Science.gov

Sample records for acids play important

  1. Arabidopsis abscisic acid receptors play an important role in disease resistance.

    PubMed

    Lim, Chae Woo; Lee, Sung Chul

    2015-06-01

    Stomata are natural pores of plants and constitute the entry points for water during transpiration. However, they also facilitate the ingress of potentially harmful bacterial pathogens. The phytohormone abscisic acid (ABA) plays a pivotal role in protecting plants against biotic stress, by regulating stomatal closure. In the present study, we investigated the mechanism whereby ABA influences plant defense responses to Pseudomonas syringae pv. tomato (Pst) DC3000, which is a virulent bacterial pathogen of Arabidopsis, at the pre-invasive stage. We found that overexpression of two ABA receptors, namely, RCAR4/PYL10-OX and RCAR5/PYL11-OX (hereafter referred to as RCARs), resulted in ABA-hypersensitive phenotypes being exhibited during the seed germination and seedling growth stages. Sensitivity to ABA enhanced the resistance of RCAR4-OX and RCAR5-OX plants to Pst DC3000, through promoting stomatal closure leading to the development of resistance to this bacterial pathogen. Protein phosphatase HAB1 is an important component that is responsible for ABA signaling and which interacts with ABA receptors. We found that hab1 mutants exhibited enhanced resistance to Pst DC3000; moreover, similar to RCAR4-OX and RCAR5-OX plants, this enhanced resistance was correlated with stomatal closure. Taken together, our findings demonstrate that alteration of RCAR4- or RCAR5-HAB1 mediated ABA signaling influences resistance to bacterial pathogens via stomatal regulation. PMID:25969135

  2. Play's Importance in School

    ERIC Educational Resources Information Center

    Sandberg, Anette; Heden, Rebecca

    2011-01-01

    The purpose of this study is to contribute knowledge on and gain an understanding of elementary school teachers' perspectives on the function of play in children's learning processes. The study is qualitative with a hermeneutical approach and has George Herbert Mead as a theoretical frame of reference. Interviews have been carried out with seven…

  3. Abscisic Acid Plays an Important Role in the Regulation of Strawberry Fruit Ripening1[W][OA

    PubMed Central

    Jia, Hai-Feng; Chai, Ye-Mao; Li, Chun-Li; Lu, Dong; Luo, Jing-Jing; Qin, Ling; Shen, Yuan-Yue

    2011-01-01

    The plant hormone abscisic acid (ABA) has been suggested to play a role in fruit development, but supporting genetic evidence has been lacking. Here, we report that ABA promotes strawberry (Fragaria ananassa) fruit ripening. Using a newly established Tobacco rattle virus-induced gene silencing technique in strawberry fruit, the expression of a 9-cis-epoxycarotenoid dioxygenase gene (FaNCED1), which is key to ABA biosynthesis, was down-regulated, resulting in a significant decrease in ABA levels and uncolored fruits. Interestingly, a similar uncolored phenotype was observed in the transgenic RNA interference (RNAi) fruits, in which the expression of a putative ABA receptor gene encoding the magnesium chelatase H subunit (FaCHLH/ABAR) was down-regulated by virus-induced gene silencing. More importantly, the uncolored phenotype of the FaNCED1-down-regulated RNAi fruits could be rescued by exogenous ABA, but the ABA treatment could not reverse the uncolored phenotype of the FaCHLH/ABAR-down-regulated RNAi fruits. We observed that down-regulation of the FaCHLH/ABAR gene in the RNAi fruit altered both ABA levels and sugar content as well as a set of ABA- and/or sugar-responsive genes. Additionally, we showed that exogenous sugars, particularly sucrose, can significantly promote ripening while stimulating ABA accumulation. These data provide evidence that ABA is a signal molecule that promotes strawberry ripening and that the putative ABA receptor, FaCHLH/ABAR, is a positive regulator of ripening in response to ABA. PMID:21734113

  4. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis.

    PubMed

    Yeh, Ching-Sheng; Wang, Jaw-Yuan; Cheng, Tian-Lu; Juan, Chin-Hung; Wu, Chan-Han; Lin, Shiu-Ru

    2006-02-28

    The present study systematically explored metabolic pathways and altered expressions of genes speculatively participating in colorectal carcinogenesis by using a Microarray-Bioinformatic analysis methods. The results revealed that 157 genes were up-regulated and 281 genes were down-regulated in colorectal cancer (CRC). Gene Ontology (GO) and relevant bioinformatics tools indicated that the functional category to which 438 genes (12%; 438/3800) of the most frequent alteration belonged was metabolism. The analysis of 10 colorectal cancer tissue specimens demonstrated that genes involved in fatty acid metabolic pathways had high rates of overexpression. In addition, we stimulated CRL-1790 cell line with linoleic acid (a polyunsaturated fatty acid) for 12, 24, 48 and 72 h. Cell proliferation was elevated by 5, 25, 28 and 31% (P<0.05), respectively. Further analyses revealed that the genes increasingly expressed in the cell line included enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase (EHHADH), enoyl Coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1); glutaryl-Coenzyme A dehydrogenase (GCDH), acyl-Coenzyme A oxidase 2, branched chain (ACOX2); acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain precursor (ACADS); carnitine palmitoyltransferase 1B (CPT1B), acyl-CoA synthetase long-chain family member 5 (ACSL5), and cytochrome P450, family 4, subfamily A, and polypeptide 11 (CYP4A11) genes. This indicated that the stimulating effect of linoleic acid on cell proliferation was due to interference with the metabolic pathway of fatty acid metabolism. In conclusion, genes with altered expression levels in CRC were mainly associated with fatty acid metabolic pathways speculated to have an important role linked to carcinogenesis. PMID:15885896

  5. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus.

    PubMed

    Lu, Linghong; Qiu, Wenmin; Gao, Wenwen; Tyerman, Stephen D; Shou, Huixia; Wang, Chuang

    2016-10-01

    Under phosphate (Pi ) starvation, plants increase the secretion of purple acid phosphatases (PAPs) into the rhizosphere to scavenge organic phosphorus (P) for plant use. To date, only a few members of the PAP family have been characterized in crops. In this study, we identified a novel secreted PAP in rice, OsPAP10c, and investigated its role in the utilization of external organic P. OsPAP10c belongs to a monocotyledon-specific subclass of Ia group PAPs and is specifically expressed in the epidermis/exodermis cell layers of roots. Both the transcript and protein levels of OsPAP10c are strongly induced by Pi starvation. OsPAP10c overexpression increased acid phosphatase (APase) activity by more than 10-fold in the culture media and almost fivefold in both roots and leaves under Pi -sufficient and Pi -deficient conditions. This increase in APase activity further improved the plant utilization efficiency of external organic P. Moreover, several APase isoforms corresponding to OsPAP10c were identified using in-gel activity assays. Under field conditions with three different Pi supply levels, OsPAP10c-overexpressing plants had significantly higher tiller numbers and shorter plant heights. This study indicates that OsPAP10c encodes a novel secreted APase that plays an important role in the utilization of external organic P in rice. PMID:27411391

  6. Caring About Kids: The Importance of Play.

    ERIC Educational Resources Information Center

    National Inst. of Mental Health (DHHS), Rockville, MD. Div. of Scientific and Public Information.

    In several brief sections, this pamphlet defines play, discusses how play helps a child develop, and how play changes as a child grows older, indicates the role of toys and certain play activities in promoting sex stereotypes, and identifies the role of fantasy and imagination in children's play. A discussion of the role of parents in fostering…

  7. The Importance of Play: Part Three

    ERIC Educational Resources Information Center

    Exceptional Parent, 2009

    2009-01-01

    Several membership companies of the International Playground Equipment Manufacturers Association (IPEMA) are helping differently-abled children to have access to play equipment and opportunities. These IPEMA membership companies, and others, are driven by the principles of Universal Design (UD), a new concept in playground design that helps ensure…

  8. Playing the Day Away: The Importance of Constructive Play in Early Childhood Settings.

    ERIC Educational Resources Information Center

    Oliver, Susan J.; Klugman, Edgar

    2002-01-01

    Discusses the importance of play for the development of young children. Defines constructive play and identifies the benefits of play for children. Describes the current play landscape as characterized by increasing "screen time," limited outdoor play time, increased violence exposure, overscheduling, and overfacilitating. Emphasizes that the…

  9. SPLUNC1 is associated with nasopharyngeal carcinoma prognosis and plays an important role in all-trans-retinoic acid-induced growth inhibition and differentiation in nasopharyngeal cancer cells.

    PubMed

    Zhang, Wenling; Zeng, Zhaoyang; Wei, Fang; Chen, Pan; Schmitt, David C; Fan, Songqing; Guo, Xiaofang; Liang, Fang; Shi, Lei; Liu, Zixin; Zhang, Zuping; Xiang, Bo; Zhou, Ming; Huang, Donghai; Tang, Ke; Li, Xiaoling; Xiong, Wei; Tan, Ming; Li, Guiyuan; Li, Xiayu

    2014-11-01

    Human SPLUNC1 can suppress nasopharyngeal carcinoma (NPC) tumor formation; however, the correlation between SPLUNC1expression and NPC patient prognosis has not been reported. In the present study, we used a large-scale sample of 1015 tissue cores to detect SPLUNC1 expression and its association with patient prognosis. SPLUNC1 expression was reduced in NPC samples compared to nontumor nasopharyngeal epithelium tissues. Positive expression of SPLUNC1 in NPC predicted a better prognosis (disease-free survival, P = 0.034; overall survival, P = 0.048). Cox's proportional hazards model revealed that SPLUNC1 could be a significant prognostic factor affecting disease-free survival (P = 0.027). A cDNA micro-array analyzed by significant analysis of micro-array (SAM) and ingenuity pathway analysis (IPA) revealed that an indirect interaction existed between SPLUNC1 and retinoic acid (RA) in the cancer regulatory network. To further investigate the molecular mechanisms involved, we utilized several bioinformatics tools and identified 12 retinoid X receptors heterodimer binding sites in the promoter region of the SPLUNC1 gene. The transcriptional activity of the SPLUNC1 promoter was up-regulated significantly by all-trans-retinoic acid (ATRA). SPLUNC1 and retinoic acid receptor expression were induced significantly by ATRA, and removal of ATRA led to a progressive loss of SPLUNC1 and retinoic acid receptor expression. ATRA inhibited proliferation and induced the differentiation of NPC cells. Interestingly, over-expression of SPLUNC1 sensitized NPC cells to ATRA, whereas knockdown of SPLUNC1 in HNE1 cells increased cell viability. Under SPLUNC1 knockdown conditions, differentiation was reversed by ATRA treatment. We concluded that SPLUNC1 could potentially predict prognosis for NPC patients and play an important role in ATRA-induced growth inhibition and differentiation in NPC cells. PMID:25161098

  10. Play.

    ERIC Educational Resources Information Center

    Rogers, Fred; Sharapan, Hedda

    1993-01-01

    Contends that, in childhood, work and play seem to come together. Says that for young children their play is their work, and the more adults encourage children to play, the more they emphasize important lifelong resource. Examines some uses of children's play, making and building, artwork, dramatic play, monsters and superheroes, gun play, and…

  11. Recruitment of PLANT U-BOX13 and the PI4Kβ1/β2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis.

    PubMed

    Antignani, Vincenzo; Klocko, Amy L; Bak, Gwangbae; Chandrasekaran, Suma D; Dunivin, Taylor; Nielsen, Erik

    2015-01-01

    Protection against microbial pathogens involves the activation of cellular immune responses in eukaryotes, and this cellular immunity likely involves changes in subcellular membrane trafficking. In eukaryotes, members of the Rab GTPase family of small monomeric regulatory GTPases play prominent roles in the regulation of membrane trafficking. We previously showed that RabA4B is recruited to vesicles that emerge from trans-Golgi network (TGN) compartments and regulates polarized membrane trafficking in plant cells. As part of this regulation, RabA4B recruits the closely related phosphatidylinositol 4-kinase (PI4K) PI4Kβ1 and PI4Kβ2 lipid kinases. Here, we identify a second Arabidopsis thaliana RabA4B-interacting protein, PLANT U-BOX13 (PUB13), which has recently been identified to play important roles in salicylic acid (SA)-mediated defense signaling. We show that PUB13 interacts with RabA4B through N-terminal domains and with phosphatidylinositol 4-phosphate (PI-4P) through a C-terminal armadillo domain. Furthermore, we demonstrate that a functional fluorescent PUB13 fusion protein (YFP-PUB13) localizes to TGN and Golgi compartments and that PUB13, PI4Kβ1, and PI4Kβ2 are negative regulators of SA-mediated induction of pathogenesis-related gene expression. Taken together, these results highlight a role for RabA4B and PI-4P in SA-dependent defense responses. PMID:25634989

  12. THE IMPORTANCE OF PLAY DURING HOSPITALIZATION OF CHILDREN

    PubMed Central

    Koukourikos, Konstantinos; Tzeha, Laila; Pantelidou, Parthenopi; Tsaloglidou, Areti

    2015-01-01

    Introduction: Play constitutes an essential parameter of the normal psychosomatic development of children, as well as their statutory right. It is also an important means of communication in childhood. Objective: To review, detect and highlight all data cited regarding the role of play during the hospitalization of children. Methodology: Literature review was achieved by searching the databases Scopus, PubMed, Cinhal in English, using the following key words: therapeutic play, play therapy, hospitalized child, therapist. Results: During hospitalization, play either in the form of therapeutic play, or as in the form of play therapy, is proven to be of high therapeutic value for ill children, thus contributing to both their physical and emotional well-being and to their recovery. It helps to investigate issues related to the child’s experiences in the hospital and reduce the intensity of negative feelings accompanying a child’s admission to hospital and hospitalization. Play is widely used in pre-operative preparation and invasive procedures, while its use among children hospitalized for cancer is beneficial. Conclusion: The use of play in hospital may become a tool in the hands of healthcare professionals, in order to provide substantial assistance to hospitalized children, as long as they have appropriate training, patience, and will to apply it during hospitalization. PMID:26889107

  13. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule.

    PubMed

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina; Boyce, John D

    2016-05-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin. PMID:26883595

  14. Binning of shallowly sampled metagenomic sequence fragments reveals that low abundance bacteria play important roles in sulfur cycling and degradation of complex organic polymers in an acid mine drainage community

    NASA Astrophysics Data System (ADS)

    Dick, G. J.; Andersson, A.; Banfield, J. F.

    2007-12-01

    not expected to reflect the tetranucleotide frequency signature of the host genome. Four unknown tetranucleotide frequency clusters with significant sequence (6 Mb total) were noted and analyzed further. Based on phylogenetic markers and BLAST results, these clusters represent low abundance bacteria including Acintobacteria, Firmicutes, and Proteobacteria. Functional analysis of these clusters revealved that the low- abundance bacteria harbor genes that could potentially encode important ecosystem functions such as sulfur utilization (e.g. polysulfide reductase) and polymer degradation (e.g. chitinase and glycoside hydrolase). We conclude that ESOM clustering of tetranucleotide frequency patterns is an effective method for rapidly binning shotgun community genomic sequences and a valuable tool for analyzing minor community members, which despite their low abundance may play crucial ecological roles.

  15. Copy number variation plays an important role in clinical epilepsy

    PubMed Central

    Olson, Heather; Shen, Yiping; Avallone, Jennifer; Sheidley, Beth R.; Pinsky, Rebecca; Bergin, Ann M.; Berry, Gerard T.; Duffy, Frank H.; Eksioglu, Yaman; Harris, David J.; Hisama, Fuki M.; Ho, Eugenia; Irons, Mira; Jacobsen, Christina M.; James, Philip; Kothare, Sanjeev; Khwaja, Omar; Lipton, Jonathan; Loddenkemper, Tobias; Markowitz, Jennifer; Maski, Kiran; Megerian, J. Thomas; Neilan, Edward; Raffalli, Peter C.; Robbins, Michael; Roberts, Amy; Roe, Eugene; Rollins, Caitlin; Sahin, Mustafa; Sarco, Dean; Schonwald, Alison; Smith, Sharon E.; Soul, Janet; Stoler, Joan M.; Takeoka, Masanori; Tan, Wen-Han; Torres, Alcy R.; Tsai, Peter; Urion, David K.; Weissman, Laura; Wolff, Robert; Wu, Bai-Lin; Miller, David T.; Poduri, Annapurna

    2015-01-01

    Objective To evaluate the role of copy number abnormalities detectable by chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center. Methods We identified patients with ICD-9 codes for epilepsy or seizures and clinical CMA testing performed between October 2006 and February 2011 at Boston Children’s Hospital. We reviewed medical records and included patients meeting criteria for epilepsy. We phenotypically characterized patients with epilepsy-associated abnormalities on CMA. Results Of 973 patients who had CMA and ICD-9 codes for epilepsy or seizures, 805 patients satisfied criteria for epilepsy. We observed 437 copy number variants (CNVs) in 323 patients (1–4 per patient), including 185 (42%) deletions and 252 (58%) duplications. Forty (9%) were confirmed de novo, 186 (43%) were inherited, and parental data were unavailable for 211 (48%). Excluding full chromosome trisomies, CNV size ranged from 18 kb to 142 Mb, and 34% were over 500 kb. In at least 40 cases (5%), the epilepsy phenotype was explained by a CNV, including 29 patients with epilepsy-associated syndromes and 11 with likely disease-associated CNVs involving epilepsy genes or “hotspots.” We observed numerous recurrent CNVs including 10 involving loss or gain of Xp22.31, a region described in patients with and without epilepsy. Interpretation Copy number abnormalities play an important role in patients with epilepsy. Given that the diagnostic yield of CMA for epilepsy patients is similar to the yield in autism spectrum disorders and in prenatal diagnosis, for which published guidelines recommend testing with CMA, we recommend the implementation of CMA in the evaluation of unexplained epilepsy. PMID:24811917

  16. Parent participation plays an important part in promoting physical activity

    PubMed Central

    Lindqvist, Anna-Karin; Kostenius, Catrine; Gard, Gunvor; Rutberg, Stina

    2015-01-01

    Although physical activity (PA) is an important and modifiable determinant of health, in Sweden only 15% of boys and 10% of girls aged 15 years old achieve the recommended levels of PA 7 days per week. Adolescents’ PA levels are associated with social influence exerted by parents, friends, and teachers. The purpose of this study was to describe parents’ experiences of being a part of their adolescents’ empowerment-inspired PA intervention. A qualitative interview study was performed at a school in the northern part of Sweden. A total of 10 parents were interviewed, and the collected data were analyzed with qualitative content analysis. Three subthemes were combined into one main theme, demonstrating that parents are one important part of a successful PA intervention. The life of an adolescent has many options and demands that make it difficult to prioritize PA. Although parents felt that they were important in supporting their adolescent, a successful PA intervention must have multiple components. Moreover, the parents noted that the intervention had a positive effect upon not only their adolescents’, but also their own PA. Interventions aimed at promoting PA among adolescents should include measures to stimulate parent participation, have an empowerment approach, and preferably be school-based. PMID:26282870

  17. Rapid nuclear import of short nucleic acids.

    PubMed

    Kitagawa, Mai; Okamoto, Akimitsu

    2016-10-01

    Exogenous short-chain nucleic acids undergo rapid import into the nucleus. Fluorescence-labeled dT1-13 DNA microinjected into the cytoplasm domain of a HeLa cell was rapidly imported into the nucleus domain within 1min. This is much more rapid than what has been observed for intracellular diffusion of small molecules. In contrast, import of longer nucleic acids with a length of over 30nt into the nucleus was suppressed. PMID:27597250

  18. Identification of quantitative trait loci(QTL) controlling important fatty acids in peanut (Arachis hypogaea L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids play important role in controlling oil quality of peanut. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80%, there are several minor fatty acids accounting for about 20% in peanut oil, such as palmitic acid (PA, C16:0), stearic (S...

  19. Play

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    Designing a game with a serious purpose involves considering the worlds of Reality and Meaning yet it is undeniably impossible to create a game without a third world, one that is specifically concerned with what makes a game a game: the play elements. This third world, the world of people like designers and artists, and disciplines as computer science and game design, I call the world of Play and this level is devoted to it. The level starts off with some of the misperceptions people have of play. Unlike some may think, we play all the time, even when we grow old—this was also very noticeable in designing the game Levee Patroller as the team exhibited very playful behavior at many occasions. From there, I go into the aspects that characterize this world. The first concerns the goal of the game. This relates to the objectives people have to achieve within the game. This is constituted by the second aspect: the gameplay. Taking actions and facing challenges is subsequently constituted by a gameworld, which concerns the third aspect. And all of it is not possible without the fourth and final aspect, the type of technology that creates and facilitates the game. The four aspects together make up a “game concept” and from this world such a concept can be judged on the basis of three closely interrelated criteria: engagement, immersion, and fun.

  20. The Importance of Fantasy, Fairness, and Friendship in Children's Play: An Interview with Vivian Gussin Paley

    ERIC Educational Resources Information Center

    American Journal of Play, 2009

    2009-01-01

    Vivian Gussin Paley is a teacher, writer, lecturer, and advocate for the importance of play for young children. Author of a dozen books about children learning through play, she has received numerous honors and awards including an Erickson Institute Award for Service to Children, a MacArthur Foundation Fellows award, and a John Dewey Society's…

  1. The importance of play in adulthood. An interview with Joan M. Erikson. Interview by Daniel Benveniste.

    PubMed

    Erikson, J M

    1998-01-01

    Joan M. Erikson (1902-1997) was an artist, a writer, a mother, and the wife and collaborator of Erik H. Erikson (1902-1994), one of the most important and influential psychoanalysts in the world. The following is an edited dialogue on one of her favorite topics--The Importance of Play in Adulthood. It features her thoughts on the subject and reminiscences of the ways she played throughout her life. She muses on play in relation to humor, fun, the role of the fool, and more. The article was a project undertaken in the spirit of play and it will hopefully evoke further playful musings in the minds of readers. PMID:9990822

  2. Ursolic acid plays a protective role in obesity-induced cardiovascular diseases.

    PubMed

    Lin, Yu-Ting; Yu, Ya-Mei; Chang, Weng-Cheng; Chiang, Su-Yin; Chan, Hsu-Chin; Lee, Ming-Fen

    2016-06-01

    The metabolic disturbance of obesity is one of the most common risk factors of atherosclerosis. Resistin, an obesity-induced adipokine, can induce the expression of cell adhesion molecules and the attachment of monocytes to endothelial cells, which play an important role in the development of atherosclerosis. Ursolic acid, a pentacyclic triterpenoid found in fruits and many herbs, exhibits an array of biological effects such as anti-inflammatory and antioxidative properties. The aim of this study was to investigate the potential underlying mechanisms of the effect of ursolic acid on resistin-induced adhesion of U937 cells to human umbilical vein endothelial cells (HUVECs). Our data indicated that ursolic acid suppressed the adhesion of U937 to HUVECs and downregulated the expression of adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 (ICAM-1), and E-selectin, in resistin-induced HUVECs by decreasing the production of intracellular reaction oxygen species (ROS) and attenuating the nuclear translocation of NFκB. Ursolic acid appeared to inhibit resistin-induced atherosclerosis, suggesting that ursolic acid may play a protective role in obesity-induced cardiovascular diseases. PMID:26991492

  3. The Importance of Free Play in the Early Childhood Classroom: Perspectives from a Teacher

    ERIC Educational Resources Information Center

    Engel, Maria

    2015-01-01

    Teaching is hard. It's the most rewarding, fulfilling job in the world, but it's also frustrating, infuriating, and really, really hard. In this article, the author reflects on the importance of free play in early childhood classrooms. If teachers want to create happy children who love learning, forcing them to sit at desks or tables through early…

  4. AtTMEM18 plays important roles in pollen tube and vegetative growth in Arabidopsis.

    PubMed

    Dou, Xiao-Ying; Yang, Ke-Zhen; Ma, Zhao-Xia; Chen, Li-Qun; Zhang, Xue-Qin; Bai, Jin-Rong; Ye, De

    2016-07-01

    In flowering plants, pollen tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pollen tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pollen tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal callose deposition in the pollen grains and had a significant impact on pollen germination and pollen tube growth. AtTMEM18 is expressed in pollen grains, pollen tubes, root tips and other vegetative tissues. The pollen-rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18-GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cells of pollen grains was essential for the male fertility. Furthermore, expression of the rice TMEM18-homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis. PMID:26699939

  5. Interconversion of biologically important carboxylic acids by radiation

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1978-01-01

    The interconversion of a group of biologically important polycarboxylic acids (acetic, fumaric, malic, malonic, succinic, citric, isocitric, tricarballylic) under gamma-ray or ultraviolet radiation was investigated. The formation of high molecular weight compounds was observed in all cases. Succinic acid was formed in almost all radiolysis experiments. Citric, malonic, and succinic acids appeared to be relatively insensitive to radiation. Interconversion of the polycarboxylic acids studied may have occurred under the effect of radiation in the prebiotic earth.

