Sample records for acids phenolic compounds

  1. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.

    PubMed

    Silva, I; Campos, F M; Hogg, T; Couto, J A

    2011-08-01

    To evaluate the effect of wine phenolic compounds on the production of volatile phenols (4-vinylphenol [4VP] and 4-ethylphenol [4EP]) from the metabolism of p-coumaric acid by lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus collinoides and Pediococcus pentosaceus were grown in MRS medium supplemented with p-coumaric acid, in the presence of different phenolic compounds: nonflavonoids (hydroxycinnamic and benzoic acids) and flavonoids (flavonols and flavanols). The inducibility of the enzymes involved in the p-coumaric acid metabolism was studied in resting cells. The hydroxycinnamic acids tested stimulated the capacity of LAB to synthesize volatile phenols. Growth in the presence of hydroxycinnamic acids, especially caffeic acid, induced the production of 4VP by resting cells. The hydroxybenzoic acids did not significantly affect the behaviour of the studied strains. Some of the flavonoids showed an effect on the production of volatile phenols, although strongly dependent on the bacterial species. Relatively high concentrations (1 g l(-1) ) of tannins inhibited the synthesis of 4VP by Lact. plantarum. Hydroxycinnamic acids were the main compounds stimulating the production of volatile phenols by LAB. The results suggest that caffeic and ferulic acids induce the synthesis of the cinnamate decarboxylase involved in the metabolism of p-coumaric acid. On the other hand, tannins exert an inhibitory effect. This study highlights the capacity of LAB to produce volatile phenols and that this activity is markedly influenced by the phenolic composition of the medium. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Phenolic compounds and fatty acid composition of organic and conventional grown pecan kernels

    USDA-ARS?s Scientific Manuscript database

    In this study, differences in contents of phenolic compounds and fatty acids in pecan kernels of organically versus conventionally grown pecan cultivars (‘Desirable’, ‘Cheyenne’, and ‘Wichita’) were evaluated. Although we were able to identify nine phenolic compounds (gallic acid, catechol, catechin...

  3. Phenolic compounds in Ross Sea water

    NASA Astrophysics Data System (ADS)

    Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea; Barbante, Carlo; Corami, Fabiana; Kehrwald, Natalie; Capodaglio, Gabriele

    2016-04-01

    Phenolic compounds are semi-volatile organic compounds produced during biomass burning and lignin degradation in water. In atmospheric and paleoclimatic ice cores studies, these compounds are used as biomarkers of wood combustion and supply information on the type of combusted biomass. Phenolic compounds are therefore indicators of paleoclimatic interest. Recent studies of Antarctic aerosols highlighted that phenolic compounds in Antarctica are not exclusively attributable to biomass burning but also derive from marine sources. In order to study the marine contribution to aerosols we developed an analytical method to determine the concentration of vanillic acid, vanillin, p-coumaric acid, syringic acid, isovanillic acid, homovanillic acid, syringaldehyde, acetosyringone and acetovanillone present in dissolved and particle phases in Sea Ross waters using HPLC-MS/MS. The analytical method was validated and used to quantify phenolic compounds in 28 sea water samples collected during a 2012 Ross Sea R/V cruise. The observed compounds were vanillic acid, vanillin, acetovanillone and p-coumaric acid with concentrations in the ng/L range. Higher concentrations of analytes were present in the dissolved phase than in the particle phase. Sample concentrations were greatest in the coastal, surficial and less saline Ross Sea waters near Victoria Land.

  4. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants.

    PubMed

    Tian, Ye; Liimatainen, Jaana; Alanne, Aino-Liisa; Lindstedt, Anni; Liu, Pengzhan; Sinkkonen, Jari; Kallio, Heikki; Yang, Baoru

    2017-04-01

    Phenolic compounds of berries and leaves of thirteen various plant species were extracted with aqueous ethanol and analyzed with UPLC-DAD-ESI-MS, HPLC-DAD, and NMR. The total content of phenolics was consistently higher in leaves than in berries (25-7856 vs. 28-711mg/100g fresh weight). Sea buckthorn leaves were richest in phenolic compounds (7856mg/100g f.w.) with ellagitannins as the dominant compound class. Sea buckthorn berries contained mostly isorhamnetin glycosides, whereas quercetin glycosides were typically abundant in most samples investigated. Anthocyanins formed the dominating group of phenolics in most dark-colored berries but phenolic acid derivatives were equally abundant in saskatoon and chokeberry berries. Caffeoylquinic acids constituted 80% of the total phenolic content (1664mg/100g f.w.) in bilberry leaves. B-type procyanidins and caffeoylquinic acids were the major phenolic compounds in hawthorn and rowanberry, respectively. Use of leaves of some species with prunasin, tyramine and β-p-arbutin, may be limited in food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    PubMed

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  6. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  7. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    PubMed Central

    Alberto, María R.; de Nadra, María C. Manca; Arena, Mario E.

    2012-01-01

    The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI) of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC), found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively) and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively). ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37–40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds. PMID:24031815

  8. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-ting

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) includingmore » 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.« less

  9. Quenching of fluorescence of phenolic compounds and modified humic acids by cadmium ions.

    PubMed

    Tchaikovskaya, O N; Nechaev, L V; Yudina, N V; Mal'tseva, E V

    2016-08-01

    The interaction of a number of phenolic compounds, being 'model fragments' of humic acids, with cadmium ions was investigated. The fluorescence quenching method was used to determine the complexation constants of these compounds with cadmium ions. It was established that bonding of phenolic compounds by cadmium ions at рН 7 is weak and reaches a maximum value of 15% for interaction with resorcinol. It was demonstrated that modification of humic acids by the mechanoactivation method increases by three times bonding of cadmium ions, which is caused by strengthening the acid properties of carboxyl and hydroxyl groups at the aromatic ring. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    PubMed

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Lipid encapsulated phenolic compounds by fluidization

    USDA-ARS?s Scientific Manuscript database

    Phenolic compounds exhibit antioxidant and antimicrobial activities with applications as functional food and feed additives. Ferulic acid, a phenolic compound present in grain crops and lignocellulose biomass, was encapsulated with saturated triglycerides using a laboratory fluidizer. Stability of t...

  12. Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds.

    PubMed

    Slatnar, Ana; Klancar, Urska; Stampar, Franci; Veberic, Robert

    2011-11-09

    Fresh figs were subjected to two different drying processes: sun-drying and oven-drying. To assess their effect on the nutritional and health-related properties of figs, sugars, organic acids, single phenolics, total phenolics, and antioxidant activity were determined before and after processing. Samples were analyzed three times in a year, and phenolic compounds were determined using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). In figs, monomer sugars predominate, which is important nutritional information, and the content of sugars as well as organic acids in fresh figs was lower than in dried fruits. However, the best sugar/organic acid ratio was measured after the sun-drying process. Analysis of individual phenolic compounds revealed a higher content of all phenolic groups determined after the oven-drying process, with the exception of cyanidin-3-O-rutinoside. Similarly, higher total phenolic content and antioxidant activity were detected after the drying process. With these results it can be concluded that the differences in analyzed compounds in fresh and dried figs are significant. The differences between the sun-dried and oven-dried fruits were determined in organic acids, sugars, chlorogenic acid, catechin, epicatechin, kaempferol-3-O-glucoside, luteolin-8-C-glucoside, and total phenolic contents. The results indicate that properly dried figs can be used as a good source of phenolic compounds.

  13. Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria.

    PubMed

    Mellegård, H; Stalheim, T; Hormazabal, V; Granum, P E; Hardy, S P

    2009-07-01

    To identify the phenolic compounds in the leaves of Sphagnum papillosum and examine their antibacterial activity at pH appropriate for the undissociated forms. Bacterial counts of overnight cultures showed that whilst growth of Staphylococcus aureus 50084 was impaired in the presence of milled leaves, the phenol-free fraction of holocellulose of S. papillosum had no bacteriostatic effect. Liquid chromatography-mass spectrometry analysis of an acetone-methanol extract of the leaves detected eight phenolic compounds. Antibacterial activity of the four dominating phenols specific to Sphagnum leaves, when assessed in vitro as minimal inhibitory concentrations (MICs), were generally >2.5 mg ml(-1). MIC values of the Sphagnum-specific compound 'sphagnum acid' [p-hydroxy-beta-(carboxymethyl)-cinnamic acid] were >5 mg ml(-1). No synergistic or antagonistic effects of the four dominating phenols were detected in plate assays. Sphagnum-derived phenolics exhibit antibacterial activity in vitro only at concentrations far in excess of those found in the leaves. We have both identified the phenolic compounds in S. papillosum and assessed their antibacterial activity. Our data indicate that phenolic compounds in isolation are not potent antibacterial agents and we question their potency against food-borne pathogens.

  14. Experimental design for extraction and quantification of phenolic compounds and organic acids in white "Vinho Verde" grapes.

    PubMed

    Dopico-García, M S; Valentão, P; Guerra, L; Andrade, P B; Seabra, R M

    2007-01-30

    An experimental design was applied for the optimization of extraction and clean-up processes of phenolic compounds and organic acids from white "Vinho Verde" grapes. The developed analytical method consisted in two steps: first a solid-liquid extraction of both phenolic compounds and organic acids and then a clean-up step using solid-phase extraction (SPE). Afterwards, phenolic compounds and organic acids were determined by high-performance liquid chromatography (HPLC) coupled to a diode array detector (DAD) and HPLC-UV, respectively. Plackett-Burman design was carried out to select the significant experimental parameters affecting both the extraction and the clean-up steps. The identified and quantified phenolic compounds were: quercetin-3-O-glucoside, quercetin-3-O-rutinoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-glucoside, quercetin, kaempferol and epicatechin. The determined organic acids were oxalic, citric, tartaric, malic, shikimic and fumaric acids. The obtained results showed that the most important variables were the temperature (40 degrees C) and the solvent (acid water at pH 2 with 5% methanol) for the extraction step and the type of sorbent (C18 non end-capped) for the clean-up step.

  15. Recycling of phenolic compounds in Borneo's tropical peat swamp forests.

    PubMed

    Yule, Catherine M; Lim, Yau Yan; Lim, Tse Yuen

    2018-02-07

    Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings. The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves. Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

  16. Dynamics in the concentrations of health-promoting compounds: lupeol, mangiferin and different phenolic acids during postharvest ripening of mango fruit.

    PubMed

    Vithana, Mekhala Dk; Singh, Zora; Johnson, Stuart K

    2018-03-01

    Mango fruit (Mangifera indica L.) is renowned for its pleasant taste and as a rich source of health beneficial compounds. The aim of this study was to investigate the changes in concentrations of health-promoting compounds, namely ascorbic acid, carotenoids, antioxidants, lupeol, mangiferin, total phenols and individual phenolic acids, as well as ethylene production and respiration rates during climacteric ripening in 'Kensington Pride' and 'R2E2' mango fruit. The climacteric ethylene and respiration peaks were noted on the third day of the fruit ripening period. The concentrations of total carotenoids in the pulp, total antioxidants in both pulp and peel, and total phenols of the peel, lupeol and mangiferin were significantly elevated, whereas the concentration of ascorbic acid declined during post-climacteric ripening. Gallic, chlorogenic and vanillic acids were identified as the major phenolic acids in both pulp and peel of 'Kensington Pride' and 'R2E2' mangoes. The concentrations of phenolic acids (gallic, chlorogenic, vanillic, ferulic and caffeic acids) also increased during the post-climacteric phase. The concentrations of all phenolic compounds were several-fold higher in the peel than pulp. Mangoes at post-climacteric ripening phase offer the highest concentrations of health-promoting compounds. Peel, at this stage of fruit ripening, could be exploited as a good source for extraction of these compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Extracts of Phenolic Compounds from Seeds of Three Wild Grapevines—Comparison of Their Antioxidant Activities and the Content of Phenolic Compounds

    PubMed Central

    Weidner, Stanisław; Powałka, Anna; Karamać, Magdalena; Amarowicz, Ryszard

    2012-01-01

    Phenolic compounds were extracted from three wild grapevine species: Vitis californica, V. riparia and V. amurensis seeds using 80% methanol or 80% acetone. The total content of phenolic compounds was determined utilizing the Folin-Ciocalteu’s phenol reagent while the content of tannins was assayed with the vanillin and BSA precipitation methods. Additionally, the DPPH free radical scavenging activity and the reduction power of the extracts were measured. The RP-HPLC method was applied to identify the phenolic compounds in the extracts, such as phenolic acids and catechins. The seeds contained large amounts of tannins, catechins and gallic acid and observable quantities of p-coumaric acid. The total content of phenolic compounds and tannins was similar in the extracts from V. californica and V. riparia seeds. However, the total content of total phenolic compounds and tannins in the extracts from V. californica and V. riperia seeds were about two-fold higher than that in the extracts from V. amurensis seeds. Extracts from seeds of the American species (V. californica and V. riparia) contained similarly high concentrations of tannins, whereas extracts from seeds of V. amurensis had approximately half that amount of these compounds. The content of catechin and epicatechin was similar in all extracts. The highest DPPH• anti-radical scavenging activity was observed in the acetonic and methanolic extracts of V. californica and V. riparia seeds— while the acetonic extract from the V. californica seeds was the strongest reducing agent. PMID:22489161

  18. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    PubMed Central

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  19. The effect of heat treatment on phenolic compounds and fatty acid composition of Brazilian nut and hazelnut.

    PubMed

    Özcan, Mehmet Musa; Juhaimi, Fahad Al; Uslu, Nurhan

    2018-01-01

    Brazilian peanut oil content increased with oven heating (65.08%) and decreased with microwave heating process (61.00%). While the phenolic content of untreated Brazilian nut was the highest of 68.97 mg GAE/100 g. Hazelnut (Sivri) contained the highest antioxidant activity (86.52%, untreated). Results reflected significantly differences between the antioxidant effect and total phenol contents of Brazilian nut and hazelnut (Sivri) kernels heated in the oven and microwave. Microwave heating caused a decrease in antioxidant activity of hazelnut. Gallic acid, 3,4-dihydroxybenzoic acid and (+)- and catechin were the main phenolic compounds of raw Brazilian nut with the value of 5.33, 4.33 and 4.88 mg/100 g, respectively, while the dominant phenolics of raw hazelnut (Sivri) kernels were gallic acid (4.81 mg/100 g), 3,4-dihydroxybenzoic acid (4.61 mg/100 g), (+)-catechin (6.96 mg/100 g) and 1,2-dihydroxybenzene (4.14 mg/100 g). Both conventional and microwave heating caused minor reduction in phenolic compounds. The main fatty acids of Brazilian nut oil were linoleic (44.39-48.18%), oleic (27.74-31.74%), palmitic (13.09-13.70%) and stearic (8.20-8.91%) acids, while the dominant fatty acids of hazelnut (Sivri) oil were oleic acid (80.84%), respectively. The heating process caused noticeable change in fatty acid compositions of both nut oils.

  20. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  1. Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius

    DOE PAGES

    Aston, John E.; Apel, William A.; Lee, Brady D.; ...

    2015-11-05

    Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence ofmore » 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. As a result, this work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.« less

  2. Profiling of the Major Phenolic Compounds and Their Biosynthesis Genes in Sophora flavescens Aiton.

    PubMed

    Lee, Jeongyeo; Jung, Jaeeun; Son, Seung-Hyun; Kim, Hyun-Bi; Noh, Young-Hee; Min, Sung Ran; Park, Kun-Hyang; Kim, Dae-Soo; Park, Sang Un; Lee, Haeng-Soon; Kim, Cha Young; Kim, Hyun-Soon; Lee, Hyeong-Kyu; Kim, HyeRan

    2018-01-01

    Sophorae Radix ( Sophora flavescens Aiton) has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone) and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers) was significantly different. trans-Cinnamic acid and p -coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid) and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin) were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally.

  3. Profiling of the Major Phenolic Compounds and Their Biosynthesis Genes in Sophora flavescens Aiton

    PubMed Central

    Son, Seung-Hyun; Kim, Hyun-Bi; Noh, Young-Hee; Min, Sung Ran; Park, Kun-Hyang; Kim, Dae-Soo; Lee, Haeng-Soon; Kim, Cha Young; Lee, Hyeong-Kyu

    2018-01-01

    Sophorae Radix (Sophora flavescens Aiton) has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone) and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers) was significantly different. trans-Cinnamic acid and p-coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid) and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin) were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally. PMID:29686587

  4. Phenolic compounds participating in mulberry juice sediment formation during storage.

    PubMed

    Zou, Bo; Xu, Yu-Juan; Wu, Ji-Jun; Yu, Yuan-Shan; Xiao, Geng-Sheng

    The stability of clarified juice is of great importance in the beverage industry and to consumers. Phenolic compounds are considered to be one of the main factors responsible for sediment formation. The aim of this study is to investigate the changes in the phenolic content in clarified mulberry juice during storage. Hence, separation, identification, quantification, and analysis of the changes in the contents of phenolic compounds, both free and bound forms, in the supernatant and sediments of mulberry juice, were carried out using high performance liquid chromatographic system, equipped with a photo-diode array detector (HPLC-PDA) and HPLC coupled with quadrupole-time of flight mass spectrometric (HPLC-QTOF-MS/MS) techniques. There was an increase in the amount of sediment formed over the period of study. Total phenolic content of supernatant, as well as free phenolic content in the extracts of the precipitate decreased, whereas the bound phenolic content in the sediment increased. Quantitative estimation of individual phenolic compounds indicated high degradation of free anthocyanins in the supernatant and sediment from 938.60 to 2.30 mg/L and 235.60 to 1.74 mg/g, respectively. A decrease in flavonoids in the supernatant was also observed, whereas the contents of bound forms of gallic acid, protocatechuic acid, caffeic acid, and rutin in the sediment increased. Anthocyanins were the most abundant form of phenolics in the sediment, and accounted for 67.2% of total phenolics after 8 weeks of storage. These results revealed that phenolic compounds, particularly anthocyanins, were involved in the formation of sediments in mulberry juice during storage.

  5. Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits

    PubMed Central

    Oszmiański, Jan; Nowicka, Paulina; Teleszko, Mirosława; Wojdyło, Aneta; Cebulak, Tomasz; Oklejewicz, Krzysztof

    2015-01-01

    Twenty three different wild blackberry fruit samples were assessed regarding their phenolic profiles and contents (by LC/MS quadrupole time-of-flight (QTOF) and antioxidant activity (ferric reducing ability of plasma (FRAP) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS)) by two different extraction methods. Thirty four phenolic compounds were detected (8 anthocyanins, 15 flavonols, 3 hydroxycinnamic acids, 6 ellagic acid derivatives and 2 flavones). In samples, where pressurized liquid extraction (PLE) was used for extraction, a greater increase in yields of phenolic compounds was observed, especially in ellagic acid derivatives (max. 59%), flavonols (max. 44%) and anthocyanins (max. 29%), than after extraction by the ultrasonic technique extraction (UAE) method. The content of phenolic compounds was significantly correlated with the antioxidant activity of the analyzed samples. Principal component analysis (PCA) revealed that the PLE method was more suitable for the quantitative extraction of flavonols, while the UAE method was for hydroxycinnamic acids. PMID:26132562

  6. Antibacterial Potential of Northeastern Portugal Wild Plant Extracts and Respective Phenolic Compounds

    PubMed Central

    Ferreira, Isabel C. F. R.; Barros, Lillian; Carvalho, Ana Maria; Soares, Graça; Henriques, Mariana

    2014-01-01

    The present work aims to assess the antibacterial potential of phenolic extracts, recovered from plants obtained on the North East of Portugal, and of their phenolic compounds (ellagic, caffeic, and gallic acids, quercetin, kaempferol, and rutin), against bacteria commonly found on skin infections. The disk diffusion and the susceptibility assays were used to identify the most active extracts and phenolic compounds. The effect of selected phenolic compounds on animal cells was assessed by determination of cellular metabolic activity. Gallic acid had a higher activity, against gram-positive (S. epidermidis and S. aureus) and gram-negative bacteria (K. pneumoniae) at lower concentrations, than the other compounds. The caffeic acid, also, showed good antibacterial activity against the 3 bacteria used. The gallic acid was effective against the 3 bacteria without causing harm to the animal cells. Gallic and caffeic acid showed a promising applicability as antibacterial agents for the treatment of infected wounds. PMID:24804249

  7. Stability of lipid encapsulated phenolic acid particles

    USDA-ARS?s Scientific Manuscript database

    Phenolic compounds such as ferulic acid and p-coumaric acids are potential bioactive additives for use in animal feeds to replace current antioxidants and antimicrobial compounds. These compounds are ubiquitous in plants and may be obtained from commodity grain crops and waste biomass. Encapsulation...

  8. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils.

    PubMed

    Al Juhaimi, Fahad; Özcan, Mehmet Musa; Uslu, Nurhan; Ghafoor, Kashif

    2018-01-01

    In this study, the effect of drying temperature on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol content of citrus seeds and oils were studied. Kinnow mandarin seed, dried at 60 °C, exhibited the highest antioxidant activity. Orlendo orange seed had the maximum total phenolic content and α-tocopherol content, with a value of 63.349 mg/100 g and 28.085 mg/g (control samples), respectively. The antioxidant activity of Orlendo orange seed (63.349%) was higher than seeds of Eureka lemon (55.819%) and Kinnow mandarin (28.015%), while the highest total phenolic content was found in seeds of Kinnow mandarin, followed by Orlendo orange and Eureka lemon (113.132). 1.2-Dihydroxybenzene (13.171), kaempferol (10.780), (+)-catechin (9.341) and isorhamnetin (7.592) in mg/100 g were the major phenolic compounds found in Kinnow mandarin. Among the unsaturated fatty acids, linoleic acid was the most abundant acid in all oils, which varied from 44.4% (dried at 80 °C) to 46.1% (dried at 70 °C), from 39.0% (dried at 60 °C) to 40.0% (dried at 70 °C). The total phenolic content, antioxidant activity and phenolic compounds of citrus seeds and tocopherol content of seed oils were significantly affected by drying process and varied depending on the drying temperature.

  9. Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice.

    PubMed

    Stalmach, Angelique; Edwards, Christine A; Wightman, Jolynne D; Crozier, Alan

    2013-01-01

    After acute ingestion of 350 ml of Concord grape juice, containing 528 μmol of (poly)phenolic compounds, by healthy volunteers, a wide array of phase I and II metabolites were detected in the circulation and excreted in urine. Ingestion of the juice by ileostomists resulted in 40% of compounds being recovered intact in ileal effluent. The current study investigated the fate of these undigested (poly)phenolic compounds on reaching the colon. This was achieved through incubation of the juice using an in vitro model of colonic fermentation and through quantification of catabolites produced after colonic degradation and their subsequent absorption prior to urinary excretion by healthy subjects and ileostomy volunteers. A total of 16 aromatic and phenolic compounds derived from colonic metabolism of Concord grape juice (poly)phenolic compounds were identified by GC-MS in the faecal incubation samples. Thirteen urinary phenolic acids and aromatic compounds were excreted in significantly increased amounts after intake of the juice by healthy volunteers, whereas only two of these compounds were excreted in elevated amounts by ileostomists. The production of phenolic acids and aromatic compounds by colonic catabolism contributed to the bioavailability of Concord grape (poly)phenolic compounds to a much greater extent than phase I and II metabolites originating from absorption in the upper gastrointestinal tract. Catabolic pathways are proposed, highlighting the impact of colonic microbiota and subsequent phase II metabolism prior to excretion of phenolic compounds derived from (poly)phenolic compounds in Concord grape juice, which pass from the small to the large intestine.

  10. Phenolic Compounds in the Potato and Its Byproducts: An Overview

    PubMed Central

    Akyol, Hazal; Riciputi, Ylenia; Capanoglu, Esra; Caboni, Maria Fiorenza; Verardo, Vito

    2016-01-01

    The potato (Solanum tuberosum L.) is a tuber that is largely used for food and is a source of different bioactive compounds such as starch, dietary fiber, amino acids, minerals, vitamins, and phenolic compounds. Phenolic compounds are synthetized by the potato plant as a protection response from bacteria, fungi, viruses, and insects. Several works showed that these potato compounds exhibited health-promoting effects in humans. However, the use of the potato in the food industry submits this vegetable to different processes that can alter the phenolic content. Moreover, many of these compounds with high bioactivity are located in the potato’s skin, and so are eliminated as waste. In this review the most recent articles dealing with phenolic compounds in the potato and potato byproducts, along with the effects of harvesting, post-harvest, and technological processes, have been reviewed. Briefly, the phenolic composition, main extraction, and determination methods have been described. In addition, the “alternative” food uses and healthy properties of potato phenolic compounds have been addressed. PMID:27240356

  11. Bioavailability of the ferulic acid-derived phenolic compounds of a rice bran enzymatic extract and their activity against superoxide production.

    PubMed

    Perez-Ternero, Cristina; Macià, Alba; de Sotomayor, Maria Alvarez; Parrado, Juan; Motilva, Maria-Jose; Herrera, Maria-Dolores

    2017-06-21

    Rice bran is an exceptional source of such antioxidant molecules as γ-oryzanol and ferulic acid, but their bioavailability and metabolism within this matrix remain unknown. The aims of this work were to describe the oral bioavailability and metabolic pathways of the ferulic acid-derived phenolic compounds contained in a rice bran enzymatic extract (RBEE), and to determine its effect on NADPH oxidase activity. Wistar rats were administered with RBEE and sacrificed at different times over a period of 24 h to obtain plasma. An additional group was used for collection of urine and faeces over a period of 48 h. The phenolic metabolites were determined by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS), and plasma pharmacokinetic parameters were calculated. In parallel, aortic rings were incubated in the plasma of rats sacrificed 30 min after RBEE gavage, or in the presence of RBEE, ferulic acid or γ-oryzanol. Endothelin-1-induced superoxide production was recorded by lucigenin-enhanced luminescence. Twenty-five ferulic acid metabolites showing biphasic behaviour were found in the plasma, most of which were found in the urine as well, while in the faeces, colonic metabolism led to simpler phenolic compounds. Superoxide production was abrogated by phenolic compound-enriched plasma and by RBEE and ferulic acid, thus showing the biological potential of RBEE as a nutraceutical ingredient.

  12. Isolation and identification of plant phenolic compounds in birch leaves: Air pollution stress and leaf phenolics

    NASA Astrophysics Data System (ADS)

    Loponen, Jyrki Mikael

    Chromatographic (analytical and preparative HPLC), chemical (hydrolysis) and spectroscopic (UV, 1H NMR, 13C NMR and MS) techniques proved to be suitable tools for the structure identification of plant phenolic compounds. More than 30 individual phenolic compounds were detected and quantified. Detailed information of the structures of individual compounds was determined after isolation from birch leaves. Ten flavonoid glycosides were identified. Two of them, myricetin-3-O-α-L-(acetyl)-rhamnopyranoside and quercetin-3-O-α-L-(4/prime'-O-acetyl)- rhamnopyranoside, have been rarely found in birch leaves. Further, some characterized major phenolics with non- flavonoid structures in our study were 1-O-galloyl- β-D-(2-O-acetyl)-glucopyranose, gallic, chlorogenic, neochlorogenic, cis- and trans-forms of 3- and 5-p-coumaroylquinic acids. The presence of gallotannin group was evidenced by strong positive correlations between concentrations of these gallotannins (preliminary identified by HPLC and UV spectra) and the protein precipitation capacity of extracts. Content of gallotannins decreased with leaf growth and maturation. It is known that concentrations of phenolic compounds regularly increase in slowly growing stressed plants and therefore, it is natural that they are also sensitive to different forms of air pollution. Total content and the contents of some individual phenolics correlated negatively with the distance from the pollution source in our study area. In addition to comparing absolute concentrations of compounds in question, the within-tree correlations or within-tree variations of the relevant compounds between polluted and control areas were an alternative approach. Differences in pairwise correlations between the investigated leaf phenolic compounds indicated the competition between some gallotannins and p-coumaroylquinic acids on the polluted but not on the control site. Air pollution seems to be a stress factor for birch trees associated with

  13. Effect of cultivar and variety on phenolic compounds and antioxidant activity of cherry wine.

    PubMed

    Xiao, Zuobing; Fang, Lingling; Niu, Yunwei; Yu, Haiyan

    2015-11-01

    To compare the influence of cultivar and variety on the phenolic compounds and antioxidant activity (AA) of cherry wines, total phenolic (TP), total flavonoid (TF), total anthocyanin (TA), total tannin (TT), five individual phenolic acids, and AA were determined. An ultra-performance liquid chromatography tandem mass spectrometry (HPLC-DAD/ESI-MS) method was developed for the determination of gallic acid (GAE), p-hydroxybenzoic acid (PHB), chlorogenic acid (CHL), vanillic acid (VAN), and caffeic acid (CAF). A principal component analysis (PCA) and a cluster analysis (CA) were used to analyze differences related to cultivar and variety. The TP, TF, TA, TT, and AA of samples sourced from the Shandong province of China were higher than those from the Jiangsu province. The PCA and CA results showed that phenolic compounds in cherry wines were closely related to cultivar and variety and that cultivar had more influence on the phenolic compounds of cherry wines than variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching.

    PubMed

    Shen, Yao; Feng, Zijin; Yang, Min; Zhou, Zhe; Han, Sumei; Hou, Jinjun; Li, Zhenwei; Wu, Wanying; Guo, De-An

    2018-04-01

    Phenolic acids are the major water-soluble components in Salvia miltiorrhiza (>5%). According to previous studies, many of them contribute to the cardiovascular effects and antioxidant effects of S. miltiorrhiza. Polymeric phenolic acids can be considered as the tanshinol derived metabolites, e.g., dimmers, trimers, and tetramers. A strategy combined with tanshinol-based expected compounds prediction, total ion chromatogram filtering, fragment ion searching, and parent list-based multistage mass spectrometry acquisition by linear trap quadropole-orbitrap Velos mass spectrometry was proposed to rapid profile polymeric phenolic acids in S. miltiorrhiza. More than 480 potential polymeric phenolic acids could be screened out by this strategy. Based on the fragment information obtained by parent list-activated data dependent multistage mass spectrometry acquisition, 190 polymeric phenolic acids were characterized by comparing their mass information with literature data, and 18 of them were firstly detected from S. miltiorrhiza. Seven potential compounds were tentatively characterized as new polymeric phenolic acids from S. miltiorrhiza. This strategy facilitates identification of polymeric phenolic acids in complex matrix with both selectivity and sensitivity, which could be expanded for rapid discovery and identification of compounds from complex matrix. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Phenolic compounds can delay the oxidation of polyunsaturated fatty acids and the growth of Listeria monocytogenes: structure-activity relationships.

    PubMed

    Pernin, Aurélia; Dubois-Brissonnet, Florence; Roux, Stéphanie; Masson, Marine; Bosc, Véronique; Maillard, Marie-Noëlle

    2018-04-20

    Phenolic compounds present a potential solution to ensuring food quality and safety. Indeed, they can limit oxidation reactions and bacterial growth in food products. Although their antioxidant mechanisms of action are well known, their antibacterial ones are less well understood, especially in light of their chemical structures. The aim of this study was to first quantify both aspects of a series of natural phenolic compounds and then link these activities to their chemical structure. We evaluated antioxidant activity by measuring the capacity of phenolic compounds to delay free linoleic acid oxidation caused by the action of a hydrophilic azo-radical initiator (AAPH). We evaluated antibacterial activity by measuring the growth inhibition of Listeria monocytogenes and determining the non-inhibitory and minimum inhibitory concentrations for each compound. Compounds with ortho-diphenolic structures were the best antioxidants, whereas those belonging to the simple phenol category were the best antibacterial compounds. The physico-chemical properties of the compounds influenced both activities, but not in the same way. The chemical environment of the phenolic group and the presence of delocalization structures are the most important parameters for antioxidant activity, whereas the partition coefficient logP is one of the most important factors involved in antibacterial activity. This article is protected by copyright. All rights reserved.

  16. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    PubMed

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis).

    PubMed

    de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon

    2011-01-12

    The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.

  18. Effect of processing on phenolic acids composition and radical scavenging capacity of barley pasta.

    PubMed

    De Paula, Rosanna; Rabalski, Iwona; Messia, Maria Cristina; Abdel-Aal, El-Sayed M; Marconi, Emanuele

    2017-12-01

    Phenolic acids, total phenolics content and DPPH radical scavenging capacity in raw ingredients, fresh and dried spaghetti, and in uncooked and cooked spaghetti were evaluated and compared with semolina spaghetti as a reference. Ferulic acid was the major phenolic acid found in the free and bound phenolic extracts in all the investigated pasta samples. The addition of barley flour into pasta at incorporation levels of 30, 50 and 100% increased phenolic acids and total phenolics content. Pasta processing did not significantly affect the total phenolics content and free radical scavenging capacity, but a significant reduction in total phenolic acids measured by HPLC was found. Drying process differently affected individual phenolic compounds in the free and bound fractions, and thus, the total phenolic acids content. Free vanillic, caffeic and p-coumaric acids did not significantly change, while p-hydroxybenzoic and ferulic acids of the free extracts showed higher values compared to the corresponding fresh pasta. Cooking did not greatly affect total phenolic acids, more leading to conserving free and bound phenolic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of koji fermented phenolic compounds on the oxidative stability of fish miso.

    PubMed

    Giri, Anupam; Osako, Kazufumi; Okamoto, Akira; Okazaki, Emiko; Ohshima, Toshiaki

    2012-02-01

    In the present study, Aspergillus oryzae-inoculated koji inhibited lipid oxidation in fermented fish paste rich in polyunsaturated fatty acids following a long fermentation period. The fermentation of koji by A. oryzae liberated several bioactive phenolic compounds, including kojic acid and ferulic acid, which were the most abundant. A linear correlation between several phenolic compounds and their bioactive properties, including their radical-scavenging activity, reducing power, metal-chelating activity, and ability to inhibit linoleic acid oxidation was observed. This suggested an important role of koji phenolics in the oxidative stability of fermented fish paste. The activities of different carbohydrate-cleaving enzymes, including α-amylase, cellulase, and β-glucosidase, were positively correlated with the liberation of several phenolic compounds through koji fermentation. Thus, the application of koji offers a novel strategy to enhance the oxidative stability of newly developed fermented fish miso. Application of traditional Japanese koji fermentation technique to develop an aroma enriched fish meat bases seasoning has been established. Aspergillus oryzae-inoculated koji releases several carbohydrate-cleaving enzymes, including α-amylase, cellulose, and β-glucosidase, which led to the liberation of several phenolic compounds during fermentation. Improvement of oxidative stability of the fermented fish meat paste by koji phenolics suggests a useful strategy to uplift the value of different trash fish meat-based seasoning through proper utilization of the present technique. © 2012 Institute of Food Technologists®

  20. The impact of drying techniques on phenolic compound, total phenolic content and antioxidant capacity of oat flour tarhana.

    PubMed

    Değirmencioğlu, Nurcan; Gürbüz, Ozan; Herken, Emine Nur; Yıldız, Aysun Yurdunuseven

    2016-03-01

    In this study, the changes in phenolic composition, total phenolic content, and antioxidant capacity of tarhanas supplemented with oat flour (OF) at the levels of 20-100% (w/w) after three drying treatments (sun-, oven-, and microwave drying) were investigated. A total of seventeen phenolic standards have been screened in tarhanas, and the most abundant flavonol and phenolic acid compounds were kaempferol (23.62mg/g) and 3-hydroxy-4-metoxy cinnamic acid (9.60mg/g). The total phenolic content amount gradually increased with the addition of OF to tarhana, but decidedly higher total phenolic content was found in samples oven dried at 55°C as compared with other methods. The microwave- and oven dried tarhana samples showed higher TEACDPPH and TEACABTS values than those dried with the other methods, respectively, in higher OF amounts. Consequently, oven- and microwave-drying can be recommended to retain the highest for phenolic compounds as well as maximal antioxidant capacity in OF supplemented tarhana samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Phenolic Compounds of Cereals and Their Antioxidant Capacity.

    PubMed

    Van Hung, Pham

    2016-01-01

    Phenolic compounds play an important role in health benefits because of their highly antioxidant capacity. In this review, total phenolic contents (TPCs), phenolic acid profile and antioxidant capacity of the extracted from wheat, corn, rice, barley, sorghum, rye, oat, and millet, which have been recently reported, are summarized. The review shows clearly that cereals contain a number of phytochemicals including phenolics, flavonoids, anthocyanins, etc. The phytochemicals of cereals significantly exhibit antioxidant activity as measured by trolox equivalent antioxidant capacity (TEAC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging, reducing power, oxygen radical absorbance capacity (ORAC), inhibition of oxidation of human low-density lipoprotein (LDL) cholesterol and DNA, Rancimat, inhibition of photochemilumenescence (PCL), and iron(II) chelation activity. Thus, the consumption of whole grains is considered to have significantly health benefits in prevention from chronic diseases such as cardiovascular disease, diabetes, and cancer because of the contribution of phenolic compounds existed. In addition, the extracts from cereal brans are considered to be used as a source of natural antioxidants.

  2. Influence of Various Phenolic Compounds on Properties of Gelatin Film Prepared from Horse Mackerel Trachurus japonicus Scales.

    PubMed

    Le, Thuy; Maki, Hiroki; Okazaki, Emiko; Osako, Kazufumi; Takahashi, Kigen

    2018-06-15

    Influence of various phenolic compounds on physical properties and antioxidant activity of gelatin film from horse mackerel Trachurus japonicus scales was investigated. Tensile strength (TS) of the film was enhanced whereas elongation at break was declined by adding 1% to 5% phenolic compounds. Rutin was the most effective to improve the TS compared to the other tested phenolic compounds including ferulic acid, caffeic acid, gallic acid, and catechin. Gelatin films with the phenolic compounds showed the excellent UV barrier properties. FTIR spectra exhibited that wavenumber of amide-A band of films decreased with formation of hydrogen bonding between amino groups of gelatin and hydroxyl groups of the phenolic compounds. Gelatin film incorporated with rutin which has the largest number of hydroxyl groups among the tested compounds demonstrated the lowest wavenumber for the amide-A peak. It is indicated that hydroxyl groups contained in the phenolic compounds contribute to formation of hydrogen bonds involved in improvement of the mechanical properties of the films. The incorporation of the phenolic compounds with gelatin films also led to the increasing of total phenolic contents and DPPH radical scavenging activities. Thus, it is concluded that phenolic compounds can promote the quality of gelatin film. Properties of gelatin film derived from horse mackerel scales can be improved by adding of phenolic compounds. Phenolic compounds containing a large number of hydroxyl groups should be selected to enhance physical properties of the gelatin film. A biodegradable film prepared from horse mackerel gelatin incorporated with phenolic compounds, which has good physical properties and antioxidant properties, can solve environmental problems caused by synthetic plastic materials. © 2018 Institute of Food Technologists®.

  3. Effects of cooking methods on phenolic compounds in xoconostle (Opuntia joconostle).

    PubMed

    Cortez-García, Rosa María; Ortiz-Moreno, Alicia; Zepeda-Vallejo, Luis Gerardo; Necoechea-Mondragón, Hugo

    2015-03-01

    Xoconostle, the acidic cactus pear fruit of Opuntia joconostle of the Cactaceae family, is the source of several phytochemicals, such as betalain pigments and numerous phenolic compounds. The aim of the present study was to analyze the effect of four cooking procedures (i.e., boiling, grilling, steaming and microwaving) on the total phenolic content (TPC) and antioxidant activity (measured by ABTS, DPPH, reducing power, and BCBA) of xoconostle. In addition, HPLC-DAD analyses were performed to identify and quantify individual phenolic compounds. After microwaving and steaming xoconostle, the TPC remained the same that in fresh samples, whereas both grilling and boiling produced a significant, 20% reduction (p ≤ 0.05). Total flavonoids remained unchanged in boiled and grilled xoconostle, but steaming and microwaving increased the flavonoid content by 13 and 20%, respectively. Steaming and microwaving did not produce significant changes in the antioxidant activity of xoconostle, whereas boiling and grilling result in significant decreases. The phenolic acids identified in xoconostle fruits were gallic, vanillic, 4-hydroxybenzoic, syringic, ferulic and protocatechuic acids; the flavonoids identified were epicatechin, catechin, rutin, quercitrin, quercetin and kaempferol. Based on the results, steaming and microwaving are the most suitable methods for retaining the highest level of phenolic compounds and flavonoids in xoconostle.

  4. Analysis of Protein-Phenolic Compound Modifications Using Electrochemistry Coupled to Mass Spectrometry.

    PubMed

    Kallinich, Constanze; Schefer, Simone; Rohn, Sascha

    2018-01-29

    In the last decade, electrochemical oxidation coupled with mass spectrometry has been successfully used for the analysis of metabolic studies. The application focused in this study was to investigate the redox potential of different phenolic compounds such as the very prominent chlorogenic acid. Further, EC/ESI-MS was used as preparation technique for analyzing adduct formation between electrochemically oxidized phenolic compounds and food proteins, e.g., alpha-lactalbumin or peptides derived from a tryptic digestion. In the first step of this approach, two reactant solutions are combined and mixed: one contains the solution of the digested protein, and the other contains the phenolic compound of interest, which was, prior to the mixing process, electrochemically transformed to several oxidation products using a boron-doped diamond working electrode. As a result, a Michael-type addition led to covalent binding of the activated phenolic compounds to reactive protein/peptide side chains. In a follow-up approach, the reaction mix was further separated chromatographically and finally detected using ESI-HRMS. Compound-specific, electrochemical oxidation of phenolic acids was performed successfully, and various oxidation and reaction products with proteins/peptides were observed. Further optimization of the reaction (conditions) is required, as well as structural elucidation concerning the final adducts, which can be phenolic compound oligomers, but even more interestingly, quite complex mixtures of proteins and oxidation products.

  5. Mechanisms of action of phenolic compounds in olive.

    PubMed

    Rafehi, Haloom; Ververis, Katherine; Karagiannis, Tom C

    2012-06-01

    Olive oil, an oil rich in monounsaturated fatty acids (MUFCs) and minor constituents including phenolic compounds, is a major component of the Mediterranean diet. The potential health benefits of the Mediterranean diet were highlighted by the seminal Seven Countries Study, and more contemporary research has identified olive oil as a major element responsible for these effects. It is emerging that the phenolic compounds are the most likely candidates accounting for the cardioprotective and cancer preventative effects of extra virgin olive oil (EVOO). In particular, the phenolic compound, hydroxytyrosol has been identified as one of the most potent antioxidants found in olive oil. This review will briefly consider historical aspects of olive oil research and the biological properties of phenolic compounds in olive oil will be discussed. The focus of the discussion will be related to the mechanisms of action of hydroxytyrosol. Studies have demonstrated that hydroxytyrosol induces apoptosis and cell cycle arrest in cancer cells. Further, research has shown that hydroxytyrosol can prevent cardiovascular disease by reducing the expression of adhesion molecules on endothelial cells and preventing the oxidation of low-density lipoprotein (LDL). The molecular mechanisms accounting for these effects are reviewed.

  6. Enhancing charge storage of conjugated polymer electrodes with phenolic acids

    NASA Astrophysics Data System (ADS)

    Wagner, Michal; Rębiś, Tomasz; Inganäs, Olle

    2016-01-01

    We here present studies of electrochemical doping of poly(1-aminoanthraquinone) (PAAQ) films with three structurally different phenolic acids. The examined phenolic acids (sinapic, ferulic and syringic acid) were selected due to their resemblance to redox active groups, which can be found in lignin. The outstanding electrochemical stability of PAAQ films synthesized for this work enabled extensive cycling of phenolic acid-doped PAAQ films. Potentiodynamic and charge-discharge studies revealed that phenolic acid-doped PAAQ films exhibited enhanced capacitance in comparison to undoped PAAQ films, together with appearance of redox activity characteristics specific for each dopant. Electrochemical kinetic studies performed on microelectrodes affirmed the fast electron transfer for hydroquinone-to-quinone reactions with these phenolic compounds. These results imply the potential application of phenolic acids in cheap and degradable energy storage devices.

  7. Profiling of Phenolic Compounds and Antioxidant Activity of 12 Cruciferous Vegetables.

    PubMed

    Li, Zhifeng; Lee, Hui Wen; Liang, Xu; Liang, Dong; Wang, Qi; Huang, Dejian; Ong, Choon Nam

    2018-05-10

    The phenolic profiles of 12 cruciferous vegetables (pakchoi, choysum, Chinese cabbage, kailan, Brussels sprout, cabbage, cauliflower, broccoli, rocket salad, red cherry radish, daikon radish, and watercress) were studied with UHPLC-MS/MS. Antioxidant activity and total phenolic content (TPC) were also evaluated. A total of 74 phenolic compounds were identified, including 16 hydroxycinnamic acids and derivatives, and 58 flavonoids and derivatives. The main flavonoids identified were glycosylated quercetin, kaempferol and isorhamnetin, and the main hydroxycinnamic acids were ferulic, sinapic, caffeic and p -coumaric acids. Principal component analysis (PCA) revealed that the distribution of phenolic compounds in different genera of cruciferous vegetables was in accordance with their conventional taxonomy. The DPPH, ORAC and TPC values ranged from 1.11 to 9.54 µmoles Trolox equivalent/g FW, 5.34 to 32.92 µmoles Trolox equivalent/g FW, and 0.16 to 1.93 mg gallic acid equivalent/g FW respectively. Spearman’s correlation showed significant ( p < 0.05) positive correlations between TPC, flavonoids and antioxidant activity.

  8. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol.

    PubMed

    Lima, Valéria N; Oliveira-Tintino, Cícera D M; Santos, Enaide S; Morais, Luís P; Tintino, Saulo R; Freitas, Thiago S; Geraldo, Yuri S; Pereira, Raimundo L S; Cruz, Rafael P; Menezes, Irwin R A; Coutinho, Henrique D M

    2016-10-01

    The indiscriminate use of antimicrobial drugs has increased the spectrum of exposure of these organisms. In our studies, these phenolic compounds were evaluated: gallic acid, caffeic acid and pyrogallol. The antibacterial, antifungal and modulatory of antibiotic activities of these compounds were assayed using microdilution method of Minimum Inhibitory Concentration (MIC) to bacteria and Minimum Fungicide Concentration (MFC) to fungi. The modulation was made by comparisons of the MIC and MFC of the compounds alone and combined with drugs against bacteria and fungi respectively, using a sub-inhibitory concentration of 128 μg/mL of substances (MIC/8). All substances not demonstrated clinically relevant antibacterial activity with a MIC above ≥1024 μg/mL. As a result, we observed that the caffeic acid presented a potentiating antibacterial effect over the 3 groups of bacteria studied. Pyrogallol showed a synergistic effect with two of the antibiotics tested, but only against Staphylococcus aureus. In general, caffeic acid was the substance that presented with the greatest number of antibiotics and with the greatest number of bacteria. In relation to the antifungal activity of all the compounds, the verified results were ≥1024 μg/mL, not demonstrating significant activity. Regarding potentiation of the effect of fluconazole, was observed synergistic effect only when assayed against Candida tropicalis, with all substances. Therefore, as can be seen, the compounds presented as substances that can be promising potentiating agents of antimicrobial drugs, even though they do not have direct antibacterial and antifungal action. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Characterization of phenolic compounds of thorny and thornless blackberries.

    PubMed

    Kolniak-Ostek, Joanna; Kucharska, Alicja Z; Sokół-Łętowska, Anna; Fecka, Izabela

    2015-03-25

    The aim of this study was to identify and compare the contents of phenolic acids, tannins, anthocyanins, and flavonoid glycosides in thorny and thornless blackberries. Five thorny and nine thornless cultivars were used for this study. Thirty-five phenolic compounds were determined in the examined fruits, and one phenolic acid, three ellagic acid derivatives, one anthocyanin, and six flavonols were characterized for the first time in blackberries. The thornless fruits were characterized by a higher content of anthocyanins (mean = 171.23 mg/100 g FW), ellagitannins (mean = 3.65 mg/100 g FW), and ellagic acid derivatives (mean = 2.49 mg/100 g FW), in comparison to thorny ones. At the same time, in thorny fruits, the contents of hydroxycinnamic acids (mean = 1.42 mg/100 g FW) and flavonols (mean = 5.70 mg/100 g FW) were higher.

  10. Screening plant derived dietary phenolic compounds for bioactivity related to cardiovascular disease.

    PubMed

    Croft, Kevin D; Yamashita, Yoko; O'Donoghue, Helen; Shirasaya, Daishi; Ward, Natalie C; Ashida, Hitoshi

    2018-04-01

    The potential health benefits of phenolic acids found in food and beverages has been suggested from a number of large population studies. However, the mechanism of how these compounds may exert biological effects is less well established. It is also now recognised that many complex polyphenols in the diet are metabolised to simple phenolic acids which can be taken up in the circulation. In this paper a number of selected phenolic compounds have been tested for their bioactivity in two cell culture models. The expression and activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells and the uptake of glucose in muscle cells. Our data indicate that while none of the compounds tested had a significant effect on eNOS expression or activation in endothelial cells, several of the compounds increased glucose uptake in muscle cells. These compounds also enhanced the translocation of the glucose transporter GLUT4 to the plasma membrane, which may explain the observed increase in cellular glucose uptake. These results indicate that simple cell culture models may be useful to help understand the bioactivity of phenolic compounds in relation to cardiovascular protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of NaCl and soaking temperature on the phenolic compounds, α-tocopherol, γ-oryzanol and fatty acids of glutinous rice.

    PubMed

    Thammapat, Pornpisanu; Meeso, Naret; Siriamornpun, Sirithon

    2015-05-15

    Soaking is one of the important steps of the parboiling process. In this study, we investigated the effect of changes in different sodium chloride (NaCl) content (0%, 1.5% and 3.0% NaCl, w/v) of soaking media and soaking temperatures (30°C, 45°C and 60°C) on the phenolic compounds (α-tocopherol, γ-oryzanol) and on the fatty acids of glutinous rice, compared with unsoaked samples. Overall, the total phenolic content, total phenolic acids, γ-oryzanol, saturated fatty acid and mono-unsaturated fatty acid of the glutinous rice showed an increasing trend as NaCl content and soaking temperature increased, while α-tocopherol and polyunsaturated fatty acids decreased. Soaking at 3.0% NaCl provided the highest total phenolic content, total phenolic acids and γ-oryzanol (0.2mg GAE/g, 63.61 μg/g and 139.76 mg/100g, respectively) for the soaking treatments tested. Nevertheless, the amount of α-tocopherol and polyunsaturated fatty acid were found to be the highest (18.30/100g and 39.74%, respectively) in unsoaked rice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The influence of interactions among phenolic compounds on the antiradical activity of chokeberries (Aronia melanocarpa).

    PubMed

    Jakobek, Lidija; Seruga, Marijan; Krivak, Petra

    2011-06-01

    In the present work, interactions between phenolic compounds from chokeberries and their influence on the antiradical activity was studied. Three fractions were isolated from chokeberries containing different classes of phenolic compounds. The first fraction contained a major part of phenolic acids and flavonols, the second anthocyanins, and the third insoluble phenols and proanthocyanidins. The phenolic compound content was determined using high-performance liquid chromatography, and the antiradical activity using the DPPH test. In order to evaluate the effects of interactions between phenolic compounds on the antiradical activity, the antiradical activity of individual phenolic fractions was compared with that obtained by mixing phenolic fractions. Phenolic mixtures showed the decrease in the antiradical activity in comparison with the individual phenolic fractions. These results suggest the existence of complex interactions among phenolic compounds that caused the decrease of the antiradical activity. Interactions among chokeberry phenols promoted a negative synergism.

  13. Radiation induced chemical changes of phenolic compounds in strawberries

    NASA Astrophysics Data System (ADS)

    Breitfellner, F.; Solar, S.; Sontag, G.

    2003-06-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment.

  14. Influence of Fermentation with Different Lactic Acid Bacteria and in Vitro Digestion on the Biotransformation of Phenolic Compounds in Fermented Pomegranate Juices.

    PubMed

    Valero-Cases, Estefanía; Nuncio-Jáuregui, Nallely; Frutos, María José

    2017-08-09

    This study describes the effect of fermentation and the impact of simulated gastrointestinal digestion (SGD) of four fermented pomegranate juices with different lactic acid bacteria (LAB) on the biotransformation of phenolic compounds. The changes of the antioxidant capacity (AOC) and of LAB growth and survival in different fermented juices were also studied. Two new phenolic derivatives (catechin and α-punicalagin) were identified only in fermented juices. During SGD, the AOC increased together with the phenolic derivatives concentration mainly in the juices fermented with Lactobacillus. These derivatives were formed due to the LAB metabolism of the ellagitannins, epicatechin, and catechin after fermentation and during SGD. The FRAP assay performance might be associated with the degradation and biotransformation of catechin. The fermented pomegranate juices with these LAB increased the bioaccessibility of phenolic compounds, ensuring the survival of LAB after SGD, suggesting a possible prebiotic effect of phenolic compounds on LAB.

  15. Some phenolic compounds of extracts obtained from Origanum species growing in Turkey.

    PubMed

    Ozkan, Gülcan; Ozcan, Mehmet Musa

    2014-08-01

    Caffeic acid, rosmarinic acid, rutin, apigenin 7-O-glucoside, apigenin, and acesetin were the main phenolic compounds of Origanum onites extracts in all applications. While acesetin contents ranged from 133.59 mg/100 g (U1) to 437.25 mg/100 g (S3), rosmarinic acid changed between 215.94 mg/100 g (U4) and 1120.56 mg/100 g (S2) in Origanum vulgare L. subsp. hirtum (Link) Ietsw. Both rosmarinic acid and acesetin were not found in U5 application. Only caffeic acid (19.39 mg/100 g) was found in U5 application. Rosmarinic acid contents of O. onites extract changed between 158.62 mg/100 g (U5) and 799.87 mg/100 g (S2). Generally, dominant phenolic compound of Origanum extracts was rosmarinic acid compared with other extracts. In addition, methanol:water:acetic acid mixture (S2) (95:4.5:0.5) was found as the best application. Phenolic contents of extracts obtained with U series mixtures were found low.

  16. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

    PubMed

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly.

  17. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation

    PubMed Central

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11–16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18–22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9–13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly. PMID:26930190

  18. Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers' varieties in northeastern Portugal homegardens.

    PubMed

    Barros, Lillian; Dueñas, Montserrat; Pinela, José; Carvalho, Ana Maria; Buelga, Celestino Santos; Ferreira, Isabel C F R

    2012-09-01

    Tomato (Lycopersicon esculentum L.) is one of the most widely consumed fresh and processed vegetables in the world, and contains bioactive key components. Phenolic compounds are one of those components and, according to the present study, farmers' varieties of tomato cultivated in homegardens from the northeastern Portuguese region are a source of phenolic compounds, mainly phenolic acid derivatives. Using HPLC-DAD-ESI/MS, it was concluded that a cis p-coumaric acid derivative was the most abundant compound in yellow (Amarelo) and round (Batateiro) tomato varieties, while 4-O-caffeolyquinic acid was the most abundant in long (Comprido) and heart (Coração) varieties. The most abundant flavonoid was quercetin pentosylrutinoside in the four tomato varieties. Yellow tomato presented the highest levels of phenolic compounds (54.23 μg/g fw), including phenolic acids (43.30 μg/g fw) and flavonoids (10.93 μg/g fw). The phenolic compounds profile obtained for the studied varieties is different from other tomato varieties available in different countries, which is certainly related to genetic features, cultivation conditions, and handling and storage methods associated to each sample.

  19. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed).

    PubMed

    Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W

    2015-01-01

    Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free

  20. Identification and Phytotoxicity Assessment of Phenolic Compounds in Chrysanthemoides monilifera subsp. monilifera (Boneseed)

    PubMed Central

    Al Harun, Md Abdullah Yousuf; Johnson, Joshua; Uddin, Md Nazim; Robinson, Randall W.

    2015-01-01

    Chrysanthemoides monilifera subsp. monilifera (boneseed), a weed of national significance in Australia, threatens indigenous species and crop production through allelopathy. We aimed to identify phenolic compounds produced by boneseed and to assess their phytotoxicity on native species. Phenolic compounds in water and methanol extracts, and in decomposed litter-mediated soil leachate were identified using HPLC, and phytotoxicity of identified phenolics was assessed (repeatedly) through a standard germination bioassay on native Isotoma axillaris. The impact of boneseed litter on native Xerochrysum bracteatum was evaluated using field soil in a greenhouse. Collectively, we found the highest quantity of phenolic compounds in boneseed litter followed by leaf, root and stem. Quantity varied with extraction media. The rank of phenolics concentration in boneseed was in the order of ferulic acid > phloridzin > catechin > p-coumaric acid and they inhibited germination of I. axillaris with the rank of ferulic acid > catechin > phloridzin > p-coumaric acid. Synergistic effects were more severe compared to individual phenolics. The litter-mediated soil leachate (collected after15 days) exhibited strong phytotoxicity to I. axillaris despite the level of phenolic compounds in the decomposed leachate being decreased significantly compared with their initial level. This suggests the presence of other unidentified allelochemicals that individually or synergistically contributed to the phytotoxicity. Further, the dose response phytotoxic impacts exhibited by the boneseed litter-mediated soil to native X. bracteatum in a more naturalistic greenhouse experiment might ensure the potential allelopathy of other chemical compounds in the boneseed invasion. The reduction of leaf relative water content and chlorophyll level in X. bracteatum suggest possible mechanisms underpinning plant growth inhibition caused by boneseed litter allelopathy. The presence of a substantial quantity of free

  1. Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage.

    PubMed

    Sanz, Miriam; Cadahía, Estrella; Esteruelas, Enrique; Muñoz, Angel Ma; Fernández de Simón, Brígida; Hernández, Teresa; Estrella, Isabel

    2010-09-08

    The phenolic and tannic composition of heartwood extracts from Castanea sativa Mill., before and after toasting in cooperage, were studied using HPLC-DAD and HPLC-DAD/ESI-MS, and some low molecular weight phenolic compounds and hydrolyzable tannins were found. The low molecular weight phenolic compounds were lignin constituents as the acids gallic, protocatechuic, vanillic, syringic, ferulic, and ellagic, the aldehydes protocatechuic, vanillic, syringic, coniferylic, and sinapic, and the coumarin scopoletin. Their patterns were somewhat different those of oak because oak does not contain compounds such protocatechuic acid and aldehyde and is composed of much lower amounts of gallic acid than chestnut. Vescalagin and castalagin were the main ellagitannins, and acutissimin was tentatively identified for the first time in this wood. Moreover, some gallotannins were tentatively identified, including different isomers of di, tri, tetra, and pentagalloyl glucopyranose, and di and trigalloyl-hexahydroxydiphenoyl glucopyranose, comprising 20 different compounds, as well as some ellagic derivatives such as ellagic acid deoxyhexose, ellagic acid dimer dehydrated, and valoneic acid dilactone. These ellagic derivatives as well as some galloyl and hexahydroxydiphenoyl derivatives were tentatively identified for the first time in this wood. The profile of tannins was therefore different from that of oak wood because oak only contains tannins of the ellagitannins type. Seasoned and toasted chestnut wood showed a very different balance between lignin derivatives and tannins because toasting resulted in the degradation of tannins and the formation of low molecular weight phenolic compounds from lignin degradation. Moreover, the different toasting levels provoked different balances between tannins and lignin constituents because the intensity of lignin and tannin degradation was in relation to the intensity of toasting.

  2. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity.

    PubMed

    Kassim, Mustafa; Achoui, Mouna; Mustafa, Mohd Rais; Mohd, Mustafa Ali; Yusoff, Kamaruddin Mohd

    2010-09-01

    Natural honey has been used in traditional medicine of different cultures throughout the world. This study looked into the extraction of Malaysian honey and the evaluation of the anti-inflammatory activity of these extracts. It was hypothesized that honey extracts contain varying amounts of phenolic compounds and that they possess different in vitro anti-inflammatory activities. Honey extracts were analyzed using liquid chromatography-mass spectrometry to identify and compare phenolic compounds, whereas high-performance liquid chromatography was used for their quantification. Subsequently, honey methanol extract (HME) and honey ethyl acetate extract (HEAE) were tested in vitro for their effect on nitric oxide production in stimulated macrophages. The extracts were also tested for their effects on tumor necrosis factor-α (TNF) cytotoxicity in L929 cells. The major phenolics in the extracts were ellagic, gallic, and ferulic acids; myricetin; chlorogenic acid; and caffeic acid. Other compounds found in lower concentrations were hesperetin, p-coumaric acid, chrysin, quercetin, luteolin, and kaempferol. Ellagic acid was the most abundant of the phenolic compounds recorded, with mean concentrations of 3295.83 and 626.74 μg/100 g of honey in HME and HEAE, respectively. The median maximal effective concentrations for in vitro nitric oxide inhibition by HEAE and HME were calculated to be 37.5 and 271.7 μg/mL, respectively. The median maximal effective concentrations for protection from TNF cytotoxicity by HEAE and HME were 168.1 and 235.4 μg/mL, respectively. In conclusion, HEAE exhibited greater activity in vitro, whereas HME contained a higher concentration of phenolic compounds per 100 g of honey. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil.

    PubMed

    Lima, Marcos Dos Santos; Silani, Igor de Souza Veras; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Biasoto, Aline Camarão Telles; Pereira, Giuliano Elias; Bordignon-Luiz, Marilde T; Ninow, Jorge Luiz

    2014-10-15

    The phenolic compounds, organic acids and the antioxidant activity were determined for grape juice samples from new Brazilian varieties grown in the Sub-middle São Francisco Valley in the Northeast Region of Brazil. The results showed that the Brazilian grape juices have high antioxidant activity, which was significantly correlated with the phenolic compounds catechin, epicatechin gallate, procyanidin B1, rutin, gallic acid, caffeic acid, p-coumaric acid, pelargonidin-3-glucoside, cyanidin-3-glucoside, cyaniding-3,5-diglucoside and delphinidin-3-glucoside. The produced juice samples showed higher concentrations of trans-resveratrol than those observed in juices made from different varieties of grapes from traditional growing regions. Organic acids concentrations were similar to those of juices produced from other classical varieties. It was demonstrated that it is possible to prepare juices from grapes of new varieties grown in the Northeast of Brazil containing a high content of bioactive compounds and typical characteristics of the tropical viticulture practised in the Sub-middle São Francisco Valley. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities.

    PubMed

    Ambigaipalan, Priyatharini; de Camargo, Adriano Costa; Shahidi, Fereidoon

    2016-08-31

    Pomegranate peel was separated into outer leathery skin (PS), mesocarp (PM), and divider membrane (PD), and its phenolic compounds were extracted as free (F), esterified (E), and insoluble-bound (B) forms for the first time. The total phenolic content followed the order PD > PM > PS. ABTS(•+), DPPH, and hydroxyl radical scavenging activities and metal chelation were evaluated. In addition, pomegranate peel extracts showed inhibitory effects against α-glucosidase activity, lipase activity, and cupric ion-induced LDL-cholesterol oxidation as well as peroxyl and hydroxyl radical-induced DNA scission. Seventy-nine phenolic compounds were identified using HPLC-DAD-ESI-MS(n) mainly in the form of insoluble-bound. Thirty compounds were identified for the first time. Gallic acid was the major phenolic compound in pomegranate peel, whereas kaempferol 3-O-glucoside was the major flavonoid. Moreover, ellagic acid and monogalloyl-hexoside were the major hydrolyzable tannins, whereas the dominant proanthocyanidin was procyanidin dimers. Proanthocyanidins were detected for the first time.

  5. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Catal, Tunc; Fan, Yanzhen; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains.

  6. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil.

    PubMed

    Wang, Xiaoqin; Zeng, Qiumei; Del Mar Contreras, María; Wang, Lijuan

    2017-12-01

    In Asia, tea seed oils (seed oils from Camellia oleifera, C. chekiangoleosa, and C. sinensis) are used in edible, medicinal, and cosmetic applications. However, these oils differ in their fatty acid contents, and there is little known about their phenolic compounds. Here we analyzed the phenolic compounds of seed oils from three species gathered from 15 regions of China. Twenty-four phenolic compounds were characterized by HPLC-Q-TOF-MS, including benzoic acids (6), cinnamic acids (6), a hydroxyphenylacetic acid, flavanols (4), flavonols (3), flavones (2), and dihydroflavonoids (2). Some of these phenolic compounds had not previously been reported from C. sinensis (20), C. oleifera (15), and C. chekiangoleosa (24) seed oils. Quantification was done by HPLC-QqQ-MS using 24 chemical standards. The total concentrations in the studied samples ranged from 20.56 to 88.56μg/g. Phenolic acids were the most abundant class, accounting for 76.2-90.4%, with benzoic acid, found at up to 18.87μg/g. The concentration of catechins, typical of tea polyphenols, ranged between 2.1% and 9.7%, while the other flavonoids varied from 4.2% to 17.8%. Although the cultivation region affected the phenolic composition of the Camellia seed oils, in our hierarchical clustering analysis, the samples clustered according to species. The phenolic composition of the seed oils from C. oleifera and C. chekiangoelosa were similar. We found that the phenolic categories in Camellia seed oils were similar to tea polyphenols, thereby identifying a source of liposoluble tea polyphenols and potentially accounting for some of the reported activities of these oils. In addition, this work provides basic data that allows distinction of various Camellia seed oils, as well as improvements to be made in their quality standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Antioxidant capacity and phenolic acids of virgin coconut oil.

    PubMed

    Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I

    2009-01-01

    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.

  8. Phenolic compounds increase the transcription of mouse intestinal maltase-glucoamylase and sucrase-isomaltase.

    PubMed

    Simsek, Meric; Quezada-Calvillo, Roberto; Nichols, Buford L; Hamaker, Bruce R

    2017-05-24

    Diverse natural phenolic compounds show inhibition activity of intestinal α-glucosidases, which may constitute the molecular basis for their ability to control systemic glycemia. Additionally, phenolics can modify mRNA expression for proteins involved in nutritional, metabolic or immune processes. To explore the possibility that phenolics can regulate the mRNA expression, enzymatic activity, and protein synthesis/processing of intestinal Maltase-Glucoamylase (MGAM) and Sucrase-Isomaltase (SI), small intestinal explants from Balb/c mice were cultured for 24 h in the presence or absence of gallic acid, caffeic acid, and (+)-catechin at 0.1, 0.5, and 1 mM. We measured the levels of MGAM and SI mRNA expression by qRT-PCR, maltase and sucrase activities by a standard colorimetric method and the molecular size distribution of MGAM and SI proteins by western blotting. mRNA expression for MGAM was induced by the three phenolic compounds at 0.1 mM. mRNA expression for SI was induced by caffeic and gallic acids, but not by (+)-catechin. Caffeic acid was the most effective inducer of mRNA expression of these enzymes. Total maltase and sucrase activities were not affected by treatment with phenolics. The proportion of high molecular size forms of MGAM was significantly increased by two of the three phenolic compounds, but little effect was observed on SI proteins. Thus, changes in the protein synthesis/processing, affecting the proportions of the different molecular forms of MGAM, may account for the lack of correlation between mRNA expression and enzymatic activity.

  9. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    PubMed

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  10. Effect of variety on content of bioactive phenolic compounds in common elder (Sambucus nigra L.).

    PubMed

    Vrchotová, Naděžda; Dadáková, Eva; Matějíček, Aleš; Tříska, Jan; Kaplan, Jiří

    2017-03-01

    The inflorescence of common elder (Sambucus nigra L., Adoxaceae) is known to be rich in phenolic compounds. The content of five selected phenolic compounds (rutin, chlorogenic acid, isoquercitrin, isorhamnetin-3-O- rutinoside and dicaffeoylquinic acid) was determined in methanolic extracts from flowers and floral stems by HPLC in samples obtained from 20 varieties of S. nigra cultivated in Czech Republic. In all samples, there were determined rutin (11-54 mg/g), chlorogenic acid (23-46 mg/g), isoquercitrin (0.6-18 mg/g), isorhamnetin-3-O-rutinoside (3-10 mg/g), calculated on air-dried material. The content of dicaffeoylquinic acid was 0-13 mg/g of air-dried material. The amount of the analysed compounds in floral stems was lower than the flowers. The results are a unique set of information on the content of main phenolics in the inflorescence of cultured elderberry varieties.

  11. Processing 'Ataulfo' Mango into Juice Preserves the Bioavailability and Antioxidant Capacity of Its Phenolic Compounds.

    PubMed

    Quirós-Sauceda, Ana Elena; Chen, C-Y Oliver; Blumberg, Jeffrey B; Astiazaran-Garcia, Humberto; Wall-Medrano, Abraham; González-Aguilar, Gustavo A

    2017-09-29

    The health-promoting effects of phenolic compounds depend on their bioaccessibility from the food matrix and their consequent bioavailability. We carried out a randomized crossover pilot clinical trial to evaluate the matrix effect (raw flesh and juice) of 'Ataulfo' mango on the bioavailability of its phenolic compounds. Twelve healthy male subjects consumed a dose of mango flesh or juice. Blood was collected for six hours after consumption, and urine for 24 h. Plasma and urine phenolics were analyzed by electrochemical detection coupled to high performance liquid chromatography (HPLC-ECD). Five compounds were identified and quantified in plasma. Six phenolic compounds, plus a microbial metabolite (pyrogallol) were quantified in urine, suggesting colonic metabolism. The maximum plasma concentration (C max ) occurred 2-4 h after consumption; excretion rates were maximum at 8-24 h. Mango flesh contributed to greater protocatechuic acid absorption (49%), mango juice contributed to higher chlorogenic acid absorption (62%). Our data suggests that the bioavailability and antioxidant capacity of mango phenolics is preserved, and may be increased when the flesh is processed into juice.

  12. Optimization of ultrasound-assisted extraction (UAE) of phenolic compounds from olive cake.

    PubMed

    Mojerlou, Zohreh; Elhamirad, Amirhhossein

    2018-03-01

    The use of ultrasound in ultrasound-assisted extraction (UAE) is one of the main applications of this technology in food industry. This study aimed to optimize UAE conditions for olive cake extract (OCE) through response surface methodology (RSM). The optimal UAE conditions were obtained with extraction temperature of 56 °C, extraction time of 3 min, duty cycle of 0.6 s, and solid to solvent ratio of 3.6%. At the optimum conditions, the total phenolic compounds (TPC) content and antioxidant activity (AA) were measured 4.04 mg/g and 68.9%, respectively. The linear term of temperature had the most effect on TPC content and AA of OCE prepared by UAE. Protocatechuic acid and cinnamic acid were characterized as the highest (19.5%) and lowest (1.6%) phenolic compound measured in OCE extracted by UAE. This research revealed that UAE is an effective method to extract phenolic compounds from olive cake. RSM successfully optimized UAE conditions for OCE.

  13. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey.

    PubMed

    Estevinho, Letícia; Pereira, Ana Paula; Moreira, Leandro; Dias, Luís G; Pereira, Ermelinda

    2008-12-01

    Phenolic compounds of dark and clear honeys from Trás-os-Montes of Portugal were extracted with Amberlite XAD-2 and evaluated for their antioxidant and antimicrobial activities. The antioxidant effect was studied using the in vitro test capacity of scavenge the 2,2-diphenyl-1-picryhydrazyl (DPPH) free radical and of reducing power of iron (III)/ferricyanide complex. The antimicrobial activity was screened using three Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, Staphylococcus lentus) and three Gram-negative bacteria (Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli). The results obtained from the partial identification of honey phenolic compounds by high-performance liquid chromatography with a diode array detector showed that p-hydroxibenzoic acid, cinnamic acid, naringenin, pinocembrin and chrysin are the phenolic compounds present in most of the samples analyzed. Antioxidant potential was dependent of honey extract concentration and the results showed that dark honey phenolic compounds had higher activity than the obtained from clear honey. In the biological assays, results showed that S. aureus were the most sensitive microrganisms and B. subtilis, S. lentus, K. pneumoniae and E. coli were each moderately sensitive to the antimicrobial activity of honey extracts. Nevertheless, no antimicrobial activity was observed in the test with P. aeruginosa.

  14. Effects of Phenolic Compounds on Growth of Colletotrichum spp. In Vitro.

    PubMed

    Roy, Sutapa; Nuckles, Etta; Archbold, Douglas D

    2018-05-01

    Colletotrichum acutatum is responsible for anthracnose fruit rot, one of the most devastating diseases in strawberry. Phenolic compounds have been described as contributors to anthracnose resistance in strawberry (Fragaria x ananassa, Duch.). Six isolates of Colletotrichum acutatum and four isolates of three other Colletotrichum species, C. gloeosporioides, C. fragariae, and C. graminicola, associated with disease symptoms were investigated in this study. The potential inhibitory effect of phenolic acids (gallic acid, caffeic acid, chlorogenic acid, ferulic acid, trans-cinnamic acid, p-coumaric acid, salicylic acid), flavonoids (catechin, quercetin, naringenin), and ellagic acid, which are naturally found in strawberry, were screened against two different spore suspension concentrations of the Colletotrichum isolates at 5, 10, 50 mM in vitro. Among the phenolic acids and flavonoids tested in this study, only trans-cinnamic acid, ferulic acid, and p-coumaric acid inhibited fungal growth. The inhibitory effects were concentration-dependent but also varied with the spore suspension concentration of the isolates. The results demonstrated that trans-cinnamic acid had the greatest inhibitory effect on all Colletotrichum spp. isolates tested.

