, exhibit predator-avoidance behavior in response to a chemical from cannibalistic adults. The poison tetrodotoxin (TTX), well known as an adult chemical defense, stimulates larval escape to refuges. Although they are cannibals, adult newts feed preferentially on worms (Eisenia rosea) over conspecific young. Hence, larval avoidance reactions to TTX are suppressed in the presence of odor from these alternative prey. The free amino acid, arginine, is abundant in fluids emitted by injured worms. Here, we demonstrate that arginine is a natural suppressant of TTX-stimulated larval escape behavior. Compared to a tapwater control, larvae initiated vigorous swimming in response to 10(-7) mol l(-1) TTX. This excitatory response was eliminated when larval nasal cavities were blocked with an inert gel, but not when gel was placed on the forehead (control). In additional trials, a binary mixture of arginine and 10(-7) mol l(-1) TTX failed to induce larval swimming. The inhibitory effect of arginine was, however, dose dependent. An arginine concentration as low as 0.3-times that of TTX was significantly suppressant. Further analysis showed that suppression by arginine of TTX-stimulated behavior was eliminated by altering the positively-charged guanidinium moiety, but not by modifying the carbon chain, carboxyl group, or amine group. These results are best explained by a mechanism of competitive inhibition between arginine and TTX for common, olfactory receptor binding sites. Although arginine alone has no impact on larval behavior, it nevertheless signals active adult predation on alternative prey, and hence, reduced cannibalism risk. PMID:17488940

  14. Relations among arginine, citrulline, ornithine, and leucine kinetics in adult burn patients.

    PubMed

    Yu, Y M; Ryan, C M; Burke, J F; Tompkins, R G; Young, V R

    1995-11-01

    Plasma fluxes of arginine, citrulline, and leucine, and the rate of conversion of labeled citrulline to arginine (Qcit-->arg) were determined in nine severely burned patients (mean: 56% body surface burn area, mean 10 d postinjury) while they received total parenteral nutrition (TPN) including an L-amino acid mixture that supplied a generous amount of nitrogen (mean: 0.39 +/- 0.02 g.kg-1.d-1). Plasma fluxes were also studied in these patients during a basal state (low-dose intravenous glucose) by using a primed, 4-h constant intravenous tracer-infusion protocol. Stable-nuclide labeled tracers were L-[15N-15N-guanidino,5,5,2H2]arginine; L-[13C-ureido]citrulline; L-[1-13C]leucine; and NaH13CO3 (prime only), with blood and expired air samples drawn at intervals to determine isotopic abundance of arginine, citrulline, ornithine, and alpha-ketoisocaproate (KIC; for leucine) in plasma and 13CO2 in breath. Leucine kinetics (flux and disappearance into protein synthesis) confirmed the anticipated higher protein turnover in these burn patients compared with healthy control subjects. The plasma arginine fluxes were correspondingly higher in burn patients than in healthy control subjects. However, the citrulline flux and rate of conversion of citrulline to arginine were not higher than values obtained in our laboratories in healthy adult subjects. We hypothesize that the higher rates of arginine loss from the body after burn injury would need to be balanced by an appropriate exogenous intake of preformed arginine to maintain protein homeostasis and promote recovery from this catabolic condition. PMID:7572742

  15. Arginine-rhamnosylation as new strategy to activate translation elongation factor P.

    PubMed

    Lassak, Jürgen; Keilhauer, Eva C; Fürst, Maximilian; Wuichet, Kristin; Gödeke, Julia; Starosta, Agata L; Chen, Jhong-Min; Søgaard-Andersen, Lotte; Rohr, Jürgen; Wilson, Daniel N; Häussler, Susanne; Mann, Matthias; Jung, Kirsten

    2015-04-01

    Ribosome stalling at polyproline stretches is common and fundamental. In bacteria, translation elongation factor P (EF-P) rescues such stalled ribosomes, but only when it is post-translationally activated. In Escherichia coli, activation of EF-P is achieved by (R)-β-lysinylation and hydroxylation of a conserved lysine. Here we have unveiled a markedly different modification strategy in which a conserved arginine of EF-P is rhamnosylated by a glycosyltransferase (EarP) using dTDP-L-rhamnose as a substrate. This is to our knowledge the first report of N-linked protein glycosylation on arginine in bacteria and the first example in which a glycosylated side chain of a translation elongation factor is essential for function. Arginine-rhamnosylation of EF-P also occurs in clinically relevant bacteria such as Pseudomonas aeruginosa. We demonstrate that the modification is needed to develop pathogenicity, making EarP and dTDP-L-rhamnose-biosynthesizing enzymes ideal targets for antibiotic development. PMID:25686373

  16. Arginine-rhamnosylation as new strategy to activate translation elongation factor P

    PubMed Central

    Lassak, Jürgen; Keilhauer, Eva C; Fürst, Maximilian; Wuichet, Kristin; Gödeke, Julia; Starosta, Agata L; Chen, Jhong-Min; Søgaard-Andersen, Lotte; Rohr, Jürgen; Wilson, Daniel N; Häussler, Susanne; Mann, Matthias; Jung, Kirsten

    2015-01-01

    Ribosome stalling at polyproline stretches is common and fundamental. In bacteria, translation elongation factor P (EF-P) rescues such stalled ribosomes, but only when it is post-translationally activated. In Escherichia coli, activation of EF-P is achieved by (R)-β-lysinylation and hydroxylation of a conserved lysine. Here we have unveiled a markedly different modification strategy in which a conserved arginine of EF-P is rhamnosylated by a glycosyltransferase (EarP) using dTDP-l-rhamnose as a substrate. This is to our knowledge the first report of N-linked protein glycosylation on arginine in bacteria and the first example in which a glycosylated side chain of a translation elongation factor is essential for function. Arginine-rhamnosylation of EF-P also occurs in clinically relevant bacteria such as Pseudomonas aeruginosa. We demonstrate that the modification is needed to develop pathogenicity, making EarP and dTDP-l-rhamnose-biosynthesizing enzymes ideal targets for antibiotic development. PMID:25686373

  17. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV-100 GeV

    NASA Astrophysics Data System (ADS)

    Ahmadi, Morteza; Lunscher, Nolan; Yeow, John T. W.