  6. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid

    PubMed Central

    Donaldson, Melissa A.; Bish, David L.; Raff, Jonathan D.

    2014-01-01

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day. PMID:25512517

  7. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid.

    PubMed

    Donaldson, Melissa A; Bish, David L; Raff, Jonathan D

    2014-12-30

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day. PMID:25512517

  8. Thrombin Maybe Plays an Important Role in MK Differentiation into Platelets

    PubMed Central

    Yang, Xiao-Lei; Ge, Meng-Kai; Mao, De-Kui; Lv, Ying-Tao; Sun, Shu-Yan; Yu, Ai-Ping

    2016-01-01

    Objectives. After development and differentiation, megakaryocytes (MKs) can produce platelets. As is well known, thrombopoietin (TPO) can induce MKs to differentiate. The effect of thrombin on MKs differentiation is not clear. In this study, we used a human megakaryoblastic leukemia cell line (Meg-01) to assess the effect of thrombin on MKs differentiation. Methods. In order to interrogate the role of thrombin in Meg-01 cells differentiation, the changes of morphology, cellular function, and expression of diverse factors were analyzed. Results. The results show that thrombin suppresses Meg-01 cells proliferation and induces apoptosis and cell cycle arrest. Thrombin upregulates the expression of CD41b, which is one of the most important MK markers. Globin transcription factor 1 (GATA-1), an important transcriptional regulator, controls MK development and maturation. The expression of GATA-1 is also upregulated by thrombin in Meg-01 cells. The expression of B-cell lymphoma 2 (Bcl-2), an apoptosis-inhibitory protein, is downregulated by thrombin. Phosphorylated protein kinase B (p-AKT) and phosphorylated extracellular signal-regulated kinase (p-ERK) were upregulated by thrombin in Meg-01 cells. All the results are consistent with Meg-01 cells treated with TPO. Discussion and Conclusion. In conclusion, all these data indicate that thrombin maybe plays an important role in MK differentiation into platelets. However, whether the platelet-like particles are certainly platelets remains unknown. PMID:27064425

  9. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency.

    PubMed

    Chu, Fei-Fei; Chu, Pei-Na; Cai, Pei-Jie; Li, Wen-Wei; Lam, Paul K S; Zeng, Raymond J

    2013-04-01

    To investigate the role of phosphorus in lipid production under nitrogen starvation conditions, five types of media possessing different nitrogen and phosphorus concentrations or their combination were prepared to culture Chlorella vulgaris. It was found that biomass production under nitrogen deficient condition with sufficient phosphorus supply was similar to that of the control (with sufficient nutrition), resulting in a maximum lipid productivity of 58.39 mg/L/day. Meanwhile, 31P NMR showed that phosphorus in the medium was transformed and accumulated as polyphosphate in cells. The uptake rate of phosphorus in cells was 3.8 times higher than the uptake rate of the control. This study demonstrates that phosphorus plays an important role in lipid production of C. vulgaris under nitrogen deficient conditions and implies a potential to combine phosphorus removal from wastewater with biodiesel production via microalgae. PMID:23517904

  10. How Much Do We Know about the Importance of Play in Child Development? Review of Research.

    ERIC Educational Resources Information Center

    Tsao, Ling-Ling

    2002-01-01

    Discusses children's play in conjunction with intellectual development, language, and social benefits. Suggests that play develops personality, encourages personal relations, stimulates creativity, adds to happiness, and advances learning. Encourages parents and teachers to provide children with richly varied play experiences to promote cognition,…

  11. TGF-β signaling plays an important role in resisting γ-irradiation

    SciTech Connect

    An, You Sun; Kim, Mi-Ra; Lee, Seung-Sook; Lee, Yun-Sil; Chung, Eunkyung; Song, Jie-Young; Lee, Jeeyong; Yi, Jae Youn

    2013-02-15

    Transforming growth factor-β1 (TGF-β1) regulates various biological processes, including differentiation, bone remodeling and angiogenesis, and is particularly important as a regulator of homeostasis and cell growth in normal tissue. Interestingly, some studies have reported that TGF-β1 induces apoptosis through induction of specific genes, whereas others suggest that TGF-β1 inhibits apoptosis and facilitates cell survival. Resolving these discrepancies, which may reflect differences in cellular context, is an important research priority. Here, using the parental mink lung epithelial cell line, Mv1Lu, and its derivatives, R1B and DR26, lacking TGF-β receptors, we investigated the involvement of TGF-β signaling in the effects of γ-irradiation. We found that canonical TGF-β signaling played an important role in protecting cells from γ-irradiation. Introduction of functional TGF-β receptors or constitutively active Smads into R1B and DR26 cell lines reduced DNA fragmentation, Caspase-3 cleavage and γ-H2AX foci formation in γ-irradiated cells. Notably, we also found that de novo protein synthesis was required for the radio-resistant effects of TGF-β1. Our data thus indicate that TGF-β1 protected against γ-irradiation, decreasing DNA damage and reducing apoptosis, and thereby enhanced cell survival. - Highlights: ► TGF-β1 pretreatment inhibits γ-irradiation-induced apoptosis. ► TGF-β signaling reduces γ-irradiation-induced γ-H2AX foci formation. ► de novo protein synthesis is necessary for TGF-β1-induced radio-resistance.

  12. Transcription Factor ets-2 Plays an Important Role in the Pathogenesis of Pulmonary Fibrosis

    PubMed Central

    Baran, Christopher P.; Fischer, Sara N.; Nuovo, Gerard J.; Kabbout, Mohamed N.; Hitchcock, Charles L.; Bringardner, Benjamin D.; McMaken, Sara; Newland, Christie A.; Cantemir-Stone, Carmen Z.; Phillips, Gary S.; Ostrowski, Michael C.

    2011-01-01

    Ets-2 is a ubiquitous transcription factor activated after phosphorylation at threonine-72. Previous studies highlighted the importance of phosphorylated ets-2 in lung inflammation and extracellular matrix remodeling, two pathways involved in pulmonary fibrosis. We hypothesized that phosphorylated ets-2 played an important role in pulmonary fibrosis, and we sought to determine the role of ets-2 in its pathogenesis. We challenged ets-2 (A72/A72) transgenic mice (harboring a mutated form of ets-2 at phosphorylation site threonine-72) and ets-2 (wild-type/wild-type [WT/WT]) control mice with sequential intraperitoneal injections of bleomycin, followed by quantitative measurements of lung fibrosis and inflammation and primary cell in vitro assays. Concentrations of phosphorylated ets-2 were detected via the single and dual immunohistochemical staining of murine lungs and lung sections from patients with idiopathic pulmonary fibrosis. Ets-2 (A72/A72) mice were protected from bleomycin-induced pulmonary fibrosis, compared with ets-2 (WT/WT) mice. This protection was characterized by decreased lung pathological abnormalities and the fibrotic gene expression of Type I collagen, Type III collagen, α–smooth muscle actin, and connective tissue growth factor. Immunohistochemical staining of lung sections from bleomycin-treated ets-2 (WT/WT) mice and from patients with idiopathic pulmonary fibrosis demonstrated increased staining of phosphorylated ets-2 that colocalized with Type I collagen expression and to fibroblastic foci. Lastly, primary lung fibroblasts from ets-2 (A72/A72) mice exhibited decreased expression of Type I collagen in response to stimulation with TGF-β, compared with fibroblasts from ets-2 (WT/WT) mice. These data indicate the importance of phosphorylated ets-2 in the pathogenesis of pulmonary fibrosis through the expression of Type I collagen and (myo)fibroblast activation. PMID:21562315

  13. Transcription factor ets-2 plays an important role in the pathogenesis of pulmonary fibrosis.

    PubMed

    Baran, Christopher P; Fischer, Sara N; Nuovo, Gerard J; Kabbout, Mohamed N; Hitchcock, Charles L; Bringardner, Benjamin D; McMaken, Sara; Newland, Christie A; Cantemir-Stone, Carmen Z; Phillips, Gary S; Ostrowski, Michael C; Marsh, Clay B

    2011-11-01

    Ets-2 is a ubiquitous transcription factor activated after phosphorylation at threonine-72. Previous studies highlighted the importance of phosphorylated ets-2 in lung inflammation and extracellular matrix remodeling, two pathways involved in pulmonary fibrosis. We hypothesized that phosphorylated ets-2 played an important role in pulmonary fibrosis, and we sought to determine the role of ets-2 in its pathogenesis. We challenged ets-2 (A72/A72) transgenic mice (harboring a mutated form of ets-2 at phosphorylation site threonine-72) and ets-2 (wild-type/wild-type [WT/WT]) control mice with sequential intraperitoneal injections of bleomycin, followed by quantitative measurements of lung fibrosis and inflammation and primary cell in vitro assays. Concentrations of phosphorylated ets-2 were detected via the single and dual immunohistochemical staining of murine lungs and lung sections from patients with idiopathic pulmonary fibrosis. Ets-2 (A72/A72) mice were protected from bleomycin-induced pulmonary fibrosis, compared with ets-2 (WT/WT) mice. This protection was characterized by decreased lung pathological abnormalities and the fibrotic gene expression of Type I collagen, Type III collagen, α-smooth muscle actin, and connective tissue growth factor. Immunohistochemical staining of lung sections from bleomycin-treated ets-2 (WT/WT) mice and from patients with idiopathic pulmonary fibrosis demonstrated increased staining of phosphorylated ets-2 that colocalized with Type I collagen expression and to fibroblastic foci. Lastly, primary lung fibroblasts from ets-2 (A72/A72) mice exhibited decreased expression of Type I collagen in response to stimulation with TGF-β, compared with fibroblasts from ets-2 (WT/WT) mice. These data indicate the importance of phosphorylated ets-2 in the pathogenesis of pulmonary fibrosis through the expression of Type I collagen and (myo)fibroblast activation. PMID:21562315

  14. Heterocystous Cyanobacteria in Microbialites Play an Important Role in N2 Fixation and Carbonate Mineral Precipitation

    NASA Astrophysics Data System (ADS)

    Alcantara-Hernandez, R. J.

    2015-12-01

    Lake Alchichica is a maars type crater-lake located in Central Mexico (pH > 8.9, EC ~13.39 mS cm-1). This limnological system harbors two types of microbialites that can be found around the entire perimeter of the lake (Fig. 1). These structures are representative examples of complex and diverse microbiological assemblages, where microbial activity promotes lithification by trapping, binding and/or precipitating detrital or chemical sediments. Previous studies determined that the microbialites of Lake Alchichica fix N2 to thrive under the N-limiting conditions of the lake, and that these nitrogenase activity peaks are related to heterocystous cyanobacteria that couple photosynthesis to N2 fixation during daylight periods. Heterocystous cyanobacteria (Nostocales) together with Oscillatoriales (non-heterocystous filamentous cyanobacteria) and other cyanobacterial groups have been described as the most abundant cyanobacteria in Alchichica microbialites, and in lithifying mats. Our results suggest that heterocystous cyanobacteria play an important role not only by fixing N2 for biomass construction, but also because their heterocysts host in their external cell membranes main sites for carbonate mineral precipitation including calcium carbonates and siderite. Previous research has shown that the heterocyst is the specialized site for cellular respiration associated to the pH decrease of vegetative/photosynthetic cells, contributing thus to the precipitation of carbonates and the accretion of the organosedimentary structure

  15. hfq Plays Important Roles in Virulence and Stress Adaptation in Cronobacter sakazakii ATCC 29544

    PubMed Central

    Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Yoon, Hyunjin; Kang, Dong-Hyun

    2015-01-01

    Cronobacter spp. are opportunistic pathogens that cause neonatal meningitis and sepsis with high mortality in neonates. Despite the peril associated with Cronobacter infection, the mechanisms of pathogenesis are still being unraveled. Hfq, which is known as an RNA chaperone, participates in the interaction with bacterial small RNAs (sRNAs) to regulate posttranscriptionally the expression of various genes. Recent studies have demonstrated that Hfq contributes to the pathogenesis of numerous species of bacteria, and its roles are varied between bacterial species. Here, we tried to elucidate the role of Hfq in C. sakazakii virulence. In the absence of hfq, C. sakazakii was highly attenuated in dissemination in vivo, showed defects in invasion (3-fold) into animal cells and survival (103-fold) within host cells, and exhibited low resistance to hydrogen peroxide (102-fold). Remarkably, the loss of hfq led to hypermotility on soft agar, which is contrary to what has been observed in other pathogenic bacteria. The hyperflagellated bacteria were likely to be attributable to the increased transcription of genes associated with flagellar biosynthesis in a strain lacking hfq. Together, these data strongly suggest that hfq plays important roles in the virulence of C. sakazakii by participating in the regulation of multiple genes. PMID:25754196

  16. TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts

    PubMed Central

    Woo, Jin Seok; Cho, Chung-Hyun; Kim, Do Han

    2010-01-01

    During membrane depolarization associated with skeletal excitation-contraction (EC) coupling, dihydropyridine receptor [DHPR, a L-type Ca2+ channel in the transverse (t)-tubule membrane] undergoes conformational changes that are transmitted to ryanodine receptor 1 [RyR1, an internal Ca2+-release channel in the sarcoplasmic reticulum (SR) membrane] causing Ca2+ release from the SR. Canonical-type transient receptor potential cation channel 3 (TRPC3), an extracellular Ca2+-entry channel in the t-tubule and plasma membrane, is required for full-gain of skeletal EC coupling. To examine additional role(s) for TRPC3 in skeletal muscle other than mediation of EC coupling, in the present study, we created a stable myoblast line with reduced TRPC3 expression and without α1SDHPR (MDG/TRPC3 KD myoblast) by knock-down of TRPC3 in α1SDHPR-null muscular dysgenic (MDG) myoblasts using retrovirus-delivered small interference RNAs in order to eliminate any DHPR-associated EC coupling-related events. Unlike wild-type or α1SDHPR-null MDG myoblasts, MDG/TRPC3 KD myoblasts exhibited dramatic changes in cellular morphology (e.g., unusual expansion of both cell volume and the plasma membrane, and multi-nuclei) and failed to differentiate into myotubes possibly due to increased Ca2+ content in the SR. These results suggest that TRPC3 plays an important role in the maintenance of skeletal muscle myoblasts and myotubes. PMID:20644344

  17. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    NASA Astrophysics Data System (ADS)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    acidic conditions. The dsrAB genes are related to other novel SRB lineages derived from acidic environments in previous reports, suggesting that these species have adapted to the acidity rather than colonized more circumneutral microenvironments. In an acidic hypersaline lake system in NW Victoria (Australia), previous studies suggested that pore water bisulfide derived from anoxic groundwater transported from distal locations. However, isolated potholes of oxic Fe(III)-rich springwater exhibited nearly a two-fold increase in conductivity and pH increase from 4.5 to 8.0 over time periods on the order of days; and biogeochemical and mineralogical observations were consistent with the presence of active acid- and halo-tolerant SRB. Furthermore, stratified active microbial mat communities, with zones of black FeS formation localized several millimeters below the sediment-air interface, were identified in cross-section from lakeshore sediments near groundwater discharge springs. Culture-independent and culture-based work to characterize the SRB population is ongoing at this site. We infer, from previous sulfur isotope tracer experiments at the lake, that overall sulfate reduction rates may be slow, but are nonetheless proceeding and contributing to the recycling of oxidized iron to a significant degree given the abundance of sulfate evidenced by widespread gypsum precipitation. We conclude from the two study-sites described above that acid-tolerant SRB species play an important role in the linked S, Fe and C cycles in acidifying, iron-rich environments, and their phylogenetic and physiological diversity should be further investigated.

  18. p21 induction plays a dual role in anti-cancer activity of ursolic acid.

    PubMed

    Zhang, Xudong; Song, Xinhua; Yin, Shutao; Zhao, Chong; Fan, Lihong; Hu, Hongbo

    2016-03-01

    Previous studies have shown that induction of G1 arrest and apoptosis by ursolic acid is associated with up-regulation of cyclin-dependent kinase inhibitor (CDKI) protein p21 in multiple types of cancer cells. However, the functional role of p21 induction in G1 cell cycle arrest and apoptosis, and the mechanisms of p21 induction by ursolic acid have not been critically addressed. In the current study, we demonstrated that p21 played a mediator role in G1 cell cycle arrest by ursolic acid, whereas p21-mediated up-regulation of Mcl-1 compromised apoptotic effect of ursolic acid. These results suggest that p21 induction plays a dual role in the anti-cancer activity of ursolic acid in terms of cell cycle and apoptosis regulation. p21 induction by ursolic acid was attributed to p53 transcriptional activation. Moreover, we found that ursolic acid was able to inhibit murine double minute-2 protein (MDM2) and T-LAK cell-originated protein kinase (TOPK), the two negative regulator of p53, which in turn contributed to ursolic acid-induced p53 activation. Our findings provided novel insights into understanding of the mechanisms involved in cell cycle arrest and apoptosis induction in response to ursolic acid exposure. PMID:26582056

  19. IQGAP1 Plays an Important Role in the Invasiveness of Thyroid Cancer

    PubMed Central

    Liu, Zhi; Liu, Dingxie; Bojdani, Ermal; El-Naggar, Adel K.; Vasko, Vasily; Xing, Mingzhao

    2010-01-01

    Purpose This study was designed to explore the role of IQGAP1 in the invasiveness of thyroid cancer and its potential as a novel prognostic marker and therapeutic target in this cancer. Experimental Design We examined IQGAP1 copy gain and its relationship with clinicopathological outcomes of thyroid cancer and investigated its role in cell invasion and molecules involved in the process. Results We found IQGAP1 copy number gain ≥ 3 in 1/30 (3%), 24/74 (32%), 44/107 (41%), 8/16 (50%), and 27/41 (66%) of benign thyroid tumor, follicular variant papillary thyroid cancer (FVPTC), follicular thyroid cancer (FTC), tall cell PTC, and anaplastic thyroid cancer, respectively, in the increasing order of invasiveness of these tumors. A similar tumor distribution trend of copy number ≥ 4 was also seen. IQGAP1 copy gain was positively correlated with IQGAP1 protein expression. It was significantly associated with extrathyroidal and vascular invasion of FVPTC and FTC and, remarkably, a 50–60% rate of multifocality and recurrence of BRAF mutation-positive PTC (P = 0.01 and 0.02, respectively). siRNA knockdown of IQGAP1 dramatically inhibited thyroid cancer cell invasion and colony formation. Co-immunoprecipitation assay demonstrated direct interaction of IQGAP1 with E-cadherin, a known invasion-suppressing molecule, which was up-regulated when IQGAP1 was knocked down. This provided a mechanism for the invasive role of IQGAP1 in thyroid cancer. In contrast, IQGAP3 lacked all these functions. Conclusions IQGAP1, through genetic copy gain, plays an important role in the invasiveness of thyroid cancer and may represent a novel prognostic marker and therapeutic target for this cancer. PMID:20959410

  20. Galectin-3 Plays an Important Role in Innate Immunity to Gastric Infection by Helicobacter pylori.

    PubMed

    Park, Ah-Mee; Hagiwara, Satoru; Hsu, Daniel K; Liu, Fu-Tong; Yoshie, Osamu

    2016-04-01

    We studied the role of galectin-3 (Gal3) in gastric infection by Helicobacter pylori We first demonstrated that Gal3 was selectively expressed by gastric surface epithelial cells and abundantly secreted into the surface mucus layer. We next inoculated H. pylori Sydney strain 1 into wild-type (WT) and Gal3-deficient mice using a stomach tube. At 2 weeks postinoculation, the bacterial cells were mostly trapped within the surface mucus layer in WT mice. In sharp contrast, they infiltrated deep into the gastric glands in Gal3-deficient mice. Bacterial loads in the gastric tissues were also much higher in Gal3-deficient mice than in WT mice. At 6 months postinoculation,H. pylori had successfully colonized within the gastric glands of both WT and Gal3-deficient mice, although the bacterial loads were still higher in the latter. Furthermore, large lymphoid clusters mostly consisting of B cells were frequently observed in the gastric submucosa of Gal3-deficient mice.In vitro, peritoneal macrophages from Gal3-deficient mice were inefficient in killing engulfed H. pylori Furthermore, recombinant Gal3 not only induced rapid aggregation of H. pylori but also exerted a potent bactericidal effect on H. pylori as revealed by propidium iodide uptake and a morphological shift from spiral to coccoid form. However, a minor fraction of bacterial cells, probably transient phase variants of Gal3-binding sugar moieties, escaped killing by Gal3. Collectively, our data demonstrate that Gal3 plays an important role in innate immunity to infection and colonization of H. pylori. PMID:26857579

  1. Basal transcription factor 3 plays an important role in seed germination and seedling growth of rice.

    PubMed

    Wang, Wenyi; Xu, Mengyun; Wang, Ya; Jamil, Muhammad

    2014-01-01

    BTF3 has been recognized to be involved in plant growth and development. But its function remains mostly unknown during seed germination and seedling stage. Here, we have analyzed OsBTF3-related sequences in Oryza sativa L. subspecies, japonica, which resembles with the conserved domain of a nascent polypeptide associated complex (NAC) with different homologs of OsBTF3 and human BTF3. Inhibition of Osj10gBTF3 has led to considerable morphological changes during seed germination and seedling growth. Germination percentage was not influenced by the application of GA3, ABA, and NaCl but all concentrations caused wild-type (WT) seeds to germinate more rapidly than the RNAi (Osj10gBTF3 (Ri)) transgenic lines. Seedling inhibition was more severe in the Osj10gBTF3 (Ri) seedlings compared with their WT especially when treated with 100 or 200 μM GA3; 50% reduction in shoots was observed in Osj10gBTF3 (Ri) seedlings. The expression of Osj3g1BTF3, Osj3g2BTF3 and Osj10gBTF3 was primarily constitutive and generally modulated by NaCl, ABA, and GA3 stresses in both Osj10gBTF3 (Ri) lines and WT at the early seedling stage, suggesting that Osj3g1BTF3 and Osj10gBTF3 are much similar but different from Osj3g2BTF3 in biological function. These results show that OsBTF3 plays an important role in seed germination and seedling growth gives a new perception demonstrating that more multifaceted regulatory functions are linked with BTF3 in plants. PMID:24971328

  2. Oleanolic acid and related derivatives as medicinally important compounds.

    PubMed

    Sultana, Nighat; Ata, Athar

    2008-12-01

    Oleanolic acid has been isolated from chloroform extract of Olea ferruginea Royle after removal of organic bases and free acids. The literature survey revealed it to be biologically very important. In this review the biological significance of oleanolic acid and its derivatives has been discussed. The aim of this review is to update current knowledge on oleanolic acid and its natural and semisynthetic analogs, focussing on its cytotoxic, antitumer, antioxidant, anti-inflamatory, anti-HIV, acetyl cholinesterase, alpha-glucosidase, antimicrobial, hepatoprotective, anti-inflammatory, antipruritic, spasmolytic activity, anti-angiogenic, antiallergic, antiviral and immunomodulatory activities. We present in this review, for the first time, a compilation of the most relevant scientific papers and technical reports of the chemical, pre-clinical and clinical research on the properties of oleanolic acid and its derivatives. PMID:18618318

  3. Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition

    PubMed Central

    Mahanty, Arabinda; Sankar, T. V.; Chakraborty, Kajal; Rangasamy, Anandan; Paul, Baidyanath; Sarma, Debajit; Mathew, Suseela; Asha, Kurukkan Kunnath; Behera, Bijay; Aftabuddin, Md.; Debnath, Dipesh; Vijayagopal, P.; Sridhar, N.; Akhtar, M. S.; Sahi, Neetu; Mitra, Tandrima; Banerjee, Sudeshna; Das, Debajeet; Das, Pushpita; Vijayan, K. K.; Laxmanan, P. T.; Sharma, A. P.