  15. The Potential Protective Effects of Phenolic Compounds against Low-density Lipoprotein Oxidation.

    PubMed

    Amarowicz, Ryszard; Pegg, Ronald B

    2017-01-01

    The exact mechanism(s) of atherosclerosis in humans remains elusive, but one theory hypothesizes that this deleterious process results from the oxidative modification of low-density lipoprotein (LDL). Research suggests that foods rich in dietary phenolic compounds with antioxidant activity can mitigate the extent of LDL oxidation in vivo. With regard to the different classes of flavonoids, there appears to be a structurefunction relationship between the various moieties/constituents attached to the flavonoids' three ring system and their impact at retarding LDL oxidation. This article summarizes the findings to date of both in vitro and in vivo studies using foods or phenolic extracts isolated from foodstuffs at inhibiting the incidence of LDL oxidation. Three bases: SCOPUS, Web Science, and PubMed were used for search. An often used method for the determination of antioxidant properties of natural phenolic compounds is the LDL oxidation assay. LDLs are isolated from human plasma and their oxidation is induced by Cu2+ ions or 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The sample is incubated with a phenolic extract or individual/isolated phenolic compounds. LDL oxidation is then monitored by various chemical methods (e.g., measurement of the generation of conjugated dienes and trienes). This technique confirmed the antioxidant properties of several extracts as obtained from plant material (e.g., grapes, berries, orange, grapefruit, coffee, tea, chocolate, olives, nuts) as well as the individual phenolic compounds (e.g., luteolinidin, apigenidin, caffeic acid, chlorogenic acid, catechin, quercetin, rutin). Several studies in vivo confirmed protective effects of phenolic compounds against LDL oxidation. They covered the healthy subjects with hyperlipidaemia, overweight, obesity, metabolic syndrome, heavy smokers, patients receiving haemodialysis, patients with peripheral vascular disease, and subjects at high cardiovascular risk. The studies comprise

  16. Phenolics and essential mineral profile of organic acid pretreated unripe banana flour.

    PubMed

    Anyasi, Tonna A; Jideani, Afam I O; Mchau, Godwin R A

    2018-02-01

    Banana fruit (Musa spp) though rich in essential minerals, has also been implicated for the presence of phytochemicals which nonetheless beneficial, can also act as mineral inhibitors when in forms such as phenolic compounds, phytates and tannins. This study assayed the essential macro and trace minerals as well as phenolic compounds present in unripe banana flour (UBF) obtained from the pulp of four different cultivars. Unripe banana flour was processed by oven drying in a forced air oven dryer at 70°C upon pretreatment with ascorbic, citric and lactic acid. Organic acid pretreatment was done separately on each unripe banana cultivar at concentrations of 10, 15 and 20g/L. Phenolic compounds were profiled using liquid chromatography mass spectrometry electrospray ion (LC-MS-ESI) while essential minerals were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and mass spectroscopy (ICP-MS) respectively. Results of LC-MS-ESI assay of phenolics revealed the presence of flavonoids: epicatechin and myricetin 3-O-rhamnosyl-glucoside in varying concentrations in UBF. Essential mineral profile indicated that Zinc had the least occurrence of 3.55mg/kg (p<0.05), while potassium was the most abundant mineral at 14746.73mg/kg in UBF of all four banana cultivars. Correlation between phenolic compounds and essential minerals using Pearson's Correlation Coefficient test revealed weak and inverse association between flavonoids and most macro and trace minerals present in UBF samples. Organic acid pretreatment thus exhibited little effect on phenolics and essential minerals of UBF samples, though, inhibitory influence of phenolic compounds was recorded on essential minerals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. A review of phenolic compounds in oil-bearing plants: Distribution, identification and occurrence of phenolic compounds.

    PubMed

    Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Al-Mahasneh, Majdi A; Almajwal, Ali; Gammoh, Sana; Ereifej, Khalil; Johargy, Ayman; Alli, Inteaz

    2017-03-01

    Over the last two decades, separation, identification and measurement of the total and individual content of phenolic compounds has been widely investigated. Recently, the presence of a wide range of phenolic compounds in oil-bearing plants has been shown to contribute to their therapeutic properties, including anti-cancer, anti-viral, anti-oxidant, hypoglycemic, hypo-lipidemic, and anti-inflammatory activities. Phenolics in oil-bearing plants are now recognized as important minor food components due to several organoleptic and health properties, and they are used as food or sources of food ingredients. Variations in the content of phenolics in oil-bearing plants have largely been attributed to several factors, including the cultivation, time of harvest and soil types. A number of authors have suggested that the presence phenolics in extracted proteins, carbohydrates and oils may contribute to objectionable off flavors The objective of this study was to review the distribution, identification and occurrence of free and bound phenolic compounds in oil-bearing plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The effects of plant growth regulators and L-phenylalanine on phenolic compounds of sweet basil.

    PubMed

    Koca, Nülüfer; Karaman, Şengül

    2015-01-01

    The effects of methyl jasmonate (MeJA), spermine (Spm), epibrassinolide (EBL) and l-phenylalanine on sweet basil (Ocimum basilicum L.) were studied to determine the amount of phenolic compounds and enzymatic activity of phenylalanine ammonia-lyase (PAL). Total phenolic and total flavonoid contents of sweet basils were determined by a spectrophotometer, and individual phenolic compounds and activity of PAL were analysed by HPLC/UV. The highest total phenolic (6.72 mg GAE/g) and total flavonoid contents (0.92 mg QE/g) obtained from 1.0 mM Spm+MeJA application. Rosmarinic acid (RA) and caffeic acid contents significantly enhanced after the applications but no such differences observed in chicoric acid content or PAL activity. RA was the main phenolic acid in all samples and its concentration varied from 1.04 to 2.70 mg/gFW. As a result the combinations of Spm+MeJA and EBL+MeJA can induce secondary metabolites effectively and those interactions play important role in the production of phytochemicals in plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Phenolic Compounds and Antioxidant Activity of Phalaenopsis Orchid Hybrids

    PubMed Central

    Minh, Truong Ngoc; Khang, Do Tan; Tuyen, Phung Thi; Minh, Luong The; Anh, La Hoang; Quan, Nguyen Van; Ha, Pham Thi Thu; Quan, Nguyen Thanh; Toan, Nguyen Phu; Elzaawely, Abdelnaser Abdelghany; Xuan, Tran Dang

    2016-01-01

    Phalaenopsis spp. is the most commercially and economically important orchid, but their plant parts are often left unused, which has caused environmental problems. To date, reports on phytochemical analyses were most available on endangered and medicinal orchids. The present study was conducted to determine the total phenolics, total flavonoids, and antioxidant activity of ethanol extracts prepared from leaves and roots of six commercial hybrid Phalaenopsis spp. Leaf extracts of “Chian Xen Queen” contained the highest total phenolics with a value of 11.52 ± 0.43 mg gallic acid equivalent per g dry weight and the highest total flavonoids (4.98 ± 0.27 mg rutin equivalent per g dry weight). The antioxidant activity of root extracts evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay and β-carotene bleaching method was higher than those of the leaf extracts. Eleven phenolic compounds were identified, namely, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, syringic acid, vanillin, ferulic acid, sinapic acid, p-coumaric acid, benzoic acid, and ellagic acid. Ferulic, p-coumaric and sinapic acids were concentrated largely in the roots. The results suggested that the root extracts from hybrid Phalaenopsis spp. could be a potential source of natural antioxidants. This study also helps to reduce the amount of this orchid waste in industrial production, as its roots can be exploited for pharmaceutical purposes. PMID:27649250

  20. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis

    PubMed Central

    Liu, Jia; Liu, Yang; Wang, Yu; Zhang, Zhong-Hua; Zu, Yuan-Gang; Efferth, Thomas; Tang, Zhong-Hua

    2016-01-01

    Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenolic metabolism. The combinational actions of ethylene and MeJA effectively promoted the total phenolic compounds, especially the C6C1 compounds (such as salicylic acid, benzoic acid) and C6C3 ones (such as cinnamic acid, sinapic acid). In contrast, the C6C3C6 compounds displayed a notably inhibitory trend in this case. Subsequently, the gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 5 gene tags and the accumulation profiles of 41 metabolite peaks. Generally, we provide an insight into the controlling mode of ethylene-MeJA combination on phenolic metabolism in C. roseus leaves. PMID:27375495

  1. The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis.

    PubMed

    Liu, Jia; Liu, Yang; Wang, Yu; Zhang, Zhong-Hua; Zu, Yuan-Gang; Efferth, Thomas; Tang, Zhong-Hua

    2016-01-01

    Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenolic metabolism. The combinational actions of ethylene and MeJA effectively promoted the total phenolic compounds, especially the C6C1 compounds (such as salicylic acid, benzoic acid) and C6C3 ones (such as cinnamic acid, sinapic acid). In contrast, the C6C3C6 compounds displayed a notably inhibitory trend in this case. Subsequently, the gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 5 gene tags and the accumulation profiles of 41 metabolite peaks. Generally, we provide an insight into the controlling mode of ethylene-MeJA combination on phenolic metabolism in C. roseus leaves.

  2. Characterization of Free, Conjugated, and Bound Phenolic Acids in Seven Commonly Consumed Vegetables.

    PubMed

    Gao, Yuan; Ma, Shuai; Wang, Meng; Feng, Xiao-Yuan

    2017-11-01

    Phenolic acids are thought to be beneficial for human health and responsible for vegetables' health-promoting properties. Free, conjugated, and bound phenolic acids of seven commonly consumed vegetables, including kidney bean, cow pea, snow pea, hyacinth bean, green soy bean, soybean sprouts and daylily, from the regions of Beijing, Hangzhou, and Guangzhou, were identified and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Three vegetables, namely green soy bean, soybean sprouts, and daylily ( Hemerocallis fulva L.), from the Beijing region contained higher concentrations of total phenolic acids than those from the Hangzhou and Guangzhou regions. The results indicated that the phenolic acid content in the seven vegetables appeared to be species-dependent. The highest content of phenolic acids was found in daylily, followed by green soy bean, while the least amounts were identified in kidney bean and hyacinth bean. Typically, phenolic acids are predominantly found in conjugated forms. Principle component analysis (PCA) revealed some key compounds that differentiated the seven vegetables. Green soy bean, compared to the other six vegetables, was characterized by higher levels of syringic acid, ferulic acid, vanillic acid, and sinapic acid. Other compounds, particularly p -coumaric acid, neochlorogenic acid, and caffeic acid, exhibited significantly higher concentrations in daylily. In addition, p -coumaric acid was the characteristic substance in cow pea. Results from this study can contribute to the development of vegetables with specific phytochemicals and health benefits.

  3. Content of different groups of phenolic compounds in microshoots of Juglans regia cultivars and studies on antioxidant activity

    USDA-ARS?s Scientific Manuscript database

    Phenolic and other compounds were extracted from micropropagated axillary shoots (microshoots) of the walnut (Juglans regia L.) cultivars ‘Chandler’, ‘Howard’, ‘Kerman’, ‘Sunland’, and ‘Z63’. Among cultivars, microshoots showed differences in phenolic compounds, phenolic acids, flavonoids and proant...

  4. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning.

    PubMed

    Mai, Franziska; Glomb, Marcus A

    2013-03-20

    Enzymatic browning is generally reported as the reaction between phenolic substances and enzymes. The quality of iceberg lettuce is directly linked to this discoloration. In particular, the color change of lettuce stems considerably reduces consumer acceptance and thus decreases sales revenue of iceberg lettuce. Ten phenolic compounds (caffeic acid, chlorogenic acid, phaseolic acid, chicoric acid, isochlorogenic acid, luteolin-7-O-glucuronide, quercetin-3-O-glucuronide, quercetin-3-O-galactoside, quercetin-3-O-glucoside, and quercetin-3-O-(6″-malonyl)-glucoside) were isolated from Lactuca sativa var. capitata by multilayer countercurrent chromatography (MLCCC) and preparative high-performance liquid chromatography (HPLC). In addition, syringin was identified for the first time in iceberg lettuce. This polyphenolic ingredient was previously not mentioned for the family of Cichorieae in general. The purity and identity of isolated compounds were confirmed by different NMR experiments, HPLC-DAD-MS, and HR-MS techniques. Furthermore, the relationship between discoloration of iceberg lettuce and enzymatic browning was thoroughly investigated. Unexpectedly, the total concentration of phenolic compounds and the activity of polyphenol oxidase were not directly related to the browning processes. Results of model incubation experiments of plant extract solutions led to the conclusion that in addition to the typical enzymatic browning induced by polyphenol oxidases, further mechanisms must be involved to explain total browning of lettuce.

  5. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria.

    PubMed

    Pacheco-Ordaz, R; Wall-Medrano, A; Goñi, M G; Ramos-Clamont-Montfort, G; Ayala-Zavala, J F; González-Aguilar, G A

    2018-01-01

    Fruit extracts from different tissues (pulp, seed and peel) have shown antimicrobial and prebiotic activities related to their phenolic profile, although structure-specific evaluations have not been reported yet. The effect of five phenolic compounds (catechin and gallic, vanillic, ferulic and protocatechuic acids) identified in different fruits, particularly in mango, was evaluated on the growth of two probiotic (Lactobacillus rhamnosusGG ATCC 53103 and Lactobacillus acidophilusNRRLB 4495) and two pathogenic (Escherichia coli 0157:H7 ATCC 43890 and Salmonella enterica serovar Typhimurium ATCC 14028) bacteria. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of phenolic acids ranged from 15-20 mmol l -1 and 20-30 mmol l -1 against E. coli and S. Typhimurium, respectively. For catechin, the MIC and MBC were 35 mmol l -1 and >35 mmol l -1 against E. coli and S. Typhimurium, respectively. The presence of catechin and gallic, protocatechuic and vanillic acids in MRS broth without dextrose allowed the growth of lactobacilli. Catechin combined with protocatechuic or vanillic acid mildly allowed the growth of both probiotics. In conclusion, phenolic compounds can selectively inhibit the growth of pathogenic bacteria without affecting the viability of probiotics. This study provides relevant information about the effects of phenolic compounds commonly present in fruit and vegetables on the growth of probiotic and pathogenic bacteria. The compounds selectively allowed the growth of probiotic lactobacilli (Lactobacillus rhamnosus GG and Lactobacillus acidophilus) and inhibited pathogenic bacteria (Escherichia coli and Salmonella Typhimurium) at the same concentration (20 mmol l -1 ). These findings can contribute to the formulation of nutraceutical products, such as synbiotics, that can restore or maintain an optimal composition of human microbiota, potentially improving the overall health of the consumer. © 2017 The

  6. Factors Affecting the Extraction of Intact Ribonucleic Acid from Plant Tissues Containing Interfering Phenolic Compounds

    PubMed Central

    Newbury, H. John; Possingham, John V.

    1977-01-01

    Using conventional methods it is impossible to extract RNA as uncomplexed intact molecules from the leaves of grapevines (Vitis vinifera L.) and from a number of woody perennial species that contain high levels of reactive phenolic compounds. A procedure involving the use of high concentrations of the chaotropic agent sodium perchlorate prevents the binding of phenolic compounds to RNA during extraction. Analyses of the phenolics present in plant tissues used in these experiments indicate that there is a poor correlation between the total phenolic content and the complexing of RNA. However, qualitative analyses suggest that proanthocyanidins are involved in the tanning of RNA during conventional extractions. PMID:16660134

  7. Effect of maturity on phenolics (phenolic acids and flavonoids) profile of strawberry cultivars and mulberry species from Pakistan.

    PubMed

    Mahmood, Tahir; Anwar, Farooq; Abbas, Mateen; Saari, Nazamid

    2012-01-01

    In this study, we investigated how the extent of ripeness affects the yield of extract, total phenolics, total flavonoids, individual flavonols and phenolic acids in strawberry and mulberry cultivars from Pakistan. In strawberry, the yield of extract (%), total phenolics (TPC) and total flavonoids (TFC) ranged from 8.5-53.3%, 491-1884 mg gallic acid equivalents (GAE)/100 g DW and 83-327 mg catechin equivalents (CE)/100 g DW, respectively. For the different species of mulberry the yield of extract (%), total phenolics and total flavonoids of 6.9-54.0%, 201-2287 mg GAE/100 g DW and 110-1021 mg CE/100 g DW, respectively, varied significantly as fruit maturity progressed. The amounts of individual flavonols and phenolic acid in selected berry fruits were analyzed by RP-HPLC. Among the flavonols, the content of myricetin was found to be high in Morus alba (88 mg/100 g DW), the amount of quercetin as high in Morus laevigata (145 mg/100 g DW) while kaempferol was highest in the Korona strawberry (98 mg/100 g DW) at fully ripened stage. Of the six phenolic acids detected, p-hydroxybenzoic and p-coumaric acid were the major compounds in the strawberry. M. laevigata and M. nigra contained p-coumaric acid and vanillic acid while M. macroura and M. alba contained p-hydroxy-benzoic acid and chlorogenic acid as the major phenolic acids. Overall, a trend to an increase in the percentage of extraction yield, TPC, TFC, flavonols and phenolic acids was observed as maturity progressed from un-ripened to fully-ripened stages.

  8. Identification of Phenolic Compounds and Evaluation of Antioxidant and Antimicrobial Properties of Euphorbia Tirucalli L.

    PubMed Central

    de Araújo, Keline Medeiros; de Lima, Alessandro; Silva, Jurandy do N.; Rodrigues, Larissa L.; Amorim, Adriany G. N.; Quelemes, Patrick V.; dos Santos, Raimunda C.; Rocha, Jefferson A.; de Andrades, Éryka O.; Leite, José Roberto S. A.; Mancini-Filho, Jorge; da Trindade, Reginaldo Almeida

    2014-01-01

    Bioactive compounds extracted from natural sources can benefit human health. The aim of this work was to determine total phenolic content and antioxidant activity in extracts of Euphorbia tirucalli L. followed by identification and quantification of the phenolic compounds, as well as their antibacterial activities. Antioxidant activities were determined by DPPH and ABTS•+ assay. Identification of phenolic compounds was performed using high-performance liquid chromatography (HPLC), and antimicrobial activities were verified by agar dilution methods and MIC values. Total phenolic content ranged from 7.73 to 30.54 mg/100 g gallic acid equivalent. Extracts from dry plants showed higher antioxidant activities than those from fresh ones. The DPPH EC50 values were approximately 12.15 μg/mL and 16.59 μg/mL, respectively. Antioxidant activity measured by the ABTS method yielded values higher than 718.99 μM trolox/g for dry plants, while by the Rancimat® system yielded protection factors exceeding 1 for all extracts, comparable to synthetic BHT. Ferulic acid was the principal phenolic compound identified and quantified through HPLC-UV in all extracts. The extracts proved effective inhibitory potential for Staphylococcus epidermidis and Staphylococcus aureus. These results showed that extracts of Euphorbia tirucalli L. have excellent antioxidant capacity and moderate antimicrobial activity. These can be attributed to the high concentration of ferulic acid. PMID:26784670

  9. Processing ‘Ataulfo’ Mango into Juice Preserves the Bioavailability and Antioxidant Capacity of Its Phenolic Compounds

    PubMed Central

    Quirós-Sauceda, Ana Elena; Chen, C.-Y. Oliver; González-Aguilar, Gustavo A.

    2017-01-01

    The health-promoting effects of phenolic compounds depend on their bioaccessibility from the food matrix and their consequent bioavailability. We carried out a randomized crossover pilot clinical trial to evaluate the matrix effect (raw flesh and juice) of ‘Ataulfo’ mango on the bioavailability of its phenolic compounds. Twelve healthy male subjects consumed a dose of mango flesh or juice. Blood was collected for six hours after consumption, and urine for 24 h. Plasma and urine phenolics were analyzed by electrochemical detection coupled to high performance liquid chromatography (HPLC-ECD). Five compounds were identified and quantified in plasma. Six phenolic compounds, plus a microbial metabolite (pyrogallol) were quantified in urine, suggesting colonic metabolism. The maximum plasma concentration (Cmax) occurred 2–4 h after consumption; excretion rates were maximum at 8–24 h. Mango flesh contributed to greater protocatechuic acid absorption (49%), mango juice contributed to higher chlorogenic acid absorption (62%). Our data suggests that the bioavailability and antioxidant capacity of mango phenolics is preserved, and may be increased when the flesh is processed into juice. PMID:28961171

  10. Determination of the major phenolic compounds in pomegranate juices by HPLC−DAD−ESI-MS.

    PubMed

    Gómez-Caravaca, Ana María; Verardo, Vito; Toselli, Moreno; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Caboni, Maria Fiorenza

    2013-06-05

    Traditionally, pomegranate (Punica granatum L.) has been consumed as fresh fruit or as pomegranate juice. In this study, the main phenolic compounds of 12 pomegranate varieties and 5 pomegranate clones were determined by HPLC−DAD−ESI-MS. Two chromatographic methods with a fused-core C18 column and a classical HPLC system were developed. Thirteen anthocyanins and fourteen other phenolic compounds were determined in the pomegranate juices. As far as we are concerned, a new flavonol-glycoside, phellatin or its isomer amurensin, has been tentatively identified for the first time in pomegranate juices. Total phenolic content ranged from 580.8 to 2551.3 mg/L of pomegranate juice. Anthocyanins varied between 20 to 82% of total phenolic content. Flavonoids were 1.6-23.6% of total phenolic compounds, while phenolic acids and ellagitannins were in the range 16.4-65.8%. The five clones reported a phenolic content comparable with that of the other pomegranate samples.

  11. Determination of phenolic compounds using spectral and color transitions of rhodium nanoparticles.

    PubMed

    Gatselou, Vasiliki; Christodouleas, Dionysios C; Kouloumpis, Antonios; Gournis, Dimitrios; Giokas, Dimosthenis L

    2016-08-17

    This work reports a new approach for the determination of phenolic compounds based on their interaction with citrate-capped rhodium nanoparticles. Phenolic compounds (i.e., catechins, gallates, cinnamates, and dihydroxybenzoic acids) were found to cause changes in the size and localized surface plasmon resonance of rhodium nanoparticles, and therefore, give rise to analyte-specific spectral and color transitions in the rhodium nanoparticle suspensions. Upon reaction with phenolic compounds (mainly dithydroxybenzoate derivatives, and trihydroxybenzoate derivatives), new absorbance peaks at 350 nm and 450 nm were observed. Upon reaction with trihydroxybenzoate derivatives, however, an additional absorbance peak at 580 nm was observed facilitating the speciation of phenolic compounds in the sample. Both absorbance peaks at 450 nm and 580 nm increased with increasing concentration of phenolic compounds over a linear range of 0-500 μM. Detection limits at the mid-micromolar levels were achieved, depending on the phenolic compound involved, and with satisfactory reproducibility (<7.3%). On the basis of these findings, two rhodium nanoparticles-based assays for the determination of the total phenolic content and total catechin content were developed and applied in tea samples. The obtained results correlated favorably with commonly used methods (i.e., Folin-Ciocalteu and aluminum complexation assay). Not the least, the finding that rhodium nanoparticles can react with analytes and exhibit unique localized surface plasmon resonance bands in the visible region, can open new opportunities for developing new optical and sensing analytical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Identification of the free phenolic profile of Adlay bran by UPLC-QTOF-MS/MS and inhibitory mechanisms of phenolic acids against xanthine oxidase.

    PubMed

    Lin, Lianzhu; Yang, Qingyun; Zhao, Kun; Zhao, Mouming

    2018-07-01

    Adlay bran free phenolic extract has been previously demonstrated to possess potent xanthine oxidase (XOD) inhibitory activity. The aims of this study were to characterize the free phenolic profile of adlay bran and investigate the structure-activity relationship, underlying mechanism and interaction of phenolic acids as XOD inhibitors. A total of twenty phenolics including ten phenolic acids, two coumarins, two phenolic aldedhyes and six flavonoids were identified in a phenolic compound-guided separation by UPLC-QTOF-MS/MS. Adlay bran free phenolic extract possessed strong XOD inhibitory activity related to hydroxycinnamic acids with methoxyl groups. The hydrogen bonding and hydrophobic interactions were the main forces in the binding of adlay phenolics to XOD. Sinapic acid, identified in adlay bran for the first time, possessed strong XOD inhibitory activity in a mixed non-competitive manner, and synergistic effects with other adlay phenolic acids at low concentrations, and would be a promising agent for preventing and treating hyperuricemia. Copyright © 2018. Published by Elsevier Ltd.

  13. Phenolic Profiles and Contribution of Individual Compounds to Antioxidant Activity of Apple Powders.

    PubMed

    Raudone, Lina; Raudonis, Raimondas; Liaudanskas, Mindaugas; Viskelis, Jonas; Pukalskas, Audrius; Janulis, Valdimaras

    2016-05-01

    Apples (Malus domestica L.) are the most common source of phenolic compounds in northern European diet. Besides pectins, dietary fibers, vitamins, and oligosaccharides they contain phenolic compounds of different classes. Apple powders are convenient functional forms retaining significant amounts of phenolic antioxidants. In this study reducing and radical scavenging profiles of freeze-dried powders of "Aldas,ˮ "Auksis,ˮ "Connel Red,ˮ "Ligol,ˮ "Lodel,ˮ and "Rajkaˮ were determined and phenolic constituents were identified using ultra high-performance liquid chromatography coupled to quadrupole and time-of-flight mass spectrometers. A negative ionization mode was applied and seventeen compounds: phenolic acids (coumaroylquinic, chlorogenic), flavonoids (quercetin derivatives), and procyanidin derivatives (B1, B2, and C1) were identified in all tested apple samples. Total values of Trolox equivalents varied from 7.72 ± 0.32 up to 20.02 ± 0.52 and from 11.10 ± 0.57 up to 21.42 ± 0.75 μmol/g of dry weight of apple powder in FRAP (ferric reducing antioxidant power) and ABTS (2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) postcolumn assays, respectively. The greatest Trolox equivalent values were determined for apples of "Aldasˮ cultivar. Chlorogenic acid and procyanidin C1 were the most significant contributors to total reducing and radical scavenging activity in all apple cultivars tested, therefore they could be considered as markers of antioxidant activity. © 2016 Institute of Food Technologists®

  14. Determination of microbial phenolic acids in human faeces by UPLC-ESI-TQ MS.

    PubMed

    Sánchez-Patán, Fernando; Monagas, María; Moreno-Arribas, M Victoria; Bartolomé, Begoña

    2011-03-23

    The aim of the present work was to develop a reproducible, sensitive, and rapid UPLC-ESI-TQ MS analytical method for determination of microbial phenolic acids and other related compounds in faeces. A total of 47 phenolic compounds including hydroxyphenylpropionic, hydroxyphenylacetic, hydroxycinnamic, hydroxybenzoic, and hydroxymandelic acids and simple phenols were considered. To prepare an optimum pool standard solution, analytes were classified in 5 different groups with different starting concentrations according to their MS response. The developed UPLC method allowed a high resolution of the pool standard solution within an 18 min injection run time. The LOD of phenolic compounds ranged from 0.001 to 0.107 μg/mL and LOQ from 0.003 to 0.233 μg/mL. The method precision met acceptance criteria (<15% RSD) for all analytes, and accuracy was >80%. The method was applied to faecal samples collected before and after the intake of a flavan-3-ol supplement by a healthy volunteer. Both external and internal calibration methods were considered for quantification purposes, using 4-hydroxybenzoic-2,3,4,5-d4 acid as internal standard. For most analytes and samples, the level of microbial phenolic acids did not differ by using one or another calibration method. The results revealed an increase in protocatechuic, syringic, benzoic, p-coumaric, phenylpropionic, 3-hydroxyphenylacetic, and 3-hydroxyphenylpropionic acids, although differences due to the intake were only significant for the latter compound. In conclusion, the UPLC-DAD-ESI-TQ MS method developed is suitable for targeted analysis of microbial-derived phenolic metabolites in faecal samples from human intervention or in vitro fermentation studies, which requires high sensitivity and throughput.

  15. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels.

    PubMed

    Pacheco-Ordaz, Ramón; Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; González-Aguilar, Gustavo A

    2018-02-08

    Mango ( Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10 -6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10 -6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry.

  16. Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium.

    PubMed

    Joshi, Janak Raj; Burdman, Saul; Lipsky, Alexander; Yedidia, Iris

    2015-01-01

    Pectobacterium spp. are among the most devastating necrotrophs, attacking more than 50% of angiosperm plant orders. Their virulence strategy is based mainly on the secretion of exoenzymes that degrade the cell walls of their hosts, providing nutrients to the bacteria, but conversely, exposing the bacteria to plant defense compounds. In the present study, we screened plant-derived antimicrobial compounds, mainly phenolic acids and polyphenols, for their ability to affect virulence determinants including motility, biofilm formation and extracellular enzyme activities of different Pectobacteria: Pectobacterium carotovorum, P. brasiliensis, P. atrosepticum and P. aroidearum. In addition, virulence assays were performed on three different plant hosts following exposure of the bacteria to selected phenolic compounds. These experiments showed that cinnamic, coumaric, syringic and salicylic acids and catechol can considerably reduce disease severity, ranging from 20 to 100%. The reduced disease severity was not only the result of reduced bacterial growth, but also of a direct effect of the compounds on important bacterial virulence determinants, including pectolytic and proteolytic exoenzyme activities, that were reduced by 50-100%. This is the first report revealing a direct effect of phenolic compounds on virulence factors in a wide range of Pectobacterium strains. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Effect of solvent on the extraction of phenolic compounds and antioxidant capacity of hazelnut kernel.

    PubMed

    Fanali, Chiara; Tripodo, Giusy; Russo, Marina; Della Posta, Susanna; Pasqualetti, Valentina; De Gara, Laura

    2018-03-22

    Hazelnut kernel phenolic compounds were recovered applying two different extraction approaches, namely ultrasound-assisted solid/liquid extraction (UA-SLE) and solid-phase extraction (SPE). Different solvents were tested evaluating total phenolic compounds and total flavonoids contents together to antioxidant activity. The optimum extraction conditions, in terms of the highest value of total phenolic compounds extracted together to other parameters like simplicity and cost were selected for method validation and individual phenolic compounds analysis. The UA-SLE protocol performed using 0.1 g of defatted sample and 15 mL of extraction solvent (1 mL methanol/1 mL water/8 mL methanol 0.1% formic acid/5 mL acetonitrile) was selected. The analysis of hazelnut kernel individual phenolic compounds was obtained by HPLC coupled with DAD and MS detections. Quantitative analysis was performed using a mixture of six phenolic compounds belonging to phenolic classes' representative of hazelnut. Then, the method was fully validated and the resulting RSD% values for retention time repeatability were below 1%. A good linearity was obtained giving R 2 no lower than 0.997.The accuracy of the extraction method was also assessed. Finally, the method was applied to the analysis of phenolic compounds in three different hazelnut kernel varieties observing a similar qualitative profile with differences in the quantity of detected compounds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Changes of the phenolic compounds and antioxidant activities in germinated adlay seeds.

    PubMed

    Xu, Lei; Wang, Pei; Ali, Barkat; Yang, Na; Chen, Yisheng; Wu, Fengfeng; Xu, Xueming

    2017-09-01

    Over the years, germinated adlay products have been used as both food source and folk medicine. This study investigated the changes of total phenolic content (TPC), total flavonoid content (TFC), antioxidant activities, and phenolic acid profiles of adlay seed during germination. Results revealed that phenolic compounds and antioxidant activities varied with the germination stages. Germination significantly increased the free form phenolic and flavonoid contents by 112.5% and 168.3%, respectively. However, both of the bound form phenolic and flavonoid contents significantly decreased after germination. Phenolic acid compositions were quantified via HPLC analysis, and the levels of vanillic, p-coumaric, caffeic, hydroxybenzoic and protocatechuic acids in the free phenolic extracts were found to be significantly increased. The improvement of the free and total phenolic and flavonoid contents by the germination process led to a significant enhancement of the antioxidant activities (evaluated by the ABTS, FRAP and ORAC assays). The TPC showed the highest correlation with ORAC values (r = 0.9979). Germinated adlay had higher free and total phenolic and flavonoid contents, and antioxidant activities than ungerminated adlay. This study indicates that germinated adlay could be a promising functional food, more suitable for human consumption. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Simultaneous determination of phenolic compounds in Cynthiana grape (Vitis aestivalis) by high performance liquid chromatography-electrospray ionisation-mass spectrometry.

    PubMed

    Ramirez-Lopez, L M; McGlynn, W; Goad, C L; Mireles Dewitt, C A

    2014-04-15

    Phenolic acids, flavanols, flavonols and stilbenes (PAFFS) were isolated from whole grapes, juice, or pomace and purified using enzymatic hydrolysis. Only anthocyanin mono-glucosides and a few of the oligomers from Cynthiana grape (Vitis aestivalis) were analysed. Flavonoid-anthocyanin mono-glucosides (FA) were isolated using methanol/0.1% hydrochloric acid extraction. In addition, crude extractions of phenolic compounds from Cynthiana grape using 50% methanol, 70% methanol, 50% acetone, 0.01% pectinase, or petroleum ether were also evaluated. Reverse phase high performance liquid chromatography (RP-HPLC) with photodiode array (PDA) detector was used to identify phenolic compounds. A method was developed for simultaneous separation, identification and quantification of both PAFFS and FA. Quantification was performed by the internal standard method using a five points regression graph of the UV-visible absorption data collected at the wavelength of maximum absorbance for each analyte. From whole grape samples nine phenolic compounds were tentatively identified and quantified. The individual phenolic compounds content varied from 3 to 875 mg kg⁻¹ dry weight. For juice, twelve phenolic compounds were identified and quantified. The content varied from 0.07 to 910 mg kg⁻¹ dry weight. For pomace, a total of fifteen phenolic compounds were tentatively identified and quantified. The content varied from 2 mg kg⁻¹ to 198 mg kg⁻¹ dry matter. Results from HPLC analysis of the samples showed that gallic acid and (+)-catechin hydrate were the major phenolic compounds in both whole grapes and pomace. Cyanidin and petunidin 3-O-glucoside were the major anthocyanin glucosides in the juice. Published by Elsevier Ltd.

  20. Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch

    PubMed Central

    Sutela, Suvi; Niemi, Karoliina; Edesi, Jaanika; Laakso, Tapio; Saranpää, Pekka; Vuosku, Jaana; Mäkelä, Riina; Tiimonen, Heidi; Chiang, Vincent L; Koskimäki, Janne; Suorsa, Marja; Julkunen-Tiitto, Riitta; Häggman, Hely

    2009-01-01

    Background The monolignol biosynthetic pathway interconnects with the biosynthesis of other secondary phenolic metabolites, such as cinnamic acid derivatives, flavonoids and condensed tannins. The objective of this study is to evaluate whether genetic modification of the monolignol pathway in silver birch (Betula pendula Roth.) would alter the metabolism of these phenolic compounds and how such alterations, if exist, would affect the ectomycorrhizal symbiosis. Results Silver birch lines expressing quaking aspen (Populus tremuloides L.) caffeate/5-hydroxyferulate O-methyltransferase (PtCOMT) under the 35S cauliflower mosaic virus (CaMV) promoter showed a reduction in the relative expression of a putative silver birch COMT (BpCOMT) gene and, consequently, a decrease in the lignin syringyl/guaiacyl composition ratio. Alterations were also detected in concentrations of certain phenolic compounds. All PtCOMT silver birch lines produced normal ectomycorrhizas with the ectomycorrhizal fungus Paxillus involutus (Batsch: Fr.), and the formation of symbiosis enhanced the growth of the transgenic plants. Conclusion The down-regulation of BpCOMT in the 35S-PtCOMT lines caused a reduction in the syringyl/guaiacyl ratio of lignin, but no significant effect was seen in the composition or quantity of phenolic compounds that would have been caused by the expression of PtCOMT under the 35S or UbB1 promoter. Moreover, the detected alterations in the composition of lignin and secondary phenolic compounds had no effect on the interaction between silver birch and P. involutus. PMID:19788757

  1. Fatty Acid and Phenolic Compound Concentrations in Eight Different Monovarietal Virgin Olive Oils from Extremadura and the Relationship with Oxidative Stability

    PubMed Central

    Montaño, Alfonso; Hernández, Marcos; Garrido, Inmaculada; Llerena, José Luís; Espinosa, Francisco

    2016-01-01

    Olive oils have been shown to be more resistant to oxidation than other vegetable fats, mainly due to their fatty acid (FA) profile which is rich in oleic acid and to their high content of antioxidants, principally phenols and tocopherols. This has situated virgin olive oils (VOOs) among the fats of high nutritional quality. However, it is important to stress that the oil’s commercial category (olive oil, virgin olive oil, extra-virgin olive oil), the variety of the source plant, and the extraction-conservation systems all decisively influence the concentration of these antioxidants and the oil’s shelf-life. The present work studied the fatty acid (FA) and phenolic composition and the oxidative stability (OS) of eight olive varieties grown in Extremadura (Arbequina, Cornicabra, Manzanilla Cacereña, Manzanilla de Sevilla, Morisca, Pico Limón, Picual, and Verdial de Badajoz), with the olives being harvested at different locations and dates. The Cornicabra, Picual, and Manzanilla Cacereña VOOs were found to have high oleic acid contents (>77.0%), while the VOOs of Morisca and Verdial de Badajoz had high linoleic acid contents (>14.5%). Regarding the phenol content, high values were found in the Cornicabra (633 mg·kg−1) and Morisca (550 mg·kg−1) VOOs, and low values in Arbequina (200 mg·kg−1). The OS was found to depend upon both the variety and the date of harvesting. It was higher in the Cornicabra and Picual oils (>55 h), and lower in those of Verdial de Badajoz (26.3 h), Arbequina (29.8 h), and Morisca (31.5 h). In relating phenols and FAs with the OS, it was observed that, while the latter, particularly the linoleic content (R = −0.710, p < 0.001, n = 135), constitute the most influential factors, the phenolic compounds, especially o-diphenols, are equally influential when the oils’ linoleic content is ≥12.5% (R = 0.674, p < 0.001, n = 47). The results show that VOOs’ resistance to oxidation depends not only on the FA or phenolic profile

  2. Chemical composition and antioxidant activity of phenolic compounds and essential oils from Calamintha nepeta L.

    PubMed

    Khodja, Nabyla Khaled; Boulekbache, Lila; Chegdani, Fatima; Dahmani, Karima; Bennis, Faiza; Madani, Khodir

    2018-05-24

    Background Essential oils, infusion and decoction extracts of Calamintha nepeta L. were evaluated for their bioactive substances (polyphenols and essential oils) and antioxidant activities. Methods The amounts of phenolic compounds were determined by colorimetric assays and identified by high performance and liquid chromatography coupled with ultraviolet detector (HPLC-UV) method. The chemical composition of essential oils was determined by gas-chromatography coupled with mass spectrometry (GC/MS) method. For the evaluation of the antioxidant activity of essential oils and extracts, two different assays (reducing power and DPPH radical scavenging activity) were used. Results Infusion extract presented the highest phenolic content, followed by the decoction one, while the lowest amount was observed in essential oils. The amount of flavonoids of the decocted extract was higher than that of the infused one. The phenolic profile of C. nepeta infusion and decoction extracts revealed the presence of 28 and 13 peaks, respectively. Four phenolics compounds were identified in infusion (gallic acid (GA), rosmarinic acid (RA), caffeine (C) and caffeic acid (CA)) and two were identified in decoction (GA and RA). The chemical composition of essential oils revealed the presence of 29 compounds, accounting for the 99.7% of the total oils. Major compounds of essential oil (EO) were trans-menthone (50.06%) and pulegone (33.46%). Infusion and decoction extracts revealed an interesting antioxidant activity which correlates positively with their total phenolic contents. Conclusions These results showed that Calamintha nepeta could be considered as a valuable source of phenolics and essential oils with potent antioxidant activity.

  3. Phenolic acids and flavonoids of peanut by-products: Antioxidant capacity and antimicrobial effects.

    PubMed

    de Camargo, Adriano Costa; Regitano-d'Arce, Marisa Aparecida Bismara; Rasera, Gabriela Boscariol; Canniatti-Brazaca, Solange Guidolin; do Prado-Silva, Leonardo; Alvarenga, Verônica Ortiz; Sant'Ana, Anderson S; Shahidi, Fereidoon

    2017-12-15

    Peanut skin (PS) and meal from dry-blanched peanuts (MDBP) were evaluated as sources of phenolic compounds. PS rendered the highest total phenolic content, antioxidant capacity towards ABTS radical cation, DPPH and hydroxyl radicals as well as reducing power. Phenolic acids were present in PS and MDBP whereas proanthocyanidins and monomeric flavonoids were found only in PS as identified by HPLC-DAD-ESI-MS n . Procyanidin-rich extracts prevented oxidation in non-irradiated and gamma-irradiated fish model system. Both extracts inhibited the growth of gram-positive (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Geobacillus stearothermophilus) and gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli). Regardless of the strain, phenolic acid-rich extracts showed the lowest minimum inhibitory capacity (MIC); therefore presenting higher antibacterial effect. The MIC of phenolic acid-rich extracts (24-49μgphenolics/mL) was higher but comparable to Ampicillin (10μg/mL). Thus, phenolics in PS and MDBP may serve as antioxidants and antimicrobial compounds. Copyright © 2017. Published by Elsevier Ltd.

  4. Effect of Maturity on Phenolics (Phenolic Acids and Flavonoids) Profile of Strawberry Cultivars and Mulberry Species from Pakistan

    PubMed Central

    Mahmood, Tahir; Anwar, Farooq; Abbas, Mateen; Saari, Nazamid

    2012-01-01

    In this study, we investigated how the extent of ripeness affects the yield of extract, total phenolics, total flavonoids, individual flavonols and phenolic acids in strawberry and mulberry cultivars from Pakistan. In strawberry, the yield of extract (%), total phenolics (TPC) and total flavonoids (TFC) ranged from 8.5–53.3%, 491–1884 mg gallic acid equivalents (GAE)/100 g DW and 83–327 mg catechin equivalents (CE)/100 g DW, respectively. For the different species of mulberry the yield of extract (%), total phenolics and total flavonoids of 6.9–54.0%, 201–2287 mg GAE/100 g DW and 110–1021 mg CE/100 g DW, respectively, varied significantly as fruit maturity progressed. The amounts of individual flavonols and phenolic acid in selected berry fruits were analyzed by RP-HPLC. Among the flavonols, the content of myricetin was found to be high in Morus alba (88 mg/100 g DW), the amount of quercetin as high in Morus laevigata (145 mg/100 g DW) while kaempferol was highest in the Korona strawberry (98 mg/100 g DW) at fully ripened stage. Of the six phenolic acids detected, p-hydroxybenzoic and p-coumaric acid were the major compounds in the strawberry. M. laevigata and M. nigra contained p-coumaric acid and vanillic acid while M. macroura and M. alba contained p-hydroxy-benzoic acid and chlorogenic acid as the major phenolic acids. Overall, a trend to an increase in the percentage of extraction yield, TPC, TFC, flavonols and phenolic acids was observed as maturity progressed from un-ripened to fully-ripened stages. PMID:22605997

  5. Phenolic acid composition and antioxidant properties of Malaysian honeys.

    PubMed

    Khalil, M I; Alam, N; Moniruzzaman, M; Sulaiman, S A; Gan, S H

    2011-08-01

    The phenolic acid and flavonoid contents of Malaysian Tualang, Gelam, and Borneo tropical honeys were compared to those of Manuka honey. Ferric reducing/antioxidant power assay (FRAP) and the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical-scavenging activities were also quantified. All honey extracts exhibited high phenolic contents (15.21 ± 0.51- 42.23 ± 0.64 mg/kg), flavonoid contents (11.52 ± 0.27- 25.31 ± 0.37 mg/kg), FRAP values (892.15 ± 4.97- 363.38 ± 10.57 μM Fe[II]/kg), and high IC₅₀ of DPPH radical-scavenging activities (5.24 ± 0.40- 17.51 ± 0.51 mg/mL). Total of 6 phenolic acids (gallic, syringic, benzoic, trans-cinnamic, p-coumaric, and caffeic acids) and 5 flavonoids (catechin, kaempferol, naringenin, luteolin, and apigenin) were identified. Among the Malaysian honey samples, Tualang honey had the highest contents of phenolics, and flavonoids, and DPPH radical-scavenging activities. We conclude that among Malaysian honey samples, Tualang honey is the richest in phenolic acids, and flavonoid compounds, which have strong free radical-scavenging activities. © 2011 Institute of Food Technologists®

  6. [Rapid analysis on phenolic compounds in Rheum palmatum based on UPLC-Q-TOF/MSE combined with diagnostic ions filter].

    PubMed

    Wang, Qing; Lu, Zhi-Wei; Liu, Yue-Hong; Wang, Ming-Ling; Fu, Shuang; Zhang, Qing-Qing; Zhao, Hui-Zhen; Zhang, Zhi-Xin; Xie, Zi-Ye; Huang, Zheng-Hai; Yu, Hong-Hong; Zhou, Wen-Juan; Gao, Xiao-Yan

    2017-05-01

    Diagnostic ions filter method was used to rapidly detect and identify the phenolic compounds in Rheum palmatum based on ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE). The representative authentic standards of phenolic compounds, including gallic acid, (+)-catechin, (-)-epicatechin, (-)-epicatechin-3-O-gallate and procyanidin B2, were subjected to analysis by UPLC-Q-TOF/MSE system with negative ion mode. Fragmentation patterns of each standard were summarized based on assigned fragment ions. The prominent product ions were selected as diagnostic ions. Subsequently, diagnostic ions filter was employed to rapidly recognize analogous skeletons. Combined with retention time, accurate mass, characteristic fragments and previous literature data, the structures of the filtered compounds were identified or tentatively characterized. A total 63 phenolic compounds (36 phenolic acid derivatives, 8 flavonoid derivatives and 19 tennis derivatives) in R. palmatum were identified, including 6 potential new compounds. The method of diagnostic ions filter could rapidly detect and identify phenolic compounds in R. palmatum This study provides a method for rapid detection of phenolic compounds in R. palmatum and is expected to complete the material basis of rhubarb. Copyright© by the Chinese Pharmaceutical Association.

  7. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans.

    PubMed

    Castello, Fabio; Costabile, Giuseppina; Bresciani, Letizia; Tassotti, Michele; Naviglio, Daniele; Luongo, Delia; Ciciola, Paola; Vitale, Marilena; Vetrani, Claudia; Galaverna, Gianni; Brighenti, Furio; Giacco, Rosalba; Del Rio, Daniele; Mena, Pedro

    2018-05-15

    Grape pomace, the major byproduct of the wine and juice industry, is a relevant source of bioactive phenolic compounds. However, polyphenol bioavailability in humans is not well understood, and the inter-individual variability in the production of phenolic metabolites has not been comprehensively assessed to date. The pharmacokinetic and excretive profiles of phenolic metabolites after the acute administration of a drink made from red grape pomace was here investigated in ten volunteers. A total of 35 and 28 phenolic metabolites were quantified in urine and plasma, respectively. The main circulating metabolites included phenyl-γ-valerolactones, hydroxybenzoic acids, simple phenols, hydroxyphenylpropionic acids, hydroxycinnamates, and (epi)catechin phase II conjugates. A high inter-individual variability was shown both in urine and plasma samples, and different patterns of circulating metabolites were unravelled by applying unsupervised multivariate analysis. Besides the huge variability in the production of microbial metabolites of colonic origin, an important variability was observed due to phase II conjugates. These results are of interest to further understand the potential health benefits of phenolic metabolites on individual basis. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater.

    PubMed

    Calza, P; Vione, D; Minero, C

    2014-09-15

    Humic substances (HS) are known to act as photosensitizers toward the transformation of pollutants in the surface layer of natural waters. This study focused on the role played by HS toward the transformation of xenobiotics in seawater, with the purpose of assessing the prevailing degradation routes. Phenol was chosen as model xenobiotic and its transformation was investigated under simulated sunlight in the presence of terrestrial or marine humic and fulvic acids, in pure water at pH8, artificial seawater (ASW) or natural seawater (NSW). The following parameters were determined: (1) the phenol degradation rate; (2) the variation in HS concentration with irradiation time; (3) the production of transformation products; (4) the influence of iron species on the transformation process. Faster transformation of phenol was observed with humic acids (HA) compared to fulvic acids (SRFA), and transformation induced by both HA and SRFA was faster in ASW than that in pure water. These observations can be explained by assuming an interplay between different competing and sometimes opposite processes, including the competition between chloride, bromide and dissolved oxygen for reaction with HS triplet states. The analysis of intermediates formed in the different matrices under study showed the formation of several hydroxylated (hydroquinone, 1,4-benzoquinone, resorcinol) and condensed compounds (2,2'-bisphenol, 4,4'-bisphenol, 4-phenoxyphenol). Although 1,4-benzoquinone was the main transformation product, formation of condensed molecules was significant with both HA and SRFA. Experiments on natural seawater spiked with HS confirmed the favored formation of condensed products, suggesting a key role of humic matter in dimerization reactions occurring in saline water. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Reducing the allergenic capacity of peanut extracts and liquid peanut butter by phenolic compounds.

    USDA-ARS?s Scientific Manuscript database

    Phenolic compounds are known to form soluble and insoluble complexes with proteins. The objective of this study was to determine if phenolics, such as, caffeic, chlorogenic, and ferulic acids form insoluble and irreversible complexes with major peanut allergens. We also tested whether such complexat...

  10. Intestinal Permeability and Cellular Antioxidant Activity of Phenolic Compounds from Mango (Mangifera indica cv. Ataulfo) Peels

    PubMed Central

    Pacheco-Ordaz, Ramón; González-Aguilar, Gustavo A.

    2018-01-01

    Mango (Mangifera indica cv. Ataulfo) peel contains bound phenolics that may be released by alkaline or acid hydrolysis and may be converted into less complex molecules. Free phenolics from mango cv. Ataulfo peel were obtained using a methanolic extraction, and their cellular antioxidant activity (CAA) and permeability were compared to those obtained for bound phenolics released by alkaline or acid hydrolysis. Gallic acid was found as a simple phenolic acid after alkaline hydrolysis along with mangiferin isomers and quercetin as aglycone and glycosides. Only gallic acid, ethyl gallate, mangiferin, and quercetin were identified in the acid fraction. The acid and alkaline fractions showed the highest CAA (60.5% and 51.5%) when tested at 125 µg/mL. The value of the apparent permeability coefficient (Papp) across the Caco-2/HT-29 monolayer of gallic acid from the alkaline fraction was higher (2.61 × 10−6 cm/s) than in the other fractions and similar to that obtained when tested pure (2.48 × 10−6 cm/s). In conclusion, mango peels contain bound phenolic compounds that, after their release, have permeability similar to pure compounds and exert an important CAA. This finding can be applied in the development of nutraceuticals using this important by-product from the mango processing industry. PMID:29419800

  11. Antioxidant Activities of Selected Berries and Their Free, Esterified, and Insoluble-Bound Phenolic Acid Contents

    PubMed Central

    2018-01-01

    To explore the potential of berries as natural sources of bioactive compounds, the quantities of free, esterified, and insoluble-bound phenolic acids in a number of berries were determined. In addition, the antioxidant activities of the berries were determined using 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, ferric reducing antioxidant power, and Trolox equivalent antioxidant capacity assays, in addition to determination of their metal ion chelating activities. Furthermore, several phenolic compounds were detected using high-performance liquid chromatography. Of the 6 tested berries, black chokeberry and blackberry exhibited the strongest antioxidant activities, and the various berry samples were found to contain catechin, caffeic acid, p-coumaric acid, epicatechin, vanillic acid, quercitrin, resveratrol, morin, naringenin, and apigenin. Moreover, the antioxidant activities and total phenolic contents of the fractions containing insoluble-bound phenolic acids were higher than those containing the free and esterified phenolic acids. The results imply that the insoluble-bound fractions of these berries are important natural sources of antioxidants for the preparation of functional food ingredients and preventing diseases associated with oxidative stress. PMID:29662846

  12. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years

    PubMed Central

    Chung, Ill-Min; Lim, Ju-Jin; Ahn, Mun-Seob; Jeong, Haet-Nim; An, Tae-Jin; Kim, Seung-Hyun

    2015-01-01

    Background The study of phenolic compounds profiles and antioxidative activity in ginseng fruit, leaves, and roots with respect to cultivation years, and has been little reported to date. Hence, this study examined the phenolic compounds profiles and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free-radical-scavenging activities in the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) as a function of cultivation year. Methods Profiling of 23 phenolic compounds in ginseng fruit, leaves, and roots was investigated using ultra-high performance liquid chromatography with the external calibration method. Antioxidative activity of ginseng fruit, leaves, and roots were evaluated using the method of DPPH free-radical-scavenging activity. Results The total phenol content in ginseng fruit and leaves was higher than in ginseng roots (p < 0.05), and the phenol content in the ginseng samples was significantly correlated to the DPPH free-radical-scavenging activity (r = 0.928****). In particular, p-coumaric acid (r = 0.847****) and ferulic acid (r = 0.742****) greatly affected the DPPH activity. Among the 23 phenolic compounds studied, phenolic acids were more abundant in ginseng fruit, leaves, and roots than the flavonoids and other compounds (p < 0.05). In particular, chlorogenic acid, gentisic acid, p- and m-coumaric acid, and rutin were the major phenolic compounds in 3–6-yr-old ginseng fruit, leaves, and roots. Conclusion This study provides basic information about the antioxidative activity and phenolic compounds profiles in fruit, leaves, and roots of Korean ginseng with cultivation years. This information is potentially useful to ginseng growers and industries involved in the production of high-quality and nutritional ginseng products. PMID:26843824

  13. Chemical composition and antioxidant activity of phenolic compounds from Dioscorea (Yam) leaves.

    PubMed

    Zhou, Li; Shi, Xinmin; Ren, Xiangmei; Qin, Zhihong

    2018-05-01

    This study was aimed to assess the potential of Dioscorea (yam) leaves as a source of antioxidants. Microwave-assisted extraction (MAE) process was used to prepare the extracts. The phenolic compounds in Dioscorea leaves extracts were analyzed by HPLC-DAD-ESI-MS/MS method and the contents of major compounds were determined. Results indicated that a total of 17 phenolic compounds were separated identified by means of UV and mass spectra compared with authentic reference substances and/or reported values in the literature. The main phenolic compound was rosmarinic acid and its highest amount was found in Dioscorea glabra Roxb. leaves (22.31±1.33 mg/g DW). Rutin was the dominant flavonoid followed by quercetin which highest amount was found in Dioscorea alata leaves (8.66±0.29 mg/g DW). Antioxidant activity of the extracts was estimated by the use of DPPH and ABTS assays. Both kinds of leaves exhibited satisfied antioxidant capacity which was correlated with phenolic contents. In the cytoprotective effect on HUVECs viability assay, Dioscorea glabra Roxb. leaves extract was found to be more active than that of Dioscorea alata against H 2 O 2 -induced oxidative stress. Our findings support the promising role of Dioscorea leaves that can be used as an interesting source of phenolic antioxidants.

  14. Exploring reserve lots of Cymbopogon citratus, Aloysia citrodora and Thymus × citriodorus as improved sources of phenolic compounds.

    PubMed

    Rita, Ingride; Pereira, Carla; Barros, Lillian; Ferreira, Isabel C F R

    2018-08-15

    Given the increasing consumers demand for novelty, tea companies have been presenting new added value products such as reserve lots of aromatic plants. Herein, infusions from different lots of three aromatic plants were assessed in terms of phenolic composition (HPLC-DAD-ESI/MS) and antioxidant properties (reducing power, free radical scavenging and lipid peroxidation inhibition capacity). Cymbopogon citratus (C. citratus; main compound 5-O-caffeoylquinic acid) and Aloysia citrodora (A. citrodora; prevalence of verbascoside) reserve lots revealed higher phenolic compounds concentration than the respective standard lots. Thymus × citriodorus (T. citriodorus; main compound rosmarinic acid) standard lot presented higher amounts of phenolic acids than the reserve lot, nonetheless, total flavonoids and phenolic compounds were not significantly different. The differences between both lots antioxidant activity were more noticeable in C. citratus, with the reserve lot presenting the highest activity. This study provides evidence of the differences between these plants chemical composition and bioactivity depending on the harvesting conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology.

    PubMed

    Chen, Shasha; Zeng, Zhi; Hu, Na; Bai, Bo; Wang, Honglun; Suo, Yourui

    2018-03-01

    Lycium ruthenicum Murr. (LR) is a functional food that plays an important role in anti-oxidation due to its high level of phenolic compounds. This study aims to optimize ultrasound-assisted extraction (UAE) of phenolic compounds and antioxidant activities of obtained extracts from LR using response surface methodology (RSM). A four-factor-three-level Box-Behnken design (BBD) was employed to discuss the following extracting parameters: extraction time (X 1 ), ultrasonic power (X 2 ), solvent to sample ratio (X 3 ) and solvent concentration (X 4 ). The analysis of variance (ANOVA) results revealed that the solvent to sample ratio had a significant influence on all responses, while the extraction time had no statistically significant effect on phenolic compounds. The optimum values of the combination of phenolic compounds and antioxidant activities were obtained for X 1 =30min, X 2 =100W, X 3 =40mL/g, and X 4 =33% (v/v). Five phenolic acids, including chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid and ferulic acid, were analyzed by HPLC. Our results indicated that optimization extraction is vital for the quantification of phenolic compounds and antioxidant activity in LR, which may be contributed to large-scale industrial applications and future pharmacological activities research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Phenolic compounds of barley grain and their implication in food product discoloration.

    PubMed

    Quinde-Axtell, Zory; Baik, Byung-Kee

    2006-12-27

    Barley grains contain significant amounts of phenolic compounds that may play a major role in the discoloration of food products. Phenolic acid and proanthocyanidin (PA) composition of 11 barley genotypes were determined, using high-performance liquid chromatography and liquid chromatography-mass spectrometry, and their significance on food discoloration was evaluated. Abraded grains contained 146-410 microg/g of phenolic acids (caffeic, p-coumaric, and ferulic) in hulled barley and 182-282 microg/g in hulless barley. Hulled PA-containing and PA-free genotypes had comparable phenolic acid contents. Catechin and six major barley PAs, including dimeric prodelphinidin B3 and procyandin B3, and four trimers were quantified. PAs were quantified as catechin equivalents (CE). The catechin content was higher in hulless (48-71 microg/g) than in hulled (32-37 microg/g) genotypes. The total PA content of abraded barley grains ranged from 169 to 395microg CE/g in PA-containing hulled and hulless genotypes. Major PAs were prodelphinidin B3 (39-109 microg CE/g) and procyanidin B3 (40-99 microg CE/g). The contents of trimeric PAs including procyanidin C2 ranged from 53 to 151 g CE/g. Discoloration of barley flour dough correlated with the catechin content of abraded grains (r = -0.932, P < 0.001), but not with the content of individual phenolic acids and PAs. Discoloration of barley flour dough was, however, intensified when total PA extracts and catechin or dimeric PA fractions were added into PA-free barley flour. The brightness of dough also decreased when the total PA extract or trimeric PA fraction was added into heat-treated PA-free barley flour. Despite its low concentration, catechin appears to exert the largest influence on the discoloration of barley flour dough among phenolic compounds.

  17. Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: characterization by high-performance liquid chromatography-diode array detection-electrospray tandem mass spectrometry.

    PubMed

    Magalhães, Paulo J; Vieira, Joana S; Gonçalves, Luís M; Pacheco, João G; Guido, Luís F; Barros, Aquiles A

    2010-05-07

    The aim of the present work was the development of a suitable methodology for the separation and determination of phenolic compounds in the hop plant. The developed methodology was based on the sample purification by adsorption of phenolic compounds from the matrix to polyvinylpolypyrrolidone (PVPP) and subsequent desorption of the adsorbed polyphenols with acetone/water (70:30, v/v). At last, the extract was analyzed by HPLC-DAD and HPLC-ESI-MS/MS. The first phase of this work consisted of the study of the adsorption behavior of several classes of phenolic compounds (e.g. phenolic acids, flavonols, and flavanols) by PVPP in model solutions. It has been observed that the process of adsorption of the different phenolic compounds to PVPP (at low concentrations) is differentiated, depending on the structure of the compound (number of OH groups, aromatic rings, and stereochemistry hindrance). For example, within the phenolic acids class (benzoic, p-hydroxybenzoic, protocatechuic and gallic acids) the PVPP adsorption increases with the number of OH groups of the phenolic compound. On the other hand, the derivatization of OH groups (methylation and glycosylation) resulted in a greatly diminished binding. The use of PVPP revealed to be very efficient for adsorption of several phenolic compounds such as catechin, epicatechin, xanthohumol and quercetin, since high adsorption and recovery values were obtained. The methodology was further applied for the extraction and isolation of phenolic compounds from hops. With this methodology, it was possible to obtain high adsorption values (>or=80%) and recovery yield values (>or=70%) for the most important phenolic compounds from hops such as xanthohumol, catechin, epicatechin, quercetin and kaempferol glycosides, and in addition it allows the identification of about 30 phenolic compounds by HPLC-DAD and HPLC-ESI-MS/MS. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  18. HPLC-ED Analysis of Phenolic Compounds in Three Bosnian Crataegus Species.

    PubMed

    Čulum, Dušan; Čopra-Janićijević, Amira; Vidic, Danijela; Klepo, Lejla; Tahirović, Azra; Bašić, Neđad; Maksimović, Milka

    2018-04-24

    The aim of this work was the qualitative and quantitative determination of selected phenolic compounds in three Crataegus species grown in Bosnia. Crataegus plants are consumed for medicinal purposes and as foodstuff in the form of canned fruit, jam, jelly, tea, and wine. Two samples of plant material, dry leaves with flowers, and berries of three Crataegus species— Crataegus rhipidophylla Gand., Crataegus x subsphaericea Gand., and Crataegus x macrocarpa Hegetschw.—were analyzed. Twelve ethanolic extracts were isolated from the selected plant material using Soxhlet and ultrasound extraction, respectively. Soxhlet extraction proved to be more effective than ultrasound extraction. A simple and sensitive method, high-performance liquid chromatography with electrochemical detection, HPLC-ED, was used for the simultaneous determination of phenolic acids and flavonoids in Crataegus species. The content of gallic acid in the extracts ranged from 0.001 to 0.082 mg/g dry weight (DW), chlorogenic acid from 0.19 to 8.70 mg/g DW, and rutin from 0.03 to 13.49 mg/g DW. Two flavonoids, vitexin and hyperoside, commonly found in chemotaxonomic investigations of Crataegus species, were not detected in the examined extracts. In general, leaves with flowers samples are richer in gallic acid and rutin, whereas the berries samples are richer in chlorogenic acid. Distinct similarities were found in the relative distribution of gallic acid among the three species. Extracts of C. x macrocarpa had the highest content of all detected compounds, while significant differences were found in rutin content, depending on the plant organ. To the best of our knowledge, this is the first study reporting content of phenolic compounds in Crataegus rhipidophylla Gand., Crataegus x subsphaericea , and Crataegus x macrocarpa from Bosnia.

  19. HPLC-ED Analysis of Phenolic Compounds in Three Bosnian Crataegus Species

    PubMed Central

    Čulum, Dušan; Vidic, Danijela; Klepo, Lejla; Tahirović, Azra; Bašić, Neđad; Maksimović, Milka

    2018-01-01

    The aim of this work was the qualitative and quantitative determination of selected phenolic compounds in three Crataegus species grown in Bosnia. Crataegus plants are consumed for medicinal purposes and as foodstuff in the form of canned fruit, jam, jelly, tea, and wine. Two samples of plant material, dry leaves with flowers, and berries of three Crataegus species—Crataegus rhipidophylla Gand., Crataegus x subsphaericea Gand., and Crataegus x macrocarpa Hegetschw.—were analyzed. Twelve ethanolic extracts were isolated from the selected plant material using Soxhlet and ultrasound extraction, respectively. Soxhlet extraction proved to be more effective than ultrasound extraction. A simple and sensitive method, high-performance liquid chromatography with electrochemical detection, HPLC-ED, was used for the simultaneous determination of phenolic acids and flavonoids in Crataegus species. The content of gallic acid in the extracts ranged from 0.001 to 0.082 mg/g dry weight (DW), chlorogenic acid from 0.19 to 8.70 mg/g DW, and rutin from 0.03 to 13.49 mg/g DW. Two flavonoids, vitexin and hyperoside, commonly found in chemotaxonomic investigations of Crataegus species, were not detected in the examined extracts. In general, leaves with flowers samples are richer in gallic acid and rutin, whereas the berries samples are richer in chlorogenic acid. Distinct similarities were found in the relative distribution of gallic acid among the three species. Extracts of C. x macrocarpa had the highest content of all detected compounds, while significant differences were found in rutin content, depending on the plant organ. To the best of our knowledge, this is the first study reporting content of phenolic compounds in Crataegus rhipidophylla Gand., Crataegus x subsphaericea, and Crataegus x macrocarpa from Bosnia. PMID:29695058

  20. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds.

    PubMed

    Chougui, Nadia; Tamendjari, Abderezak; Hamidj, Wahiba; Hallal, Salima; Barras, Alexandre; Richard, Tristan; Larbat, Romain

    2013-08-15

    The seed composition of four varieties of Opuntia ficus-indica growing in Algeria was investigated. Seeds ground into a fine powder were first, subjected to oil extraction and fatty acids analysis. The phenolic compounds were then extracted from the defatted powder of seeds in order to be quantified and characterised by liquid chromatography coupled to mass spectrometry (LC-MS(n)) and to nuclear magnetic resonance (LC-NMR) approaches. In addition, an evaluation of the antioxidant activity of the phenolic extracts was investigated. Gas chromatography analysis of the seed oil showed high percentages of linoleic acid in the four varieties ranging from 58% to 63%. The phenolic profile of the Opuntia ficus-indica seeds displayed a high complexity, with more than 20 compounds detected at 330 nm after the LC separation. Among them, three isomers of feruloyl-sucrose were firmly identified and another was strongly supposed to be a sinapoyl-diglycoside. High correlations were found between phenolic content in the defatted seed extracts and their antioxidant activity. The data indicate that the defatted cactus seed wastes still contain various components that constitute a source for natural foods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Phenolic acids as bioindicators of fly ash deposit revegetation.

    PubMed

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  2. Phenolic compounds from Byrsonima crassifolia L. bark: phytochemical investigation and quantitative analysis by LC-ESI MS/MS.

    PubMed

    Maldini, Mariateresa; Montoro, Paola; Pizza, Cosimo

    2011-08-25

    Phytochemical investigation of the methanolic extract of Byrsonima crassifolia's bark led to the isolation of 8 known phenolic compounds 5-O-galloylquinic acid, 3-O-galloylquinic acid, 3,4-di-O-galloylquinic acid, 3,5-di-O-galloylquinic acid, 3,4,5-tri-O-galloylquinic acid, (+)-epicatechin-3-gallate along with (+)-catechin and (+)-epicatechin. Due to their biological value, in the present study, a high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, working in multiple reaction monitoring (MRM) mode, has been developed to quantify these compounds. B. crassifolia bark resulted in a rich source of phenolic compounds and particularly of galloyl derivates. The proposed analytical method is promising to be applied to other galloyl derivatives to quantify these bioactive compounds in raw material and final products. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Flavonoids and Phenolic Acids from Oregano: Occurrence, Biological Activity and Health Benefits.

    PubMed

    Gutiérrez-Grijalva, Erick P; Picos-Salas, Manuel A; Leyva-López, Nayely; Criollo-Mendoza, Marilyn S; Vazquez-Olivo, Gabriela; Heredia, J Basilio

    2017-12-26

    Several herb species classified as oregano have been widely used in folk medicine to alleviate inflammation-related diseases, respiratory and digestive disorders, headaches, rheumatism, diabetes and others. These potential health benefits are partially attributed to the phytochemical compounds in oregano such as flavonoids (FL) and phenolic acids (PA). Flavonoids and phenolic acids are among the most abundant and most studied phytochemicals in oregano species. Epidemiological, in vitro and in vivo experiments have related long-term consumption of dietary FL and PA with a decreased risk of incidence of chronic diseases. The aim of this manuscript is to summarize the latest studies on the identification and distribution of flavonoids and phenolic compounds from oregano species and their potential antioxidant, anti-inflammatory and anti-cancer health benefits.

  4. Flavonoids and Phenolic Acids from Oregano: Occurrence, Biological Activity and Health Benefits

    PubMed Central

    Picos-Salas, Manuel A.; Criollo-Mendoza, Marilyn S.

    2017-01-01

    Several herb species classified as oregano have been widely used in folk medicine to alleviate inflammation-related diseases, respiratory and digestive disorders, headaches, rheumatism, diabetes and others. These potential health benefits are partially attributed to the phytochemical compounds in oregano such as flavonoids (FL) and phenolic acids (PA). Flavonoids and phenolic acids are among the most abundant and most studied phytochemicals in oregano species. Epidemiological, in vitro and in vivo experiments have related long-term consumption of dietary FL and PA with a decreased risk of incidence of chronic diseases. The aim of this manuscript is to summarize the latest studies on the identification and distribution of flavonoids and phenolic compounds from oregano species and their potential antioxidant, anti-inflammatory and anti-cancer health benefits. PMID:29278371

  5. Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects.

    PubMed

    Pereira, Carla; Barros, Lillian; Ferreira, Isabel C F R

    2016-03-15

    The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals. © 2015 Society of Chemical Industry.

  6. Retardation of quality changes in camel meat sausages by phenolic compounds and phenolic extracts.

    PubMed

    Maqsood, Sajid; Manheem, Kusaimah; Abushelaibi, Aisha; Kadim, Isam Tawfik

    2016-11-01

    Impact of tannic acid (TA), date seed extract (DSE), catechin (CT) and green tea extract (GTE) on lipid oxidation, microbial load and textural properties of camel meat sausages during 12 days of refrigerated storage was investigated. TA and CT showed higher activities in all antioxidative assays compared to DSE and GTE. Lipid oxidation and microbial growth was higher for control sausages when compared to other samples. TA and CT at a level of 200 mg/kg were more effective in retarding lipid oxidation and lowering microbial count (P < 0.05). Sausages treated with TA and DSE were found to have higher hardness, gumminess and chewiness values compared to other treatments (P < 0.05). Addition of different phenolic compounds or extract did not influence the sensory color of sausages. Furthermore, sensory quality was also found to be superior in TA and CT treated sausages. Therefore, pure phenolic compounds (TA and CT) proved to be more effective in retaining microbial and sensorial qualities of camel meat sausages compared to phenolic extracts (GTE and DSE) over 12 days of storage at 4°C. © 2016 Japanese Society of Animal Science.

  7. Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts.

    PubMed

    Peiretti, Pier Giorgio; Meineri, Giorgia; Gai, Francesco; Longato, Erica; Amarowicz, Ryszard

    2017-09-01

    Phenolic compounds were extracted from pumpkin (Cucurbita pepo) seed and amaranth (Amaranthus caudatus) grain into 80% (v/v) methanol. The extracts obtained were characterised by the contents of total phenolic compounds (TPC), trolox equivalent antioxidant capacity (TEAC), ferric-reducing antioxidant power (FRAP) and antiradical activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH · ) radical. The content of individual phenolic compounds was determined by HPLC-DAD method. Pumpkin seeds showed the higher content of TPC than that from amaranth. The TEAC values of both extracts were similar each other. The lower value of FRAP was observed for pumpkin seed. Phenolic compound present in amaranth grain exhibited strongest antiradical properties against DPPH radical. Several peaks were present on the HPLC chromatograms of two extracts. The UV-DAD spectra confirmed the presence of vanillic acid derivatives in the amaranth grain. The three main phenolic compound present in pumpkin seed were characterised by UV-DAD spectra with maximum at 258, 266 and 278 nm.

  8. Nutritional Composition and Antioxidant Capacity in Edible Flowers: Characterisation of Phenolic Compounds by HPLC-DAD-ESI/MSn

    PubMed Central

    Navarro-González, Inmaculada; González-Barrio, Rocío; García-Valverde, Verónica; Bautista-Ortín, Ana Belén; Periago, María Jesús

    2014-01-01

    Edible flowers are commonly used in human nutrition and their consumption has increased in recent years. The aim of this study was to ascertain the nutritional composition and the content and profile of phenolic compounds of three edible flowers, monks cress (Tropaeolum majus), marigold (Tagetes erecta) and paracress (Spilanthes oleracea), and to determine the relationship between the presence of phenolic compounds and the antioxidant capacity. Proximate composition, total dietary fibre (TDF) and minerals were analysed according to official methods: total phenolic compounds (TPC) were determined with Folin-Ciocalteu’s reagent, whereas antioxidant capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and Oxygen Radical Absorbance Capacity (ORAC) assays. In addition, phenolic compounds were characterised by HPLC-DAD-MSn. In relation to the nutritional value, the edible flowers had a composition similar to that of other plant foods, with a high water and TDF content, low protein content and very low proportion of total fat—showing significant differences among samples. The levels of TPC compounds and the antioxidant capacity were significantly higher in T. erecta, followed by S. oleracea and T. majus. Thirty-nine different phenolic compounds were tentatively identified, with flavonols being the major compounds detected in all samples, followed by anthocyanins and hydroxycynnamic acid derivatives. In T. erecta small proportions of gallotannin and ellagic acid were also identified. PMID:25561232

  9. Free and Bound Phenolic Compound Content and Antioxidant Activity of Different Cultivated Blue Highland Barley Varieties from the Qinghai-Tibet Plateau.