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10-200 keV and 1-20 MeV) in which X-ray imaging and radiotherapy machines work.

  18. Identification of lysine 346 as a functionally important residue for pyridoxal 5'-phosphate binding and catalysis in lysine 2, 3-aminomutase from Bacillus subtilis.

    PubMed

    Chen, D; Frey, P A

    2001-01-16

    Lysine 2,3-aminomutase (LAM) catalyzes the interconversion of L-lysine and L-beta-lysine. The enzyme contains pyridoxal 5'-phosphate (PLP) and a [4Fe-4S] center and requires S-adenosylmethionine (SAM) for activity. The hydrogen transfer is mediated by the 5'-deoxyadenosyl radical generated in a reaction of the iron-sulfur cluster with SAM. PLP facilitates the radical rearrangement by forming a lysine-PLP aldimine, in which the imine group participates in the isomerization mechanism. We here report the identification of lysine 346 as important for PLP binding and catalysis. Reduction of LAM with NaBH(4) rapidly inactivated the enzyme with concomitant UV/visible spectrum changes characteristic of reduction of an aldimine formed between PLP and lysine. Following reduction with NaBH(4) and proteolysis with trypsin, a single phosphopyridoxyl peptide of 36 amino acid residues was identified by reverse-phase liquid chromatography/mass spectrometry (LC/MS). The purified phosphopyridoxyl peptide exhibited an absorption band at 325 nm, and its identity was further confirmed by tandem mass spectrometry (MS/MS) sequencing. The bound PLP is linked to lysine 346 in a PGGGGK (PLP) structure. The sequence of this binding motif is conserved in LAMs from Bacillus and Clostridium and other homologous proteins but is distinct from the PLP-binding motifs found in other PLP enzymes. The function of lysine 346 was further studied by site-directed mutagenesis. The purified K346Q mutant was inactive, and its content of PLP was only approximately 15% of that of the wild-type enzyme. The data indicate that the formation of the aldimine linkage between lysine 346 and PLP is important for LAM catalysis. Sequences similar to the PLP-binding motifs in other enzymes were also present in LAM. However, lysine residues within these motifs neither are the PLP-binding sites in LAM nor are directly involved in LAM catalysis. This study represents the first comprehensive investigation of PLP binding in

  19. Potent and sustained cellular inhibition of miR-122 by lysine-derivatized peptide nucleic acids (PNA) and phosphorothioate locked nucleic acid (LNA)/2'-O-methyl (OMe) mixmer anti-miRs in the absence of transfection agents

    PubMed Central

    Torres, Adrian G.; Threlfall, Richard N.

    2011-01-01

    Efficient cell delivery of antisense oligonucleotides (ONs) is a key issue for their potential therapeutic use. It has been shown recently that some ONs can be delivered into cells without the use of transfection agents (gymnosis), but this generally requires cell incubation over several days and high amounts of ONs (micromolar concentrations). Here we have targeted microRNA 122 (miR-122), a small non-coding RNA involved in regulation of lipid metabolism and in the replication of hepatitis C virus, with ONs of different chemistries (anti-miRs) by gymnotic delivery in cell culture. Using a sensitive dual-luciferase reporter assay, anti-miRs were screened for their ability to enter liver cells gymnotically and inhibit miR-122 activity. Efficient miR-122 inhibition was obtained with cationic PNAs and 2'-O-methyl (OMe) and Locked Nucleic Acids (LNA)/OMe mixmers containing either phosphodiester (PO) or phosphorothioate (PS) linkages at sub-micromolar concentrations when incubated with cells for just 4 hours. Furthermore, PNA and PS-containing anti-miRs were able to sustain miR-122 inhibitory effects for at least 4 days. LNA/OMe PS anti-miRs were the most potent anti-miR chemistry tested in this study, an ON chemistry that has been little exploited so far as anti-miR agents towards therapeutics. PMID:22567190

  20. The fatty acid, amino acid, and mineral composition of Egyptian goose meat as affected by season, gender, and portion.

    PubMed

    Geldenhuys, Greta; Hoffman, Louwrens C; Muller, Nina

    2015-05-01

    With the current absence of scientific information on the nutritive aspects it is essential to investigate the fatty acid, mineral, and amino acid composition of Egyptian geese as well as the factors of influence. The forage vs. grain based diets of Egyptian geese during certain periods of the yr leads to variation in the content of the key fatty acids such as oleic acid, linoleic acid, and α-linolenic acid. The differences in these fatty acids results in variation between the n-6/n-3 ratios of the seasons; the portions from winter (July) are within the recommendations (ratio <5) and those from summer (November) not. This study indicates that Egyptian goose meat does not only vary in nutritional composition but season may also have a substantial effect on the flavor profile and ultimate uniformity of the meat. The season and portion effects were, however, interlinked but the general tendency shows that the portions, especially the breast and thigh do differ concerning the major fatty acids. No substantial differences were found in the mineral composition of the breast portion on account of season and gender; however there were some variation in certain amino acids such as lysine and arginine due to season/diet. This research provides essential information that should be considered not only regarding the everyday consumption of Egyptian goose meat but the potential utilization and ultimate consistency of this meat product. PMID:25810407