    2014-01-01

    Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs. PMID:25379285

  4. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    NASA Astrophysics Data System (ADS)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  5. 78 FR 77771 - Culturally Significant Object Imported for Exhibition Determinations: “Love and Play: A Pair of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Culturally Significant Object Imported for Exhibition Determinations: ``Love and Play: A Pair of Paintings by..., I hereby determine that the object to be included in the exhibition ``Love and Play: A Pair...

  6. Molecular identification of three novel glutaredoxin genes that play important roles in antioxidant defense in Helicoverpa armigera.

    PubMed

    Zhang, Song-Dou; Shen, Zhong-Jian; Liu, Xiao-Ming; Li, Zhen; Zhang, Qing-Wen; Liu, Xiao-Xia

    2016-08-01

    Glutaredoxins (Grxs), also known as thioltransferases, play key roles in maintaining intracellular redox balance and protecting cells from oxidative damage in plants and mammals. We tested whether Grxs play important roles in antioxidant defense in insects using the moth, Helicoverpa armigera. We obtained the full-length cDNA sequences of three novel Grx genes, named HaGrx, HaGrx3, and HaGrx5. Sequence analysis indicated that HaGrx shared a high amino acid identity (58%-78%) and a CPYC motif of conserved redox activity with homologues from other selected insect species. In contrast, HaGrx3 and HaGrx5 both shared a CGF(S/G) motif, a conserved catalytic domain, with other orthologous genes. Quantitative real-time PCR results revealed that HaGrx, HaGrx3, and HaGrx5 exhibited temporally- and spatially-dependent patterns of expression. The mRNA expression of HaGrx, HaGrx3, and HaGrx5 was induced by various temperature stresses and H2O2 treatments. We further investigated the knockdown of HaGrx, HaGrx3, and HaGrx5 in H. armigera larvae and found that most of the selected antioxidant genes were up regulated. However, Tpx was down regulated, and further interpretation of the complementary functions of these antioxidant genes is still required. We also determined the effect of HaGrx, HaGrx3, and HaGrx5 knockdown on antioxidant enzymatic activity and metabolite content. The enzymatic activities of SOD, CAT, and POD, and the metabolite contents of hydrogen peroxide, ascorbate, protein carbonyl, and total GSH increased after RNAi mediated knockdown of HaGrx, HaGrx3, and HaGrx5. These results supported our hypothesis that HaGrx, HaGrx3, and HaGrx5 play important roles in antioxidant defense of Helicoverpa armigera and provided a theoretical basis for further in-depth study of physiological function in the insect glutaredoxin family genes. PMID:27339760

  7. Importance of Nucleic Acid Recognition in Inflammation and Autoimmunity.

    PubMed

    Barrat, Franck J; Elkon, Keith B; Fitzgerald, Katherine A

    2016-01-01

    An important concept in immunology is the classification of immune responses as either innate or adaptive, based on whether the antigen receptors are encoded in the germline or generated somatically by gene rearrangement. The innate immune system is an ancient mode of immunity, and by being a first layer in our defense against infectious agents, it is essential for our ability to develop rapid and sustained responses to pathogens. We discuss the importance of nucleic acid recognition by the innate immune system to mounting an appropriate immune response to pathogens and also how inflammation driven by uncontrolled recognition of self-nucleic acids can lead to autoimmune diseases. We also summarize current efforts to either harness the immune system using agonists of nucleic acid-specific innate sensors or, on the contrary, by using inhibitors in autoimmune situations. PMID:26526766

  8. D-Aspartic acid: an endogenous amino acid with an important neuroendocrine role.

    PubMed

    D'Aniello, Antimo

    2007-02-01

    D-Aspartic acid (d-Asp), an endogenous amino acid present in vertebrates and invertebrates, plays an important role in the neuroendocrine system, as well as in the development of the nervous system. During the embryonic stage of birds and the early postnatal life of mammals, a transient high concentration of d-Asp takes place in the brain and in the retina. d-Asp also acts as a neurotransmitter/neuromodulator. Indeed, this amino acid has been detected in synaptosomes and in synaptic vesicles, where it is released after chemical (K(+) ion, ionomycin) or electric stimuli. Furthermore, d-Asp increases cAMP in neuronal cells and is transported from the synaptic clefts to presynaptic nerve cells through a specific transporter. In the endocrine system, instead, d-Asp is involved in the regulation of hormone synthesis and release. For example, in the rat hypothalamus, it enhances gonadotropin-releasing hormone (GnRH) release and induces oxytocin and vasopressin mRNA synthesis. In the pituitary gland, it stimulates the secretion of the following hormones: prolactin (PRL), luteinizing hormone (LH), and growth hormone (GH) In the testes, it is present in Leydig cells and is involved in testosterone and progesterone release. Thus, a hypothalamus-pituitary-gonads pathway, in which d-Asp is involved, has been formulated. In conclusion, the present work is a summary of previous and current research done on the role of d-Asp in the nervous and endocrine systems of invertebrates and vertebrates, including mammals. PMID:17118457

  9. Polynucleotide phosphorylase plays an important role in the generation of spontaneous mutations in Escherichia coli.

    PubMed

    Becket, Elinne; Tse, Lawrence; Yung, Madeline; Cosico, Alexander; Miller, Jeffrey H

    2012-10-01

    Polynucleotide phosphorylase (PNP) plays a central role in RNA degradation, generating a pool of ribonucleoside diphosphates (rNDPs) that can be converted to deoxyribonucleoside diphosphates (dNDPs) by ribonucleotide reductase. We report here that spontaneous mutations resulting from replication errors, which are normally repaired by the mismatch repair (MMR) system, are sharply reduced in a PNP-deficient Escherichia coli strain. This is true for base substitution mutations that occur in the rpoB gene leading to Rif(r) and the gyrB gene leading to Nal(r) and for base substitution and frameshift mutations that occur in the lacZ gene. These results suggest that the increase in the rNDP pools generated by polynucleotide phosphorylase (PNP) degradation of RNA is responsible for the spontaneous mutations observed in an MMR-deficient background. The PNP-derived pool also appears responsible for the observed mutations in the mutT mutator background and those that occur after treatment with 5-bromodeoxyuridine, as these mutations are also drastically reduced in a PNP-deficient strain. However, mutation frequencies are not reduced in a mutY mutator background or after treatment with 2-aminopurine. These results highlight the central role in mutagenesis played by the rNDP pools (and the subsequent dNTP pools) derived from RNA degradation. PMID:22904280

  10. Polynucleotide Phosphorylase Plays an Important Role in the Generation of Spontaneous Mutations in Escherichia coli

    PubMed Central

    Becket, Elinne; Tse, Lawrence; Yung, Madeline; Cosico, Alexander

    2012-01-01

    Polynucleotide phosphorylase (PNP) plays a central role in RNA degradation, generating a pool of ribonucleoside diphosphates (rNDPs) that can be converted to deoxyribonucleoside diphosphates (dNDPs) by ribonucleotide reductase. We report here that spontaneous mutations resulting from replication errors, which are normally repaired by the mismatch repair (MMR) system, are sharply reduced in a PNP-deficient Escherichia coli strain. This is true for base substitution mutations that occur in the rpoB gene leading to Rifr and the gyrB gene leading to Nalr and for base substitution and frameshift mutations that occur in the lacZ gene. These results suggest that the increase in the rNDP pools generated by polynucleotide phosphorylase (PNP) degradation of RNA is responsible for the spontaneous mutations observed in an MMR-deficient background. The PNP-derived pool also appears responsible for the observed mutations in the mutT mutator background and those that occur after treatment with 5-bromodeoxyuridine, as these mutations are also drastically reduced in a PNP-deficient strain. However, mutation frequencies are not reduced in a mutY mutator background or after treatment with 2-aminopurine. These results highlight the central role in mutagenesis played by the rNDP pools (and the subsequent dNTP pools) derived from RNA degradation. PMID:22904280

  11. Dysregulation of JAM-A plays an important role in human tumor progression

    PubMed Central

    Zhao, Chen; Lu, Funian; Chen, Hongxia; Zhao, Xianda; Sun, Jun; Chen, Honglei

    2014-01-01

    Junctional adhesion molecule A (JAM-A) is a transmembrane protein that belongs to the immunoglobulin (Ig) superfamily. Evidence determines that JAM-A plays a role in numerous cellular processes, including tight junction assembly, leukocyte migration, platelet activation, angiogenesis and virus binding. Recent research suggests that JAM-A is dysregulated in various cancers and is vital for tumor progression. JAM-A is implicated in carcinogenesis via different signal pathways such as TGF-β1 signaling. Furthermore, JAM-A expression in cancers is usually associated with certain outcome of patients and might be a prognostic indicator. In this review, the correlation between JAM-A expression and human cancers will be described. PMID:25400822

  12. Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients

    PubMed Central

    Nardacci, Roberta; Amendola, Alessandra; Ciccosanti, Fabiola; Corazzari, Marco; Esposito, Valentina; Vlassi, Chrysoula; Taibi, Chiara; Fimia, Gian Maria; Del Nonno, Franca; Ippolito, Giuseppe; D’Offizi, Gianpiero; Piacentini, Mauro

    2014-01-01

    Recent in vitro studies have suggested that autophagy may play a role in both HIV-1 replication and disease progression. In this study we investigated whether autophagy protects the small proportion of HIV-1 infected individuals who remain clinically stable for years in the absence of antiretroviral therapy, these named long-term nonprogressors (LTNP) and elite controllers (EC). We found that peripheral blood mononuclear cells (PBMC) of the HIV-1 controllers present a significantly higher amount of autophagic vesicles associated with an increased expression of autophagic markers with respect to normal progressors. Of note, ex vivo treatment of PBMC from the HIV-1 controllers with the MTOR inhibitor rapamycin results in a more efficient autophagic response, leading to a reduced viral production. These data lead us to propose that autophagy contributes to limiting viral pathogenesis in HIV-1 controllers by targeting viral components for degradation. PMID:24813622

  13. Did large animals play an important role in global biogeochemical cycling in the past?

    NASA Astrophysics Data System (ADS)

    Doughty, C.

    2014-12-01

    In the late Pleistocene (~50-10,000 years ago), ninety-seven genera of large animals (>44kg) (megafauna) went extinct, concentrated in the Americas and Australia. The loss of megafauna had major effects on ecosystem structure, seed dispersal and land surface albedo. However, the impact of this dramatic extinction on ecosystem nutrient biogeochemistry, through the lateral transport of dung and bodies, has never been explored. Here we explore these nutrient impacts using a novel mathematical framework that analyses this lateral transport as a diffusion-like process and demonstrates that large animals play a disproportionately large role in the horizontal transfer of nutrients across landscapes. For example, we estimate that the extinction of the Amazonian megafauna led to a >98% reduction in the lateral transfer flux of the limiting nutrient phosphorus (P) with similar, though less extreme, decreases in all continents outside of Africa. This resulted in strong decreases in phosphorus availability in Eastern Amazonia away from fertile floodplains, a decline which may still be ongoing, and current P limitation in the Amazon basin may be partially a relic of an ecosystem without the functional connectedness it once had. More broadly, the Pleistocene megafaunal extinctions resulted in major and ongoing disruptions to terrestrial biogeochemical cycling at continental scales and increased nutrient heterogeneity globally.

  14. Roles played by acidic lipids in HIV-1 Gag membrane binding

    PubMed Central

    Olety, Balaji; Ono, Akira

    2014-01-01

    The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids. PMID:24998886

  15. Growth temperature and genotype both play important roles in sorghum grain phenolic composition.

    PubMed

    Wu, Gangcheng; Johnson, Stuart K; Bornman, Janet F; Bennett, Sarita J; Clarke, Michael W; Singh, Vijaya; Fang, Zhongxiang

    2016-01-01

    Polyphenols in sorghum grains are a source of dietary antioxidants. Polyphenols in six diverse sorghum genotypes grown under two day/night temperature regimes of optimal temperature (OT, 32/21 °C and high temperature (HT, 38/21 °C) were investigated. A total of 23 phenolic compounds were positively or tentatively identified by HPLC-DAD-ESIMS. Compared with other pigmented types, the phenolic profile of white sorghum PI563516 was simpler, since fewer polyphenols were detected. Brown sorghum IS 8525 had the highest levels of caffeic and ferulic acid, but apigenin and luteolin were not detected. Free luteolinidin and apigeninidin levels were lower under HT than OT across all genotypes (p ≤ 0.05), suggesting HT could have inhibited 3-deoxyanthocyanidins formation. These results provide new information on the effects of HT on specific polyphenols in various Australian sorghum genotypes, which might be used as a guide to grow high antioxidant sorghum grains under projected high temperature in the future. PMID:26907726

  16. Growth temperature and genotype both play important roles in sorghum grain phenolic composition

    PubMed Central

    Wu, Gangcheng; Johnson, Stuart K.; Bornman, Janet F.; Bennett, Sarita J.; Clarke, Michael W.; Singh, Vijaya; Fang, Zhongxiang

    2016-01-01

    Polyphenols in sorghum grains are a source of dietary antioxidants. Polyphenols in six diverse sorghum genotypes grown under two day/night temperature regimes of optimal temperature (OT, 32/21 °C and high temperature (HT, 38/21 °C) were investigated. A total of 23 phenolic compounds were positively or tentatively identified by HPLC-DAD-ESIMS. Compared with other pigmented types, the phenolic profile of white sorghum PI563516 was simpler, since fewer polyphenols were detected. Brown sorghum IS 8525 had the highest levels of caffeic and ferulic acid, but apigenin and luteolin were not detected. Free luteolinidin and apigeninidin levels were lower under HT than OT across all genotypes (p ≤ 0.05), suggesting HT could have inhibited 3-deoxyanthocyanidins formation. These results provide new information on the effects of HT on specific polyphenols in various Australian sorghum genotypes, which might be used as a guide to grow high antioxidant sorghum grains under projected high temperature in the future. PMID:26907726

  17. Glucocorticoids play an important role in mediating the enhanced metabolism of arginine and glutamine in enterocytes of postweaning pigs.

    PubMed

    Flynn, N E; Wu, G

    1997-05-01

    Weaning is associated with increased intestinal metabolism of glutamine and arginine as well as elevated plasma concentrations of cortisol (the major circulating glucocorticoid) in pigs. The objective of this study was to determine if cortisol plays an important role in mediating the enhanced amino acid metabolism in enterocytes of weaned pigs by administering RU486 (a glucocorticoid receptor antagonist). Eighteen 21-d-old pigs were randomly assigned to three groups of six. Two of these groups received intramuscular injections of 0 or 10 mg RU486 per kg body weight 5 min before and 24 and 72 h after weaning to a corn-soybean meal-based diet. The third group was allowed to suckle freely from sows. When the pigs were 29 d old, jugular venous blood was obtained and pigs were killed for preparation of jejunal enterocytes. The activities of arginase, argininosuccinate synthase (ASS), argininosuccinate lyase (ASL) and pyrroline-5-carboxylate (P5C) synthase were measured. For metabolic studies, cells were incubated for 0 or 30 min at 37 degrees C in 2 mL of Krebs-bicarbonate buffer (pH 7.4) containing 0 or 2 mmol/L L-[U-14C]arginine or 2 mmol/L L-[U-14C]glutamine. In comparison with suckling pigs, weaning resulted in increases in the following: 1) the activities of arginase, ASS, ASL and P5C synthase, 2) the metabolism of arginine to CO2, proline and ornithine, and 3) the conversion of glutamine to ornithine, citrulline and CO2. The effects of the administration of RU486 were as follows: 1) attenuation of the increase in arginase activity and the production of ornithine from arginine, 2) abolition of the induction of ASL and P5C synthase, and 3) prevention of the increase in glutamine metabolism and the production of proline and CO2 from arginine in enterocytes of weaned pigs. These data suggest that glucocorticoids play an essential role in mediating the enhanced intestinal degradation of arginine and glutamine during weaning. PMID:9164994

  18. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    SciTech Connect

    Zhao Yuqin; Xue Tao; Yang Xiaochun; Zhu Hong; Ding Xiaofei; Lou Liming; Lu Wei; Yang Bo; He Qiaojun

    2010-10-01

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  19. The novel zinc cluster regulator Tog1 plays important roles in oleate utilization and oxidative stress response in Saccharomyces cerevisiae

    SciTech Connect

    Thepnok, Piyasuda; Ratanakhanokchai, Khanok; Soontorngun, Nitnipa

    2014-08-08

    Highlights: • TOG1 deletion results in defective growth on non-fermentable carbon sources. • Removal of TOG1 sensitizes cells to oxidative stress. • Tog1 directly binds and activates expression of oleate utilizing genes. • The Δtog1 cells display reduced peroxisomal content in oleate culture. • S. cerevisiae zinc cluster Tog1 is a novel activator of oleate utilization. - Abstract: Many zinc cluster proteins have been shown to play a role in the transcriptional regulation of glucose-repressible genes during glucose exhaustion and diauxic shift. Here, we studied an additional member of this family called Yer184c (herein called Tog1) for transcriptional regulator of oleate. Our results showed that a Δtog1 strain displays impaired growth with several non-fermentable carbons. Tog1 is also implicated in oxidative stress tolerance. Importantly, during the glucose–oleate shift, combined results from quantitative real time-PCR and chromatin immunoprecipitation (ChIP) experiments showed that Tog1 acts as a direct activator of oleate utilizing genes, encoded key enzymes in β-Oxidation and NADPH regeneration (POX1, FOX2, POT1 and IDP2), the glyoxylate shunt (MLS1 and ICL1), and gluconeogenesis (PCK1 and FBP1). A transmission electron microscopy (TEM) analysis of the Δtog1 strain assayed with oleate also revealed a substantial decrease in peroxisome abundance that is vital for fatty acid oxidation. Overall, our results clearly demonstrated that Tog1 is a newly characterized zinc cluster regulator that functions in the complex network of non-fermentable carbon metabolism in Saccharomycescerevisiae.