    PubMed

    Yang, Xi-Juan; Dang, Bin; Fan, Ming-Tao

    2018-04-11

    In this study, the polyphenols composition and antioxidant properties of 12 blue highland barley varieties planted on the Qinghai-Tibet Plateau area were measured. The contents of the free, bound and total phenolic acids varied between 166.20-237.60, 170.10-240.75 and 336.29-453.94 mg of gallic acid equivalents per 100 g of dry weight (DW) blue highland barley grains, while the free and bound phenolic acids accounted for 50.09% and 49.91% of the total phenolic acids, respectively. The contents of the free, bound and total flavones varied among 20.61-25.59, 14.91-22.38 and 37.91-47.98 mg of catechin equivalents per 100 g of dry weight (DW) of blue highland barley grains, while the free and bound flavones accounted for 55.90% and 44.10% of the total flavones, respectively. The prominent phenolic compounds in the blue hulless barley grains were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, naringenin, hesperidin, rutin, (+)-catechin and quercetin. Among these, protocatechuic acid, chlorogenic acid and (+)-catechin were the major phenolic compounds in the free phenolics extract. The most abundant bound phenolics were gallic acid, benzoic acid, syringic acid, 4-coumaric acid, benzoic acid, dimethoxybenzoic acid, naringenin, hesperidin, quercetin and rutin. The average contribution of the bound phenolic extract to the DPPH • free radical scavenging capacity was higher than 86%, that of free phenolic extract to the ABTS •+ free radical scavenging capacity was higher than 79%, and that of free phenolic (53%) to the FRAP antioxidant activity was equivalent to that of the bound phenol extract (47%). In addition, the planting environment exerts a very important influence on the polyphenol composition, content and antioxidant activity of blue highland barley. The correlation analysis showed that 2,4-hydroxybenzoic acid and protocatechuic acid were the main contributors to the DPPH • and ABTS •+ free radical scavenging capacity in the free phenolic extract

  10. Inhibitory Effect of Furanic and Phenolic Compounds on Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode

    DOE PAGES

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2016-09-09

    Furanic and phenolic compounds are 20 lignocellulose-derived compounds known to inhibit to H2- and ethanol- producing microorganisms in dark fermentation. Bioelectrochemical conversion of furanic and phenolic compounds to electricity or H2 has recently been demonstrated as a productive method to use these compounds. However, potential inhibitory effect of furanic and phenolic compounds on exoelectrogenesis in bioelectrochemical systems is not well understood. This study systematically investigated the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) on exoelectrogenesis in the bioanode of a microbial electrolysis cell. A mixture of these five compounds atmore » an increasing initial total concentration from 0.8 to 8.0 g/L resulted in current decrease up to 91%. The observed inhibition primarily affected exoelectrogenesis, instead of non-exoelectrogenic biotransformation pathways (e.g., fermentation) of the five compounds. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. Tests with individual compounds show that all five parent compounds contributed to the observed inhibition by the mixture. The IC50 (concentration resulting in 50% current decrease) was estimated as 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. Nevertheless, these compounds below their non-inhibitory concentrations jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products of the mixture, inhibited exoelectrogens at high concentrations, but to a lesser extent than the parent compounds. Recovery of exoelectrogenesis from inhibition by all compounds was observed, except for catechol, which resulted in irreversible inhibition. The reversibility of inhibition, as well as the observed difference in recovery

  11. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review.

    PubMed

    Mosele, Juana I; Macià, Alba; Motilva, Maria-José

    2015-09-18

    Phenolic compounds represent a diverse group of phytochemicals whose intake is associated with a wide spectrum of health benefits. As consequence of their low bioavailability, most of them reach the large intestine where, mediated by the action of local microbiota, a series of related microbial metabolites are accumulated. In the present review, gut microbial transformations of non-absorbed phenolic compounds are summarized. Several studies have reached a general consensus that unbalanced diets are associated with undesirable changes in gut metabolism that could be detrimental to intestinal health. In terms of explaining the possible effects of non-absorbed phenolic compounds, we have also gathered information regarded their influence on the local metabolism. For this purpose, a number of issues are discussed. Firstly, we consider the possible implications of phenolic compounds in the metabolism of colonic products, such as short chain fatty acids (SCFA), sterols (cholesterol and bile acids), and microbial products of non-absorbed proteins. Due to their being recognized as affective antioxidant and anti-inflammatory agents, the ability of phenolic compounds to counteract or suppress pro-oxidant and/or pro-inflammatory responses, triggered by bowel diseases, is also presented. The modulation of gut microbiota through dietetic maneuvers including phenolic compounds is also commented on. Although the available data seems to assume positive effects in terms of gut health protection, it is still insufficient for solid conclusions to be extracted, basically due to the lack of human trials to confirm the results obtained by the in vitro and animal studies. We consider that more emphasis should be focused on the study of phenolic compounds, particularly in their microbial metabolites, and their power to influence different aspects of gut health.

  12. Green tea yogurt: major phenolic compounds and microbial growth.

    PubMed

    Amirdivani, Shabboo; Baba, Ahmad Salihin Hj

    2015-07-01

    The purpose of this study was to evaluate fermentation of milk in the presence of green tea (Camellia sinensis) with respect to changes in antioxidant activity, phenolic compounds and the growth of lactic acid bacteria. Pasteurized full fat cow's milk and starter culture were incubated at 41 °C in the presence of two different types of green tea extracts. The yogurts formed were refrigerated (4 °C) for further analysis. The total phenolic content was highest (p < 0.05) in air-dried green tea-yogurt (MGT) followed by steam-treated green tea (JGT) and plain yogurts. Four major compounds in MGTY and JGTY were detected. The highest concentration of major phenolic compounds in both samples was related to quercetin-rhamnosylgalactoside and quercetin-3-O-galactosyl-rhamnosyl-glucoside for MGTY and JGTY respectively during first 7 day of storage. Diphenyl picrylhydrazyl and ferric reducing antioxidant power methods showed highest antioxidant capacity in MGTY, JGTY and PY. Streptococcus thermophillus and Lactobacillus spp. were highest in MGTY followed by JGTY and PY. This paper evaluates the implementation of green tea yogurt as a new product with functional properties and valuable component to promote the growth of beneficial yogurt bacteria and prevention of oxidative stress by enhancing the antioxidant activity of yogurt.

  13. The Profile and Bioaccessibility of Phenolic Compounds in Cereals Influenced by Improved Extrusion Cooking Treatment

    PubMed Central

    Zeng, Zicong; Liu, Chengmei; Luo, Shunjing; Chen, Jun; Gong, Ersheng

    2016-01-01

    The aim of this study was to investigate the effect of Improved Extrusion Cooking Treatment (IECT) on the phenolics and its bioaccessibility in cereals, represented by brown rice, wheat, and oat. Data showed that total phenolic content and total antioxidant activity in free form were significantly decreased, while the bound form was increased after IECT. After IECT, the total free phenolic acids of brown rice and wheat were significantly decreased by 5.88% and 45.66%, respectively, while the total bound phenolic acids of brown rice, wheat, and oat were significantly increased by 6.45%, 8.78%, and 9.10%, respectively. Brown rice provided the most bioaccessible phenolics and antioxidant compounds, followed by oat and wheat. IECT significantly decreased the bioaccessible phenolics of brown rice and oat by 31.09% and 30.95%, while it had minimal effect on the bioaccessible phenolics of wheat. These results showed that IECT greatly affected the phenolics and its bioaccessibiltiy of cereals, with the effect depending on cereal matrix and the sensitivity of free and bound phenolics. Furthermore, bioaccessible phenolic acids of raw and processed cereals were considerably low, and it slightly contributed to the bioaccessible phenolics. PMID:27513581

  14. Phenolic compounds and antioxidant properties of arabinoxylan hydrolysates from defatted rice bran.

    PubMed

    Yuwang, Prachit; Sulaeva, Irina; Hell, Johannes; Henniges, Ute; Böhmdorfer, Stefan; Rosenau, Thomas; Chitsomboon, Benjamart; Tongta, Sunanta

    2018-01-01

    The water unextractable arabinoxylans (WUAX) contain beneficial phenolic compounds that can be used for food rather than for animal feed. The antioxidant activities of defatted rice bran obtained by xylanase-aided extraction is reported herein. The chemical and molecular characteristics of extracted fractions were investigated. The WUAX hydrolysate precipitated by 0-60% ethanol (F60), 60-90% ethanol (F6090), and more than 90% ethanol (F90) had decreased molar masses with increasing ethanol concentration. The fractions of interest, F60 and F6090, contained 75% arabinoxylans with ferulic acid as the major bound phenolic acid, followed by p-coumaric acid. According to chemical-based antioxidant assays F60 and F6090 exhibited higher diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric iron reducing ability than F90 which contained minor contents of small sugars and free phenolic acids. In cell-based antioxidant assays, using the fluorescent 2',7'-dichlorofluorescein diacetate probe, all three fractions were potent intracellular scavengers. The high molar mass of WUAX hydrolysates with high amount of bound phenolics contributes to the chemical-based antioxidant activity. All fractions of WUAX hydrolysates showed high potent intracellular scavenging activity regardless of molar mass, content and the component of bound phenolics. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. [The content of phenolic acids in the edible parts of selected varieties of apples].

    PubMed

    Malik, Agnieszka; Kiczorowska, Bozena; Zdyb, Justyna

    2009-01-01

    Fruits and vegetables are essential sources of many nutritive substances which are necessary for normal function of the organism. One of the mostly consumed fruits in many European countries, including Poland is apples. The prohealthy properties of apples are associated with the contents of polyphenolic compounds, thus including in parts phenolic acids which have antioxidant properties. The concentration of these compounds depends on many factors such as variety climate and soil conditions, maturity as well as agro technical operations. The aim of this investigation was to compare the concentrations of phenolic acids and epicatechin in the varieties of apple Champion and Jonica, which were collected from different orchards around Lublin. The phenolic compounds were assayed using a Symmetry column carrier RP-C18 (Waters) integrated with a high pressure liquid chromatography apparatus. The dominant phenolic acids found in the Champion variety was chlorogenic acid, whereas in the Jonica variety, chlorogenic and homovanilic acids were the dominate once. The highest concentrations of chlorogenic acid was detected in the pulp of an apple (Jonica variety) collected from the orchards around the cities of Puławy and Lublin, whereas homovanilic acid was the highest in the other samples collected from the orchards in the vicinity of Stryjno and Góry Markuszowskie. Among the Jonica and Champion varieties of apples collected from various orchards in the vicinity of Lublin, the highest content of epicatechin (13,12 mg/kg) was found in the pulps of Champions variety collected in Puławy. In general, the Champion variety was the best source of phenolic acids and epicatechin compared to the Jonica variety independent of the harvest zone.

  16. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants.

    PubMed

    Sytar, Oksana; Hemmerich, Irene; Zivcak, Marek; Rauh, Cornelia; Brestic, Marian

    2018-05-01

    Bioactive phenolic compounds are powerful antioxidants in traditionally used medicinal and industrial crop plants and have attracted increased interest in the last years in their application and role in non-destructive methodology for pre-screening analysis of some stress factors. In this study the qualitative target was linked with future possible applications of received data for improving non-destructive methodology as well as for improving existing knowledge regarding antioxidant content in some plant species. Comparative analysis of total phenolics, flavonoid contents, phenolic acid composition, and antioxidant activity in known east central Europe medicinal and industrial crop plants of 26 species of families Asteraceae , Rosaceae and Lamiaceae was done. Among the investigated leaf extracts the highest total phenolic, total flavonoid contents and antioxidant activity have been seen for Stachys byzantine L. ( Lamiaceae ), Calendula officinalis L. ( Asteraceae ) and for Potentilla recta L. ( Rosaceae ). The highest syringic acid content has been found in the leaf extracts of plant family Asteraceae - in the range from 0.782 to 5.078 mg g -1  DW. The representative's family Rosaceae has a higher content of p-anisic acid in the range 0.334-3.442 mg g -1 DW compared to the leaf extracts of families Lamiaceae and Asteraceae . The comparative study showed significant differences of content of phenolic acids in the leaf extracts of different representative's families Rosaceae , Asteraceae and Lamiaceae . We suggest that the presence of some phenolic acids can be used as a possible marker for family botanical specifications of representative families Asteraceae and Rosaceae . It was supposed that some pharmacological effects can be connected with the analyzed data.

  17. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid

    PubMed Central

    Goufo, Piebiep; Trindade, Henrique

    2014-01-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice. PMID:24804068

  18. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid.

    PubMed

    Goufo, Piebiep; Trindade, Henrique

    2014-03-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.

  19. Phenolic compounds are highly correlated to the antioxidant capacity of genotypes of Oenocarpus distichus Mart. fruits.

    PubMed

    Brabo de Sousa, Sérgio Henrique; de Andrade Mattietto, Rafaella; Campos Chisté, Renan; Carvalho, Ana Vânia

    2018-06-01

    This research aimed to evaluate 32 genotypes of Oenocarpus distichus fruits regarding the contents of total phenolic compounds, flavonoids, flavanols, monomeric anthocyanins, antioxidant capacity (ABTS and DPPH assays), and the phenolic compound profiles of the five genotypes that presented the highest yields of bioactive compounds. The genotypes were harvested in three different locations in Pará State, Northern Brazil, (Belém, São João do Araguaia and Marabá). Among the 32 genotypes, the highest bioactive compound contents and antioxidant capacity were found for three genotypes harvested in Belém (B-3, B-7 and B-8) and two harvested in São João do Araguaia (SJ-1 and SJ-4), and the total phenolic compounds varied from 131.97 to 363.01 mg gallic acid equivalent/100 g, total flavonoids from 24.23 to 38.19 mg quercetin equivalent/100 g, total flavanols from 72.29 to 259.18 mg catechin equivalent/100 g, and monomeric anthocyanins from 21.31 to 67.76 mg cyanidin 3-rutinoside/100 g. The main phenolic compounds tentatively identified in the five selected genotypes were cyanidin 3-O-rutinoside (48.47 to 196.51 μg/g), which could be identified and quantified as the major phenolic compound in Oenocarpus distichus fruits, for the first time, followed by chlorogenic acid (0.71 to 64.56 μg/g) and rutin (13.98 to 56.76 μg/g). Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Phenolic Compounds Present Schinus terebinthifolius Raddi Influence the Lowering of Blood Pressure in Rats.

    PubMed

    de Lima Glória, Lorena; Barreto de Souza Arantes, Mariana; Menezes de Faria Pereira, Silvia; de Souza Vieira, Guilherme; Xavier Martins, Camilla; Ribeiro de Carvalho Junior, Almir; Antunes, Fernanda; Braz-Filho, Raimundo; José Curcino Vieira, Ivo; Leandro da Cruz, Larissa; Siqueira de Almeida Chaves, Douglas; de Paiva Freitas, Silvério; Barros de Oliveira, Daniela

    2017-10-23

    This study identified two phenolic compounds in Schinus terebinthifolius Raddi fruits: naringenin (first report in this species) and gallic acid. Their structures were elucidated by nuclear magnetic resonance (NMR) data (¹H-, 13 C-NMR) and a high-performance liquid chromatography (HPLC) technique. A high content of phenolics (659.21 mg of gallic acid equivalents/g of sample-Folin-Ciocalteau method) and total flavonoids (140.69 mg of rutin equivalents/g of sample-aluminum chloride method) were quantified in S. terebinthifolius , as well as high antioxidant activity (77.47%-2,2-diphenyl-1-picrylhydrazyl, DPPH method). The antihypertensive activity related to its phenolic content was investigated. After intravenous infusion in Wistar rats, these phenolics significantly reduced ( p < 0.05) the systolic, median, and diastolic arterial pressures of individuals. The rotarod test was performed to determine the mechanism of action of the sample vasorelaxant effect. It was found that its action exceeded that of the positive control used (diazepam). This confirmed the vasodilatory activity exerted by S. terebinthifolius fruits is related to the phenolic compounds present in the plant, which are potent antioxidants and inhibit oxidative stress, mainly in the central nervous system.

  1. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.

    PubMed

    Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond

    2004-12-01

    A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.

  2. Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: conversion of phenols and N-heterocyclic compounds.

    PubMed

    Yang, Libin; Si, Buchun; Martins, Marcio Arêdes; Watson, Jamison; Chu, Huaqiang; Zhang, Yuanhui; Tan, Xiaobo; Zhou, Xuefei; Zhang, Yalei

    2017-04-01

    Hydrothermal liquefaction is a promising technology to convert wet biomass into bio-oil. However, post-hydrothermal liquefaction wastewater (PHWW) is also produced during the process. This wastewater contains a high concentration of organic compounds, including phenols and N-heterocyclic compounds which are two main inhibitors for biological treatment. Thus, proper treatment is required. In this work, ozone was used to convert phenols and N-heterocyclic compounds with a dosage range of 0-4.64 mg O 3 /mL PHWW. After ozone treatment, the phenols were fully converted, and acids were produced. However, N-heterocyclic compounds were found to have a low conversion rate (21.7%). The kinetic analysis for the degradation of phenols and N-heterocyclic compounds showed that the substitute played an important role in determining the priority of ozone reactions. The OH moiety in the ring compounds (phenols and pyridinol) may form hydroxyl radical, which lead to an efficient reaction. A substantial improved biodegradability of PHWW was observed after ozone treatment. The ratio of BOD 5 /COD was increased by about 32.36%, and reached a maximum of 0.41. The improved biodegradability of PHWW was justified by the conversion of phenols and N-heterocyclic compounds.

  3. [Phenolic acid derivatives from Bauhinia glauca subsp. pernervosa].

    PubMed

    Zhao, Qiao-Li; Wu, Zeng-Bao; Zheng, Zhi-Hui; Lu, Xin-Hua; Liang, Hong; Cheng, Wei; Zhang, Qing-Ying; Zhao, Yu-Ying

    2011-08-01

    To study the chemical constituents of Bauhinia glauca subsp. pernervosa, eleven phenolic acids were isolated from a 95% ethanol extract by using a combination of various chromatographic techniques including column chromatography over silica gel, ODS, MCI, Sephadex LH-20, and semi-preparative HPLC. By spectroscopic techniques including 1H NMR, 13C NMR, 2D NMR, and HR-ESI-MS, these compounds were identified as isopropyl O-beta-(6'-O-galloyl)-glucopyranoside (1), ethyl O-beta-(6'-O-galloyl)-glucopyranoside (2), 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-beta-D-glucopyranoside (3), 3, 4, 5-trimethoxyphenyl-beta-D-glucopyranoside (4), gallic acid (5), methyl gallate (6), ethyl gallate (7), protocatechuic acid (8), 3, 5-dimethoxy-4-hydroxybenzoic acid (9), erigeside C (10) and glucosyringic acid (11). Among them, compound 1 is a new polyhydroxyl compound; compounds 2, 10, and 11 were isolated from the genus Bauhinia for the first time, and the other compounds were isolated from the plant for the first time. Compounds 6 and 8 showed significant protein tyrosine phosphatase1B (PTP1B) inhibitory activity in vitro with the IC50 values of 72.3 and 54.1 micromol x L(-1), respectively.

  4. Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers.

    PubMed

    Lovrić, Vanja; Putnik, Predrag; Kovačević, Danijela Bursać; Jukić, Marijana; Dragović-Uzelac, Verica

    2017-06-01

    This research was undertaken to investigate the influence of extraction parameters during microwave-assisted extraction on total phenolic content, total flavonoids, total hydroxycinnamic acids and total flavonols of blackthorn flowers as well as to evaluate the antioxidant capacity by two different methods (2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity and ferric reducing antioxidant power assays). The investigated extraction parameters were: solvent type and volume fraction of alcohol in solvent (50 and 70% aqueous solutions of ethanol and methanol), extraction time (5, 15 and 25 min) and extraction temperature (40, 50 and 60 °C) controlled by microwave power of 100, 200 and 300 W. Multivariate analysis of variance (MANOVA) was used to evaluate the differences at a 95% confidence level (p≤0.05). The obtained results show that aqueous solution of ethanol was more appropriate solvent for extraction of phenolic compounds (total flavonoids, total hydroxycinnamic acids and total flavonols) than aqueous solution of methanol. The amount of phenolic compounds was higher in 70% aqueous solution of ethanol or methanol, while higher antioxidant capacity was observed in 50% aqueous solution of methanol. Higher temperature of extraction improved the amount of phenolic compounds and also antioxidant capacity determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity assay. Extensive duration of extraction (15- to 25-minute interval) has a significant effect only on the increase of total phenolic content, while specific phenolic compound content and antioxidant capacity were the highest when microwave extraction time of 5 min was applied.

  5. An endogenous factor enhances ferulic acid decarboxylation catalyzed by phenolic acid decarboxylase from Candida guilliermondii

    PubMed Central

    2012-01-01

    The gene for a eukaryotic phenolic acid decarboxylase of Candida guilliermondii was cloned, sequenced, and expressed in Escherichia coli for the first time. The structural gene contained an open reading frame of 504 bp, corresponding to 168 amino acids with a calculated molecular mass of 19,828 Da. The deduced amino sequence exhibited low similarity to those of functional phenolic acid decarboxylases previously reported from bacteria with 25-39% identity and to those of PAD1 and FDC1 proteins from Saccharomyces cerevisiae with less than 14% identity. The C. guilliermondii phenolic acid decarboxylase converted the main substrates ferulic acid and p-coumaric acid to the respective corresponding products. Surprisingly, the ultrafiltrate (Mr 10,000-cut-off) of the cell-free extract of C. guilliermondii remarkably activated the ferulic acid decarboxylation by the purified enzyme, whereas it was almost without effect on the p-coumaric acid decarboxylation. Gel-filtration chromatography of the ultrafiltrate suggested that an endogenous amino thiol-like compound with a molecular weight greater than Mr 1,400 was responsible for the activation. PMID:22217315

  6. Partition behavior of virgin olive oil phenolic compounds in oil-brine mixtures during thermal processing for fish canning.

    PubMed

    Sacchi, Raffaele; Paduano, Antonello; Fiore, Francesca; Della Medaglia, Dorotea; Ambrosino, Maria Luisa; Medina, Isabel

    2002-05-08

    The chemical modifications and partitioning toward the brine phase (5% salt) of major phenol compounds of extra virgin olive oil (EVOO) were studied in a model system formed by sealed cans filled with oil-brine mixtures (5:1, v/v) simulating canned-in-oil food systems. Filled cans were processed in an industrial plant using two sterilization conditions commonly used during fish canning. The partitioning of phenolic compounds toward brine induced by thermal processing was studied by reversed-phase high-performance liquid chromatographic analysis of the phenol fraction extracted from oils and brine. Hydroxytyrosol (1), tyrosol (2), and the complex phenolic compounds containing 1 and 2 (i.e., the dialdehydic form of decarboxymethyl oleuropein aglycon 3, the dialdehydic form of decarboxymethyl ligstroside aglycon 4, and the oleuropein aglycon 6) decreased in the oily phase after sterilization with a marked partitioning toward the brine phase. The increase of the total amount of 1 and 2 after processing, as well as the presence of elenolic acid 7 released in brine, revealed the hydrolysis of the ester bond of hydrolyzable phenolic compounds 3, 4, and 6 during thermal processing. Both phenomena (partitioning toward the water phase and hydrolysis) contribute to explain the loss of phenolic compounds exhibited by EVOO used as filling medium in canned foods, as well as the protection of n-3 polyunsaturated fatty acids in canned-in-EVOO fish products.

  7. Distribution of phenolic compounds and antioxidant capacity in apples tissues during ripening.

    PubMed

    Alberti, Aline; Zielinski, Acácio Antonio Ferreira; Couto, Marcelo; Judacewski, Priscila; Mafra, Luciana Igarashi; Nogueira, Alessandro

    2017-05-01

    The effect of variety and ripening stage on the distribution of phenolic compounds and in vitro antioxidant capacity of Gala, Fuji Suprema and Eva apples were evaluated. Hydroxycinnamic acids, flavonoids, flavanols, flavonols, dihydrochalcones and antioxidant activity (FRAP and DPPH) were assessed in the epicarp, mesocarp and endocarp of three varieties at three ripening stages (unripe, ripe and senescent). The Fuji Suprema variety distinguished by its content of flavonols at senescent stage, while Eva variety distinguished by its content of dihydrochalcones (unripe stage) and anthocyanins (ripe stage). In general, phenolic acids and flavonoids decreased with ripening in the epicarp and endocarp. However, in the mesocarp, the effect of ripening was related with the apple variety. Hierarchical cluster analysis confirmed the influence of ripening in the apple tissue. The evolution of these compounds during ripening occurred irregularly and it was influenced by the variety.

  8. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran.

    PubMed

    Wang, Wei; Guo, Jia; Zhang, Junnan; Peng, Jie; Liu, Tianxing; Xin, Zhihong

    2015-03-15

    The bound phenolic compounds in rice bran were released and extracted with ethyl acetate based on alkaline digestion. An investigation of the chemical constituents of EtOAc extract has led to the isolation of a new compound, para-hydroxy methyl benzoate glucoside (8), together with nine known compounds, cycloeucalenol cis-ferulate (1), cycloeucalenol trans-ferulate (2), trans-ferulic acid (3), trans-ferulic acid methyl ester (4), cis-ferulic acid (5), cis-ferulic acid methyl ester (6), methyl caffeate (7), vanillic aldehyde (9) and para-hydroxy benzaldehyde (10). The structures of these compounds were determined using a combination of spectroscopic methods and chemical analysis. Among the compounds isolated, compound 3, 5 and 7 exhibited strong DPPH and ABTS(+) radical scavenging activities, followed by compounds 4 and 6. Compound 1 and 2 showed potent DPPH and ABTS(+) radical scavenging activities, compound 8 displayed moderate antioxidant activity against ABTS(+) radical, whereas compound 9 and 10 showed weak antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Removal of furan and phenolic compounds from simulated biomass hydrolysates by batch adsorption and continuous fixed-bed column adsorption methods.

    PubMed

    Lee, Sang Cheol; Park, Sunkyu

    2016-09-01

    It has been proposed to remove all potential inhibitors and sulfuric acid in biomass hydrolysates generated from dilute-acid pretreatment of biomass, based on three steps of sugar purification process. This study focused on its first step in which furan and phenolic compounds were selectively removed from the simulated hydrolysates using activated charcoal. Batch adsorption experiments demonstrated that the affinity of activated charcoal for each component was highest in the order of vanillic acid, 4-hydroxybenzoic acid, furfural, acetic acid, sulfuric acid, and xylose. The affinity of activated charcoal for furan and phenolic compounds proved to be significantly higher than that of the other three components. Four separation strategies were conducted with a combination of batch adsorption and continuous fixed-bed column adsorption methods. It was observed that xylose loss was negligible with near complete removal of furan and phenolic compounds, when at least one fixed-bed column adsorption was implemented in the strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Quantitative studies on structure-DPPH• scavenging activity relationships of food phenolic acids.

    PubMed

    Jing, Pu; Zhao, Shu-Juan; Jian, Wen-Jie; Qian, Bing-Jun; Dong, Ying; Pang, Jie

    2012-11-01

    Phenolic acids are potent antioxidants, yet the quantitative structure-activity relationships of phenolic acids remain unclear. The purpose of this study was to establish 3D-QSAR models able to predict phenolic acids with high DPPH• scavenging activity and understand their structure-activity relationships. The model has been established by using a training set of compounds with cross-validated q2 = 0.638/0.855, non-cross-validated r2 = 0.984/0.986, standard error of estimate = 0.236/0.216, and F = 139.126/208.320 for the best CoMFA/CoMSIA models. The predictive ability of the models was validated with the correlation coefficient r2(pred) = 0.971/0.996 (>0.6) for each model. Additionally, the contour map results suggested that structural characteristics of phenolics acids favorable for the high DPPH• scavenging activity might include: (1) bulky and/or electron-donating substituent groups on the phenol ring; (2) electron-donating groups at the meta-position and/or hydrophobic groups at the meta-/ortho-position; (3) hydrogen-bond donor/electron-donating groups at the ortho-position. The results have been confirmed based on structural analyses of phenolic acids and their DPPH• scavenging data from eight recent publications. The findings may provide deeper insight into the antioxidant mechanisms and provide useful information for selecting phenolic acids for free radical scavenging properties.

  11. Phenolic compound profiles and antioxidant capacity of Persea americana Mill. peels and seeds of two varieties.

    PubMed

    Kosińska, Agnieszka; Karamać, Magdalena; Estrella, Isabel; Hernández, Teresa; Bartolomé, Begoña; Dykes, Gary A

    2012-05-09

    Avocado processing by the food and cosmetic industries yields a considerable amount of phenolic-rich byproduct such as peels and seeds. Utilization of these byproducts would be favorable from an economic point of view. Methanolic (80%) extracts obtained from lyophilized ground peels and seeds of avocado (Persea americana Mill.) of the Hass and Shepard varieties were characterized for their phenolic compound profiles using the HPLC-PAD technique. The structures of the identified compounds were subsequently unambiguously confirmed by ESI-MS. Compositional analysis revealed that the extracts contained four polyphenolic classes: flavanol monomers, proanthocyanidins, hydroxycinnamic acids, and flavonol glycosides. The presence of 3-O-caffeoylquinic acid, 3-O-p-coumaroylquinic acid, and procyanidin A trimers was identified in seeds of both varieties. Intervarietal differences were apparent in the phenolic compound profiles of peels. Peels of the Shepard variety were devoid of (+)-catechin and procyanidin dimers, which were present in the peels of the Hass variety. Peels of both varieties contained 5-O-caffeoylquinic acid and quercetin derivatives. The differences in the phenolic profiles between varietals were also apparent in the different antioxidant activity of the extracts. The peel extracts had a higher total phenolic compound content and antioxidant activity when compared to the seed extracts. The highest TEAC and ORAC values were apparent in peels of the Haas variety in which they amounted to 0.16 and 0.47 mmol Trolox/g DW, respectively. No significant (p > 0.05) differences were apparent between the TEAC values of seeds of the two varieties but the ORAC values differed significantly (p < 0.05). Overall these findings indicate that both the seeds and peel of avocado can be utilized as a functional food ingredient or as an antioxidant additive.

  12. Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina).

    PubMed

    Varela, M Celeste; Arslan, Idris; Reginato, Mariana A; Cenzano, Ana M; Luna, M Virginia

    2016-07-01

    Plants exposed to drought stress, as usually occurs in Patagonian shrublands, have developed different strategies to avoid or tolerate the lack of water during their development. Production of phenolic compounds (or polyphenols) is one of the strategies used by some native species of adverse environments to avoid the oxidative damage caused by drought. In the present study the relationship between phenolic compounds content, water availability and oxidative damage were evaluated in two native shrubs: Larrea divaricata (evergreen) and Lycium chilense (deciduous) of Patagonian shrublands by their means and/or by multivariate analysis. Samples of both species were collected during the 4 seasons for the term of 1 year. Soil water content, relative water content, total phenols, flavonoids, flavonols, tartaric acid esters, flavan-3-ols, proanthocyanidins, antioxidant capacity and lipid peroxidation were measured. According to statistical univariate analysis, L. divaricata showed high production of polyphenols along the year, with a phenolic compound synthesis enhanced during autumn (season of greatest drought), while L. chilense has lower production of these compounds without variation between seasons. The variation in total phenols along the seasons is proportional to the antioxidant capacity and inversely proportional to lipid peroxidation. Multivariate analysis showed that, regardless their mechanism to face drought (avoidance or tolerance), both shrubs are well adapted to semi-arid regions and the phenolic compounds production is a strategy used by these species living in extreme environments. The identification of polyphenol compounds showed that L. divaricata produces different types of flavonoids, particularly bond with sugars, while L. chilense produces high amount of non-flavonoids compounds. These results suggest that flavonoid production and accumulation could be a useful indicator of drought tolerance in native species. Copyright © 2016 Elsevier Masson

  13. Comprehensive Characterization of Extractable and Nonextractable Phenolic Compounds by High-Performance Liquid Chromatography-Electrospray Ionization-Quadrupole Time-of-Flight of a Grape/Pomegranate Pomace Dietary Supplement.

    PubMed

    Pérez-Ramírez, Iza F; Reynoso-Camacho, Rosalía; Saura-Calixto, Fulgencio; Pérez-Jiménez, Jara

    2018-01-24

    Grape and pomegranate are rich sources of phenolic compounds, and their derived products could be used as ingredients for the development of functional foods and dietary supplements. However, the profile of nonextractable or macromolecular phenolic compounds in these samples has not been evaluated. Here, we show a comprehensive characterization of extractable and nonextractable phenolic compounds of a grape/pomegranate pomace dietary supplement using high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight (HPLC-ESI-QTOF) and matrix-assisted laser desorption/ionization (MALDI)-TOF techniques. The main extractable phenolic compounds were several anthocyanins (principally malvidin 3-O-glucoside) as well as gallotannins and gallagyl derivatives; some phenolic compounds were reported in grape or pomegranate for the first time. Additionally, there was a high proportion of nonextractable phenolic compounds, including vanillic acid, and dihydroxybenzoic acid. Unidentified polymeric structures were detected by MALDI-TOF MS analysis. This study shows that mixed grape and pomegranate pomaces are a source of different classes of phenolic compounds including a high proportion of nonextractable phenolic compounds.

  14. Profiling of phenolic compounds and antioxidant properties of European varieties and cultivars of Vicia faba L. pods.

    PubMed

    Valente, Inês M; Maia, Margarida R G; Malushi, Nertila; Oliveira, Hugo M; Papa, Lumturi; Rodrigues, José A; Fonseca, António J M; Cabrita, Ana R J

    2018-08-01

    Vicia faba L. pods are a by-product generated from the industrial processing of beans for human and animal consumption. As phenolic compounds may play important roles in health, the present work envisaged the phenolic characterization of seven European varieties and cultivars of V. faba (major and minor) pods and the assessment of their antioxidant activity. The V. faba methanolic extracts were characterized by HPLC-DAD-MS/MS for identification of polyphenolic compounds. The total phenolic content and antioxidant capacity of the extracts were evaluated by colorimetric methods (Folin-Ciocalteu, DPPH scavenging capacity assay, and FRAP assay). Main compounds identified by HPLC-DAD-MS/MS were derivatives of caffeic acid, coumaric acid and kaempferol. The broad bean Jögeva variety presented the highest content of free and esterified phenolics (26.3 and 26.7 mg 100 g -1 dry weight, respectively), followed by the horse bean varieties Bauska and Lielplatones. These results were corroborated by the analysis of total phenolic content, DPPH scavenging capacity and FRAP. This study confirmed the rich phenolic content of V. faba pods suggesting to be an interesting novel source for animal nutrition, promoting product quality and consumers' health. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Development and validation of an RP-HPLC method for quantitative determination of vanillin and related phenolic compounds in Vanilla planifolia.

    PubMed

    Sinha, Arun Kumar; Verma, Subash Chandra; Sharma, Upendra Kumar

    2007-01-01

    A simple and fast method was developed using RP-HPLC for separation and quantitative determination of vanillin and related phenolic compounds in ethanolic extract of pods of Vanilla planifolia. Ten phenolic compounds, namely 4-hydroxybenzyl alcohol, vanillyl alcohol, 3,4-dihydroxybenzaldehyde, 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin, p-coumaric acid, ferulic acid, and piperonal were quantitatively determined using ACN, methanol, and 0.2% acetic acid in water as a mobile phase with a gradient elution mode. The method showed good linearity, high precision, and good recovery of compounds of interest. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.

  16. Plant secondary metabolites and gut health: the case for phenolic acids.

    PubMed

    Russell, Wendy; Duthie, Garry

    2011-08-01

    Plant-based diets contain a plethora of secondary metabolites that may impact on health and disease prevention. Much attention has been focused on the potential bioactivity and nutritional relevance of several classes of phytochemicals such as flavonoids, carotenoids, phyto-oestrogens and glucosinolates. Less attention has been paid to simple phenolic acids that are widely found in fruit, vegetables, herbs, spices and beverages. Daily intakes may exceed 100 mg. In addition, bacteria in the gut can perform reactions that transform more complex plant phenolics such as anthocyanins, procyanidins, flavanones, flavonols, tannins and isoflavones into simple phenolic metabolites. The colon is thus a rich source of potentially active phenolic acids that may impact both locally and systemically on gut health. Both the small and large intestine (colon) contain absorption sites for phenolic acids but low post-prandial concentrations in plasma indicate minimal absorption early in the gastrointestinal tract and/or rapid hepatic metabolism and excretion. Therefore, any bioactivity that contributes to gut health may predominantly occur in the colon. Several phenolic acids affect the expression and activity of enzymes involved in the production of inflammatory mediators of pathways thought to be important in the development of gut disorders including colon cancer. However, at present, we remain largely ignorant as to which of these compounds are beneficial to gut health. Until we can elucidate which pro-inflammatory and potentially carcinogenetic changes in gene expression can be moderated by simple phenolic acids, it is not possible to recommend specific plant-based foods rich in particular phenolics to optimise gut health.

  17. Componential profile and amylase inhibiting activity of phenolic compounds from Calendula officinalis L. leaves.

    PubMed

    Olennikov, Daniil N; Kashchenko, Nina I

    2014-01-01

    An ethanolic extract and its ethyl acetate-soluble fraction from leaves of Calendula officinalis L. (Asteraceae) were found to show an inhibitory effect on amylase. From the crude extract fractions, one new phenolic acid glucoside, 6'-O-vanilloyl-β-D-glucopyranose, was isolated, together with twenty-four known compounds including five phenolic acid glucosides, five phenylpropanoids, five coumarins, and nine flavonoids. Their structures were elucidated based on chemical and spectral data. The main components, isoquercitrin, isorhamnetin-3-O-β-D-glucopyranoside, 3,5-di-O-caffeoylquinic acid, and quercetin-3-O-(6''-acetyl)-β-D-glucopyranoside, exhibited potent inhibitory effects on amylase.

  18. First Approach to the Analytical Characterization of
Barrel-Aged Grape Marc Distillates Using Phenolic Compounds and Colour Parameters

    PubMed Central

    Rodríguez-Solana, Raquel; Salgado, José Manuel; Domínguez, José Manuel

    2014-01-01

    Summary Phenolic compounds (benzoic and cinnamic acid derivatives) were determined by high-performance liquid chromatography with multiple wavelength detector (HPLC- -MWD) in grape marc distillates aged in Quercus petraea, Quercus robur and Quercus alba wooden barrels. In addition to colour indices and evaluable polyphenols, all samples were described by sensorial analysis. There were significant differences in the mean concentrations of the majority of phenolic compounds among the samples. Gallic and benzoic acids were the most abundant and samples aged in Q. robur from Galicia (NW of Spain) had the highest concentration of most of the determined phenols. Grape marc distillates aged in Q. robur obtained the highest values of all sensorial attributes, whereas samples aged in Q. petraea and Q. alba obtained similar scores. Principal component analysis accounted for 88.32% of total variance, showing a good separation of aged distillates in terms of phenolic compounds and colour characteristics, according to the species and origin of the oak wood used in the ageing process. PMID:27904312

  19. Characterization and quantitation of phenolic compounds in new apricot (Prunus armeniaca L.) varieties.

    PubMed

    Ruiz, David; Egea, José; Gil, María I; Tomás-Barberán, Francisco A

    2005-11-30

    Thirty-seven apricot varieties, including four new releases (Rojo Pasión, Murciana, Selene, and Dorada) obtained from different crosses between apricot varieties and three traditional Spanish cultivars (Currot, Mauricio, and Búlida), were separated according to flesh color into four groups: white, yellow, light orange, and orange (mean hue angles in flesh were 88.1, 85.0, 77.6, and 72.4, respectively). Four phenolic compound groups, procyanidins, hydroxycinnamic acid derivatives, flavonols, and anthocyanins, were identified by HPLC-MS/MS and individually quantified using HPLC-DAD. Chlorogenic and neochlorogenic acids, procyanidins B1, B2, and B4, and some procyanidin trimers, quercetin 3-rutinoside, kaempferol 3-rhamnosyl-hexoside and quercetin 3-acetyl-hexoside, cyanidin 3-rutinoside, and 3-glucoside, were detected and quantified in the skin and flesh of the different cultivars. The total phenolics content, quantified as the addition of the individual compounds quantified by HPLC, ranged between 32.6 and 160.0 mg 100 g(-1) of edible tissue. No correlation between the flesh color and the phenolic content of the different cultivars was observed.

  20. Simultaneous HPLC determination of flavonoids and phenolic acids profile in Pêra-Rio orange juice.

    PubMed

    Mesquita, E; Monteiro, M

    2018-04-01

    The aim of this study was to develop and validate an HPLC-DAD method to evaluate the phenolic compounds profile of organic and conventional Pêra-Rio orange juice. The proposed method was validated for 10 flavonoids and 6 phenolic acids. A wide linear range (0.01-223.4μg·g -1 ), good accuracy (79.5-129.2%) and precision (CV≤3.8%), low limits of detection (1-22ng·g -1 ) and quantification (0.7-7.4μg), and overall ruggedness were attained. Good recovery was achieved for all phenolic compounds after extraction and cleanup. The method was applied to organic and conventional Pêra-Rio orange juices from beginning, middle and end of the 2016 harvest. Flavones rutin, nobiletin and tangeretin, and flavanones hesperidin, narirutin and eriocitrin were identified and quantified in all organic and conventional juices. Identity was confirmed by mass spectrometry. Nineteen non-identified phenolic compounds were quantified based on DAD spectra characteristic of the chemical class: 7 cinnamic acid derivatives, 6 flavanones and 6 flavones. The phenolic compounds profile of Pêra-Rio orange juices changed during the harvest; levels increased in organic orange juices, and decreased or were about the same in conventional orange juices. Phenolic compounds levels were higher in organic (0.5-1143.7mg·100g -1 ) than in conventional orange juices (0.5-689.7mg·100g -1 ). PCA differentiated organic from conventional FS and NFC juices, and conventional FCOJ from conventional FS and NFC juices, thus differentiating cultivation and processing. Copyright © 2017. Published by Elsevier Ltd.

  1. Structure Properties and Mechanisms of Action of Naturally Originated Phenolic Acids and Their Derivatives against Human Viral Infections.

    PubMed

    Wu, Yi-Hang; Zhang, Bing-Yi; Qiu, Li-Peng; Guan, Rong-Fa; Ye, Zi-Hong; Yu, Xiao-Ping

    2017-01-01

    A great effort has been made to develop efficacious antiviral drugs, but many viral infections are still lack of efficient antiviral therapies so far. The related exploration of natural products to fight viruses has been raised in recent years. Natural compounds with structural diversity and complexity offer a great chance to find new antiviral agents. Particularly, phenolic acids have attracted considerable attention owing to their potent antiviral abilities and unique mechanisms. The aim of this review is to report new discoveries and updates pertaining to antiviral phenolic acids. The relevant references on natural phenolic acids were searched. The antiviral phenolic acids were classified according to their structural properties and antiviral types. Meanwhile, the antiviral characteristics and structure-activity relationships of phenolic acids and their derivatives were summarized. The review finds that natural phenolic acids and their derivatives possessed potent inhibitory effects on multiple virus in humans such as human immunodeficiency virus, hepatitis C virus, hepatitis B virus, herpes simplex virus, influenza virus and respiratory syncytial virus. In particular, caffeic acid/gallic acid and their derivatives exhibited outstanding antiviral properties by a variety of modes of action. Naturally derived phenolic acids especially caffeic acid/gallic acid and their derivatives may be regarded as novel promising antiviral leads or candidates. Additionally, scarcely any of these compounds has been used as antiviral treatment in clinical practice. Therefore, these phenolic acids with diverse skeletons and mechanisms provide us an excellent resource for finding novel antiviral drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Phenolic Compounds of Potato Peel Extracts: Their Antioxidant Activity and Protection against Human Enteric Viruses.

    PubMed

    Silva-BeltrÁn, Norma Patricia; Chaidez-Quiroz, Cristóbal; López-Cuevas, Osvaldo; Ruiz-Cruz, Saul; López-Mata, Marco A; Del-Toro-SÁnchez, Carmen Lizette; Marquez-Rios, Enrique; Ornelas-Paz, José de Jesús

    2017-02-28

    Potato peels (PP) contain several bioactive compounds. These compounds are known to provide human health benefits, including antioxidant and antimicrobial properties. In addition, these compounds could have effects on human enteric viruses that have not yet been reported. The objective of the present study was to evaluate the phenolic composition, antioxidant properties in the acidified ethanol extract (AEE) and water extract of PP, and the antiviral effects on the inhibition of Av-05 and MS2 bacteriophages, which were used as human enteric viral surrogates. The AEE showed the highest phenolic content and antioxidant activity. Chlorogenic and caffeic acids were the major phenolic acids. In vitro analysis indicated that PP had a strong antioxidant activity. A 3 h incubation with AEE at a concentration of 5 mg/ml was needed to reduce the PFU/ml (plaque-forming unit per unit volume) of Av-05 and MS2 by 2.8 and 3.9 log₁₀, respectively, in a dose-dependent manner. Our data suggest that PP has potential to be a source of natural antioxidants against enteric viruses.

  3. Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage.

    PubMed

    Sun, Tzu-Ying; Li, Jia-Shiun; Chen, Chinshuh

    2015-12-01

    Traditional kombucha is a fermented black tea extract and sugar. Sweetened black tea (10% w/v) and wheatgrass juice (WGJ) were mixed in various ratios and used as fermentation substrate for enhancing phenolic compounds and antioxidant activity. Starter, comprising of yeast (Dekkera bruxellensis) and acetic acid bacteria (Gluconacetobacter rhaeticus and Gluconobacter roseus), was inoculated at 20% (v/v), and fermented statically at 29 ± 1°C for 12 days. The results showed that the total phenolic and flavonoid contents and antioxidant activity of the modified kombucha were higher than those of traditional preparations. All WGJ-blended kombucha preparations were characterized as having higher concentrations of various phenolic compounds such as gallic acid, catechin, caffeic acid, ferulic acid, rutin, and chlorogenic acid as compared to traditional ones. Addition of WGJ resulted in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of kombucha being > 90%, while the oxygen radical absorbance capacity increased from 5.0 μmol trolox equivalents/mL to 12.8 μmol trolox equivalents/mL as the ratio of WGJ increased from 0% to 67% (v/v). The highest antioxidant activity was obtained using a 1:1 (v/v) black tea decoction to WGJ ratio and 3 days of fermentation, producing various types of phenolic acids. These results suggest that intake of fermented black tea enhanced with wheatgrass juice is advantageous over traditional kombucha formulas in terms of providing various complementary phenolics and might have more potential to reduce oxidative stress. Copyright © 2015. Published by Elsevier B.V.

  4. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, Foster A.

    1998-01-01

    A process for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400.degree. C. to about 600.degree. C. at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1-3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof.

  5. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, F.A.

    1998-09-15

    A process is described for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400 C to about 600 C at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1--3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof. 16 figs.

  6. In vitro bioaccessibility, transepithelial transport and antioxidant activity of Urtica dioica L. phenolic compounds in nettle based food products.

    PubMed

    Bonetti, Gianpiero; Tedeschi, Paola; Meca, Giuseppe; Bertelli, Davide; Mañes, Jordi; Brandolini, Vincenzo; Maietti, Annalisa

    2016-10-12

    Nettle (Urtica dioica L.) is a well-known plant with a wide historical background use of stems, roots and leaves. Nettle leaves are an excellent source of phenolic compounds, principally 3-caffeoylquinic acid (3-CQA), caffeoylmalic acid (CMA) and rutin. The aim of this work was to evaluate the bioaccessibility (BAC), the bioavailability (BAV) and the antioxidant activity of nettle phenolic compounds present in foods and supplements. The BAC of nettle phenolics was evaluated with an in vitro dynamic digestion of real food matrices: the type of food matrix and chemical characteristic affected the kinetics of release and solubilization, with the highest BAC after duodenal digestion. A study of duodenal trans epithelial transport evidenced low bioavailability of native forms of 3-CQA, CMA and rutin. Simulation of colonic metabolism confirmed that phenolic compounds are fermented by gut microflora, confirming the need for further investigations on the impact of phenolic compounds at the large intestine level. Photochemiluminescence assay of the simulated digestion fluids demonstrated that ingestion of Urtica based foods contributes to create an antioxidant environment against superoxide anion radicals in the entire gastrointestinal tract (GIT).

  7. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    NASA Astrophysics Data System (ADS)

    Zeb, Alam; Ullah, Fareed

    2017-04-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins and two chlorophylls. Lutein (806.0 µg/g), chlorophyll b' (410.0 µg/g), chlorophyll a (162.4 µg/g), 9'-Z-neoxanthin (142.8 µg/g) and all-E-violaxanthin (82.2 µg/g)) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of thirteen compounds, namely p-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g) and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for possible medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a potential source of nutraceuticals or as a functional food ingredient.

  8. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves

    PubMed Central

    Zeb, Alam; Ullah, Fareed

    2017-01-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b′ (410.0 μg/g), chlorophyll a (162.4 μg/g), 9′-Z-neoxanthin (142.8 μg/g) and all-E-violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5-O-caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient. PMID:28497036

  9. Reversed Phase HPLC-DAD Profiling of Carotenoids, Chlorophylls and Phenolic Compounds in Adiantum capillus-veneris Leaves.

    PubMed

    Zeb, Alam; Ullah, Fareed

    2017-01-01

    Adiantum capillus-veneris is important endangered fern species with several medicinal properties. In this study, the leaves samples were extracted and separated using reversed phase HPLC with DAD for carotenoids, chlorophylls and phenolic compounds. Separation of carotenoids and chlorophylls were carried out using a tertiary gradient system of water, MTBE and methanol-water, while a binary gradient system of methanol-water-acetic acid was used for phenolic profiling. Results revealed eight carotenoids, four pheophytins, and two chlorophylls. Lutein (806.0 μg/g), chlorophyll b ' (410.0 μg/g), chlorophyll a (162.4 μg/g), 9'- Z -neoxanthin (142.8 μg/g) and all- E -violaxanthin (82.2 μg/g) were present in higher amounts. The relatively high amounts of lutein may be one of the key indicator of beneficial antioxidant properties. The phenolic profile revealed a total of 13 compounds, namely 4-hydroxybenzoic acid, chlorogenic acid, caftaric acid, kaempferol glycosides, p-coumaric acid, rosmarinic acid, 5-caffeoylquinic acid, and quercetin glycosides. Kaempferol-3-sophorotrioside (58.7 mg/g), chlorogenic acid (28.5 mg/g), 5- O -caffeoylquinic acid (18.7 mg/g), coumaric acid (11.2 mg/g), and its derivative (33.1 mg/g) were present in high amounts. These results suggest that the reversed phase HPLC profiling of Adiantum leaves provides a better understanding in to the actual composition of bioactive compounds, which may be responsible for the potential medicinal properties. Adiantum leaves rich in important bioactive phytochemicals can be used as a possible source of nutraceuticals or as a functional food ingredient.

  10. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates

    PubMed Central

    2014-01-01

    We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition. PMID:24949277

  11. HPLC-ESI-QTOF-MS as a powerful analytical tool for characterising phenolic compounds in olive-leaf extracts.

    PubMed

    Quirantes-Piné, Rosa; Lozano-Sánchez, Jesús; Herrero, Miguel; Ibáñez, Elena; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-01-01

    Olea europaea L. leaves may be considered a cheap, easily available natural source of phenolic compounds. In a previous study we evaluated the possibility of obtaining bioactive phenolic compounds from olive leaves by pressurised liquid extraction (PLE) for their use as natural anti-oxidants. The alimentary use of these kinds of extract makes comprehensive knowledge of their composition essential. To undertake a comprehensive characterisation of two olive-leaf extracts obtained by PLE using high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). Olive leaves were extracted by PLE using ethanol and water as extraction solvents at 150°C and 200°C respectively. Separation was carried out in a HPLC system equipped with a C₁₈-column working in a gradient elution programme coupled to ESI-QTOF-MS operating in negative ion mode. This analytical platform was able to detect 48 compounds and tentatively identify 31 different phenolic compounds in these extracts, including secoiridoids, simple phenols, flavonoids, cinnamic-acid derivatives and benzoic acids. Lucidumoside C was also identified for the first time in olive leaves. The coupling of HPLC-ESI-QTOF-MS led to the in-depth characterisation of the olive-leaf extracts on the basis of mass accuracy, true isotopic pattern and tandem mass spectrometry (MS/MS) spectra. We may conclude therefore that this analytical tool is very valuable in the study of phenolic compounds in plant matrices. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    PubMed Central

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-01-01

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities. PMID:27854330

  13. Determination of some phenolic compounds in red wine by RP-HPLC: method development and validation.

    PubMed

    Burin, Vívian Maria; Arcari, Stefany Grützmann; Costa, Léa Luzia Freitas; Bordignon-Luiz, Marilde T

    2011-09-01

    A methodology employing reversed-phase high-performance liquid chromatography (RP-HPLC) was developed and validated for simultaneous determination of five phenolic compounds in red wine. The chromatographic separation was carried out in a C(18) column with water acidify with acetic acid (pH 2.6) (solvent A) and 20% solvent A and 80% acetonitrile (solvent B) as the mobile phase. The validation parameters included: selectivity, linearity, range, limits of detection and quantitation, precision and accuracy, using an internal standard. All calibration curves were linear (R(2) > 0.999) within the range, and good precision (RSD < 2.6%) and recovery (80-120%) was obtained for all compounds. This method was applied to quantify phenolics in red wine samples from Santa Catarina State, Brazil, and good separation peaks for phenolic compounds in these wines were observed.

  14. The content of phenolic compounds in leaf tissues of Aesculus glabra and Aesculus parviflora walt.

    PubMed

    Oszmiański, Jan; Kolniak-Ostek, Joanna; Biernat, Agata

    2015-01-28

    In plants, flavonoids play an important role in biological processes. They are involved in UV-scavenging, fertility and disease resistance. Therefore, in this study, we attempted to quantify and characterize phenolic compounds in Aesculus parviflora Walt. leaves and Aesculus glabra leaves partly suffering from attack by a leaf mining insect (C. ohridella). A total of 28 phenolic compounds belonging to the hydroxycinnamic acid, flavan-3-ols and flavonol groups were identified and quantified in Aesculus parviflora and A. glabra leaf extracts. Significantly decreased concentrations of some phenolic compounds, especially of flavan-3-ols, were observed in infected leaves compared to the non-infected ones. Additionally, a higher content of polymeric procyanidins in leaves of Aesculus parviflora than in Aesculus glabra may explain their greater resistance to C. ohridella insects.

  15. Preparative separation of phenolic compounds from Halimodendron halodendron by high-speed counter-current chromatography.

    PubMed

    Wang, Jihua; Gao, Haifeng; Zhao, Jianglin; Wang, Qi; Zhou, Ligang; Han, Jianguo; Yu, Zhu; Yang, Fuyu

    2010-08-31

    Three phenolic compounds, p-hydroxybenzoic acid (1), isorhamnetin-3-O-β-D-rutinoside (2), and 3,3'-di-O-methylquercetin (5), along with a phenolic mixture were successfully separated from the ethyl acetate crude extract of Halimodendron halodendron by high-speed counter-current chromatography (HSCCC) with chloroform-methanol-water-acetic acid (4:3:2:0.05, v/v) as the two-phase solvent system. The phenolic mixture from HSCCC was further separated by preparative HPLC and purified by Sephadex LH-20 to afford quercetin (3) and 3-O-methylquercetin (4). Seven hundred mg of ethyl acetate crude extract was separated by HSCCC to obtain six fractions which were then analyzed by high performance liquid chromatography (HPLC). The HSCCC separation obtained total of 80 mg of the mixture of quercetin (3) and 3-O-methylquercetin (4) (26.43% and 71.89%, respectively) in fraction 2, 14 mg of 3,3'-di-O-methylquercetin (5) at 95.14% of purity in fraction 3, 15 mg of p-hydroxybenzoic acid (1) at 92.83% of purity in fraction 5, 12 mg of isorhamnetin-3-O-β-D-rutinoside (2) at 97.99% of purity in fraction 6. This is the first time these phenolic compounds have been obtained from H. halodendron, and their chemical structures identified by means of physicochemical and spectrometric analysis.

  16. AM symbiosis alters phenolic acid content in tomato roots

    PubMed Central

    Flors, Victor; García, Juan M; Pozo, Maria J

    2010-01-01

    Arbuscular mycorrhizal (AM) fungi colonize the roots of most plants to establish a mutualistic symbiosis leading to important benefits for plant health. We have recently shown that AM symbiosis alters both transcriptional and hormonal profiles in tomato roots, many of these changes related to plant defense. Here, we analytically demonstrate that the levels of other important defense-related compounds as phenolic acids are also altered in the symbiosis. Both caffeic and chlorogenic acid levels significantly decreased in tomato roots upon mycorrhization, while ferulic acid increased. Moreover, in the case of caffeic acid a differential reduction was observed depending on the colonizing AM fungus. The results confirm that AM associations imply the regulation of plant defense responses, and that the host changes may vary depending on the AM fungus involved. The potential implications of altered phenolic acid levels on plant control over mycorrhizal colonization and in the plant resistance to pathogens is discussed. PMID:21490421

  17. Componential Profile and Amylase Inhibiting Activity of Phenolic Compounds from Calendula officinalis L. Leaves

    PubMed Central

    Olennikov, Daniil N.; Kashchenko, Nina I.

    2014-01-01

    An ethanolic extract and its ethyl acetate-soluble fraction from leaves of Calendula officinalis L. (Asteraceae) were found to show an inhibitory effect on amylase. From the crude extract fractions, one new phenolic acid glucoside, 6′-O-vanilloyl-β-D-glucopyranose, was isolated, together with twenty-four known compounds including five phenolic acid glucosides, five phenylpropanoids, five coumarins, and nine flavonoids. Their structures were elucidated based on chemical and spectral data. The main components, isoquercitrin, isorhamnetin-3-O-β-D-glucopyranoside, 3,5-di-O-caffeoylquinic acid, and quercetin-3-O-(6′′-acetyl)-β-D-glucopyranoside, exhibited potent inhibitory effects on amylase. PMID:24683352

  18. Inhibition and kinetic studies of cellulose- and hemicellulose-degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    PubMed

    Surendran, A; Siddiqui, Y; Ali, N S; Manickam, S

    2018-06-01

    Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (V max and K m ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds. © 2018 The Society for Applied Microbiology.

  19. Analysis of phenolic compounds from different morphological parts of Helichrysum devium by liquid chromatography with on-line UV and electrospray ionization mass spectrometric detection.

    PubMed

    Gouveia, Sandra C; Castilho, Paula C

    2009-12-01

    A simple and rapid method has been used for the screening and identification of the main phenolic compounds from Helichrysum devium using high-performance liquid chromatography with on-line UV and electrospray ionization mass spectrometric detection (LC-DAD/ESI-MS(n)). The total aerial parts and different morphological parts of the plant, namely leaves, flowers and stems, were analyzed separately. A total of 34 compounds present in the methanolic extract from Helichrysum devium were identified or tentatively characterized based on their UV and mass spectra and retention times. Three of these compounds were positively identified by comparison with reference standards. The phenolic compounds included derivatives of quinic acid, O-glycosylated flavonoids, a caffeic acid derivative and a protocatechuic acid derivative. The characteristic loss of 206 Da from malonylcaffeoyl quinic acid was used to confirm the malonyl linkage to the caffeoyl group. This contribution presents one of the first reports on the analysis of phenolic compounds from Helichrysum devium using LC-DAD/ESI-MS(n) and highlights the prominence of quinic acid derivatives as the main group of phenolic compounds present in these extracts. We also provide evidence that the methanolic extract from the flowers was significantly more complex when compared to that of other morphological parts. Copyright 2009 John Wiley & Sons, Ltd.

  20. Avocado roots treated with salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity.

    PubMed

    Rangel-Sánchez, Gerardo; Castro-Mercado, Elda; García-Pineda, Ernesto

    2014-02-15

    We demonstrated the ability of salicylic acid (SA) to induce a compound in avocado roots that strengthens their defense against Phytophthora cinnamomi. The SA content of avocado roots, before and after the application of exogenous SA, was determined by High-Performance Liquid Chromatography (HPLC). After 4h of SA feeding, the endogenous level in the roots increased to 223 μg g(-1) FW, which was 15 times the amount found in control roots. The methanolic extract obtained from SA-treated avocado roots inhibited the radial growth of P. cinnamomi. A thin layer chromatographic bioassay with the methanolic extract and spores of Aspergillus showed a distinct inhibition zone. The compound responsible for the inhibition was identified as phenol-2,4-bis (1,1-dimethylethyl) by gas chromatography and mass spectrometry. At a concentration of 100 μg/mL, the substance reduced germinative tube length in Aspergillus and radial growth of P. cinnamomi. A commercial preparation of phenol-2,4-bis (1,1-dimethylethyl) caused the same effects on mycelium morphology and radial growth as our isolate, confirming the presence of this compound in the root extracts. This is the first report of the induction of this compound in plants by SA, and the results suggest that it plays an important role in the defense response of avocado. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Sensitive determination of phenolic acids in extra-virgin olive oil by capillary zone electrophoresis.

    PubMed

    Carrasco Pancorbo, Alegría; Cruces-Blanco, Carmen; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto

    2004-11-03

    A sensitive, rapid, efficient, and reliable method for the separation and determination of phenolic acids by capillary zone electrophoresis has been carried out. A detailed method optimization was carried out to separate 14 different compounds by studying parameters such as pH, type and concentration of buffer, applied voltage, and injection time. The separation was performed within 16 min, using a 25 mM sodium borate buffer (pH 9.6) at 25 kV with 8 s of hydrodynamic injection. With this method and using a liquid-liquid extraction system, with recovery values around 95%, it has been possible to detect small quantities of phenolic acids in olive oil samples. This is apparently the first paper showing the quantification of this specific family of phenolic compounds in virgin olive oil samples.

  2. Phenolic acids as bioindicators of fly ash deposit revegetation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Djurdjevic; M. Mitrovic; P. Pavlovic

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central partmore » of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.« less

  3. A review of molecular mechanisms of the anti-leukemic effects of phenolic compounds in honey.

    PubMed

    Abubakar, Murtala B; Abdullah, Wan Zaidah; Sulaiman, Siti Amrah; Suen, Ang Boon

    2012-11-15

    Hematologic malignancies constitute about 9% of all new cases of cancers as reported via the GLOBOCAN series by International Agency for Research on Cancer (IARC) in 2008. So far, the conventional therapeutic and surgical approaches to cancer therapy have not been able to curtail the rising incidence of cancers, including hematological malignancies, worldwide. The last decade has witnessed great research interest in biological activities of phenolic compounds that include anticancer, anti-oxidation and anti-inflammation, among other things. A large number of anticancer agents combat cancer through cell cycle arrest, induction of apoptosis and differentiation, as well as through inhibition of cell growth and proliferation, or a combination of two or more of these mechanisms. Various phenolic compounds from different sources have been reported to be promising anticancer agents by acting through one of these mechanisms. Honey, which has a long history of human consumption both for medicinal and nutritional uses, contains a variety of phenolic compounds such as flavonoids, phenolic acids, coumarins and tannins. This paper presents a review on the molecular mechanisms of the anti-leukemic activity of various phenolic compounds on cell cycle, cell growth and proliferation and apoptosis, and it advocates that more studies should be conducted to determine the potential role of honey in both chemoprevention and chemotherapy in leukemia.

  4. Phenolic Compounds in Particles of Mainstream Waterpipe Smoke

    PubMed Central

    2013-01-01

    Introduction: Waterpipe tobacco smoking has in recent years become a popular international phenomenon, particularly among youth. While it has been shown to deliver significant quantities of several carcinogenic and toxic substances, phenols, an important class of chemical compounds thought to promote DNA mutation and cardiovascular diseases, however, has not been studied. Due to the relatively low temperature characteristic of waterpipe tobacco during smoking (i.e., <450 °C), it was hypothesized that phenolic compounds, which form at approximately 300 °C, will be found in abundance in waterpipe smoke. Methods: In this study, phenolic compounds in the particle phase of waterpipe mainstream smoke were quantified. Waterpipe and cigarette mainstream smoke generated using standard methods were collected on glass fiber pads and analyzed using gas chromatography/mass spectroscopy selected ion current profile chromatogram method for quantification. Results: We found that relative to a single cigarette, a waterpipe delivers at least 3 times greater quantities of the 7 analyzed phenols (phenol, o-cresol, m-cresol, p-cresol, catechol, resorcinol, and hydroquinone). Moreover, phenol derivatives such as methylcatechol, and flavorings such as vanillin, ethyl vanillin, and benzyl alcohol were found in quantities up to 1,000 times greater than the amount measured in the smoke of a single cigarette. Conclusion: The large quantities of phenols and phenol derivatives in waterpipe smoke add to the growing evidence that habitual waterpipe use may increase the risk of cancer and cardiovascular diseases. PMID:23178319

  5. Phenolic Compounds Analysis of Root, Stalk, and Leaves of Nettle

    PubMed Central

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves) samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl) which is generally used for herbal samples and based on single electron transfer (SET). PMID:22593694

  6. Phenolic compounds analysis of root, stalk, and leaves of nettle.

    PubMed

    Otles, Semih; Yalcin, Buket

    2012-01-01

    Types of nettles (Urtica dioica) were collected from different regions to analyze phenolic compounds in this research. Nettles are specially grown in the coastal part. According to this kind of properties, nettle samples were collected from coastal part of (Mediterranean, Aegean, Black sea, and Marmara) Turkey. Phenolic profile, total phenol compounds, and antioxidant activities of nettle samples were analyzed. Nettles were separated to the part of root, stalk, and leaves. Then, these parts of nettle were analyzed to understand the difference of phenolic compounds and amount of them. Nettle (root, stalk and leaves) samples were analyzed by using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) to qualitative and quantitative determination of the phenolic compounds. Total phenolic components were measured by using Folin-Ciocalteu method. The antioxidant activity was measured by using DPPH (2,2-diphenyl-1-picrylhydrazyl) which is generally used for herbal samples and based on single electron transfer (SET).

  7. Characterization of phenolic compounds and antinociceptive activity of Sempervivum tectorum L. leaf juice.

    PubMed

    Alberti, Ágnes; Béni, Szabolcs; Lackó, Erzsébet; Riba, Pál; Al-Khrasani, Mahmoud; Kéry, Ágnes

    2012-11-01

    Sempervivum tectorum L. (houseleek) leaf juice has been known as a traditional herbal remedy. The aim of the present study was the chemical characterization of its phenolic compounds and to develop quantitation methods for its main flavonol glycoside, as well as to evaluate its antinociceptive activity. Lyophilized houseleek leaf juice was studied by HPLC-DAD coupled to electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to identify flavonol glycosides, hydroxy-benzoic and hydroxy-cinnamic acids. Ten flavonol glycosides and sixteen phenolic acid compounds were identified or tentatively characterized. Structure of the main flavonol compound was identified by nuclear magnetic resonance spectroscopy. Three characteristic kaempferol glycosides were isolated and determined by LC-ESI-MS/MS with external calibration method, using the isolated compounds as standard. The main flavonol glycoside was also determined by HPLC-DAD. Validated HPLC-DAD and LC-ESI-MS/MS methods were developed to quantify kaempferol-3-O-rhamnosyl-glucoside-7-O-rhamnoside and two other kaempferol glycosides. Antinociceptive activity of houseleek leaf juice was investigated by writhing test of mice. Sempervivum extract significantly reduced pain in the mouse writhing test. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Directional liquefaction of biomass for phenolic compounds and in situ hydrodeoxygenation upgrading of phenolics using bifunctional catalysts

    Treesearch

    Junfeng Feng; Chung-yun Hse; Kui Wang; Zhongzhi Yang; Jianchun Jiang; Junming Xu

    2017-01-01

    Phenolic compounds derived from biomass are important feedstocks for the sustainable production of hydrocarbon biofuels. Hydrodeoxygenation is an effective process to remove oxygen-containing functionalities in phenolic compounds. This paper reported a simple method for producing hydrocarbons by liquefying biomass and upgrading liquefied products. Three phenolic...

  9. Rapid determination of phenolic compounds and alkaloids of carob flour by improved liquid chromatography tandem mass spectrometry.

    PubMed

    Ortega, Nàdia; Macià, Alba; Romero, Maria-Paz; Trullols, Esther; Morello, Jose-Ramón; Anglès, Neus; Motilva, Maria-Jose

    2009-08-26

    An improved chromatographic method was developed using ultra-performance liquid chromatography-tandem mass spectrometry to identify and quantify phenolic compounds and alkaloids, theobromine and caffeine, in carob flour samples. The developed method has been validated in terms of speed, sensitivity, selectivity, peak efficiency, linearity, reproducibility, limits of detection, and limits of quantification. The chromatographic method allows the identification and quantification of 20 phenolic compounds, that is, phenolic acids, flavonoids, and their aglycone and glucoside forms, together with the determination of the alkaloids, caffeine and theobromine, at low concentration levels all in a short analysis time of less than 20 min.

  10. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood.

    PubMed

    Santos, Sónia A O; Vilela, Carla; Freire, Carmen S R; Neto, Carlos Pascoal; Silvestre, Armando J D

    2013-11-01

    Ultra-high performance liquid chromatography (UHPLC) was applied for the first time in the analysis of wood extracts. The potential of this technique coupled to ion trap mass spectrometry in the rapid and effective detection and identification of bioactive components in complex vegetal samples was demonstrated. Several dozens of compounds were detected in less than 30min of analysis time, corresponding to more than 3-fold reduction in time, when compared to conventional HPLC analysis of similar extracts. The phenolic chemical composition of Eucalyptus grandis, Eucalyptus urograndis (E. grandis×E. urophylla) and Eucalyptus maidenii wood extracts was assessed for the first time, with the identification of 51 phenolic compounds in the three wood extracts. Twenty of these compounds are reported for the first time as Eucalyptus genus components. Ellagic acid and ellagic acid-pentoside are the major components in all extracts, followed by gallic and quinic acids in E. grandis and E. urograndis and ellagic acid-pentoside isomer, isorhamnetin-hexoside and gallic acid in E. maidenii. The antioxidant scavenging activity of the extracts was evaluated, with E. grandis wood extract showing the lowest IC50 value. Moreover, the antioxidant activity of these extracts was higher than that of the commercial antioxidant BHT and of those of the corresponding bark extracts. These results, together with the phenolic content values, open good perspectives for the exploitation of these renewable resources as a source of valuable phenolic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Lee, Ju Hun; Yang, Xiaoguang; Kim, Sung Bong; Lee, Ja Hyun; Yoo, Hah Young; Park, Chulhwan; Kim, Seung Wook

    2015-12-01

    Lignocellulosic biomass are attractive feedstocks for 2,3-butanediol production due to their abundant supply and low price. During the hydrolysis of lignocellulosic biomass, various byproducts are formed and their effects on 2,3-butanediol production were not sufficiently studied compared to ethanol production. Therefore, the effects of compounds derived from lignocellulosic biomass (weak acids, furan derivatives and phenolics) on the cell growth, the 2,3-butanediol production and the enzymes activity involved in 2,3-butanediol production were evaluated using Enterobacter aerogenes ATCC 29007. The phenolic compounds showed the most toxic effects on cell growth, 2,3-butanediol production and enzyme activity, followed by furan derivatives and weak acids. The significant effects were not observed in the presence of acetic acid and formic acid. Also, feasibility of 2,3-butanediol production from lignocellulosic biomass was evaluated using Miscanthus as a feedstock. In the fermentation of Miscanthus hydrolysate, 11.00 g/L of 2,3-butanediol was obtained from 34.62 g/L of reducing sugar. However, 2,3-butanediol was not produced when the concentration of total phenolic compounds in the hydrolysate increased to more than 1.5 g/L. The present study provides useful information to develop strategies for biological production of 2,3-butanediol and to establish biorefinery for biochemicals from lignocellulosic biomass. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Anaerobic biodegradation of phenolic compounds in digested sludge.