  20. Hsp70 plays an important role in high-fat diet induced gestational hyperglycemia in mice.

    PubMed

    Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua

    2015-12-01

    Gestational diabetes mellitus (GDM) has emerged as an epidemic disease during the last decade, affecting about 2 to 5% pregnant women. Even among women who have gestational hyperglycemia may also be positively related to adverse outcomes as GDM. Since heat shock protein (Hsp) 70 has been reported to be associated with diabetes and insulin resistance and its expression was reported to be negatively regulated by the membrane-permeable Hsp70 inhibitor MAL3-101 while positively regulated by the Hsp70 activator BGP-15, we investigated whether Hsp70 played a role in a gestational hyperglycemia mouse model. Mice were divided into non-pregnant and pregnant groups, and each comprised three subgroups: control, high-fat diet (HFD) + MAL3-101, and HFD + BGP-15. We examined the serum levels of triglycerides, total cholesterol, glucose, and insulin, as well as conducted thermal detection of brown adipose tissue (BAT). The role of Hsp70 in BAT apoptosis was also investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase-3 staining. Higher serum level of Hsp70 was associated with increased bodyweight gain after pregnancy in mice fed HFD. Circulating Hsp70 was elevated in control pregnant mice compared to control non-pregnant mice. BGP-induced serum Hsp70 expression reduced triglycerides, total cholesterol, glucose, and insulin levels in the serum. Additionally, thermal detection of BAT, TUNEL, and caspase-3 staining revealed relationship correlation between Hsp70 and BAT functions. Hsp70 level is associated with hyperglycemia during pregnancy. Our results support the role of Hsp70 in facilitating BAT activities and protecting BAT cells from apoptosis via caspase-3 pathway. PMID:26318018

  1. Secretory leukocyte protease inhibitor plays an important role in the regulation of allergic asthma in mice.

    PubMed

    Marino, Rafael; Thuraisingam, Thusanth; Camateros, Pierre; Kanagaratham, Cynthia; Xu, Yong Zhong; Henri, Jennifer; Yang, Jingxuan; He, Guoan; Ding, Aihao; Radzioch, Danuta

    2011-04-01

    Secretory leukocyte protease inhibitor (SLPI) is an anti-inflammatory protein that is observed at high levels in asthma patients. Resiquimod, a TLR7/8 ligand, is protective against acute and chronic asthma, and it increases SLPI expression of macrophages in vitro. However, the protective role played by SLPI and the interactions between the SLPI and resiquimod pathways in the immune response occurring in allergic asthma have not been fully elucidated. To evaluate the role of SLPI in the development of asthma phenotypes and the effect of resiquimod treatment on SLPI, we assessed airway resistance and inflammatory parameters in the lungs of OVA-induced asthmatic SLPI transgenic and knockout mice and in mice treated with resiquimod. Compared with wild-type mice, allergic SLPI transgenic mice showed a decrease in lung resistance (p < 0.001), airway eosinophilia (p < 0.001), goblet cell hyperplasia (p < 0.001), and plasma IgE levels (p < 0.001). Allergic SLPI knockout mice displayed phenotype changes significantly more severe compared with wild-type mice. These phenotypes included lung resistance (p < 0.001), airway eosinophilia (p < 0.001), goblet cell hyperplasia (p < 0.001), cytokine levels in the lungs (p < 0.05), and plasma IgE levels (p < 0.001). Treatment of asthmatic transgenic mice with resiquimod increased the expression of SLPI and decreased inflammation in the lungs; resiquimod treatment was still effective in asthmatic SLPI knockout mice. Taken together, our study showed that the expression of SLPI protects against allergic asthma phenotypes, and treatment by resiquimod is independent of SLPI expression, displayed through the use of transgenic and knockout SLPI mice. PMID:21335488

  2. Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR-Dependent Cell Viability

    PubMed Central

    Delaune, Aurelia; Poupel, Olivier; Mallet, Adeline; Coic, Yves-Marie; Msadek, Tarek; Dubrac, Sarah

    2011-01-01

    The WalKR two-component system is essential for viability of Staphylococcus aureus, a major pathogen. We have shown that WalKR acts as the master controller of peptidoglycan metabolism, yet none of the identified regulon genes explain its requirement for cell viability. Transmission electron micrographs revealed cell wall thickening and aberrant division septa in the absence of WalKR, suggesting its requirement may be linked to its role in coordinating cell wall metabolism and cell division. We therefore tested whether uncoupling autolysin gene expression from WalKR-dependent regulation could compensate for its essential nature. Uncoupled expression of genes encoding lytic transglycosylases or amidases did not restore growth to a WalKR-depleted strain. We identified only two WalKR-regulon genes whose expression restored cell viability in the absence of WalKR: lytM and ssaA. Neither of these two genes are essential under our conditions and a ΔlytM ΔssaA mutant does not present any growth defect. LytM is a glycyl–glycyl endopeptidase, hydrolyzing the pentaglycine interpeptide crossbridge, and SsaA belongs to the CHAP amidase family, members of which such as LysK and LytA have been shown to have D-alanyl-glycyl endopeptidase activity, cleaving between the crossbridge and the stem peptide. Taken together, our results strongly suggest that peptidoglycan crosslinking relaxation through crossbridge hydrolysis plays a crucial role in the essential requirement of the WalKR system for cell viability. PMID:21386961

  3. Gravity Plays an Important Role in Muscle Development and the Differentiation of Contractile Protein Phenotype

    NASA Technical Reports Server (NTRS)

    Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.

    2003-01-01

    Several muscles in the body exist mainly to work against gravity. Whether gravity is important in the development of these muscles is not known. By examining the basic proteins that compose muscle, questions about the role of gravity in muscle development can be answered. Myosin heavy chains (MHCs) are a family of proteins critically important for muscle contraction. Several types of MHCs exist (e.g., neonatal, slow, fast), and each type is produced by a particular gene. Neonatal MHCs are produced early in life. Slow MHCs are important in antigravity muscles, and fast MHCs are found in fast-twitch power muscles. The gene that is turned on or expressed will determine which MHC is produced. Early in development, antigravity skeletal muscles (muscles that work against gravity) normally produce a combination of the neonatal/embryonic MHCs. The expression of these primitive MHCs is repressed early in development; and the adult slow and fast MHC genes become fully expressed. We tested the hypothesis that weightbearing activity is critical for inducing the normal expression of the slow MHC gene typically expressed in adult antigravity muscles. Also, we hypothesized that thyroid hormone, but not opposition to gravity, is necessary for expressing the adult fast IIb MHC gene essential for high-intensity muscle performance. Groups of normal thyroid and thyroid-deficient neonatal rats were studied after their return from the 16-day Neurolab mission and compared to matched controls. The results suggest: (1) Weightlessness impaired body and limb skeletal muscle growth in both normal and thyroid-deficient animals. Antigravity muscles were impaired more than those used primarily for locomotion andor nonweightbearing activity. (2) Systemic and muscle expression of insulin-like growth factor-I (IGF-I), an important body and tissue growth factor, was depressed in flight animals. (3) Normal slow, type I MHC gene expression was markedly repressed in the normal thyroid flight group. (4

  4. ASICs Do Not Play a Role in Maintaining Hyperalgesia Induced by Repeated Intramuscular Acid Injections

    PubMed Central

    Gautam, Mamta; Benson, Christopher J.; Ranier, Jon D.; Light, Alan R.; Sluka, Kathleen A.

    2012-01-01

    Repeated intramuscular acid injections produce long-lasting mechanical hyperalgesia that depends on activation of ASICs. The present study investigated if pH-activated currents in sensory neurons innervating muscle were altered in response to repeated acid injections, and if blockade of ASICs reverses existing hyperalgesia. In muscle sensory neurons, the mean acid-evoked current amplitudes and the biophysical properties of the ASIC-like currents were unchanged following acidic saline injections when compared to neutral pH saline injections or uninjected controls. Moreover, increased mechanical sensitivity of the muscle and paw after the second acid injection was unaffected by local blockade of ASICs (A-317567) in the muscle. As a control, electron microscopic analysis showed that the tibial nerve was undamaged after acid injections. Our previous studies demonstrated that ASICs are important in the development of hyperalgesia to repeated acid injections. However, the current data suggest that ASICs are not involved in maintaining hyperalgesia to repeated intramuscular acid injections. PMID:22191025

  5. PRKX, a Novel cAMP-Dependent Protein Kinase Member, Plays an Important Role in Development.

    PubMed

    Huang, Sizhou; Li, Qian; Alberts, Ian; Li, Xiaohong

    2016-03-01

    The human protein kinase X gene (PRKX) and cAMP-dependent protein kinase (PKA) are both c-AMP-dependent serine/threonine protein kinases within the protein kinase AGC subgroup. Of all the protein kinases in this group, PRKX is the least studied. PRKX has been isolated from patients with chondrodysplasia punctate and is involved in numerous processes, including sexual differentiation and fertilization, normal kidney development and autosomal dominant polycystic kidney disease (ADPKD), blood maturation, neural development, and angiogenesis in vitro. Although the role of PRKX in development and disease has been reported recently, the underlying mechanism of PRKX activity is largely unknown. In addition, based on the expression pattern of PRKX and the extensive role of PKA in disease and development, PRKX might have additional crucial functions that have not been addressed in the literature. In this review, we summarize the characteristics and developmental functions of PRKX that have been reported by recent studies. In particular, we elucidate the structural and functional differences between PRKX and PKA, as well as the possible roles of PRKX in development and related diseases. Finally, we propose future studies that could lead to important discoveries of more PRKX functions and the underlying mechanisms involved. PMID:26252946

  6. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation

    PubMed Central

    Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan

    2011-01-01

    Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623

  7. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise.

    PubMed

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-10-01

    Dopamine (DA) has been widely investigated for its potential role in determining exercise performance. It was originally thought that DA's ergogenic effect was by mediating psychological responses. Recently, some studies have also suggested that DA may regulate physiological responses, such as thermoregulation. Hyperthermia has been demonstrated as an important limiting factor during endurance exercise. DA is prominent in the thermoregulatory centre, and changes in DA concentration have been shown to affect core temperature regulation during exercise. Some studies have proposed that DA or DA/noradrenaline (NA) reuptake inhibitors can improve exercise performance, despite hyperthermia during exercise in the heat. DA/NA reuptake inhibitors also increase catecholamine release in the thermoregulatory centre. Intracerebroventricularly injected DA has been shown to improve exercise performance through inhibiting hyperthermia-induced fatigue, even at normal ambient temperatures. Further, caffeine has been reported to increase DA release in the thermoregulatory centre and improves endurance exercise performance despite increased core body temperature. Taken together, DA has been shown to have ergogenic effects and increase heat storage and hyperthermia tolerance. The mechanisms underlying these effects seem to involve limiting/overriding the inhibitory signals from the central nervous system that result in cessation of exercise due to hyperthermia. PMID:26581447

  8. Transposable elements play an important role during cotton genome evolution and fiber cell development.

    PubMed

    Wang, Kun; Huang, Gai; Zhu, Yuxian

    2016-02-01

    Transposable elements (TEs) usually occupy largest fractions of plant genome and are also the most variable part of the structure. Although traditionally it is hallmarked as "junk and selfish DNA", today more and more evidence points out TE's participation in gene regulations including gene mutation, duplication, movement and novel gene creation via genetic and epigenetic mechanisms. The recently sequenced genomes of diploid cottons Gossypium arboreum (AA) and Gossypium raimondii (DD) together with their allotetraploid progeny Gossypium hirsutum (AtAtDtDt) provides a unique opportunity to compare genome variations in the Gossypium genus and to analyze the functions of TEs during its evolution. TEs accounted for 57%, 68.5% and 67.2%, respectively in DD, AA and AtAtDtDt genomes. The 1,694 Mb A-genome was found to harbor more LTR(long terminal repeat)-type retrotransposons that made cardinal contributions to the twofold increase in its genome size after evolution from the 775.2 Mb D-genome. Although the 2,173 Mb AtAtDtDt genome showed similar TE content to the A-genome, the total numbers of LTR-gypsy and LTR-copia type TEs varied significantly between these two genomes. Considering their roles on rewiring gene regulatory networks, we believe that TEs may somehow be involved in cotton fiber cell development. Indeed, the insertion or deletion of different TEs in the upstream region of two important transcription factor genes in At or Dt subgenomes resulted in qualitative differences in target gene expression. We suggest that our findings may open a window for improving cotton agronomic traits by editing TE activities. PMID:26687725

  9. Effects of developmental alcohol and valproic acid exposure on play behavior of ferrets.

    PubMed

    Krahe, Thomas E; Filgueiras, Claudio C; Medina, Alexandre E

    2016-08-01

    Exposure to alcohol and valproic acid (VPA) during pregnancy can lead to fetal alcohol spectrum disorders and fetal valproate syndrome, respectively. Altered social behavior is a hallmark of both these conditions and there is ample evidence showing that developmental exposure to alcohol and VPA affect social behavior in rodents. However, results from rodent models are somewhat difficult to translate to humans owing to the substantial differences in brain development, morphology, and connectivity. Since the cortex folding pattern is closely related to its specialization and that social behavior is strongly influenced by cortical structures, here we studied the effects of developmental alcohol and VPA exposure on the play behavior of the ferret, a gyrencephalic animal known for its playful nature. Animals were injected with alcohol (3.5g/kg, i.p.), VPA (200mg/kg, i.p.) or saline (i.p) every other day during the brain growth spurt period, between postnatal days 10 and 30. The play behavior of pairs of the same experimental group was evaluated 3 weeks later. Both treatments induced significant behavioral differences compared to controls. Alcohol and VPA exposed ferrets played less than saline treated ones, but while animals from the alcohol group displayed a delay in start playing with each other, VPA treated ones spent most of the time close to one another without playing. These findings not only extend previous results on the effects of developmental exposure to alcohol and VPA on social behavior, but make the ferret a great model to study the underlying mechanisms of social interaction. PMID:27208641

  10. An evaluation of the importance of gastric acid secretion in the absorption of dietary calcium.

    PubMed Central

    Bo-Linn, G W; Davis, G R; Buddrus, D J; Morawski, S G; Santa Ana, C; Fordtran, J S

    1984-01-01

    Since calcium solubility is a prerequisite to calcium absorption, and since solubility of calcium is highly pH-dependent, it has been generally assumed that gastric acid secretion and gastric acidity play an important role in the intestinal absorption of calcium from ingested food or calcium salts such as CaCO3. To evaluate this hypothesis, we developed a method wherein net gastrointestinal absorption of calcium can be measured after ingestion of a single meal. A large dose of cimetidine, which markedly reduced gastric acid secretion, had no effect on calcium absorption in normal subjects, and an achlorhydric patient with pernicious anemia absorbed calcium normally. This was true regardless of the major source of dietary calcium (i.e., milk, insoluble calcium carbonate, or soluble calcium citrate). Moreover, calcium absorption after CaCO3 ingestion was the same when intragastric contents were maintained at pH 7.4 (by in vivo titration) as when intragastric pH was 3.0. On the basis of these results, we conclude that gastric acid secretion and gastric acidity do not normally play a role in the absorption of dietary calcium. Other possible mechanisms by which the gastrointestinal tract might solubilize ingested calcium complexes and salts are discussed. Images PMID:6707197

  11. Abscisic Acid Uridine Diphosphate Glucosyltransferases Play a Crucial Role in Abscisic Acid Homeostasis in Arabidopsis1[C][W

    PubMed Central

    Dong, Ting; Xu, Zheng-Yi; Park, Youngmin; Kim, Dae Heon; Lee, Yongjik; Hwang, Inhwan

    2014-01-01

    The phytohormone abscisic acid (ABA) is crucial for plant growth and adaptive responses to various stress conditions. Plants continuously adjust the ABA level to meet physiological needs, but how ABA homeostasis occurs is not fully understood. This study provides evidence that UGT71B6, an ABA uridine diphosphate glucosyltransferase (UGT), and its two closely related homologs, UGT71B7 and UGT71B8, play crucial roles in ABA homeostasis and in adaptation to dehydration, osmotic stress, and high-salinity stresses in Arabidopsis (Arabidopsis thaliana). UGT RNA interference plants that had low levels of these three UGT transcripts displayed hypersensitivity to exogenous ABA and high-salt conditions during germination and exhibited a defect in plant growth. However, the ectopic expression of UGT71B6 in the atbg1 (for β-glucosidase) mutant background aggravated the ABA-deficient phenotype of atbg1 mutant plants. In addition, modulation of the expression of the three UGTs affects the expression of CYP707A1 to CYP707A4, which encode ABA 8′-hydroxylases; four CYP707As were expressed at higher levels in the UGT RNA interference plants but at lower levels in the UGT71B6:GFP-overexpressing plants. Based on these data, this study proposes that UGT71B6 and its two homologs play a critical role in ABA homeostasis by converting active ABA to an inactive form (abscisic acid-glucose ester) depending on intrinsic cellular and environmental conditions in plants. PMID:24676855

  12. Children's Right to Play: An Examination of the Importance of Play in the Lives of Children Worldwide. Working Papers in Early Childhood Development, No. 57

    ERIC Educational Resources Information Center

    Lester, Stuart; Russell, Wendy

    2010-01-01

    In this working paper, Wendy Russell and Stuart Lester of the UK's University of Gloucestershire discuss why play is fundamental to the health and well-being of children. They argue that both state signatories to the United Nations Convention on the Rights of the Child (Article 31 of which enshrines the right to play) and adults generally should…

  13. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections

    PubMed Central

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. PMID:25714877

  14. The ZupT transporter plays an important role in zinc homeostasis and contributes to Salmonella enterica virulence

    PubMed Central

    Cerasi, Mauro; Liu, Janet Z.; Ammendola, Serena; Poe, Adam J.; Petrarca, Patrizia; Pesciaroli, Michele; Pasquali, Paolo; Raffatellu, Manuela; Battistoni, Andrea

    2014-01-01

    Zinc is an essential metal for cellular homeostasis and function in both eukaryotes and prokaryotes. To acquire this essential nutrient, bacteria employ transporters characterized by different affinity for the metal. Several studies have investigated the role of the high affinity transporter ZnuABC in the bacterial response to zinc shortage, showing that this transporter has a key role in adapting bacteria to zinc starvation. In contrast, the role of the low affinity zinc importer ZupT has been the object of limited investigations. Here we show that a Salmonella strain lacking ZupT is impaired in its ability to grow in metal devoid environments and that a znuABC zupT strain exhibits a severe growth defect in zinc devoid media, is hypersensitive to oxidative stress and contains reduced level of intracellular free zinc. Moreover, we show that ZupT plays a role also in the ability of S. Typhimurim to colonize the host tissues. During systemic infections, the single zupT mutant strain was attenuated only in Nramp1+/+ mice, but competition experiments between znuABC and znuABC zupT mutants revealed that ZupT contributes to metal uptake in vivo independently from the presence a functional Nramp1 transporter. Altogether, the here reported results show that ZupT plays an important role in Salmonella zinc homeostasis, being involved in metal import both in vitro and in infected animals. PMID:24430377

  15. The Pleiotropic CymR Regulator of Staphylococcus aureus Plays an Important Role in Virulence and Stress Response

    PubMed Central

    Soutourina, Olga; Dubrac, Sarah; Poupel, Olivier; Msadek, Tarek; Martin-Verstraete, Isabelle

    2010-01-01

    We have characterized a novel pleiotropic role for CymR, the master regulator of cysteine metabolism. We show here that CymR plays an important role both in stress response and virulence of Staphylococcus aureus. Genes involved in detoxification processes, including oxidative stress response and metal ion homeostasis, were differentially expressed in a ΔcymR mutant. Deletion of cymR resulted in increased sensitivity to hydrogen peroxide-, disulfide-, tellurite- and copper-induced stresses. Estimation of metabolite pools suggests that this heightened sensitivity could be the result of profound metabolic changes in the ΔcymR mutant, with an increase in the intracellular cysteine pool and hydrogen sulfide formation. Since resistance to oxidative stress within the host organism is important for pathogen survival, we investigated the role of CymR during the infectious process. Our results indicate that the deletion of cymR promotes survival of S. aureus inside macrophages, whereas virulence of the ΔcymR mutant is highly impaired in mice. These data indicate that CymR plays a major role in virulence and adaptation of S. aureus for survival within the host. PMID:20485570

  16. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    SciTech Connect

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  17. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.

    PubMed

    Kurutas, Ergul Belge

    2016-01-01

    Remarkable interest has risen in the idea that oxidative/nitrosative stress is mediated in the etiology of numerous human diseases. Oxidative/Nitrosative stress is the result of an disequilibrium in oxidant/antioxidant which reveals from continuous increase of Reactive Oxygen and Reactive Nitrogen Species production. The aim of this review is to emphasize with current information the importance of antioxidants which play the role in cellular responce against oxidative/nitrosative stress, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. Products of lipid peroxidation have commonly been used as biomarkers of oxidative/nitrosative stress damage. Lipid peroxidation generates a variety of relatively stable decomposition end products, mainly α, β-unsaturated reactive aldehydes, such as malondialdehyde, 4-hydroxy-2-nonenal, 2-propenal (acrolein) and isoprostanes, which can be measured in plasma and urine as an indirect index of oxidative/nitrosative stress. Antioxidants are exogenous or endogenous molecules that mitigate any form of oxidative/nitrosative stress or its consequences. They may act from directly scavenging free radicals to increasing antioxidative defences. Antioxidant deficiencies can develop as a result of decreased antioxidant intake, synthesis of endogenous enzymes or increased antioxidant utilization. Antioxidant supplementation has become an increasingly popular practice to maintain optimal body function. However, antoxidants exhibit pro-oxidant activity depending on the specific set of conditions. Of particular importance are their dosage and redox conditions in the cell. PMID:27456681

  18. Bulk-like endocytosis plays an important role in the recycling of insulin granules in pancreatic beta cells.

    PubMed

    Wen, Du; Xue, Yanhong; Liang, Kuo; Yuan, Tianyi; Lu, Jingze; Zhao, Wei; Xu, Tao; Chen, Liangyi

    2012-08-01

    Although bulk endocytosis has been found in a number of neuronal and endocrine cells, the molecular mechanism and physiological function of bulk endocytosis remain elusive. In pancreatic beta cells, we have observed bulk-like endocytosis evoked both by flash photolysis and trains of depolarization. Bulk-like endocytosis is a clathrin-independent process that is facilitated by enhanced extracellular Ca(2+) entry and suppressed by the inhibition of dynamin function. Moreover, defects in bulk-like endocytosis are accompanied by hyperinsulinemia in primary beta cells dissociated from diabetic KKAy mice, which suggests that bulk-like endocytosis plays an important role in maintaining the exo-endocytosis balance and beta cell secretory capability. PMID:22729398

  19. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.

    PubMed

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Wang, Zi-Jun; Zhang, Yong-He

    2016-02-01

    The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation. PMID:26558357

  20. A complex of Wiskott-Aldrich syndrome protein with mammalian verprolins plays an important role in monocyte chemotaxis.

    PubMed

    Tsuboi, Shigeru

    2006-06-01

    The Wiskott-Aldrich syndrome protein (WASP) is a product of the gene defective in an Xid disorder, Wiskott-Aldrich syndrome. WASP expression is limited to hemopoietic cells, and WASP regulates the actin cytoskeleton. It has been reported that monocytes/macrophages from WASP-deficient Wiskott-Aldrich syndrome patients are severely defective in chemotaxis, resulting in recurrent infection. However, the molecular basis of such chemotactic defects is not understood. Recently, the WASP N-terminal region was found to bind to the three mammalian verprolin homologs: WASP interacting protein (WIP); WIP and CR16 homologous protein (WICH)/WIP-related protein (WIRE); and CR16. Verprolin was originally found to play an important role in the regulation of actin cytoskeleton in yeast. We have shown that WASP, WIP, and WICH/WIRE are expressed predominantly in the human monocyte cell line THP-1 and that WIP and WICH/WIRE are involved in monocyte chemotaxis. When WASP binding to verprolins was blocked, chemotactic migration of monocytes was impaired in both THP-1 cells and primary human monocytes. Increased expression of WASP and WIP enhanced monocyte chemotaxis. Blocking WASP binding to verprolins impaired cell polarization but not actin polymerization. These results indicate that a complex of WASP with mammalian verprolins plays an important role in chemotaxis of monocytes. Our results suggest that WASP and mammalian verprolins function as a unit in monocyte chemotaxis and that the activity of this unit is critical to establish cell polarization. In addition, our results also indicate that the WASP-verprolin complex is involved in other functions such as podosome formation and phagocytosis. PMID:16709815

  1. The importance of glutamate, glycine, and {gamma}-aminobutyric acid transport and regulation in manganese, mercury and lead neurotoxicity

    SciTech Connect

    Fitsanakis, Vanessa A.; Aschner, Michael . E-mail: michael.aschner@vanderbilt.edu

    2005-05-01

    Historically, amino acids were studied in the context of their importance in protein synthesis. In the 1950s, the focus of research shifted as amino acids were recognized as putative neurotransmitters. Today, many amino acids are considered important neurochemicals. Although many amino acids play a role in neurotransmission, glutamate (Glu), glycine (Gly), and {gamma}-aminobutyric acid (GABA) are among the more prevalent and better understood. Glu, the major excitatory neurotransmitter, and Gly and GABA, the major inhibitory neurotransmitters, in the central nervous system, are known to be tightly regulated. Prolonged exposure to environmental toxicants, such as manganese (Mn), mercury (Hg), or lead (Pb), however, can lead to dysregulation of these neurochemicals and subsequent neurotoxicity. While the ability of these metals to disrupt the regulation of Glu, Gly and GABA have been studied, few articles have examined the collective role of these amino acids in the respective metal's mechanism of toxicity. For each of the neurotransmitters above, we will provide a brief synopsis of their regulatory function, including the importance of transport and re-uptake in maintaining their optimal function. Additionally, the review will address the hypothesis that aberrant homeostasis of any of these amino acids, or a combination of the three, plays a role in the neurotoxicity of Mn, Hg, or Pb.