    PubMed Central

    Boyd, S A; Shelton, D R; Berry, D; Tiedje, J M

    1983-01-01

    We examined the anaerobic degradation of phenol and the ortho, meta, and para isomers of chlorophenol, methoxyphenol, methylphenol (cresol), and nitrophenol in anaerobic sewage sludge diluted to 10% in a mineral salts medium. Of the 12 monosubstituted phenols studied, only p-chlorophenol and o-cresol were not significantly degraded during an 8-week incubation period. The phenol compounds degraded and the time required for complete substrate disappearance (in weeks) were: phenol (2), o-chlorophenol (3), m-chlorophenol (7), o-methoxyphenol (2), m- and p-methoxyphenol (1), m-cresol (7), p-cresol (3), and o-, m-, and p-nitrophenol (1). Complete mineralization of phenol, o-chlorophenol, m-cresol, p-cresol, o-nitrophenol, p-nitrophenol, and o-, m-, and p-methoxyphenol was observed. In general, the presence of Cl and NO2 groups on phenols inhibited methane production. Elimination or transformation of these substituents was accompanied by increased methane production, o-Chlorophenol was metabolized to phenol, which indicated that dechlorination was the initial degradation step. The methoxyphenols were transformed to the corresponding dihydroxybenzene compounds, which were subsequently mineralized. PMID:6614908

  13. Fatty Acid Profile, Phenolics and Flavonoids Contents in Olea europaea L. Callus Culture cv. cornicabra.

    PubMed

    Rodríguez-Hernandez, Ludwi; Nájera-Gomez, Humberto; Luján-Hidalgo, Maria Celína; Ruiz-Lau, Nancy; Lecona-Guzmán, Carlos Alberto; Abud-Archila, Miguel; Ruíz-Valdiviezo, Víctor Manuel; Gutiérrez-Miceli, Federico Antonio

    2018-05-01

    Olive trees are one of the most important oil crops in the world due to the sensorial and nutritional characteristics of olive oil, such as lipid composition and antioxidant content, and the medicinal properties of its leaves. In this paper, callus formation was induced using nodal segments of olive tree (Olea europaea cv. cornicabra) as explants. Fatty acid profile, total phenolic compounds and total flavonoid compounds were determined in callus culture after 15 weeks and compared with leaf and nodal segments tissues. There was no statistical difference in phenolic compounds among leaf, nodal segments and callus culture, whereas flavonoid compounds were higher in leaf. Fatty acid profile was similar in leaf, nodal segments and callus culture and was constituted by hexadecanoic acid, octadecanoic acid, cis-9-octadecenoic acid, cis-9,12-octadecadienoic acid, cis-9,12,15-octadecatrienoic acid. Hexadecanoic acid was the main fatty acid in callus, leaf and nodal segments with 35.0, 39.0 and 40.0% (w/w), of the lipid composition, respectively. With this paper, it is being reported for the first time the capacity of callus culture to accumulate fatty acids. Our results could serve to continue studying the production of fatty acids in callus cultivation as a biotechnological tool to improve different olive cultivars.

  14. Influence of rye flour enzymatic biotransformation on the antioxidant capacity and transepithelial transport of phenolic acids.

    PubMed

    de Lima, Fabíola Aliaga; Martins, Isabela Mateus; Faria, Ana; Calhau, Conceição; Azevedo, Joana; Fernandes, Iva; Mateus, Nuno; Macedo, Gabriela Alves

    2018-03-01

    Phenolic acids have been reported to play a role on the antioxidant activity and other important biological activities. However, as most polyphenolics in food products are either bound to cellular matrices or present as free polymeric forms, the way they are absorbed has not been totally clear until now. Hydrolytic enzymes may act to increase functionalities in polyphenolic-rich foods, enhancing the bioaccessibility of phenolic compounds and minerals from whole grains. The aim of this study was to evaluate the action of tannin acyl hydrolase (tannase) on the total phenols, phenolic acid profile, antioxidant capacity and in vitro bioaccessibility of phenolic acids found in whole rye flour (RF). Besides increasing total phenols and the antioxidant capacity, tannase treatment increased the amounts of ferulic, sinapic and vanillic acids identified in RF, evidencing a new type of feruloyl esterase catalytic action of tannase. Vanillic and sinapic acids in tannase-treated whole rye flour (RFT) were higher than RF after in vitro gastrointestinal digestion, and higher amounts of transported vanillic acid through the Caco-2 monolayer were detected in RFT. However, the bioaccessibility and the transport efficiency of RF phenolic acids were higher than RFT. Underutilized crops like rye and rye-derived products may be an important source of phenolic acids. The tannase biotransformation, even influencing the total phenolics and antioxidant capacity of RF, did not increase the bioaccessibility of phenolic acids under the experimental conditions of this study.

  15. Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fiber powder

    PubMed Central

    Su, Jing; Vielnascher, Robert; Silva, Carla; Cavaco-Paulo, Artur; Guebitz, Georg M.

    2018-01-01

    Ultrasound-assisted extraction of hemicellulose and phenolic compounds from bamboo bast fibre powder was investigated. The effect of ultrasonic probe depth and power input parameters on the type and amount of products extracted was assessed. The results of input energy and radical formation correlated with the calculated values for the anti-nodal point (λ/4; 16.85 mm, maximum amplitude) of the ultrasonic wave in aqueous medium. Ultrasonic treatment at optimum probe depth of 15 mm improve 2.6-fold the extraction efficiencies of hemicellulose and phenolic lignin compounds from bamboo bast fibre powder. LC-Ms-Tof (liquid chromatography-mass spectrometry-time of flight) analysis indicated that ultrasound led to the extraction of coniferyl alcohol, sinapyl alcohol, vanillic acid, cellobiose, in contrast to boiling water extraction only. At optimized conditions, ultrasound caused the formation of radicals confirmed by the presence of (+)-pinoresinol which resulted from the radical coupling of coniferyl alcohol. Ultrasounds revealed to be an efficient methodology for the extraction of hemicellulosic and phenolic compounds from woody bamboo without the addition of harmful solvents. PMID:29856764

  16. Aqueous extract of Psidium guajava leaves: phenolic compounds and inhibitory potential on digestive enzymes.

    PubMed

    Simão, Anderson A; Marques, Tamara R; Marcussi, Silvana; Corrêa, Angelita D

    2017-01-01

    Leaves of Psidium guajava L. (guava) have been widely used in the popular way for prevention and treatment of various diseases. Thus, the objective of this study was to evaluate the inhibitory potential of leaves aqueous extract from three cultivars of P. guajava (Pedro Sato, Paluma and Século XXI) on α-amylase, α-glycosidase, lipase, and trypsin enzymes, in the presence or not of simulated gastric fluid and to determine the content of phenolic compounds by high performance liquid chromatography. All cultivars presented the same composition in phenolic compounds, but in different proportions. The compounds identified are gallic acid, epigallocatechin gallate, syringic acid, o-coumaric acid, resveratrol, quercetin, and catechin (which was the major compound in all the cultivars evaluated). In the absence of simulated gastric fluid, it was observed different inhibitions exercised by the leaves aqueous extracts from three cultivars of P. guajava on each enzyme. In presence of simulated gastric fluid, all cultivars showed increase in the inhibition of lipase and α-glycosidase, and decrease in inhibition of α-amylase and trypsin enzymes. These results indicate that P. guajava leaves aqueous extracts from all cultivars evaluated possess potential of use as an adjuvant in the treatment of obesity and other dyslipidemias.

  17. Analysis of phenolic compounds in different parts of pomegranate (Punica granatum) fruit by HPLC-PDA-ESI/MS and evaluation of their antioxidant activity: application to different Italian varieties.

    PubMed

    Russo, Marina; Fanali, Chiara; Tripodo, Giusy; Dugo, Paola; Muleo, Rosario; Dugo, Laura; De Gara, Laura; Mondello, Luigi

    2018-06-01

    The analysis of pomegranate phenolic compounds belonging to different classes in different fruit parts was performed by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detection. Two different separation methods were optimized for the analysis of anthocyanins and hydrolyzable tannins along with phenolic acids and flavonoids. Two C 18 columns, core-shell and fully porous particle stationary phases, were used. The parameters for separation of phenolic compounds were optimized considering chromatographic resolution and analysis time. Thirty-five phenolic compounds were found, and 28 of them were tentatively identified as belonging to four different phenolic compound classes; namely, anthocyanins, phenolic acids, hydrolyzable tannins, and flavonoids. Quantitative analysis was performed with a mixture of nine phenolic compounds belonging to phenolic compound classes representative of pomegranate. The method was then fully validated in terms of retention time precision, expressed as the relative standard deviation, limit of detection, limit of quantification, and linearity range. Phenolic compounds were analyzed directly in pomegranate juice, and after solvent extraction with a mixture of water and methanol with a small percentage of acid in peel and pulp samples. The accuracy of the extraction method was also assessed, and satisfactory values were obtained. Finally, the method was used to study identified analytes in pomegranate juice, peel, and pulp of six different Italian varieties and one international variety. Differences in phenolic compound profiles among the different pomegranate parts were observed. Pomegranate peel samples showed a high concentration of phenolic compounds, ellagitannins being the most abundant ones, with respect to pulp and juice samples for each variety. With the same samples, total phenols and antioxidant activity were evaluated through colorimetric assays, and the results were correlated among them.

  18. Immunosuppressive phenolic compounds from Hydnora abyssinica A. Braun.

    PubMed

    Koko, Waleed S; Mesaik, Mohamed A; Ranjitt, Rosa; Galal, Mohamed; Choudhary, Muhammad I

    2015-11-09

    Hydnora abyssinica (HA) A. Braun is an endemic Sudanese medicinal plant traditionally used as anti-inflammatory and against many infectious diseases. However, it proved to be very rich in phenols and tannins, so the present study was undertaken to investigate the immunomodulatory potential of the whole plant ethanolic extract and its isolated compounds. Lymphocyte proliferation, chemiluminescence and superoxide reduction assays were used for immunomodulatory evaluation. While, MTT (3-(4, 5-dimethylthazol-2-yl)-2, 5-diphenyl tetrazonium bromide) test was performed on 3 T3 cell line clone in order to evaluate the cytoxicity effect of the extracts and isolated compounds of phenolic derivatives which were carried out by chromotographic techniques. Catechin, (1), tyrosol (2) and benzoic acid, 3, 4, dihydroxy-, ethyl ester (3) compounds were isolated from HA ethanolic extract which revealed potent immunosuppressive activity against reactive oxygen species from both polymorph nuclear cells (PMNs) (45-90 % inhibition) and mononuclear cells (MNCs) (30 -65 % inhibition), T lymphocyte proliferation assay (70-93 % inhibition) as well as potent inhibitory effect against superoxide production (42-71 % inhibition) at concentrations of 6.25-100 μg/mL. Catechin (1) was found the most potent immunosuppressive agent among all constituents examined. These results can support the traditional uses of H. abyssinica extracts as anti-inflammatory and immunosuppressive and further investigations of the mode of action and other pharmacological studies are highly desirable.

  19. PHENOLIC ACIDS AND LIGNINS IN THE LYCOPODIALES,

    DTIC Science & Technology

    ethanolysis or alkaline oxidation of their extracted wood-meals. p-Hydroxybenzoic, vanillic, p-coumaric and ferulic acids were identified in phenolic acid ...Twenty-one species and varieties of Lycopodium have been examined for phenolic acids and for phenolic aldehydes, ketones and acids obtained on...found to yield syringic acid in the ethanol-soluble fraction and on degradation of lignin whereas species included in the genera Huperzia and Lepidotis

  20. Identification of phenolic compounds from the leaf part of Teucrium pseudo-Scorodonia Desf. collected from Algeria.

    PubMed

    Belarbi, Karima; Atik-Bekkara, Fawzia; El Haci, Imad Abdelhamid; Bensaid, Ilhem; Bekhechi, Chahrazed

    2018-02-01

    In the present paper,we reported for the first time, the identification of the phenolic compounds in butanolic fraction obtained from the leaf part of Teucrium pseudo-Scorodonia Desf. collected from Algeria using RP-HPLC-PDA (Reversed Phase High Performance Liquid Chromatography/Photo Diode Array) technique. Several standards were used for this purpose. The analysis led to the identification of six phenolic acids (ferulic, sinapic, rosmarinic, syringique, caffeic, p-coumaric acids) and one flavonoid (rutin), the last one, has interesting pharmacological properties.

  1. Anticarcinogenic Effect of Spices Due to Phenolic and Flavonoid Compounds-In Vitro Evaluation on Prostate Cells.

    PubMed

    Lackova, Zuzana; Buchtelova, Hana; Buchtova, Zaneta; Klejdus, Borivoj; Heger, Zbynek; Brtnicky, Martin; Kynicky, Jindrich; Zitka, Ondrej; Adam, Vojtech

    2017-09-28

    This study shows the effects of spices, and their phenolic and flavonoid compounds, on prostate cell lines (PNT1A, 22RV1 and PC3). The results of an MTT assay on extracts from eight spices revealed the strongest inhibitory effects were from black pepper and caraway seed extracts. The strongest inhibitory effect on prostatic cells was observed after the application of extracts of spices in concentration of 12.5 mg·mL -1 . An LC/MS analysis identified that the most abundant phenolic and flavonoid compounds in black pepper are 3,4-dihydroxybenzaldehyde and naringenin chalcone, while the most abundant phenolic and flavonoid compounds in caraway seeds are neochlorogenic acid and apigenin. Using an MTT assay for the phenolic and flavonoid compounds from spices, we identified the IC 50 value of ~1 mmol·L -1 PNT1A. The scratch test demonstrated that the most potent inhibitory effect on PNT1A, 22RV1 and PC3 cells is from the naringenin chalcone contained in black pepper. From the spectrum of compounds assessed, the naringenin chalcone contained in black pepper was identified as the most potent inhibitor of the growth of prostate cells.

  2. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice.

    PubMed

    Kelebek, Hasim; Selli, Serkan

    2011-08-15

    Orange flavour is the results of a natural combination of volatile compounds in a well-balanced system including sugars, acids and phenolic compounds. This paper reports the results of the first determination of aroma, organic acids, sugars, and phenolic components in Dortyol yerli orange juices. A total of 58 volatile components, including esters (nine), terpenes (19), terpenols (13), aldehydes (two), ketones (three), alcohols (four) and acids (eight) were identified and quantified in Dortyol yerli orange juice by GC-FID and GC-MS. Organic acids, sugars and phenolic compositions were also determined by HPLC methods. The major organic acid and sugar found were citric acid and sucrose, respectively. With regard to phenolics, 14 compounds were identified and quantified in the orange juice. Terpenes and terpenols were found as the main types of volatile components in Dortyol yerli orange juice. In terms of aroma contribution to orange juice, 12 compounds were prominent based on the odour activity values (OAVs). The highest OAV values were recorded for ethyl butanoate, nootkatone, linalool and DL-limonene. When we compare the obtained results of cv. Dortyol orange juice with the other orange juice varieties, the composition of Dortyol orange juice was similar to Valencia and Navel orange juices. Copyright © 2011 Society of Chemical Industry.

  3. Bioaccessibility and bioavailability of phenolic compounds in bread: a review.

    PubMed

    Angelino, Donato; Cossu, Marta; Marti, Alessandra; Zanoletti, Miriam; Chiavaroli, Laura; Brighenti, Furio; Del Rio, Daniele; Martini, Daniela

    2017-07-19

    Cereal-based products, like breads, are a vehicle for bioactive compounds, including polyphenols. The health effects of polyphenols like phenolic acids (PAs) are dependent on their bioaccessibility and bioavailability. The present review summarizes the current understanding of potential strategies to improve phenolic bioaccessibility and bioavailability and the main findings of in vitro and in vivo studies investigating these strategies applied to breads, including the use of raw ingredients with greater phenolic content and different pre-processing technologies, such as fermentation and enzymatic treatment of ingredients. There is considerable variability between in vitro studies, mainly resulting from the use of different methodologies, highlighting the need for standardization. Of the few in vivo bioavailability studies identified, acute, single-dose studies demonstrate that modifications to selected raw materials and bioprocessing of bran could increase the bioavailability, but not necessarily the net content, of bread phenolics. The two medium-term identified dietary interventions also demonstrated greater phenolic content, resulting from the modification of the raw materials used. Overall, the findings suggest that several strategies can be used to develop new bread products with greater phenolic bioaccessibility and bioavailability. However, due to the large variability and the few studies available, further investigations are required to determine better the usefulness of these innovative processes.

  4. Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: evidence for implication of carboxylate and radicals.

    PubMed

    Qin, Xing; Sun, Xianhua; Huang, Huoqing; Bai, Yingguo; Wang, Yuan; Luo, Huiying; Yao, Bin; Zhang, Xiaoyu; Su, Xiaoyun

    2017-01-01

    Manganese peroxidase is one of the Class II fungal peroxidases that are able to oxidize the low redox potential phenolic lignin compounds. For high redox potential non-phenolic lignin degradation, mediators such as GSH and unsaturated fatty acids are required in the reaction. However, it is not known whether carboxylic acids are a mediator for non-phenolic lignin degradation. The white rot fungus Irpex lacteus is one of the most potent fungi in degradation of lignocellulose and xenobiotics. Two manganese peroxidases ( Il MnP1 and Il MnP2) from I. lacteus CD2 were over-expressed in Escherichia coli and successfully refolded from inclusion bodies. Both Il MnP1 and Il MnP2 oxidized the phenolic compounds efficiently. Surprisingly, they could degrade veratryl alcohol, a non-phenolic lignin compound, in a Mn 2+ -dependent fashion. Malonate or oxalate was found to be also essential in this degradation. The oxidation of non-phenolic lignin was further confirmed by analysis of the reaction products using LC-MS/MS. We proved that Mn 2+ and a certain carboxylate are indispensable in oxidation and that the radicals generated under this condition, specifically superoxide radical, are at least partially involved in lignin oxidative degradation. Il MnP1 and Il MnP2 can also efficiently decolorize dyes with different structures. We provide evidence that a carboxylic acid may mediate oxidation of non-phenolic lignin through the action of radicals. MnPs, but not LiP, VP, or DyP, are predominant peroxidases secreted by some white rot fungi such as I. lacteus and the selective lignocellulose degrader Ceriporiopsis subvermispora . Our finding will help understand how these fungi can utilize MnPs and an excreted organic acid, which is usually a normal metabolite, to efficiently degrade the non-phenolic lignin. The unique properties of Il MnP1 and Il MnP2 make them good candidates for exploring molecular mechanisms underlying non-phenolic lignin compounds oxidation by MnPs and for

  5. Carbohydrates, volatile and phenolic compounds composition, and antioxidant activity of calabura (Muntingia calabura L.) fruit.

    PubMed

    Pereira, Gustavo Araujo; Arruda, Henrique Silvano; de Morais, Damila Rodrigues; Eberlin, Marcos Nogueira; Pastore, Glaucia Maria

    2018-06-01

    Soluble carbohydrates, volatile and phenolic compounds from calabura fruit as well as its antioxidant activity were assessed. The low amount of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) and similar amount of glucose and fructose allow us to classify the calabura berry as low-FODMAPs. The terpenes β-Farnesene and dendrolasin identified by SPME-GC-MS were the major volatile components. UHPLC-MS/MS analysis revelled gallic acid (5325 μg/g dw) and cyanidin-3-O-glucoside (171 μg/g dw) as the main phenolic compounds, followed by gentisic acid, gallocatechin, caffeic acid and protocatechuic acid. In addition, gallic acid was found mainly in esterified (2883 μg/g dw) and insoluble-bound (2272 μg/g dw) forms. Free and glycosylated forms showed however the highest antioxidant activity due to occurrence of flavonoids (0.28-27 μg/g dw) in these fractions, such as catechin, gallocatechin, epigallocatechin, naringenin, and quercetin. These findings clearly suggest that calabura is a berry with low energy value and attractive colour and flavour that may contribute to the intake of several bioactive compounds with antioxidant activity. Furthermore, this berry have great potential for use in the food industry and as functional food. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. The Extent of Fermentative Transformation of Phenolic Compounds in the Bioanode Controls Exoelectrogenic Activity in a Microbial Electrolysis Cell

    DOE PAGES

    Zeng, Xiaofei; Collins, Maya; Borole, Abhijeet P.; ...

    2016-11-27

    Phenolic compounds in hydrolysate/pyrolysate and wastewater streams produced during the pretreatment of lignocellulosic biomass for biofuel production present a significant challenge in downstream processes. Bioelectrochemical systems are increasingly recognized as an alternative technology to handle biomass-derived streams and to promote water reuse in biofuel production. Thus, a thorough understanding of the fate of phenolic compounds in bioanodes is urgently needed. The present study investigated the biotransformation of three structurally similar phenolic compounds (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA), and their individual contribution to exoelectrogenesis in a microbial electrolysis cell (MEC) bioanode. Fermentation of SA resulted in themore » highest exoelectrogenic activity among the three compounds tested, with 50% of the electron equivalents converted to current, compared to 12 and 9% for VA and HBA, respectively. The biotransformation of SA, VA and HBA was initiated by demethylation and decarboxylation reactions common to all three compounds, resulting in their corresponding hydroxylated analogs. SA was transformed to pyrogallol (1,2,3-trihydroxybenzene), whose aromatic ring was then cleaved via a phloroglucinol pathway, resulting in acetate production, which was then used in exoelectrogenesis. In contrast, more than 80% of VA and HBA was converted to catechol (1,2-dihydroxybenzene) and phenol (hydroxybenzene) as their respective dead-end products. The persistence of catechol and phenol is explained by the fact that the phloroglucinol pathway does not apply to di- or mono-hydroxylated benzenes. Previously reported, alternative ring-cleaving pathways were either absent in the bioanode microbial community or unfavorable due to high energy-demand reactions. With the exception of acetate oxidation, all biotransformation steps in the bioanode occurred via fermentation, independently of exoelectrogenesis. Therefore, the observed

  7. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice

    NASA Astrophysics Data System (ADS)

    Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.

    2010-12-01

    The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.

  8. Deodorization of Garlic Breath by Foods, and the Role of Polyphenol Oxidase and Phenolic Compounds.

    PubMed

    Mirondo, Rita; Barringer, Sheryl

    2016-10-01

    Garlic causes a strong garlic breath that may persist for almost a day. Therefore, it is important to study deodorization techniques for garlic breath. The volatiles responsible for garlic breath include diallyl disulfide, allyl mercaptan, allyl methyl disulfide, and allyl methyl sulfide. After eating garlic, water (control), raw, juiced or heated apple, raw or heated lettuce, raw or juiced mint leaves, or green tea were consumed immediately. The levels of the garlic volatiles on the breath were analyzed from 1 to 60 min by selected ion flow tube mass spectrometry (SIFT-MS). Garlic was also blended with water (control), polyphenol oxidase (PPO), rosemarinic acid, quercetin or catechin, and the volatiles in the headspace analyzed from 3 to 40 min by SIFT-MS. Raw apple, raw lettuce, and mint leaves significantly decreased all of the garlic breath volatiles in vivo. The proposed mechanism is enzymatic deodorization where volatiles react with phenolic compounds. Apple juice and mint juice also had a deodorizing effect on most of the garlic volatiles but were generally not as effective as the raw food, probably because the juice had enzymatic activity but the phenolic compounds had already polymerized. Both heated apple and heated lettuce produced a significant reduction of diallyl disulfide and allyl mercaptan. The presence of phenolic compounds that react with the volatile compounds even in the absence of enzymes is the most likely mechanism. Green tea had no deodorizing effect on the garlic volatile compounds. Rosmarinic acid, catechin, quercetin, and PPO significantly decreased all garlic breath volatiles in vitro. Rosmarinic acid was the most effective at deodorization. © 2016 Institute of Food Technologists®.

  9. Optimization of pressurized liquid extraction by response surface methodology of Goji berry (Lycium barbarum L.) phenolic bioactive compounds.

    PubMed

    Tripodo, Giusy; Ibáñez, Elena; Cifuentes, Alejandro; Gilbert-López, Bienvenida; Fanali, Chiara

    2018-01-03

    Pressurized liquid extraction (PLE) has been used for the first time in this work to extract phenolic compounds from Goji berries according to a multilevel factorial design using response surface methodology. The global yield (% w/dw, weight/dry-weight), total phenolic content (TPC), total flavonoid (TF) and antioxidant activity (determined via ABTS assay, expressed as TEAC value) were used as response variables to study the effects of temperature (50-180°C) and green solvent composition (mixtures of ethanol/water). Phenolic compounds characterization was performed by high performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). The optimum PLE conditions predicted by the model were as follows: 180°C and 86% ethanol in water with a good desirability value of 0.815. The predicted conditions were confirmed experimentally and once the experimental design was validated for commercial fruit samples, the PLE extraction of phenolic compounds from three different varieties of fruit samples (Selvatico mongolo, Bigol, and Polonia) was performed. Nine phenolic compounds were tentatively identified in these extracts, including phenolic acids and their derivatives, and flavonols. The optimized PLE conditions were compared to a conventional solid-liquid extraction, demonstrating that PLE is a useful alternative to extract phenolic compounds from Goji berry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times.

    PubMed

    Carbone, Katya; Fiordiponti, Luciano

    2016-07-22

    Passerina del Frusinate is an autochthonous wine grape variety, which grows in the Lazio region that is currently being evaluated by local wine producers. In this study, colour properties (CIELab coordinates), bioactive compounds (total polyphenols and flavan-3-ols), HPLC-DAD phenolic acid profiles and in vitro biological activity of monovarietal Passerina del Frusinate white wines and the effect of different maceration times (0, 18 and 24 h) were evaluated based on these parameters. Results highlighted statistically significant differences for almost all analysed parameters due to a strong influence of the pre-fermentative skin contact time. The flavan content of macerated wines was six times higher than that of the control, while total polyphenols were 1.5 times higher. According to their phytochemical content, macerated wines showed the highest antiradical capacity tested by means of DPPH(•) and ABTS(+•) assays. Besides, prolonged maceration resulted in a reduction of CIELab coordinates as well as of the content of phenolic substances and antiradical capacity. Among the phenolic acids analysed, the most abundant were vanillic acid and caffeic acid; the latter proved to be the most susceptible to degradation as a result of prolonged maceration. Passerina del Frusinate appears as a phenol-rich white wine with a strong antioxidant potential similar to that of red wines.

  11. Determination of phenolic compounds and hydroxymethylfurfural in meads using high performance liquid chromatography with coulometric-array and UV detection.

    PubMed

    Kahoun, David; Rezková, Sona; Veskrnová, Katerina; Královský, Josef; Holcapek, Michal

    2008-08-15

    The objective of this study was the determination of 25 phenolic compounds in different mead samples (honeywines) using high performance liquid chromatography (HPLC) with coulometric-array detection and in case of hydroxymethylfurfural with UV detection. Our method was optimized in respect to both the separation selectivity of individual phenolic compounds and the maximum sensitivity with the electrochemical detection. The method development included the optimization of mobile phase composition, the pH value, conditions of the gradient elution and the flow rate using a window-diagram approach. The developed method was used for the determination of limits of detection and limits of quantitation for individual compounds. The linearity of calibration curves, accuracy and precision (intra- and inter-day) at three concentration levels (low, middle and high concentration range) were verified. Mead samples were diluted with the mobile phase at 1:1 to 1:50 ratio depending on the concentration and filtered through a PTFE filter without any other sample pre-treatment. Phenolic compounds concentration was determined in 50 real samples of meads and correlated with meads composition and hydroxymethylfurfural concentration. The most frequently occurred compounds were protocatechuic acid and vanillic acid (both of them were present in 98% samples), the least occurred compounds were (+)-catechin (10% samples) and sinapic acid (12% samples). Vanillin and ethylvanillin, which are used as artificial additives for the taste improvement, were found in 60% and 42% samples, respectively. Hydroxymethylfurfural concentration, as an indicator of honey quality, was in the range from 2.47 to 158 mg/L. Our method is applicable for the determination of 25 phenolic compounds in mead, honey and related natural samples.

  12. A Review of Molecular Mechanisms of the Anti-Leukemic Effects of Phenolic Compounds in Honey

    PubMed Central

    Abubakar, Murtala B.; Abdullah, Wan Zaidah; Sulaiman, Siti Amrah; Suen, Ang Boon

    2012-01-01

    Hematologic malignancies constitute about 9% of all new cases of cancers as reported via the GLOBOCAN series by International Agency for Research on Cancer (IARC) in 2008. So far, the conventional therapeutic and surgical approaches to cancer therapy have not been able to curtail the rising incidence of cancers, including hematological malignancies, worldwide. The last decade has witnessed great research interest in biological activities of phenolic compounds that include anticancer, anti-oxidation and anti-inflammation, among other things. A large number of anticancer agents combat cancer through cell cycle arrest, induction of apoptosis and differentiation, as well as through inhibition of cell growth and proliferation, or a combination of two or more of these mechanisms. Various phenolic compounds from different sources have been reported to be promising anticancer agents by acting through one of these mechanisms. Honey, which has a long history of human consumption both for medicinal and nutritional uses, contains a variety of phenolic compounds such as flavonoids, phenolic acids, coumarins and tannins. This paper presents a review on the molecular mechanisms of the anti-leukemic activity of various phenolic compounds on cell cycle, cell growth and proliferation and apoptosis, and it advocates that more studies should be conducted to determine the potential role of honey in both chemoprevention and chemotherapy in leukemia. PMID:23203111

  13. Dose-response plasma appearance of coffee chlorogenic and phenolic acids in adults.

    PubMed

    Renouf, Mathieu; Marmet, Cynthia; Giuffrida, Francesca; Lepage, Mélissa; Barron, Denis; Beaumont, Maurice; Williamson, Gary; Dionisi, Fabiola

    2014-02-01

    Coffee contains phenolic compounds, mainly chlorogenic acids (CGAs). Even though coffee intake has been associated with some health benefits in epidemiological studies, the bioavailability of coffee phenolics is not fully understood. We performed a dose-response study measuring plasma bioavailability of phenolics after drinking three increasing, but still nutritionally relevant doses of instant pure soluble coffee. The study design was a one treatment (coffee) three-dose randomized cross-over design, with a washout period of 2 wks between visits. CGAs, phenolic acids, and late-appearing metabolites all increased with increasing ingested dose. Hence, the sum of area under the curve was significantly higher for the medium to low dose, and high to medium dose, by 2.23- and 2.38-fold, respectively. CGAs were not well absorbed in their intact form, regardless of the dose. CGA and phenolic acids appeared rapidly in plasma, indicating an early absorption in the gastrointestinal tract. Late-appearing metabolites were the most abundant, regardless of the dose. This study confirmed previous findings about coffee bioavailability but also showed that coffee phenolics appear in a positive dose-response manner in plasma when drank at nutritionally relevant doses. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Bioprocessing on the In Vitro Colonic Microbial Metabolism of Phenolic Acids from Rye Bran Fortified Breads.

    PubMed

    Koistinen, Ville M; Nordlund, Emilia; Katina, Kati; Mattila, Ismo; Poutanen, Kaisa; Hanhineva, Kati; Aura, Anna-Marja

    2017-03-08

    Cereal bran is an important source of dietary fiber and bioactive compounds, such as phenolic acids. We aimed to study the phenolic acid metabolism of native and bioprocessed rye bran fortified refined wheat bread and to elucidate the microbial metabolic route of phenolic acids. After incubation in an in vitro colon model, the metabolites were analyzed using two different methods applying mass spectrometry. While phenolic acids were released more extensively from the bioprocessed bran bread and ferulic acid had consistently higher concentrations in the bread type during fermentation, there were only minor differences in the appearance of microbial metabolites, including the diminished levels of certain phenylacetic acids in the bioprocessed bran. This may be due to rye matrix properties, saturation of ferulic acid metabolism, or a rapid formation of intermediary metabolites left undetected. In addition, we provide expansion to the known metabolic pathways of phenolic acids.

  15. Phenolic acids and methylxanthines composition and antioxidant properties of mate (Ilex paraguariensis) residue.

    PubMed

    Vieira, Manoela A; Maraschin, Marcelo; Pagliosa, Cristiane M; Podestá, Rossana; de Simas, Karina N; Rockenbach, Ismael Ivan; Amboni, Renata D de M C; Amante, Edna R

    2010-04-01

    Ilex paraguariensis is known to contain compounds with antioxidant properties, such as phenolic acids, and its stimulant properties are attributed to methylxanthines, such as caffeine. The aims of this study were to evaluate the phenolic, methylxanthinic, and tannin composition of a mate residue (mate powder), to compare the quali-quantitative phenolic composition and the antioxidant potential of extracts obtained from distinct solvent systems. Among the extracts prepared with different solvents, the 80% methanol extract showed the highest total polyphenol content (11.51 g/100 g) and antioxidant activity. HPLC analysis showed that 4,5 dicaffeoylquinic acid is the major component of the phenolic fraction of mate powder. The caffeine, theobromine, and tannin contents in mate powder were 1.01, 0.10, and 0.29 g/100 g, respectively. Consumption of mate powder would significantly contribute to antioxidant and stimulant intake, providing high amounts of phenolic acids, tannins, and methylxanthines with biological effects potentially beneficial for human health. This article contributes to the minimization of residues in yerba-mate processing.

  16. Flavonoids, Phenolic Acids and Coumarins from the Roots of Althaea officinalis.

    PubMed

    Gudej, J

    1991-06-01

    From the roots of ALTHAEA OFFICINALIS two flavonoid glycosides were separated. Phenolic acids and coumarins were investigated chromatographically. The structures of the compounds were established on the basis of acid hydrolysis and spectroscopic methods (UV, (1)H-NMR, (13)C-NMR) as hypolaetin 8-glucoside and the new flavonoid sulphate - isoscutellarein 4'-methyl ether 8-glucoside-2''-SO (3)K.

  17. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining.

    PubMed

    Venturi, Francesca; Sanmartin, Chiara; Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela

    2017-08-22

    While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil.

  18. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining

    PubMed Central

    Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela

    2017-01-01

    While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil. PMID:28829365

  19. Phenolic Composition and Evaluation of the Antimicrobial Activity of Free and Bound Phenolic Fractions from a Peruvian Purple Corn (Zea mays L.) Accession.

    PubMed

    Gálvez Ranilla, Lena; Christopher, Ashish; Sarkar, Dipayan; Shetty, Kalidas; Chirinos, Rosana; Campos, David

    2017-12-01

    Beneficial effects on overall gut health by phenolic bioactives-rich foods are potentially due to their modulation of probiotic gut bacteria and antimicrobial activity against pathogenic bacteria. Based on this rationale, the effect of the free and bound phenolic fractions from a Peruvian purple corn accession AREQ-084 on probiotic lactic acid bacteria such as Lactobacillus helveticus and Bifidobacterium longum and the gastric cancer-related pathogen Helicobacter pylori was evaluated. The free and bound phenolic composition was also determined by ultra-performance liquid chromatography. Anthocyanins were the major phenolic compounds (310.04 mg cyanidin-3-glucoside equivalents/100 g dry weight, DW) in the free phenolic fraction along with hydroxycinnamic acids such as p-coumaric acid derivatives, followed by caffeic and ferulic acid derivatives. The bound phenolic form had only hydroxycinnamic acids such as ferulic acid, p-coumaric acid, and a ferulic acid derivative with ferulic acid being the major phenolic compound (156.30 mg/100 g DW). These phenolic compounds were compatible with beneficial probiotic lactic acid bacteria such as L. helveticus and B. longum as these bacteria were not inhibited by the free and bound phenolic fractions at 10 to 50 mg/mL and 10 mg/mL of sample doses, respectively. However, the pathogenic H. pylori was also not inhibited by both purple corn phenolic forms at same above sample doses. This study provides the preliminary base for the characterization of phenolic compounds of Peruvian purple corn biodiversity and its potential health benefits relevant to improving human gut health. This study provides insights that Peruvian purple corn accession AREQ-084 can be targeted as a potential source of health-relevant phenolic compounds such as anthocyanins along with hydroxycinnamic acids linked to its dietary fiber fraction. Additionally, these phenolic fractions did not affect the gut health associated beneficial bacteria nor the pathogenic

  20. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    PubMed

    Surendran, Arthy; Siddiqui, Yasmeen; Saud, Halimi Mohd; Ali, Nusaibah Syd; Manickam, Sivakumar

    2018-05-22

    Lignolytic (Lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. In our work, ten naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G.boninense. Additionally, the lignin degrading enzymes were characterised. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin degrading enzymes, when compared between the ten phenolic compounds. The inhibitory potential of the phenolic compounds toward the lignin degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin degrading enzymes were stable in a wide range of pH but were sensitive to higher to temperature. The study demonstrated the inhibitor potential of ten naturally occurring phenolic compounds toward the lignin degrading enzymes of G. boninense with different efficacies. The study has shed a light towards a new management strategy to control BSR in oil palm. It serves as replacement for the existing chemical control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis

    PubMed Central

    Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao

    2013-01-01

    Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127

  2. Bioaccessibility and potential bioavailability of phenolic compounds from achenes as a new target for strawberry breeding programs.

    PubMed

    Ariza, María Teresa; Reboredo-Rodríguez, Patricia; Cervantes, Lucía; Soria, Carmen; Martínez-Ferri, Elsa; González-Barreiro, Carmen; Cancho-Grande, Beatriz; Battino, Maurizio; Simal-Gándara, Jesús

    2018-05-15

    Strawberry is a major natural source of bioactive compounds. Botanically, strawberry is an aggregate fruit consisting of a fleshy floral receptacle that bears a cluster of real dry fruits (achenes). Existing knowledge on the phenolic composition of achenes and its contribution to that of the whole fruit is limited. Also, the gastric and intestinal bioavailability of phenols is poorly known. In this work, a combination of spectrophotometric and HPLC-DAD methods was used to analyse the phenolic composition of whole fruits and achenes before and after in vitro digestion. Five different phenol families were identified. Also, achenes were found to contribute a sizeable fraction of phenolic acids and hydrolysable tannins in the whole fruit. Because the mere presence of phenolic compounds in a food matrix does not ensure their ready absorption and bioavailability, polyphenol potential bioavailability could be an effective selection criterion for strawberry breeding programs aimed at improving dietary healthiness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of predictive models for total phenolics and free p-coumaric acid contents in barley grain by near-infrared spectroscopy.

    PubMed

    Han, Zhigang; Cai, Shengguan; Zhang, Xuelei; Qian, Qiufeng; Huang, Yuqing; Dai, Fei; Zhang, Guoping

    2017-07-15

    Barley grains are rich in phenolic compounds, which are associated with reduced risk of chronic diseases. Development of barley cultivars with high phenolic acid content has become one of the main objectives in breeding programs. A rapid and accurate method for measuring phenolic compounds would be helpful for crop breeding. We developed predictive models for both total phenolics (TPC) and p-coumaric acid (PA), based on near-infrared spectroscopy (NIRS) analysis. Regressions of partial least squares (PLS) and least squares support vector machine (LS-SVM) were compared for improving the models, and Monte Carlo-Uninformative Variable Elimination (MC-UVE) was applied to select informative wavelengths. The optimal calibration models generated high coefficients of correlation (r pre ) and ratio performance deviation (RPD) for TPC and PA. These results indicated the models are suitable for rapid determination of phenolic compounds in barley grains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Phenolic content variability and its chromosome location in tritordeum

    PubMed Central

    Navas-Lopez, José F.; Ostos-Garrido, Francisco J.; Castillo, Almudena; Martín, Antonio; Gimenez, Maria J.; Pistón, Fernando

    2014-01-01

    For humans, wheat is the most important source of calories, but it is also a source of antioxidant compounds that are involved in the prevention of chronic disease. Among the antioxidant compounds, phenolic acids have great potential to improve human health. In this paper we evaluate the effect of environmental and genetic factors on the phenolics content in the grain of a collection of tritordeums with different cytoplasm and chromosome substitutions. To this purpose, tritordeum flour was used for extraction of the free, conjugates and bound phenolic compounds. These phenolic compounds were identified and quantified by RP-HPLC and the results were analyzed by univariate and multivariate methods. This is the first study that describes the composition of phenolic acids of the amphiploid tritordeum. As in wheat, the predominant phenolic compound is ferulic acid. In tritordeum there is great variability for the content of phenolic compounds and the main factor which determines its content is the genotype followed by the environment, in this case included in the year factor. Phenolic acid content is associated with the substitution of chromosome DS1D(1Hch) and DS2D(2Hch), and the translocation 1RS/1BL in tritordeum. The results show that there is high potential for further improving the quality and quantity of phenolics in tritordeum because this amphiploid shows high variability for the content of phenolic compounds. PMID:24523725

  5. Evaluating water deficit and glyphosate treatment on the accumulation of phenolic compounds and photosynthesis rate in transgenic Codonopsis lanceolata (Siebold & Zucc.) Trautv. over-expressing γ-tocopherol methyltransferase (γ-tmt) gene.

    PubMed

    Ghimire, Bimal Kumar; Son, Na-Young; Kim, Seung-Hyun; Yu, Chang Yeon; Chung, Ill-Min

    2017-07-01

    The effect of water stress and herbicide treatment on the phenolic compound concentration and photosynthesis rate in transgenic Codonopsis lanceolata plants over-expressing the γ-tmt gene was investigated and compared to that in control non-transgenic C. lanceolata plants. The total phenolic compound content was investigated using high-performance liquid chromatography combined with diode array detection in C. lanceolata seedlings 3 weeks after water stress and treatment with glyphosate. Changes in the composition of phenolic compounds were observed in leaf and root extracts from transformed C. lanceolata plants following water stress and treatment with glyphosate. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after water stress ranged from 3455.13 ± 40.48 to 8695.00 ± 45.44 µg g -1 dry weight (DW), whereas the total concentration phenolic compound in the leaf extracts of non-transgenic control samples was 5630.83 ± 45.91 µg g -1  DW. The predominant phenolic compounds that increased after the water stress in the transgenic leaf were (+) catechin, benzoic acid, chlorogenic acid, ferulic acid, gallic acid, rutin, vanillic acid, and veratric acid. The total concentration of phenolic compounds in the leaf extracts of transgenic samples after glyphosate treatment ranged from 4744.37 ± 81.81 to 12,051.02 ± 75.00 µg g -1 DW, whereas the total concentration of the leaf extracts of non-transgenic control samples after glyphosate treatment was 3778.28 ± 59.73 µg g -1 DW. Major phenolic compounds that increased in the transgenic C. lanceolata plants after glyphosate treatment included kaempherol, gallic acid, myricetin, p-hydroxybenzjoic acid, quercetin, salicylic acid, t-cinnamic acid, catechin, benzoicacid, ferulic acid, protocatechuic acid, veratric acid, and vanillic acid. Among these, vanillic acid showed the greatest increase in both leaf and root extracts from transgenic plants relative to

  6. Effect of steam explosion-assisted extraction on phenolic acid profiles and antioxidant properties of wheat bran.

    PubMed

    Liu, Liya; Zhao, Mengli; Liu, Xingxun; Zhong, Kui; Tong, Litao; Zhou, Xianrong; Zhou, Sumei

    2016-08-01

    The majority of phenolic acids in wheat bran are bound to the cell walls. Hence, a high proportion of phenolic acids cannot be extracted with conventional extraction methods. This study aimed to investigate the efficiency of steam explosion pre-treatment in increasing the extractability of phenolic compounds from wheat bran. Bound phenolic acids (BPA) can be released by steam explosion-assisted extraction. Within the experimental range, soluble free phenolic acids (FPA) and soluble conjugated phenolic acids (CPA) increased gradually with residence time and temperature. After steam explosion at 215 °C for 120 s, the total FPA and CPA reached 6671.8 and 2578.6 µg GAE g(-1) bran, respectively, which was about 39-fold and seven-fold higher than that of the untreated sample. Ferulic acid, the major individual phenolic acids in bran, increased from 55.7 to 586.3 µg g(-1) for FPA, and from 44.9 to 1108.4 µg g(-1) for CPA. The antioxidant properties of FPA and CPA extracts were significantly improved after treated. Correlation analysis indicated that the antioxidant capacity was in close relationship with phenolic content in FPA and CPA. Steam explosion pre-treatment could be effectively used to release of BPA and enhance the antioxidant capacity of wheat bran. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MS(n) and screening for their antioxidant activity.

    PubMed

    Spínola, Vítor; Pinto, Joana; Castilho, Paula C

    2015-04-15

    Five fruits species commonly cultivated and consumed in Madeira Island (Portugal) were investigated for their phenolic profile by means of reversed phase high-performance liquid chromatography coupled to diode array detection and electrospray ionisation mass spectrometry (HPLC-DAD-ESI/MS(n)) and antioxidant potential. A large number of compounds were characterised, flavonoids and phenolic acids being the major components found in target samples, 39 compounds (flavonoids, phenolic acids, terpenoids, cyanogenic glycosides and organic acids) were identified in cherimoyas, lemons, papayas, passion-fruits and strawberries for the first time. Furthermore, all samples were systematically analysed for their total phenolic and flavonoid contents along with two radical scavenging methods (ABTS and ORAC) for antioxidant activity measurement. Target fruits presented high phenolic contents which is responsible for most of the antioxidant activity against radical reactive species (R(2)>0.80). Quantitative data showed that anthocyanins, in particular pelargonidin-3-O-hexoside (>300 mg/100 mL), present only in strawberries were the compounds in largest amounts but are the ones which contribute less to the antioxidant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Phenolic composition and antioxidant potential of grain legume seeds: A review.

    PubMed

    Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder

    2017-11-01

    Legumes are a good source of bioactive phenolic compounds which play significant roles in many physiological as well as metabolic processes. Phenolic acids, flavonoids and condensed tannins are the primary phenolic compounds that are present in legume seeds. Majority of the phenolic compounds are present in the legume seed coats. The seed coat of legume seeds primarily contains phenolic acids and flavonoids (mainly catechins and procyanidins). Gallic and protocatechuic acids are common in kidney bean and mung bean. Catechins and procyanidins represent almost 70% of total phenolic compounds in lentils and cranberry beans (seed coat). The antioxidant activity of phenolic compounds is in direct relation with their chemical structures such as number as well as position of the hydroxyl groups. Processing mostly leads to the reduction of phenolic compounds in legumes owing to chemical rearrangements. Phenolic content also decreases due to leaching of water-soluble phenolic compounds into the cooking water. The health benefits of phenolic compounds include acting as anticarcinogenic, anti-thrombotic, anti-ulcer, anti-artherogenic, anti-allergenic, anti-inflammatory, antioxidant, immunemodulating, anti-microbial, cardioprotective and analgesic agents. This review provides comprehensive information of phenolic compounds identified in grain legume seeds along with discussing their antioxidant and health promoting activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.

    PubMed

    Zeng, Xiaofei; Borole, Abhijeet P; Pavlostathis, Spyros G

    2015-11-17

    Furanic and phenolic compounds are problematic byproducts resulting from the breakdown of lignocellulosic biomass during biofuel production. The capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the substrate in the bioanode was assessed. The rate and extent of biotransformation of the five compounds and efficiency of H2 production, as well as the structure of the anode microbial community, were investigated. The five compounds were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode Coulombic efficiency was 44-69%, which is comparable to that of wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The biotransformation of the five compounds took place via fermentation followed by exoelectrogenesis. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The MEC H2 production demonstrated in this study is an alternative to the currently used process of reforming natural gas to supply H2 needed to upgrade bio-oils to stable

  10. Characterisation of phenolic compounds by HPLC-TOF/IT/MS in buds and open flowers of 'Chemlali' olive cultivar.

    PubMed

    Taamalli, Amani; Abaza, Leila; Arráez Román, David; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto; Zarrouk, Mokhtar; Nabil, Ben Youssef

    2013-01-01

    Plant phenolics are secondary metabolites that constitute one of the most widely occurring groups of phytochemicals that play several important functions in plants. In olive (Olea europaea L), there is not enough information about the occurrence of these compounds in buds and flowers. To conduct a comprehensive characterisation of buds and open flowers from the olive cultivar 'Chemlali'. The polar fraction of buds and open flowers was extracted using solid-liquid extraction with hydro-alcoholic solvent. Then extracts were analysed using high performance liquid chromatography (HPLC) coupled to electrospray ionisation time-of-flight mass spectrometry (ESI/TOF/MS) and electrospray ionisation ion-trap tandem mass spectrometry (ESI/IT/MS²) operating in negative ion mode. Phenolic compounds from different classes including secoiridoids, flavonoids, simple phenols, cinnamic acid derivatives and lignans were tentatively identified in both extracts. Qualitatively, no significant difference was observed between flower buds and open flowers extracts. However, quantitatively the secoiridoids presented higher percentage of total phenols in open flowers (41.7%) than in flower buds (30.5%) in contrast to flavonoids, which decreased slightly from 38.1 to 26.7%. Cinnamic acid derivatives and simple phenols did not show any change. Lignans presented the lowest percentage in both extracts with an increase during the development of the flower bud to open flower. The HPLC-TOF/IT/MS allowed the characterisation, for the first time, of the phenolic profile of extracts of 'Chemlali' olive buds and open flowers, proving to be a very useful technique for the characterisation and structure elucidation of phenolic compounds. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Omega-3 fatty acids, phenolic compounds and antioxidant characteristics of chia oil supplemented margarine.

    PubMed

    Nadeem, Muhammad; Imran, Muhammad; Taj, Imran; Ajmal, Muhammad; Junaid, Muhammad

    2017-05-31

    Chia (Salvia hispanica L.) is known as power house of omega fatty acids which has great health benefits. It contains up to 78% linolenic acid (ω-3) and 18% linoleic acid (ω-6), which could be a great source of omega-3 fatty acids for functional foods. Therefore, in this study, margarines were prepared with supplementation of different concentrations of chia oil to enhance omega-3 fatty acids, antioxidant characteristics and oxidative stability of the product. Margarines were formulated from non-hydrogenated palm oil, palm kernel and butter. Margarines were supplemented with 5, 10, 15 and 20% chia oil (T 1 , T 2 , T 3 and T 4 ), respectively. Margarine without any addition of chia oil was kept as control. Margarine samples were stored at 5 °C for a period of 90 days. Physico-chemical (fat, moisture, refractive index, melting point, solid fat index, fatty acids profile, total phenolic contents, DPPH free radical scavenging activity, free fatty acids and peroxide value) and sensory characteristics were studied at the interval of 45 days. The melting point of T 1 , T 2 , T 3 and T 4 developed in current investigation were 34.2, 33.8, 33.1 and 32.5 °C, respectively. The solid fat index of control, T 1 , T 2 , T 3 and T 4 were 47.21, 22.71, 20.33, 18.12 and 16.58%, respectively. The α-linolenic acid contents in T 1 , T 2 , T 3 and T 4 were found 2.92, 5.85, 9.22, 12.29%, respectively. The concentration of eicosanoic acid in T 2 , T 3 and T 4 was 1.82, 3.52, 6.43 and 9.81%, respectively. The content of docosahexanoic acid in T 2 , T 3 and T 4 was present 1.26, 2.64, 3.49 and 5.19%, respectively. The omega-3 fatty acids were not detected in the control sample. Total phenolic contents of control, T 1 , T 2 , T 3 and T 4 samples were 0.27, 2.22, 4.15, 7.23 and 11.42 mg GAE/mL, respectively. DPPH free radical scavenging activity for control, T 1 , T 2 , T 3 and T 4 was noted 65.8, 5.37, 17.82, 24.95, 45.42 and 62.8%, respectively. Chlorogenic acid, caffeic acid

  12. Analysis of hydrolyzable tannins and other phenolic compounds in emblic leafflower (Phyllanthus emblica L.) fruits by high performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Yang, Baoru; Kortesniemi, Maaria; Liu, Pengzhan; Karonen, Maarit; Salminen, Juha-Pekka

    2012-09-05

    Phenolic compounds were extracted from dried emblic leafflower (Phyllanthus emblica L.) fruits with methanol and separated by Sephadex LH-20 column chromatography. The raw extracts and fractions were analyzed with HPLC coupled with diode array UV spectroscopy, electrospray ionization mass spectrometry, and tandem mass spectrometry. Mucic acid gallate, mucic acid lactone gallate, monogalloylglucose, gallic acid, digalloylglucose, putranjivain A, galloyl-HHDP-glucose, elaeocarpusin, and chebulagic acid were suggested to be the most abundant compounds in the crude methanol extracts of the fruits. In addition, 144 peaks were detected, of which 67 were tentatively identified mostly as ellagitannins, flavonoids, and simple gallic acid derivatives in the fractions. The results indicated the presence of neochebulagic acid, isomers of neochebuloyl galloylglucose, chebuloyl neochebuloyl galloylglucose, ellagic acid glycosides, quercetin glycosides, and eriodictyol coumaroyl glycosides in the fruits. The study provides a systematic report of the retention data and characteristics of UV, MS, and MS/MS spectra of the phenolic compounds in the fruits of emblic leafflower. The fruits of two varieties (Ping Dan No 1 and Fruity) from Guangxi Province differed from those of wild Tian Chuan emblic leafflower from Fujian Province in the content and profile of phenolic compounds.

  13. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes.

    PubMed

    Lin, Derong; Xiao, Mengshi; Zhao, Jingjing; Li, Zhuohao; Xing, Baoshan; Li, Xindan; Kong, Maozhu; Li, Liangyu; Zhang, Qing; Liu, Yaowen; Chen, Hong; Qin, Wen; Wu, Hejun; Chen, Saiyan

    2016-10-15

    In this paper, the biosynthesis process of phenolic compounds in plants is summarized, which include the shikimate, pentose phosphate and phenylpropanoid pathways. Plant phenolic compounds can act as antioxidants, structural polymers (lignin), attractants (flavonoids and carotenoids), UV screens (flavonoids), signal compounds (salicylic acid, flavonoids) and defense response chemicals (tannins, phytoalexins). From a human physiological standpoint, phenolic compounds are vital in defense responses, such as anti-aging, anti-inflammatory, antioxidant and anti-proliferative activities. Therefore, it is beneficial to eat such plant foods that have a high antioxidant compound content, which will cut down the incidence of certain chronic diseases, for instance diabetes, cancers and cardiovascular diseases, through the management of oxidative stress. Furthermore, berries and other fruits with low-amylase and high-glucosidase inhibitory activities could be thought of as candidate food items in the control of the early stages of hyperglycemia associated with type 2 diabetes.

  14. In vitro anti-platelet effects of simple plant-derived phenolic compounds are only found at high, non-physiological concentrations.

    PubMed

    Ostertag, Luisa M; O'Kennedy, Niamh; Horgan, Graham W; Kroon, Paul A; Duthie, Garry G; de Roos, Baukje

    2011-11-01

    Bioactive polyphenols from fruits, vegetables, and beverages have anti-platelet effects and may thus affect the development of cardiovascular disease. We screened the effects of 26 low molecular weight phenolic compounds on two in vitro measures of human platelet function. After platelets had been incubated with one of 26 low molecular weight phenolic compounds in vitro, collagen-induced human platelet aggregation and in vitro TRAP-induced P-selectin expression (as marker of platelet activation) were assessed. Incubation of platelet-rich plasma from healthy volunteers with 100 μmol/L hippuric acid, pyrogallol, catechol, or resorcinol significantly inhibited collagen-induced platelet aggregation (all p<0.05; n≥15). Incubation of whole blood with concentrations of 100 μmol/L salicylic acid, p-coumaric acid, caffeic acid, ferulic acid, 4-hydroxyphenylpropionyl glycine, 5-methoxysalicylic acid, and catechol significantly inhibited TRAP-induced surface P-selectin expression (all p<0.05; n=10). Incubation with lower concentrations of phenolics affected neither platelet aggregation nor activation. As concentrations of 100 μmol/L are unlikely to be reached in the circulation, it is doubtful whether consumption of dietary phenolics in nutritionally attainable amounts plays a major role in inhibition of platelet activation and aggregation in humans. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spectroscopic analysis of phenolic compounds for food and feed formulations

    USDA-ARS?s Scientific Manuscript database

    Phenolic compounds exhibit several bioactive properties including anti-oxidant, anti-microbial, and anti-fungal characteristics with potential applications as additives in functional food and feed formulations. Phenolic compounds occur in plants as secondary metabolites and may be recovered as a co-...

  16. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids.

    PubMed

    Kaushik, Prashant; Andújar, Isabel; Vilanova, Santiago; Plazas, Mariola; Gramazio, Pietro; Herraiz, Francisco Javier; Brar, Navjot Singh; Prohens, Jaime

    2015-10-09

    Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids.

  17. Anti-inflammatory effects of the roots of Alpinia pricei Hayata and its phenolic compounds.

    PubMed

    Yu, Yu-Shan; Hsu, Chin-Lin; Yen, Gow-Chin

    2009-09-09

    Alpinia pricei Hayata is cultivated throughout Asia and is an endemic plant in Taiwan. The leaf and root of this plant are used for traditional wrapping of food and as a cooking substitute for fresh ginger. The aim of this work was to study the in vitro anti-inflammatory effects of ethanol extracts from A. pricei Hayata (EEAP) and its phenolic compounds. High-performance liquid chromatography (HPLC) profiling indicated that EEAP contained caffeic acid, chlorogenic acid, ferulic acid, p-hydroxybenzoic acid, rutin, apigenin, curcumin and pinocembrin. EEAP and its phenolic compounds, apigenin, curcumin, and pinocembrin, inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production in RAW 264.7 cells. Furthermore, EEAP, apigenin, curcumin, and pinocembrin decreased LPS-mediated induction of protein and mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in RAW 264.7 cells. In addition, EEAP and its major active compound pinocembrin inhibited LPS-induced nuclear translocation of nuclear factor-kappaB (NF-kappaB) and NF-kappaB-mediated reporter gene expression. EEAP and pinocembrin also significantly inhibited LPS-induced intracellular reactive oxygen species (ROS) production in RAW 264.7 cells. When these results are taken together, they indicate that EEAP and pinocembrin suppressed LPS-induced NO and PGE(2) production by inhibition of NF-kappaB nuclear translocation and ROS generation.

  18. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage.

    PubMed

    Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Ramírez-de León, José A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2015-04-01

    Plant infusions are consumed due to their beneficial effects on health, which is attributed to their bioactive compounds content. However, these compounds are susceptible to degradation during processing and storage. The objective of this research was to evaluate the effect of stevia and citric acid on the stability of phenolic compounds, antioxidant capacity and carbohydrate-hydrolysing enzyme inhibitory activity of roselle beverages during storage. The optimum extraction conditions of roselle polyphenolic compounds was of 95 °C/60 min, which was obtained by a second order experimental design. The incorporation of stevia increased the stability of colour and some polyphenols, such as quercetin, gallic acid and rosmarinic acid, during storage. In addition, stevia decreased the loss of ABTS, DPPH scavenging activity and α-amylase inhibitory capacity, whereas the incorporation of citric acid showed no effect. These results may contribute to the improvement of technological processes for the elaboration of hypocaloric and functional beverages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Plant phenolic compounds and oxidative stress: integrated signals in fungal-plant interactions.

    PubMed

    Shalaby, Samer; Horwitz, Benjamin A

    2015-08-01

    Upon invasion of a host, fungal pathogens are exposed to a variety of stresses. Plants release reactive oxygen species, and mount a variety of preformed and induced chemical defenses. Phenolic compounds are one example: they are ubiquitous in plants, and an invading pathogen encounters them already at the leaf surface, or for soil-borne pathogens, in the rhizosphere. Phenolic and related aromatic compounds show varying degrees of toxicity to cells. Some compounds are quite readily metabolized, and others less so. It was known already from classical studies that phenolic substrates induce the expression of the enzymes for their degradation. Recently, the ability to degrade phenolics was shown to be a virulence factor. Conversely, phenolic compounds can increase the effectiveness of antifungals. Phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here, we review the evidence for a connection between the fungal response to phenolics as small-molecule signals, and the response to oxidants. The connections proposed here should enable genetic screens to identify specific fungal receptors for plant phenolics. Furthermore, understanding how the pathogen detects plant phenolic compounds as a stress signal may facilitate new antifungal strategies.

  20. Composition and health effects of phenolic compounds in hawthorn (Crataegus spp.) of different origins.

    PubMed

    Yang, Baoru; Liu, Pengzhan

    2012-06-01

    Epicatechin, aglycons and glycosides of B-type oligomeric procyanidins and flavonols, phenolic acids and C-glycosyl flavones are the major groups of phenolic compounds in hawthorn (Crataegus spp). The total content of phenolic compounds is higher in the leaves and flowers than in the fruits. Procyanidins dominate in the fruits, whereas flavonol glycosides and C-glycosyl flavones are most abundant in the leaves. Genotype and developmental/ripening stage have strong impacts. Procyanidin glycosides and C-glycosyl flavones may be chemotaxonomic markers differentiating species and varieties of hawthorn. Future research shall improve the separation, identification and quantification of procyanidins with degree of polymerisation (DP) ≥ 6, procyanidin glycosides, C-glycosyl flavones and some flavonol glycosides. In vitro and animal studies have shown cardioprotective, hypolipidaemic, hypotensive, antioxidant, radical-scavenging and anti-inflammatory potentials of hawthorn extracts, suggesting different phenolic compounds as the major bioactive components. However, the varying and insufficiently defined composition of the extracts investigated, as a result of different raw materials and extraction methods, makes comparison of the studies very difficult. Clinical evidence indicates that some hawthorn extracts may increase the exercise tolerance of patients with congestive heart failure. More clinical studies are needed to establish the effects of hawthorn, especially in healthy humans. Copyright © 2012 Society of Chemical Industry.

  1. Effect of cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets grown in vitro.

    PubMed

    Manquián-Cerda, K; Escudey, M; Zúñiga, G; Arancibia-Miranda, N; Molina, M; Cruces, E

    2016-11-01

    Cadmium (Cd(2+)) can affect plant growth due to its mobility and toxicity. We evaluated the effects of Cd(2+) on the production of phenolic compounds and antioxidant response of Vaccinium corymbosum L. Plantlets were exposed to Cd(2+) at 50 and 100µM for 7, 14 and 21 days. Accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the antioxidant enzyme SOD was determined. The profile of phenolic compounds was evaluated using LC-MS. The antioxidant activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the ferric reducing antioxidant power test (FRAP). Cd(2+) increased the content of MDA, with the highest increase at 14 days. The presence of Cd(2+) resulted in changes in phenolic compounds. The main phenolic compound found in blueberry plantlets was chlorogenic acid, whose abundance increased with the addition of Cd(2+) to the medium. The changes in the composition of phenolic compounds showed a positive correlation with the antioxidant activity measured using FRAP. Our results suggest that blueberry plantlets produced phenolic compounds with reducing capacity as a selective mechanism triggered by the highest activity of Cd(2+). Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Wild Roman chamomile extracts and phenolic compounds: enzymatic assays and molecular modelling studies with VEGFR-2 tyrosine kinase.

    PubMed

    Guimarães, Rafaela; Calhelha, Ricardo C; Froufe, Hugo J C; Abreu, Rui M V; Carvalho, Ana Maria; Queiroz, Maria João R P; Ferreira, Isabel C F R

    2016-01-01

    Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.

  3. Use of image analysis to estimate anthocyanin and UV-excited fluorescent phenolic compound levels in strawberry fruit

    PubMed Central

    Yoshioka, Yosuke; Nakayama, Masayoshi; Noguchi, Yuji; Horie, Hideki

    2013-01-01

    Strawberry is rich in anthocyanins, which are responsible for the red color, and contains several colorless phenolic compounds. Among the colorless phenolic compounds, some, such as hydroxycinammic acid derivatives, emit blue-green fluorescence when excited with ultraviolet (UV) light. Here, we investigated the effectiveness of image analyses for estimating the levels of anthocyanins and UV-excited fluorescent phenolic compounds in fruit. The fruit skin and cut surface of 12 cultivars were photographed under visible and UV light conditions; colors were evaluated based on the color components of images. The levels of anthocyanins and UV-excited fluorescent compounds in each fruit were also evaluated by spectrophotometric and high performance liquid chromatography (HPLC) analyses, respectively and relationships between these levels and the image data were investigated. Red depth of the fruits differed greatly among the cultivars and anthocyanin content was well estimated based on the color values of the cut surface images. Strong UV-excited fluorescence was observed on the cut surfaces of several cultivars, and the grayscale values of the UV-excited fluorescence images were markedly correlated with the levels of those fluorescent compounds as evaluated by HPLC analysis. These results indicate that image analyses can select promising genotypes rich in anthocyanins and fluorescent phenolic compounds. PMID:23853516

  4. Characterization of Phenolic Compounds in Wine Lees

    PubMed Central

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A.

    2018-01-01

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant (p < 0.05) impact on total phenol and tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50–62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α,α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications. PMID:29587406

  5. Characterization of Phenolic Compounds in Wine Lees.

    PubMed

    Zhijing, Ye; Shavandi, Amin; Harrison, Roland; Bekhit, Alaa El-Din A

    2018-03-25

    The effect of vinification techniques on phenolic compounds and antioxidant activity of wine lees are poorly understood. The present study investigated the antioxidant activity of white and red wine lees generated at early fermentation and during aging. In this study, the total phenol content (TPC), total tannin content (TTC), mean degree of polymerization (mDP), and antioxidant activities of five white and eight red wine lees samples from different vinification backgrounds were determined. The results showed that vinification techniques had a significant ( p < 0.05) impact on total phenol and tannin content of the samples. White wine lees had high mDP content compared with red ones. Catechin (50-62%) and epicatechin contents were the predominant terminal units of polymeric proanthocyanidin extracted from examined samples. Epigallocatechin was the predominant extension unit of white wine lees, whereas epicatechin was the predominant compound in red wine marc. The ORAC (oxygen radical absorbance capacity) assay was strongly correlated with the DPPH (α, α-diphenyl-β-picrylhydrazyl) assay, and the results showed the strong antioxidant activities associated with red wine lees (PN > 35 mg Trolox/g FDM) (PN: Pinot noir lees; FDM: Freeze-dried Material). This study indicates that tannin is one of the major phenolic compounds available in wine lees that can be useful in human and animal health applications.

  6. Pecan walnut (Carya illinoinensis (Wangenh.) K. Koch) oil quality and phenolic compounds as affected by microwave and conventional roasting.

    PubMed

    Juhaimi, Fahad Al; Özcan, Mehmet Musa; Uslu, Nurhan; Doğu, Süleyman

    2017-12-01

    In this study, the effects of conventional and microwave roasting on phenolic compounds, free acidity, peroxide value, fatty acid composition and tocopherol content of pecan walnut kernel and oil was investigated. The oil content of pecan kernels was 73.78% for microwave oven roasted at 720 W and 73.56% for conventional oven roasted at 110 °C. The highest free fatty acid content (0.50%) and the lowest peroxide value (2.48 meq O 2 /kg) were observed during microwave roasting at 720 W. The fatty acid profiles and tocopherol contents of pecan kernel oils did not show significant differences compared to raw samples. Roasting process in microwave oven at 720 W caused the reduction of some phenolic compounds, while the content of gallic acid exhibited a significant increase.

  7. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review

    PubMed Central

    Teodoro, Guilherme R.; Ellepola, Kassapa; Seneviratne, Chaminda J.; Koga-Ito, Cristiane Y.

    2015-01-01

    There has been a sharp rise in the occurrence of Candida infections and associated mortality over the last few years, due to the growing body of immunocompromised population. Limited number of currently available antifungal agents, undesirable side effects and toxicity, as well as emergence of resistant strains pose a considerable clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from natural sources exhibiting considerable antifungal properties are a promising source for the development of novel anti-candidal therapy. Phenolic compounds isolated from natural sources possess antifungal properties of interest. Particularly, phenolic acids have shown promising in vitro and in vivo activity against Candida species. However, studies on their mechanism of action alone or in synergism with known antifungals are still scarce. This review attempts to discuss the potential use, proposed mechanisms of action and limitations of the phenolic acids in anti-candidal therapy. PMID:26733965

  8. In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading

    Treesearch

    Junfeng Feng; Zhongzhi Yang; Chung-yun Hse; Qiuli Su; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The renewable phenolic compounds produced by directional liquefaction of biomass are a mixture of complete fragments decomposed from native lignin. These compounds are unstable and difficult to use directly as biofuel. Here, we report an efficient in situ catalytic hydrogenation method that can convert phenolic compounds into saturated cyclohexanes. The process has...

  9. The influence of beverage composition on delivery of phenolic compounds from coffee and tea.

    PubMed

    Ferruzzi, Mario G

    2010-04-26

    Epidemiological data suggest that consumption of coffee and tea is associated with a reduced risk of several chronic and degenerative diseases including cardiovascular disorders, diabetes, obesity and neurodegenerative disorders. Both coffee and tea are a rich source of phenolic compounds including chlorogenic acids in coffee; and flavan-3-ols as well as complex theaflavins and thearubigens in tea. Coffee and tea are two of the most commonly consumed beverages in the world and thus represent a significant opportunity to positively affect disease risk and outcomes globally. Central to this opportunity is a need to better understand factors that may affect the bioavailability of specific phenolic components from coffee and tea based beverages. An overview of the phenolic composition of coffee and tea is discussed in the context of how processing and composition might influence phenolic profiles and bioavailability of individual phenolic components. Specifically, the impact of beverage formulation, the extent and type of processing and the influence of digestion on stability, bioavailability and metabolism of bioactive phenolics from tea and coffee are discussed. The impact of co-formulation with ascorbic acid and other phytochemicals are discussed as strategies to improve absorption of these health promoting phytochemicals. A better understanding of how the beverage composition impacts phenolic profiles and their bioavailability is critical to development of beverage products designed to deliver specific health benefits. Copyright 2010 Elsevier Inc. All rights reserved.

  10. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves.

    PubMed

    Nour, Violeta; Trandafir, Ion; Cosmulescu, Sina

    2013-10-01

    A high-performance liquid chromatographic method with gradient elution and diode-array detection was developed to quantify free phenolic acids (gallic, vanillic, chlorogenic, caffeic, syringic, p-coumaric, ferulic, sinapic, salycilic, elagic and trans-cinnamic), flavonoids (catechin, epicatechin, rutin, myricetin and quercetin) and juglone in walnut leaves. Chromatographic separation was performed on a Hypersil Gold C18 column (5 µm particle size, 250 × 4.6 mm) and detection was conducted at three different wavelengths (254, 278 and 300 nm) according to the absorption maxima of the analyzed compounds. Validation procedures were conducted and the method was proven to be precise, accurate and sensitive. The developed method has been applied to analyze walnut leaves samples from nine different cultivars, with the same agricultural, geographical and climatic conditions. The experimental results revealed high concentrations of myricetin, catechin hydrate and rutin, and low concentrations of quercetin and epicatechin aglycones. Ellagic acid was established as the dominating phenolic acid of walnut leaves, followed by trans-cinnamic, chlorogenic and caffeic acids. Juglone content varied between 44.55 and 205.12 mg/100 g fresh weight. Significant differences were detected among cultivars for the concentration levels of phenolics.

  11. Oxidative stability, phenolic compounds and antioxidant potential of a virgin olive oil enriched with natural bioactive compounds.

    PubMed

    Delgado-Adámez, Jonathan; Baltasar, M Nieves Franco; Yuste, María Concepción Ayuso; Martín-Vertedor, Daniel

    2014-01-01

    The aim of this research was to evaluate strategies for the development of a virgin olive oil (VOO) enriched with aqueous extracts of olive leaf and cake to increase the necessary dose in the diet of phenolic compounds with a natural product, as phenolic compounds are involved on the healthy properties of olive oil. Different extraction procedures were evaluated with the aim of increasing the phenol content and antioxidant potential of extracts of olive leaf and cake. As leaves extract presented a higher total phenolic content, it was characterized in order to determine its phenolic profile, and was employed to enrich VOO. Diverse procedures were used to prepare enriched VOO with the leaves extract, and finally the effects of phenol enrichment were evaluated based on the antioxidant potential and oxidative stability of the prepared phenol-enriched virgin olive oils. These enriched VOOs increased significantly the content in phenolic compounds, antioxidant potential and oxidative stability 40, 4 and 1.5 fold more, respectively, than the Control oil. Furthermore, the addition of lecithin had a positive effect both on the phenolic compounds content, and on the antioxidant potential of the oils. Besides, the use of the olive leaves extract, with and without lecithin respectively, supposes a strategy potential for reducing the harmful effects that inflicts long-term preservation of VOOs and its possible deterioration.

  12. A simple and rapid electrophoretic method to characterize simple phenols, lignans, complex phenols, phenolic acids, and flavonoids in extra-virgin olive oil.

    PubMed

    Carrasco-Pancorbo, Alegria; Gómez-Caravaca, Ana Maria; Cerretani, Lorenzo; Bendini, Alessandra; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2006-09-01

    We have devised a simple and rapid capillary electrophoretic method which provides the analyst with a useful tool for the characterization of the polyphenolic fraction of extra-virgin olive oil. This method that uses a capillary with 50 microm id and a total length of 47 cm (40 cm to the detector) with a detection window of 100 x 200 microm, and a buffer solution containing 45 mM of sodium tetraborate pH 9.3 offers valuable information about all the families of compounds present in the polar fraction of the olive oil. The detection was carried out by UV absorption at 200, 240, 280, and 330 nm in order to facilitate the identification of the compounds. Concretely, the method permits the identification of simple phenols, lignans, complex phenols (isomeric forms of secoiridoids), phenolic acids, and flavonoids in the SPE-Diol extracts from extra-virgin olive oil in a short time (less than 10 min) and provides a satisfactory resolution. Peak identification was done by comparing both migration time and spectral data obtained from olive oil samples and standards (commercial or isolated (by HPLC-MS) standards), with spiked methanol-water extracts of olive oil with HPLC-collected compounds and commercially available standards at several concentration levels, studying the information of the electropherograms obtained at several wavelengths and also using the information previously reported.

  13. Combining bar adsorptive microextraction with capillary electrophoresis--application for the determination of phenolic acids in food matrices.

    PubMed

    da Rosa Neng, Nuno; Sequeiros, Rute C P; Florêncio Nogueira, José Manuel

    2014-09-01

    In this contribution, bar adsorptive microextraction coated with a mixed-mode anion exchange/RP followed by liquid desorption was combined for the first time with a capillary electrophoresis-diode array detection system (BAμE(MAX)-LD/CE-DAD), for the determination of phenolic acids in food matrices, using chlorogenic, ferulic, cumaric, and caffeic acids as model compounds. Assays performed in aqueous media spiked at the 0.8 mg/L level yielded average recoveries up to 40% for all four phenolic acids, under optimized experimental conditions. The analytical performance showed also good precision (RSD < 15%), convenient LODs (18.0-85.0 μg/L) and linear dynamic ranges (0.8-8.0 mg/L) with convenient determination coefficients (r(2) > 0.9900). By using the standard addition method, the application to food matrices such as green tea, red fruit juice, and honey allowed very good performances for the determination of minor amounts of phenolic acids. The proposed methodology proved to be a suitable alternative for the analysis of polar to ionic compounds, showing to be easy to implement, reliable, sensitive, and requiring a low sample volume to determine phenolic acids in food samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China.

    PubMed

    Zhong, Wenjue; Wang, Donghong; Wang, Zijian

    2018-04-01

    Phenolic compounds widely exist in the surface water of many countries; however, few studies have simultaneously analyzed and evaluated broad-spectrum phenolic compounds in various components of the water environment. Therefore this study analyzed the distribution and potential ecological risk of 50 phenolic compounds in the surface water, sediment and suspended particulate matter of three important rivers in Tianjin, the main heavy industry city with high pollution in China. The qualitative results show that phenolic pollution existed extensively in the three rivers and the kinds of phenolic compounds in the water were relatively higher than in both sediment and suspended particulate matter. The quantitative results show that the phenolic pollution in the wet-season samples was serious than dry-season samples. Meanwhile, total concentrations of phenolic compounds in three components from the Dagu Drainage River (DDR) were all much higher than those in the Beitang Drainage River (BDR) and Yongdingxin River (YDXR). The highest total concentrations of phenolic compounds in three components all appeared in wet-season samples in DDR, and the highest total concentration was 1354 μg/L in surface water, 719 μg/kg dw in suspended particulate matter and 2937 μg/kg dw in sediment, respectively. The ecological risk of phenolic compounds in surface water was evaluated using the quotient method, and phenolic compounds with risk quotient (RQ) > 1 (RQ > 0.3 for YDXR) were identified as priority pollutants. Five kinds of phenolic compounds were identified as priority phenolic compounds in BDR, and the order of risk was 2-cresol > 2,4-xylenol > 2-sec-butylphenol > 2-naphthol > 3-cresol. Six kinds of phenolic compounds were identified as priority phenolic compounds in DDR, and the order of risk was 2-naphthol > p-chloro-m-xylenol > 4-cresol > 3-cresol > 2,4-xylenol > 2,3,6-Trimethylphenol. In YDXR, only phenol, 2-naphthol and 2,4-xylenol were identified as

  15. Naked eye screening of 11 phenolic compounds and colorimetric determination using polydiacetylene vesicles with α-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Anekthirakun, Pimpimon; Sukwattanasinitt, Mongkol; Tuntulani, Thawatchai; Imyim, Apichat

    2013-07-01

    The colorimetric response (CR) of poly(10,12-pentacosadiynoic acid) vesicles (PPCDA) induced by α-cyclodextrin (α-CD) in an aqueous solution has been studied. Various parameters affecting the CR, such as response time and concentration were investigated. The blue color of 0.01 mM PPCDA solution became pinkish red with the addition of α-CD at the concentration higher than 3 mM. The inhibition of the color transition from blue to red was investigated using 11 phenolic compounds. The color transition could be inhibited and observed by naked eye in the presence of 4 phenolic compounds, i.e. 4-nitrophenol (4-NP) and 4-bromophenol (4-BP) and 4-chlorophenol (4-CP) and 3-nitrophenol (3-NP). A colorimetric method for the determination of these compounds was validated and applied for surface water analysis. The linear range from the plot of CR against phenolic compounds concentration was in the order of 0.5-2.0 mM with R2 more than 0.99. The recoveries were 90-95% with good precision (1-4%RSD, n = 10).

  16. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development

    PubMed Central

    2012-01-01

    Background Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data

  17. Compositional differences of phenolic compounds between black currant (Ribes nigrum L.) cultivars and their response to latitude and weather conditions.

    PubMed

    Zheng, Jie; Yang, Baoru; Ruusunen, Ville; Laaksonen, Oskar; Tahvonen, Risto; Hellsten, Jorma; Kallio, Heikki

    2012-07-04

    Phenolic compounds in black currants of three Finnish cultivars and their response to growth latitude and weather conditions were analyzed over a six-year period. 'Melalahti' had lower contents of total phenolic compounds (31.4% and 29.2% lower than 'Mortti' and 'Ola', respectively), total anthocyanins (32.6% and 30.5%), and total hydroxycinnamic acid derivatives (23.1% and 23.8%) (p < 0.05) and was less affected by growth latitude and weather conditions than 'Mortti' and 'Ola'. However, all the cultivars grown at higher latitude (66°34' N) had lower contents of total flavonols, total anthocyanins, and total phenolic compounds than those grown at lower latitude (60°23' N) (p < 0.05). The content of total hydroxycinnamic acid conjugates did not vary in 'Melalahti' (p > 0.05) but increased as the latitude increased in 'Mortti' and 'Ola' (p < 0.05). Temperature and radiation were the major weather variables influencing the composition of phenolic compounds. Delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, and myricetin-3-O-glucoside content showed positive correlations with temperature and radiation in all three cultivars. The study gives important guidelines for the selection of raw materials and growth sites as well as for the berry cultivation for commercial exploitation of black currant berries.

  18. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal.

    PubMed

    Barros, Lillian; Dueñas, Montserrat; Carvalho, Ana Maria; Ferreira, Isabel C F R; Santos-Buelga, Celestino

    2012-05-01

    Crataegus monogyna, Cytisus multiflorus, Malva sylvestris and Sambucus nigra have been used as important medicinal plants in the Iberian Peninsula since a long time ago, and are claimed to have various health benefits. This study aimed to determine the phenolic profile and composition of wild medicinal flowers of those species. The analysis was performed by HPLC-DAD-ESI/MS. Flavonoids, and particularly flavonols and flavones, were the main groups in almost all the studied samples. C. multiflorus sample gave the highest levels of total flavonoids (54.5 mg/gdw), being a chrysin derivative the most abundant flavone found (22.3 mg/gdw). C. monogyna revealed the highest concentration in phenolic acids (5.5 mg/gdw) that were not found in C. multiflorus sample; 5-O-caffeoylquinic acid was the most abundant phenolic acid found in the first species, being a procyanidin trimer also found (1.4 mg/gdw). Kaempferol-3-O-rutinoside (0.84 mg/gdw) and quercetin-3-O-rutinoside (14.9 mg/gdw) were the main flavonols present in M. sylvestris and S. nigra, respectively. Due to the well established antioxidant activity of phenolic compounds, the studied wild medicinal flowers could be selected for processing extracts with health-promoting properties or to be incorporate into functional beverages or products with bioactive properties related to oxidative stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Foliar phenolic compounds of ten wild species of Verbenacea as antioxidants and specific chemomarkers.

    PubMed

    Ávila-Reyes, J A; Almaraz-Abarca, N; Chaidez-Ayala, A I; Ramírez-Noya, D; Delgado-Alvarado, E A; Torres-Ricario, R; Naranjo-Jiménez, N; Alanís-Bañuelos, R E

    2018-02-01

    The family Verbenaceae hosts important species used in traditional medicine of many countries. The taxonomic controversies concerning the specific delimitation of several of its species make it difficult to guarantee the botanical origin of herbal preparations based on species of this family. To contribute to the development of both specific chemomarkers and a quality control tool to authenticate the botanical origin of herbal preparations of Verbenacea species, we determined the foliar HPLC-DAD phenolic profiles and the antioxidant properties of 10 wild species of this family occurring in Mexico. The contents of phenols and flavonoids varied significantly among species. Priva mexicana showed the highest levels of total phenolics (53.4 mg g-1 dry tissue) and Verbena carolina had the highest levels of flavonoids (17.89 mg g-1 dry tissue). Relevant antioxidant properties revealed by antiradical and reducing power were found for the analyzed species. These properties varied significantly in a species-dependent manner. The phenolic compounds accumulated were flavones and phenolic acids. Flavones were the only type of flavonoids found. The results of a cluster analysis showed that the compounds were accumulated in species-specific profiles. The phenolic profiles are proposed as valuable chemomarkers that can become a useful tool for the quality control concerning the botanical origin of herbal medicinal preparations based on the species analyzed. In addition, phenolic profiles could contribute importantly to solve the taxonomic controversies concerning species delimitation in the family Verbenaceae.

  20. Phenolic acids in the flowers of Althaea rosea var. nigra.

    PubMed

    Dudek, Marlena; Matławska, Irena; Szkudlarek, Maurycy

    2006-01-01

    Distribution of phenolic acids in the flowers of Althaea rosea var. nigra has been studied by 2D-TLC and HPLC methods. The phenolic acids occurring in these fractions have been identified as ferulic, vanillic, syringic, p-coumaric, p-hydroxybenzoic, p-hydroxyphenylacetic and caffeic acids. By means of the HPLC methods the contents of major phenolic acids were estimated. From among the phenolic acids analyzed the syringic, p-hydroxybenzoic and p-coumaric acids are dominant. Total content of phenolic acids was determined by the Arnov's method.

  1. Bioactive compounds, RP-HPLC analysis of phenolics, and antioxidant activity of some Portuguese shrub species extracts.

    PubMed

    Luís, Angelo; Domingues, Fernanda; Duarte, Ana Paula

    2011-12-01

    In the ecosystem of Serra Da Estrela, some plant species have the potential to be used as raw material for extraction of bioactive products. The goal of this work was to determine the phenolic, flavonoid, tannin and alkaloid contents of the methanolic extracts of some shrubs (Echinospartum ibericum, Pterospartum tridentatum, Juniperus communis, Ruscus aculeatus, Rubus ulmifolius, Hakea sericea, Cytisus multiflorus, Crataegus monogyna, Erica arborea and Ipomoea acuminata), and then to correlate the phenolic compounds and flavonoids with the antioxidant activity of each extract. The Folin-Ciocalteu's method was used for the determination of total phenols, and tannins were then precipitated with polyvinylpolypyrrolidone (PVPP); a colorimetric method with aluminum chloride was used for the determination of flavonoids, and a Dragendorff's reagent method was used for total alkaloid estimation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) and beta-carotene bleaching tests were used to assess the antioxidant activity of extracts. The identification of phenolic compounds present in extracts was performed using RP-HPLC. A positive linear correlation between antioxidant activity index and total phenolic content of methanolic extracts was observed. The RP-HPLC procedure showed that the most common compounds were ferulic and ellagic acids and quercetin. Most of the studied shrubs have significant antioxidant properties that are probably due to the existence of phenolic compounds in the extracts. It is noteworthy to emphasize that for Echinospartum ibericum, Hakea sericea and Ipomoea acuminata, to the best of our knowledge, no phytochemical studies have been undertaken nor their use in traditional medicine been described.

  2. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell

    DOE PAGES

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2015-10-27

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H 2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H 2 production, as well as the anode microbial community structure were investigated. The five compoundsmore » were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H 2 yield varied from 0.26 to 0.42 g H 2-COD/g COD removed in the anode, and the bioanode volume-normalized H 2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H 2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H 2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H 2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less

  3. Degradation of Phenolic Compounds and Ring Cleavage of Catechol by Phanerochaete chrysosporium

    PubMed Central

    Leatham, Gary F.; Crawford, R. L.; Kirk, T. Kent

    1983-01-01

    POL-88, a mutant of the white-rot fungus Phanerochaete chrysosporium, was selected for diminished phenol-oxidizing enzyme activity. A wide variety of phenolic compounds were degraded by ligninolytic cultures of this mutant. With several o-diphenolic substrates, degradation intermediates were produced that had UV spectra consistent with muconic acids. Extensive spectrophotometric and polarographic assays failed to detect classical ring-cleaving dioxygenases in cell homogenates or in extracts from ligninolytic cultures. Even so, a sensitive carrier-trapping assay showed that intact cultures degraded [U-14C]catechol to [14C]muconic acid, establishing the presence of a system capable of 1,2-intradiol fission. Significant accumulation of [14C]muconic acid into carrier occurred only when evolution of 14CO2 from [14C]catechol was inhibited by treating cultures with excess nutrient nitrogen (e.g., l-glutamic acid) or with cycloheximide. l-Glutamic acid is known from past work to repress the ligninolytic system in P. chrysosporium and to mimic the effect of cycloheximide. The results here indicate, therefore, that the enzyme system responsible for degrading ring-cleavage products to CO2 turns over faster than does the system responsible for ring cleavage. PMID:16346340

  4. Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV

    PubMed Central

    Haghi, G.; Hatami, A.; Safaei, A.; Mehran, M.

    2014-01-01

    Chamomile (Matricaria chamomilla L.) is a widely used medicinal plant possessing several pharmacological effects due to presence of active compounds. This study describes a method of using ultra performance liquid chromatography (UPLC) coupled with photodiode array (PDA) detector for the separation of phenolic compounds in M. chamomilla and its crude extracts. Separation was conducted on C18 column (150 mm × 2 mm, 1.8 μm) using a gradient elution with a mobile phase consisting of acetonitrile and 4% aqueous acetic acid at 25°C. The method proposed was validated for determination of free and total apigenin and apigenin 7-glucoside contents as bioactive compounds in the extracts by testing sensitivity, linearity, precision and recovery. In general, UPLC produced significant improvements in method sensitivity, speed and resolution. Extraction was performed with methanol, 70% aqueous ethanol and water solvents. Total phenolic and total flavonoid contents ranged from 1.77 to 50.75 gram (g) of gallic acid equivalent (GAE)/100 g and 0.82 to 36.75 g quercetin equivalent (QE)/100 g in dry material, respectively. There was a considerable difference from 40 to 740 mg/100 g for apigenin and 210 to 1110 mg/100 g for apigenin 7-glucoside in dry material. PMID:25598797

  5. Phenolic Compounds and Antioxidant Activity of Different Organs of Potentilla fruticosa L. from Two Main Production Areas of China.

    PubMed

    Yu, Danmeng; Pu, Wenjun; Li, Dengwu; Wang, Dongmei; Liu, Qiaoxiao; Wang, Yongtao

    2016-09-01

    This report compared the phenolic compounds and antioxidant activity of the leaves, flowers, and stems of Potentilla fruticosa L. collected from two main production areas of P. R. China (Taibai Mountains and the Qinghai Huzhu Northern Mountains). The results indicated that there were significant differences in the phenol contents and antioxidant activities among the different organs and between the two productions. High-performance liquid-chromatography analysis indicated that hyperoside, (+)-catechin, ellagic acid, and rutin were the primary compounds in leaves and flowers; for stems, the content of six phenolic compounds, from two productions, were the lowest. The 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) di-ammonium salt (ABTS), ferric reducing power (FRAP), lipid peroxidation assays, and microbial test system (MTS) were used to evaluate the antioxidant activity. The results demonstrated that the leaves from two productions exhibited powerful antioxidant activity than other organs, which did not significantly differ from that of the positive control (rutin), followed by the flowers and stems. The correlation between the content of phytochemicals and the antioxidant activities of different organs showed that the total phenol, tannin, hyperoside, and (+)-catechin contents may influence the antioxidant activity, and these compounds can be used as markers for the quality control of P. fruticosa. © 2016 Wiley-VHCA AG, Zürich.

  6. Phenolic Acid Composition, Antiatherogenic and Anticancer Potential of Honeys Derived from Various Regions in Greece

    PubMed Central

    Spilioti, Eliana; Jaakkola, Mari; Tolonen, Tiina; Lipponen, Maija; Virtanen, Vesa; Chinou, Ioanna; Kassi, Eva; Karabournioti, Sofia; Moutsatsou, Paraskevi

    2014-01-01

    The phenolic acid profile of honey depends greatly on its botanical and geographical origin. In this study, we carried out a quantitative analysis of phenolic acids in the ethyl acetate extract of 12 honeys collected from various regions in Greece. Our findings indicate that protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid and p-coumaric acid are the major phenolic acids of the honeys examined. Conifer tree honey (from pine and fir) contained significantly higher concentrations of protocatechuic and caffeic acid (mean: 6640 and 397 µg/kg honey respectively) than thyme and citrus honey (mean of protocatechuic and caffeic acid: 437.6 and 116 µg/kg honey respectively). p-Hydroxybenzoic acid was the dominant compound in thyme honeys (mean: 1252.5 µg/kg honey). We further examined the antioxidant potential (ORAC assay) of the extracts, their ability to influence viability of prostate cancer (PC-3) and breast cancer (MCF-7) cells as well as their lowering effect on TNF- α-induced adhesion molecule expression in endothelial cells (HAEC). ORAC values of Greek honeys ranged from 415 to 2129 µmol Trolox equivalent/kg honey and correlated significantly with their content in protocatechuic acid (p<0.001), p-hydroxybenzoic acid (p<0.01), vanillic acid (p<0.05), caffeic acid (p<0.01), p-coumaric acid (p<0.001) and their total phenolic content (p<0.001). Honey extracts reduced significantly the viability of PC-3 and MCF-7 cells as well as the expression of adhesion molecules in HAEC. Importantly, vanillic acid content correlated significantly with anticancer activity in PC-3 and MCF-7 cells (p<0.01, p<0.05 respectively). Protocatechuic acid, vanillic acid and total phenolic content correlated significantly with the inhibition of VCAM-1 expression (p<0.05, p<0.05 and p<0.01 respectively). In conclusion, Greek honeys are rich in phenolic acids, in particular protocatechuic and p-hydroxybenzoic acid and exhibit significant antioxidant, anticancer and

  7. Cross-reactivity of antibodies with phenolic compounds in pistachios during quantification of ochratoxin A by commercial enzyme-linked immunosorbent assay kits.

    PubMed

    Lee, Hyun Jung; Meldrum, Alexander D; Rivera, Nicholas; Ryu, Dojin

    2014-10-01

    Ochratoxin A (OTA), a nephrotoxic mycotoxin, naturally occurs in wide range of agricultural commodities. Typical screening of OTA involves various enzyme-linked immunosorbent assay (ELISA) methods. Pistachio (Pistacia vera L.) is a rich source of phenolic compounds that may result in a false positive due to structural similarities to OTA. The present study investigated the cross-reactivity profiles of phenolic compounds using two commercial ELISA test kits. High-performance liquid chromatography was used to confirm the concentration of OTA in the pistachio samples and compared with the results obtained from ELISA. When the degree of interaction and 50 % inhibitory concentration of phenolic compounds were determined, the cross-reactivity showed a pattern similar to that observed with the commercial ELSIA kits, although quantitatively different. In addition, the degree of interaction increased with the increasing concentration of phenolic compounds. The ELISA value had stronger correlations with the content of total phenolic compound, gallic acid, and catechin (R(2) = 0.757, 0.732, and 0.729, respectively) compared with epicatechin (R(2) = 0.590). These results suggest that phenolic compounds in pistachio skins may cross-react with the OTA antibody and lead to a false positive or to an overestimation of OTA concentration in ELISA-based tests.

  8. Characterization of total antioxidant capacity and (poly)phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking.

    PubMed

    Zaupa, Maria; Calani, Luca; Del Rio, Daniele; Brighenti, Furio; Pellegrini, Nicoletta

    2015-11-15

    In the recent years, the pigmented rice varieties are becoming more popular due to their antioxidant properties and phenolic content. In this study, we characterized the antioxidant capacity (TAC) and the phenolic profile in white, red and black rice varieties, and evaluated the effect of two cooking methods (i.e. "risotto" and boiling) on these compounds. Before the cooking, all the varieties contained several phenolic acids, whereas anthocyanins and flavonols were peculiar of black rice and flavan-3-ols of red rice. Among the rice varieties, the black had the highest TAC value. The content of (poly)phenolic compounds and TAC decreased after cooking in all three varieties, but to a lesser extent after the risotto method. As a consequence, the risotto cooking, which allows a complete absorption of water, would be a good cooking method to retain (poly)phenolic compounds and TAC in pigmented and non-pigmented whole-meal rice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Inhibitory effect of rice bran extracts and its phenolic compounds on polyphenol oxidase activity and browning in potato and apple puree.

    PubMed

    Sukhonthara, Sukhontha; Kaewka, Kunwadee; Theerakulkait, Chockchai

    2016-01-01

    Full-fatted and commercially defatted rice bran extracts (RBE and CDRBE) were evaluated for their ability to inhibit enzymatic browning in potato and apple. RBE showed more effective inhibition of polyphenol oxidase (PPO) activity and browning in potato and apple as compared to CDRBE. Five phenolic compounds in RBE and CDRBE (protocatechuic acid, vanillic acid, p-coumaric acid, ferulic acid and sinapic acid) were identified by HPLC. They were then evaluated for their important role in the inhibition using a model system which found that ferulic acid in RBE and p-coumaric acid in CDRBE were active in enzymatic browning inhibition of potato and apple. p-Coumaric acid exhibited the highest inhibitory effect on potato and apple PPO (p ⩽ 0.05). Almost all phenolic compounds showed higher inhibitory effect on potato and apple PPO than 100 ppm citric acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The reactivity of phenolic and non-phenolic residual kraft lignin model compounds with Mn(II)-peroxidase from Lentinula edodes.

    PubMed

    Crestini, C; D'Annibale, A; Sermanni, G G; Saladino, R

    2000-02-01

    Three phenolic model compounds representing bonding patterns of residual kraft lignin were incubated with manganese peroxidase from Lentinula edodes. Extensive degradation of all the phenolic models, mainly occurring via side-chain benzylic oxidation, was observed. Among the tested model compounds the diphenylmethane alpha-5 phenolic model was found to be the most reactive, yielding several products showing oxidation and fragmentation at the bridging position. The non-phenolic 5-5' biphenyl and 5-5' diphenylmethane models were found unreactive.

  11. Dietary phenolic compounds selectively inhibit the individual subunits of maltase-glucoamylase and sucrase-isomaltase with the potential of modulating glucose release.

    PubMed

    Simsek, Meric; Quezada-Calvillo, Roberto; Ferruzzi, Mario G; Nichols, Buford L; Hamaker, Bruce R

    2015-04-22

    In this study, it was hypothesized that dietary phenolic compounds selectively inhibit the individual C- and N-terminal (Ct, Nt) subunits of the two small intestinal α-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI), for a modulated glycemic carbohydrate digestion. The inhibition by chlorogenic acid, caffeic acid, gallic acid, (+)-catechin, and (-)-epigallocatechin gallate (EGCG) on individual recombinant human Nt-MGAM and Nt-SI and on mouse Ct-MGAM and Ct-SI was assayed using maltose as the substrate. Inhibition constants, inhibition mechanisms, and IC50 values for each combination of phenolic compound and enzymatic subunit were determined. EGCG and chlorogenic acid were found to be more potent inhibitors for selectively inhibiting the two subunits with highest activity, Ct-MGAM and Ct-SI. All compounds displayed noncompetitive type inhibition. Inhibition of fast-digesting Ct-MGAM and Ct-SI by EGCG and chlorogenic acid could lead to a slow, but complete, digestion of starch for improved glycemic response of starchy foods with potential health benefit.

  12. Phenolic acids, hydrolyzable tannins, and antioxidant activity of geopropolis from the stingless bee Melipona fasciculata Smith.

    PubMed

    Dutra, Richard Pereira; Abreu, Bruno Vinicius de Barros; Cunha, Mayara Soares; Batista, Marisa Cristina Aranha; Torres, Luce Maria Brandão; Nascimento, Flavia Raquel Fernandes; Ribeiro, Maria Nilce Sousa; Guerra, Rosane Nassar Meireles

    2014-03-26

    Geopropolis is a mixture of plant resins, waxes, and soil produced by the stingless bee Melipona fasciculata Smith. This paper describes the antioxidant activity and chemical composition of geopropolis produced by M. fasciculata. The total phenolic content determined with the Folin-Ciocalteu reagent was highest in the ethyl acetate fraction and hydroalcoholic extract. Antioxidant activity was assayed by the in vitro DPPH, ABTS, and FRAP assays. The hydroalcoholic extract and fractions of geopropolis, except for the hexane fraction, exhibited antioxidant activity against DPPH, ABTS, and FRAP. The phenolic compounds were identified by HPLC-DAD-MS on the basis of the evaluation of their UV-vis absorption maxima (λmax) and mass spectral analysis. Eleven compounds belonging to the classes of phenolic acids and hydrolyzable tannins (gallotannins and ellagitannins) were tentatively identified. These compounds are responsible for the antioxidant activity and high phenolic content of geopropolis produced by M. fasciculata.

  13. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects.

    PubMed

    Tang, Yao; Zhang, Bing; Li, Xihong; Chen, Peter X; Zhang, Hua; Liu, Ronghua; Tsao, Rong

    2016-03-02

    Unextractable phenolics from plant foods and their role in health benefits have become increasingly important. Meal residues of three quinoa seeds free of fat and extractable phenolics were subjected to acid, alkaline, and enzymatic hydrolyses. The total and individual phenolic compounds released were analyzed, and 19 phenolics, predominantly phenolic acids and several flavonoids, were identified. The concentration of bound phenolics was highest in black quinoa followed by red and white, regardless of the hydrolysis method. Higher phenolic contents also showed stronger antioxidant activities and inhibition of α-glucosidase and pancreatic lipase activities. Carbohydrases, that is, pectinase, xylanase and feruloyl esterase, which effectively liberated bound phenolics are known to be secreted by colonic bacteria, suggesting potential antioxidant and anti-inflammatory effects by these compounds in the large intestine during colonic fermentation. These results can also be applied to treat foods high in bound phenolics to enhance bioaccessibility.

  14. Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations.

    PubMed

    Ferrer-Gallego, Raúl; Hernández-Hierro, José Miguel; Brás, Natércia F; Vale, Nuno; Gomes, Paula; Mateus, Nuno; de Freitas, Victor; Heredia, Francisco J; Escribano-Bailón, María Teresa

    2017-08-09

    The interaction between phenolic compounds and salivary proteins is highly related to the astringency perception. Recently, it has been proven the existence of synergisms on the perceived astringency when phenolic acids were tested as mixtures in comparison to individual compounds, maintaining constant the total amount of the stimulus. The interactions between wine phenolic acids and the peptide fragment IB7 12 have been studied by saturation-transfer difference (STD) NMR spectroscopy. This technique provided the dissociation constants and the percentage of interaction between both individual and mixtures of hydroxybenzoic and hydroxycinnamic acids and the model peptide. It is noteworthy that hydroxybenzoic acids showed higher affinity for the peptide than hydroxycinnamic acids. To obtain further insights into the mechanisms of interaction, molecular dynamics simulations have been performed. Results obtained not only showed the ability of these compounds to interact with salivary proteins but also may justify the synergistic effect observed in previous sensory studies.

  15. Phenolic antioxidants from the leaves of Corchorus olitorius L.

    PubMed

    Azuma, K; Nakayama, M; Koshioka, M; Ippoushi, K; Yamaguchi, Y; Kohata, K; Yamauchi, Y; Ito, H; Higashio, H

    1999-10-01

    Six phenolic antioxidative compounds [5-caffeoylquinic acid (chlorogenic acid), 3,5-dicaffeoylquinic acid, quercetin 3-galactoside, quercetin 3-glucoside, quercetin 3-(6-malonylglucoside), and quercetin 3-(6-malonylgalactoside) (tentative)] were identified from the leaves of Corchorus olitorius L. (moroheiya) by NMR and FAB-MS. The contents of these phenolic compounds, ascorbic acid, and alpha-tocopherol in C. olitorius leaves were determined, and their antioxidative activities were measured using the radical generator-initiated peroxidation of linoleic acid. The results obtained showed that 5-caffeoylquinic acid was a predominant phenolic antioxidant in C. olitorius leaves.

  16. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts.

    PubMed

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-09-01

    This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.

  17. Preparation of free, soluble conjugate, and insoluble-bound phenolic compounds from peels of rambutan (Nephelium lappaceum) and evaluation of antioxidant activities in vitro.

    PubMed

    Sun, Liping; Zhang, Huilin; Zhuang, Yongliang

    2012-02-01

    The soluble phenolic compounds of rambutan peels (RP) were extracted by microwave-assisted extraction (MAE) and the operating parameters were optimized. The optimal conditions obtained were ethanol concentration of 80.85%, extraction time of 58.39 s, and the ratio of liquid to solid of 24.51:1. The soluble phenolic content by MAE was 213.76 mg GAE/g DW. The free, soluble conjugate, and insoluble-boaund phenolic compounds were prepared by alkaline hydrolysis, and the contents of 3 fractions were 185.12, 27.98 and 9.37 mg GAE/g DW, respectively. The contents of syringic acid and p-coumaric acid were high in the free fraction, showing 16.86 and 19.44 mg/g DW, and the soluble conjugate and insoluble-bound phenolics were mainly composed of gallic acid and caffeic acid. Furthermore, the antioxidant activities of 3 fractions were evaluated in 5 model systems. Results indicated that the free fraction had high antioxidant activities, compared with the soluble conjugate and insoluble-bound fractions. © 2012 Institute of Food Technologists®

  18. Improving oxidative stability of echium oil emulsions fabricated by Microfluidics: Effect of ionic gelation and phenolic compounds.

    PubMed

    Comunian, Talita A; Ravanfar, Raheleh; de Castro, Inar Alves; Dando, Robin; Favaro-Trindade, Carmen S; Abbaspourrad, Alireza

    2017-10-15

    Echium oil is rich in omega-3 fatty acids, which are important because of their benefits to human health; it is, however, unstable. The objective of this work was the coencapsulation of echium oil and quercetin or sinapic acid by microfluidic and ionic gelation techniques. The treatments were analyzed utilizing optical and scanning electron microscopy, encapsulation yield, particle size, thermogravimetry, Fourier transform infrared spectroscopy, stability under stress conditions, and oil oxidative/phenolic compound stability for 30days at 40°C. High encapsulation yield values were obtained (91-97% and 77-90% for the phenolic compounds and oil) and the encapsulated oil was almost seven times more stable than the non-encapsulated oil (0.34 vs 2.42mgMDA/kg oil for encapsulated and non-encapsulated oil, respectively). Encapsulation was shown to promote oxidative stability, allowing new vehicles for the application of these compounds in food without the use of solvents and high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Phenolic compounds in leaves insertions of Mentha × villosa Huds. cv. Snežná].

    PubMed

    Tekeľová, Daniela; Bittner Fialová, Silvia; Tóth, Jaroslav; Czigle, Szilvia

    Lamiaceae plants mostly accumulate active ingredients in their leaves. The subfamily Nepetoideae, including the genus Mentha L., is characterized by the presence of essential oil and antioxidant phenolics, chiefly hydroxycinnamic acids with predominance of rosmarinic acid, and flavonoids. Mentha × piperita and M. spicata are the most broadly used mints in both medicine and industry, while M. x villosa is less known in our country. Herbal drugs in the form of leaves are usually analysed unpartitioned, while single leaves insertions have only been studied occasionally. Therefore, the aim of this work was the quantification of the active compounds content in the leaves pairs of Mentha × villosa Huds. cv. Snežná, using pharmacopoeial methods: total hydroxycinnamic derivatives expressed as rosmarinic acid (THD) and luteolin-type flavonoids. THD content ranged from 6.7% to 9.4% in the leaves pairs water extracts, and from 6.6% to 14.0% in methanol extracts. Flavonoids contents, expressed as luteolin-7-O-glucoside, ranged from 4.0% to 8.8% in water extracts, and from 4.0% to 10.5% in methanol extracts. Antioxidant activity (DPPH) expressed as SC50 ranged from 10.2 to 16.9 μg.ml-1 (drug dry weight) in water extracts, and from 10.7 to 21.6 μg.ml-1 in methanol extracts. The highest content of phenolic compounds as well as the highest antioxidant activity were found to be in the top sheet, while the lowest content of phenolic compounds and lowest antioxidant activity were detected in the leaves of the middle stem part.Key words: Mentha × villosa Huds cv. Snežná hydroxycinnamic derivatives rosmarinic acid luteolin-7-O-glucoside DPPH.

  20. Dietary Phenolic Acids Act as Effective Antioxidants in Membrane Models and in Cultured Cells, Exhibiting Proapoptotic Effects in Leukaemia Cells

    PubMed Central

    Zambonin, Laura; Caliceti, Cristiana; Vieceli Dalla Sega, Francesco; Fiorentini, Diana; Hrelia, Silvana; Landi, Laura; Prata, Cecilia

    2012-01-01

    Caffeic, syringic, and protocatechuic acids are phenolic acids derived directly from food intake or come from the gut metabolism of polyphenols. In this study, the antioxidant activity of these compounds was at first evaluated in membrane models, where caffeic acid behaved as a very effective chain-breaking antioxidant, whereas syringic and protocatechuic acids were only retardants of lipid peroxidation. However, all three compounds acted as good scavengers of reactive species in cultured cells subjected to exogenous oxidative stress produced by low level of H2O2. Many tumour cells are characterised by increased ROS levels compared with their noncancerous counterparts. Therefore, we investigated whether phenolic acids, at low concentrations, comparable to those present in human plasma, were able to decrease basal reactive species. Results show that phenolic acids reduced ROS in a leukaemia cell line (HEL), whereas no effect was observed in normal cells, such as HUVEC. The compounds exhibited no toxicity to normal cells while they decreased proliferation in leukaemia cells, inducing apoptosis. In the debate on optimal ROS-manipulating strategies in cancer therapy, our work in leukaemia cells supports the antioxidant ROS-depleting approach. PMID:22792417

  1. Effect of Steam Blanching and Drying on Phenolic Compounds of Litchi Pericarp.

    PubMed

    Kessy, Honest N E; Hu, Zhuoyan; Zhao, Lei; Zhou, Molin

    2016-06-03

    The effects of different treatment methods on the stability and antioxidant capacity of the bioactive phenolic compounds of litchi pericarps were investigated. Fresh litchi pericarps were open air-dried, steam-blanched for 3 min in combination with hot air oven drying at 60 and 80 °C, and unblanched pericarps were dried in a hot air oven at 40, 60, 70 and 80 °C until equilibrium weight was reached. The total phenolic compounds, flavonoids, anthocyanins, proanthocyanidins and individual procyanidins, and antioxidant activity were analyzed. The combination of blanching and drying at 60 °C significantly (p < 0.05) improved the release of phenolic compounds, individual procyanidins, and the extracts' antioxidant capacity compared with the unblanched hot air oven-dried and open air-dried pericarps. Drying of fresh unblanched litchi pericarps in either open air or a hot air oven caused significant losses (p < 0.05) in phenolic compounds and individual procyanidins, leading to a reduction in the antioxidant activity. A similar increase, retention or reduction was reflected in flavonoids, proanthocyanidins and anthocyanins because they are sub-groups of phenolic compounds. Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryldydrazyl (DPPH) radical-scavenging capacity of the treated pericarps were significantly correlated (r ≥ 0.927, p < 0.01) with the total phenolic compounds. Thus, the combination of steam blanching and drying treatments of fresh litchi pericarps could produce a stable and dry litchi pericarp that maintains phenolic compounds and antioxidant capacity as a raw material for further recovery of the phytochemicals.

  2. Potentiation of the bioavailability of blueberry phenolic compounds by co-ingested grape phenolic compounds in mice, revealed by targeted metabolomic profiling in plasma and feces.

    PubMed

    Dudonné, Stéphanie; Dal-Pan, Alexandre; Dubé, Pascal; Varin, Thibault V; Calon, Frédéric; Desjardins, Yves

    2016-08-10

    The low bioavailability of dietary phenolic compounds, resulting from poor absorption and high rates of metabolism and excretion, is a concern as it can limit their potential beneficial effects on health. Targeted metabolomic profiling in plasma and feces of mice supplemented for 15 days with a blueberry extract, a grape extract or their combination revealed significantly increased plasma concentrations (3-5 fold) of blueberry phenolic metabolites in the presence of a co-ingested grape extract, associated with an equivalent decrease in their appearance in feces. Additionally, the repeated daily administration of the blueberry-grape combination significantly increased plasma phenolic concentrations (2-3-fold) compared to animals receiving only a single acute dose, with no such increase being observed with individual extracts. These findings highlight a positive interaction between blueberry and grape constituents, in which the grape extract enhanced the absorption of blueberry phenolic compounds. This study provides for the first time in vivo evidence of such an interaction occurring between co-ingested phenolic compounds from fruit extracts leading to their improved bioavailability.

  3. Variation of anthocyanins and other major phenolic compounds throughout the ripening of four Portuguese blueberry (Vaccinium corymbosum L) cultivars.

    PubMed

    Silva, Sara; Costa, Eduardo M; Coelho, Marta C; Morais, Rui M; Pintado, Manuela E

    2017-01-01

    Blueberries are widely recognised as one of the richest sources of bioactive compounds, among which are anthocyanins, though the ripeness of berries has been reported as affecting the phytochemical composition of fruits. Therefore, the present work aimed to evaluate the variation of anthocyanins, and other major phenolics, throughout five ripening stages in four blueberry cultivars. The results showed that the antioxidant capacity and anthocyanin content increased during ripening, reaching the highest values when the blueberries are collected from bunches comprised of 75% ripe blueberries. Antagonistically, the amount of phenolic acid decreases, while the quercetin-3-glucoside levels remain stable. Furthermore, Goldtraube blueberries appear to possess, systematically, higher amounts of phenolic compounds than the other cultivars studied. Thus, when seeking the highest yield of anthocyanins, the preferred harvest should occur in bunches that contain ca 75% of ripe blueberries and, considering the cultivars assayed, the Goldtraube cultivar appears to be the richest in phenolic compounds.

  4. Comparison of free amino acids, antioxidants, soluble phenolic acids, cytotoxicity and immunomodulation of fermented mung bean and soybean.

    PubMed

    Ali, Norlaily Mohd; Yeap, Swee-Keong; Yusof, Hamidah Mohd; Beh, Boon-Kee; Ho, Wan-Yong; Koh, Soo-Peng; Abdullah, Mohd Puad; Alitheen, Noorjahan Banu; Long, Kamariah

    2016-03-30

    Mung bean and soybean have been individually reported previously to have antioxidant, cytotoxic and immunomodulatory effects, while fermentation is a well-known process to enhance the bioactive compounds that contribute to higher antioxidant, cytotoxic and immunomodulation effects. In this study, the free amino acids profile, soluble phenolic acids content, antioxidants, cytotoxic and immunomodulatory effects of fermented and non-fermented mung bean and soybean were compared. Fermented mung bean was recorded to have the highest level of free amino acids, soluble phenolic acids (especially protocatechuic acid) and antioxidant activities among all the tested products. Both fermented mung bean and soybean possessed cytotoxicity activities against breast cancer MCF-7 cells by arresting the G0/G1 phase followed by apoptosis. Moreover, fermented mung bean and soybean also induced splenocyte proliferation and enhanced the levels of serum interleukin-2 and interferon-γ. Augmented amounts of free amino acids and phenolic acids content after fermentation enhanced the antioxidants, cytotoxicity and immunomodulation effects of mung bean and soybean. More specifically, fermented mung bean showed the best effects among all the tested products. This study revealed the potential of fermented mung bean and soybean as functional foods for maintenance of good health. © 2015 Society of Chemical Industry.

  5. Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids.

    PubMed

    Pereira, Carla; Barros, Lillian; Carvalho, Ana Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2015-01-01

    Cynara scolymus L. (artichoke) and Silybum marianum (L.) Gaertn (milk thistle) are two herbs well-known for their efficiency in the prevention/treatment of liver injuries, among other chronic diseases. Therefore, the aim of this work was to characterize specific bioactive components, phenolic compounds, in hydromethanolic extracts but also in infusions (the most commonly used preparations) obtained from the whole plant of milk thistle and artichoke. The phenolic profiles were accessed using HPLC-DAD-MS/ESI. Infusions of both species presented higher phenolic contents than the hydromethanolic extracts. Milk thistle presented a similar phenolic composition between the two preparations, revealing only differences in the quantities obtained. Nevertheless, artichoke revealed a slightly different profile considering infusion and hydromethanolic extracts. Apigenin-7-O-glucuronide was the major flavonoid found in milk thistle, while luteolin-7-O-glucuronide was the most abundant in artichoke. Therefore, infusions of both artichoke and milk thistle represent a good source of bioactive compounds, especially phenolic acids and flavonoids.

  6. Total Phenolic, Phenolic Acid, Anthocyanin, Flavan-3-ol, and Flavonol Profiles and Antioxidant Properties of Pinto and Black Beans ( Phaseolus vulgaris L.) as Affected by Thermal Processing.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2009-06-10

    The effects of boiling and steaming processes at atmospheric and high pressures on the phenolic components and antioxidant properties of pinto and black beans were investigated. In comparison to the original raw beans, all processing methods caused significant (p < 0.05) decreases in total phenolic content (TPC), total flavonoid content (TFC), condensed tannin content (CTC), monomeric anthocyanin content (MAC), DPPH free-radical scavenging activity (DPPH), ferric-reducing antioxidant power (FRAP), and oxygen radical absorbing capacity (ORAC) values in both pinto and black beans. Steaming processing resulted in a greater retention of TPC, DPPH, FRAP, and ORAC values than the boiling processes in both pinto and black beans. To further investigate how thermal processing affected phenolic compositions and to elucidate the contribution of individual phenolic compounds to antioxidant properties, phenolic acids, anthocyanins, flavan-3-ols, and flavonols were quantitatively analyzed by high-performance liquid chromatography (HPLC). All thermal processing significantly (p < 0.05) affected individual phenolic acids, anthocyanins, flavan-3-ols, and flavonols, significantly (p < 0.05) reduced total phenolic acid contents in both pinto and black beans and total flavonol contents in pinto beans, and dramatically reduced anthocyanin contents in black beans. Phenolic acids and flavonols may play important roles on the overall antioxidant activities of pinto beans, while anthocyanins, flavan-3-ols, and flavonols may play important roles on the overall antioxidant activities of black beans.

  7. Effects of processing on the polyphenol and phenolic acid content and antioxidant capacity of semi-dried cherry tomatoes (Lycopersicon esculentum M.).

    PubMed

    Rizzo, Valeria; Clifford, Mike N; Brown, Jonathan E; Siracusa, Laura; Muratore, Giuseppe

    2016-04-01

    This study was performed to test the effects of pre-treating cherry tomatoes with a solution containing citric acid-NaCl-CaCl2 (10:10:24 g L(-1)), followed by one of three different drying regimes (40, 60, 80 °C) on the antioxidant capacity of their aqueous extracts and the extent of phenolic compound degradation. Chlorogenic acids, caffeic acid, ferulic acid, rutin and naringenin were all detected in the aqueous extracts. In fresh cherry tomatoes the predominant phenolic compound was rutin, followed by naringenin, which corresponded to 79% and 8% of the total phenolic compounds present, respectively. Pre-treatment was protective towards naringenin and had a modest protective effect on rutin and ferulic acid (0.1 > P > 0.05). Total phenolic content was similar in all samples, but there was a trend for the level of free polyphenols to be lower in treated tomatoes. The destruction of naringenin was confirmed by liquid chromatographic-mass spectrometric data. A significant effect of temperature on the antioxidant capacity was observed. After this treatment the industry might introduce some advances in the processing of tomatoes, preserving the main nutritive characteristics and saving the products as semi-dried. © 2015 Society of Chemical Industry.

  8. RP-HPTLC densitometric determination and validation of vanillin and related phenolic compounds in accelerated solvent extract of Vanilla planifolia*.

    PubMed

    Sharma, Upendra Kumar; Sharma, Nandini; Gupta, Ajai Prakash; Kumar, Vinod; Sinha, Arun Kumar

    2007-12-01

    A simple, fast and sensitive RP-HPTLC method is developed for simultaneous quantitative determination of vanillin and related phenolic compounds in ethanolic extracts of Vanilla planifolia pods. In addition to this, the applicability of accelerated solvent extraction (ASE) as an alternative to microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and Soxhlet extraction was also explored for the rapid extraction of phenolic compounds in vanilla pods. Good separation was achieved on aluminium plates precoated with silica gel RP-18 F(254S) in the mobile phase of methanol/water/isopropanol/acetic acid (30:65:2:3, by volume). The method showed good linearity, high precision and good recovery of compounds of interest. ASE showed good extraction efficiency in less time as compared to other techniques for all the phenolic compounds. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.

  9. Fabrication and characterization of electrospun gelatin nanofibers crosslinked with oxidized phenolic compounds.

    PubMed

    Tavassoli-Kafrani, Elham; Goli, Sayed Amir Hossein; Fathi, Milad

    2017-10-01

    In this study, the ability of oxidized phenolic compounds of tannic, gallic, ferulic and caffeic acids to crosslink gelatin (G) was investigated. The electrospun crosslinked gelatin nanofibers were assessed in terms of gelatin solution properties, fiber morphology, thermal properties, FTIR spectra, XRD pattern and antioxidant activity. Tannic acid showed the most crosslinking activity towards gelatin (13.3 vs 7.44, 4.65, and 3.45% for caffeic, gallic and ferulic, respectively). Crosslinking enhanced roughly electrical conductivity of gelatin solution while the surface tension and viscosity reduced. According to scanning electron microscopy (SEM) results, the fibrous structure of crosslinked gelatin nanofibers didn't change while their diameter increased to the highest value of 280nm for gelatin-tannic. Gelatin-gallic sample showed the highest total phenolic content (86.3mg gallic acid equivalent/g) and antioxidant activity (86.5%). Surprisingly, from differential scanning calorimetry (DSC) curves, it was found that crosslinking led to the reduction of thermal stability of gelatin nanofibers. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: Punicalagin and hydroxybenzoic acids.

    PubMed

    Kazemi, Milad; Karim, Roselina; Mirhosseini, Hamed; Abdul Hamid, Azizah

    2016-09-01

    Pomegranate peel is a rich source of phenolic compounds (such as punicalagin and hydroxybenzoic acids). However, the content of such bioactive compounds in the peel extract can be affected by extraction type and condition. It was hypothesized that the optimization of a pulsed ultrasound-assisted extraction (PUAE) technique could result in the pomegranate peel extract with higher yield and antioxidant activity. The main goal was to optimize PUAE condition resulting in the highest yield and antioxidant activity as well as the highest contents of punicalagin and hydroxybenzoic acids. The operation at the intensity level of 105W/cm(2) and duty cycle of 50% for a short time (10min) had a high efficiency for extraction of phenolics from pomegranate peel. The application of such short extraction can save the energy and cost of the production. Punicalagin and ellagic acid were the most predominant phenolic compounds quantified in the pomegranate peel extract (PPE) from Malas variety. PPE contained a minor content of gallic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Kinetic and Isotherm Modelling of the Adsorption of
Phenolic Compounds from Olive Mill Wastewater onto Activated Carbon

    PubMed Central

    Casazza, Alessandro A.; Perego, Patrizia

    2015-01-01

    Summary The adsorption of phenolic compounds from olive oil wastewater by commercial activated carbon was studied as a function of adsorbent quantity and temperature. The sorption kinetics and the equilibrium isotherms were evaluated. Under optimum conditions (8 g of activated carbon per 100 mL), the maximum sorption capacity of activated carbon expressed as mg of caffeic acid equivalent per g of activated carbon was 35.8 at 10 °C, 35.4 at 25 °C and 36.1 at 40 °C. The pseudo-second-order model was considered as the most suitable for kinetic results, and Langmuir isotherm was chosen to better describe the sorption system. The results confirmed the efficiency of activated carbon to remove almost all phenolic compound fractions from olive mill effluent. The preliminary results obtained will be used in future studies. The carbohydrate fraction of this upgraded residue could be employed to produce bioethanol, and adsorbed phenolic compounds can be recovered and used in different industries. PMID:27904350

  12. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs).

    PubMed

    Kumar, B Ramesh

    2017-12-01

    Diets containing high proportions of fruits and vegetables reduce the risk of onset of chronic diseases. The role of herbal medicines in improving human health is gaining popularity over the years, which also increases the need for safety and efficiency of these products. Green leafy vegetables (GLVs) are the richest source of phenolic compounds with excellent antioxidant properties. Increased consumption of diets containing phenolic compounds may give positive and better results to human health and significantly improves the immune system. Highly selective, susceptible and versatile analytical techniques are necessary for extraction, identification, and quantification of phenolic compounds from plant extracts, which helps to utilize their important biological properties. Recent advances in the pre-treatment procedures, separation techniques and spectrometry methods are used for qualitative and quantitative analysis of phenolic compounds. The online coupling of liquid chromatography with mass spectrometry (LC-MS) has become a useful tool in the metabolic profiling of plant samples. In this review, the separation and identification of phenolic acids and flavonoids from GLVs by LC-MS have been discussed along with the general extraction procedures and other sources of mass spectrometer used. The review is devoted to the understanding of the structural configuration, nature and accumulation pattern of phenolic acids and flavonoids in plants and to highlighting the recent developments in the chemical investigation of these compounds by chromatographic and spectroscopic techniques. It concludes with the advantages of the combination of these two methods and prospects.

  13. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea.

    PubMed

    Kim, Min-Young; Seguin, Philippe; Ahn, Joung-Kuk; Kim, Jong-Jin; Chun, Se-Chul; Kim, Eun-Hye; Seo, Su-Hyun; Kang, Eun-Young; Kim, Sun-Lim; Park, Yool-Jin; Ro, Hee-Myong; Chung, Ill-Min

    2008-08-27

    A study was conducted to determine the content of phenolic compounds and the antioxidative activity of five edible and five medicinal mushrooms commonly cultivated in Korea. Phenolic compounds were analyzed using high performance liquid chromatography, and antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and superoxide dismutase activity. A total of 28 phenolic compounds were detected in the mushrooms studied. The average total concentration of phenolic compounds was 326 microg/g, the average being of 174 microg/g in edible mushrooms and 477 microg/g in medicinal mushrooms. The average total flavonoids concentration was 49 microg/g, with averages of 22 and 76 microg/g in edible and medicinal mushrooms, respectively. The DPPH radical scavenging activities ranged between 15 (Pleurotus eryngii) and 70% (Ganoderma lucidum) when reaction time was for 1 min. When reaction time was 30 min, the values ranged between 5 (Pleurotus eryngii) and 78% (Agaricus bisporus). The SOD activity averaged 28% among the 10 mushroom species, averages for edible and medicinal mushrooms being comparable. DPPH activities was significantly correlated (p < 0.01) with total content of phenolic compounds in edible mushrooms, while in medicinal mushrooms there was a significant correlation (p < 0.01) between SOD activity and total concentration of phenolic compounds. Numerous significant positive correlations were observed between phenolic compounds detected and antioxidative potential.

  14. Assessment of Antimicrobial and Antioxidant Activities of Nepeta trachonitica: Analysis of Its Phenolic Compounds Using HPLC-MS/MS

    PubMed Central

    Köksal, Ekrem; Tohma, Hatice; Kılıç, Ömer; Alan, Yusuf; Aras, Abdülmelik; Gülçin, İlhami; Bursal, Ercan

    2017-01-01

    Continuing our work on the sources of natural bioactive compounds, we evaluated the antimicrobial and antioxidant activities of Nepeta trachonitica as well as its major phenolic content using the high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) technique. For antioxidant activity, ferric reducing antioxidant power (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) methods were performed to measure the reducing power and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was employed to evaluate the radical scavenging activity of the sample. For antimicrobial activity, three Gram-positive and four Gram-negative microbial species as well as three fungi species were tested. N. trachonitica appeared to have reasonable antioxidant activity and decent antimicrobial activity as indicated by the inhibition of the organisms’ growth. The most susceptible species were Bacillus subtilis ATCC 6633 and Escherichia coli ATCC 11229 among the organisms tested. Ethanol extract of the plant has the highest effect on Saccharomyces cerevisiae but no effect on Yarrowia lipolytica. The HPLC-MS/MS analysis showed that at least 11 major phenolic compounds of N. trachonitica exist, the major ones being rosmarinic acid, chlorogenic acid and quinic acid. The obtained results suggest that N. trachonitica could be a promising source for food and nutraceutical industries because of its antimicrobial and antioxidant properties and phenolic compounds. PMID:28505129

  15. Principal component analysis of phenolic acid spectra

    USDA-ARS?s Scientific Manuscript database

    Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...

  16. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods.

    PubMed

    Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro

    2017-06-13

    Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.

  17. Principal components of phenolics to characterize red Vinho Verde grapes: anthocyanins or non-coloured compounds?

    PubMed

    Dopico-García, M S; Fique, A; Guerra, L; Afonso, J M; Pereira, O; Valentão, P; Andrade, P B; Seabra, R M

    2008-06-15

    Phenolic profile of 10 different varieties of red "Vinho Verde" grapes (Azal Tinto, Borraçal, Brancelho, Doçal, Espadeiro, Padeiro de Basto, Pedral, Rabo de ovelha, Verdelho and Vinhão), from Minho (Portugal) were studied. Nine Flavonols, four phenolic acids, three flavan-3-ols, one stilben and eight anthocyanins were determined. Malvidin-3-O-glucoside was the most abundant anthocyanin while the main non-coloured compound was much more heterogeneous: catechin, epicatechin, myricetin-3-O-glucoside, quercetin-3-O-glucoside or syringetin-3-O-glucoside. Anthocyanin contents ranged from 42 to 97%. Principal component analysis (PCA) was applied to analyse the date and study the relations between the samples and their phenolic profiles. Anthocyanin profile proved to be a good marker to characterize the varieties even considering different origin and harvest. "Vinhão" grapes showed anthocyanins levels until twenty four times higher than the rest of the samples, with 97% of these compounds.

  18. Effect of Aromatic Compounds on Cellular Fatty Acid Composition of Rhodococcus opacus

    PubMed Central

    Tsitko, Irina V.; Zaitsev, Gennadi M.; Lobanok, Anatoli G.; Salkinoja-Salonen, Mirja S.

    1999-01-01

    In cells of Rhodococcus opacus GM-14, GM-29, and 1CP, the contents of branched (10-methyl) fatty acids increased from 3% to 15 to 34% of the total fatty acids when the cells were grown on benzene, phenol, 4-chlorophenol, chlorobenzene, or toluene as the sole source of carbon and energy, in comparison with cells grown on fructose. In addition, the content of trans-hexadecenoic acid increased from 5% to 8 to 18% with phenol or chlorophenol as the carbon source. The 10-methyl branched fatty acid content of R. opacus GM-14 cells increased in a dose-related manner following exposure to phenol or toluene when toluene was not utilized as the growth substrate. The results suggest that 10-methyl branched fatty acids may participate in the adaptation of R. opacus to lipophilic aromatic compounds. PMID:9925629

  19. Cinnamic acid and fish flour affect wheat phenolic acids and flavonoid compounds, lipid peroxidation, proline levels under salt stress.

    PubMed

    Karadağ, Bergüzar; Yücel, Nilgün Candan

    2017-12-01

    To elucidate the physiological mechanism of salt stress mitigated by cinnamic acid (CA) and fish flour (FF) pretreatment, wheat was pretreated with 20, 50 and 100 ppm CA and 1 g/10 mL FF for 2 d and was then cultivated. We investigated whether exogenous CA + FF could protect wheat from salt stress and examined whether the protective effect was associated with the regulation of seed vigor, antioxidant defense systems, phenolic biosynthesis and lipid peroxidation. At 2 days exogenous CA did not influence seed vigor. Salt stress increased the phenolic biosynthesis, but the CA + FF-combined pretreatment enhanced the phenolic biosynthesis even more under salt stress and decreased lipid peroxidation to some extent, enhancing the tolerance of wheat to salt stress.

  20. Two-dimensional liquid chromatography (LC) of phenolic compounds from the shoots of Rubus idaeus 'Glen Ample' cultivar variety.

    PubMed

    Kula, Marta; Głód, Daniel; Krauze-Baranowska, Mirosława

    2016-03-20

    In this study the application of two-dimensional LC (2D LC) for qualitative analysis of polyphenols and simple phenols in the shoots of Rubus idaeus 'Glen Ample' variety is presented. In the preliminary analysis, the methanol extract of the shoots was analyzed by one-dimensional LC. One-dimensional LC separation profiles of phenolics from R. idaeus 'Glen Ample' shoots were dependent on column type, mobile phase composition and gradient program used. Two-dimensional LC system was built from connecting an octadecyl C-18 silica column in the first dimension and pentafluorophenyl column in the second dimension, coupled with DAD and MS (ESI, APCI, DUIS ionization) detectors. A total of 34 phenolic compounds belonging to the groups of phenolic acids, ellagitannins, flavan-3-ols, flavonols and ellagic acid conjugates were identified in the shoots of R. idaeus 'Glen Ample'. The established 2D LC method offers an effective tool for analysis of phenolics present in Rubus species. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment.

    PubMed

    Escriche, Isabel; Kadar, Melinda; Juan-Borrás, Marisol; Domenech, Eva

    2014-01-01

    Total antioxidant activity, physicochemical parameters, and the profile of flavonoids and phenolic acid compounds were evaluated for: their ability to distinguish between the botanical origins of four types of Spanish honey, the impact of industrial thermal treatment, and the effect of the year of collection. Citrus honey had the lowest levels of all the analysed variables, then rosemary and polyfloral, and honeydew the highest ones. Botanical origin affects the profile of flavonoids and phenolic compounds sufficiently to permit discrimination thanks to the predominance of particular compounds such as: hesperetin (in citrus honey); kaempferol, chrysin, pinocembrin, caffeic acid and naringenin (in rosemary honey) and myricetin, quercetin, galangin and particularly p-coumaric acid (in honeydew honey). The impact of industrial thermal treatments is lower than the expected variability as a consequence of the year of collection, though neither factor has enough influence to alter these constituent compounds to the point of affecting the discrimination of honey by botanical origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms

    PubMed Central

    Los, Renata; Malm, Anna

    2015-01-01

    Background Among many sources of natural bioactive substances, mushrooms constitute a huge and almost unexplored group. Fungal compounds have been repeatedly reported to exert biological effects which have prompted their use in pharmaceutical and cosmetic industry. Therefore, the aim of this study was analysis of chemical composition and biological activity of 31 wild growing mushroom species (including saprophytic and parasitic) from Poland. Methods Qualitative and quantitative LC-ESI-MS/MS analysis of fourteen phenolic acids in the mushrooms analysed was performed. Moreover, total phenolic content was determined by the modified Folin-Ciocalteau method. Antioxidative activity of ethanolic extracts towards DPPH• free radical was examined. Antibacterial activity against Gram-positive (S. epidermidis, S. aureus, B. subtilis, M. luteus) and Gram-negative (E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis) microbial strains was analyzed. Results As a result, the first such broad report on polyphenolic composition, antiradical and antimicrobial potential of wild growing Polish mushrooms was developed. Mushroom extracts were found to contain both benzoic (protocatechuic, 4-OH-benzoic, vanillic, syringic) and cinnamic acid derivatives (caffeic, p-coumaric, ferulic). Total phenolic content in mushrooms ranged between 2.79 and 53.13 mg gallic acid equivalent /g of dried extract in Trichaptum fuscoviolaceum and Fomes fomentarius, respectively. Fungi showed much differentiated antiradical activity, from highly active F. fomentarius to poorly effective Russula fragilis (IC50 1.39 to 120.54 mg per mg DPPH•, respectively). A quite considerable relationship between phenolic content and antiradical activity has been demonstrated. Mushrooms varied widely in antimicrobial potential (MIC from 0.156 to 5 mg/ml). Generally, a slightly higher activity against Gram-positive than Gram-negative strains was observed. This is the first study concerning the chemical composition and

  3. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale

    PubMed Central

    Kasprzak, Kamila; Oniszczuk, Tomasz; Waksmundzka-Hajnos, Monika; Nowak, Renata; Polak, Renata

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale (Brassica oleracea L. var. sabellica)—a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity. PMID:29507816

  4. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale.

    PubMed

    Kasprzak, Kamila; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Waksmundzka-Hajnos, Monika; Olech, Marta; Nowak, Renata; Polak, Renata; Oniszczuk, Anna

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale ( Brassica oleracea L. var. sabellica )-a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans -caffeic, cis -caffeic, trans -p-coumaric, cis -p-coumaric, trans -ferulic, cis -ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans -sinapic, and cis -sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea . Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity.

  5. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species.

    PubMed

    Mikulic-Petkovsek, Maja; Schmitzer, Valentina; Slatnar, Ana; Stampar, Franci; Veberic, Robert

    2012-10-01

    Sugars, organic acids, and total phenolic content in fruit of 25 wild and cultivated berry species were identified and quantified with high-performance liquid chromatograph. The composition of sugars, organic acids, and total phenolic compounds in various species of Vaccinium, Rubus, Ribes, and Fragaria genus was evaluated. Additonally, total phenolics of less known berry species of the Morus, Amelanchier, Sorbus, Sambucus, Rosa, Lycium, Actinidia, and Aronia genus were determined in wild growing as well as in cultivated fruits. Significant differences in the concentration of sugars and organic acids were detected among the berry species. Glucose and fructose were the most abundant sugars in berry fruits and the major organic acids were malic and citric acid. However, in kiwi fruit, sucrose represented as much as 71.9% of total sugars. Sorbitol has been detected and quantified in chokeberry, rowanberry, and eastern shadbush fruit. The highest content of total analyzed sugars was determined in rowanberry fruit, followed by dog rose, eastern shadbush, hardy kiwifruit, American cranberry, chokeberry, and jostaberry fruit. Rowanberry stands out as the fruit with the highest content of total analyzed organic acids, followed by jostaberry, lingonberry, red gooseberry, hardy kiwifruit, and black currant. The berries of white gooseberry, black currant, red currant, and white currant had the lowest sugar/organic acid ratio and were thus perceptively the sourest species analyzed. On the other hand, the species with highest sugar/organic acid ratio were goji berry, eastern shadbush, black mulberry, and wild grown blackberry. The highest amounts of total phenols were quantified in chokeberry fruit. Wild strawberry, raspberry, and blackberry had 2- to 5-fold more total phenolics compared to cultivated plants. The fruit of analyzed berry species contained different levels of sugars, organic acids, and total phenolics. Moreover, it has been demonstrated that wild grown species

  6. A comprehensive evaluation of three microfluidic chemiluminescence methods for the determination of the total phenolic contents in fruit juices.

    PubMed

    Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O

    2017-01-01

    Three recently reported microfluidic chemiluminescence (MF-CL) methods (based on reactions with acidic permanganate enhanced by formaldehyde (KMnO4-COH), acidic cerium (IV) and rhodamine B (Ce-RB), and acidic cerium (IV) and rhodamine 6G (Ce-R6G) enhanced by SDS) for the determination of the total phenolic content (TPC) in juices were critically evaluated in terms of their selectivity. The evaluation was carried out using 86 analytes, including 22 phenolic compounds (phenolic acids and polyphenols), 6 known non-phenolic antioxidants, 9 amino acids and a number of proteins, carbohydrates, nucleotide bases, inorganic salts and other compounds. Each method was sensitive toward phenolic compounds (PCs). However, the KMnO4-COH CL system showed a higher sensitivity toward phenolic acids and also responded to non-phenolic antioxidants. The other two systems showed higher sensitivity toward polyphenolic compounds than to phenolic acids and did not responded to all other compounds including non-phenolic antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Variability in the composition of phenolic compounds in winter-dormant Salix pyrolifolia in relation to plant part and age.

    PubMed

    Lavola, Anu; Maukonen, Merja; Julkunen-Tiitto, Riitta

    2018-06-12

    The phenolic phytochemicals of winter-dormant Salix pyrolifolia were determined from the vegetative buds, and the bark and wood of different-aged twigs by HPLC-DAD and UHPLC-QTOF-MS analyses. All the plant parts were composed of salicylate glucosides and the other Salix-specific, simple phenolic glucosides as well as of phenolic acids, flavonoids and the high molecular-weight condensed tannins. The flavonoid composition was most diverse in buds and they also contained a large amount of chlorogenic acid (5-caffeoylquinic acid IUPAC), while salicylate glucosides and simple phenolic glucosides predominated in bark. The wooden interior part of the twigs contained fewer components and the lowest concentrations of compounds. Salicortin was the main compound in winter-dormant S. pyrolifolia (over 10% of bark biomass), but the concentrations of picein, salireposide, isosalipurposide, catechin and condensed tannins were also high. The flavonoid composition was highly naringenin- and quercetin-biassed. The composition of phytochemicals was organ-specific and remained relatively similar between different-aged trees. However, there were compound-specific fluctuations in the concentrations of phytochemicals with the age of the trees and within plant parts. Generally, the one-year-old plants differed from the older trees in their high concentration of condensed tannins in all the plant parts studied and in the highest concentration of isosalipurposide in bark, while the total amounts of salicylate glucosides in plant parts, and of naringenin glucosides in buds, tended to be highest in 20 year-old-trees. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Pulse seed germination improves antioxidative activity of phenolic compounds in stripped soybean oil-in-water emulsions.

    PubMed

    Xu, Minwei; Jin, Zhao; Peckrul, Allen; Chen, Bingcan

    2018-06-01

    The purpose of this study was to investigate antioxidative activity of phenolic compounds extracted from germinated pulse seed including chickpeas, lentils and yellow peas. Phenolic compounds were extracted at different germination time and total phenolic content was examined by Folin Ciocalteu's reaction. Antioxidative activity of extracts was characterized by in vitro assay including 2, 2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH), oxygen radical absorbance capacity (ORAC), iron-binding assay, and in stripped soybean oil-in-water emulsions. The results suggested that germination time is critical for phenolic compounds production. The form variation of phenolic compounds influenced the antioxidative activity of phenolic compounds both in vitro assay and in emulsion systems. Soluble bound phenolic compounds showed higher antioxidative ability in emulsion system with the order of chickpea > yellow pea > lentil. On the basis of these results, soluble bound phenolic compounds may be considered as a promising natural antioxidant to prevent lipid oxidation in foods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives.

    PubMed

    Deng, Junlin; Xu, Zhou; Xiang, Chunrong; Liu, Jing; Zhou, Lijun; Li, Tian; Yang, Zeshen; Ding, Chunbang

    2017-07-01

    Ultrasonic-assisted extraction (UAE) and maceration extraction (ME) were optimized using response surface methodology (RSM) for total phenolic compounds (TPC) from fresh olives. The main phenolic compounds and antioxidant activity of TPC were also investigated. The optimized result for UAE was 22mL/g of liquid-solid ratio, 47°C of extraction temperature and 30min of extraction time, 7.01mg/g of yielding, and for ME was 24mL/g of liquid-solid ratio, 50°C of extraction temperature and 4.7h of extraction time, 5.18mg/g of yielding. The HPLC analysis revealed that the extracts by UAE and ME possessed 14 main phenolic compounds, and UAE exhibited more amounts of all phenols than ME. The most abundant phenolic compounds in olive extracts were hydroxytyrosol, oleuropein and rutin. Both extracts showed excellent antioxidant activity in a dose-dependent manner. Taken together, UAE could effectively increase the yield of phenolic compounds from olives. In addition these phenolic compounds could be used as a potential source of natural antioxidants. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia marcescens AB 90027.

    PubMed

    Yao, Ri-Sheng; Sun, Min; Wang, Chun-Ling; Deng, Sheng-Song

    2006-09-01

    In this paper, the degradation of phenolic compounds using hydrogen peroxide as oxidizer and the enzyme extract from Serratia marcescens AB 90027 as catalyst was reported. With such an enzyme/H2O2 combination treatment, a high chemical oxygen demand (COD) removal efficiency was achieved, e.g., degradation of hydroquinone exceeded 96%. From UV-visible and IR spectra, the degradation mechanisms were judged as a process of phenyl ring cleavage. HPLC analysis shows that in the degradation p-benzoquinone, maleic acid and oxalic acid were formed as intermediates and that they were ultimately converted to CO2 and H2O. With the enzyme/H2O2 treatment, vanillin, hydroquinone, catechol, o-aminophenol, p-aminophenol, phloroglucinol and p-hydroxybenzaldehyde were readily degraded, whereas the degradation of phenol, salicylic acid, resorcinol, p-cholorophenol and p-nitrophenol were limited. Their degradability was closely related to the properties and positions of their side chain groups. Electron-donating groups, such as -OH, -NH2 and -OCH3 enhanced the degradation, whereas electron-withdrawing groups, such as -NO2, -Cl and -COOH, had a negative effect on the degradation of these compounds in the presence of enzyme/H2O2. Compounds with -OH at ortho and para positions were more readily degraded than those with -OH at meta positions.

  11. Bioremediation of phenolic compounds from water with plant root surface peroxidases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, P.R.; Arora, R.; El Ghaouth, A.

    1994-09-01

    Peroxidases have been shown to polymerize phenolic compounds, thereby removing them from solution by precipitation. Others have studied the role of root surface associated peroxidases as a defense against fungal root pathogens; however, their use in detoxification of organic pollutants in vivo at the root surface has not been studied. Two plant species, waterhyacinth [Eichhornia crassipes (C. Mart) Solms-Laub.] and tomato (Lycopersicon esculentum L.), were tested for both in vitro and in vivo peroxidase activity on the root surface. In vitro studies indicated that root surface peroxidase activities were 181 and 78 nmol tetraguaiacol formed min{sup -1} g{sup -1} rootmore » fresh wt., for tomato and waterhyacinth, respectively. Light microscope studies revealed that guaiacol was polymerized in vivo at the root surface. Although peroxidase was evenly distributed on tomato roots, it was distributed patchily on waterhyacinth roots. In vitro studies using gas chromatography-mass spectrometry (GC-MS) showed that the efficiency of peroxidase to polymerize phenols vary with phenolic compound. We suggest that plants may be utilized as a source of peroxidases for removal of phenolic compounds that are on the EPA priority pollutant list and that root surface peroxidases may minimize the absorption of phenolic compounds into plants by precipitating them at the root surface. In this study we have identified a new use for root-associated proteins in ecologically engineering plant systems for bioremediation of phenolic compounds in the soil and water environment. 25 refs., 2 figs., 2 tabs.« less

  12. Inhibitory Activities of Phenolic Compounds Isolated from Adina rubella Leaves Against 5α-Reductase Associated with Benign Prostatic Hypertrophy.

    PubMed

    Yin, Jun; Heo, Jun Hyeok; Hwang, Yoon Jeong; Le, Thi Tam; Lee, Min Won

    2016-07-07

    Adina rubella Hance (AR), a plant native to Korea, has been used as traditional medicine for dysentery, eczema, intoxication, and external hemorrhages. Previous phytochemical studies of AR have reported several components, including terpenoids, phenolics, and alkaloids. The current study evaluated the anti-oxidative and anti-inflammatory activities and 5α-reductase inhibition of isolated compounds of AR leaves to find a potential therapeutic agent for benign prostatic hypertrophy (BPH). Repeated chromatographic isolation of an 80% acetone extract of AR leaves yielded seven phenolic compounds: caffeic acid (1), chlorogenic acid (2), methyl chlorogenate (3), quercetin-3-rutinoside (4), kaempferol-3-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (5), hyperoside (6), and grandifloroside (7). Compound 7 is a novel compound in AR. Caffeoyl derivatives 1-3 and 7 showed good anti-oxidative activities. In particular, caffeic acid (1) and grandifloroside (7) showed potent anti-inflammatory activities, and 7 also exhibited potent inhibitory activity against TNF-α and 5α-reductase. Our results show that the extract and grandifloroside (7) from leaves of AR might be developed as a source of potent anti-oxidative and anti-inflammatory agents and therapeutic agent for BPH.

  13. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe

    NASA Astrophysics Data System (ADS)

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H.

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp = 200…600 μm, porosity ε = 0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol) = 0 after t = 6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest.

  14. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.

    PubMed

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. Copyright © 2015 Elsevier B.V. All rights

  15. Simultaneous extraction, identification and quantification of phenolic compounds in Eclipta prostrata using microwave-assisted extraction combined with HPLC-DAD-ESI-MS/MS.

    PubMed

    Fang, Xinsheng; Wang, Jianhua; Hao, Jifu; Li, Xueke; Guo, Ning

    2015-12-01

    A simple and rapid method was developed using microwave-assisted extraction (MAE) combined with HPLC-DAD-ESI-MS/MS for the simultaneous extraction, identification, and quantification of phenolic compounds in Eclipta prostrata, a common herb and vegetable in China. The optimized parameters of MAE were: employing 50% ethanol as solvent, microwave power 400 W, temperature 70 °C, ratio of liquid/solid 30 mL/g and extraction time 2 min. Compared to conventional extraction methods, the optimized MAE can avoid the degradation of the phenolic compounds and simultaneously obtained the highest yields of all components faster with less consumption of solvent and energy. Six phenolic acids, six flavonoid glycosides and one coumarin were firstly identified. The phenolic compounds were quantified by HPLC-DAD with good linearity, precision, and accuracy. The extract obtained by MAE showed significant antioxidant activity. The proposed method provides a valuable and green analytical methodology for the investigation of phenolic components in natural plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor: Influence of activated carbons.