  2. GCN2 kinase plays an important role triggering the remission phase of experimental autoimmune encephalomyelitis (EAE) in mice.

    PubMed

    Orsini, Heloisa; Araujo, Leandro P; Maricato, Juliana T; Guereschi, Marcia G; Mariano, Mario; Castilho, Beatriz A; Basso, Alexandre S

    2014-03-01

    Experimental autoimmune encephalomyelitis (EAE) has been widely employed as a model to study multiple sclerosis (MS) and indeed has allowed some important advances in our comprehension of MS pathogenesis. Several pieces of evidence suggest that infiltrating Th1 and Th17 lymphocytes are important players leading to CNS demyelination and lesion during the peak of murine EAE. Subsequently, effector T cell responses rapidly decline and the recovery phase of the disease strongly correlates with the expression of anti-inflammatory cytokines and the enrichment of Foxp3+ regulatory T (Treg) cells within the target organ. However, the mechanisms leading to the increased presence of Treg cells and to the remission phase of the disease are still poorly understood. Recent researches demonstrated that chemically induced amino-acid starvation response might suppress CNS immune activity. Here we verified an important participation of the general control nonrepressible 2 (GCN2), a key regulator kinase of the amino-acid starvation response, in the development of the remission phase of EAE in C57BL/6 mice. By immunizing wild type C57BL/6 (WT) and GCN2 knock-out mice (GCN2 KO) with myelin oligodendrocyte glycoprotein peptide (MOG35-55), it was noticed that GCN2 KO mice did not develop the remission phase of the disease and this was associated with higher levels of CNS inflammation and increased presence of effector T cells (Th1/Th17). These animals also showed lower frequency of Treg cells within the CNS as compared to WT animals. Higher expression of indoleamine 2,3-dioxygenase (IDO) and higher frequency of plasmacytoid dendritic cells (pDCs) were found at the peak of the disease in the CNS of WT animals. Our results suggest that the GCN2 kinase-dependent sensing of IDO activity represents an important trigger to the EAE remission phase. The IDO-mediated immunoregulatory events may include the arresting of effector T cell responses and the differentiation/expansion of Treg cells

  3. The imbalance between TIMP3 and matrix-degrading enzymes plays an important role in intervertebral disc degeneration.

    PubMed

    Li, Yan; Li, Kang; Han, Xiuguo; Mao, Chuanyuan; Zhang, Kai; Zhao, Tengfei; Zhao, Jie

    2016-01-15

    It is well-known that one of the most important features of intervertebral disc degeneration (IDD) is the extracellular matrix (ECM) degradation. Collagen and aggrecan are major components of ECM; the degradation of ECM in intervertebral discs (IVDs) is closely related to the activities of collagenase and aggrecanase. TIMP-3 is the most efficient inhibitor of aggrecanase in IVD. However, only few studies focus on the potential relationship between TIMP-3 and IDD. In our study, we found TIMP-3 gene expression was decreased after stimulating with LPS in rat nucleus pulposus (NP) cells. Then we used a lentivirus vector to reconstruct rat NP cells which high expressed TIMP-3 gene (LV-TIMP3). The upregulation of MMPs and ADAMTSs induced by LPS was significantly inhibited in LV-TIMP3 cells. After overexpression of TIMP-3, the aggrecan breakdown caused by LPS was also reduced in both monolayer culture and three-dimension culture model. To further study the relation between TIMP-3 and IDD, we collected human NP tissue samples of different degenerative degrees. Real-time PCR and immunohistochemical staining showed that the expression of TIMP-3 was negatively correlated with the degree of intervertebral disc degeneration, while MMP-1 and ADAMTS-4 were markedly increased in degenerative IVD. Taken together, our results suggest that the imbalance between aggrecanase and TIMP-3 may play an important role in the pathogenesis of IDD and therefore be a potential therapeutic target for treating IDD. PMID:26686417

  4. W-box and G-box elements play important roles in early senescence of rice flag leaf

    PubMed Central

    Liu, Li; Xu, Wei; Hu, Xuesong; Liu, Haoju; Lin, Yongjun

    2016-01-01

    Plant cis-elements play important roles in global regulation of gene expression. Based on microarray data from rice flag leaves during early senescence, we identified W-box and G-box cis-elements as positive regulators of senescence in the important rice variety Minghui 63. Both cis-elements were bound by leaf senescence-specific proteins in vitro and influenced senescence in vivo. Furthermore, combination of the two elements drove enhanced expression during leaf senescence, and copy numbers of the cis-elements significantly affected the levels of expression. The W-box is the cognate cis-element for WRKY proteins, while the G-box is the cognate cis-element for bZIP, bHLH and NAC proteins. Consistent with this, WRKY, bZIP, bHLH and NAC family members were overrepresented among transcription factor genes up-regulated according during senescence. Crosstalk between ABA, CTK, BR, auxin, GA and JA during senescence was uncovered by comparing expression patterns of senescence up-regulated transcription factors. Together, our results indicate that hormone-mediated signaling could converge on leaf senescence at the transcriptional level through W-box and G-box elements. Considering that there are very few documented early senescence-related cis-elements, our results significantly contribute to understanding the regulation of flag leaf senescence and provide prioritized targets for stay-green trait improvement. PMID:26864250

  5. Nutrition Metabolism Plays an Important Role in the Alternate Bearing of the Olive Tree (Olea europaea L.)

    PubMed Central

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between ”on year” and “off year” leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree. PMID:23555820

  6. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots.

    PubMed

    Ma, Jianhui; Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Jiang, Lina; Shao, Yun; Tong, Doudou; Li, Chunxi

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  7. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  8. Ruminal Prevotella spp. may play an important role in the conversion of plant lignans into human health beneficial antioxidants.

    PubMed

    Schogor, Ana L B; Huws, Sharon A; Santos, Geraldo T D; Scollan, Nigel D; Hauck, Barbara D; Winters, Ana L; Kim, Eun J; Petit, Hélène V

    2014-01-01

    Secoisolariciresinol diglucoside (SDG), the most abundant lignan in flaxseed, is metabolized by the ruminal microbiota into enterolignans, which are strong antioxidants. Enterolactone (EL), the main mammalian enterolignan produced in the rumen, is transferred into physiological fluids, with potentially human health benefits with respect to menopausal symptoms, hormone-dependent cancers, cardiovascular diseases, osteoporosis and diabetes. However, no information exists to our knowledge on bacterial taxa that play a role in converting plant lignans into EL in ruminants. In order to investigate this, eight rumen cannulated cows were used in a double 4 × 4 Latin square design and fed with four treatments: control with no flax meal (FM), or 5%, 10% and 15% FM (on a dry matter basis). Concentration of EL in the rumen increased linearly with increasing FM inclusion. Total rumen bacterial 16S rRNA concentration obtained using Q-PCR did not differ among treatments. PCR-T-RFLP based dendrograms revealed no global clustering based on diet indicating between animal variation. PCR-DGGE showed a clustering by diet effect within four cows that had similar basal ruminal microbiota. DNA extracted from bands present following feeding 15% FM and absent with no FM supplementation were sequenced and it showed that many genera, in particular Prevotella spp., contributed to the metabolism of lignans. A subsequent in vitro study using selected pure cultures of ruminal bacteria incubated with SDG indicated that 11 ruminal bacteria were able to convert SDG into secoisolariciresinol (SECO), with Prevotella spp. being the main converters. These data suggest that Prevotella spp. is one genus playing an important role in the conversion of plant lignans to human health beneficial antioxidants in the rumen. PMID:24709940

  9. The First Extracellular Domain Plays an Important Role in Unitary Channel Conductance of Cx50 Gap Junction Channels

    PubMed Central

    Tong, Xiaoling; Aoyama, Hiroshi; Sudhakar, Swathy; Chen, Honghong; Shilton, Brian H.; Bai, Donglin

    2015-01-01

    Gap junction (GJ) channels provide direct passage for ions and small molecules to be exchanged between neighbouring cells and are crucial for many physiological processes. GJ channels can be gated by transjunctional voltage (known as Vj-gating) and display a wide range of unitary channel conductance (γj), yet the domains responsible for Vj-gating and γj are not fully clear. The first extracellular domain (E1) of several connexins has been shown to line part of their GJ channel pore and play important roles in Vj-gating properties and/or ion permeation selectivity. To test roles of the E1 of Cx50 GJ channels, we generated a chimera, Cx50Cx36E1, where the E1 domain of Cx50 was replaced with that of Cx36, a connexin showing quite distinct Vj-gating and γj from those of Cx50. Detailed characterizations of the chimera and three point mutants in E1 revealed that, although the E1 domain is important in determining γj, the E1 domain of Cx36 is able to effectively function within the context of the Cx50 channel with minor changes in Vj-gating properties, indicating that sequence differences between the E1 domains in Cx36 and Cx50 cannot account for their drastic differences in Vj-gating and γj. Our homology models of the chimera and the E1 mutants revealed that electrostatic properties of the pore-lining residues and their contribution to the electric field in the pore are important factors for the rate of ion permeation of Cx50 and possibly other GJ channels. PMID:26625162

  10. Genetic Diversity Analysis Reveals that Geographical Environment Plays a More Important Role than Rice Cultivar in Villosiclava virens Population Selection

    PubMed Central

    Wang, Fei; Zhang, Shu; Liu, Mei-Gang; Lin, Xian-Song; Liu, Hui-Jiang; Peng, You-Liang; Lin, Yang; Huang, Jun-Bin

    2014-01-01

    Rice false smut caused by Villosiclava virens is an economically important disease of grains worldwide. The genetic diversity of 153 isolates from six fields located in Wuhan (WH), Yichang Wangjia (YCW), Yichang Yaohe (YCY), Huanggang (HG), Yangxin (YX), and Jingzhou (JZ) in Hubei province of China were phylogenetically analyzed to evaluate the influence of environments and rice cultivars on the V. virens populations. Isolates (43) from Wuhan were from two rice cultivars, Wanxian 98 and Huajing 952, while most of the other isolates from fields YCW, YCY, HG, YX, and JZ originated from different rice cultivars with different genetic backgrounds. Genetic diversity of isolates was analyzed using random amplified polymorphic DNA (RAPD) and single-nucleotide polymorphisms (SNP). The isolates from the same cultivars in Wuhan tended to group together, indicating that the cultivars had an important impact on the fungal population. The 110 isolates from individual fields tended to cluster according to geographical origin. The values of Nei's gene diversity (H) and Shannon's information index (I) showed that the genetic diversity among isolates was higher between than within geographical populations. Furthermore, mean genetic distance between groups (0.006) was higher than mean genetic distance within groups (0.0048) according to MEGA 5.2. The pairwise population fixation index (FST) values also showed significant genetic differentiation between most populations. Higher genetic similarity of isolates from individual fields but different rice cultivars suggested that the geographical factor played a more important role in the selection of V. virens isolates than rice cultivars. This information could be used to improve the management strategy for rice false smut by adjusting the cultivation measures, such as controlling fertilizer, water, and planting density, in the rice field to change the microenvironment. PMID:24584249

  11. Genetic diversity analysis reveals that geographical environment plays a more important role than rice cultivar in Villosiclava virens population selection.

    PubMed

    Wang, Fei; Zhang, Shu; Liu, Mei-Gang; Lin, Xian-Song; Liu, Hui-Jiang; Peng, You-Liang; Lin, Yang; Huang, Jun-Bin; Luo, Chao-Xi

    2014-05-01

    Rice false smut caused by Villosiclava virens is an economically important disease of grains worldwide. The genetic diversity of 153 isolates from six fields located in Wuhan (WH), Yichang Wangjia (YCW), Yichang Yaohe (YCY), Huanggang (HG), Yangxin (YX), and Jingzhou (JZ) in Hubei province of China were phylogenetically analyzed to evaluate the influence of environments and rice cultivars on the V. virens populations. Isolates (43) from Wuhan were from two rice cultivars, Wanxian 98 and Huajing 952, while most of the other isolates from fields YCW, YCY, HG, YX, and JZ originated from different rice cultivars with different genetic backgrounds. Genetic diversity of isolates was analyzed using random amplified polymorphic DNA (RAPD) and single-nucleotide polymorphisms (SNP). The isolates from the same cultivars in Wuhan tended to group together, indicating that the cultivars had an important impact on the fungal population. The 110 isolates from individual fields tended to cluster according to geographical origin. The values of Nei's gene diversity (H) and Shannon's information index (I) showed that the genetic diversity among isolates was higher between than within geographical populations. Furthermore, mean genetic distance between groups (0.006) was higher than mean genetic distance within groups (0.0048) according to MEGA 5.2. The pairwise population fixation index (FST) values also showed significant genetic differentiation between most populations. Higher genetic similarity of isolates from individual fields but different rice cultivars suggested that the geographical factor played a more important role in the selection of V. virens isolates than rice cultivars. This information could be used to improve the management strategy for rice false smut by adjusting the cultivation measures, such as controlling fertilizer, water, and planting density, in the rice field to change the microenvironment. PMID:24584249

  12. NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening.

    PubMed

    Kou, Xiaohong; Liu, Chen; Han, Lihua; Wang, Shuang; Xue, Zhaohui

    2016-06-01

    NAC proteins comprise a large family of transcription factors that play important roles in diverse physiological processes during development. To explore the role of NAC transcription factors in the ripening of fruits, we predicted the secondary and tertiary structure as well as regulative function of the SNAC4 (SlNAC48, Accession number: NM 001279348.2) and SNAC9 (SlNAC19, Accession number: XM 004236996.2) transcription factors in tomato. We found that the tertiary structure of SNAC9 was similar to that of ATNAP, which played an important role in the fruit senescence and was required for ethylene stimulation. Likewise, the bio-function prediction results indicated that SNAC4 and SNAC9 participated in various plant hormone signaling and senescence processes. More information about SNACs was obtained by the application of VIGS (virus-induced gene silencing). The silencing of SNAC4 and SNAC9 dramatically repressed the LeACS2, LeACS4 and LeACO1 expression, which consequently led to the inhibition of the ripening process. The silencing of SNACs down-regulated the mRNA levels of the ethylene perception genes and, at the same time, suppressed the expression of ethylene signaling-related genes except for LeERF2 which was induced by the silencing of SNAC4. The expressions of LeRIN were different in two silenced fruits. In addition, the silencing of SNAC4 reduced its mRNA level, while the silencing of SNAC9 induced its expression. Furthermore, the silencing of LeACS4, LeACO1 and LeERF2 reduced the expression of SNAC4 and SNAC9, while the silencing of NR induced the expression of all of them. In particular, these results indicate that SNAC transcription factors bind to the promoter of the ethylene synthesis genes in vitro. This experimental evidence demonstrates that SNAC4 and SNAC9 could positively regulate the tomato fruit ripening process by functioning upstream of ethylene synthesis genes. These outcomes will be helpful to provide a theoretical foundation for further

  13. Sphingosine kinase 1 dependent protein kinase C-δ activation plays an important role in acute liver failure in mice

    PubMed Central

    Lei, Yan-Chang; Yang, Ling-Ling; Li, Wen; Luo, Pan

    2015-01-01

    AIM: To investigate the role of protein kinase C (PKC)-δ activation in the pathogenesis of acute liver failure (ALF) in a well-characterized mouse model of D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced ALF. METHODS: BALB/c mice were randomly assigned to five groups, and ALF was induced in mice by intraperitoneal injection of D-GaIN (600 mg/kg) and LPS (10 μg/kg). Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at different time points within one week were determined using a multiparameteric analyzer. Serum levels of high-mobility group box 1 (HMGB1), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 as well as nuclear factor (NF)-κB activity were determined by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after ALF induction were assessed by hematoxylin and eosin staining. Expression of PKC-δ in liver tissue and peripheral blood mononuclear cells (PBMCs) was analyzed by Western blot. RESULTS: The expression and activation of PKC-δ were up-regulated in liver tissue and PBMCs of mice with D-GalN/LPS-induced ALF. Inhibition of PKC-δ activation with rottlerin significantly increased the survival rates and decreased serum ALT/AST levels at 6, 12 and 24 h compared with the control group (P < 0.001). Rottlerin treatment also significantly decreased serum levels of HMGB1 at 6, 12, and 24 h, TNF-α, IL-6 and IL-1 β at 12 h compared with the control group (P < 0.01). The inflammatory cell infiltration and necrosis in liver tissue were also decreased in the rottlerin treatment group. Furthermore, sphingosine kinase 1 (SphK1) dependent PKC-δ activation played an important role in promoting NF-κB activation and inflammatory cytokine production in ALF. CONCLUSION: SphK1 dependent PKC-δ activation plays an important role in promoting NF-κB activation and inflammatory response in ALF, and inhibition of PKC-δ activation might be

  14. Monomethyl Branched-Chain Fatty Acids Play an Essential Role in Caenorhabditis elegans Development

    PubMed Central

    Crawford, Quinn T; Seiber, Matt; Wang, Cun-Yu

    2004-01-01

    Monomethyl branched-chain fatty acids (mmBCFAs) are commonly found in many organisms from bacteria to mammals. In humans, they have been detected in skin, brain, blood, and cancer cells. Despite a broad distribution, mmBCFAs remain exotic in eukaryotes, where their origin and physiological roles are not understood. Here we report our study of the function and regulation of mmBCFAs in Caenorhabditis elegans, combining genetics, gas chromatography, and DNA microarray analysis. We show that C. elegans synthesizes mmBCFAs de novo and utilizes the long-chain fatty acid elongation enzymes ELO-5 and ELO-6 to produce two mmBCFAs, C15ISO and C17ISO. These mmBCFAs are essential for C. elegans growth and development, as suppression of their biosynthesis results in a growth arrest at the first larval stage. The arrest is reversible and can be overcome by feeding the arrested animals with mmBCFA supplements. We show not only that the levels of C15ISO and C17ISO affect the expression of several genes, but also that the activities of some of these genes affect biosynthesis of mmBCFAs, suggesting a potential feedback regulation. One of the genes, lpd-1, encodes a homolog of a mammalian sterol regulatory element-binding protein (SREBP 1c). We present results suggesting that elo-5 and elo-6 may be transcriptional targets of LPD-1. This study exposes unexpected and crucial physiological functions of C15ISO and C17ISO in C. elegans and suggests a potentially important role for mmBCFAs in other eukaryotes. PMID:15340492

  15. Geography Plays a More Important Role than Soil Composition on Structuring Genetic Variation of Pseudometallophyte Commelina communis

    PubMed Central

    Li, Jiaokun; Xu, Hui; Song, Yunpeng; Tang, Lulu; Gong, Yanbing; Yu, Runlan; Shen, Li; Wu, Xueling; Liu, Yuandong; Zeng, Weimin

    2016-01-01

    Pseudometallophytes are excellent models to study microevolution and local adaptation to soil pollution, as they can grow both on metalliferous and contrasting non-metalliferous soils. Although, there has been accumulating evidence for the effects of edaphic conditions and geographical isolation on the genetic structure of pesudometallophytes, it is still a difficult problem in evolutionary biology to assess their relative importance. In this study, we investigated the spatial patterns of genetic variability, population differentiation and genetic groups in pseudometallophyte Commelina communis with 12 microsatellite loci. Eight metallicolous and six non-metallicolous populations of C. communis were sampled from cupriferous sites and surrounding non-contaminated areas in China. Neither significant reduction in genetic diversity nor apparent founder and bottleneck effects were observed in metallicolous populations of C. communis. Based on Bayesian and Neighbor-Joining clustering analyses and a principal coordinates analysis, all sampled populations were found to be mainly separated into three genetic groups, corresponding well to their geographical locations rather than edaphic origins. Moreover, a significant and strong correlation between population genetic divergence and geographical distance were detected by Mantel test (r = 0.33; P < 0.05) and multiple matrix regression with randomization (MMRR; βD = 0.57, P < 0.01). However, the effect of copper concentration on genetic patterns of C. communis was not significant (MMRR; βE = -0.17, P = 0.12). Our study clearly demonstrated that the extreme edaphic conditions in metalliferous areas had limited effects on the genetic variability in C. communis. Geographic distance played a more important role in affecting the genetic structure of C. communis than soil composition did. In C. communis, the geographically disjunctive populations on metalliferous soils had multiple origins and evolved independently from nearby non

  16. Macrophages as IL-25/IL-33-Responsive Cells Play an Important Role in the Induction of Type 2 Immunity

    PubMed Central

    Yang, Zhonghan; Grinchuk, Viktoriya; Urban, Joseph F.; Bohl, Jennifer; Sun, Rex; Notari, Luigi; Yan, Shu; Ramalingam, Thirumalai; Keegan, Achsah D.; Wynn, Thomas A.; Shea-Donohue, Terez; Zhao, Aiping

    2013-01-01

    Type 2 immunity is essential for host protection against nematode infection but is detrimental in allergic inflammation or asthma. There is a major research focus on the effector molecules and specific cell types involved in the initiation of type 2 immunity. Recent work has implicated an important role of epithelial-derived cytokines, IL-25 and IL-33, acting on innate immune cells that are believed to be the initial sources of type 2 cytokines IL-4/IL-5/IL-13. The identities of the cell types that mediate the effects of IL-25/IL-33, however, remain to be fully elucidated. In the present study, we demonstrate that macrophages as IL-25/IL-33-responsive cells play an important role in inducing type 2 immunity using both in vitro and in vivo approaches. Macrophages produced type 2 cytokines IL-5 and IL-13 in response to the stimulation of IL-25/IL-33 in vitro, or were the IL-13-producing cells in mice administrated with exogenous IL-33 or infected with Heligmosomoides bakeri. In addition, IL-33 induced alternative activation of macrophages primarily through autocrine IL-13 activating the IL-4Rα-STAT6 pathway. Moreover, depletion of macrophages attenuated the IL-25/IL-33-induced type 2 immunity in mice, while adoptive transfer of IL-33-activated macrophages into mice with a chronic Heligmosomoides bakeri infection induced worm expulsion accompanied by a potent type 2 protective immune response. Thus, macrophages represent a unique population of the innate immune cells pivotal to type 2 immunity and a potential therapeutic target in controlling type 2 immunity-mediated inflammatory pathologies. PMID:23536877

  17. Geography Plays a More Important Role than Soil Composition on Structuring Genetic Variation of Pseudometallophyte Commelina communis.

    PubMed

    Li, Jiaokun; Xu, Hui; Song, Yunpeng; Tang, Lulu; Gong, Yanbing; Yu, Runlan; Shen, Li; Wu, Xueling; Liu, Yuandong; Zeng, Weimin

    2016-01-01

    Pseudometallophytes are excellent models to study microevolution and local adaptation to soil pollution, as they can grow both on metalliferous and contrasting non-metalliferous soils. Although, there has been accumulating evidence for the effects of edaphic conditions and geographical isolation on the genetic structure of pesudometallophytes, it is still a difficult problem in evolutionary biology to assess their relative importance. In this study, we investigated the spatial patterns of genetic variability, population differentiation and genetic groups in pseudometallophyte Commelina communis with 12 microsatellite loci. Eight metallicolous and six non-metallicolous populations of C. communis were sampled from cupriferous sites and surrounding non-contaminated areas in China. Neither significant reduction in genetic diversity nor apparent founder and bottleneck effects were observed in metallicolous populations of C. communis. Based on Bayesian and Neighbor-Joining clustering analyses and a principal coordinates analysis, all sampled populations were found to be mainly separated into three genetic groups, corresponding well to their geographical locations rather than edaphic origins. Moreover, a significant and strong correlation between population genetic divergence and geographical distance were detected by Mantel test (r = 0.33; P < 0.05) and multiple matrix regression with randomization (MMRR; βD = 0.57, P < 0.01). However, the effect of copper concentration on genetic patterns of C. communis was not significant (MMRR; βE = -0.17, P = 0.12). Our study clearly demonstrated that the extreme edaphic conditions in metalliferous areas had limited effects on the genetic variability in C. communis. Geographic distance played a more important role in affecting the genetic structure of C. communis than soil composition did. In C. communis, the geographically disjunctive populations on metalliferous soils had multiple origins and evolved independently from nearby non

  18. Suppressor of cytokine signaling 3 plays an important role in porcine circovirus type 2 subclinical infection by downregulating proinflammatory responses.

    PubMed

    Zhu, Xuejiao; Bai, Juan; Liu, Panrao; Wang, Xianwei; Jiang, Ping

    2016-01-01

    Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated diseases and usually evokes a subclinical infection, without any obvious symptoms, in pigs. It remains unclear how PCV2 leads to a subclinical infection. In this study, we found that peripheral blood mononuclear cells (PBMCs) from PCV2-challenged piglets with no significant clinical symptoms exhibited increased expression of suppressor of cytokine signaling (SOCS) 3, but no significant changes in the expression of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α; this differed from piglets that displayed significant clinical symptoms. IL-6- and TNF-α-mediated signalings were inhibited in PBMCs from subclinical piglets. Elevated SOCS3 levels inhibited IL-6- and TNF-α-mediated NF-kappa-B inhibitor alpha degradation in PBMCs and PK-15 cells. SOCS3 production was also increased in PCV2-infected PK-15 porcine kidney cells, and IL-6 and TNF-α production that was induced by PCV2 in PK-15 cells was significantly increased when SOCS3 was silenced by a small interfering RNA. SOCS3 interacted with signal transducer and activator of transcription 3 and TNF-associated receptor-associated factor 2, suggesting mechanisms by which SOCS3 inhibits IL-6 and TNF-α signaling. We conclude that SOCS3 plays an important role in PCV2 subclinical infection by suppressing inflammatory responses in primary immune cells. PMID:27581515

  19. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells.

    PubMed

    Wang, Ronghua; Sun, Qian; Wang, Peng; Liu, Man; Xiong, Si; Luo, Jing; Huang, Hai; Du, Qiang; Geller, David A; Cheng, Bin

    2016-02-01

    Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC. PMID:26735577

  20. Does arsenic play an important role in the soil microbial community around a typical arsenic mining area?

    PubMed

    Wu, Fan; Wang, Jun-Tao; Yang, Jun; Li, Jing; Zheng, Yuan-Ming

    2016-06-01

    Arsenic (As) can cause serious hazards to human health, especially in mining areas. Soil bacterial communities, which are critical parts of the soil ecosystem, were analyzed directly for soil environmental factors. As a consequence, it is of great significance to understand the ecological risk of arsenic contamination on bacteria, especially at the local scale. In this study, 33 pairs of soil and grain samples were collected from the corn and paddy fields around an arsenic mining area in Shimen County in Hunan Province, China. Significant differences were found between the soil nitrogen, As concentrations, and bacteria activities among these two types of land use. According to the structural equation model (SEM) analysis, compared with other environmental factors, soil As was not the key factor affecting the bacterial community, even when grain As was beyond the threshold of the national food hygiene standards of China. In the corn field, soil pH was the main factor dominating the bacterial richness, composition and grain As. Meanwhile, in the paddy field the soil total nitrogen (TN) and total carbon (TC) were the main factors impacting the bacterial richness, and the bacterial community composition was mainly affected by pH. The interactions between grain As and soil As were weak in the corn field. The bacterial communities played important roles in the food chain risk of As. The local policy of transforming paddy soil to dry land could greatly reduce the health risk of As through the food chain. PMID:27055093

  1. Physiological analyses indicate superoxide dismutase, catalase, and phytochelatins play important roles in Pb tolerance in Eremochloa ophiuroides.

    PubMed

    Li, Xi; Cen, Huameng; Chen, Youxiang; Xu, Siying; Peng, Lingli; Zhu, Hanmingyue; Li, Yiqiao

    2016-01-01

    Phytoremediation is considered to be a promising approach to restore or stabilize soil contaminated by lead (Pb). Turfgrasses, due to their high biomass yields, are considered to be suitable for use in phytoextraction of soil contaminated with heavy metal. It has been demonstrated that centipedegrass (Eremochloa ophiuroides (Munro) Hack., Poaceae) is a good turfgrass for restore of soil contaminated by Pb. However, the enhanced tolerant mechanisms in metallicolous (M) centipedegrass accessions remain unknown. In this study, we made a comparative study of growth performance, Pb accumulation, antioxidant levels, and phytochelatin concentrations in roots and shoots from M and nonmetallicolous (NM) centipedegrass accessions. Results showed that turf quality and growth rate were less repressed in M accessions than in NM accession. Pb stress caused generation of reactive oxygen species in centipedegrass with relatively lower levels in M accessions. Antioxidant activity analysis indicated that superoxide dismutase and catalase played important roles in Pb tolerance in M accessions. M accessions accumulated more Pb in roots and shoots. Greatly increased phytochelatins and less repressed sulfur contents in roots and shoots of M accessions indicated that they correlated with Pb accumulation and tolerance in centipedegrass. PMID:26368658

  2. Suppressor of cytokine signaling 3 plays an important role in porcine circovirus type 2 subclinical infection by downregulating proinflammatory responses

    PubMed Central

    Zhu, Xuejiao; Bai, Juan; Liu, Panrao; Wang, Xianwei; Jiang, Ping

    2016-01-01

    Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated diseases and usually evokes a subclinical infection, without any obvious symptoms, in pigs. It remains unclear how PCV2 leads to a subclinical infection. In this study, we found that peripheral blood mononuclear cells (PBMCs) from PCV2-challenged piglets with no significant clinical symptoms exhibited increased expression of suppressor of cytokine signaling (SOCS) 3, but no significant changes in the expression of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α; this differed from piglets that displayed significant clinical symptoms. IL-6- and TNF-α-mediated signalings were inhibited in PBMCs from subclinical piglets. Elevated SOCS3 levels inhibited IL-6- and TNF-α-mediated NF-kappa-B inhibitor alpha degradation in PBMCs and PK-15 cells. SOCS3 production was also increased in PCV2-infected PK-15 porcine kidney cells, and IL-6 and TNF-α production that was induced by PCV2 in PK-15 cells was significantly increased when SOCS3 was silenced by a small interfering RNA. SOCS3 interacted with signal transducer and activator of transcription 3 and TNF-associated receptor-associated factor 2, suggesting mechanisms by which SOCS3 inhibits IL-6 and TNF-α signaling. We conclude that SOCS3 plays an important role in PCV2 subclinical infection by suppressing inflammatory responses in primary immune cells. PMID:27581515

  3. HSP90α plays an important role in piRNA biogenesis and retrotransposon repression in mouse

    PubMed Central

    Ichiyanagi, Tomoko; Ichiyanagi, Kenji; Ogawa, Ayako; Kuramochi-Miyagawa, Satomi; Nakano, Toru; Chuma, Shinichiro; Sasaki, Hiroyuki; Udono, Heiichiro

    2014-01-01

    HSP90, found in all kingdoms of life, is a major chaperone protein regulating many client proteins. We demonstrated that HSP90α, one of two paralogs duplicated in vertebrates, plays an important role in the biogenesis of fetal PIWI-interacting RNAs (piRNA), which act against the transposon activities, in mouse male germ cells. The knockout mutation of Hsp90α resulted in a large reduction in the expression of primary and secondary piRNAs and mislocalization of MIWI2, a PIWI homolog. Whereas the mutation in Fkbp6 encoding a co-chaperone reduced piRNAs of 28–32 nucleotides in length, the Hsp90α mutation reduced piRNAs of 24–32 nucleotides, suggesting the presence of both FKBP6-dependent and -independent actions of HSP90α. Although DNA methylation and mRNA levels of L1 retrotransposon were largely unchanged in the Hsp90α mutant testes, the L1-encoded protein was increased, suggesting the presence of post-transcriptional regulation. This study revealed the specialized function of the HSP90α isofom in the piRNA biogenesis and repression of retrotransposons during the development of male germ cells in mammals. PMID:25262350

  4. Discovering the Importance of Play through Personal Histories and Brain Images: An Interview with Stuart L. Brown

    ERIC Educational Resources Information Center

    American Journal of Play, 2009

    2009-01-01

    Stuart L. Brown is founder of the National Institute for Play, a California-based, not-for-profit organization dedicated to the notion that play can help transform the lives of individuals, families, schools, and organizations. Trained in general and internal medicine, psychiatry, and clinical research, Brown was a physician in the United States…

  5. Intra-myocellular fatty acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster

    PubMed Central

    Katewa, Subhash D.; Demontis, Fabio; Kolipinski, Marysia; Hubbard, Allan; Gill, Matthew S.; Perrimon, Norbert; Melov, Simon; Kapahi, Pankaj

    2012-01-01

    Summary Changes in fat content have been associated with dietary restriction (DR), but whether they play a causal role in mediating various responses to DR remains unknown. We demonstrate that upon DR, Drosophila melanogaster shift their metabolism towards increasing both fatty acid synthesis and breakdown, which is required for various responses to DR. Inhibition of fatty acid synthesis or oxidation genes specifically in the muscle tissue inhibited lifespan extension upon DR. Furthermore, DR enhances spontaneous activity of flies which was found to be dependent on the enhanced fatty acid metabolism. This increase in activity was found to be at least partially required for the lifespan extension upon DR. Over-expression of adipokinetic hormone (dAKH), the functional ortholog of glucagon, enhances fat metabolism, spontaneous activity and lifespan. Together, these results suggest that enhanced fat metabolism in the muscle and physical activity play a key role in the protective effects of DR. PMID:22768842

  6. Rac1 and Cdc42 Play Important Roles in Arsenic Neurotoxicity in Primary Cultured Rat Cerebellar Astrocytes.

    PubMed

    An, Yuan; Liu, Tingting; Liu, Xiaona; Zhao, Lijun; Wang, Jing

    2016-03-01

    This study aimed to explore whether Rac1 and Cdc42, representative members of Ras homologue guanosine triphosphatases (Rho GTPases), are involved in neurotoxicity induced by arsenic exposure in rat nervous system. Expressions of Rac1 and Cdc42 in rat cerebellum and cerebrum exposed to different doses of NaAsO2 (Wistar rats drank 0, 2, 10, and 50 mg/L NaAsO2 water for 3 months) were examined. Both Rac1 and Cdc42 expressions increased significantly in a dose-dependent manner in cerebellum (P < 0.01) by Western blot and immunohistochemistry assay, but in cerebrum, Rac1 and Cdc42 expressions only in 2 mg/L exposure groups were significantly higher than those in control groups (P < 0.01). Five to 50 μM NaAsO2 decreased cell viability in a dose-dependent manner in primary cultured rat astrocytes, whereas 1 μM NaAsO2 increased the cell viability in these cells. Rac1 inhibitor, NSC23766, decreased NaAsO2-induced apoptosis and increased the cell viability in primary cultured rat cerebellar astrocytes exposed to 30 μM NaAsO2. Cdc42 inhibitor, ZCL278, increased cell viability in the cells exposed to 30 μM NaAsO2. Taken together, our current studies in vivo and in vitro indicate that activations of Rac1 and Cdc42 play a very important role in arsenic neurotoxicity in rat cerebellum, providing a new insight into arsenic neurotoxicity. PMID:26231544

  7. Organic cation transporter 1 mediates the uptake of monocrotaline and plays an important role in its hepatotoxicity.

    PubMed

    Tu, Meijuan; Sun, Siyuan; Wang, Kai; Peng, Xueying; Wang, Ruihan; Li, Liping; Zeng, Su; Zhou, Hui; Jiang, Huidi

    2013-09-15

    Monocrotaline (MCT) is a kind of toxic retronecine-type pyrrolizidine alkaloids (PAs) from plants of Crotalaria, which can be bio-activated by cytochrome P450 (CYP) enzymes in liver and then induce hepatotoxicity. Since CYPs are localized in the endoplasmic reticulum, the influx of MCT to the liver is the key step for its hepatotoxicity. The objective of the present study was to investigate the role of organic cation transporter 1 (OCT1), a transporter mainly expressed in liver, in the uptake of MCT and in hepatotoxicity induced by MCT. The results revealed that MCT markedly inhibited the uptake of 1-methyl-4-phenylpyridinium (MPP(+)), an OCT1 substrate, in Madin-Darby canine kidney (MDCK) cells stably expressing human OCT1 (MDCK-hOCT1) with the IC50 of 5.52±0.56μM. The uptake of MCT was significantly higher in MDCK-hOCT1 cells than in MDCK-mock cells, and MCT uptake in MDCK-hOCT1 cells followed Michaelis-Menten kinetics with the Km and Vmax values of 25.0±6.7μM and 266±64pmol/mg protein/min, respectively. Moreover, the OCT1 inhibitors, such as quinidine, d-tetrahydropalmatine (d-THP), obviously inhibited the uptake of MCT in MDCK-hOCT1 cells and isolated rat primary hepatocytes, and attenuated the viability reduction and LDH release of the primary cultured rat hepatocytes caused by MCT. In conclusion, OCT1 mediates the hepatic uptake of MCT and may play an important role in MCT induced-hepatotoxicity. PMID:23831208

  8. Can Brazil play a more important role in global tuberculosis drug production? An assessment of current capacity and challenges

    PubMed Central

    2013-01-01

    Background Despite the existence of effective treatment, tuberculosis is still a global public health issue. The World Health Organization recommends a six-month four-drug regimen in fixed-dose combination formulation to treat drug sensitive tuberculosis, and long course regimens with several second-line drugs to treat multi-drug resistant tuberculosis. To achieve the projected tuberculosis elimination goal by 2050, it will be essential to ensure a non-interrupted supply of quality-assured tuberculosis drugs. However, quality and affordable tuberculosis drug supply is still a significant challenge for National Tuberculosis Programs. Discussion Quality drug production requires a combination of complex steps. The first challenge is to guarantee the quality of tuberculosis active pharmaceutical ingredients, then ensure an adequate manufacturing process, according to international standards, to guarantee final product´s safety, efficacy and quality. Good practices for storage, transport, distribution and quality control procedures must follow. In contrast to other high-burden countries, Brazil produces tuberculosis drugs through a strong network of public sector drug manufacturers regulated by a World Health Organization-certified national sanitary authority. The installed capacity for production surpasses the 71,000 needed treatments in the country. However, in order to be prepared to act as a global supplier, important bottlenecks are to be overcome. This article presents an in-depth analysis of the current status of production of tuberculosis drugs in Brazil and the bottlenecks and opportunities for the country to sustain national demand and play a role as a potential global supplier. Raw material and drug production, quality control, international certification and pre-qualification, political commitment and regulatory aspects are discussed, as well recommendations for tackling these bottlenecks. This discussion becomes more important as new drugs and regimens to

  9. Importance of Branched-Chain Amino Acid Utilization in Francisella Intracellular Adaptation

    PubMed Central

    Gesbert, Gael; Ramond, Elodie; Tros, Fabiola; Dairou, Julien; Frapy, Eric; Barel, Monique

    2014-01-01

    Intracellular bacterial pathogens have adapted their metabolism to optimally utilize the nutrients available in infected host cells. We recently reported the identification of an asparagine transporter required specifically for cytosolic multiplication of Francisella. In the present work, we characterized a new member of the major super family (MSF) of transporters, involved in isoleucine uptake. We show that this transporter (here designated IleP) plays a critical role in intracellular metabolic adaptation of Francisella. Inactivation of IleP severely impaired intracellular F. tularensis subsp. novicida multiplication in all cell types tested and reduced bacterial virulence in the mouse model. To further establish the importance of the ileP gene in F. tularensis pathogenesis, we constructed a chromosomal deletion mutant of ileP (ΔFTL_1803) in the F. tularensis subsp. holarctica live vaccine strain (LVS). Inactivation of IleP in the F. tularensis LVS provoked comparable intracellular growth defects, confirming the critical role of this transporter in isoleucine uptake. The data presented establish, for the first time, the importance of isoleucine utilization for efficient phagosomal escape and cytosolic multiplication of Francisella and suggest that virulent F. tularensis subspecies have lost their branched-chain amino acid biosynthetic pathways and rely exclusively on dedicated uptake systems. This loss of function is likely to reflect an evolution toward a predominantly intracellular life style of the pathogen. Amino acid transporters should be thus considered major players in the adaptation of intracellular pathogens. PMID:25332124

  10. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of DCA and...

  11. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of D...

  12. RIG-I, MDA5 and TLR3 Synergistically Play an Important Role in Restriction of Dengue Virus Infection

    PubMed Central

    Thien, Peiling; Xu, Shengli; Lam, Kong-Peng; Liu, Ding Xiang

    2011-01-01

    Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus. PMID:21245912

  13. Collagenase IV plays an important role in regulating hair cycle by inducing VEGF, IGF-1, and TGF-β expression

    PubMed Central

    Hou, Chun; Miao, Yong; Wang, Jin; Wang, Xue; Chen, Chao-Yue; Hu, Zhi-Qi

    2015-01-01

    , MMP-2 and MMP-9, play important roles in hair cycle, and this could be mediated by induced expression of VEGF, IGF-1, and TGF-β. PMID:26451090

  14. Down-regulation of carboxylesterases 1 and 2 plays an important role in prodrug metabolism in immunological liver injury rats.

    PubMed

    Zhang, Chengliang; Xu, Yanjiao; Gao, Ping; Lu, Jingli; Li, Xiping; Liu, Dong

    2015-02-01

    Liver plays a central role in xenobiotics metabolism, thus affecting the in vivo disposition and therapeutic effects of drugs. Carboxylesterases (CESs), with the main isoforms CES1 and CES2, are important in the metabolism of ester-type prodrugs. However, influences of immunological liver injury on the activity of CES remain undefined. In the present study, we demonstrated treatment with lipopolysaccharide (LPS) suppressed the activities of CES1 and CES2. The decreased activities of CES1 and CES2 were preliminarily assessed by the hydrolysis assay for their common substrate p-nitrophenyl acetate (PNPA) with rat hepatic microsomal enzyme. Subsequently, RT-PCR results showed that the levels of CES1 mRNA and mRNA of CES2 (AB010635) and CES2 (AY034877) in the model group were significantly lower than those of the normal control group (P<0.05). Western blot results showed that the expressions of CES1 and CES2 proteins were decreased (P<0.05). To further clarify the effects of LPS on the metabolic activities of CESs, pharmacokinetic studies were performed in rats by utilizing imidapril and irinotecan (CPT-11) as the specific substrates for CES1 and CES2, respectively. After treatment with LPS, AUC0-∞ and Cmax of imidaprilat were decreased from 2084.86±340.66ng·h(-1)·mL(-1) and 234.66±68.85ng·mL(-1) to 983.87±315.34ng·h(-1)·mL(-1) and 113.1±19.69ng·mL(-1) (P<0.05), respectively. Moreover, AUC0-∞ and Cmax of SN-38 were decreased from 8100±918.6ng·h(-1)·mL(-1) and 144.67±20.28ng·mL(-1) to 3270±500.5ng·h(-1)·mL(-1) and 56.19±10.38ng·mL(-1) (P<0.05), respectively. In summary, immunological liver injury remarkably attenuated the expressions and metabolic activities of CES1 and CES2, which may be associated with the regulatory effects of cytokines under inflammation. PMID:25499727

  15. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    PubMed

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. PMID:26323290

  16. Wanna Play?

    ERIC Educational Resources Information Center

    Chenfeld, Mimi Brodsky

    2006-01-01

    In this article, the author talks about the importance of play in the lives of children and describes how games and imaginative play contribute to the development of children. From her decades-old collection of countless incidents demonstrating children's love for self-directed, informal, imaginative play, the author shares three incidents that…

  17. Toxicity of formic acid against red imported fire ants, Solenopsis invicta Buren

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Formic acid is a common defensive chemical of formicine ants. Ants often compete with other ants for resources. However, the toxicity of formic acid to any ant species has not been well understood. This study examined the toxicity of formic acid against the red imported fire ants, Sole...

  18. IL-10 plays a central regulatory role in the cytokines induced by hepatitis C virus core protein and polyinosinic acid:polycytodylic acid.