    PubMed

    Jeong, Jae-Yong; Lee, Uen-Do; Chang, Won-Seok; Jeong, Soo-Hwa

    2016-11-01

    In this study, palm residues were pyrolyzed in a bench-scale (3kg/h) fast pyrolysis plant equipped with a fluidized bed reactor and bio-oil separation system for the production of bio-oil rich in acetic acid and phenol. Pyrolysis experiments were performed to investigate the effects of reaction temperature and the types and amounts of activated carbon on the bio-oil composition. The maximum bio-oil yield obtained was approximately 47wt% at a reaction temperature of 515°C. The main compounds produced from the bio-oils were acetic acid, hydroxyacetone, phenol, and phenolic compounds such as cresol, xylenol, and pyrocatechol. When coal-derived activated carbon was applied, the acetic acid and phenol yields in the bio-oils reached 21 and 19wt%, respectively. Finally, bio-oils rich in acetic acid and phenol could be produced separately by using an in situ bio-oil separation system and activated carbon as an additive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Variability of Virgin Olive Oil Phenolic Compounds in a Segregating Progeny from a Single Cross in Olea europaea L. and Sensory and Nutritional Quality Implications

    PubMed Central

    Pérez, Ana G.; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos

    2014-01-01

    Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil. PMID:24651694

  18. Variability of virgin olive oil phenolic compounds in a segregating progeny from a single cross in Olea europaea L. and sensory and nutritional quality implications.

    PubMed

    Pérez, Ana G; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos

    2014-01-01

    Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil.

  19. Phenolic Compounds, Antioxidant Activity and Lipid Profile of Huitlacoche Mushroom (Ustilago maydis) Produced in Several Maize Genotypes at Different Stages of Development.

    PubMed

    Valdez-Morales, Maribel; Carlos, L Céspedes; Valverde, María Elena; Ramírez-Chávez, Enrique; Paredes-López, Octavio

    2016-12-01

    Huitlacoche mushroom (composed by the fruiting bodies growing on the maize ears from the basidiomycete Ustilago maydis) is a culinary delicacy with a great economic and nutraceutical value. In this work, phenolic content, antioxidant activity, ergosterol and fatty acids profile from huitlacoche produced in 15 creole and in one hybrid maize genotypes, and harvested at different stages of development were determined. The hybrid crop was studied in raw and cooked samples. Total phenolic content ranged from 415.6 to 921.8.0 mg gallic acid equivalents per 100 g of flour. Samples exhibited attractive antioxidant activities: 75 % of antiradical activity on average by DPPH methodology, and ORAC values up to 7661.3 μmol Trolox equivalents /100  g. Important quantities of ferulic acid, quercetin, ergosterol, linoleic and oleic acids were observed. Stage of development and cooking process had an effect on evaluated compounds, sometimes negative and sometimes positive. Results suggest that huitlacoche is an attractive food source of phenolics with excellent antioxidant potential and interesting lipidic compounds.

  20. Antioxidant activities of aqueous extract from Stevia rebaudiana stem waste to inhibit fish oil oxidation and identification of its phenolic compounds.

    PubMed

    Yu, Hui; Yang, Gangqiang; Sato, Minoru; Yamaguchi, Toshiyasu; Nakano, Toshiki; Xi, Yinci

    2017-10-01

    We investigated the potential for exploiting Stevia rebaudiana stem (SRS) waste as a source of edible plant-based antioxidants finding for the first time that the hot water extract of SRS had significantly higher antioxidant activity against fish oil oxidation than that of the leaf, despite SRS extract having lower total phenolic content, DPPH radical scavenging activity and ORAC values. To locate the major antioxidant ingredients, SRS extract was fractionated using liquid chromatography. Five phenolic compounds (primary antioxidant components in activity-containing fractions) were identified by NMR and HR-ESI-MS: vanillic acid 4-O-β-d-glucopyranoside (1), protocatechuic acid (2), caffeic acid (3), chlorogenic acid (4) and cryptochlorogenic acid (5). Further analysis showed that, among compounds 2-5, protocatechuic acid had the highest capacity to inhibit peroxides formation, but exhibited the lowest antioxidant activities in DPPH and ORAC assays. These results indicate that SRS waste can be used as strong natural antioxidant materials in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Phenolic compounds in hawthorn (Crataegus grayana) fruits and leaves and changes during fruit ripening.

    PubMed

    Liu, Pengzhan; Kallio, Heikki; Yang, Baoru

    2011-10-26

    Phenolics in the fruits and leaves of Crataegus grayana were identified by HPLC-UV-ESI-MS. The contents of these compounds and their changes during autumn were also analyzed. Epicatechin [1-7 mg/g dry mass (DM) in fruits and 1-10 mg/g DM in leaves), procyanidins B2 (2-4 and 1-8 mg/g DM) and C1 (2-4 and 1-8 mg/g DM), hyperoside (0.5-1 and 2-11 mg/g DM), and a quercetin-pentoside (0.3-0.5 and 2-6 mg/g DM) were the major phenolics in both fruits and leaves. C-Glycosyl flavones were present in leaves (2-5 mg/g DM), whereas only trace levels were found in fruits. Ideain and 5-O-caffeoylquinic acid were found only in fruits. An additional 11 phenolics were identified/tentatively identified. Total phenolic contents reached highest levels by the end of August in fruits and by the end of September in leaves. The compositional profiles of phenolics in fruits and leaves of C. grayana were different from those of other Crataegus species.

  2. Structural characterization of phenolic compounds and antioxidant activity of the phenolic-rich fraction from defatted adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed meal.

    PubMed

    Wang, Lifeng; Chen, Chao; Su, Anxiang; Zhang, Yiyi; Yuan, Jian; Ju, Xingrong

    2016-04-01

    The current study aims to investigate the antioxidant activities of various extracts from defatted adlay seed meal (DASM) based on the oxygen radical absorbance capacity (ORAC) assay, peroxyl radical scavenging capacity (PSC) assay and cellular antioxidant activity (CAA) assay. Of all the fractions, the n-butanol fraction exhibited the highest antioxidant activity, followed by crude acetone extract and aqueous fractions. Of the three sub-fractions obtained by Sephadex LH-20 chromatography, sub-fraction 3 possessed the highest antioxidant activity and total phenolic content. There was a strong positive correlation between the total phenolic content and the antioxidant activity. Based on HPLC-DAD-ESI-MS/MS analysis, the most abundant phenolic acid in sub-fraction 3 of DASM was ferulic acid at 67.28 mg/g, whereas the predominant flavonoid was rutin at 41.11 mg/g. Of the major individual compounds in sub-fraction 3, p-coumaric acid exhibited the highest ORAC values, and quercetin exhibited the highest PSC values and CAA values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee.

    PubMed

    Marmet, Cynthia; Actis-Goretta, Lucas; Renouf, Mathieu; Giuffrida, Francesca

    2014-01-01

    Chlorogenic acids and derivatives like phenolic acids are potentially bioactive phenolics, which are commonly found in many foods. Once absorbed, chlorogenic and phenolic acids are highly metabolized by the intestine and the liver, producing glucuronidated and/or sulphated compounds. These metabolites were analyzed in human plasma using a validated liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method. After protein precipitation, phenolic acids and their metabolites were extracted by using ethanol and chromatographic separation was achieved by reversed-phase using an Acquity UPLC BEH C18 column combined with a gradient elution system using 1% acetic acid aqueous solution and 1% acetic acid with 100% acetonitrile. The method was able to quantify 56 different compounds including 24 phenolic acids, 4 lactones, 15 sulfates and 13 glucuronides metabolites between 5 and 1000nM in plasma for most of them, except for m-dihydrocoumaric acid, 5-ferulloylquinic-glucuronide, 4-methoxycinnamic acid, 3-phenylpropionic acid, 3-(4-methoxyphenyl)propionic acid (25 to 1000nM) and p-dihydrocoumaric acid (50-1000nM). Values of repeatability and intermediate reproducibility were below 15% of deviation in general, and maximum 20% for the lowest concentrations. The validated method was successfully applied to quantify phenolic acids and their metabolites in plasma obtained after oral ingestion of soluble coffee. In conclusion, the developed and validated method is proved to be very sensitive, accurate and precise for the quantification of these possible dietary phenols. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum usitatissimum L.) seeds.

    PubMed

    Corbin, Cyrielle; Fidel, Thibaud; Leclerc, Emilie A; Barakzoy, Esmatullah; Sagot, Nadine; Falguiéres, Annie; Renouard, Sullivan; Blondeau, Jean-Philippe; Ferroud, Clotilde; Doussot, Joël; Lainé, Eric; Hano, Christophe

    2015-09-01

    Flaxseed accumulates in its seedcoat a macromolecular complex composed of lignan (secoisolariciresinol diglucoside, SDG), flavonol (herbacetin diglucoside, HDG) and hydroxycinnamic acids (p-couramic, caffeic and ferulic acid glucosides). Their antioxidant and/or cancer chemopreventive properties support their interest in human health and therefore, the demand for their extraction. In the present study, ultrasound-assisted extraction (UAE) of flaxseed phenolic compounds was investigated. Scanning Electron Microscopy imaging and histochemical analysis revealed the deep alteration of the seedcoat ultrastructure and the release of the mucilage following ultrasound treatment. Therefore, this method was found to be very efficient for the reduction of mucilage entrapment of flaxseed phenolics. The optimal conditions for UAE phenolic compounds extraction from flaxseeds were found to be: water as solvent supplemented with 0.2N of sodium hydroxide for alkaline hydrolysis of the SDG-HMG complex, an extraction time of 60 min at a temperature of 25°C and an ultrasound frequency of 30 kHz. Under these optimized and validated conditions, highest yields of SDG, HDG and hydroxycinnamic acid glucosides were detected in comparison to other published methods. Therefore, the procedure presented herein is a valuable method for efficient extraction and quantification of the main flaxseed phenolics. Moreover, this UAE is of particular interest within the context of green chemistry in terms of reducing energy consumption and valuation of flaxseed cakes as by-products resulting from the production of flax oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Changes in Phenolic Acid Content in Maize during Food Product Processing.

    PubMed

    Butts-Wilmsmeyer, Carrie J; Mumm, Rita H; Rausch, Kent D; Kandhola, Gurshagan; Yana, Nicole A; Happ, Mary M; Ostezan, Alexandra; Wasmund, Matthew; Bohn, Martin O

    2018-04-04

    The notion that many nutrients and beneficial phytochemicals in maize are lost due to food product processing is common, but this has not been studied in detail for the phenolic acids. Information regarding changes in phenolic acid content throughout processing is highly valuable because some phenolic acids are chemopreventive agents of aging-related diseases. It is unknown when and why these changes in phenolic acid content might occur during processing, whether some maize genotypes might be more resistant to processing induced changes in phenolic acid content than other genotypes, or if processing affects the bioavailability of phenolic acids in maize-based food products. For this study, a laboratory-scale processing protocol was developed and used to process whole maize kernels into toasted cornflakes. High-throughput microscale wet-lab analyses were applied to determine the concentrations of soluble and insoluble-bound phenolic acids in samples of grain, three intermediate processing stages, and toasted cornflakes obtained from 12 ex-PVP maize inbreds and seven hybrids. In the grain, insoluble-bound ferulic acid was the most common phenolic acid, followed by insoluble-bound p-coumaric acid and soluble cinnamic acid, a precursor to the phenolic acids. Notably, the ferulic acid content was approximately 1950 μg/g, more than ten-times the concentration of many fruits and vegetables. Processing reduced the content of the phenolic acids regardless of the genotype. Most changes occurred during dry milling due to the removal of the bran. The concentration of bioavailable soluble ferulic and p-coumaric acid increased negligibly due to thermal stresses. Therefore, the current dry milling based processing techniques used to manufacture many maize-based foods, including breakfast cereals, are not conducive for increasing the content of bioavailable phenolics in processed maize food products. This suggests that while maize is an excellent source of phenolics, alternative

  6. An Innovative Porous Nanocomposite Material for the Removal of Phenolic Compounds from Aqueous Solutions.

    PubMed

    Turco, Antonio; Monteduro, Anna Grazia; Mazzotta, Elisabetta; Maruccio, Giuseppe; Malitesta, Cosimino

    2018-05-16

    Energy efficient, low-cost, user-friendly, and green methods for the removal of toxic phenolic compounds from aqueous solution are necessary for waste treatment in industrial applications. Herein we present an interesting approach for the utilization of oxidized carbon nanotubes (CNTs) in the removal of phenolic compounds from aqueous solution. Dried pristine CNTs were stably incorporated in a solid porous support of polydimethylsiloxane (PDMS) facilitating the handling during both oxidation process of the nanomaterial and uptake of phenolic compounds, and enabling their safe disposal, avoiding expensive post-treatment processes. The adsorption studies indicated that the materials can efficiently remove phenolic compounds from water with different affinities towards different phenolic compounds. Furthermore, the adsorption kinetics and isotherms were studied in detail. The experimental data of adsorption fitted well with Langmuir and Freundlich isotherms, and pseudo-second-order kinetics, and the results indicated that the adsorption process was controlled by a two-step intraparticle diffusion model. The incorporation of CNTs in polymeric matrices did not affect their functionality in phenol uptake. The material was also successfully used for the removal of phenolic compounds from agricultural waste, suggesting its possible application in the treatment of wastewater. Moreover, the surface of the material could be regenerated, decreasing treatment costs.

  7. LC-MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting.

    PubMed

    Terpinc, Petra; Cigić, Blaž; Polak, Tomaž; Hribar, Janez; Požrl, Tomaž

    2016-11-01

    The impact of malting on the profile of the phenolic compounds and the antioxidant properties of two buckwheat varieties was investigated. The highest relative increases in phenolic compounds were observed for isoorientin, orientin, and isovitexin, which are consequently major inducible phenolic compounds during malting. Only a minor relative increase was observed for the most abundant phenolic compound, rutin. The radical-scavenging activity of buckwheat seeds was evaluated using ABTS and DPPH assays. A considerable increase in total phenolic compounds and higher antioxidant activity were observed after 64h of germination, whereas kilning resulted in decreased total phenolic compounds and antioxidant activity. Higher antioxidant activities for extracts were found for buffered solvents than for pure methanol and water. Changes in the composition of the phenolic compounds and increased antioxidant content were confirmed by several methods, indicating that buckwheat malt can be used as a food rich in antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development and application of UHPLC-MS/MS method for the determination of phenolic compounds in Chamomile flowers and Chamomile tea extracts.

    PubMed

    Nováková, Lucie; Vildová, Anna; Mateus, Joana Patricia; Gonçalves, Tiago; Solich, Petr

    2010-09-15

    UHPLC-MS/MS method using BEH C18 analytical column was developed for the separation and quantitation of 12 phenolic compounds of Chamomile (Matricaria recutita L.). The separation was accomplished using gradient elution with mobile phase consisting of methanol and formic acid 0.1%. ESI in both positive and negative ion mode was optimized with the aim to reach high sensitivity and selectivity for quantitation using SRM experiment. ESI in negative ion mode was found to be more convenient for quantitative analysis of all phenolics except of chlorogenic acid and kaempherol, which demonstrated better results of linearity, accuracy and precision in ESI positive ion mode. The results of method validation confirmed, that developed UHPLC-MS/MS method was convenient and reliable for the determination of phenolic compounds in Chamomile extracts with linearity >0.9982, accuracy within 76.7-126.7% and precision within 2.2-12.7% at three spiked concentration levels. Method sensitivity expressed as LOQ was typically 5-20 nmol/l. Extracts of Chamomile flowers and Chamomile tea were subjected to UHPLC-MS/MS analysis. The most abundant phenolic compounds in both Chamomile flowers and Chamomile tea extracts were chlorogenic acid, umbelliferone, apigenin and apigenin-7-glucoside. In Chamomile tea extracts there was greater abundance of flavonoid glycosides such as rutin or quercitrin, while the aglycone apigenin and its glycoside were present in lower amount. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid.

    PubMed

    Piazzon, A; Vrhovsek, U; Masuero, D; Mattivi, F; Mandoj, F; Nardini, M

    2012-12-19

    The main metabolites of caffeic and ferulic acids (ferulic acid-4'-O-sulfate, caffeic acid-4'-O-sulfate, and caffeic acid-3'-O-sulfate), the most representative phenolic acids in fruits and vegetables, and the acyl glucuronide of ferulic acid were synthesized, purified, and tested for their antioxidant activity in comparison with those of their parent compounds and other related phenolics. Both the ferric reducing antioxidant power (FRAP) assay and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging method were used. Ferulic acid-4'-O-sulfate and ferulic acid-4'-O-glucuronide exhibited very low antioxidant activity, while the monosulfate derivatives of caffeic acid were 4-fold less efficient as the antioxidant than caffeic acid. The acyl glucuronide of ferulic acid showed strong antioxidant action. The antioxidant activity of caffeic acid-3'-O-glucuronide and caffeic acid-4'-O-glucuronide was also studied. Our results demonstrate that some of the products of phenolic acid metabolism still retain strong antioxidant properties. Moreover, we first demonstrate the ex vivo synthesis of the acyl glucuronide of ferulic acid by mouse liver microsomes, in addition to the phenyl glucuronide.

  10. Phenolic constituents of shea (Vitellaria paradoxa) kernels.

    PubMed

    Maranz, Steven; Wiesman, Zeev; Garti, Nissim

    2003-10-08

    Analysis of the phenolic constituents of shea (Vitellaria paradoxa) kernels by LC-MS revealed eight catechin compounds-gallic acid, catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin, gallocatechin gallate, and epigallocatechin gallate-as well as quercetin and trans-cinnamic acid. The mean kernel content of the eight catechin compounds was 4000 ppm (0.4% of kernel dry weight), with a 2100-9500 ppm range. Comparison of the profiles of the six major catechins from 40 Vitellaria provenances from 10 African countries showed that the relative proportions of these compounds varied from region to region. Gallic acid was the major phenolic compound, comprising an average of 27% of the measured total phenols and exceeding 70% in some populations. Colorimetric analysis (101 samples) of total polyphenols extracted from shea butter into hexane gave an average of 97 ppm, with the values for different provenances varying between 62 and 135 ppm of total polyphenols.

  11. The roasting process does not influence the extent of conjugation of coffee chlorogenic and phenolic acids.

    PubMed

    Sanchez-Bridge, Belén; Renouf, Mathieu; Sauser, Julien; Beaumont, Maurice; Actis-Goretta, Lucas

    2016-05-01

    Understanding the bioavailability and metabolism of coffee compounds will contribute to identify the unknown biological mechanism(s) linked to their beneficial effects. The influence of the roasting process on the metabolism of coffee chlorogenic acids in humans was evaluated. In a randomized, double-blind, crossover study, 12 healthy volunteers consumed four instant coffees namely, high roasted coffee (HRC), low roasted coffee (LRC), unroasted coffee (URC), and in vitro hydrolyzed unroasted coffee (HURC). The sum of areas under the curve (AUC) ranged from 8.65-17.6 to 30.9-126 µM/h (P < 0.05) for HRC, LRC, URC, and HURC, respectively. The AUC of HRC, LRC, and URC was correlated with the initial level of phenolic acids in the coffee drinks. Despite different absorption rates, the extent of conjugation was comparable between HRC, LRC, and URC coffees but different for HURC. The most abundant circulating metabolites during the first 5 H were dihydroferulic acid (DHFA), caffeic acid-3'-O-sulfate (CA3S) and isoferulic-3'-O-glucuronide (iFA3G). DHFA and 5-4-dihydro-m-coumaric acid (mDHCoA) were the main metabolites in the period of 5-24 H. The phenolic compounds after consumption of HURC were most rapidly absorbed (Tmax 1 H) compared with the other coffees (Tmax between 9 and 11 H). Using coffees with different degrees of roasting we highlighted that in spite of different absorption rates the extent of conjugation of phenolic acids was comparable. In addition, by using a hydrolyzed unroasted coffee we demonstrated an increased absorption of phenolic acids in the small intestine. © 2016 BioFactors, 42(3):259-267, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  12. Characterization of phenolic compounds in Pinus laricio needles and their responses to prescribed burnings.

    PubMed

    Cannac, Magali; Pasqualini, Vanina; Greff, Stéphane; Fernandez, Catherine; Ferrat, Lila

    2007-07-30

    Fire is a dominant ecological factor in Mediterranean-type ecosystems. Management strategies include prescribed (controlled) burning, which has been used in the management of several species, such as Pinus nigra ssp laricio var. Corsicana, a pine endemic to Corsica of great ecological and economic importance. The effects of prescribed burning on Pinus laricio have been little studied. The first aim of this study was to characterize total and simple phenolic compounds in Pinus laricio. The second aim was to understand: i) the short term (one to three months) and medium term (three years) effects of prescribed burning, and ii) the effects of periodic prescribed burning on the production of phenolic compounds in Pinus laricio. The first result of this study is the presence of total and simple phenolic compounds in the needles of Pinus laricio. 3-Vanillyl propanol is the major compound. After a prescribed burning, the synthesis of total phenolic compounds increases in Pinus laricio for a period of three months. Total phenolic compounds could be used as bioindicators for the short-term response of Pinus laricio needles to prescribed burning. Simple phenolic compounds do not seem to be good indicators of the impact of prescribed burning because prescribed burnings are low in intensity.

  13. Characterization of phenolic compounds in Helichrysum melaleucum by high-performance liquid chromatography with on-line ultraviolet and mass spectrometry detection.

    PubMed

    Gouveia, Sandra C; Castilho, Paula C

    2010-07-15

    Helicrysum melaleucum is a medicinal plant traditionally used in the islands of the Macaronesia region for the treatment of respiratory diseases. In this work, the phenolic compounds of Helicrysum melaleucum plants collected in different geographical locations of Madeira Island and their morphological parts (total aerial parts, leaves, flowers and stems) were extracted and analyzed separately by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-DAD/ESI-MS(n)). A total of 68 compounds were characterized based mainly on their UV and mass spectra. These included derivatives of O-glycosylated flavonoids (flavonol and flavones type), quinic acid, caffeic acid, lignans and polyphenols. The flowers were found to be the morphological part with higher variety of phenolic compounds. The large differences in the phenolic composition of plants collected from different geographical locations allowed the identification of a few components, such as pinoresinol and methoxylated flavone derivatives, likely to be useful as geographical markers. Also, these results promote further comparison of the bioactivities of the different samples analyzed. This paper marks the first report on the chemical analysis of Helichrysum melaleucum species. Copyright 2010 John Wiley & Sons, Ltd.

  14. Association between Dietary Phenolic Acids and Hypertension in a Mediterranean Cohort.

    PubMed

    Godos, Justyna; Sinatra, Dario; Blanco, Isabella; Mulè, Serena; La Verde, Melania; Marranzano, Marina

    2017-09-27

    Certain foods rich in phenolic acids have been shown to reduce the risk of hypertension, but evidence from epidemiological studies focused on dietary phenolic acid intake is scarce. The aim of this study was to determine the association between dietary phenolic acid intake, as well as their major food sources, and hypertension in a Mediterranean cohort. Demographic and dietary data of 2044 adults living in Southern Italy were collected. Food frequency questionnaires and Phenol-Explorer were used to calculate dietary intake of polyphenols. Multivariate logistic regression analyses were used to test associations. The mean intake of total phenolic acids in the cohort was 362.6 mg/day. Individuals in the highest quartile of phenolic acid intake (median intake = 522.2 mg/day) were less likely to have hypertension (OR (odds ratio) = 0.68, 95% CI (confidence interval): 0.46, 1.00). When taking into account individual subclasses of phenolic acids, only hydroxyphenylacetic acid was inversely associated with hypertension (highest vs. lowest quartile, OR = 0.63, 95% CI: 0.40, 0.96). Among dietary sources of phenolic acids considered in the analysis, only beer was significantly inversely associated with hypertension (highest vs. lowest quartile, OR = 0.32, 95% CI: 0.15, 0.68). The findings of this study suggest that dietary phenolic acids may be inversely associated with hypertension, irrespectively of their dietary source.

  15. Efficient quantification of the health-relevant anthocyanin and phenolic acid profiles in commercial cultivars and breeding selections of blueberries ( Vaccinium spp.).

    PubMed

    Yousef, Gad G; Brown, Allan F; Funakoshi, Yayoi; Mbeunkui, Flaubert; Grace, Mary H; Ballington, James R; Loraine, Ann; Lila, Mary A

    2013-05-22

    Anthocyanins and phenolic acids are major secondary metabolites in blueberry with important implications for human health maintenance. An improved protocol was developed for the accurate, efficient, and rapid comparative screening for large blueberry sample sets. Triplicates of six commercial cultivars and four breeding selections were analyzed using the new method. The compound recoveries ranged from 94.2 to 97.5 ± 5.3% when samples were spiked with commercial standards prior to extraction. Eighteen anthocyanins and 4 phenolic acids were quantified in frozen and freeze-dried fruits. Large variations for individual and total anthocyanins, ranging from 201.4 to 402.8 mg/100 g, were assayed in frozen fruits. The total phenolic acid content ranged from 23.6 to 61.7 mg/100 g in frozen fruits. Across all genotypes, freeze-drying resulted in minor reductions in anthocyanin concentration (3.9%) compared to anthocyanins in frozen fruits. However, phenolic acids increased by an average of 1.9-fold (±0.3) in the freeze-dried fruit. Different genotypes frequently had comparable overall levels of total anthocyanins and phenolic acids, but differed dramatically in individual profiles of compounds. Three of the genotypes contained markedly higher concentrations of delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, and malvidin 3-O-glucoside, which have previously been implicated as bioactive principles in this fruit. The implications of these findings for human health benefits are discussed.

  16. Isolation of four phenolic compounds from Mangifera indica L. flowers by using normal phase combined with elution extrusion two-step high speed countercurrent chromatography.

    PubMed

    Shaheen, Nusrat; Lu, Yanzhen; Geng, Ping; Shao, Qian; Wei, Yun

    2017-03-01

    Two-step high speed countercurrent chromatography method, following normal phase and elution-extrusion mode of operation by using selected solvent systems, was introduced for phenolic compounds separation. Phenolic compounds including gallic acid, ethyl gallate, ethyl digallate and ellagic acid were separated from the ethanol extract of mango (Mangifera indica L.) flowers for the first time. In the first step, gallic acid of 3.7mg and ethyl gallate of 3.9mg with the purities of 98.87% and 99.55%, respectively, were isolated by using hexane-ethylacetate-methanol-water (4:6:4:6, v/v) in normal phase high speed countercurrent chromatography from 200mg of crude extract, while ethyl digallate and ellagic acid were collected in the form of mixture fraction. In the second step, further purification of the mixture was carried out with the help of another selected solvent system of dichloromethane-methanol-water (4:3:2, v/v) following elusion-extrusion mode of operation. Ethyl digallate of 3.8mg and ellagic acid of 5.7mg were separated well with high purities of 98.68% and 99.71%, respectively. The separated phenolic compounds were identified and confirmed by HPLC, UPLC-QTOF/ESI-MS, 1 H and 13 C NMR spectrometric analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Phenolic compounds from red wine and coffee are associated with specific intestinal microorganisms in allergic subjects.

    PubMed

    Cuervo, Adriana; Hevia, Arancha; López, Patricia; Suárez, Ana; Diaz, Carmen; Sánchez, Borja; Margolles, Abelardo; González, Sonia

    2016-01-01

    The dietary modulation of gut microbiota, suggested to be involved in allergy processes, has recently attracted much interest. While several studies have addressed the use of fibres to modify intestinal microbial populations, information about other components, such as phenolic compounds, is scarce. The aim of this work was to identify the dietary components able to influence the microbiota in 23 subjects suffering from rhinitis and allergic asthma, and 22 age- and sex-matched controls. The food intake was recorded by means of an annual food frequency questionnaire. Dietary fibre tables were obtained from Marlett et al., and the Phenol-Explorer database was used to assess the phenolic compound intake. The quantification of microbial groups was performed using an Ion Torrent 16S rRNA gene-based analysis. The results showed a direct association between the intake of red wine, a source of stilbenes, and the relative abundance of Bacteroides, and between the intake of coffee, rich in phenolic acids, and the abundance of Clostridium, Lactococcus and Lactobacillus genera. Despite epidemiological analyses not establishing causality, these results support the association between polyphenol-rich beverages and faecal microbiota in allergic patients.

  18. Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens.

    PubMed Central

    Lee, Y W; Jin, S; Sim, W S; Nester, E W

    1995-01-01

    The virulence (vir) genes of Agrobacterium tumefaciens are induced by low-molecular-weight phenolic compounds and monosaccharides through a two-component regulatory system consisting of the VirA and VirG proteins. However, it is not clear how the phenolic compounds are sensed by the VirA/VirG system. We tested the vir-inducing abilities of 15 different phenolic compounds using four wild-type strains of A. tumefaciens--KU12, C58, A6, and Bo542. We analyzed the relationship between structures of the phenolic compounds and levels of vir gene expression in these strains. In strain KU12, vir genes were not induced by phenolic compounds containing 4'-hydroxy, 3'-methoxy, and 5'-methoxy groups, such as acetosyringone, which strongly induced vir genes of the other three strains. On the other hand, vir genes of strain KU12 were induced by phenolic compounds containing only a 4'-hydroxy group, such as 4-hydroxyacetophenone, which did not induce vir genes of the other three strains. The vir genes of strains KU12, A6, and Bo542 were all induced by phenolic compounds containing 4'-hydroxy and 3'-methoxy groups, such as acetovanillone. By transferring different Ti plasmids into isogenic chromosomal backgrounds, we showed that the phenolic-sensing determinant is associated with Ti plasmid. Subcloning of Ti plasmid indicates that the virA locus determines which phenolic compounds can function as vir gene inducers. These results suggest that the VirA protein directly senses the phenolic compounds for vir gene activation. PMID:8618878

  19. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography.

    PubMed

    Geng, Ping; Fang, Yingtong; Xie, Ronglong; Hu, Weilun; Xi, Xingjun; Chu, Qiao; Dong, Genlai; Shaheen, Nusrat; Wei, Yun

    2017-02-01

    Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid-phase extraction with high-speed counter-current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid-phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid-phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two-phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid-phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p-coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution-extrusion counter-current chromatography and back-extrusion counter-current chromatography were compared. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Identification and Quantification of Avenanthramides and Free and Bound Phenolic Acids in Eight Cultivars of Husked Oat ( Avena sativa L) from Finland.

    PubMed

    Multari, Salvatore; Pihlava, Juha-Matti; Ollennu-Chuasam, Priscilla; Hietaniemi, Veli; Yang, Baoru; Suomela, Jukka-Pekka

    2018-03-21

    Finland is the second largest oat producer in Europe. Despite the existing knowledge of phenolics in oat, there is little information on the phenolic composition of oats from Finland. The aim of the study was to investigate the concentrations of free and bound phenolic acids, as well as avenanthramides in eight Finnish cultivars of husked oat ( Avena sativa L.). Seven phenolic acids and one phenolic aldehyde were identified, including, in decreasing order of abundance: p-coumaric, ferulic, cinnamic, syringic, vanillic, 2,4-dihydroxybenzoic, and o-coumaric acids and syringaldehyde. Phenolic acids were mostly found as bound compounds. Significant varietal differences ( p < 0.05) were observed in the cumulative content of phenolic acids, with the lowest level found in cv. 'Viviana' (1202 ± 52.9 mg kg -1 ) and the highest in cv. 'Akseli' (1687 ± 80.2 mg kg -1 ). Avenanthramides (AVNs) 2a, 2p, and 2f were the most abundant. Total AVNs levels ranged from 26.7 ± 1.44 to 185 ± 12.5 mg kg -1 in cv. 'Avetron' and 'Viviana', respectively.

  1. Phenolic Compounds and Expression of 4CL Genes in Silver Birch Clones and Pt4CL1a Lines

    PubMed Central

    Sutela, Suvi; Hahl, Terhi; Tiimonen, Heidi; Aronen, Tuija; Ylioja, Tiina; Laakso, Tapio; Saranpää, Pekka; Chiang, Vincent; Julkunen-Tiitto, Riitta; Häggman, Hely

    2014-01-01

    A small multigene family encodes 4-coumarate:CoA ligases (4CLs) catalyzing the CoA ligation of hydroxycinnamic acids, a branch point step directing metabolites to a flavonoid or monolignol pathway. In the present study, we examined the effect of antisense Populus tremuloides 4CL (Pt4CL1) to the lignin and soluble phenolic compound composition of silver birch (Betula pendula) Pt4CL1a lines in comparison with non-transgenic silver birch clones. The endogenous expression of silver birch 4CL genes was recorded in the stems and leaves and also in leaves that were mechanically injured. In one of the transgenic Pt4CL1a lines, the ratio of syringyl (S) and guaiacyl (G) lignin units was increased. Moreover, the transcript levels of putative silver birch 4CL gene (Bp4CL1) were reduced and contents of cinnamic acid derivatives altered. In the other two Pt4CL1a lines changes were detected in the level of individual phenolic compounds. However, considerable variation was found in the transcript levels of silver birch 4CLs as well as in the concentration of phenolic compounds among the transgenic lines and non-transgenic clones. Wounding induced the expression of Bp4CL1 and Bp4CL2 in leaves in all clones and transgenic lines, whereas the transcript levels of Bp4CL3 and Bp4CL4 remained unchanged. Moreover, minor changes were detected in the concentrations of phenolic compounds caused by wounding. As an overall trend the wounding decreased the flavonoid content in silver birches and increased the content of soluble condensed tannins. The results indicate that by reducing the Bp4CL1 transcript levels lignin composition could be modified. However, the alterations found among the Pt4CL1a lines and the non-transgenic clones were within the natural variation of silver birches, as shown in the present study by the clonal differences in the transcripts levels of 4CL genes, soluble phenolic compounds and condensed tannins. PMID:25502441

  2. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts.

    PubMed

    Valdez-Morales, Maribel; Espinosa-Alonso, Laura Gabriela; Espinoza-Torres, Libia Citlali; Delgado-Vargas, Francisco; Medina-Godoy, Sergio

    2014-06-11

    The phenolic content and antioxidant and antimutagenic activities from the peel and seeds of different tomato types (grape, cherry, bola and saladette type), and simulated tomato industrial byproducts, were studied. Methanolic extracts were used to quantify total phenolic content, groups of phenolic compounds, antioxidant activities, and the profile of phenolic compounds (by HPLC-DAD). Antimutagenic activity was determined by Salmonella typhimurium assay. The total phenolic content and antioxidant activity of tomato and tomato byproducts were comparable or superior to those previously reported for whole fruit and tomato pomace. Phenolic compounds with important biological activities, such as caffeic acid, ferulic acid, chlorogenic acids, quercetin-3-β-O-glycoside, and quercetin, were quantified. Differences in all phenolic determinations due to tomato type and part of the fruit analyzed were observed, peel from grape type showing the best results. Positive antimutagenic results were observed in all samples. All evaluated materials could be used as a source of potential nutraceutical compounds.

  3. Mixture-amount design and response surface modeling to assess the effects of flavonoids and phenolic acids on developmental performance of Anastrepha ludens.

    PubMed

    Pascacio-Villafán, Carlos; Lapointe, Stephen; Williams, Trevor; Sivinski, John; Niedz, Randall; Aluja, Martín

    2014-03-01

    Host plant resistance to insect attack and expansion of insect pests to novel hosts may to be modulated by phenolic compounds in host plants. Many studies have evaluated the role of phenolics in host plant resistance and the effect of phenolics on herbivore performance, but few studies have tested the joint effect of several compounds. Here, we used mixture-amount experimental design and response surface modeling to study the effects of a variety of phenolic compounds on the development and survival of Mexican fruit fly (Anastrepha ludens [Loew]), a notorious polyphagous pest of fruit crops that is likely to expand its distribution range under climate change scenarios. (+)- Catechin, phloridzin, rutin, chlorogenic acid, and p-coumaric acid were added individually or in mixtures at different concentrations to a laboratory diet used to rear individuals of A. ludens. No effect was observed with any mixture or concentration on percent pupation, pupal weight, adult emergence, or survival from neonate larvae to adults. Larval weight, larval and pupal developmental time, and the prevalence of adult deformities were affected by particular mixtures and concentrations of the compounds tested. We suggest that some combinations/concentrations of phenolic compounds could contribute to the management of A. ludens. We also highlight the importance of testing mixtures of plant secondary compounds when exploring their effects upon insect herbivore performance, and we show that mixture-amount design is a useful tool for this type of experiments.

  4. Characterisation of phenolic compounds by UPLC-QTOF-MS/MS of geopropolis from the stingless bee Melipona subnitida (jandaíra).

    PubMed

    de Souza, Silvana Alves; da Silva, Telma Maria Guedes; da Silva, Eva Monica Sarmento; Camara, Celso Amorim; Silva, Tania Maria Sarmento

    2018-05-17

    Melipona subnitida Ducke (jandaíra) is a stingless bee native to north-eastern Brazil, which produces geopropolis, a mixture of beeswax, plant resins, pollens and earth that is used for sealing beehives. To extend the knowledge on phenolic compounds in fractions obtained by C18-solid phase extraction (SPE) of nine geopropolis samples from Melipona subnitida collected at different times. Chromatographic profiles of nine samples of geopropolis from jandaíra were analysed by ultra-performance liquid chromatography coupled with a diode array detector and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF-MS/MS) and combined with the use of data-independent acquisition (MSE) for the profiling and structural characterisation of the phenolic compounds. The isolated compound was identified by nuclear magnetic resonance of hydrogen and carbon ( 1 H- and 13 C-NMR). The present study with geopropolis of jandaíra resulted in the characterisation of 51 phenolics by UPLC-DAD-QTOF-MS/MS: four galloyl glucosides, one ellagic acid, 11 acyl-hexosides, 23 acyl-galloyl-hexosides and 12 flavonoids. The structures of two compounds (1,6-di-O-(E)-coumaroyl-2-O-galloyl-β-d-glucopyranoside and 1-O-cinnamoyl-6-O-(E)-coumaroyl-2-O-galloyl-β-d-glucopyranoside) were established by 1 H and the attached proton test (APT) experiments as well as high-resolution electrospray ionisation mass spectroscopy (HR-ESI-MS) analysis. The geopropolis of jandaíra showed phenolic compounds galloyl hexosides, ellagic acid, acyl-(cinnamoyl/coumaroyl)-hexosides, acyl-(cinnamoyl/coumaroyl)-galloyl-hexosides and flavonoids (aglycones and acylated-O-glycosides). Copyright © 2018 John Wiley & Sons, Ltd.

  5. Molecularly imprinted solid-phase extraction combined with high performance liquid chromatography for analysis of phenolic compounds from environmental water samples.

    PubMed

    Feng, Qin-Zhong; Zhao, Li-Xia; Yan, Wei; Lin, Jin-Ming; Zheng, Zhi-Xia

    2009-08-15

    The molecularly imprinted bulk polymer with 2,4,6-trichlorophenol (2,4,6-TCP) as the template molecule and methylacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA) as functional monomer and the crosslinker, respectively, has been prepared and applied to the molecularly imprinted solid-phase extraction (MISPE) procedure for selective preconcentration of phenolic compounds from environmental water samples. Various parameters affecting the extraction efficiency of the polymer have been evaluated to optimize the selective preconcentration of the phenolic compounds from aqueous samples. The characteristics of the MISPE method were validated by HPLC. The recoveries ranged between 90% and 98% (RSD: 0.9-2.3%, n=3) for tap water, between 85% and 105% (RSD: 2.6-4.9%, n=3) for river water, between 78% and 98% (RSD: 2.6-5.4%, n=3) for sewage water fortified with 0.4 mg L(-1) of phenol, 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP), pentachlorophenol (PCP). It was demonstrated that this MISPE-HPLC method could be applied to direct preconcentration and determination of phenolic compounds in environmental water samples.

  6. Oxidation of phenolic acids by soil iron and manganese oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, R.G.; Cheng, H.H.; Harsh, J.B.

    Phenolic acids are intermediary metabolites of many aromatic chemicals and may be involved in humus formation, allelopathy, and nutrient availability. Depending on their structures, six phenolic acids were shown to react at different rates with oxidized forms of Fe and Mn in a Palouse soil (fine-silty, mixed, mesic Pachic Ultic Haploxeroll). Increasing methoxy substitution on the aromatic ring of phenolic acids increased the reaction rate. Reaction rate was also increased for longer carboxyl-containing side chains. After 4 h reaction, little of the applied (10 mg kg/sup -1/ soil) p-hydroxybenzoic or p-coumaric acids had reacted, while 0 to 5, 70, 90,more » and 100% of the vanillic, ferulic, syringic, and sinapic acids, respectively, had reacted. After 72 h under conditions limiting microbial growth, none of the p-hydroxybenzoic, 30% of the p-coumaric, and 50% of the vanillic acids had reacted. The reaction was shown to be predominantly chemical, and not biological, since phenolic acid extractabilities were similar for Palouse soil and for Palouse soil pretreated with LiOBr to remove organic matter. When the Palouse soil was pretreated with a sodium dithionite-citrate solution to remove Fe and Mn oxides, none of the phenolic acids reacted after 1 h. The reaction of sinapic acid with Palouse soil was shown to produce Fe(II) and soluble Mn as reaction products. The reaction of phenolic acids with soil was thus shown to be an oxidation of the phenolic acids, coupled with a reduction of soil Fe and Mn oxides.« less

  7. Phenolic acid esterases, coding sequences and methods

    DOEpatents

    Blum, David L.; Kataeva, Irina; Li, Xin-Liang; Ljungdahl, Lars G.

    2002-01-01

    Described herein are four phenolic acid esterases, three of which correspond to domains of previously unknown function within bacterial xylanases, from XynY and XynZ of Clostridium thermocellum and from a xylanase of Ruminococcus. The fourth specifically exemplified xylanase is a protein encoded within the genome of Orpinomyces PC-2. The amino acids of these polypeptides and nucleotide sequences encoding them are provided. Recombinant host cells, expression vectors and methods for the recombinant production of phenolic acid esterases are also provided.

  8. Phenolic compounds from the flowers of Nepalese medicinal plant Aconogonon molle and their DPPH free radical-scavenging activities.

    PubMed

    Joshi, Khem Raj; Devkota, Hari Prasad; Watanabe, Takashi; Yahara, Shoji

    2014-01-01

    Eleven phenolic compounds, quercetin (1), quercetin 3-O-β-d-galactopyranoside (2), quercetin 3-O-(6″-O-galloyl)-β-d-galactopyranoside (3), quercetin 3-O-(6″-O-caffeoyl)-β-d-galactopyranoside (4), quercetin 3-O-β-d-glucopyranoside (5), rutin (6) quercetin 3-O-α-l-arabinopyranoside (7), quercetin 3-O-α-l-arabinofuranoside (8), protocatechulic acid (9), gallic acid (10) and chlorogenic acid (11), were isolated from the flowers of Aconogonon molle, a Nepalese medicinal plant. Structures of these compounds were elucidated on the basis of spectroscopic methods. All these compounds were isolated for the first time from flowers, and five compounds (4, 5, 8, 9 and 11) were isolated for the first time from A. molle. All of these isolated compounds were evaluated for their in vitro antioxidant activity by using the 1,1-diphenyl-2-picrylhydrazyl radical-scavenging method. Quercetin (1), quercetin glycosides (2-8) and gallic acid (10) exhibited potent antioxidant activity.

  9. Phenolic compounds of Pinus laricio needles: a bioindicator of the effects of prescribed burning in function of season.

    PubMed

    Cannac, Magali; Pasqualini, Vanina; Barboni, Toussaint; Morandini, Frederic; Ferrat, Lila

    2009-07-15

    Fire is a dominant ecological factor in Mediterranean-type ecosystems. Forest management includes many preventive tools, in particular for fire prevention, such as mechanical treatments and prescribed burning. Prescribed burning is a commonly used method for treating fuel loads, but fuel reduction targets for reducing wildfire hazards must be balanced against fuel retention targets in order to maintain habitat and other forest functions. This approach was used on Pinus nigra ssp laricio var. Corsicana, a pine endemic to Corsica of great ecological and economic importance. Many studies of plant phenolic compounds have been carried out concerning responses to various stresses. The aim of this study was to understand i) the effects of prescribed burning 1 to 16 months later and ii) the effects of the seasonality of burning, spring or fall, on the production of phenolic compounds in Pinus laricio. After prescribed burning conducted in spring, Pinus laricio increases the synthesis of total phenolic compounds for a period of 7 months. The increase is greater after spring-burning than fall-burning. With regard to simple phenols, only dihydroferulic acid responds about 1 year after both types of prescribed burning. The causes of these increases are discussed in this paper. Total phenolic compounds could be used as a bioindicator for the short-term response of Pinus laricio needles to prescribed burning. Simple phenols may be useful for revealing the medium-term effects of prescribed burning. The results of this study include recommending forest managers to use prescribed burning in the fall rather than spring to reduce fuel loads and have less impact on the trees.

  10. Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge.

    PubMed

    Xi, Jun; He, Lang; Yan, Liang-Gong

    2017-09-01

    Pomegranate peel, a waste generated from fruit processing industry, is a potential source of phenolic compounds that are known for their anti-oxidative properties. In this study, a continuous high voltage electrical discharge (HVED) extraction system was for the first time designed and optimized for phenolic compounds from pomegranate peel. The optimal conditions for HVED were: flow rate of materials 12mL/min, electrodes gap distance 3.1mm (corresponding to 29kV/cm of electric field intensity) and liquid to solid ratio 35mL/g. Under these conditions, the experimental yield of phenolic compounds was 196.7±6.4mg/g, which closely agreed with the predicted value (199.83mg/g). Compared with the warm water maceration, HVED method possessed higher efficiency for the extraction of phenolic compounds. The results demonstrated that HVED technique could be a very effective method for continuous extraction of natural compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column.

    PubMed

    Sulaymon, Abbas H; Ahmed, Kawther W

    2008-01-15

    For a multicomponent competitive adsorption of furfural and phenolic compounds, a mathematical model was builtto describe the mass transfer kinetics in a fixed bed column with activated carbon. The effects of competitive adsorption equilibrium constant, axial dispersion, external mass transfer, and intraparticle diffusion resistance on the breakthrough curve were studied for weakly adsorbed compound (furfural) and strongly adsorbed compounds (parachlorophenol and phenol). Experiments were carried out to remove the furfural and phenolic compound from aqueous solution. The equilibrium data and intraparticle diffusion coefficients obtained from separate experiments in a batch adsorber, by fitting the experimental data with theoretical model. The results show that the mathematical model includes external mass transfer and pore diffusion using nonlinear isotherms and provides a good description of the adsorption process for furfural and phenolic compounds in a fixed bed adsorber.

  12. Extraction, evolution, and sensory impact of phenolic compounds during red wine maceration.

    PubMed

    Casassa, L Federico; Harbertson, James F

    2014-01-01

    We review the extraction into wine and evolution of major phenolic classes of sensory relevance. We present a historical background to highlight that previously established aspects of phenolic extraction and retention into red wine are still subjects of much research. We argue that management of the maceration length is one of the most determining factors in defining the proportion and chemical fate of phenolic compounds in wine. The extraction of anthocyanins, flavonols, flavan-3-ols, and oligomeric and polymeric proanthocyanidins (PAs) is discussed in the context of their individual extraction patterns but also with regard to their interaction with other wine components. The same approach is followed to present the sensory implications of phenolic and phenolic-derived compounds in wine. Overall, we conclude that the chemical diversity of phenolic compounds in grapes is further enhanced as soon as vacuolar and pulp components are released upon crushing, adding a variety of new sensory dimensions to the already present chemical diversity. Polymeric pigments formed by the covalent reaction of anthocyanin and PAs are good candidates to explain some of the observed sensory changes in the color, taste, and mouthfeel attributes of red wines during maceration and aging.

  13. Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS.

    PubMed

    Figueroa, Jorge G; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Segura-Carretero, Antonio

    2018-03-01

    Avocado seed and seed coat are important by-products from avocado industrialization, with important functional properties. The aim of the present study was to determine the phenolic profile and other polar compounds of avocado seed and seed coat using accelerated solvent extraction (ASE) and liquid chromatography coupled to Ultra-High-Definition Accurate-Mass Q-TOF. In this research 84 compounds were identified, within eight subclass group, among these 45 phenolic compounds were identified for first time in avocado seed. Condensed tannins, phenolic acids and flavonoids were the most representative groups in both samples. As far as we are concerned, this is the first time that avocado seed coat has been studied regarding its phenolic compounds using such a powerful instrumental technique. In addition, the radical-scavenging activities were analysed in order to estimate the antioxidant potential of extracts. These results point out that avocado seed and seed coat constitute a source of bioactive ingredients for its use in the food, cosmetic or pharmaceutical sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of antioxidant activity, total phenolics, total flavonoids and LC-MS/MS characterisation of phenolic constituents in Stachys lavandulifolia.

    PubMed

    Rahimi Khoigani, Soroush; Rajaei, Ahmad; Goli, Sayed Amir Hossein

    2017-02-01

    The aim of this study was to evaluate phenolics profile and antioxidant activity of Stachys lavandulifolia. Total phenolics (TP), total flavonoids (TF), DPPH• assay (IC50), ferric ion reducing antioxidant power (FRAP) and total antioxidant capacity (TAC) of the methanolic extract were measured. The content of TP, TF, IC50, FRAP and TAC, were obtained as 16.59 gallic acid equiv./g dry matter (DM), 4.48 mg quercetin equiv./g DM, 2.07 (μg/mL), 0.014 (absorbance/mg phenolic) and 14.61 (mg BHT equiv./g DM), respectively. The results showed that S. lavandulifolia, compared to other species of Stachys, had moderate TP content with desirable antioxidant activity. Subsequently, 59 various phenolic compounds were identified and confirmed in the methanolic extract of S. lavandulifolia using high mass accuracy by MS2 experiments. The compounds consisted of 6 hydroxybenzoic acids and hydroxybenzoic aldehydes, 9 hydroxycinnamic acids, 1 coumarin, 32 flavonoids, 3 lignans, 2 stilbenes, 3 tannins and 3 other phenolics.

  15. HPLC-DAD-ESI/MS(n) analysis of phenolic compounds for quality control of Grindelia robusta Nutt. and bioactivities.

    PubMed

    Ferreres, Federico; Grosso, Clara; Gil-Izquierdo, Angel; Valentão, Patrícia; Azevedo, Carolina; Andrade, Paula B

    2014-06-01

    The phenolic composition of herbal tea (HT) and hydromethanolic extract (HME) obtained from Grindelia robusta Nutt. was studied by HPLC-DAD-ESI/MS(n). Thirty six flavonoids and hydroxycinnamic acids were detected, from which thirty are described for the first time in this species. Quantification by HPLC-DAD showed that diosmetin-7-O-glucuronide-3'-O-pentoside+apigenin-7-O-glucuronide-4'-O-pentoside, apigenin-7-O-glucuronide+diosmetin-7-O-glucuronide and 3,5-dicaffeoylquinic acid+3,4-dicaffeoylquinic acid were the major compounds. Since the health-promoting effects of natural phenolic compounds against brain disorders is of increasing interest, HT and HME were also tested against oxygen and nitrogen reactive species and against enzymes related with Alzheimer's disease and depression. Extracts displayed strong in vitro scavenging activity and monoamine oxidase-A (MAO-A) inhibitory activity. The anti-MAO-A capacity was observed at non-toxic concentrations for SH-SY5Y human neuroblastoma cell line, reinforcing the benefits of G. robusta HT. However, no protection against hydrogen peroxide treatment was observed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products.

    PubMed

    Adeboye, Peter Temitope; Bettiga, Maurizio; Aldaeus, Fredrik; Larsson, Per Tomas; Olsson, Lisbeth

    2015-09-21

    Lignocellulosic substrates and pulping process streams are of increasing relevance to biorefineries for second generation biofuels and biochemical production. They are known to be rich in sugars and inhibitors such as phenolic compounds, organic acids and furaldehydes. Phenolic compounds are a group of aromatic compounds known to be inhibitory to fermentative organisms. It is known that inhibition of Sacchromyces cerevisiae varies among phenolic compounds and the yeast is capable of in situ catabolic conversion and metabolism of some phenolic compounds. In an approach to engineer a S. cerevisiae strain with higher tolerance to phenolic inhibitors, we selectively investigated the metabolic conversion and physiological effects of coniferyl aldehyde, ferulic acid, and p-coumaric acid in Saccharomyces cerevisiae. Aerobic batch cultivations were separately performed with each of the three phenolic compounds. Conversion of each of the phenolic compounds was observed on time-based qualitative analysis of the culture broth to monitor various intermediate and final metabolites. Coniferyl aldehyde was rapidly converted within the first 24 h, while ferulic acid and p-coumaric acid were more slowly converted over a period of 72 h. The conversion of the three phenolic compounds was observed to involved several transient intermediates that were concurrently formed and converted to other phenolic products. Although there were several conversion products formed from coniferyl aldehyde, ferulic acid and p-coumaric acid, the conversion products profile from the three compounds were similar. On the physiology of Saccharomyces cerevisiae, the maximum specific growth rates of the yeast was not affected in the presence of coniferyl aldehyde or ferulic acid, but it was significantly reduced in the presence of p-coumaric acid. The biomass yields on glucose were reduced to 73 and 54 % of the control in the presence of coniferyl aldehyde and ferulic acid, respectively, biomass yield

  17. Interaction of phenolic acids and their derivatives with human serum albumin: Structure-affinity relationships and effects on antioxidant activity.

    PubMed

    Zhang, Yunyue; Wu, Simin; Qin, Yinghui; Liu, Jiaxin; Liu, Jingwen; Wang, Qingyu; Ren, Fazheng; Zhang, Hao

    2018-02-01

    In this study, 111 phenolic acids and their derivatives were chosen to investigate their structure-affinity relationships when binding to human serum albumin (HSA), and effects on their antioxidant activity. A comprehensive mathematical model was employed to calculate the binding constants, using a fluorescence quenching method, and this was corrected for the inner-filter effect to improve accuracy. We found that a hydroxy group at the 2-position of the benzene ring exerted a positive effect on the affinities, while a 4-hydroxy substituent had a negative influence. Both methylation of the hydroxy groups and replacing the hydroxy groups with methyl groups at the 3- and 4-positions of the benzene ring enhanced the binding affinities. Hydrophobic force and hydrogen bonding were binding forces for the phenolic acids, and their methyl esters, respectively. The antioxidant activity of the HSA-phenolic acid interaction compounds was higher than that of the phenolic acids alone. Copyright © 2017. Published by Elsevier Ltd.

  18. Quantification of Phenolic Compounds and In Vitro Radical Scavenging Abilities with Leaf Extracts from Two Varieties of Psidium guajava L.

    PubMed Central

    Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma. Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio

    2018-01-01

    Guava leaf (Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties. PMID:29495514

  19. Quantification of Phenolic Compounds and In Vitro Radical Scavenging Abilities with Leaf Extracts from Two Varieties of Psidium guajava L.

    PubMed

    Camarena-Tello, Julio César; Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio

    2018-02-27

    Guava leaf ( Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties.

  20. Mentha spicata L. infusions as sources of antioxidant phenolic compounds: emerging reserve lots with special harvest requirements.

    PubMed

    Rita, Ingride; Pereira, Carla; Barros, Lillian; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2016-10-12

    Mentha spicata L., commonly known as spearmint, is widely used in both fresh and dry forms, for infusion preparation or in European and Indian cuisines. Recently, with the evolution of the tea market, several novel products with added value are emerging, and the standard lots have evolved to reserve lots, with special harvest requirements that confer them with enhanced organoleptic and sensorial characteristics. The apical leaves of these batches are collected in specific conditions having, then, a different chemical profile. In the present study, standard and reserve lots of M. spicata were assessed in terms of the antioxidants present in infusions prepared from the different lots. The reserve lots presented the highest concentration in all the compounds identified in relation to the standard lots, with 326 and 188 μg mL -1 of total phenolic compounds, respectively. Both types of samples presented rosmarinic acid as the most abundant phenolic compound, at concentrations of 169 and 101 μg mL -1 for reserve and standard lots, respectively. The antioxidant activity was higher in the reserve lots which had the highest total phenolic compounds content, with EC 50 values ranging from 152 to 336 μg mL -1 . The obtained results provide scientific information that may allow the consumer to make a conscientious choice.

  1. Phenolic Compounds in Apple (Malus x domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing

    PubMed Central

    Francini, Alessandra; Sebastiani, Luca

    2013-01-01

    This paper summarizes the information on the occurrence of phenolic compounds in apple (Malus x domestica Borkh.) fruit and juice, with special reference to their health related properties. As phytochemical molecules belonging to polyphenols are numerous, we will focus on the main apples phenolic compounds with special reference to changes induced by apple cultivar, breeding approaches, fruit postharvest and transformation into juice. PMID:26784345

  2. Anti-Adhesive Activity of Cranberry Phenolic Compounds and Their Microbial-Derived Metabolites against Uropathogenic Escherichia coli in Bladder Epithelial Cell Cultures.

    PubMed

    de Llano, Dolores González; Esteban-Fernández, Adelaida; Sánchez-Patán, Fernando; Martínlvarez, Pedro J; Moreno-Arribas, Maria Victoria; Bartolomé, Begoña

    2015-05-27

    Cranberry consumption has shown prophylactic effects against urinary tract infections (UTI), although the mechanisms involved are not completely understood. In this paper, cranberry phenolic compounds and their potential microbial-derived metabolites (such as simple phenols and benzoic, phenylacetic and phenylpropionic acids) were tested for their capacity to inhibit the adherence of uropathogenic Escherichia coli (UPEC) ATCC®53503™ to T24 epithelial bladder cells. Catechol, benzoic acid, vanillic acid, phenylacetic acid and 3,4-dihydroxyphenylacetic acid showed anti-adhesive activity against UPEC in a concentration-dependent manner from 100-500 µM, whereas procyanidin A2, widely reported as an inhibitor of UPEC adherence on uroepithelium, was only statistically significant (p < 0.05) at 500 µM (51.3% inhibition). The results proved for the first time the anti-adhesive activity of some cranberry-derived phenolic metabolites against UPEC in vitro, suggesting that their presence in the urine could reduce bacterial colonization and progression of UTI.

  3. Synthesis, chemical characterization, and economical feasibility of poly-phenolic-branched-chain fatty acids: Synthesis of poly-phenolic-branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    New poly-phenolic branched-chain fatty acid (poly-PBC-FA) products were synthesized from a combination of soybean fatty acids and phenolic materials through a highly efficient zeolite catalyzed arylation method. These poly-PBC-FAs are liquid at room temperature and do not have the unpleasant odor li...

  4. Mutagenicity testing in the Salmonella typhimurium assay of phenolic compounds and phenolic fractions obtained from smokehouse smoke condensates.

    PubMed

    Pool, B L; Lin, P Z

    1982-08-01

    Smokehouse smoke, which is used for flavouring meat products, was investigated for its mutagenic activity in the Salmonella typhimurium assay. We were chiefly concerned with the fractions free of polycyclic aromatic hydrocarbons but containing phenol compounds, which are responsible for the preservative and aromatizing properties of the smoke. The most abundantly occurring phenol compounds (phenol, cresols, 2,4-dimethylphenol, brenzcatechine, syringol, eugenol, vanilline and guaiacol) gave negative results when they were tested for mutagenicity at five concentrations up to 5000 micrograms/plate, with and without S-9 mix, using five strains of S. typhimurium. Even when phenol was further investigated in a variety of test conditions, no induction of his+ revertants was observed. When smokehouse smoke was condensed and fractionated the majority of the various phenolic fractions also gave negative results when tested at five concentrations using five strains of S. typhimurium. However there was a slight increase in the number of revertants in a few cases. The presence in the phenolic fractions of very small amounts of mutagenic impurities, the nature of which needs further investigation, cannot be excluded. These results support the further development of non-hazardous smoke-aroma preparations, based on the phenolic components of smokehouse smoke.

  5. Flavonoids and phenolic acids from cranberry juice are bioavailable and bioactive in healthy older adults.

    PubMed

    McKay, Diane L; Chen, C-Y Oliver; Zampariello, Carly A; Blumberg, Jeffrey B

    2015-02-01

    Cranberries (Vaccinium macrocarpon) are a rich source of phenolic phytochemicals, which likely contribute to their putative health benefits. A single-dose pharmacokinetic trial was conducted in 10 healthy adults ⩾50y to evaluate the acute (24-h) absorption and excretion of flavonoids, phenolic acids and proanthocyanidins (PACs) from a low-calorie cranberry juice cocktail (54% juice). Inter-individual variability was observed in the Cmax and Tmax of many of these compounds in both plasma and urine. The sum total concentration of phenolics detected in plasma reached a peak of 34.2μg/ml between 8 and 10h, while in urine this peak was 269.8μg/mg creatinine, and appeared 2-4h earlier. The presence of PAC-A2 dimers in human urine has not previously been reported. After cranberry juice consumption, plasma total antioxidant capacity assessed using ORAC and TAP assays correlated with individual metabolites. Our results show phenolic compounds in cranberry juice are bioavailable and exert antioxidant actions in healthy older adults. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Interactions between wine phenolic compounds and human saliva in astringency perception.

    PubMed

    García-Estévez, Ignacio; Ramos-Pineda, Alba María; Escribano-Bailón, María Teresa

    2018-03-01

    Astringency is a complex perceptual phenomenon involving several sensations that are perceived simultaneously. The mechanism leading to these sensations has been thoroughly and controversially discussed in the literature and it is still not well understood since there are many contributing factors. Although we are still far from elucidating the mechanisms whereby astringency develops, the interaction between phenolic compounds and proteins (from saliva, oral mucosa or cells) seems to be most important. This review summarizes the recent trends in the protein-phenol interaction, focusing on the effect of the structure of the phenolic compound on the interaction with salivary proteins and on methodologies based on these interactions to determine astringency.

  7. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions.

    PubMed

    Alvarez, P M; García-Araya, J F; Beltrán, F J; Masa, F J; Medina, F

    2005-03-15

    The impact of ozonation on textural and chemical surface characteristics of two granular activated carbons (GAC), namely F400 and AQ40, and their ability to adsorb phenol (P), p-nitrophenol (PNP), and p-chlorophenol (PCP) from aqueous solutions have been studied. The porous structure of the ozone-treated carbons remained practically unchanged with regard to the virgin GAC. However, important modifications of the chemical surface and hydrophobicity were observed from FTIR spectroscopy, pH titrations, and determination of pH(PZC). As a rule, the ozone treatment at either room temperature (i.e., about 25 degrees C) or 100 degrees C gave rise to acidic surface oxygen groups (SOG). At 25 degrees C primarily carboxylic acids were formed while a more homogeneous distribution of carboxylic, lactonic, hydroxyl, and carbonyl groups was obtained at 100 degrees C. The experimental isotherms for phenolic compounds on both GAC were analyzed using the Langmuir model. Dispersive interactions between pi electrons of the ring of the aromatics and those of the carbon basal planes were thought to be the primary forces responsible for the physical adsorption whereas oxidative coupling of phenolic compounds catalyzed by basic SOG was a major cause of irreversible adsorption. The exposure of both GAC to ozone at room temperature decreased their ability to adsorb P, PNP, and PCP. However, when ozone was applied at 100 degrees C adsorption was not prevented but in some cases (P and PNP on F400) the adsorption process was even enhanced.

  8. Computational Studies of Free Radical-Scavenging Properties of Phenolic Compounds

    PubMed Central

    Alov, Petko; Tsakovska, Ivanka; Pajeva, Ilza

    2015-01-01

    For more than half a century free radical-induced alterations at cellular and organ levels have been investigated as a probable underlying mechanism of a number of adverse health conditions. Consequently, significant research efforts have been spent for discovering more effective and potent antioxidants / free radical scavengers for treatment of these adverse conditions. Being by far the most used antioxidants among natural and synthetic compounds, mono- and polyphenols have been the focus of both experimental and computational research on mechanisms of free radical scavenging. Quantum chemical studies have provided a significant amount of data on mechanisms of reactions between phenolic compounds and free radicals outlining a number of properties with a key role for the radical scavenging activity and capacity of phenolics. The obtained quantum chemical parameters together with other molecular descriptors have been used in quantitative structure-activity relationship (QSAR) analyses for the design of new more effective phenolic antioxidants and for identification of the most useful natural antioxidant phenolics. This review aims at presenting the state of the art in quantum chemical and QSAR studies of phenolic antioxidants and at analysing the trends observed in the field in the last decade. PMID:25547098

  9. Computational studies of free radical-scavenging properties of phenolic compounds.

    PubMed

    Alov, Petko; Tsakovska, Ivanka; Pajeva, Ilza

    2015-01-01

    For more than half a century free radical-induced alterations at cellular and organ levels have been investigated as a probable underlying mechanism of a number of adverse health conditions. Consequently, significant research efforts have been spent for discovering more effective and potent antioxidants / free radical scavengers for treatment of these adverse conditions. Being by far the most used antioxidants among natural and synthetic compounds, mono- and polyphenols have been the focus of both experimental and computational research on mechanisms of free radical scavenging. Quantum chemical studies have provided a significant amount of data on mechanisms of reactions between phenolic compounds and free radicals outlining a number of properties with a key role for the radical scavenging activity and capacity of phenolics. The obtained quantum chemical parameters together with other molecular descriptors have been used in quantitative structure-activity relationship (QSAR) analyses for the design of new more effective phenolic antioxidants and for identification of the most useful natural antioxidant phenolics. This review aims at presenting the state of the art in quantum chemical and QSAR studies of phenolic antioxidants and at analysing the trends observed in the field in the last decade.

  10. Microchip electrophoresis with amperometric detection for a novel determination of phenolic compounds in olive oil.

    PubMed

    Godoy-Caballero, María del Pilar; Acedo-Valenzuela, María Isabel; Galeano-Díaz, Teresa; Costa-García, Agustín; Fernández-Abedul, María Teresa

    2012-11-07

    The relevance of the development of microchip electrophoresis applications in the field of food analysis is considered in this work. A novel method to determine important phenolic compounds in extra virgin olive oil samples using a miniaturized chemical analysis system is presented in this paper. Three interesting phenolic compounds in olive oil and fruit (tyrosol, hydroxytyrosol and oleuropein glucoside) were studied by end-channel amperometric detection using a 100 μm gold wire as working electrode in glass microchip electrophoresis. The electrochemical behavior of these compounds was studied and the medium to carry out their detection was selected (0.1 M aqueous sulfuric acid). The best conditions for the separation were achieved in sodium tetraborate (10% methanol, pH 9.50) with different concentrations for the sample and the running buffer in order to allow the sample stacking phenomenon. The injection was carried out using 600 V for 3 s and the separation voltage was set at 1000 V. The quality of the method was evaluated through its analytical figures of merit and by its performance on real extra virgin olive oil samples. Determination of these compounds was carried out using the standard addition calibration method with good recoveries.

  11. MICROBIAL METABOLISM OF AROMATIC COMPOUNDS I.

    PubMed Central

    Tabak, Henry H.; Chambers, Cecil W.; Kabler, Paul W.

    1964-01-01

    Tabak, Henry H. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), Cecil W. Chambers, and Paul W. Kabler. Microbial metabolism of aromatic carbon compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriol. 87:910–919. 1964.—Bacteria from soil and related environments were selected or adapted to metabolize phenol, hydroxy phenols, nitrophenols, chlorophenols, methylphenols, alkylphenols, and arylphenols when cultured in mineral salts media with the specific substrate as the sole source of carbon. A phenol-adapted culture (substrate-induced enzyme synthesis proven) was challenged in respirometric tests with 104 related compounds; probable significant oxidative activity occurred with 65. Dihydric phenols were generally oxidized; trihydric phenols were not. Cresols and dimethylphenols were oxidized; adding a chloro group increased resistance. Benzoic and hydroxybenzoic acids were oxidized; sulfonated, methoxylated, nitro, and chlorobenzoic acids were not; m-toluic acid was utilized but not the o- and p-isomers. Benzaldehyde and p-hydroxybenzaldehyde were oxidized. In general, nitro- and chloro-substituted compounds and the benzenes were difficult to oxidize. PMID:14137630

  12. Determination of the Acid Dissociation Constant of a Phenolic Acid by High Performance Liquid Chromatography: An Experiment for the Upper Level Analytical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Raboh, Ghada

    2018-01-01

    A high performance liquid chromatography (HPLC) experiment for the upper level analytical chemistry laboratory is described. The students consider the effect of mobile-phase composition and pH on the retention times of ionizable compounds in order to determine the acid dissociation constant, K[subscript a], of a phenolic acid. Results are analyzed…

  13. Antioxidant properties of ferulic acid and its related compounds.

    PubMed

    Kikuzaki, Hiroe; Hisamoto, Masashi; Hirose, Kanae; Akiyama, Kayo; Taniguchi, Hisaji

    2002-03-27

    Antioxidant activity of 24 ferulic acid related compounds together with 6 gallic acid related compounds was evaluated using several different physical systems as well as their radical scavenging activity. The radical scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) decreased in the order caffeic acid > sinapic acid > ferulic acid > ferulic acid esters > p-coumaric acid. In bulk methyl linoleate, test hydroxycinnamic acids and ferulic acid esters showed antioxidant activity in parallel with their radical scavenging activity. In an ethanol-buffer solution of linoleic acid, the activity of test compounds was not always associated with their radical scavenging activity. Ferulic acid was most effective among the tested phenolic acids. Esterification of ferulic acid resulted in increasing activity. The activity of alkyl ferulates was somewhat influenced by the chain length of alcohol moiety. When the inhibitory effects of alkyl ferulates against oxidation of liposome induced by AAPH were tested, hexyl, octyl, and 2-ethyl-1-hexyl ferulates were more active than the other alkyl ferulates. Furthermore, lauryl gallate is most effective among the tested alkyl gallates. These results indicated that not only the radical scavenging activity of antioxidants, but also their affinity with lipid substrates, might be important factors in their activity.

  14. Analysis of organic acids and phenols of interest in the wine industry using Langmuir-Blodgett films based on functionalized nanoparticles.

    PubMed

    Medina-Plaza, C; García-Cabezón, C; García-Hernández, C; Bramorski, C; Blanco-Val, Y; Martín-Pedrosa, F; Kawai, T; de Saja, J A; Rodríguez-Méndez, M L

    2015-01-01

    A chemically modified electrode consisting of Langmuir-Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (SDODAuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The SDODAuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10(-6) mol L(-1) were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity provided by the LB technique used for the immobilization. Moreover, the LB technique also provided an accurate method to immobilize the gold nanoparticles giving rise to stable and reproducible sensors showing repeatability lower than 2% and reproducibility lower than 4% for all the compounds analyzed. Copyright © 2014. Published by Elsevier B.V.

  15. Phenolic aminocarboxylic acids as gallium-binding radiopharmaceuticals.

    PubMed

    Hunt, F C

    1984-06-01

    The phenolic aminocarboxylic acids ethylenediamine di [o-hydroxyphenylacetic acid] (EDDHA) and N,N'-bis [2-hydroxybenzyl] ethylenediamine N,N'-diacetic acid (HBED) form gallium complexes having high stability constants which enable them to resist exchange of gallium with plasma transferrin. 67Ga complexes were synthesized with these ligands, placing substituent groups in the phenolic ring to direct excretion via the renal or hepatobiliary route. The amount of 67Ga-Br-EDDHA excreted via the hepatobiliary route was comparable with that of some of the 99mTc agents. Excretion of 67Ga-Br-HBED was similar but with delayed transit from the liver. 67Ga COOH-EDDHA was excreted exclusively via the renal route. These findings provide a basis for developing new 67Ga or 68Ga radiopharmaceuticals, the latter for use in positron emission tomography, using these phenolic aminocarboxylates.

  16. Inhibitory effects of phenolic compounds of rice straw formed by saccharification during ethanol fermentation by Pichia stipitis.

    PubMed

    Wang, Xiahui; Tsang, Yiu Fai; Li, Yuhao; Ma, Xiubing; Cui, Shouqing; Zhang, Tian-Ao; Hu, Jiajun; Gao, Min-Tian

    2017-11-01

    In this study, it was found that the type of phenolic acids derived from rice straw was the major factor affecting ethanol fermentation by Pichia stipitis. The aim of this study was to investigate the inhibitory effect of phenolic acids on ethanol fermentation with rice straw. Different cellulases produced different ratios of free phenolic acids to soluble conjugated phenolic acids, resulting in different fermentation efficiencies. Free phenolic acids exhibited much higher inhibitory effect than conjugated phenolic acids. The flow cytometry results indicated that the damage to cell membranes was the primary mechanism of inhibition of ethanol fermentation by phenolic acids. The removal of free phenolic acids from the hydrolysates increased ethanol productivity by 2.0-fold, indicating that the free phenolic acids would be the major inhibitors formed during saccharification. The integrated process for ethanol and phenolic acids may constitute a new strategy for the production of low-cost ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin).