    PubMed

    Pang, Xiaoli; Wang, Zhaoxia; Zhai, Naicui; Zhang, Qianqian; Song, Hongxiao; Zhang, Yujiao; Li, Tianyang; Li, Haijun; Su, Lishan; Niu, Junqi; Tu, Zhengkun

    2016-09-01

    Hepatitis C virus (HCV) can cause persistent infection and chronic liver disease, and viral factors are involved in HCV persistence. HCV core protein, a highly conserved viral protein, not only elicits an immunoresponse, but it also regulates it. In addition, HCV core protein interacts with toll-like receptors (TLRs) on monocytes, inducing them to produce cytokines. Polyinosinic acid:polycytodylic acid (polyI:C) is a synthetic analogue of double-stranded RNA that binds to TLR3 and can induce secretion of type I IFN from monocytes. Cytokine response against HCV is likely to affect the natural course of infection as well as HCV persistence. However, possible effects of cytokines induced by HCV core protein and polyI:C remain to be investigated. In this study, we isolated CD14(+) monocytes from healthy donors, cultured them in the presence of HCV core protein and/or polyI:C, and characterized the induced cytokines, phenotypes and mechanisms. We demonstrated that HCV core protein- and polyI:C-stimulated CD14(+) monocytes secreted tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-10, and type I interferon (IFN). Importantly, TNF-α and IL-1β regulated the secretion of IL-10, which then influenced the expression of signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1) and subsequently the production of type I IFN. Interestingly, type I IFN also regulated the production of IL-10, which in turn inhibited the nuclear factor (NF)-κB subunit, reducing TNF-α and IL-1β levels. Therefore, IL-10 appears to play a central role in regulating the production of cytokines induced by HCV core protein and polyI:C. PMID:27337528

  19. A petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flower senescence is mediated in part by changes of plant hormones, such as ethylene, cytokinin and abscisic acid (ABA). Ethylene is known to control flower senescence in many species, especially ethylene sensitive flowers, like petunia, carnation and rose. During flower senescence in petunia and ot...

  20. H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Eloy, Ygor R G; Vasconcelos, Ilka M; Barreto, Ana L H; Freire-Filho, Francisco R; Oliveira, Jose T A

    2015-08-01

    Plant-fungus interactions usually generate H(2)O(2) in the infected plant tissue. H(2)O(2) has a direct antimicrobial effect and is involved in the cross-linking of cell walls, signaling, induction of gene expression, hypersensitive cell death and induced systemic acquired resistance. This has raised the hypothesis that H(2)O(2) manipulation by pharmacological compounds could alter the lifestyle of Colletotrichum gloeosporioides during interaction with the BR-3-Tracuateua cowpea genotype. The primary leaves of cowpea were excised, infiltrated with salicylic acid (SA), glucose oxidase + glucose (GO/G), catalase (CAT) or diphenyliodonium chloride (DPI), followed by spore inoculation on the adaxial leaf surface. SA or GO/G-treated plantlets showed increased H(2)O(2) accumulation and lipid peroxidation. The fungus used a subcuticular, intramural necrotrophic strategy, and developed secondary hyphae associated with the quick spread and rapid killing of host cells. However, CAT or DPI-treated leaves exhibited decreased H(2)O(2) concentration and lipid peroxidation and the fungus developed intracellular hemibiotrophic infection with vesicles, in addition to primary and secondary hyphal formation. These results suggest that H(2)O(2) plays an important role in the cowpea (C. gloeosporioides) pathosystem given that it affected fungal lifestyle during interaction. PMID:26228563

  1. Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: importance of fatty acid structure.

    PubMed Central

    Kumaratilake, L M; Ferrante, A; Robinson, B S; Jaeger, T; Poulos, A

    1997-01-01

    Effects of fatty acids on human neutrophil-mediated killing of Plasmodium falciparum asexual blood forms were investigated by using a quantitative radiometric assay. The results showed that the antiparasitic activity of neutrophils can be greatly increased (>threefold) by short-term treatment with fatty acids with 20 to 24 carbon atoms and at least three double bonds. In particular, the n-3 polyenoic fatty acids, eicosapentaenoic and docosahexaenoic acids, and the n-6 fatty acid, arachidonic acid, significantly enhanced neutrophil antiparasitic activity. This effect was >1.5-fold higher than that induced by an optical concentration of the known agonist cytokine tumor necrosis factor alpha (TNF-alpha). At suboptimal concentrations, the combination of arachidonic acid and TNF-alpha caused a synergistic increase in neutrophil-mediated parasite killing. The fatty acid-induced effect was independent of the availability of serum opsonins but dependent on the structure of the fatty acids. The length of the carbon chain, degree of unsaturation, and availability of a free carboxyl group were important determinants of fatty acid activity. The fatty acids which increased neutrophil-mediated killing primed the enhanced superoxide radical generation of neutrophils in response to P. falciparum as detected by chemiluminescence. Scavengers of oxygen radicals significantly reduced the fatty acid-enhanced parasite killing, but cyclooxygenase and lipoxygenase inhibitors had no effect. These findings have identified a new class of immunoenhancers that could be exploited to increase resistance against Plasmodium species. PMID:9317021

  2. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence

    PubMed Central

    Long, Nanbiao; Xu, Xiaoling; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-01-01

    Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus. PMID:27433157

  3. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence.

    PubMed

    Long, Nanbiao; Xu, Xiaoling; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-01-01

    Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus. PMID:27433157

  4. The transporter GAT1 plays an important role in GABA-mediated carbon-nitrogen interactions in Arabidopsis

    PubMed Central

    Batushansky, Albert; Kirma, Menny; Grillich, Nicole; Pham, Phuong A.; Rentsch, Doris; Galili, Gad; Fernie, Alisdair R.; Fait, Aaron

    2015-01-01

    Glutamate derived γ-aminobutyric acid (GABA) is synthetized in the cytosol prior to delivery to the mitochondria where it is catabolized via the TCA cycle. GABA accumulates under various environmental conditions, but an increasing number of studies show its involvement at the crossroad between C and N metabolism. To assess the role of GABA in modulating cellular metabolism, we exposed seedlings of A. thaliana GABA transporter gat1 mutant to full nutrition medium and media deficient in C and N combined with feeding of different concentrations (0.5 and 1 mM) of exogenous GABA. GC-MS based metabolite profiling showed an expected effect of medium composition on the seedlings metabolism of mutant and wild type alike. That being said, a significant interaction between GAT1 deficiency and medium composition was determined with respect to magnitude of change in relative amino acid levels. The effect of exogenous GABA treatment on metabolism was contingent on both the medium and the genotype, leading for instance to a drop in asparagine under full nutrition and low C conditions and glucose under all tested media, but not to changes in GABA content. We additionally assessed the effect of GAT1 deficiency on the expression of glutamate metabolism related genes and genes involved in abiotic stress responses. These results suggest a role for GAT1 in GABA-mediated metabolic alterations in the context of the C-N equilibrium of plant cells. PMID:26483804

  5. A purple acid phosphatase plays a role in nodule formation and nitrogen fixation in Astragalus sinicus.

    PubMed

    Wang, Jianyun; Si, Zaiyong; Li, Fang; Xiong, Xiaobo; Lei, Lei; Xie, Fuli; Chen, Dasong; Li, Yixing; Li, Youguo

    2015-08-01

    The AsPPD1 gene from Astragalus sinicus encodes a purple acid phosphatase. To address the functions of AsPPD1 in legume-rhizobium symbiosis, its expression patterns, enzyme activity, subcellular localization, and phenotypes associated with its over-expression and RNA interference (RNAi) were investigated. The expression of AsPPD1 was up-regulated in roots and nodules after inoculation with rhizobia. Phosphate starvation reduced the levels of AsPPD1 transcripts in roots while increased those levels in nodules. We confirmed the acid phosphatase and phosphodiesterase activities of recombinant AsPPD1 purified from Pichia pastoris, and demonstrated its ability to hydrolyze ADP and ATP in vitro. Subcellular localization showed that AsPPD1 located on the plasma membranes in hairy roots and on the symbiosomes membranes in root nodules. Over-expression of AsPPD1 in hairy roots inhibited nodulation, while its silencing resulted in nodules early senescence and significantly decreased nitrogenase activity. Furthermore, HPLC measurement showed that AsPPD1 overexpression affects the ADP levels in the infected roots and nodules, AsPPD1 silencing affects the ratio of ATP/ADP and the energy charge in nodules, and quantitative observation demonstrated the changes of AsPPD1 transcripts level affected nodule primordia formation. Taken together, it is speculated that AsPPD1 contributes to symbiotic ADP levels and energy charge control, and this is required for effective nodule organogenesis and nitrogen fixation. PMID:26105827

  6. Metal Ions Play an Essential Catalytic Role in the Mechanism of Ketol-Acid Reductoisomerase.

    PubMed

    Tadrowski, Sonya; Pedroso, Marcelo M; Sieber, Volker; Larrabee, James A; Guddat, Luke W; Schenk, Gerhard

    2016-05-23

    Ketol-acid reductoisomerase (KARI) is a Mg(2+) -dependent enzyme in the branched-chain amino acid biosynthesis pathway. It catalyses a complex two-part reaction: an alkyl migration followed by a NADPH-dependent reduction. Both reactions occur within the one active site, but in particular, the mechanism of the isomerisation step is poorly understood. Here, using a combination of kinetic, thermodynamic and spectroscopic techniques, the reaction mechanisms of both Escherichia coli and rice KARI have been investigated. We propose a conserved mechanism of catalysis, whereby a hydroxide, bridging the two Mg(2+) ions in the active site, initiates the reaction by abstracting a proton from the C2 alcohol group of the substrate. While the μ-hydroxide-bridged dimetallic centre is pre-assembled in the bacterial enzyme, in plant KARI substrate binding leads to a reduction of the metal-metal distance with the concomitant formation of a hydroxide bridge. Only Mg(2+) is capable of promoting the isomerisation reaction, likely to be due to non-competent substrate binding in the presence of other metal ions. PMID:27136273

  7. mTOR plays an important role in cow's milk allergy-associated behavioral and immunological deficits.

    PubMed

    Wu, Jiangbo; de Theije, Caroline G M; da Silva, Sofia Lopes; van der Horst, Hilma; Reinders, Margot T M; Broersen, Laus M; Willemsen, Linette E M; Kas, Martien J H; Garssen, Johan; Kraneveld, Aletta D

    2015-10-01

    Autism spectrum disorder (ASD) is multifactorial, with both genetic as well as environmental factors working in concert to develop the autistic phenotype. Immunological disturbances in autistic individuals have been reported and a role for food allergy has been suggested in ASD. Single gene mutations in mammalian target of rapamycin (mTOR) signaling pathway are associated with the development of ASD and enhanced mTOR signaling plays a central role in directing immune responses towards allergy as well. Therefore, the mTOR pathway may be a pivotal link between the immune disturbances and behavioral deficits observed in ASD. In this study it was investigated whether the mTOR pathway plays a role in food allergy-induced behavioral and immunological deficits. Mice were orally sensitized and challenged with whey protein. Meanwhile, cow's milk allergic (CMA) mice received daily treatment of rapamycin. The validity of the CMA model was confirmed by showing increased allergic immune responses. CMA mice showed reduced social interaction and increased repetitive self-grooming behavior. Enhanced mTORC1 activity was found in the brain and ileum of CMA mice. Inhibition of mTORC1 activity by rapamycin improved the behavioral and immunological deficits of CMA mice. This effect was associated with increase of Treg associated transcription factors in the ileum of CMA mice. These findings indicate that mTOR activation may be central to both the intestinal, immunological, and psychiatric ASD-like symptoms seen in CMA mice. It remains to be investigated whether mTOR can be seen as a therapeutic target in cow's milk allergic children suffering from ASD-like symptoms. PMID:26027949

  8. Perfluoroalkyl Acids (PFAAs) and Selected Precursors in the Baltic Sea Environment: Do Precursors Play a Role in Food Web Accumulation of PFAAs?

    PubMed

    Gebbink, Wouter A; Bignert, Anders; Berger, Urs

    2016-06-21

    The present study examined the presence of perfluoroalkyl acids (PFAAs) and selected precursors in the Baltic Sea abiotic environment and guillemot food web, and investigated the relative importance of precursors in food web accumulation of PFAAs. Sediment, water, zooplankton, herring, sprat, and guillemot eggs were analyzed for perfluoroalkane sulfonic acids (PFSAs; C4,6,8,10) and perfluoroalkyl carboxylic acids (PFCAs; C6-15) along with six perfluoro-octane sulfonic acid (PFOS) precursors and 11 polyfluoroalkyl phosphoric acid diesters (diPAPs). FOSA, FOSAA and its methyl and ethyl derivatives (Me- and EtFOSAA), and 6:2/6:2 diPAP were detected in sediment and water. While FOSA and the three FOSAAs were detected in all biota, a total of nine diPAPs were only detected in zooplankton. Concentrations of PFOS precursors and diPAPs exceeded PFOS and PFCA concentrations, respectively, in zooplankton, but not in fish and guillemot eggs. Although PFOS precursors were present at all trophic levels, they appear to play a minor role in food web accumulation of PFOS based on PFOS precursor/PFOS ratios and PFOS and FOSA isomer patterns. The PFCA pattern in fish could not be explained by the intake pattern based on PFCAs and analyzed precursors, that is, diPAPs. Exposure to additional precursors might therefore be a dominant exposure pathway compared to direct PFCA exposure for fish. PMID:27192404

  9. NADPH Oxidase Dependent NLRP3 Inflammasome Activation Plays an Important Role in Lung Fibrosis by Multi-Walled Carbon Nanotubes

    PubMed Central

    Sun, Bingbing; Wang, Xiang; Ji, Zhaoxia; Wang, Meiying; Liao, Yu-Pei; Chang, Chong Hyun; Li, Ruibin; Zhang, Haiyuan; Nel, André E.; Xia, Tian

    2015-01-01

    The purpose of this communication is to elucidate the key role of NADPH oxidase in NLRP3 inflammasome activation and generation of pulmonary fibrosis by multi-walled carbon nanotubes (MWCNTs). Although it is known that oxidative stress plays a role in pulmonary fibrosis by single-walled CNTs, the role of specific sources of reactive oxygen species (ROS), including NADPH oxidase, in inflammasome activation remains to be clarified. In this study, three long aspect ratio (LAR) materials (MWCNTs, SWCNTs, and silver nanowires) are used to compare with spherical carbon black and silver nanoparticles for their ability to trigger oxygen burst activity and NLRP3 assembly. All LAR materials but not spherical nanoparticles induce robust NADPH oxidase activation and respiratory burst activity in THP-1 cells, which are blunted in p22phox deficient cells. NADPH oxidase is directly involved in lysosome damage by LAR materials, as demonstrated by decreased cathepsin B release and IL-1β production in p22phox deficient cells. Reduced respiratory burst activity and inflammasome activation are also observed in bone marrow-derived macrophages from p47phox deficient mice. Moreover, p47phox deficient mice have reduced IL-1β production and lung collagen deposition in response to MWCNTs. Lung fibrosis is also suppressed by N-acetyl-cysteine (NAC) in wild type animals exposed to MWCNTs. PMID:25581126

  10. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth.

    PubMed

    Xing, Lu; Zhao, Yang; Gao, Jinghui; Xiang, Chengbin; Zhu, Jian-Kang

    2016-01-01

    Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors. PMID:27256015

  11. The ABA receptor PYL9 together with PYL8 plays an important role in regulating lateral root growth

    PubMed Central

    Xing, Lu; Zhao, Yang; Gao, Jinghui; Xiang, Chengbin; Zhu, Jian-Kang

    2016-01-01

    Abscisic acid is a phytohormone regulating plant growth, development and stress responses. PYR1/PYL/RCAR proteins are ABA receptors that function by inhibiting PP2Cs to activate SnRK2s, resulting in phosphorylation of ABFs and other effectors of ABA response pathways. Exogenous ABA induces growth quiescence of lateral roots, which is prolonged by knockout of the ABA receptor PYL8. Among the 14 members of PYR1/PYL/RCAR protein family, PYL9 is a close relative of PYL8. Here we show that knockout of both PYL9 and PYL8 resulted in a longer ABA-induced quiescence on lateral root growth and a reduced sensitivity to ABA on primary root growth and lateral root formation compared to knockout of PYL8 alone. Induced overexpression of PYL9 promoted the lateral root elongation in the presence of ABA. The prolonged quiescent phase of the pyl8-1pyl9 double mutant was reversed by exogenous IAA. PYL9 may regulate auxin-responsive genes in vivo through direct interaction with MYB77 and MYB44. Thus, PYL9 and PYL8 are both responsible for recovery of lateral root from ABA inhibition via MYB transcription factors. PMID:27256015

  12. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    PubMed

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy. PMID:22042223

  13. Does α-Amino-β-methylaminopropionic Acid (BMAA) Play a Role in Neurodegeneration?

    PubMed Central

    Chiu, Alexander S.; Gehringer, Michelle M.; Welch, Jeffrey H.; Neilan, Brett A.

    2011-01-01

    The association of α-amino-β-methylaminopropionic acid (BMAA) with elevated incidence of amyotrophic lateral sclerosis/Parkinson’s disease complex (ALS/PDC) was first identified on the island of Guam. BMAA has been shown to be produced across the cyanobacterial order and its detection has been reported in a variety of aquatic and terrestrial environments worldwide, suggesting that it is ubiquitous. Various in vivo studies on rats, mice, chicks and monkeys have shown that it can cause neurodegenerative symptoms such as ataxia and convulsions. Zebrafish research has also shown disruption to neural development after BMAA exposure. In vitro studies on mice, rats and leeches have shown that BMAA acts predominantly on motor neurons. Observed increases in the generation of reactive oxygen species (ROS) and Ca2+ influx, coupled with disruption to mitochondrial activity and general neuronal death, indicate that the main mode of activity is via excitotoxic mechanisms. The current review pertaining to the neurotoxicity of BMAA clearly demonstrates its ability to adversely affect neural tissues, and implicates it as a potentially significant compound in the aetiology of neurodegenerative disease. When considering the potential adverse health effects upon exposure to this compound, further research to better understand the modes of toxicity of BMAA and the environmental exposure limits is essential. PMID:22016712

  14. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    PubMed Central

    2011-01-01

    Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548

  15. Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration.

    PubMed

    Cancian, Giulia; Tozzi, Gianluca; Hussain, Amirul Ashraf Bin; De Mori, Arianna; Roldo, Marta

    2016-08-01

    Age related bone diseases such as osteoporosis are considered among the main causes of reduced bone mechanical stability and bone fractures. In order to restore both biological and mechanical function of diseased/fractured bones, novel bioactive scaffolds that mimic the bone structure are constantly under development in tissue engineering applications. Among the possible candidates, chitosan-based thermosensitive hydrogel scaffolds represent ideal systems due to their biocompatibility, biodegradability, enhanced antibacterial properties, promotion of osteoblast formation and ease of injection, which makes them suitable for less invasive surgical procedures. As a main drawback, these chitosan systems present poor mechanical performance that could not support load-bearing applications. In order to produce more mechanically-competent biomaterials, the combined addition of hydroxyapatite and carbon nanotubes (CNTs) is proposed in this study. Specifically, the aim of this work is to develop thermosensitive chitosan hydrogels containing stabilised single-walled and multi-walled CNTs, where their effect on the mechanical/physiochemical properties, calcium deposition patterns and ability to provide a platform for the controlled release of protein drugs was investigated. It was found that the addition of CNTs had a significant effect on the sol-gel transition time and significantly increased the resistance to compression for the hydrogels. Moreover, in vitro calcification studies revealed that CNTs played a major role in the spatial arrangements of newly formed calcium deposits in the composite materials studied, suggesting that they may have a role in the way the repair of fragile and/or fractured bones occurs in vivo. PMID:27324780

  16. Heterotrophic denitrification plays an important role in N₂O production from nitritation reactors treating anaerobic sludge digestion liquor.

    PubMed

    Wang, Qilin; Jiang, Guangming; Ye, Liu; Pijuan, Maite; Yuan, Zhiguo

    2014-10-01

    Nitrous oxide (N2O) emissions from nitritation reactors receiving real anaerobic sludge digestion liquor have been reported to be substantially higher than those from reactors receiving synthetic digestion liquor. This study aims to identify the causes for the difference, and to develop strategies to reduce N2O emissions from reactors treating real digestion liquor. Two sequencing batch reactors (SBRs) performing nitritation, fed with real (SBR-R) and synthetic (SBR-S) digestion liquors, respectively, were employed. The N2O emission factors for SBR-R and SBR-S were determined to be 3.12% and 0.80% of the NH4(+)-N oxidized, respectively. Heterotrophic denitrification supported by the organic carbon present in the real digestion liquor was found to be the key contributor to the higher N2O emission from SBR-R. Heterotrophic nitrite reduction likely stopped at N2O (rather than N2), with a hypothesised cause being free nitrous acid inhibition. This implies that all nitrite reduced by heterotrophic bacteria was converted to and emitted as N2O. Increasing dissolved oxygen (DO) concentration from 0.5 to 1.0 mg/L, or above, decreased aerobic N2O production from 2.0% to 0.5% in SBR-R, whereas aerobic N2O production in SBR-S remained almost unchanged (at approximately 0.5%). We hypothesised that DO at 1 mg/L or above suppressed heterotrophic nitrite reduction thus reduced aerobic heterotrophic N2O production. We recommend that DO in a nitritation system receiving anaerobic sludge digestion liquor should be maintained at approximately 1 mg/L to minimise N2O emission. PMID:24956602

  17. Nod-Like Receptor Protein-3 Inflammasome Plays an Important Role during Early Stages of Wound Healing

    PubMed Central

    Weinheimer-Haus, Eileen M.; Mirza, Rita E.; Koh, Timothy J.

    2015-01-01

    The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing. PMID:25793779

  18. The glycerophosphoryl diester phosphodiesterase-like proteins SHV3 and its homologs play important roles in cell wall organization.

    PubMed

    Hayashi, Shimpei; Ishii, Tadashi; Matsunaga, Toshiro; Tominaga, Rumi; Kuromori, Takashi; Wada, Takuji; Shinozaki, Kazuo; Hirayama, Takashi

    2008-10-01

    Despite the importance of extracellular events in cell wall organization and biogenesis, the mechanisms and related factors are largely unknown. We isolated an allele of the shaven3 (shv3) mutant of Arabidopsis thaliana, which exhibits ruptured root hair cells during tip growth. SHV3 encodes a novel protein with two tandemly repeated glycerophosphoryl diester phosphodiesterase-like domains and a glycosylphosphatidylinositol anchor, and several of its paralogs are found in Arabidopsis. Here, we report the detailed characterization of mutants of SHV3 and one of its paralogs, SVL1. The shv3 and svl1 double mutant exhibited additional defects, including swollen guard cells, aberrant expansion of the hypocotyl epidermis and ectopic lignin deposits, suggesting decreased rigidity of the cell wall. Fourier-transform infrared spectroscopy and measurement of the cell wall components indicated an altered cellulose content and pectin modification with cross-linking in the double mutant. Furthermore, we found that the ruptured root hair phenotype of shv3 was suppressed by increasing the amount of borate, which is supposed to be involved in pectic polysaccharide cross-linking, in the medium. These findings indicate that SHV3 and its paralogs are novel important factors involved in primary cell wall organization. PMID:18718934

  19. Campylobacter jejuni Outer Membrane Vesicles Play an Important Role in Bacterial Interactions with Human Intestinal Epithelial Cells

    PubMed Central

    Elmi, Abdi; Watson, Eleanor; Sandu, Pamela; Gundogdu, Ozan; Mills, Dominic C.; Inglis, Neil F.; Manson, Erin; Imrie, Lisa; Bajaj-Elliott, Mona; Wren, Brendan W.; Smith, David G. E.