    PubMed

    Pelvan, Ebru; Olgun, Elmas Öktem; Karadağ, Ayşe; Alasalvar, Cesarettin

    2018-04-01

    The phenolic profiles and antioxidant status of hazelnut samples [natural (raw) hazelnut, roasted hazelnut, and roasted hazelnut skin] were compared. Free and bound (ester-linked and glycoside-linked) phenolic acids were examined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comprehensive identification of phenolics was carried out using Q-exactive hybrid quadrupole-orbitrap mass spectrometer (Q-OT-MS). Samples were also assessed for their total phenolics and antioxidant activities using three different assays. Ten free and bound phenolic acids were quantified in hazelnut samples. Roasted hazelnut skin contained the highest content of total phenolic acids, followed by natural and roasted hazelnuts. The majority of phenolic acids were present in the bound form. Using a Q-OT-MS, 22 compounds were tentatively identified, 16 of which were identified for the first time in hazelnut samples. The newly identified compounds consisted of flavonoids, phenolic acids and related compounds, hydrolysable tannins and related compounds, and other phenolics. Three antioxidant assays demonstrated similar trends that roasted hazelnut skin rendered the highest activity. The present work suggests that roasted hazelnut skin is a rich source of phenolics and can be considered as a value-added co-product for use as functional food ingredient and antioxidant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Olive Tree (Olea europeae L.) Leaves: Importance and Advances in the Analysis of Phenolic Compounds

    PubMed Central

    Abaza, Leila; Taamalli, Amani; Nsir, Houda; Zarrouk, Mokhtar

    2015-01-01

    Phenolic compounds are becoming increasingly popular because of their potential role in contributing to human health. Experimental evidence obtained from human and animal studies demonstrate that phenolic compounds from Olea europaea leaves have biological activities which may be important in the reduction in risk and severity of certain chronic diseases. Therefore, an accurate profiling of phenolics is a crucial issue. In this article, we present a review work on current treatment and analytical methods used to extract, identify, and/or quantify phenolic compounds in olive leaves. PMID:26783953

  19. Antioxidant capacity and phenolic compounds of Lonicerae macranthoides by HPLC-DAD-QTOF-MS/MS.

    PubMed

    Hu, Xin; Chen, Lin; Shi, Shuyun; Cai, Ping; Liang, Xuejuan; Zhang, Shuihan

    2016-05-30

    Lonicerae macranthoides with strong antioxidant activity is commonly used in traditional Chinese medicine and folk tea/beverage. However, detailed information about its antioxidant activity and bioactive compounds is limited. Then at first, we comparatively evaluated total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activities of water extract, petroleum ether, ethyl acetate and n-butanol fractions of L. macranthoides. Ethyl acetate fraction exhibited the highest level of TPC (207.38 mg GAE/g DW), TFC (53.06 mg RE/g DW) and the best DPPH scavenge activity and reducing power. n-Butanol fraction showed the best ABTS(+) and O2(-) scavenging activities. Interestingly, water extract, ethyl acetate and n-butanol fractions showed stronger antioxidant activities than positive control, butylated hydroxytoluene (BHT). After that, thirty-one antioxidant phenolic compounds, including twenty-two phenolic acids and nine flavonoids, were screened by DPPH-HPLC experiment and then identified using HPLC-DAD-QTOF-MS/MS. It is noted that twenty-one compounds (1, 3-4, 6-17, 19, 23, 26, 28-29, and 31), as far as was known, were discovered from L. macranthoide for the first time, and eleven of them (3-4, 10-17, and 23) were reported in Lonicera species for the first time. Results indicated that L. macranthoides could serve as promising source of rich antioxidants in foods, beverages and medicines for health promotion. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comparison of phenolic acids and flavonoids contents in various cultivars and parts of common lavender (Lavandula angustifolia) derived from Poland.

    PubMed

    Adaszyńska-Skwirzyńska, M; Dzięcioł, M

    2017-11-01

    The aim of study was to compare the content of phenolic acids and flavonoids in two cultivars of Lavandula angustifolia: 'Blue River' and 'Ellagance Purple', including flowers and leafy stalks. Total phenolics and total flavonoids contents were determined by UV-Vis spectroscopy. The contents of total phenolics in leafy stalks (3.71-4.06 mg g -1 d.m.) were higher than in flowers (1.13-1.14 mg g -1 d.m.). Similarly, higher total contents of flavonoids were determined in leafy stalks (3.41-3.51 mg g -1 d.m.), as compared with flowers (0.86-0.91 mg g -1 d.m.). Phenolic acids and flavonoids were identified and quantified using HPLC and UPLC methods. Three phenolic acids were determined: rosmarinic, ferulic and caffeic acid. Lavender extracts contained also flavonoids from group of apigenin, luteolin and quercetin. Higher amounts of luteolin diglucuronide and luteolin glucuronide were found in leafy stalks in comparison to flowers. Obtained results indicate that leafy stalks of lavender can be also valuable source of antioxidant compounds.

  1. Reinvestigation of the role of humic acid in the oxidation of phenols by permanganate.

    PubMed

    Sun, Bo; Zhang, Jing; Du, Juanshan; Qiao, Junlian; Guan, Xiaohong

    2013-12-17

    Humic acid (HA) affects the oxidation of phenolic compounds by permanganate, but the role of HA in the oxidation of phenols by permanganate is far from clear. The mechanisms by which HA influences the oxidation of phenols by permanganate at pH 5.0-9.0 were systematically examined in this study. The presence of HA enhanced the oxidation of phenolic compounds by permanganate at pH ≤7.0, with greater enhancement at lower pH values. The presence of HA facilitated the in situ formation of MnO2, implying the importance of reductive moieties of HA in this reaction. This was supported by the finding that HA preoxidized by ozone showed enhancements in the oxidation of phenols by permanganate at pH 5.0-6.0 smaller than those seen with pristine HA. The good correlation between HA-induced improvement in the oxidation rates of phenols by permanganate and those by preformed colloidal MnO2 at pH 5.0 confirmed that contribution of MnO2 formed in situ for the oxidation of phenols under this condition. The differences in the influence of Na2S2O3 and HA on the oxidation of phenol by permanganate revealed the fact that the continuous generation of fresh MnO2 and stabilization of the MnO2 formed in situ by HA were crucial for the HA-induced enhancement of the oxidation of phenols by permanganate at pH ≤7.0. The consumption of permanganate by HA and the poor oxidation ability of in situ-generated MnO2 under alkaline conditions resulted in the slightly negative effect of HA on the degradation rates of phenols by permanganate at pH >7.0.

  2. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds.

    PubMed

    Kim, Seon-Jin; Jung, Su-Hwa; Kim, Joo-Sik

    2010-12-01

    Palm kernel shells were pyrolyzed in a pyrolysis plant equipped with a fluidized-bed reactor and a char-separation system. The influence of reaction temperature, feed size and feed rate on the product spectrum was also investigated. In addition, the effect of reaction temperature on the yields of phenol and phenolic compounds in the bio-oil was examined. The maximum bio-oil yield was 48.7 wt.% of the product at 490 degrees C. The maximum yield of phenol plus phenolic compounds amounted to about 70 area percentage at 475 degrees C. The yield of pyrolytic lignin after its isolation from the bio-oil was approximately 46 wt.% based on the water and ash free oil. The pyrolytic lignin was mainly composed of phenol, phenolic compounds and oligomers of coniferyl, sinapyl and p-coumaryl alcohols. From the result of a GPC analysis, the number average molecular weight and the weight average molecular weight were 325 and 463 g/mol, respectively. 2010 Elsevier Ltd. All rights reserved.

  3. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD.

    PubMed

    Arimboor, Ranjith; Kumar, K Sarin; Arumughan, C

    2008-05-12

    A RP-HPLC-DAD method was developed and validated for the simultaneous analysis of nine phenolic acids including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, salicylic acid, p-coumaric acid, cinnamic acid, caffiec acid and ferulic acid in sea buckthorn (SB) (Hippophaë rhamnoides) berries and leaves. The method was validated in terms of linearity, LOD, precision, accuracy and recovery and found to be satisfactory. Phenolic acid derivatives in anatomical parts of SB berries and leaves were separated into free phenolic acids, phenolic acids bound as esters and phenolic acids bound as glycosides and profiled in HPLC. Berry pulp contained a total of 1068 mg/kg phenolic acids, of which 58.8% was derived from phenolic glycosides. Free phenolic acids and phenolic acid esters constituted 20.0% and 21.2%, respectively, of total phenolic acids in SB berry pulp. The total phenolic acid content in seed kernel (5741 mg/kg) was higher than that in berry pulp and seed coat (Table 2). Phenolic acids liberated from soluble esters constituted the major fraction of phenolic acids (57.3% of total phenolic acids) in seed kernel. 8.4% and 34.3% of total phenolic acids in seed kernel were, respectively contributed by free and phenolic acids liberated from glycosidic bonds. The total soluble phenolic acids content in seed coat (448 mg/kg) was lower than that in seed kernel and pulp (Table 2). Proportion of free phenolic acids in total phenolic acids in seed coat was higher than that in seed kernel and pulp. Phenolic acids bound as esters and glycosides, respectively contributed 49.1% and 20.3% of total phenolic acids in seed coat. The major fraction (approximately 70%) of phenolic acids in SB berries was found to be concentrated in the seeds. Gallic acid was the predominant phenolic acid both in free and bound forms in SB berry parts and leaves.

  4. Effect of ultrasound irradiation on the evolution of color properties and major phenolic compounds in wine during storage.

    PubMed

    Zhang, Qing-An; Wang, Ting-Ting

    2017-11-01

    In this paper, the effects of ultrasound irradiation were investigated on the evolution of color properties and major phenolic compounds during wine storage. The results indicate that the changing trends of color parameters are very similar in both the ultrasonically-treated and untreated wines, meanwhile the evolutions of malvidin-3-O-glucoside, monomeric flavan-3-ols and phenolic acids also demonstrate some similar patterns in all wines during storage, respectively. In summary, the ultrasound irradiation does not only temporally influence the color characteristics and phenolic compounds of wine, but also have a longer effect on their evolutions during wine storage. Furthermore, the ultrasonically-treated wine had a quicker changing trend than that of the untreated wine regarding the studied parameters. All these results indicate that the ultrasound might be as a feasible and promising novel technology for wineries to produce more red wines with the similar quality as the traditionally-aged wine in a shorter time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon.

    PubMed

    Mohamed, E F; Andriantsiferana, C; Wilhelm, A M; Delmas, H

    2011-01-01

    Preparation of activated carbon from sewage sludge is a promising approach to produce cheap and efficient adsorbent for pollutants removal as well as to dispose of sewage sludge. The first objective of this study was to investigate the physical and chemical properties (BET surface area, ash and elemental content, surface functional groups by Boehm titration and weight loss by thermogravimetric analysis) of the sludge-based activated carbon (SBAC) so as to give a basic understanding of its structure and to compare to those of two commercial activated carbons, PICA S23 and F22. The second and main objective was to evaluate the performance of SBAC for single and competitive adsorption of four substituted phenols (p-nitrophenol, p-chlorophenol, p-hydroxy benzoic acid and phenol) from their aqueous solutions. The results indicated that, despite moderate micropore and mesopore surface areas, SBAC had remarkable adsorption capacity for phenols, though less than PICA carbons. Uptake of the phenolic compound was found to be dependent on both the porosity and surface chemistry of the carbons. Furthermore, the electronegativity and the hydrophobicity of the adsorbate have significant influence on the adsorption capacity. The Langmuir and Freundlich models were used for the mathematical description of the adsorption equilibrium for single-solute isotherms. Moreover, the Langmuir-Freundlich model gave satisfactory results for describing multicomponent system isotherms. The capacity of the studied activated carbons to adsorb phenols from a multi-solute system was in the following order: p-nitrophenol > p-chlorophenol > PHBA > phenol.

  6. Understanding the role of manganese dioxide in the oxidation of phenolic compounds by aqueous permanganate.

    PubMed

    Jiang, Jin; Gao, Yuan; Pang, Su-Yan; Lu, Xue-Ting; Zhou, Yang; Ma, Jun; Wang, Qiang

    2015-01-06

    Recent studies have shown that manganese dioxide (MnO2) can significantly accelerate the oxidation kinetics of phenolic compounds such as triclosan and chlorophenols by potassium permanganate (Mn(VII)) in slightly acidic solutions. However, the role of MnO2 (i.e., as an oxidant vs catalyst) is still unclear. In this work, it was demonstrated that Mn(VII) oxidized triclosan (i.e., trichloro-2-phenoxyphenol) and its analogue 2-phenoxyphenol, mainly generating ether bond cleavage products (i.e., 2,4-dichlorophenol and phenol, respectively), while MnO2 reacted with them producing appreciable dimers as well as hydroxylated and quinone-like products. Using these two phenoxyphenols as mechanistic probes, it was interestingly found that MnO2 formed in situ or prepared ex situ greatly accelerated the kinetics but negligibly affected the pathways of their oxidation by Mn(VII) at acidic pH 5. The yields (R) of indicative products 2,4-dichlorophenol and phenol from their respective probes (i.e., molar ratios of product formed to probe lost) under various experimental conditions were quantified. Comparable R values were obtained during the treatment by Mn(VII) in the absence vs presence of MnO2. Meanwhile, it was confirmed that MnO2 could accelerate the kinetics of Mn(VII) oxidation of refractory nitrophenols (i.e., 2-nitrophenol and 4-nitrophenol), which otherwise showed negligible reactivity toward Mn(VII) and MnO2 individually, and the effect of MnO2 was strongly dependent upon its concentration as well as solution pH. These results clearly rule out the role of MnO2 as a mild co-oxidant and suggest a potential catalytic effect on Mn(VII) oxidation of phenolic compounds regardless of their susceptibility to oxidation by MnO2.

  7. Phenolic compounds from the aerial parts of Clematis viticella L. and their in vitro anti-inflammatory activities.

    PubMed

    Kırmızıbekmez, Hasan; İnan, Yiğit; Reis, Rengin; Sipahi, Hande; Gören, Ahmet C; Yeşilada, Erdem

    2018-03-12

    Phytochemical investigations on the EtOH extract of Clematis viticella led to the isolation of six flavonoid glycosides, isoorientin (1), isoorientin 3'-O-methyl ether (2), quercetin 7-O-α-L-rhamnopyranoside (3), quercetin 3,7-di-O-α-L-rhamnopyranoside (4), manghaslin (5) and chrysoeriol 7-O-β-D-glucopyranoside (6), one phenylethanol derivative, hydroxytyrosol (7), along with three phenolic acids, caffeic acid (8), (E)-p-coumaric acid (9) and p-hydroxybenzoic acid (10). The structures of the isolates were elucidated on the basis of NMR and HR-MS data. All compounds were isolated from C. viticella for the first time. Compounds 7 and 8 showed significant anti-inflammatory activity at 100 μM by reducing the release of NO in LPS-stimulated macrophages comparable to positive control indomethacin. Compounds 3 and 7 exhibited anti-inflammatory activity through lowering the levels of TNF-α while 1, 3 and 5 decreased the levels of neopterin better than the positive controls.

  8. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.

    PubMed

    Zhao, Xiaodan; Ma, Jun; von Gunten, Urs

    2017-08-01

    The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants for the reactions of HOI with phenolic compounds, 3-OPA, flavone and citric acid at pH 8.0 are 10-10 7  M -1 s -1 , (4.0 ± 0.3) × 10 3  M -1 s -1 , (2.5 ± 0.2) × 10 3  M -1 s -1 and <1 M -1 s -1 , respectively. The effect of buffer type and concentration was investigated with acetate, phosphate and borate. All tested buffers promote the HOI reactions with phenols. The percentage of iodine incorporation for various (hydroxyl)phenolic compounds and two NOM extracts ranges from 5% to 98%, indicating that electrophilic aromatic substitution and/or electron transfer can occur. The extent of these reactions depends on the number and relative position of the hydroxyl moieties on the phenolic compounds. Iodoform formation rates increase with increasing pH and iodoform yields increase from 9% to 67% for pH 6.0-10.0 for the HOI/3-OPA reactions. In the permanganate/HOI/3-OPA and permanganate/iodide/3-OPA system at pH < 8.0, iodoform formation is elevated compared to the HOI/3-OPA system in absence of permanganate. For pH > 8.0, in presence of permanganate, iodoform formation is significantly inhibited and iodate formation enhanced, which is due to a faster permanganate-mediated HOI disproportionation to iodate compared to the iodination process. The production of reactive iodine in real waters containing iodide in contact with permanganate may lead to the formation of iodinated organic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Biochemical changes in phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties.

    PubMed

    Afify, Abd El-Moneim M R; El-Beltagi, Hossam S; El-Salam, Samiha M Abd; Omran, Azza A

    2012-03-01

    To investigate the changes in total phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties. The changes in total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity during soaking of sorghum grains were determined. Total phenols, total flavonoids, tannins, vitamin E, β-carotene and antioxidant activity in raw sorghum were ranged from 109.21 to 116.70, 45.91 to 54.69, 1.39 to 21.79 mg/100 g, 1.74 to 5.25, 0.54 to 1.19 mg/kg and 21.72% to 27.69% and 25.29% to 31.97%, respectively. The above measured compounds were significantly decreased after soaking. p-Hydroxybenzoic acid, vanillic acid, syringic acid and cinnamic acid represent the major phenolic acids in Dorado variety. While ferulic acid, p-coumaric acid, gallic acid and caffeic acid represent the major phenolic acids in Shandaweel-6. On the other hand, protocatechuic acid represents the major phenolic acids in Giza-15. Regarding flavonoids components, Dorado was the highest variety in kampferol and naringenin while Shandaweel-6 was the highest variety in luteolin, apigenin, hypersoid, quercetin and christen. Finally, Giza-15 was the highest variety in catechin. Phenolic acids, flavonoid compounds and antioxidant activities were decreased after soaking. Sorghum varieties have moderate quantities from total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity which decreased after soaking.

  10. A rapid quantitative determination of phenolic acids in Brassica oleracea by capillary zone electrophoresis.

    PubMed

    Lee, Iris S L; Boyce, Mary C; Breadmore, Michael C

    2011-07-15

    A simple and rapid capillary zone electrophoresis method to quantitatively determine the phenolic acid contents in brassica vegetables is described. Phenolic compounds were extracted from broccoli, broccolini, Brussels sprouts, cabbage and cauliflower and the main hydroxycinnamic acids (sinapic, ferulic, p-coumaric and caffeic acids) were isolated by solid phase extraction with C18 cartridges. Using an optimised method, the four analytes were separated in less than 7min in a 50μm×60cm capillary with a 15mM borate buffer (pH=9.13) and a separation voltage of 30kV at 30°C. A linear relationship was observed for the method (r=0.9997-0.9999) with detection limits ranging from 1.1 to 2.3mg/kg of vegetables for the analytes. This method demonstrated good reproducibility with coefficients of variation of less than 5% for peak area and less than 1% for migration time (n=7). The method was successfully applied to quantitatively determine the phenolic acid contents in a range of brassica vegetables and the results were in good agreement when compared to those from high performance liquid chromatography analysis. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  11. Comparison on phenolic compounds and antioxidant properties of cabernet sauvignon and merlot wines from four wine grape-growing regions in China.

    PubMed

    Jiang, Bao; Zhang, Zhen-Wen

    2012-07-25

    The antioxidant activities in the Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China were measured by different analytical assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH·), cupric reducing antioxidant capacity (CUPRAC), superoxide radical-scavenging activity (SRSA) and the contents of total phenols, total flavonoids, total flavanols and total anthocyanins were determined. The results showed that the contents of phenolic compounds and the levels of antioxidant activity in the wine samples greatly varied with cultivar and environmental factors of vine growth. The contents of phenolic compounds and antioxidant activities in Cabernet Sauvignon and Merlot wines from the Yuquanying region of Ningxia were significantly higher than other three regions, followed by the wines from Shacheng region of Hebei, and these parameters were the lowest in Cabernet Sauvignon and Merlot wines from the Changli regions of Hebei and Xiangning region of Shanxi. Taken together, a close relationship between phenolic subclasses and antioxidant activity was observed for the wine samples. Moreover, there were significant discrepancies in the individual phenolic composition and content of four regional Cabernet Sauvignon and Merlot wines, among which the individual phenolic compounds (catechin, epicatechin, cinnamic acid, quercetin-3-O-glucuronide, quercetin-3-O-glucoside, laricitrin-3-O-glucoside and isorhamnetin-3-O-glucoside) revealed a significant correlation (p < 0.05) with the antioxidant capacity in present study, especially for catechin and epicatechin.

  12. Recovery of phenolic compounds from grape seeds: effect of extraction time and solid-liquid ratio.

    PubMed

    Casazza, Alessandro A; Aliakbarian, Bahar; Perego, Patrizia

    2011-10-01

    The aim of this research was to study the recovery of phenolic compounds from grape seeds, by-products from winemaking industries, using ethanolic solid-liquid extraction. For such a purpose, the combined effects of the extraction time (9, 19 and 29 h) and the solid-liquid ratio (0.10, 0.20 and 0.30 gdw mL(-1)), were investigated (where dw = dry waste). Results demonstrated that Pinot Noir seeds had high levels of both total polyphenols (73.66 mg(Gallic Acid Equivalent) gdw(-1)) and flavonoids (30.90 mg(Catechin Equivalent) gdw(-1)), being the optimum extraction time 19 h approximately. The main phenolic compounds analysed with high performance liquid chromatography were catechin and quercetin with a maximum extraction yield obtained at 29 h (362.23 and 339.35 mg/100 gdw, respectively). Concentration of the polyphenols and their antiradical powers are demonstrated to have a significant linear correlation.

  13. Supplementation with wine phenolic compounds increases the antioxidant capacity of plasma and vitamin E of low-density lipoprotein without changing the lipoprotein Cu(2+)-oxidizability: possible explanation by phenolic location.

    PubMed

    Carbonneau, M A; Léger, C L; Monnier, L; Bonnet, C; Michel, F; Fouret, G; Dedieu, F; Descomps, B

    1997-10-01

    To evaluate the effect of the red wine phenolic compound (RWPC) dietary supplementation without alcohol interference on: (1) some of the biochemical characteristics of LDL, (2) the oxidative susceptibility of LDL and (3) the antioxidant capacity of total plasma (Pl-AOC). In order to account for discrepancies between the three series of data, the in vitro stability of the association of phenolic compounds and LDL was tested. An intervention study with 20 volunteers. Each served as his own control. Cu(2+)-oxidizability of LDL and Pl-AOC were tested on blood samples before and after dietary supplementation. Cu(2+)-oxidizability of LDL was also tested by co-incubation in the presence of RWPC or phenolic acids with or without extensive dialysis. The Laboratory of Lipid Biochemistry and Biology, School of Medicine, and the Laboratory of Metabolic Diseases, Lapeyronie Hospital, University of Montpellier, France. Healthy males, nonsmokers and moderate drinkers, submitted to a dietary regimen deprived of vitamin E and C for a period of 10 d before supplementation. They also abstained from alcohol, wine, fruit juices, coffee, tea and cola beverages during this period. Six 0.33 g capsules/d (namely two capsules at each meal) of a preparation of red wine phenolic compounds in a dry powder form were given to the volunteers over a period of two weeks. Blood samples were drawn in fasting conditions at day 0 and day 14 of the supplementation period. Supplementation led to: (1) in LDL, a significant increase in vitamin E content (n = 20, P = 0.01) or vitamin E/total fatty acid bis-allylic carbon number ratio (n = 20, P = 0.006) without modification in the other biochemical characteristics or Cu(2+)-oxidizability; (2) in plasma, a significant increase in the antioxidant capacity (n = 11, P = 0.01). In vitro studies showed that RWPC or sinapic, caffeic or ferulic acids incubated in the presence of LDL increased the protection of the lipoparticle against oxidation (caffeic > sinapic

  14. Highly Efficient Extraction of Phenolic Compounds by Use of Magnetic Room Temperature Ionic Liquids for Environmental Remediation

    PubMed Central

    Deng, Ning; Li, Min; Zhao, Lijie; Lu, Chengfei; de Rooy, Sergio L.; Warner, Isiah M.

    2011-01-01

    A hydrophobic magnetic room temperature ionic liquid (MRTIL), trihexyltetradecylphosphonium tetrachloroferrate(III) ([3C6PC14][FeCl4]), was synthesized from trihexyltetradecylphosphonium chloride and FeCl3·6H2O. This MRTIL was investigated as a possible separation agent for solvent extraction of phenolic compounds from aqueous solution. Due to its strong paramagnetism, [3C6PC14][FeCl4] responds to an external neodymium magnet, which was employed in the design of a novel magnetic extraction technique. The conditions for extraction, including extraction time, volume ratio between MRTIL and aqueous phase, pH of aqueous solution, and structures of phenolic compounds were investigated and optimized. The magnetic extraction of phenols achieved equilibrium in 20 min and the phenolic compounds were found to have higher distribution ratios under acidic conditions. In addition, it was observed that phenols containing a greater number of chlorine or nitro substitutents exhibited higher distribution ratios. For example, the distribution ratio of phenol (DPh) was 107. In contrast, 3,5-dichlorophenol distribution ratio (D3,5-DCP) had a much higher value of 6372 under identical extraction conditions. When compared with four selected traditional non-magnetic room temperature ionic liquids, our [3C6PC14][FeCl4] exhibited significantly higher extraction efficiency under the same experimental conditions used in this work. Pentachlorophenol, a major component in the contaminated soil sample obtained from a superfund site, was successfully extracted and removed by use of [3C6PC14][FeCl4] with high extraction efficiency. Pentachlorophenol concentration was dramatically reduced from 7.8 μg.mL−1 to 0.2 μg.mL−1 after the magnetic extraction by use of [3C6PC14][FeCl4]. PMID:21783320

  15. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  16. Polyvinylpolypyrrolidone reduces cross-reactions between antibodies and phenolic compounds in an enzyme-linked immunosorbent assay for the detection of ochratoxin A.

    PubMed

    Robinson, Andrew L; Lee, Hyun Jung; Ryu, Dojin

    2017-01-01

    Ochratoxin A (OTA) is a fungal metabolite and putative carcinogen which can contaminate a variety of foods such as cereals, wine, and nuts. Commercial ELISA kits are known to give false-positive results for OTA concentrations when phenolic compounds are present. Pistachios represent a food matrix rich in phenolic compounds potentially contaminated with OTA, and were used to model OTA cross-reactivity. Polyvinylpolypyrrolidone (PVPP) was incorporated during extraction of OTA using a commercial ELISA protocol. HPLC methods were used to confirm that PVPP does not interact with OTA and levels of gallic acid and catechin remaining in pistachio extracts decreased with increasing PVPP application. Cross-reactivity of extracts also decreased with increasing PVPP application, and color loss was used as an indicator of anthocyanin removal. Incorporating PVPP into ELISA protocols allows for the continued use of rapid immunological methods in food matrices containing phenolic compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Predicting the reactivity of phenolic compounds with formaldehyde. II, continuation of an ab initio study.

    Treesearch

    Tohru Mitsunaga; Anthony H. Conner; Charles G. Jr. Hill

    2002-01-01

    Phenol–formaldehyde resins are important adhesives used by the forest products industry. The phenolic compounds in these resins are derived primarily from petrochemical sources. Alternate sources of phenolic compounds include tannins, lignins, biomass pyrolysis products, and coal gasification products. Because of variations in their chemical structures, the...

  18. Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection.

    PubMed

    Ribas-Agustí, Albert; Gratacós-Cubarsí, Marta; Sárraga, Carmen; García-Regueiro, José-Antonio; Castellari, Massimo

    2011-01-01

    Lettuce is a widely consumed vegetable and a good source of phenolic compounds. Several factors (genetic, agronomical and environmental) can influence the lettuce composition; their effects are not completely defined and more studies are needed on this topic. To develop an improved ultra-high-performance liquid chromatography (UHPLC) method to quantify the main target intact phenolic compounds in lettuce. UHPLC identification of the compounds was supported by PAD spectra and MS(n) analyses. Quantification was carried out by PAD, by creating matrix-matched calibration curves at the specific wavelength for each compound. Sample pretreatment was simplified, with neither purification nor hydrolysis steps. Chromatographic conditions were chosen to minimise matrix interferences and to give a suitable separation of the major phenolic compounds within 27 min. The method allowed the quantification of 11 intact phenolic compounds in Romaine lettuces, including phenolic acids (caffeoyl and p-coumaroyl esters) and flavonoids (quercetin glycosides). Four p-coumaroyl esters were tentatively identified and quantified for the first time in lettuce. The main intact phenolic compounds, including four novel p-coumaroyl esters, were simultaneously quantified in lettuce with optimal performances and a reduced total time of analysis. These findings make headway in the understanding of the lettuce phytochemicals with potential nutritional relevance. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Evaluation of phenolic compounds in virgin olive oil by direct injection in high-performance liquid chromatography with fluorometric detection.

    PubMed

    Selvaggini, Roberto; Servili, Maurizio; Urbani, Stefania; Esposto, Sonia; Taticchi, Agnese; Montedoro, GianFrancesco

    2006-04-19

    Hydrophilic phenols are the most abundant natural antioxidants of virgin olive oil (VOO), in which tocopherols and carotenes are also present. The prevalent classes of hydrophilic phenols found in VOO are phenyl alcohols, phenolic acids, secoiridoids such as the dialdehydic form of decarboxymethyl elenolic acid linked to (3,4-dihydroxyphenyl)ethanol or (p-hydroxypheny1)ethanol (3,4-DHPEA-EDA or p-HPEA-EDA) and an isomer of the oleuropein aglycon (3,4-DHPEA-EA), lignans such as (+)-1-acetoxypinoresinol and (+)-pinoresinol, and flavonoids. A new method for the analysis of VOO hydrophilic phenols by direct injection in high-performance liquid chromatography (HPLC) with the use of a fluorescence detector (FLD) has been proposed and compared with the traditional liquid-liquid extraction technique followed by the HPLC analysis utilizing a diode array detector (DAD) and a FLD. Results show that the most important classes of phenolic compounds occurring in VOO can be evaluated using HPLC direct injection. The efficiency of the new method, as compared to the liquid-liquid extraction, was higher to quantify phenyl alcohols, lignans, and 3,4-DHPEA-EA and lower for the evaluation of 3,4-DHPEA-EDA and p-HPEA-EDA.

  20. Naturally occurring phenolic acids modulate TPA-induced activation of EGFR, AP-1, and STATs in mouse epidermis.

    PubMed

    Cichocki, Michał; Dałek, Miłosz; Szamałek, Mateusz; Baer-Dubowska, Wanda

    2014-01-01

    Epidermal growth factor receptor (EGFR) plays an important role in epithelial carcinogenesis and appears to be involved in STATs activation. In this study we investigated the possible interference of naturally occurring phenolic acids with EGFR, activator protein-1 (AP-1), and signal transducers and activators of transcription (STATs) pathways activated by topical application of tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Balb/c mice epidermis. Pretreatment with tannic or chlorogenic acid resulted in a significant decrease in the phosphorylation of EGFR Y-1068 and Y-1173 tyrosine residues, which was accompanied by reduced activation of AP-1. Tannic acid decreased also the c-Jun AP-1 subunit level and binding to TPA response element (TRE) (3- and 2-fold in comparison with TPA-treated group respectively). Simultaneous reduction of JNK activity might be responsible for reduced activation of AP-1. In contrast to these more complex phenolics, protocatechuic acid increased the activity of JNK and was also the most efficient inhibitor of STATs activation. These results indicate that naturally occurring phenolic acids, by decreasing EGFR, AP-1, and STATs activation, may modulate other elements both upstream and downstream in these pathways and thus inhibit the tumor development. Although more complex phenolics affect mainly the EGFR/AP-1 pathway, STATs seem to be the most important targets for simple compounds, such as protocatechuic acid.

  1. Effect of milk on the urinary excretion of microbial phenolic acids after cocoa powder consumption in humans.

    PubMed

    Urpi-Sarda, Mireia; Llorach, Rafael; Khan, Nasiruddin; Monagas, Maria; Rotches-Ribalta, Maria; Lamuela-Raventos, Rosa; Estruch, Ramon; Tinahones, Francisco J; Andres-Lacueva, Cristina

    2010-04-28

    Health effects of cocoa flavonols depend on their bioavailability, which is strongly influenced by the food matrix and the degree of flavanol polymerization. The effect of milk on the bioavailability of cocoa flavanoids considering phase II metabolites of epicatechin has been the subject of considerable debate. This work studies the effect of milk at the colonic microbial metabolism level of the nonabsorbed flavanol fraction that reaches the colon and is metabolized by the colonic microbiota into various phenolic acids. Twenty-one human volunteers followed a diet low in polyphenols for at least 48 h before taking, in a random order, 40 g of cocoa powder dissolved either in 250 mL of whole milk or in 250 mL of water. Urine samples were collected before the intake and during three different periods (0-6, 6-12, and 12-24 h). Phenolic acids were analyzed by LC-MS/MS after solid-phase extraction. Of the 15 metabolites assessed, the excretion of 9 phenolic acids was affected by the intake of milk. The urinary concentration of 3,4-dihydroxyphenylacetic, protocatechuic, 4-hydroxybenzoic, 4-hydroxyhippuric, hippuric, caffeic, and ferulic acids diminished after the intake of cocoa with milk, whereas urinary concentrations of vanillic and phenylacetic acids increased. In conclusion, milk partially affects the formation of microbial phenolic acids derived from the colonic degradation of procyanidins and other compounds present in cocoa powder.

  2. Characterization of phenols biodegradation by compound specific stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Wei, Xi; Gilevska, Tetyana; Wenzig, Felix; Hans, Richnow; Vogt, Carsten

    2015-04-01

    Biodegradation of phenol and alkylphenols has been described under both oxic and anoxic conditions. In the absence of molecular oxygen, the degradation of phenolic compounds is initiated by microorganisms through carboxylation, fumarate addition to the methyl moiety or anoxic hydroxylation of the methyl moiety. Comparatively, under aerobic condition, the initiation mechanisms are revealed to be monoxygenation or dihydroxylation for phenol and ring hydroxylation or methyl group oxidation for cresols. While several studies biochemically characterized the enzymes and reaction mechanisms in the relevant degradation pathways, isotope fractionation patterns were rarely reported possibly due to constraints in current analytical methods. In this study, the carbon isotope fractionation patterns upon the degradation of phenol and cresols by several strains were analyzed by using isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). The corresponding enrichment factors for carbon (ƐC) have been obtained. Cresols degradation by various strains showed generally moderate carbon isotope fractionation patterns with notable differences. For p-cresol degradation, five strains were examined. The aerobic strain Acinetobacter calcoaceticus NCIMB8250 exploits ring hydroxylation by molecular oxygen as initial reaction, and a ƐC value of -1.4±0.2‰ was obtained. Pseudomonas pseudoalcaligenes NCIMB 9867, an aerobic strain initiating cresols degradation via oxygen-dependent side chain hydroxylation, yielded a ƐC value of -2.3±0.2‰. Under nitrate-reducing conditions, Geobacter metallireducens DSM 7210 and Azoarcus buckelii DSM 14744 attacks p-cresol at the side chain by monohydroxylation using water as oxygen source; the two strains produced ƐC values of -3.6±0.4‰ and -2±0.1‰, accordingly. The sulfate-reducing Desulfosarcina cetonica DSM 7267 activating cresols by fumarate addition to the methyl moiety yielded ƐC values of -1.9±0.2‰ for p

  3. Antioxidant activity and phenolic compounds in organic red wine using different winemaking techniques.

    PubMed

    Mulero, Juana; Zafrilla, Pilar; Cayuela, Jose M; Martínez-Cachá, Adela; Pardo, Francisco

    2011-04-01

    Wine phenolic composition depends on the grapes used to make wine and on vinification conditions. The occurrence of these biological compounds has stimulated numerous studies focused on understanding the mechanisms that influence their concentrations in wine. This article studied the effect of different vinification techniques on the antioxidant activity and on the phenolic compounds of red wine made from the variety of Monastrell grapes obtained by organic culture. To this purpose, 3 different vinification procedures were carried out: vinification after prolonged maceration, vinification with the addition of enological enzymes, and traditional vinification procedures (used as control).The results showed similar values of antioxidant activity in all 3 types of wine elaborated and found no differences in the concentrations of the different types of phenolic compounds in wine made with the 3 different methods. The evolution of antioxidant activity and phenolic compounds tested in wines during 3 mo of storage showed a similar pattern. Organic wine has acquired an important role in the economic world and its important, working in oenology to research in this field.

  4. In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples.

    PubMed

    López-Froilán, R; Ramírez-Moreno, E; Podio, N S; Pérez-Rodríguez, M L; Cámara, M; Baroni, M V; Wunderlin, D A; Sánchez-Mata, M C

    2016-06-15

    Coffee is one of the most consumed beverages in the world, being a source of bioactive compounds as well as flavors. Hydroxycinnamic acids, flavonols, and carboxylic acids have been studied in the samples of instant coffee commercialized in Spain. The studies about contents of food components should be complemented with either in vitro or in vivo bioaccessibility studies to know the amount of food components effectively available for functions in the human body. In this sense, a widely used in vitro model has been applied to assess the potential intestinal absorption of phenolic compounds and organic acids. The contents of hydroxycinnamic acids and flavonols were higher in instant regular coffee samples than in the decaffeinated ones. Bioaccessible phenolic compounds in most analyzed samples account for 20-25% of hydroxycinnamic acids and 17-26% of flavonols. This could mean that a great part of them can remain in the gut, acting as potential in situ antioxidants. Quinic, acetic, pyroglutamic, citric and fumaric acids were identified in commercial instant coffee samples. Succinic acid was found in the coffee blend containing chicory. All carboxylic acids showed a very high bioaccessibility. Particularly, acetic acid and quinic acid were found in higher contents in the samples treated with the in vitro simulation of gastrointestinal processes, compared to the original ones, which can be explained by their cleavage from chlorogenic acid during digestion. This is considered as a positive effect, since quinic acid is considered as an antioxidant inducer.

  5. Characterization and quantitation of low and high molecular weight phenolic compounds in apple seeds.

    PubMed

    Fromm, Matthias; Bayha, Sandra; Carle, Reinhold; Kammerer, Dietmar R

    2012-02-08

    The phenolic constituents of seeds of 12 different apple cultivars were fractionated by sequential extraction with aqueous acetone (30:70, v/v) and ethyl acetate after hexane extraction of the lipids. Low molecular weight phenolic compounds were individually quantitated by RP-HPLC-DAD. The contents of extractable and nonextractable procyanidins were determined by applying RP-HPLC following thiolysis and n-butanol/HCl hydrolysis, respectively. As expected, the results revealed marked differences of the ethyl acetate extracts, aqueous acetone extracts, and insoluble residues with regard to contents and mean degrees of polymerization of procyanidins. Total phenolic contents in the defatted apple seed residues ranged between 18.4 and 99.8 mg/g. Phloridzin was the most abundant phenolic compound, representing 79-92% of monomeric polyphenols. Yields of phenolic compounds significantly differed among the cultivars under study, with seeds of cider apples generally being richer in phloridzin and catechins than seeds of dessert apple cultivars. This is the first study presenting comprehensive data on the contents of phenolic compounds in apple seeds comprising extractable and nonextractable procyanidins. Furthermore, the present work points out a strategy for the sustainable and complete exploitation of apple seeds as valuable agro-industrial byproducts, in particular as a rich source of phloridzin and antioxidant flavanols.

  6. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance.

    PubMed

    Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried

    2018-05-01

    Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Identification of Phenolic Compounds in Red and Green Pistachio (Pistacia vera L.) Hulls (Exo- and Mesocarp) by HPLC-DAD-ESI-(HR)-MS(n).

    PubMed

    Erşan, Sevcan; Güçlü Üstündağ, Özlem; Carle, Reinhold; Schweiggert, Ralf M

    2016-07-06

    Phenolic constituents of the nonlignified red and green pistachio hulls (exo- and mesocarp) were assessed by HPLC-DAD-ESI-MS(n) as well as by HR-MS. A total of 66 compounds was identified in the respective aqueous methanolic extracts. Among them, gallic acid, monogalloyl glucoside, monogalloyl quinic acid, penta-O-galloyl-β-d-glucose, hexagalloyl hexose, quercetin 3-O-galactoside, quercetin 3-O-glucoside, quercetin 3-O-glucuronide, and (17:1)-, (13:0)-, and (13:1)-anacardic acids were detected at highest signal intensity. The main difference between red and green hulls was the presence of anthocyanins in the former ones. Differently galloylated hydrolyzable tannins, anthocyanins, and minor anacardic acids were identified for the first time. Pistachio hulls were thus shown to be a source of structurally diverse and potentially bioactive phenolic compounds. They therefore represent a valuable byproduct of pistachio processing having potential for further utilization as raw material for the recovery of pharmaceutical, nutraceutical, and chemical products.

  8. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients.

    PubMed

    Caleja, Cristina; Ribeiro, Andreia; Barreiro, Maria Filomena; Ferreira, Isabel C F R

    2017-01-01

    Nowadays, the functional foods represent one the most promising, interesting and innovative areas in the food industry. Various components are being added to foods in order to render them functional. One example of these components are plant naturally occurring phenolic compounds, which are associated with a high antioxidant capacity and thus with benefits in relation to human health. However, despite the huge number of scientific studies and patents on this topic and their natural presence in foods, namely in the ones from plant origin, there are still few marketable products enriched with these compounds. The commercialization of this type of functional products needs to go through various regulations, proving that they are safe and present the ascribed health benefits, conquering the target audience. In this review the growing interest of industry and consumers' appetence for functional foods and nutraceuticals is highlighted, focusing especially on phenolic compounds. Although several published works show the multitude of bioactive properties of these compounds, ensuring their use as bioactive ingredients in food, they present inherent stability issues needing to be solved. However, considerable research is presently ongoing to overcome this problem, making viable the development of new products to be launched in the market. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. GC-MS olfactometric and LC-DAD-ESI-MS/MS characterization of key odorants and phenolic compounds in black dry-salted olives.

    PubMed

    Selli, Serkan; Kelebek, Hasim; Kesen, Songul; Sonmezdag, Ahmet Salih

    2018-02-01

    Olives are processed in different ways depending on consumption habits, which vary between countries. Different de-bittering methods affect the aroma and aroma-active compounds of table olives. This study focused on analyzing the aroma and aroma-active compounds of black dry-salted olives using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) techniques. Thirty-nine volatile compounds which they have a total concentration of 29 459 µg kg -1 , were determined. Aroma extract dilution analysis (AEDA) was used to determine key aroma compounds of table olives. Based on the flavor dilution (FD) factor, the most powerful aroma-active compounds in the sample were methyl-2-methyl butyrate (tropical, sweet; FD: 512) and (Z)-3-hexenol (green, flowery; FD: 256). Phenolic compounds in table olives were also analyzed by LC-DAD-ESI-MS/MS. A total of 20 main phenolic compounds were identified and the highest content of phenolic compound was luteolin-7-glucoside (306 mg kg -1 ), followed by verbascoside (271 mg kg -1 ), oleuropein (231 mg kg -1 ), and hydroxytyrosol (3,4-DHPEA) (221 mg kg -1 ). Alcohols, carboxylic acids, and lactones were qualitatively and quantitatively the dominant volatiles in black dry-salted olives. Results indicated that esters and alcohols were the major aroma-active compounds. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Biochemical changes in phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties

    PubMed Central

    Afify, Abd El-Moneim MR; El-Beltagi, Hossam S; El-Salam, Samiha M Abd; Omran, Azza A

    2012-01-01

    Objective To investigate the changes in total phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties. Methods The changes in total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity during soaking of sorghum grains were determined. Results Total phenols, total flavonoids, tannins, vitamin E, β-carotene and antioxidant activity in raw sorghum were ranged from 109.21 to 116.70, 45.91 to 54.69, 1.39 to 21.79 mg/100 g, 1.74 to 5.25, 0.54 to 1.19 mg/kg and 21.72% to 27.69% and 25.29% to 31.97%, respectively. The above measured compounds were significantly decreased after soaking. p-Hydroxybenzoic acid, vanillic acid, syringic acid and cinnamic acid represent the major phenolic acids in Dorado variety. While ferulic acid, p-coumaric acid, gallic acid and caffeic acid represent the major phenolic acids in Shandaweel-6. On the other hand, protocatechuic acid represents the major phenolic acids in Giza-15. Regarding flavonoids components, Dorado was the highest variety in kampferol and naringenin while Shandaweel-6 was the highest variety in luteolin, apigenin, hypersoid, quercetin and christen. Finally, Giza-15 was the highest variety in catechin. Phenolic acids, flavonoid compounds and antioxidant activities were decreased after soaking. Conclusions Sorghum varieties have moderate quantities from total phenols, total flavonoids, tannins, phenolic acids compounds, flavonoid components, vitamin E, β-carotene and antioxidant activity which decreased after soaking. PMID:23569898

  11. Quantitative analysis of flavonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography.

    PubMed

    Ganzera, Markus; Egger, Christoph; Zidorn, Christian; Stuppner, Hermann

    2008-05-05

    Arnica montana preparations have been used in Europe for centuries to treat skin disorders. Among the biologically active ingredients in the flower heads of the plant are sequiterpenes, flavonoids and phenolic acids. For the simultaneous determination of compounds belonging to the latter two groups a micellar electrokinetic capillary chromatography (MEKC) method was developed and validated. By using an electrolyte solution containing 50 mM borax, 25 mM sodium dodecyl sulfate and 30% of acetonitrile the separation of seven flavonoids and four caffeic acid derivatives was feasible in less than 20 min. The optimized system was validated for repeatability (sigma(rel) < or = 4.4%), precision (inter-day sigma(rel) < or = 8.13%, intra-day sigma(rel) < or = 4.32%), accuracy (recovery rates from 96.8 to 102.4%), sensitivity (limit of detection (LOD) < or = 4.5 microg mL(-1)) and linearity (R(2) > or = 0.9996), and then successfully applied to assay several plant samples. In all of them the most dominant flavonoid was found to be quercetin 3-O-glucuronic acid, whereas 3,5-dicaffeoylquinic acid was the major phenolic acid; the total content of flavonoids and phenolic acids varied in the samples from 0.60 to 1.70%, and 1.03 to 2.24%, respectively.

  12. Enhanced production of phenolic acids in cell suspension culture of Salvia leriifolia Benth. using growth regulators and sucrose.

    PubMed

    Modarres, Masoomeh; Esmaeilzadeh Bahabadi, Sedigheh; Taghavizadeh Yazdi, Mohammad Ehsan

    2018-04-01

    Salvia leriifolia Benth. (Lamiaceae) is an endangered medicinal plant with hypoglycemic, anti-inflammatory and analgesic properties. Many of the beneficial effects of Salvia spp. are attributed to the phenolic compounds. In the present study, an efficient procedure has been developed for establishment of cell suspension culture of S. leriifolia as a strategy to obtain an in vitro phenolic acids producing cell line for the first time. The effect of growth regulators and various concentrations of sucrose have been analyzed, to optimize biomass growth and phenolic acids production. The callus used for this purpose was obtained from leaves of 15-day-old in vitro seedlings, on Murashige and Skoog (MS) basal medium supplemented with different hormone balances including benzylaminopurine (BAP) and indole butyric acid (IBA); 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (KIN); naphthaleneacetic acid (NAA) and BAP. Modified MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA was the optimal condition for callus formation with the highest induction rate (100%), the best callus growth and the highest phenolic acids content. No callus induction was observed in combinations of IBA and BAP. Cell suspension cultures were established by transferring 0.5 g of callus to 30 mL liquid MS medium supplemented with 5 mg/L BAP and 5 mg/L NAA. Dynamics of phenolic acids production has been investigated during the growth cycle of the suspension cultures. The maximum content of caffeic acid and salvianolic acid B were observed on the 15th day of the cultivation cycle while the highest amount of rosmarinic acid was observed on the first day. In response to various sucrose concentrations, cell cultures with 40 g/L sucrose not only produced the highest dry biomass but also the highest induction of caffeic acid and salvianolic acid B. The highest amount of rosmarinic acid was observed in media containing 50 g/L sucrose. These prepared cell suspension cultures provided a useful

  13. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L.

    PubMed

    Fernandes, Ana; Fernandes, Iva; Cruz, Luís; Mateus, Nuno; Cabral, Miguel; de Freitas, Victor

    2009-12-09

    Phenolic compounds, namely, hydrolyzable tannins and low molecular weight phenolic compounds, were isolated and purified from Portuguese cork from Quercus suber L. Some of these compounds were studied to evaluate their antioxidant activity, including free-radical scavenging capacity (DPPH method) and reducing capacity (FRAP method). All compounds tested showed significant antioxidant activity, namely, antiradical and reducing properties. The antiradical capacity seemed to increase with the presence of galloyl groups. Regarding the reducing capacity, this structure-activity relationship was not so clear. These compounds were also studied to evaluate the growth inhibitory effect on the estrogen responsive human breast cancer cell line (ER+) MCF-7 and two other colon cancer cell lines (Caco-2 and HT-29). Generally, all the compounds tested exhibited, after a continuous exposure during a 48 h period, a dose-dependent growth inhibitory effect. Relative inhibitory activity was primarily related to the number of phenolic hydroxyl groups (galloyl and HHDP moieties) found in the active structures, with more groups generally conferring increased effects, except for HHDP-di-galloyl-glucose. Mongolicain B showed a greater potential to inhibit the growth of the three cell lines tested, identical to the effect observed with castalagin. Since these compounds are structurally related with each other, this activity might be based within the C-glycosidic ellagitannin moiety.

  14. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

    PubMed Central

    Ihssen, Julian; Schubert, Mark; Thöny-Meyer, Linda; Richter, Michael

    2014-01-01

    Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of softwood lignin, can be directly iodinated by reacting with laccase and iodide, resulting in compounds with antifungal activity. HPLC-MS analysis showed that vanillin was converted to iodovanillin by laccase catalysis at an excess of potassium iodide. No conversion of vanillin occurred in the absence of enzyme. The addition of redox mediators in catalytic concentrations increased the rate of iodide oxidation ten-fold and the yield of iodovanillin by 50%. Iodinated phenolic products were also detected when o-vanillin, ethyl vanillin, acetovanillone and methyl vanillate were incubated with laccase and iodide. At an increased educt concentration of 0.1 M an almost one to one molar ratio of iodide to vanillin could be used without compromising conversion rate, and the insoluble iodovanillin product could be recovered by simple centrifugation. The novel enzymatic synthesis procedure fulfills key criteria of green chemistry. Biocatalytically produced iodovanillin and iodo-ethyl vanillin had significant growth inhibitory effects on several wood degrading fungal species. For Trametes versicolor, a species causing white rot of wood, almost complete growth inhibition and a partial biocidal effect was observed on agar plates. Enzymatic tests indicated that the iodinated compounds acted as enzyme responsive, antimicrobial materials. PMID:24594755

  15. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I.

    PubMed

    Regelsberger, G; Jakopitsch, C; Engleder, M; Rüker, F; Peschek, G A; Obinger, C

    1999-08-10

    A high-level expression in Escherichia coli of a fully active recombinant form of a catalase-peroxidase (KatG) from the cyanobacterium Synechocystis PCC 6803 is reported. Since both physical and kinetic characterization revealed its identity with the wild-type protein, the large quantities of recombinant KatG allowed the first examination of second-order rate constants for the oxidation of a series of aromatic donor molecules (monosubstituted phenols and anilines) by a bifunctional catalase-peroxidase compound I using the sequential-mixing stopped-flow technique. Because of the overwhelming catalase activity, peroxoacetic acid has been used for compound I formation. A >/=50-fold excess of peroxoacetic acid is required to obtain a spectrum of relatively pure and stable compound I which is characterized by about 40% hypochromicity, a Soret maximum at 406 nm, and isosbestic points between the native enzyme and compound I at 357 and 430 nm. The apparent second-order rate constant for formation of compound I from ferric enzyme and peroxoacetic acid is (8.74 +/- 0.26) x 10(3) M(-)(1) s(-)(1) at pH 7. 0. Reduction of compound I by aromatic donor molecules is dependent upon the substituent effect on the benzene ring. The apparent second-order rate constants varied from (3.6 +/- 0.1) x 10(6) M(-)(1) s(-)(1) for p-hydroxyaniline to (5.0 +/- 0.1) x 10(2) M(-)(1) s(-)(1) for p-hydroxybenzenesulfonic acid. They are shown to correlate with the substituent constants in the Hammett equation, which suggests that in bifunctional catalase-peroxidases the aromatic donor molecule donates an electron to compound I and loses a proton simultaneously. The value of rho, the susceptibility factor in the Hammett equation, is -3.4 +/- 0.4 for the phenols and -5.1 +/- 0.8 for the anilines. The pH dependence of compound I reduction by aniline exhibits a relatively sharp maximum at pH 5. The redox intermediate formed upon reduction of compound I has spectral features which indicate that the

  16. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines.

    PubMed

    Aleixandre-Tudo, Jose Luis; Buica, Astrid; Nieuwoudt, Helene; Aleixandre, Jose Luis; du Toit, Wessel

    2017-05-24

    Phenolic compounds are of crucial importance for red wine color and mouthfeel attributes. A large number of enzymatic and chemical reactions involving phenolic compounds take place during winemaking and aging. Despite the large number of published analytical methods for phenolic analyses, the values obtained may vary considerably. In addition, the existing scientific knowledge needs to be updated, but also critically evaluated and simplified for newcomers and wine industry partners. The most used and widely cited spectrophotometric methods for grape and wine phenolic analysis were identified through a bibliometric search using the Science Citation Index-Expanded (SCIE) database accessed through the Web of Science (WOS) platform from Thompson Reuters. The selection of spectrophotometry was based on its ease of use as a routine analytical technique. On the basis of the number of citations, as well as the advantages and disadvantages reported, the modified Somers assay appears as a multistep, simple, and robust procedure that provides a good estimation of the state of the anthocyanins equilibria. Precipitation methods for total tannin levels have also been identified as preferred protocols for these types of compounds. Good reported correlations between methods (methylcellulose precipitable vs bovine serum albumin) and between these and perceived red wine astringency, in combination with the adaptation to high-throughput format, make them suitable for routine analysis. The bovine serum albumin tannin assay also allows for the estimation of the anthocyanins content with the measurement of small and large polymeric pigments. Finally, the measurement of wine color using the CIELab space approach is also suggested as the protocol of choice as it provides good insight into the wine's color properties.

  17. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy.

    PubMed

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Zhihua, Li; Jiyong, Shi; Zhai, Xiaodong; Wang, Sheng; Mariod, Abdalbasit Adam

    2017-07-01

    Fourier transform infrared with attenuated total reflectance (FTIR-ATR) and Raman spectroscopy combined with partial least square regression (PLSR) were applied for the prediction of phenolic compounds and antioxidant activity in honey. Standards of catechin, syringic, vanillic, and chlorogenic acids were used for the identification and quantification of the individual phenolic compounds in six honey varieties using HPLC-DAD. Total antioxidant activity (TAC) and ferrous chelating capacity were measured spectrophotometrically. For the establishment of PLSR model, Raman spectra with Savitzky-Golay smoothing in wavenumber region 1500-400cm -1 was used while for FTIR-ATR the wavenumber regions of 1800-700 and 3000-2800cm -1 with multiplicative scattering correction (MSC) and Savitzky-Golay smoothing were used. The determination coefficients (R 2 ) were ranged from 0.9272 to 0.9992 for Raman while from 0.9461 to 0.9988 for FTIT-ART. The FTIR-ATR and Raman demonstrated to be simple, rapid and nondestructive methods to quantify phenolic compounds and antioxidant activities in honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry.

    PubMed

    Zhao, Jian-Liang; Ying, Guang-Guo; Wang, Li; Yang, Ji-Feng; Yang, Xiao-Bing; Yang, Li-Hua; Li, Xu

    2009-01-01

    An analytical method for phenolic endocrine disrupting chemicals and acidic pharmaceuticals in river water was developed using gas chromatography mass spectrometry (GC-MS) coupled with negative chemical ionization (NCI) technique, and used for the determination of these compounds in the Pearl Rivers (Liuxi, Zhujiang and Shijing Rivers). Derivatization using pentafluorobenzoyl chloride (PFBOCl) and pentafluorobenzyl bromide (PFBBr) before GC-MS analysis were applied and optimized for phenolic compounds and acidic compounds, respectively. The target compounds were analyzed for river waters from the upstream to downstream of the Pearl Rivers. Phenolic compounds 4-tert-octylphenol (4-t-OP), 4-nonylphenol (4-NP), bisphenol-A (BPA), estrone (E1), estradiol (E2) and triclosan (TCS) were detected at trace or low levels in the water samples from Liuxi River and Zhujiang River. Diethylstilbestrol (DES) was not detected in the Pearl Rivers. The highest concentrations of the phenolic compounds were found in Shijing River, and they were 3150 ng/L for 4-t-OP, 11,300 ng/L for 4-NP, 1040 ng/L for BPA, 79 ng/L for E1, 7.7 ng/L for E2 and 355 ng/L for TCS, respectively. Only a few acidic pharmaceuticals were detected at low concentrations in water from Liuxi River and Zhujiang River, but the highest concentrations for the acidic pharmaceuticals were also found in Shijing River. The highest concentrations detected for clofibric acid, ibuprofen, gemfibrozil, naproxen, mefenamic acid and diclofenac were 17 ng/L, 685 ng/L, 19.8 ng/L, 125 ng/L, 24.6 ng/l and 150 ng/L, respectively. The results suggest Liuxi and Zhujiang Rivers are only slightly contaminated and can be used as drinking water sources, but Shijing River is heavily polluted by the wastewater from nearby towns.

  19. Selected phenolic compounds in cultivated plants: ecologic functions, health implications, and modulation by pesticides.

    PubMed Central

    Daniel, O; Meier, M S; Schlatter, J; Frischknecht, P

    1999-01-01

    Phenolic compounds are widely distributed in the plant kingdom. Plant tissues may contain up to several grams per kilogram. External stimuli such as microbial infections, ultraviolet radiation, and chemical stressors induce their synthesis. The phenolic compounds resveratrol, flavonoids, and furanocoumarins have many ecologic functions and affect human health. Ecologic functions include defense against microbial pathogens and herbivorous animals. Phenolic compounds may have both beneficial and toxic effects on human health. Effects on low-density lipoproteins and aggregation of platelets are beneficial because they reduce the risk of coronary heart disease. Mutagenic, cancerogenic, and phototoxic effects are risk factors of human health. The synthesis of phenolic compounds in plants can be modulated by the application of herbicides and, to a lesser extent, insecticides and fungicides. The effects on ecosystem functioning and human health are complex and cannot be predicted with great certainty. The consequences of the combined natural and pesticide-induced modulating effects for ecologic functions and human health should be further evaluated. PMID:10229712

  20. Identification of Catechin, Syringic Acid, and Procyanidin B2 in Wine as Stimulants of Gastric Acid Secretion.

    PubMed

    Liszt, Kathrin Ingrid; Eder, Reinhard; Wendelin, Sylvia; Somoza, Veronika

    2015-09-09

    Organic acids of wine, in addition to ethanol, have been identified as stimulants of gastric acid secretion. This study characterized the influence of other wine compounds, particularly phenolic compounds, on proton secretion. Forty wine parameters were determined in four red wines and six white wines, including the contents of organic acids and phenolic compounds. The secretory activity of the wines was determined in a gastric cell culture model (HGT-1 cells) by means of a pH-sensitive fluorescent dye. Red wines stimulated proton secretion more than white wines. Lactic acid and the phenolic compounds syringic acid, catechin, and procyanidin B2 stimulated proton secretion and correlated with the pro-secretory effect of the wines. Addition of the phenolic compounds to the least active white wine sample enhanced its proton secretory effect by 65 ± 21% (p < 0.05). These results indicate that not only malic and lactic acid but also bitter and astringent tasting phenolic compounds in wine contribute to its stimulatory effect on gastric acid secretion.

  1. Total Phenolics, Total Flavonoids, Antioxidant Capacities, and Volatile Compounds Gas Chromatography-Mass Spectrometry Profiling of Moringa oleifera Ripe Seed Polar Fractions.

    PubMed

    Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip

    2018-01-01

    Academic reports have confirmed Moringa oleifera leaves to possess significant antioxidant capacities; however, such studies are unavailable for its ripe seeds even though they are more desirous for consumption due to their sweet taste. In this study, we investigated antioxidant capacities of four polar extracts (crude water, ethanol, butanol, and aqueous residue) from the plant's ripe seeds. Phytochemicals were extracted from the ripe seeds of M. oleifera using ethanol and water solvents at initial stage. Butanol and aqueous residue were then subsequently fractioned out from the ethanol extract. Phenolic and flavonoid contents of the polar extracts were determined. Then, their antioxidant capacities were quantified by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. Finally, gas chromatography-mass spectrometry (GC-MS) analyses of the extracts were performed. DPPH and ABTS tests showed that the polar extracts possess significant antioxidant capacities that ranged from 29 to 35.408 μM Trolox equivalence antioxidant capacity (TEAC)/mg sample and 7 to 29 μM TEAC/mg sample, respectively. The antioxidant capacities of the extracts corresponded to their phenolic and flavonoid contents that varied from 13.61 to 20.42 mg gallic acid equivalence/g sample and 0.58 to 9.81 mg quercetin equivalence/g sample, respectively. Finally, GC-MS analyses revealed antimicrobial phenolic compounds, 4-hydroxybenzaldehyde in crude water extract and 4-hydroxybenzene acetonitrile in the ethanol and butanol extracts, and aqueous residue. Our results established that M. oleifera ripe seeds have significant antioxidant activity which may be due to its phenolic and nonphenolic compounds content. In this study, polar phytochemicals from ripe seeds of Moringa oleifera were extracted by water and ethanol solvents, and butanol extract and aqueous residue were subsequently fractioned out of the ethanol extract. The

  2. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology.

    PubMed

    Nour, Violeta; Trandafir, Ion; Cosmulescu, Sina

    2016-10-01

    Context Walnut leaves are highly appreciated for their pharmacological effects and therapeutic properties which are mainly attributed to their high content of phenolic compounds. Objective This study optimizes ultrasound assisted hydroalcoholic extraction (UAE) of phenolic compounds from dried walnut leaves by the maximization of total phenolics content (TPC) and total flavanoids content (TFC) of the extracts. Materials and methods Optimal conditions with regard to ethanol concentration (X1: 12.17-95.83% v/v), extraction time (X2: 8.17-91.83 min) and liquid-to-solid ratio (X3: 4.96-25.04 v/w) were identified using central composite design combined with response surface methodology. A high-performance liquid chromatography method with diode-array detection was used to quantify phenolic acids (gallic, vanillic, chlorogenic, caffeic, syringic, p-coumaric, ferulic, sinapic, salicylic, ellagic and trans-cinnamic), flavonoids (catechin, epicatechin, rutin, myricetin and quercetin) and juglone in the extracts. Results Liquid-to-solid ratio and ethanol concentration proved to be the primary factors affecting the extraction efficiency. The maximum predicted TPC, under the optimized conditions (61% ethanol concentration, 51.28 min extraction time and 4.96 v/w liquid-to-solid ratio) was 10125.4 mg gallic acid equivalents per liter while maximum TFC (2925 mg quercetin equivalents per liter) occurred at 67.83% ethanol concentration, 4.96 v/w liquid-to-solid ratio and 49.37 min extraction time. High significant correlations were found between antioxidant activity and both TPC (R(2 )=( )0.81) and TFC (R(2 )=( )0.78). Discussion and conclusion Extracts very rich in polyphenols could be obtained from walnut leaves by using UAE, aimed at preparing dietary supplements, nutraceuticals or functional food ingredients.

  3. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L.

    PubMed

    Pinelli, Patrizia; Ieri, Francesca; Vignolini, Pamela; Bacci, Laura; Baronti, Silvia; Romani, Annalisa

    2008-10-08

    In the present study the phenolic composition of leaves, stalks, and textile fiber extracts from Urtica dioica L. is described. Taking into account the increasing demand for textile products made from natural fibers and the necessity to create sustainable "local" processing chains, an Italian project was funded to evaluate the cultivation of nettle fibers in the region of Tuscany. The leaves of two nettle samples, cultivated and wild (C and W), contain large amounts of chlorogenic and 2- O-caffeoylmalic acid, which represent 71.5 and 76.5% of total phenolics, respectively. Flavonoids are the main class in the stalks: 54.4% of total phenolics in C and 31.2% in W samples. Anthocyanins are second in quantitative importance and are present only in nettle stalks: 28.6% of total phenolics in C and 24.4% in W extracts. Characterization of phenolic compounds in nettle extracts is an important result with regard to the biological properties (antioxidant and antiradical) of these metabolites for their possible applications in various industrial activities, such as food/feed, cosmetics, phytomedicine, and textiles.

  4. Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza.

    PubMed

    Shi, Min; Huang, Fenfen; Deng, Changping; Wang, Yao; Kai, Guoyin

    2018-05-10

    Salvia miltiorrhiza (Danshen in Chinese), is a well-known traditional Chinese medicinal plant, which is used as not only human medicine but also health-promotion food. Danshen has been extensively used for the treatment of various cardiovascular and cerebrovascular diseases. As a major group of bioactive constituents from S. miltiorrhiza, water-soluble phenolic acids such as salvianolic acid B possessed good bioactivities including antioxidant, anti-inflammatory, anti-cancer and other health-promoting activities. It is of significance to improve the production of phenolic acids by modern biotechnology approaches to meet the increasing market demand. Significant progresses have been made in understanding the biosynthetic pathway and regulation mechanism of phenolic acids in S.miltiorrhiza, which will facilitate the process of targeted metabolic engineering or synthetic biology. Furthermore, multiple biotechnology methods such as in vitro culture, elicitation, hairy roots, endophytic fungi and bioreactors have been also used to obtain pharmaceutically active phenolic acids from S. miltiorrhiza. In this review, recent advances in bioactivities, biosynthetic pathway and biotechnological production of phenolic acid ingredients were summarized and future prospective was also discussed.

  5. Effects of Increasing Doses of UV-B on Main Phenolic Acids Content, Antioxidant Activity and Estimated Biomass in Lavandin (Lavandula x intermedia).

    PubMed

    Usano-Alemany, Jaime; Panjai, Lachinee

    2015-07-01

    Lavandin is a well-known aromatic plant cultivated mainly for its valuable essential oil. Nonetheless, little attention has been paid so far to the quantification of other natural products such as polyphenols. Accordingly, we examined the effect of increasing doses of UV-B radiation on the main phenolic content, antioxidant activity and estimated biomass of one year old lavandin pots compared with pots grown outdoors. Significantly higher total phenolic content and concentration of main polyphenols have been found in outdoor plants. Rosmarinic acid has been described as the major phenolic compound in methanolic extracts (max. 25.9 ± 9.7 mg/g(-1) DW). Furthermore, we found that increasing doses of UV-B promote the plant growth of this species as well as the accumulation of phenolic compounds although with less antioxidant capacity in scavenging DPPH radicals. On the other hand, our results showed a remarkable variability among individual plants regarding the content of major phenolic acids. The application of UV-B doses during plant growth could be a method to promote biomass in this species along with the promotion of higher content of valuable secondary metabolites.

  6. Analysis of Organic Acids, Deacetyl Asperulosidic Acid and Polyphenolic Compounds as a Potential Tool for Characterization of Noni (Morinda citrifolia) Products.

    PubMed

    Bittová, Miroslava; Hladůkova, Dita; Roblová, Vendula; Krácmar, Stanislav; Kubán, Petr; Kubán, Vlastimil

    2015-11-01

    Organic acids, deacetyl asperulosidic acid (DAA) and polyphenolic compounds in various noni (Morinda citrifolia L.) products (4 juices, 4 dry fruit powders and 2 capsules with dry fruit powder) were analyzed. Reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a variable wavelength detector (VWD) and electrospray ionization time-of-flight mass spectrometer (ESI-TOF MS) was applied for simultaneous analysis of organic acids (malic, lactic, citric and succinic acid) and DAA. An RP-HPLC method with diode-array detector (DAD) was developed for the analysis of polyphenolic compound content (rutin, catechin, quercitrin, kaempferol, gallic acid, caffeic acid and p-coumaric acid). The developed methods can contribute to better characterization of available noni products that is required from the consumers. In our study, we discovered significant dissimilarities in the content of DAA, citric acid and several phenolic compounds in some samples.

  7. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.

    PubMed

    Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder

    2016-05-23

    In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Inhibition of Fusarium Growth and Mycotoxin Production in Culture Medium and in Maize Kernels by Natural Phenolic Acids.

    PubMed

    Ferruz, Elena; Loran, Susana; Herrera, Marta; Gimenez, Isabel; Bervis, Noemi; Barcena, Carmen; Carramiñana, Juan Jose; Juan, Teresa; Herrera, Antonio; Ariño, Agustin

    2016-10-01

    The possible role of natural phenolic compounds in inhibiting fungal growth and toxin production has been of recent interest as an alternative strategy to the use of chemical fungicides for the maintenance of food safety. Fusarium is a worldwide fungal genus mainly associated with cereal crops. The most important Fusarium mycotoxins are trichothecenes, zearalenone, and fumonisins. This study was conducted to evaluate the potential of four natural phenolic acids (caffeic, ferulic, p-coumaric, and chlorogenic) for the control of mycelial growth and mycotoxin production by six toxigenic species of Fusarium . The addition of phenolic acids to corn meal agar had a marked inhibitory effect on the radial growth of all Fusarium species at levels of 2.5 to 10 mM in a dose-response pattern, causing total inhibition (100%) in all species except F. sporotrichioides and F. langsethiae . However, the effects of phenolic acids on mycotoxin production in maize kernels were less evident than the effects on growth. The fungal species differed in their responses to the phenolic acid treatments, and significant reductions in toxin concentrations were observed only for T-2 and HT-2 (90% reduction) and zearalenone (48 to 77% reduction). These results provide data that could be used for developing pre- and postharvest strategies for controlling Fusarium infection and subsequent toxin production in cereal grains.

  9. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    PubMed

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley.

    PubMed

    El-Zaeddi, Hussein; Calín-Sánchez, Ángel; Nowicka, Paulina; Martínez-Tomé, Juan; Noguera-Artiaga, Luis; Burló, Francisco; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A

    2017-07-01

    The effects of a preharvest treatment with malic (MA), oxalic (OA), or acetylsalicylic (ASA) acid at three concentrations (1, 2 and 3mM) on the bioactivity and antioxidant capacity of coriander, dill, and parsley were investigated. The antioxidant capacity of the herbs extracts was assayed by spectrophotometric methods by using three different analytical methods: ORAC, FRAP, and ABTS; the effects of treatments were very positive in coriander, produced intermediate results in dill, and no effects were found in parsley plants. Polyphenol compounds were identified by LC-MS-QTof and quantified by UPLC-PDA-FL. Thirty phenolic compounds were identified in these three herbs. The major compounds were (i) coriander: dimethoxycinnamoyl hexoside and quercetin-3-O-rutinoside, (ii) dill: neochlorogenic acid and quercetin glucuronide, and (iii) parsley: apigenin-7-apiosylglucoside (apiin) and isorhamnetin-3-O-hexoside. The application of these three organic acids favored the accumulation of phenolic compounds in coriander plants, but had no significant positive effects on dill and parsley. The treatments leading to the best results in all three plants were the application of MA or OA at 1mM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract.

    PubMed

    Xu, Guihua; Ye, Xingqian; Chen, Jianchu; Liu, Donghong

    2007-01-24

    This paper reports the effects of heat treatment on huyou (Citrus paradisi Changshanhuyou) peel in terms of phenolic compounds and antioxidant capacity. High-performance liquid chromatography (HPLC) coupled with a photodiode array (PDA) detector was used in this study for the analysis of phenolic acids (divided into four fractions: free, ester, glycoside, and ester-bound) and flavanone glycosides (FGs) in huyou peel (HP) before and after heat treatment. The results showed that after heat treatment, the free fraction of phenolic acids increased, whereas ester, glycoside, and ester-bound fractions decreased and the content of total FGs declined (P < 0.05). Furthermore, the antioxidant activity of methanol extract of HP increased (P < 0.05), which was evaluated by total phenolics contents (TPC) assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS*+) method, and ferric reducing antioxidant power (FRAP) assay. The correlation coefficients among TPC, ABTS, FRAP assay, and total cinnamics and benzoics (TCB) in the free fraction were significantly high (P < 0.05), which meant that the increase of total antioxidant capacity (TAC) of HP extract was due at least in part to the increase of TCB in free fraction. In addition, FGs may be destroyed when heated at higher temperature for a long time (for example, 120 degrees C for 90 min or 150 degrees C for 30 min). Therefore, it is suggested that a proper and reasonable heat treatment could be used to enhance the antioxidant capacity of citrus peel.

  12. Ultrasound-assisted extraction of phenolic compounds from Cratoxylum formosum ssp. formosum leaves using central composite design and evaluation of its protective ability against H2O2-induced cell death.

    PubMed

    Yingngam, Bancha; Monschein, Marlene; Brantner, Adelheid

    2014-09-01

    To optimize the processing parameters for phenolic compounds extracted from Cratoxylum formosum ssp. formosum leaves using an ultrasound-assisted extraction and to evaluate its protective ability against H2O2-induced cell death. The influence of three independent variables including ethanol concentration (%), extraction temperature (°C) and extraction time (min) on the extraction yield of phenolic compounds were optimized using a central composite design-based response surface methodology. The obtained extract was assessed for its antioxidant activity by DPPH(•) and ABTS(•)(+) methods. Cellular protective ability against H2O2-induced cell death was evaluated on HEK293 cells using the MTT assay. The optimal conditions to achieve maximal yields of phenolic compounds were ethanol concentration of 50.33% (v/v), temperature of 65 °C, and extractiontion time of 15 min. The yield of phenolic compounds was (40.00±1.00) mg gallic acid equivalent/g dry powder which matched well with the values predicted from the proposed model. These conditions resulted in a higher efficiency concerning the extraction of phenolics compared to a conventional heat reflux extraction by providing shorter extraction time and reduced energy consumption. 5-O-caffeoylquinic acid identified by high performance liquid chromatography-diode array detector-electron spin ionization-mass spectrometry was the major compound in the obtained extract [(41.66±0.07) mg/g plant extract]. The obtained extract showed a strong ability to scavenge both DPPH(•) and ABTS(•)(+) free radicals and exhibited additionally good ability to protect HEK293 cells death against oxidative stress. These results indicate the suitability of ultrasound-assisted extraction for the extraction of phenolic compounds from Cratoxylum formosum ssp. formosum leaves. This phenolic-enriched extract can be used as valuable antioxidant source for health benefits. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All

  13. Different responses of vanillic acid, a phenolic compound, in HTC cells: cytotoxicity, antiproliferative activity, and protection from DNA-induced damage.

    PubMed

    Almeida, I V; Cavalcante, F M L; Vicentini, V E P

    2016-12-19

    The consumption of healthy and natural foods has increased over the last few years, primarily because these foods are rich in substances with biological properties of interest, such as exerting anticancer effects and decreasing oxidative stress in living tissues. These foods support adequate nutrition, maintain health, and improve quality of life. Vanillic acid (VA) is a phenolic compound used widely in the food industry as a flavoring, preservative, and food additive. VA can be found in various cereals, whole grains, fruits, herbs, green tea, juices, beers, and wines and possesses antioxidant, hepatoprotective, cardioprotective, and antiapoptotic activities. Studying the cytotoxicity as well as the mutagenic and antimutagenic effects of different concentrations of VA in Rattus norvegicus hepatoma cells (HTC) can identify new cellular activities of this substance. Concentrations up to 100 µM VA are not cytotoxic to HTC cells in a MTT [3-(4,5-dimethilthiazol-2-yl)-2,5-diphenil tetrazolium bromide] assay after 96-h exposure; therefore, VA does not compromise mitochondrial activity. Similarly, concentrations up to 500 µM do not compromise plasma membrane integrity. VA at 10 and 50 µM showed no mutagenic/clastogenic effects, as no significant micronuclei induction was observed. VA 10 µM presented no antiproliferative activity and reduced the cytotoxicity induced by benzo[a]pyrene. The antimutagenic activity of 10 µM VA was observed by the simultaneous, pre-, and post-treatments, as the phenolic compound significantly reduced the frequency of micronuclei induced by the mutagen. These results indicate that VA exerts different responses in HTC cells. Low concentrations present no cytotoxic, mutagenic, or antiproliferative effects and protect cells from DNA damage.

  14. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeggblom, M.M.; Rivera, M.D.; Young, L.Y.

    1993-04-01

    Methanogeneic conditions can promote the biodegradation of a number of halogenated aromatic compounds. This study, using sediments from freshwater and estuarine sites, is an evaluation of the anaerobic biodegradability of monochlorinated phenols and benzoic acids coupled to denitrification, sulfidogenesis, and methanogenesis. The results indicate that chlorinated phenols and benzoic acids are biodegradable under at least one set of anaerobic conditions. Metabolism depends both on the electron acceptor available and on the position of the chlorine substituent. Presence of alternative electron acceptors, nitrate, sulfate, and carbonate, can affect degradation rates and substrate specificities. Since contaminated sites usually have mixtures of wastes,more » bioremediation efforts may need to consider the activities of diverse anaerobic communities to carry out effective treatment of all components. 37 refs., 4 figs., 4 tabs.« less

  15. UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf.

    PubMed

    Silinsin, Muzaffer; Bursal, Ercan

    2018-06-01

    Inula graveolens (L.) Desf. is an annual aromatic herb which has various uses on alternative medicine in many region of the world. In this study, antioxidant activities of ethanol and water extracts of the plant leaves were determined by in vitro DPPH method and phenolic composition of the plant sample was determined by LC-MS/MS analysis. The results showed that chlorogenic acid, quinic acid, hyperoside, protocatechuic acid and quercetin were the major phenolic compounds among the 27 standard compounds. The significant antioxidant capacity of the plant might be related with the high abundance of phenolic compounds.

  16. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products.

    PubMed

    Fernández, María de Los Ángeles; Espino, Magdalena; Gomez, Federico J V; Silva, María Fernanda

    2018-01-15

    An environmentally friendly method for the phenolic compound extraction from agro-food industrial by-products was developed in order to contribute with their sustainable valorization. A Natural Deep Eutectic Solvent was chemometrically-designed for the first time and compared with traditional solvents in terms of analyte stabilization. The combination of lactic acid, glucose and 15% water (LGH-15) was selected as optimal. A high-efficiency ultrasound-assisted extraction mediated by LGH-15 prior to HPLC-DAD allows the determination of 14 phenols in onion, olive, tomato and pear industrial by-products. NADES synthesis as well as the extraction procedures were optimized by Response Surface Methodology. Thus, phenolic determination in these complex samples was achieved by a simple, non-expensive, eco-friendly and robust system. The application to different matrices demonstrated the versatility of the proposed method. NADES opens interesting perspectives for their potential use as vehicles of bioactive compounds as food additives or pharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Antioxidant and antimicrobial phenolic compounds from extracts of cultivated and wild-grown Tunisian Ruta chalepensis.

    PubMed

    Ouerghemmi, Ines; Bettaieb Rebey, Iness; Rahali, Fatma Zohra; Bourgou, Soumaya; Pistelli, Luisa; Ksouri, Riadh; Marzouk, Brahim; Saidani Tounsi, Moufida

    2017-04-01

    The antioxidant and antibacterial activities of phenolic compounds from cultivated and wild Tunisian Ruta chalepensis L. leaves, stems, and flowers were assessed. The leaves and the flowers exhibited high but similar total polyphenol, flavonoid, and tannin content. Moreover, two organs showed strong, although not significantly different, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl scavenging ability, and reducing power. Investigation of the phenolic composition showed that vanillic acid and coumarin were the major compounds in the two organs, with higher percentages in the cultivated organs than in the spontaneous organs. Furthermore, R. chalepensis extracts showed marked antibacterial properties against human pathogen strains, and the activity was organ- and origin-dependent. Spontaneous stems had the strongest activity against Pseudomonas aeruginosa. From these results, it was concluded that domestication of Ruta did not significantly affect its chemical composition and consequently the possibility of using R. chalpensis organs as a potential source of natural antioxidants and as an antimicrobial agent in the food industry. Copyright © 2016. Published by Elsevier B.V.

  18. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS.

    PubMed

    Abu-Reidah, Ibrahim M; Arráez-Román, David; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2013-12-01

    The aim of this work was to characterise the phenolic compounds in artichoke (hearts) by using HPLC coupled to DAD-ESI-QTOF-MS, which proved useful in characterising 61 phenolic and other polar compounds. Notably, of the 61 compounds characterised, 34 new phenolic compounds with their isomers have been tentatively characterised in artichoke for the first time, namely: 3 hydroxybenzoic acids, 17 hydroxycinnamic acids, 4 lignans, 7 flavones, 2 flavonols, and 1 phenol derivative. Moreover, a total of 28 isomers of previously described phenolics have also been detected. The data compiled from the qualitative polyphenol characterisation indicate that the artichoke extract analysed (Blanca de Tudela variety) could be regarded as a bioactive functional food and also as a promising source of antioxidant phenolic compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Allelopathic Effects, Physiological Responses and Phenolic Compounds in Litter Extracts of Juniperus rigidaSieb. et Zucc.

    PubMed

    Liu, Jing; Li, Dengwu; Wang, Dongmei; Liu, Yu; Song, Huiying

    2017-08-01

    The allelopathic effects of Juniperus rigida litter aqueous extract (LE) on wheat and Pinus tabuliformis were studied, as well as the physiological responses to the extract. High concentration LE (0.10 g Dw/ml) significantly inhibited the seed germination and seedling growth in receptor plants. The chlorophyll content and root activity in the wheat seedlings were reduced significantly across all treatments; however, those were more prominently reduced at high concentration (0.10 g Dw/ml) but received little stimulation at low concentration (0.025 g Dw/ml) in P. tabuliformis. The content of malonaldehyde (MDA) increased with increasing concentrations of LE, except at 0.025 g Dw/ml. Activities of antioxidant enzymes (POD, CAT and SOD) in receptor plants were all significantly inhibited at high concentrations but stimulated at low concentrations. These results demonstrate that the aqueous extract from J. rigida litter has allelopathic potential. Various phenolic compounds were identified in litter aqueous extract and litter ethanol extract by HPLC. The phenolic compound content in the aqueous extract was significantly lower than that in the ethanol extract. Chlorogenic acid and podophyllotoxin were the predominant phenolic compounds in both types of litter extracts. These findings suggest that the seed germination and seedling growth of P. tabuliformis and wheat would be inhibited when planted near large amounts J. rigida litter. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  20. Conformational Map of Phenolic Acids.

    PubMed

    Cortijo, Vanessa; Alonso, Elena R; Mata, Santiago; Alonso, José L

    2018-01-18

    The benefits of vaporization by laser ablation and the high resolution and sensitivity attained by the chirped pulse Fourier transform microwave spectroscopy CP-FTMW have provided the first conformational map of the simplest phenolic acids of trans-cinnamic and p-coumaric. Two conformers of trans-cinnamic acid and four conformers of trans-p-coumaric acid have been characterized under the isolation conditions of a supersonic expansion. The spectroscopic constants derived from the analysis of the rotational spectra compared with those predicted theoretically provide an unmatched means to achieve an unambiguous identification of the observed species.

  1. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production.

  2. Solar activated ozonation of phenol and malic acid.

    PubMed

    Sánchez, Laura; Domènech, Xavier; Casado, Juan; Peral, José

    2003-03-01

    The effect that sunlight has on the degradation rate of two model organic compounds, phenol and malic acid, by ozone is studied. The effect seems to be due to both direct light absorption (300-320 nm photons) by ozone, which produces the pollutant degradation, and light absorption by reaction intermediates. The presence of such a light notably improves the reactivity of ozone toward the organic species, leading to a faster and complete mineralization even at large initial total organic carbon values. The use of artificial sunlight (Xe lamp) is also explored. Finally, the simultaneous presence of sunlight and other ozone degradation catalyst like transition metal ions is studied, showing the beneficial effect of such a combination. Copyright 2002 Elsevier Science Ltd.

  3. Assay of phenolic compounds from four species of Ber (Ziziphus mauritiana L.) Fruits: Comparision of three base hydrolysis procedure for quantification of total phenolic acids

    USDA-ARS?s Scientific Manuscript database

    The present study was undertaken to investigate the flavonoids profile in four species of ber (Ziziphus mauritiana Lamk) fruit and to compare various techniques for the analysis of total phenolic acids. The 12 flavonoids identified were quercetin 3-O-robinobioside, quercetin 3-O-rutinoside, querceti...

  4. Protective effect of Spirulina platensis enriched in phenolic compounds against hepatotoxicity induced by CCl4.

    PubMed

    Kepekçi, Remziye Aysun; Polat, Sait; Çelik, Ahmet; Bayat, Nuray; Saygideger, Saadet Demirörs

    2013-12-01

    Phenolic compounds make up the major secondary metabolites with high pharmaceutical potential. Microalgae were reported to contain low amounts of phenolic compounds. The present study aimed to investigate the hepatoprotective potential of biomass of Spirulina platensis enriched in phenolic compounds. The protective effects of the biomass of S. platensis with low amounts of phenolics (SP1) and with high amounts of phenolics (SP2) against CCl4-induced acute hepatotoxicity were evaluated in rats. The increased levels of ALT, AST and MDA along with decreased activities of SOD and CAT were significantly (p<0.01) ameliorated by SP2. Histological examinations revealed that SP2 was more potent than SP1 in protecting the liver from toxic injury of CCl4 and preserving the hepatocyte ultrastructure. The lesions including necrosis, lymphocyte infiltration, ballooning degeneration and hepatocyte injury as irregular lamellar organisation, dilations in endoplasmic reticulums and the presence of great number of cytoplasmic vacuolization were healed by SP2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Antioxidative and antiradical properties of plant phenolics.

    PubMed

    Sroka, Zbigniew

    2005-01-01

    The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.

  6. Development and Optimisation of an HPLC-DAD-ESI-Q-ToF Method for the Determination of Phenolic Acids and Derivatives

    PubMed Central

    Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2014-01-01

    A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects. PMID:24551158

  7. Development and optimisation of an HPLC-DAD-ESI-Q-ToF method for the determination of phenolic acids and derivatives.

    PubMed

    Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2014-01-01

    A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects.

  8. Capillary electrophoretic determination of selected phenolic compounds in humic substances of well waters and fertilizers.

    PubMed

    Chen, Mei-Ying; Chang, Yan-Zin; Lu, Fung-Jou; Chen, Jian-Lian

    2010-01-01

    Humic substances (HS) from well waters, fertilizers, and synthetic phenolic polymers were characterized by elemental and UV-VIS spectroscopic analyses. Capillary zone electrophoresis (CZE) with UV absorption detection was used to analyze the lignin-derived phenolic distribution in the degradation residues after alkaline CuO oxidation of HS samples. Eleven phenols with p-acetyl, vanillyl and syringyl substituents were selected to optimize the CZE parameters. For well waters and fertilizers, the content of phenolic fragments was in agreement with the findings of the elemental and spectroscopic measurements. Additionally, parameters derived from the vanillic acid/vanilline, syringyl acid/syringaldehyde, p-hydroxyl/vanillyl and syringyl/vanillyl ratios matched analogous studies on dissolved organic matter from natural waters and on humic acids from terrestrial substances. The amount of phenolic monomer bonded within two synthetic HS polymers was found to be 25.9% protocatechuic acid and 71.3% gallic acid.

  9. Comparison of phenolic acid profiles and anti-inflammatory effects of two major species of blueberries in the US

    USDA-ARS?s Scientific Manuscript database

    Blueberries (BB) contain high levels of polyphenols. Among them, phenolic acids (PAs) have been recently suggested as a group of important bioactive compounds. Highbush BB (Vaccinium corymbosum) and lowbush “wild" BB (Vaccinium angustifolium) are two predominant species in North America. The first o...

  10. Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties.

    PubMed

    Dicko, Mamoudou H; Gruppen, Harry; Traore, Alfred S; van Berkel, Willem J H; Voragen, Alphons G J

    2005-04-06

    The screening of 50 sorghum varieties showed that, on average, germination did not affect the content in total phenolic compounds but decreased the content of proanthocyanidins, 3-deoxyanthocyanidins, and flavan-4-ols. Independent of germination, there are intervarietal differences in antioxidant activities among sorghum varieties. Phenolic compounds and antioxidant activities were more positively correlated in ungerminated varieties than in germinated ones. Sorghum grains with pigmented testa layer, chestnut color glumes, and red plants had higher contents, larger diversity of phenolic compounds, and higher antioxidant activities than other sorghums. Some red sorghum varieties had higher antioxidant activities (30-80 mumol of Trolox equiv/g) than several sources of natural antioxidants from plant foods. Among varieties used for "to", "dolo", couscous, and porridge preparation, the "dolo"(local beer) varieties had the highest average content and diversity in phenolic compounds as well as the highest antioxidant activities. The biochemical markers determined are useful indicators for the selection of sorghum varieties for food and agronomic properties.

  11. The content of phenolic compounds in leaf tissues of white (Aesculus hippocastanum L.) and red horse chestnut (Aesculus carea H.) colonized by the horse chestnut leaf miner (Cameraria ohridella Deschka & Dimić).

    PubMed

    Oszmiański, Jan; Kalisz, Stanisław; Aneta, Wojdyło

    2014-09-15

    Normally, plant phenolics are secondary metabolites involved in the defense mechanisms of plants against fungal pathogens. Therefore, in this study we attempted to quantify and characterize phenolic compounds in leaves of white and red horse chestnut with leaf miner larvae before and after Cameraria ohridella attack. A total of 17 phenolic compounds belonging to the hydroxycinnamic acid, flavan-3-ols and flavonol groups were identified and quantified in white and red horse chestnut leaf extracts. Significantly decreased concentrations of some phenolic compounds, especially of flavan-3-ols, were observed in infected leaves compared to the non-infected ones. Additionally, a higher content of polyphenolic compounds especially (-)-epicatechin and procyanidins in leaves of red-flowering than in white-flowering horse chestnut may explain their greater resistance to C. ohridella insects.

  12. Separation and purification of four phenolic compounds from persimmon by high-speed counter-current chromatography.

    PubMed

    Peng, Jinming; Li, Kaikai; Zhu, Wei; Deng, Xiangyi; Li, Chunmei

    2018-01-01

    An efficient method was established by high-speed counter-current chromatography (HSCCC) for preparation of four phenolic compounds from the depolymerization products of persimmon tannin. Using the two solvent systems of n-hexane/ethyl acetate/water (3:17:20, v/v/v) and ethyl acetate/methanol/water (50:1:50, v/v/v), the preparative isolation was successfully performed by a two-step separation. The yields of one run (150mg crude sample) for gallic acid, methyl gallate, and epigallocatechin-3-gallate-(4β→8, 2β→O→7)-epigallocatechin-3-gallate dimer (A-type EGCG dimer) were 4.7, 44.2 and 5.9mg, respectively. In addition, 4.6mg epicatechin-3-gallate-(4β→8, 2β→O→7)-epicatechin-3-gallate dimer (A-type ECG dimer) was obtained by further preparative high-performance liquid chromatography (prep-HPLC). The purities of these compounds were all above 95.0% and their structures were identified by HPLC/ESI-MS. We found that HSCCC had definite advantages for the preparation of dimeric procyanidins compared with previous methods. Furthermore, it was shown that the four phenolic compounds possessed greater antioxidant activities than Trolox. Copyright © 2017. Published by Elsevier B.V.

  13. Production of glucosinolates, phenolic compounds and associated gene expression profiles of hairy root cultures in turnip (Brassica rapa ssp. rapa).

    PubMed

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2016-12-01

    Turnip (Brassica rapa ssp. rapa) is an important vegetable crop producing glucosinolates (GSLs) and phenolic compounds. The GSLs, phenolic compound contents and transcript levels in hairy root cultures, as well as their antioxidant, antimicrobial and anticancer activity were studied in turnip. Transgenic hairy root lines were confirmed by polymerase chain reaction (PCR) and reverse transcription-PCR. GSLs levels (glucoallysin, glucobrassicanapin, gluconasturtiin, glucobrassicin, 4-methoxyglucobrassicin, neoglucobrassicin and 4-hydroxyglucobrassicin) and their gene expression levels (BrMYB28, BrMYB29, BrMYB34, BrMYB51, BrMYB122, CYP79 and CYP83) significantly increased in hairy roots compared with that in non-transformed roots. Furthermore, hairy roots efficiently produced several important individual phenolic compounds (flavonols, hydroxybenzoic and hydroxycinnamic acids). Colorimetric analysis revealed that the highest levels of total phenol, flavonoid contents, and their gene expression levels (PAL, CHI and FLS) in hairy roots than non-transformed roots. Our study provides beneficial information on the molecular and physiological active processes that are associated with the phytochemical content and biosynthetic gene expression in turnip. Moreover, antioxidant activity, as measured by DPPH scavenging activity, reducing potential, phosphomolybdenum and ferrous ion chelating ability assays was significantly higher in hairy roots. Hairy root extracts exhibited higher antimicrobial activity against bacterial and fungal species. The extract of hairy roots showed inhibition of human breast and colon cancer cell lines.

  14. Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages.

    PubMed

    Liu, Haimei; Ma, Shuli; Xia, Hongrui; Lou, Hongxiang; Zhu, Faliang; Sun, Longru

    2018-05-08

    The roots of Salvia miltiorrhiza f. alba (Lamiaceae) (RSMA) are used as the Danshen, a traditional Chinese medicine, to treat the vascular diseases at local clinics, especially for the remedy of thromboangiitis obliterans (TAO) more than 100 years. Phenolic acids are one of the major effective constituents of RSMA, and some studies have linked phenolic acids with anti-inflammatory functions. The purpose of this research was to isolate phenolic acids from RSMA and investigate their anti-inflammatory effects and potential mechanisms. Nine already known compounds were obtained from RSMA. Their structures were elucidated through the spectroscopic analysis and comparing the reported data. The anti-inflammatory effects and potential mechanisms were investigated in LPS-stimulated THP-1 cells, using salvianolic acid B (SalB) as the positive control. The enzyme-linked immunosorbent assays (ELISA) were used to determine the secretory protein levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). And quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the mRNA levels of these inflammatory cytokines. The expression of TLR4, p65, p-p65, IκBα, and p-IκBα were measured using western blot. All these compounds, except for rosmarinic acid (5) and isosalvianolic acid (6) for IL-6 protein levels, rosmarinic acid-o-β-D-glucopyranoside (3) for IL-6 mRNA, and rosmarinic acid-o-β-D-glucopyranoside (3), rosmarinic acid (5) and isosalvianolic acid (6) for TNF-α mRNA levels, remarkably inhibited the production of TNF-α, IL-1β, and IL-6 at the concentration of 5 and 25μM in the mRNA and protein levels. Lithospermic acid (7) showed the strongest inhibitory effect among them and was similar to that of SalB. In particular, lithospermic acid (7) and SalB markedly downregulated the expressions of TLR4, p-p65, and p-IκBα induced by LPS in THP-1 macrophages. All the phenolic acids displayed anti-inflammatory properties

  15. Determination of the phenolic content and antioxidant potential of crude extracts and isolated compounds from leaves of Cordia multispicata and Tournefortia bicolor.

    PubMed

    Correia Da Silva, Thiago B; Souza, Vivian Karoline T; Da Silva, Ana Paula F; Lyra Lemos, Rosangela P; Conserva, Lucia M

    2010-01-01

    In this work, the total phenolic content and antioxidant activity of extracts and four flavonoids isolated from leaves of two Boraginaceae species (Cordia multispicata Cham. and Tournefortia bicolor Sw.) were evaluated using Folin-Ciocalteu reagent, DPPH free radical scavenging and inhibition of peroxidation of linoleic acid by FTC method. For comparison, ascorbic acid, alpha-tocopherol and BHT were used. In general, extracts from T. bicolor (68.8 +/- 0.001 to > 1000 mg/g) showed higher phenolic content than C. multispicata (66.1 +/- 0.009 to 231 +/- 0.07 mg/g), and also scavenged radicals (IC(50) 12.8 +/- 2.5 to 437 +/- 3.5 mg/L) and inhibited lipid peroxide formation (IC(50) 51.2 +/- 2.29 to 89 +/- 0.59 mg/L). For these extracts a good correlation between the phenolic content and antioxidant activity was observed, suggesting that T. bicolor is richer in phenolic compounds and that it could serve as a new source of natural antioxidants or nutraceuticals with potential applications. Chromatographic procedures monitored by antioxidant assays afforded seven compounds, which were identified by spectral analyses (IR, MS and 1D and 2D NMR) and comparison with reported data as being trans-phytol (1), taraxerol (2), 3,7,4'-trimethoxyflavone (3), 5,3'-dihydroxy-3,7,4'-trimethoxyflavone (4), quercetin (5), tiliroside (6), and rutin (7). Compounds (4-7) were also evaluated and were effective as DPPH quenching (IC(50) 7.7 +/- 3.6 to 79.3 +/- 3.4 mg/L) and as inhibition of lipid peroxidation (IC(50) 80.1 +/- 0.98 to 88.7 +/- 3.62 mg/L). This is the first report on the total phenolic content, radical-scavenging and antioxidant activities of these species.

  16. Analysis of phenolic compounds for poultry feed by supercritical fluid chromatography

    USDA-ARS?s Scientific Manuscript database

    Phenolic compounds have generated interest as components in functional feed formulations due to their anti-oxidant, anti-microbial, and anti-fungal properties. These compounds may have greater significance in the future as the routine use of antibiotics is reduced and the prevalence of resistant bac...

  17. Variation in Phenolics, Flavanoids, Antioxidant and Tyrosinase Inhibitory Activity of Peach Blossoms at Different Developmental Stages.

    PubMed

    Liu, Jie-Chao; Jiao, Zhong-Gao; Yang, Wen-Bo; Zhang, Chun-Ling; Liu, Hui; Lv, Zhen-Zhen

    2015-11-18

    Peach blossoms were harvested and classified into six developmental stages: (I) bud emerging stage; (II) middle bud stage; (III) large bud stage; (IV) initial-flowering stage; (V) full-flowering stage; and (VI) end-flowering stage. The contents of total phenolics, flavanoids, individual phenolic compounds as well as antioxidant and tyrosinase inhibitory activity of peach blossoms at different developmental stages were investigated. The total phenolic contents varied from 149.80 to 74.80 mg chlorogenic acid equivalents/g dry weight (DW), and the total flavanoid contents ranged from 93.03 to 44.06 mg rutin equivalents/g DW. Both the contents of total phenolics and flavanoids decreased during blossom development. Chlorogenic acid was the predominant component, accounting for 62.08%-71.09% of the total amount of identified phenolic compounds in peach blossom. The antioxidant capacities determined by different assays and tyrosinase inhibitory activity also showed descending patterns during blossom development. Significant correlations were observed between antioxidant capacities with contents of total phenolics and total flavanoids as well as chlorogenic acid, cinnamic acid and kaempferol-3-O-galactoside, while the tyrosinase inhibitory activity had lower correlations with total phenolics and total flavanoids as well as chlorogenic acid, quercetin-3-O-rhamnoside, kaempferol-3-O-galactoside and cinnamic acid. The antioxidant activities of peach blossom seemed to be more dependent on the phenolic compounds than tyrosinase inhibitory activity.

  18. High pressure extraction of phenolic compounds from citrus peels†

    NASA Astrophysics Data System (ADS)

    Casquete, R.; Castro, S. M.; Villalobos, M. C.; Serradilla, M. J.; Queirós, R. P.; Saraiva, J. A.; Córdoba, M. G.; Teixeira, P.

    2014-10-01

    This study evaluated the effect of high pressure processing on the recovery of high added value compounds from citrus peels. Overall, the total phenolic content in orange peel was significantly (P < .05) higher than that in lemon peel, except when pressure treated at 500 MPa. However, lemon peel demonstrated more antioxidant activity than orange peel. Pressure-treated samples (300 MPa, 10 min; 500 MPa, 3 min) demonstrated higher phenolic content and antioxidant activity comparatively to the control samples. For more severe treatments (500 MPa, 10 min), the phenolic content and antioxidant activity decreased in both lemon and orange peels. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014), in Nantes (France), 15-18 July 2014.

  19. Methanol Extracts of 28 Hieracium Species from the Balkan Peninsula - Comparative LC-MS Analysis, Chemosystematic Evaluation of their Flavonoid and Phenolic Acid Profiles and Antioxidant Potentials.

    PubMed

    Milutinović, Violeta; Niketić, Marjan; Ušjak, Ljuboš; Nikolić, Dejan; Krunić, Aleksej; Zidorn, Christian; Petrović, Silvana

    2018-01-01

    Hieracium s. str. represents one of the largest and most complex genera of flowering plants. As molecular genetics seems unlikely to disentangle intricate relationships within this reticulate species complex, analysis of flavonoids and phenolic acids, known as good chemosystematic markers, promise to be more reliable. Data about pharmacological activity of Hieracium species are scarce. Evaluation of the chemosystematic significance of flavonoids and phenolic acids of methanol extracts of aerial flowering parts of 28 Hieracium species from the Balkans. Additionally, investigation of antioxidant potentials of the extracts. Comparative qualitative and quantitative analysis of flavonoids and phenolic acids was performed by LC-MS. Multivariate statistical data analysis included non-metric multidimensional scaling (nMDS), unweighted pair-group arithmetic averages (UPGMA) and principal component analysis (PCA). Antioxidant activity was evaluated using three colorimetric tests. Dominant phenolics in almost all species were luteolin type flavonoids, followed by phenolic acids. Although the investigated Hieracium species share many compounds, the current classification of the genus was supported by nMDS and UPGMA analyses with a good resolution to the group level. Hieracium naegelianum was clearly separated from the other investigated species. Spatial and ecological distances of the samples were likely to influence unexpected differentiation of some groups within H. sect. Pannosa. The vast majority of dominant compounds significantly contributed to differences between taxa. The antioxidant potential of the extracts was satisfactory and in accordance with their phenolics composition. Comparative LC-MS analysis demonstrated that flavonoids and phenolic acids are good indicators of chemosystematic relationships within Hieracium, particularly between non-hybrid species and groups from the same location. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley

  20. Virgin olive oil rich in phenolic compounds modulates the expression of atherosclerosis-related genes in vascular endothelium.

    PubMed

    Meza-Miranda, Eliana R; Rangel-Zúñiga, Oriol A; Marín, Carmen; Pérez-Martínez, Pablo; Delgado-Lista, Javier; Haro, Carmen; Peña-Orihuela, Patricia; Jiménez-Morales, Ana I; Malagón, María M; Tinahones, Francisco J; López-Miranda, José; Pérez-Jiménez, Francisco; Camargo, Antonio

    2016-03-01

    Previous studies have shown the anti-inflammatory and antioxidant properties of phenolic compounds of virgin olive oil (VOO). However, the effect of bioavailable phenolic compounds on the vascular endothelium is unknown. We aimed to evaluate the effect of the consumption of virgin olive oil rich in phenolic compounds on the vascular endothelium. We treated HUVEC with human serum obtained in fasting state and after the intake of a breakfast prepared with VOO with a high or low content of phenolic compounds. Treatment of HUVEC with serum obtained 2 h after the intake of the high-phenol VOO-based breakfast decreased p65 and MCP-1 gene expression (p < 0.001 and p = 0.002, respectively) and increased MT-CYB, SDHA and SOD1 gene expression (p = 0.004, p = 0.012 and p = 0.001, respectively), as compared with the treatment of HUVEC with the serum obtained 2 h after the intake of the low-phenol VOO-based breakfast. The treatment with serum obtained 4 h after the intake of the high-phenol VOO-based breakfast decreased MCP-1 and CAT gene expression (p < 0.001 and p = 0.003, respectively) and increased MT-CYB gene expression (p < 0.001), as compared to the treatment with serum obtained 4 h after the intake of the low-phenol VOO-based breakfast. Our results suggest that the consumption of virgin olive oil rich in phenolic compounds may reduce the risk of atherosclerosis development by decreasing inflammation and improving the antioxidant profile in the vascular endothelium.

  1. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity.

    PubMed

    Ohno, T

    2001-01-01

    Previous studies have suggested that phenolic acids from legume green manures may contribute to weed control through allelopathy. The objectives of this study were to investigate the oxidation reactions of phenolic acids in soil and to determine the subsequent effects of oxidation upon phytotoxicity. Soils were reacted for 18 h with 0.25 mmol L(-1) benzoic and cinnamic acid derivative solutions and Mn release from the suspension was used as a marker for phenolic acid oxidation. The extent of oxidation in soil suspensions was in the order of 3,4dihydroxy- > 4-hydroxy-3-methoxy- > 4-hydroxy-approximately 2-hydroxy-substituted benzoic and cinnamic acids. The same ranking was observed for cyclic voltammetry peak currents of the cinnamic acid derivatives. This suggests that the oxidation of phenolic acids is controlled by the electron transfer step from the sorbed phenolic acid to the metal oxide. A bioassay experiment showed that the 4-hydroxy-, 4-hydroxy-3-methoxy-, and 3,4-dihydroxy-substituted cinnamic acids were bioactive at 0.25 mmol L(-1) concentration. Reaction with soil for 18 h resulted in the elimination of bioactivity of these three cinnamic acids at the 5% significance level. The oxidative reactivity of phenolic acids may limit the potential of allelopathy as a component of an integrated weed management system. However, the initial phytotoxicity after soil incorporation may coincide with the early, critical stage of weed emergence and establishment, so that allelopathic phenolic acids may still play a role in weed management despite their reactivity in soil systems.

  2. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality.

    PubMed

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat ( Triticum aestivum ) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, "C 306" and a poor chapatti variety, "Sonalika." About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2'-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be "variety or genotype" specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding.

  3. Optimizing Extraction Conditions of Free and Bound Phenolic Compounds from Rice By-Products and Their Antioxidant Effects.

    PubMed

    Irakli, Maria; Kleisiaris, Fotis; Kadoglidou, Kalliopi; Katsantonis, Dimitrios

    2018-06-13

    Rice by-products are extensively abundant agricultural wastes from the rice industry. This study was designed to optimize experimental conditions for maximum recovery of free and bound phenolic compounds from rice by-products. Optimized conditions were determined using response surface methodology based on total phenolic content (TPC), ABTS radical scavenging activity and ferric reducing power (FRAP). A Box-Behnken design was used to investigate the effects of ethanol concentration, extraction time and temperature, and NaOH concentration, hydrolysis time and temperature for free and bound fractions, respectively. The optimal conditions for the free phenolics were 41⁻56%, 40 °C, 10 min, whereas for bound phenolics were 2.5⁻3.6 M, 80 °C, 120 min. Under these conditions free TPC, ABTS and FRAP values in the bran were approximately 2-times higher than in the husk. However, bound TPC and FRAP values in the husk were 1.9- and 1.2-times higher than those in the bran, respectively, while bran fraction observed the highest ABTS value. Ferulic acid was most evident in the bran, whereas p -coumaric acid was mostly found in the husk. Findings from this study demonstrates that rice by-products could be exploited as valuable sources of bioactive components that could be used as ingredients of functional food and nutraceuticals.

  4. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells.

    PubMed

    Ho, Giang Thanh Thi; Kase, Eili Tranheim; Wangensteen, Helle; Barsett, Hilde

    2017-01-06

    Type 2 diabetes (T2D) is manifested by progressive metabolic impairments in tissues such as skeletal muscle and liver, and these tissues become less responsive to insulin, leading to hyperglycemia. In the present study, stimulation of glucose and oleic acid uptake by elderflower extracts, constituents and metabolites were tested in vitro using the HepG2 hepatocellular liver carcinoma cell line and human skeletal muscle cells. Among the crude extracts, the 96% EtOH extract showed the highest increase in glucose and oleic acid uptake in human skeletal muscle cells and HepG2-cells. The flavonoids and phenolic acids contained therein were potent stimulators of glucose and fatty acid uptake in a dose-dependent manner. Most of the phenolic constituents and several of the metabolites showed high antioxidant activity and showed considerably higher α-amylase and α-glucosidase inhibition than acarbose. Elderflower might therefore be valuable as a functional food against diabetes.

  5. [AAPH scavenging activities of 22 flavonoids and phenolic acids and 9 extracts of Chinese materia medica].

    PubMed

    Dai, Huiqing; Chen, Chengyu; Yang, Bin

    2010-09-01

    To investigate the AAPH scavenging activities of 22 flavonoids and phenolic acids and 9 extracts of Chinese materia medica. The antioxidant activities of the samples were evaluated by an oxygen radical absorbance capacity method (ORAC), at the same time, the total contents of flavonoids and phenolic the 9 herb extracts were analyzed by Folin-Ciocalteu method, and the active components were qualitatively and quantitatively analyzed by an HPLC method. It was found that the tea extract showed the strongest AAPH activity with the ORAC value of 4786.40 micromol x g(-1) whereas safflower demonstrated the weakest activity with the ORAC value of 784.04 micromol x g(-1). As for compounds, quercetin had the strongest AAPH activity with the ORAC value of 12.90 while ( - )-EGC had the weakest activity with the ORAC value of 2.47. A quantitative relationship was obtained to describe the AAPH scavenging activity of the herb extracts: Y = 1844.8 lnX-3577.5, r = 0.8675, where Y stands for the ORAC vaule, and X stands for the concentration of total phenolic acids. Flavonoids and phenolic acids are the AAPH scavenging active ingredients in the Chinese herb extracts. It's a good way to study the antioxidant activity of Chinese herb extract and its chemical composition by combing ORAC method and HPLC method.

  6. Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity.

    PubMed

    Pereira, Carla; Barros, Lillian; José Alves, Maria; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2016-07-13

    Dietary supplements based on hepatoprotective plants have been increasingly used in the prevention of liver injuries. In the present work, the aim was to study the phenolic profile and possibly relate it to the in vitro antimicrobial activity of two different formulations (pills and syrups) of artichoke and milk thistle, the antioxidant and anti-hepatocellular carcinoma activities of which were previously reported by our research group. The phenolic profiles were obtained by HPLC-DAD-ESI/MS, and the antimicrobial activity evaluation was performed with the clinical isolates of multiresistant bacteria (Escherichia coli, extended spectrum β-lactamases (ESBL) producing Escherichia coli, Proteus mirabilis, methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa). Artichoke syrup revealed the presence of vanillic acid and luteolin-7-O-glucoside while the pills possessed higher concentrations of 4-O-caffeoylquinic, 5-O-caffeoylquinic and 1,3-O-dicaffeoylquinic acids, this latest being able to inhibit the growth of MRSA. Regarding milk thistle formulations, the syrup presented isorhamnetin-O-deoxyhexoside-O-dihexoside, isorhamnetin-O-deoxyhexoside-O-hexoside and isorhamnetin-3-O-rutinoside as the major phenolic constituents whereas the pills were richer in taxifolin, silymarin derivatives and hydroxylated silibinin; the syrup revealed antimicrobial activity against all the studied bacteria with the exception of Proteus mirabilis whereas the pills revealed activity against ESBL producing Escherichia coli. Overall, all of the studied formulations revealed to be a good source of phenolic compounds, among which milk thistle syrup presented the highest variety and concentration of flavonoids, which is possibly related to its strongest antimicrobial activity.

  7. Analysis of phenolic compounds extracted from peanut seed testa

    USDA-ARS?s Scientific Manuscript database

    Peanuts (Arachis hypogaea) contain numerous phenolic compounds with antimicrobial and antioxidant properties. These secondary metabolites may be isolated as co-products from peanut skins or testae during peanut processing and have potential use in functional food or feed formulations. Peanut skins w...

  8. Antioxidant capacities and total phenolic contents increase with gamma irradiation in two types of Malaysian honey.

    PubMed

    Hussein, Saba Zuhair; Yusoff, Kamaruddin Mohd; Makpol, Suzana; Yusof, Yasmin Anum Mohd

    2011-07-27

    Two types of monofloral Malaysian honey (Gelam and Nenas) were analyzed to determine their antioxidant activities and total phenolic and flavonoid contents, with and without gamma irradiation. Our results showed that both types of honey can scavenge free radicals and exhibit high antioxidant-reducing power; however, Gelam honey exhibited higher antioxidant activity (p < 0.05) than Nenas honey, which is in good correlation (r = 0.9899) with its phenolic contents. Interestingly, we also noted that both irradiated honeys have higher antioxidant activities and total phenolic and flavonoid contents compared to nonirradiated honeys by Folin-Ciocalteu and UV-spectrophotometry methods, respectively. However, HPLC analysis for phenolic compounds showed insignificant increase between irradiated and nonirradiated honeys. The phenolic compounds such as: caffeic acid, chlorogenic acid, ellagic acid, p- coumaric acid, quercetin and hesperetin as indicated by HPLC method were found to be higher in Gelam honey versus Nenas honey. In conclusion, irradiation of honey causes enhanced antioxidant activities and flavonoid compounds.

  9. Bioactive compounds and phenolic-linked functionality of powdered tropical fruit residues.

    PubMed

    Correia, Roberta T P; Borges, Kátia C; Medeiros, Maria F; Genovese, Maria I

    2012-12-01

    Tropical fruit residues consisting of seeds, peels and residual pulp generated as by-products of fruit processing industry were investigated for bioactive compounds, the in vitro antioxidant capacity as well as alpha-glucosidase and alpha-amylase inhibitory activities. Cyanidin, quercetin, ellagic acid (EA) and proanthocyanidins were found in acerola, jambolan, pitanga and cajá-umbu residue powders. Acerola powder had the highest phenolic content (8839.33 mg catechin equivalents (CE)/100 g) and also high-ascorbic acid (AA) concentration (2748.03 mg/100 g), followed by jambolan and pitanga. The greatest 1,1-Diphenyl-2-picrylhydrazyl (DPPH) inhibition was observed for jambolan (436.76 mmol Trolox eq/g) followed by pitanga (206.68 mmol Trolox eq/g) and acerola (192.60 mmol Trolox eq/g), while acerola had the highest ferric reducing antioxidant power (FRAP) assay result (7.87 mmol Trolox eq/g). All fruit powders exhibited enzymatic inhibition against alpha-amylase (IC50 ranging from 3.40 to 49.5 mg CE/mL) and alpha-glucosidase (IC50 ranging from 1.15 to 2.37 mg CE/mL). Therefore, acerola, jambolan and pitanga dried residues are promising natural ingredients for food and nutraceutical manufacturers, due to their rich bioactive compound content.

  10. Enhancement of Phenolic Production and Antioxidant Activity from Buckwheat Leaves by Subcritical Water Extraction.

    PubMed

    Kim, Dong-Shin; Kim, Mi-Bo; Lim, Sang-Bin

    2017-12-01

    To enhance the production of phenolic compounds with high antioxidant activity and reduce the level of phototoxic fagopyrin, buckwheat leaves were extracted with subcritical water (SW) at 100~220°C for 10~50 min. The major phenolic compounds were quercetin, gallic acid, and protocatechuic acid. The cumulative amount of individual phenolic compounds increased with increasing extraction temperature from 100°C to 180°C and did not change significantly at 200°C and 220°C. The highest yield of individual phenolic compounds was 1,632.2 μg/g dry sample at 180°C, which was 4.7-fold higher than that (348.4 μg/g dry sample) at 100°C. Total phenolic content and total flavonoid content increased with increasing extraction temperature and decreased with increasing extraction time, and peaked at 41.1 mg gallic acid equivalents/g and 26.9 mg quercetin equivalents/g at 180°C/10 min, respectively. 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging activity and ferric reducing ability of plasma reached 46.4 mg ascorbic acid equivalents/g and 72.3 mmol Fe 2+ /100 g at 180°C/10 min, respectively. The fagopyrin contents were reduced by 92.5~95.7%. Color values L * and b * decreased, and a * increased with increasing extraction temperature. SW extraction enhanced the yield of phenolic compounds with high antioxidant activity and reduced the fagopyrin content from buckwheat leaves.

  11. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae.

    PubMed

    Subban, Kamalraj; Subramani, Ramesh; Johnpaul, Muthumary

    2013-01-01

    A novel phenolic compound, 4-(2,4,7-trioxa-bicyclo[4.1.0]heptan-3-yl) phenol (1), was isolated from Pestalotiopsis mangiferae, an endophytic fungus associated with Mangifera indica Linn. The structure of the compound was elucidated on the basis of comprehensive spectral analysis (UV, IR, ¹H-, ¹³C- and 2D-NMR, as well as HRESI-MS). Compound (1) shows potent antibacterial and antifungal activity against Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa and Candida albicans. The transmission electron microscope study for the mode of inhibition of compound (1) on bacterial pathogens revealed the destruction of bacterial cells by cytoplasm agglutination with the formation of pores in cell wall membranes.

  12. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  13. Phenolic Profile and Antioxidant Activity of Centaurea choulettiana Pomel (Asteraceae) Extracts.

    PubMed

    Azzouzi, Djihane; Bioud, Kenza; Demirtas, Ibrahim; Gul, Fatih; Sarri, Djamel; Benayache, Samir; Benayache, Fadila; Mekkiou, Ratiba

    2016-01-01

    This study aimed to quantify phenolic compounds in ethyl acetate and n-butanol extract of Centaurea choulettiana Pomel (Asteraceae) leaves and flowers; compare the antioxidant activity of their extracts, identification and quantification of their phenolic acids. Both organs extracts of Centaurea choulettiana Pomel were investigated and evaluated for their potential antioxidant properties using total phenolics and flavonoids content, DPPH radical scavenging and lipid peroxidation inhibition assays. HPLC-TOF/MS analyses were carried out to identify and quantify some phenolic acids. The amounts of phenolic and flavonoid content were higher in ethyl acetate extract of leaves (325.81 ± 0.038 mgGAE and 263.73 ± 0.004 mgQE /g of extract) respectively. Besides, this extract exhibited the most powerful effect on the DPPH radical scavenging activity with (96.54%), on lipid peroxydation inhibition (64.17%). Ethyl acetate extract of leaves and flowers were found to contain almost the same phenolic compounds, with the leaves having the highest values. Chlorogenic acid was detected in the n-butanol extract of flowers with the highest concentration 17.78 mg/kg plant. The ethyl acetate extract of leaves of Centaurea choulettiana possesses strong antioxidative properties in vitro. They are confirmed by high polyphenols and flavonoids content. The HPLC-TOF/MS analysis reveals the presence of 4-hydroxybenzoic acid, gentisic acid, chlorogenic acid, caffeic acid, vanillic acid, p-Coumaric acid, ferulic acid, salicylic acid and protocatechuic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents

    PubMed Central

    2014-01-01

    Background The phenolic contents and antioxidant activities of fruits could be underestimated if the bound phenolic compounds are not considered. In the present study, the extraction efficiencies of various solvents were investigated in terms of the total content of the free and bound phenolic compounds, as well as the phenolic profiles and antioxidant activities of the extracts. Methods Five different solvent mixtures were used to extract the free phenolic compounds from litchi pulp. Alkaline and acidic hydrolysis methods were compared for the hydrolysis of bound phenolic compounds from litchi pulp residue. The phenolic compositions of the free and bound fractions from the litchi pulp were identified using HPLC-DAD. The antioxidant activities of the litchi pulp extracts were determined by oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Results Of the solvents tested, aqueous acetone extracted the largest amount of total free phenolic compounds (210.7 mg GAE/100 g FW) from litchi pulp, followed sequentially by aqueous mixtures of methanol, ethanol and ethyl acetate, and water itself. The acid hydrolysis method released twice as many bound phenolic compounds as the alkaline hydrolysis method. Nine phenolic compounds were detected in the aqueous acetone extract. In contrast, not all of these compounds were found in the other four extracts. The classification and content of the bound phenolic compounds released by the acid hydrolysis method were higher than those achieved by the alkaline hydrolysis. The aqueous acetone extract showing the highest ORAC value (3406.9 μmol TE/100 g FW) for the free phenolic extracts. For the CAA method, however, the aqueous acetone and methanol extracts (56.7 and 55.1 μmol QE/100 g FW) showed the highest levels of activity of the five extracts tested. The ORAC and CAA values of the bound phenolic compounds obtained by acid hydrolysis were 2.6- and 1.9-fold higher than those obtained using the

  15. Alkaline extraction of phenolic compounds from intact sorghum kernels

    USDA-ARS?s Scientific Manuscript database

    An aqueous sodium hydroxide solution was employed to extract phenolic compounds from whole grain sorghum without decortication or grinding as determined by Oxygen Radical Absorbance Capacity (ORAC). The alkaline extract ORAC values were more stable over 32 days compared to neutralized and freeze dri...

  16. Determination of phenolic compounds derived from hydrolysable tannins in biological matrices by RP-HPLC.

    PubMed

    Díez, María Teresa; García del Moral, Pilar; Resines, José Antonio; Arín, María Jesús

    2008-08-01

    An RP-HPLC method for the determination of four phenolic compounds: gallic acid (GA), pyrogallol (PY), resorcinol (RE) and ellagic acid (EA), derived from hydrolysable tannins is reported. Separation was achieved on a SunFire C18 (250 x 4.6 mm id, 5 microm) column at 40 degrees C with gradient elution. UV detection at 280 nm was applied. The developed method was validated in terms of linearity, accuracy and precision. Satisfactory repeatability and between day precision were noticed with RSD values lower than 3%. Recoveries from different biological samples ranged from 91.50 to 105.25%. The LODs were estimated as 1.70 mg/L for PY, 1.68 mg/L for GA, 1.52 mg/L for RE and 0.98 mg/L for EA with a 20 microL injection volume. The method was applied for the determination of these compounds in oak leaves and in ruminal fluid and urine samples taken from beef cattle fed with oak leaves. The proposed method could be used in ruminant nutrition studies to verify the effect that a diet rich in tannins have on ruminal fermentation and to determine the toxicity of these compounds.

  17. Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophaë rhamnoides L.) berries as affected by in vitro digestion.

    PubMed

    Guo, Ruixue; Chang, Xiaoxiao; Guo, Xinbo; Brennan, Charles Stephen; Li, Tong; Fu, Xiong; Liu, Rui Hai

    2017-11-15

    Phenolics, antioxidant and antiproliferative properties of Sea buckthorn berries were evaluated using a simulated in vitro digestion and compared with a chemical extraction method. Digested samples were subjected to antiproliferation evaluation against human liver, breast and colon cancer cells. Furthermore, the bioaccessibility of digested berries was evaluated using a Caco-2 cell culture model. Results revealed that after enzymatic digestion the phenolic compounds were quite different from the chemical extracts, more flavonoid aglycones were released, whereas less total phenolics, phenolic acids and flavonoid glycosides were detected. Although the extracellular antioxidant activity of the digesta was lower than that of extracts, the cellular antioxidant activity (CAA) and antiproliferative effects of berries were significantly enhanced by digestion. This was attributed to their higher flavonoid aglycone content and could be verified by testing individual active compounds, suggesting that the cellular uptake of samples might be improved, which was also certified by the Caco-2 cell uptake model. The digested samples showed an almost 5-fold cellular accumulative amount of isorhamnetin than pure isorhamnetin, which was attributed to the significant down regulation of the mRNA expression level of efflux transporters MRP2 and P-gp. This finding indicated that the digestion enhanced the bioaccessibility of bioactive compounds of berries.

  18. Oxygen compounds in the Irati Shale oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonso, J.C.; Schmal, M.; Cardoso, J.N.

    1992-04-01

    This paper reports the principal alkylphenols (4 wt %) and carboxylic acids (1.2 wt %) present in the Irati Shale oil S[tilde a]o Mateus do Sul, Paran acute (a) by means of a combination of gas chromatography-mass spectrometry (GC-MS) and retention time-data of standard compounds. it appears that the phenols are essentially monocyclic in nature with methyl groups as the main substituents. Carboxylic acids are principally linear and predominantly of the range C[sub 14]--C[sub 20]. After catalytic hydrotreatment (400 [degrees]C, 125 atm) high hydrodeoxygenation levels were obtained (87 wt %) for phenols and carboxylic acids, although the relative distribution ofmore » the various compounds was not significantly changed. Oxygen is present in the carbonaceous residue as several functionalities xanthenes, phenols, aryl ethers, carbonyl compounds, and furanic structures. The remaining acidic compounds may cause instability of the treated shale oil.« less

  19. Breads enriched with guava flour as a tool for studying the incorporation of phenolic compounds in bread melanoidins.

    PubMed

    Alves, Genilton; Perrone, Daniel

    2015-10-15

    In the present study we aimed at studying, for the first time, the incorporation of phenolic compounds into bread melanoidins. Fermentation significantly affected the phenolics profile of bread doughs. Melanoidins contents continuously increased from 24.1 mg/g to 71.9 mg/g during baking, but their molecular weight decreased at the beginning of the process and increased thereafter. Enrichment of white wheat bread with guava flour increased the incorporation of phenolic compounds up to 2.4-fold. Most phenolic compounds showed higher incorporation than release rates during baking, leading to increases from 3.3- to 13.3-fold in total melanoidin-bound phenolics. Incorporation patterns suggested that phenolic hydroxyls, but not glycosidic bonds of melanoidin-bound phenolics are cleaved during thermal processing. Antioxidant capacity of bread melanoidins increased due to enrichment with guava flour and increasing baking periods and was partially attributed to bound phenolics. Moreover, FRAP assay was more sensitive to measure this parameter than TEAC assay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Characterization of Titratable Acids, Phenolic Compounds, and Antioxidant Activities of Wines Made from Eight Mississippi-Grown Muscadine Varieties during Fermentation

    USDA-ARS?s Scientific Manuscript database

    Muscadine grape (vitis rotundifolia) Michx.) and its wine products are becoming more acceptable due to potential health benefits associated with high concentrations of phenolic compounds. In this research, wines made from eight high-yielding muscadine grape varieties grown in Mississippi were compa...

  1. Genetic variation of carotenoids, vitamin E and phenolic compounds in Provitamin A biofortified maize.

    PubMed

    Muzhingi, Tawanda; Palacios-Rojas, Natalia; Miranda, Alejandra; Cabrera, Maria L; Yeum, Kyung-J; Tang, Guangwen

    2017-02-01

    Biofortified maize is not only a good vehicle for provitamin A carotenoids for vitamin A deficient populations in developing countries but also a source of vitamin E, tocochromanols and phenolic compounds, which have antioxidant properties. Using high-performance liquid chromatography and a total antioxidant performance assay, the present study analyzed the antioxidant variation and antioxidant activity of 36 provitamin A improved maize hybrids and one common yellow maize hybrid. The ranges of major carotenoids in provitamin A carotenoids biofortified maize were zeaxanthin [1.2-13.2 µg g -1 dry weight (DW)], β-cryptoxanthin (1.3-8.8 µg g -1 DW) and β-carotene (1.3-8.0 µg g -1 DW). The ranges of vitamin E compounds identified in provitamin A carotenoids biofortified maize were α-tocopherol (3.4-34.3 µg g -1 DW), γ-tocopherol (5.9-54.4 µg g -1 DW), α-tocotrienol (2.6-19.5 µg g -1 DW) and γ-tocotrienol (45.4 µg g -1 DW). The ranges of phenolic compounds were γ-oryzanol (0.0-0.8 mg g -1 DW), ferulic acid (0.4-3.6 mg g -1 DW) and p-coumaric acid (0.1-0.45 mg g -1 DW). There was significant correlation between α-tocopherol and cis isomers of β-carotene (P < 0.01). Tocotrienols were correlated with α-tocopherol and γ-oryzanol (P < 0.01). Genotype was significant in determining the variation in β-cryptoxanthin, β-carotene, α-tocopherol and γ-tocopherol contents (P < 0.01). A genotype × environment interaction was observed for γ-tocopherol content (P < 0.01). © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Betalain, Acid Ascorbic, Phenolic Contents and Antioxidant Properties of Purple, Red, Yellow and White Cactus Pears

    PubMed Central

    Sumaya-Martínez, María Teresa; Cruz-Jaime, Sandra; Madrigal-Santillán, Eduardo; García-Paredes, Juan Diego; Cariño-Cortés, Raquel; Cruz-Cansino, Nelly; Valadez-Vega, Carmen; Martinez-Cardenas, Leonardo; Alanís-García, Ernesto

    2011-01-01

    Commercialization of cactus pears based on their antioxidant properties can generate competitive advantages, and these can turn into business opportunities and the development of new products and a high-value ingredient for the food industry. This work evaluated the antioxidant activities (1,1-diphenyl-2-picrylhydrazyl radical-scavenging, protection against oxidation of a β-carotene-linoleic acid emulsion, and iron (II) chelation), the content of total phenolic compounds, ascorbic acid, betacyanin, betaxanthin and the stability of betacyanin pigments in presence of Cu (II)-dependent hydroxyl radicals (OH•), in 18 cultivars of purple, red, yellow and white cactus pear from six Mexican states. Our results indicated that the antiradical activities from yellow and white cactus pear cultivars were not significantly different (p < 0.05) and were lower than the average antiradical activities in red and purple cultivars. The red cactus pear from the state of Zacatecas showed the highest antioxidant activity. The free radical scavenging activity for red cactus pears was significantly correlated (p < 0.05) to the concentration of total phenolic compounds (R2 = 0.90) and ascorbic acid (R2 = 0.86). All 18 cultivars of cactus pears studied showed significant chelating activity of ferrous ions. The red and purple cactus pears showed a great stability when exposed to OH•. PMID:22072899

  3. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry.

    PubMed

    Valero, Daniel; Díaz-Mula, Huertas M; Zapata, Pedro Javier; Castillo, Salvador; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María

    2011-05-25

    Sweet cherry cultivars ('Cristalina' and 'Prime Giant') harvested at commercial ripening stage were treated with salicylic acid (SA), acetylsalicylic acid (ASA) or oxalic acid (OA) at 1 mM and then stored for 20 days under cold temperature. Results showed that all treatments delayed the postharvest ripening process, manifested by lower acidity, color changes and firmness losses, and maintained quality attributes for longer periods than controls. In addition, total phenolics, anthocyanins and antioxidant activity increased in untreated fruit during the first 10 days of storage and then decreased, while in fruits of all treatments, these parameters increased continuously during storage without significant differences among treatments. Thus, postharvest treatments with natural compounds, such as SA, ASA or OA, could be innovative tools to extend the storability of sweet cherry with higher content of bioactive compounds and antioxidant activity as compared with control fruits.

  4. Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs.

    PubMed

    Ramos-Escudero, Fernando; Muñoz, Ana María; Alvarado-Ortíz, Carlos; Alvarado, Ángel; Yáñez, Jaime A

    2012-02-01

    This study was designed to determine the contents of total polyphenols, flavonoids, flavonols, flavanols, and anthocyanins of purple corn (Zea mays L.) extracts obtained with different methanol:water concentrations, acidified with 1% HCl (1 N). Another objective was to determine the antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and deoxyribose assay, individual phenolic compounds by high-performance liquid chromatography (HPLC), and endogenous antioxidant enzyme (superoxide dismutase [SOD], catalase [CAT], and total peroxidase [TPX]) activity and lipid peroxidation activity (thiobarbituric acid-reactive substances [TBARS] assay) in isolated mouse organs. Overall, the highest total content of polyphenols, anthocyanins, flavonoids, flavonols, and flavanols was obtained with the 80:20 methanol:water extract, acidified with 1% HCl (1 N). The 50% inhibitory concentration values obtained by the DPPH and ABTS assays with this extract were 66.3 μg/mL and 250 μg/mL, respectively. The antioxidant activity by the FRAP assay was 26.1 μM Trolox equivalents/g, whereas the deoxyribose assay presented 93.6% inhibition. Because of these results, the 80:20 methanol:water extract, acidified with 1% HCl (1 N), was used for the remaining tests. Eight phenolic compounds were identified by HPLC: chlorogenic acid, caffeic acid, rutin, ferulic acid, morin, quercetin, naringenin, and kaempferol. Furthermore, it was observed that the purple corn extract was capable of significantly reducing lipid peroxidation (lower malondialdehyde [MDA] concentrations by the TBARS assay) and at the same time increasing endogenous antioxidant enzyme (CAT, TPX, and SOD) activities in isolated mouse kidney, liver, and brain. On the basis of the results, it was concluded that the purple corn extract contained various bioactive phenolic compounds that exhibited considerable in vitro

  5. Effects of different cellulases on the release of phenolic acids from rice straw during saccharification.

    PubMed

    Xue, Yiyun; Wang, Xiahui; Chen, Xingxuan; Hu, Jiajun; Gao, Min-Tian; Li, Jixiang

    2017-06-01

    Effects of different cellulases on the release of phenolic acids from rice straw during saccharification were investigated in this study. All cellulases tested increased the contents of phenolic acids during saccharification. However, few free phenolic acids were detected, as they were present in conjugated form after saccharification when the cellulases from Trichoderma reesei, Trichoderma viride and Aspergillus niger were used. On the other hand, phenolic acids were present in free form when the Acremonium cellulolyticus cellulase was used. Assays of enzyme activity showed that, besides high cellulase activity, the A. cellulolyticus cellulase exhibited high feruloyl esterase (FAE) activity. A synergistic interaction between FAE and cellulase led to the increase in free phenolic acids, and thus an increase in antioxidative and antiradical activities of the phenolic acids. Moreover, a cost estimation demonstrated the feasibility of phenolic acids as value-added products to reduce the total production cost of ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Genotype x environment interactions in eggplant for fruit phenolic acid content

    USDA-ARS?s Scientific Manuscript database

    Eggplant fruit are a rich source of phenolic acids that contribute to fruit nutritive value and influence culinary quality. We evaluated the influence of production environment on eggplant fruit phenolic acid content. Ten Solanum melongena accessions including five F1 hybrid cultivars, three open-...

  7. Quantification of bioactive compounds in Picual and Arbequina olive leaves and fruit.

    PubMed

    Romero, Concepción; Medina, Eduardo; Mateo, Mª Antonia; Brenes, Manuel

    2017-04-01

    Olive leaves and fruit possess bioactive substances such as phenolic compounds and triterpenic acids that can be obtained from olive by-products generated during olive oil extraction. The aim of the present study was the characterization and quantification of these compounds in Picual and Arbequina cultivars from different locations and throughout two seasons in both olive leaves and fruit. The major phenolic compound identified in the leaves was oleuropein, and the total content of phenolic compounds in this material reached 70 g kg -1 fresh weight. The leaves were also rich in triterpenic acids (20 g kg -1 fresh weight), with oleanolic acid being the most concentrated among them. With regard to olives, oleuropein and demethyloleuropein were the main phenolic compounds in the pulp of Picual and Arbequina cultivars, and the total concentration of these phenolic compounds reached 3.5% fresh weight. Olives can also be an important source of triterpenic acids, although this is mainly the skin part, where the maslinic and oleanolic acids are concentrated. Olive leaves can contain up to 70 g kg -1 phenolic compounds and 20 g kg -1 triterpenic acids, and olive fruit can contain up to 35 g kg -1 of the former and 3 g kg -1 of the latter. It must also be noted that this level was constant both between seasons and orchard locations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Extraction, Separation, and Identification of Phenolic Compounds in Virgin Olive Oil by HPLC-DAD and HPLC-MS

    PubMed Central

    Tasioula-Margari, Maria; Tsabolatidou, Eleftheria

    2015-01-01

    The aim of this study was to evaluate the recovery of individual phenolic compounds extracted from virgin olive oil (VOO), from different Greek olive varieties. Sufficient recoveries (90%) of all individual phenolic compounds were obtained using methanol as an extraction solvent, acetonitrile for residue solubilization, and two washing steps with hexane. Moreover, in order to elucidate structural characteristics of phenolic compounds in VOO, high performance liquid chromatography with a diode array detector (HPLC-DAD) at 280 and 340 nm and HPLC coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) in the negative-ion mode were performed. The most abundant phenolic compounds were oleuropein derivatives with m/z 319 and 377 and ligstroside derivatives with m/z 303, 361. Lignans, such as 1-acetoxypinoresinol and pinoresinol were also present in substantial quantities in the phenolic fraction. However, pinoresinol was co-eluted with dialdehydic form of ligstroside aglycone (DAFLA) and it was not possible to be quantified separately. The phenolic extracts, obtained from different VOO samples, yielded similar HPLC profiles. Differences, however, were observed in the last part of the chromatogram, corresponding to isomers of the aldehydic form of ligstroside aglycone. Oxidized phenolic products, originating from secoiridoids, were also detected. PMID:26783843

  9. Impact of bioaccessibility and bioavailability of phenolic compounds in biological systems upon the antioxidant activity of the ethanolic extract of Triplaris gardneriana seeds.

    PubMed

    Neto, José Joaquim Lopes; de Almeida, Thiago Silva; de Medeiros, Jackeline Lima; Vieira, Leonardo Rogério; Moreira, Thaís Borges; Maia, Ana Isabel Vitorino; Ribeiro, Paulo Riceli Vasconcelos; de Brito, Edy Sousa; Farias, Davi Felipe; Carvalho, Ana Fontenele Urano

    2017-04-01

    The most studied bioactive potential of phenolic compounds corresponds to antioxidant activity, which in turn, is associated with a reduction in the incidence of various human diseases. However, the total quantity of these bioactive substances in foods and medicinal preparations does not reflect the amount absorbed and metabolized by the body. The present study aimed to investigate the bioaccessibility of Triplaris gardneriana seeds ethanolic extract (EETg) by determination of phenolic composition and antioxidant activities before and after in vitro digestion as well as to estimate its bioavailability by chemical analysis of plasma and urine in animal models after oral administration. The bioaccessibility indexes of phenolic compounds in EETg were 48.65 and 69.28% in the presence and absence of enzymes, respectively. Among the identified phenolics classes, flavonoids, represented by galloylated procyanidins type B, proved to be more bioaccessible, 81.48 and 96.29% in the post-intestinal phase with and without enzymes, respectively. The oral administration in Wistar rats resulted in a significant decrease in plasma of the total antioxidant capacity, TAC, by FRAP assay 4h after beginning the experiment. For urine samples, an increase in TAC by DPPH and FRAP was observed from 1 and 4h after administration, respectively. UPLC-QTOF analysis of urine detected 2 metabolites originated from the degradation of phenolic compounds, i.e. hippuric acid and phenylacetil glycine. These results suggest that phenolic compounds in T. gardneriana are unstable under gastrointestinal conditions, being flavonoids the components with higher bioaccessibility; besides that, they showed limited bioavailability due to their rapid biotransformation and urinary elimination. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts

    Treesearch

    Junfeng Feng; Chung-yun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The objective of this study was to find an effective method for converting renewable biomass-derived phenolic compounds into hydrocarbons bio-fuel via in situ catalytic hydrodeoxygenation. The in situ hydrodeoxygenation of biomass-derived phenolic compounds was carried out in methanol-water solvent over bifunctional catalysts of Raney Ni and HZSM-5 or H-Beta. In the in...

  11. Phenolics and compartmentalization in the sapwood of broad-leaved trees

    Treesearch

    Kevin T. Smith

    1997-01-01

    Tree survival depends on the chemistry of phenolic compounds, a broad class of chemicals characterized by a hydroxylated benzene ring. In trees, phenolics occur frequently as polymers, acids, or glycosylated esters and perform diverse functions. For example, lignin, a phenylpropane heteropolymer, provides structural strength to wood. The induced production of phenols...

  12. Evaluation of phenolic compounds in maté ( Ilex paraguariensis) processed by gamma radiation

    NASA Astrophysics Data System (ADS)

    Furgeri, C.; Nunes, T. C. F.; Fanaro, G. B.; Souza, M. F. F.; Bastos, D. H. M.; Villavicencio, A. L. C. H.

    2009-07-01

    The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The maté ( Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrão or tererê, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of tererê beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of tererê beverage processed by gamma radiation.

  13. [Study of antioxidant activity of phenolic compounds from some species of Georgian flora].

    PubMed

    Alaniia, M; Shalashvili, K; Sagareishvili, T; Kavtaradze, N; Sutiashvili, M

    2013-09-01

    The antioxidant activity of extracts obtained from different parts of Georgian flora species Hamamelis virginiana L., Astragalus caucasicus Pall., Astragalus microcephalus Willd., Vitis vinifera L., Rhododendron ponticum L., Rhododendron Ungernii Trautv., Ginkgo biloba L., Salvia officinalis L., Querqus iberica Stev., Maclura aurantiaca Nutt., Cotinus coggygria Ledeb., Fraxinus ornus L., Urtica dioica L., Rhododendron caucasicum Pall., Pueraria hirsuta Matsum., Geranium pusillum L., Astragalus Tanae Sosn., Pinus silvestris L. has been studied. Comparison with ethylentetraacetate and α-tocopherole revealed high efficacy of all extracts studied. 45 individual phenolic compounds were isolated and described by chemical examination of biologically active objects. Common sage (Salvia officinalis) extract turned out as the most active (200 %). The chemical study revealed the dominant content of condensed tannins and low molecular phenolic compounds, which may be attributed to the high antioxidant activity. Biologically active antiatherosclerotic food additive "Salbin" was developed on the basis of Common sage - Salvia officinalis L. phenolic compounds.

  14. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran.

    PubMed

    Farhadi, Khalil; Esmaeilzadeh, Forough; Hatami, Mehdi; Forough, Mehrdad; Molaie, Rahim

    2016-05-15

    In the present work, the phenolic compounds content and antioxidant activity in the skin, pulp, seed, cane and leaf of one international (Muscat) and five native (Hosseini, Ghara Shira, Agh Shani, Ghara Shani and Ghara Ghandome) grape cultivated in West Azerbaijan, Iran were investigated. Ghara Shani grape skin was found to contain the highest content of total phenolic and anthocyanin and cane of Ghara Shani contains the highest amount of flavonoid. A remarkable DPPH radical scavenging activity up to 95% and consequently, the lowest IC50 was found for skin of Ghara Shani. According to RP-HPLC experiments, the highest concentration of phenolic compounds was identified as catechin (945 μg/g), epicatechin (482 μg/g), gallic acid (319 μg/g) and resveratrol (29.8 μg/g) in skin of Ghara Shani, quercetin in cane of Ghara Shani (956 μg/g), rutin in skin of Ghara Shira (298 μg/g) and caffeic acid in cane of Ghara Shira (17.4 μg/g). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Sesquiterpenoids and phenolics from roots of Taraxacum udum.

    PubMed

    Michalska, Klaudia; Marciniuk, Jolanta; Kisiel, Wanda

    2010-07-01

    From roots of Taraxacum udum, two new and four known sesquiterpene lactones were isolated, together with five known phenolic compounds. The new compounds were characterized as 11beta, 13-dihydrotaraxinic acid and taraxinic acid 6-O-acetyl-beta-glucopyranosyl ester by spectroscopic methods, especially 1D and 2D NMR, and by comparison with structurally related compounds. The plant material was shown to be a good source of taraxinic acid derivatives. Copyright 2009 Elsevier B.V. All rights reserved.

  16. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions.

    PubMed

    Talhaoui, Nassima; Gómez-Caravaca, Ana María; León, Lorenzo; De la Rosa, Raúl; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-03-04

    Phenolic compounds are responsible of the nutritional and sensory quality of extra-virgin olive oil (EVOO). The composition of phenolic compounds in EVOO is related to the initial content of phenolic compounds in the olive-fruit tissues and the activity of enzymes acting on these compounds during the industrial process to produce the oil. In this work, the phenolic composition was studied in six major cultivars grown in the same orchard under the same agronomical and environmental conditions in an effort to test the effects of cultivars on phenolic composition in fruits and oils as well as on transfer between matrices. The phenolic fractions were identified and quantified using high-performance liquid chromatography-diode array detector-time-of-flight-mass spectrometry. A total of 33 phenolic compounds were determined in the fruit samples and a total of 20 compounds in their corresponding oils. Qualitative and quantitative differences in phenolic composition were found among cultivars in both matrices, as well as regarding the transfer rate of phenolic compounds from fruits to oil. The results also varied according to the different phenolic groups evaluated, with secoiridoids registering the highest transfer rates from fruits to oils. Moreover, wide-ranging differences have been noticed between cultivars for the transfer rates of secoiridoids (4.36%-65.63% of total transfer rate) and for flavonoids (0.18%-0.67% of total transfer rate). 'Picual' was the cultivar that transferred secoiridoids to oil at the highest rate, whereas 'Changlot Real' was the cultivar that transferred flavonoids at the highest rates instead. Principal-component analysis confirmed a strong genetic effect on the basis of the phenolic profile both in the olive fruits and in the oils.

  17. Enzymatic electrochemical detection coupled to multivariate calibration for the determination of phenolic compounds in environmental samples.

    PubMed

    Hernandez, Silvia R; Kergaravat, Silvina V; Pividori, Maria Isabel

    2013-03-15

    An approach based on the electrochemical detection of the horseradish peroxidase enzymatic reaction by means of square wave voltammetry was developed for the determination of phenolic compounds in environmental samples. First, a systematic optimization procedure of three factors involved in the enzymatic reaction was carried out using response surface methodology through a central composite design. Second, the enzymatic electrochemical detection coupled with a multivariate calibration method based in the partial least-squares technique was optimized for the determination of a mixture of five phenolic compounds, i.e. phenol, p-aminophenol, p-chlorophenol, hydroquinone and pyrocatechol. The calibration and validation sets were built and assessed. In the calibration model, the LODs for phenolic compounds oscillated from 0.6 to 1.4 × 10(-6) mol L(-1). Recoveries for prediction samples were higher than 85%. These compounds were analyzed simultaneously in spiked samples and in water samples collected close to tanneries and landfills. Published by Elsevier B.V.

  18. Assessment of phenolic acid content and in vitro antiradical characteristics of hawthorn.

    PubMed

    Öztürk, Nilgün; Tunçel, Muzaffer

    2011-06-01

    The infusions and extracts obtained from leaves with flowers, fruit peel, and seed from hawthorn (Crataegus monogyna Jacq., Family Rosaceae) were subjected to evaluation as potential sources of antioxidant phytochemicals on the basis of their total content of phenolics, levels of phenolic acids, and in vitro antiradical activity. Total phenolic content of extracts was determined using the modified Folin-Ciocalteau method. Antioxidant activity was determined for phenolic extracts by a method involving the use of the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). Phenolic acids containing extracts and infusions from hawthorn leaves, fruit peel, and seeds were obtained using different polarity solvents and separated by reverse-phase high-performance liquid chromatography, which enabled improved separation by the use of a C(18) column, an acidic mobile phase, and gradient elusion. The highest total phenolic content (343.54 mg of gallic acid equivalents/g) and the highest DPPH radical scavenging activity as the inhibition percentage (60.36%) were obtained in ethyl acetate extract from hawthorn leaves with flower. Also, the highest phenolic acid content was measured in the extracts of hawthorn leaves with flowers: protocathechuic (108-128 mg/100 g), p-hydroxy benzoic (141-468 mg/100 g), caffeic (137-3,580 mg/100 g), chlorogenic (925-4,637 mg/100 g), ferulic (3,363-3,462 mg/100 g), vanillic (214 mg/100 g), and syringic (126 mg/100 g) acids. The results indicate that hawthorn is a promising plant because of its high antioxidant activity.

  19. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    PubMed

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  20. Effects of Abscisic Acid, Gibberellin, Ethylene and Their Interactions on Production of Phenolic Acids in Salvia miltiorrhiza Bunge Hairy Roots

    PubMed Central

    Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants. PMID:24023778