    2012-01-01

    Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world; however, the molecular basis of pathogenesis is unclear. Secretion of virulence factors is a key mechanism by which enteric bacterial pathogens interact with host cells to enhance survival and/or damage the host. However, C. jejuni lacks the virulence-associated secretion systems possessed by other enteric pathogens. Many bacterial pathogens utilize outer membrane vesicles (OMVs) for delivery of virulence factors into host cells. In the absence of prototypical virulence-associated secretion systems, OMVs could be an important alternative for the coordinated delivery of C. jejuni proteins into host cells. Proteomic analysis of C. jejuni 11168H OMVs identified 151 proteins, including periplasmic and outer membrane-associated proteins, but also many determinants known to be important in survival and pathogenesis, including the cytolethal distending toxin (CDT). C. jejuni OMVs contained 16 N-linked glycoproteins, indicating a delivery mechanism by which these periplasm-located yet immunogenic glycoproteins can interact with host cells. C. jejuni OMVs possess cytotoxic activity and induce a host immune response from T84 intestinal epithelial cells (IECs), which was not reduced by OMV pretreatment with proteinase K or polymyxin B prior to coincubation with IECs. Pretreatment of IECs with methyl-beta-cyclodextrin partially blocks OMV-induced host immune responses, indicating a role for lipid rafts in host cell plasma membranes during interactions with C. jejuni OMVs. OMVs isolated from a C. jejuni 11168H cdtA mutant induced interleukin-8 (IL-8) to the same extent as did wild-type OMVs, suggesting OMV induction of IL-8 is independent of CDT. PMID:22966047

  20. SBP2 plays an important role in the virulence changes of different artificial mutants of Streptococcus suis.

    PubMed

    Yu, Yanfei; Qian, Yunyun; Du, Dechao; Xu, Chenyang; Dai, Chen; Li, Quan; Liu, Hanze; Shao, Jing; Wu, Zongfu; Zhang, Wei

    2016-05-24

    Streptococcus suis (SS) is an important bacterial zoonotic pathogen, which can cause infections in pigs and humans. However, the pathogenesis of this bacterium remains unclear, even though some putative virulence factors (VFs) have been reported. Comparative proteomics could be used to identify markers that can distinguish bacterial strains with different virulence; however, the application of this method is restricted by the genome diversities existing in different strains. In this study, two mutants, WT ΔpepT and WT ΔrfeA, which were generated from the same wild-type (WT) strain, ZY05719, and showed opposite virulence tendencies, were constructed. Combining two proteomics assays, two-dimensional difference gel electrophoresis (2D-DIGE) and label-free proteomics, we identified 38 differentially abundant proteins in the mutants compared with their parent, including five known VFs of S. suis and 33 novel elements. One of the novel proteins, a putative pilus protein, named SBP2, was considered as the most promising VF, because SBP2 was not only linked with the known VFs in the virulence interaction network and was proposed to be located on the cell surface, but also showed enriched distribution among highly virulent strains of SS. SBP2 could also bind fibronectin and laminin, two important extracellular matrix proteins of the host, to facilitate the process of adhesion. Thus, spb2 was identified as encoding a promising virulence-associated candidate associated with the pathogenesis of SS, and a comprehensive virulence interaction network of SS was established for the first time. PMID:27077729

  1. The Ubiquitin-Proteasome System Plays an Important Role during Various Stages of the Coronavirus Infection Cycle ▿

    PubMed Central

    Raaben, Matthijs; Posthuma, Clara C.; Verheije, Monique H.; te Lintelo, Eddie G.; Kikkert, Marjolein; Drijfhout, Jan W.; Snijder, Eric J.; Rottier, Peter J. M.; de Haan, Cornelis A. M.

    2010-01-01

    The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2α. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection. PMID:20484504

  2. Carboxyl-Terminal SSLKG Motif of the Human Cystinosin-LKG Plays an Important Role in Plasma Membrane Sorting

    PubMed Central

    Taranta, Anna; Petrini, Stefania; Venditti, Rossella; Rocchetti, Maria Teresa; Rega, Laura Rita; Corallini, Serena; Gesualdo, Loreto; De Matteis, Maria Antonietta; Emma, Francesco

    2016-01-01

    Cystinosin mediates an ATP-dependent cystine efflux from lysosomes and causes, if mutated, nephropathic cystinosis, a rare inherited lysosomal storage disease. Alternative splicing of the last exon of the cystinosin sequence produces the cystinosin-LKG isoform that is characterized by a different C-terminal region causing changes in the subcellular distribution of the protein. We have constructed RFP-tagged proteins and demonstrated by site-directed mutagenesis that the carboxyl-terminal SSLKG sequence of cystinosin-LKG is an important sorting motif that is required for efficient targeting the protein to the plasma membrane, where it can mediate H+ coupled cystine transport. Deletion of the SSLKG sequence reduced cystinosin-LKG expression in the plasma membrane and cystine transport by approximately 30%, and induced significant accumulation of the protein in the Golgi apparatus and in lysosomes. Cystinosin-LKG, unlike the canonical isoform, also moves to the lysosomes by the indirect pathway, after endocytic retrieval from the plasma membrane, mainly by a clathrin-mediated endocytosis. Nevertheless, silencing of AP-2 triggers the clathrin-independent endocytosis, showing the complex adaptability of cystinosin-LKG trafficking. PMID:27148969

  3. Surface texture and priming play important roles in predator recognition by the red-backed shrike in field experiments.

    PubMed

    Němec, Michal; Syrová, Michaela; Dokoupilová, Lenka; Veselý, Petr; Šmilauer, Petr; Landová, Eva; Lišková, Silvie; Fuchs, Roman

    2015-01-01

    We compared the responses of the nesting red-backed shrikes (Lanius collurio) to three dummies of a common nest predator, the Eurasian jay (Garrulus glandarius), each made from a different material (stuffed, plush, and silicone). The shrikes performed defensive behaviour including attacks on all three dummies. Nevertheless, the number of attacks significantly decreased from the stuffed dummy through the plush dummy and finally to the silicone dummy. Our results show that wild birds use not only colours but also other surface features as important cues for recognition and categorization of other bird species. Moreover, the silicone dummy was attacked only when presented after the stuffed or plush dummy. Thus, we concluded that the shrikes recognized the jay only the stuffed (with feathered surface) and plush (with hairy surface) dummies during the first encounter. Recognition of the silicon dummy (with glossy surface) was facilitated by previous encounters with the more accurate model. This process resembles the effect of perceptual priming, which is widely described in the literature on humans. PMID:25107529

  4. Carboxyl-Terminal SSLKG Motif of the Human Cystinosin-LKG Plays an Important Role in Plasma Membrane Sorting.

    PubMed

    Bellomo, Francesco; Taranta, Anna; Petrini, Stefania; Venditti, Rossella; Rocchetti, Maria Teresa; Rega, Laura Rita; Corallini, Serena; Gesualdo, Loreto; De Matteis, Maria Antonietta; Emma, Francesco

    2016-01-01

    Cystinosin mediates an ATP-dependent cystine efflux from lysosomes and causes, if mutated, nephropathic cystinosis, a rare inherited lysosomal storage disease. Alternative splicing of the last exon of the cystinosin sequence produces the cystinosin-LKG isoform that is characterized by a different C-terminal region causing changes in the subcellular distribution of the protein. We have constructed RFP-tagged proteins and demonstrated by site-directed mutagenesis that the carboxyl-terminal SSLKG sequence of cystinosin-LKG is an important sorting motif that is required for efficient targeting the protein to the plasma membrane, where it can mediate H+ coupled cystine transport. Deletion of the SSLKG sequence reduced cystinosin-LKG expression in the plasma membrane and cystine transport by approximately 30%, and induced significant accumulation of the protein in the Golgi apparatus and in lysosomes. Cystinosin-LKG, unlike the canonical isoform, also moves to the lysosomes by the indirect pathway, after endocytic retrieval from the plasma membrane, mainly by a clathrin-mediated endocytosis. Nevertheless, silencing of AP-2 triggers the clathrin-independent endocytosis, showing the complex adaptability of cystinosin-LKG trafficking. PMID:27148969

  5. Pretend play.

    PubMed

    Weisberg, Deena Skolnick

    2015-01-01

    Pretend play is a form of playful behavior that involves nonliteral action. Although on the surface this activity appears to be merely for fun, recent research has discovered that children's pretend play has connections to important cognitive and social skills, such as symbolic thinking, theory of mind, and counterfactual reasoning. The current article first defines pretend play and then reviews the arguments and evidence for these three connections. Pretend play has a nonliteral correspondence to reality, hence pretending may provide children with practice with navigating symbolic relationships, which may strengthen their language skills. Pretend play and theory of mind reasoning share a focus on others' mental states in order to correctly interpret their behavior, hence pretending and theory of mind may be mutually supportive in development. Pretend play and counterfactual reasoning both involve representing nonreal states of affairs, hence pretending may facilitate children's counterfactual abilities. These connections make pretend play an important phenomenon in cognitive science: Studying children's pretend play can provide insight into these other abilities and their developmental trajectories, and thereby into human cognitive architecture and its development. PMID:26263228

  6. Does atmospheric CO2 seasonality play an important role in governing the air-sea flux of CO2?

    NASA Astrophysics Data System (ADS)

    Halloran, P. R.

    2012-06-01

    The amplitude, phase, and form of the seasonal cycle of atmospheric CO2 concentrations varies on many time and space scales (Peters et al., 2007). Intra-annual CO2 variation is primarily driven by seasonal uptake and release of CO2 by the terrestrial biosphere (Machta et al., 1977; Buchwitz et al., 2007), with a small (Cadule et al., 2010; Heimann et al., 1998), but potentially changing (Gorgues et al., 2010) contribution from the ocean. Variability in the magnitude, spatial distribution, and seasonal drivers of terrestrial net primary productivity (NPP) will be induced by, amongst other factors, anthropogenic CO2 release (Keeling et al., 1996), land-use change (Zimov et al., 1999) and planetary orbital variability, and will lead to changes in CO2atm seasonality. Despite CO2atm seasonality being a dynamic and prominent feature of the Earth System, its potential to drive changes in the air-sea flux of CO2 has not previously (to the best of my knowledge) been explored. It is important that we investigate the impact of CO2atm seasonality change, and the potential for carbon-cycle feedbacks to operate through the modification of the CO2atm seasonal cycle, because the decision had been made to prescribe CO2atm concentrations (rather than emissions) within model simulations for the fifth IPCC climate assessment (Taylor et al., 2009). In this study I undertake ocean-model simulations within which different magnitude CO2atm seasonal cycles are prescribed. These simulations allow me to examine the effect of a change in CO2atm seasonal cycle magnitude on the air-sea CO2 flux. I then use an off-line model to isolate the drivers of the identified air-sea CO2 flux change, and propose mechanisms by which this change may come about. Three mechanisms are identified by which co-variability of the seasonal cycles in atmospheric CO2 concentration, and seasonality in sea-ice extent, wind-speed and ocean temperature, could potentially lead to changes in the air-sea flux of CO2 at mid

  7. Diversity and distribution of transcription factors: their partner domains play an important role in regulatory plasticity in bacteria.

    PubMed

    Rivera-Gómez, Nancy; Segovia, Lorenzo; Pérez-Rueda, Ernesto

    2011-08-01

    The ability of bacteria to deal with diverse environmental changes depends on their repertoire of genes and their ability to regulate their expression. In this process, DNA-binding transcription factors (TFs) have a fundamental role because they affect gene expression positively and/or negatively depending on operator context and ligand-binding status. Here, we show an exhaustive analysis of winged helix-turn-helix domains (wHTHs), a class of DNA-binding TFs. These proteins were identified in high proportions and widely distributed in bacteria, representing around half of the total TFs identified so far. In addition, we evaluated the repertoire of wHTHs in terms of their partner domains (PaDos), identifying a similar trend, as with TFs, i.e. they are abundant and widely distributed in bacteria. Based on the PaDos, we defined three main groups of families: (i) monolithic, those families with little PaDo diversity, such as LysR; (ii) promiscuous, those families with a high PaDo diversity; and (iii) monodomain, with families of small sizes, such as MarR. These findings suggest that PaDos have a very important role in the diversification of regulatory responses in bacteria, probably contributing to their regulatory complexity. Thus, the TFs discriminate over longer regions on the DNA through their diverse DNA-binding domains. On the other hand, the PaDos would allow a great flexibility for transcriptional regulation due to their ability to sense diverse stimuli through a variety of ligand-binding compounds. PMID:21636649

  8. Toll-Like Receptor 6 Plays an Important Role in Host Innate Resistance to Brucella abortus Infection in Mice

    PubMed Central

    de Almeida, Leonardo A.; Macedo, Gilson C.; Marinho, Fábio A. V.; Gomes, Marco T. R.; Corsetti, Patrícia P.; Silva, Aristóbolo M.; Cassataro, Juliana; Giambartolomei, Guillermo H.

    2013-01-01

    Brucella abortus is recognized by several Toll-like receptor (TLR)-associated pathways triggering proinflammatory responses that affect both the nature and intensity of the immune response. Previously, we demonstrated that B. abortus-mediated dendritic cell (DC) maturation and control of infection are dependent on the adaptor molecule MyD88. However, the involvement of all TLRs in response to B. abortus infection is not completely understood. Therefore, we decided to evaluate the requirement for TLR6 in host resistance to B. abortus. Here, we demonstrated that TLR6 is an important component for triggering an innate immune response against B. abortus. An in vitro luciferase assay indicated that TLR6 cooperates with TLR2 to sense Brucella and further activates NF-κB signaling. However, in vivo analysis showed that TLR6, not TLR2, is required for the efficient control of B. abortus infection. Additionally, B. abortus-infected dendritic cells require TLR6 to induce tumor necrosis factor alpha (TNF-α) and interleukin-12 (IL-12). Furthermore, our findings demonstrated that the mitogen-activated protein kinase (MAPK) signaling pathway is impaired in TLR2, TLR6, and TLR2/6 knockout (KO) DCs when infected with B. abortus, which may account for the lower proinflammatory cytokine production observed in TLR6 KO mouse dendritic cells. In summary, the results presented here indicate that TLR6 is required to trigger innate immune responses against B. abortus in vivo and is required for the full activation of DCs to induce robust proinflammatory cytokine production. PMID:23460520

  9. Importance of tetrahydroiso alpha-acids to the microbiological stability of beer.

    PubMed

    Caballero, Isabel; Agut, Montserrat; Armentia, Alicia; Blanco, Carlos A

    2009-01-01

    While beer provides a very stable microbiological environment, a few niche microorganisms are capable of growth in malt, wort, and beer. The production of off-flavors and development of turbidity in the packaged product are due to the growth and metabolic activity of wild yeast, certain lactic acid bacteria (LAB) and anaerobic Gram-negative bacteria. Beer also contains bitter hop compounds, which are toxic to Gram-positive and Gram-negative bacteria, and contribute to preventing the spoilage of this beverage. In the boiling process, the hop alpha-acids (humulones) are isomerized into iso alpha-acids. These products are responsible for the bitter taste of beer, but they also play an essential role in enhancing foam stability. Antibacterial activity of iso alpha-acids and their hydrogenated derivates (rhoiso alpha-acids and tetrahydroiso alpha-acids) in MRS broth and beer have been evaluated against different LAB (Lactobacillus and Pediococcus) for the determination of their beer-stabilizing capabilities. Besides this, we have determined the minimum inhibitory concentration and the bacteriostatic effect of each compound against Pediococcus. We found that tetrahydroiso alpha-acids (added directly to beer during production processes) are the compounds that present the greatest antibacterial activity against the main agents implicated in beer spoilage. PMID:19714985

  10. Folic acid and human reproduction—ten important issues for clinicians

    PubMed Central

    Dunlap, Beth; Shelke, Kantha; Salem, Shala A.; Keith, Louis G.

    2011-01-01

    This article presents data on the current best evidence-based clinical practices and controversies surrounding folic acid supplementation/fortification for the prevention of neural tube defects (NTDs) during early pregnancy. Formatted as a series of ten clinical questions, answers and extensive discussion are provided for each point. We assess the history and evidence behind supplementation and fortification, racial/ethnic disparities in NTDs on a global scale, and present information on risk factors for NTDs other than dietary folic acid deficiency. Also discussed are public health challenges, including disparities in NTD rates, population-wide monitoring of NTDs, and tracking safety data in the post-fortification era. Emerging data are also reviewed regarding the role folic acid may play in malignant processes, cardiovascular disease, male fertility, and other medical conditions. PMID:21991291

  11. [The important role of vitamins in the over-production of pyruvic acid].

    PubMed

    Li, Y; Chen, J; Lun, S; Rui, X

    2000-10-01

    The effect of nicotinic acid, thiamine, pyridoxine, biotin and riboflavin on the production of pyruvic acid by Torulopsis glabrata WSH-IP303 with glucose as carbon source and NH4Cl as sole nitrogen source was investigated. By using orthogonal experiment method, thiamine was confirmed to be the most important factor affecting the production of pyruvic acid. Based on a certain concentration range of thiamine (0.01-0.015 mg/L), glucose consumption rate can be enhanced by increasing the concentration of nicotinic acid. When the concentration of nicotinic acid, thiamine, pyridoxine, biotin and riboflavin were 8, 0.015, 0.4, 0.04 and 0.1 mg/L, respectively, the concentration and yield to glucose of pyruvic acid reached 52.4 g/L and 0.525 g/g at 48 h in flask culture, respectively. Batch culture was conducted in a 2.5 L fermentor with initial glucose concentration of 120 g/L. By adopting the optimal concentration combination of vitamins, the concentration and yield to glucose of pyruvic acid reached 69.4 g/L and 0.593 g/g at 57.5 h, which were increased by 32.4% and 13% than the best results in flask culture, respectively. PMID:12548766

  12. Repellent Effect of Formic Acid Against the Red Imported Fire Ant (Hymenoptera: Formicidae): A Field Study.

    PubMed

    Wang, Cai; Henderson, Gregg

    2016-04-01

    Previous studies showed that the formic acid secreted by tawny crazy ants not only has fumigation toxicity to the red imported fire ant, Solenopsis invicta Buren (Chen et al. 2013), but also can detoxify fire ant venom (LeBrun et al. 2014). These lead us to a field study to determine if low concentrations of formic acid might be useful in repelling S. invicta. Filter paper discs treated with 1.3% or 5% formic acid (v: v) or distilled water (control) were placed on each of the 46 S. invicta mounds and a disturbance was created. For a minute or less, there were significantly more defending ants on the control discs than that on the paper discs treated with formic acid. After food was added and for the next 40 min, there were significantly more foraging ants on the control discs compared to the treated discs. At 50 min into the test, the number of foraging ants on the control and 1.3% formic acid-treated discs was similar, but both were significantly higher than that on the 5% formic acid-treated discs. In addition, the active foraging (≥10 ants stayed on or around the food) and burying behavior (soil particles were deposited around the food) continued to be inhibited by 5% formic acid. The potential application and ecological significant of this repellent effect is discussed. PMID:26700488

  13. Protein DJ-1 and its anti-oxidative stress function play an important role in renal cell mediated response to profibrotic agents.

    PubMed

    Eltoweissy, Marwa; Dihazi, Gry H; Müller, Gerhard A; Asif, Abdul R; Dihazi, Hassan

    2016-05-24

    In the pathogenesis of renal fibrosis, oxidative stress (OS) enhances the production of reactive oxygen species (ROS) leading to sustained cell growth, inflammation, excessive tissue remodelling and accumulation, which results in the development and acceleration of renal damage. In our previous work (Eltoweissy et al., 2011) we established protein DJ-1 (PARK7) as an important ROS scavenger and key player in renal cell response to OS. In the present study we investigated the impact of profibrogenic agonists on DJ-1 and shed light on the role of this protein in renal fibrosis. Treatment of renal fibroblasts and epithelial cells with the profibrogenic agonist ANG II or PDGF resulted in a significant up-regulation of DJ-1 expression parallel to an increase in the expression of fibrosis markers. Monitoring of DJ-1 expression in kidney extract and tissue sections from a renal fibrosis mouse model (Col4a3-deficient) revealed a disease grade dependent regulation of the protein. Overexpression of DJ-1 prompted cell resistance to OS in both fibroblasts and epithelial cells. Furthermore overexpression of DJ-1, involved in ROS scavenging, in which glutamic acid 18 (E18) is mutated to either to aspartic acid (D) or glutamine (Q) resulted in a significant increase in cell death under OS in the case of E18D mutation, whereas E18Q mutation did not impact significantly the cell response to OS, revealing the importance of the acidic group for the ROS scavenging activity of the DJ-1 protein more than the nature of the amino acid itself. Affinity precipitation of interaction partners of DJ-1 and its mutants revealed an important role of annexin A1 and A5 in the mechanism of action of DJ-1 in anti-oxidative stress response. PMID:27109140

  14. The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes.

    PubMed

    Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma

    2014-01-01

    In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949

  15. Assessment of oil content and fatty acid composition variability in two economically important Hibiscus species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Hibiscus genus encompasses more than 300 species, but kenaf (H. cannabinus L.) and roselle (H. sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterc...

  16. TolC is important for bacterial survival and oxidative stress response in Salmonella enterica serovar Choleraesuis in an acidic environment.

    PubMed

    Lee, Jen-Jie; Wu, Ying-Chen; Kuo, Chih-Jung; Hsuan, Shih-Ling; Chen, Ter-Hsin

    2016-09-25

    The outer membrane protein TolC, which is one of the key components of several multidrug efflux pumps, is thought to be involved in various independent systems in Enterobacteriaceae. Since the acidic environment of the stomach is an important protection barrier against foodborne pathogen infections in hosts, we evaluated whether TolC played a role in the acid tolerance of Salmonella enterica serovar Choleraesuis. Comparison of the acid tolerance of the tolC mutant and the parental wild-type strain showed that the absence of TolC limits the ability of Salmonella to sustain life under extreme acidic conditions. Additionally, the mutant exhibited morphological changes during growth in an acidic medium, leading to the conflicting results of cell viability measured by spectrophotometry and colony-forming unit counting. Reverse-transcriptional-PCR analysis indicated that acid-related molecules, apparatus, or enzymes and oxidation-induced factors were significantly affected by the acidic environment in the null-tolC mutant. The elongated cellular morphology was restored by adding antioxidants to the culture medium. Furthermore, we found that increased cellular antioxidative activity provides an overlapping protection against acid killing, demonstrating the complexity of the bacterial acid stress response. Our findings reinforce the multifunctional characteristics of TolC in acid tolerance or oxidative stress resistance and support the correlative protection mechanism between oxygen- and acid-mediated stress responses in Salmonella enterica serovar Choleraesuis. PMID:27599929

  17. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids.

    PubMed

    Galloway, Aaron W E; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  18. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    PubMed Central

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  19. Mitochondrial-derived reactive oxygen species play a vital role in the salicylic acid signaling pathway in Arabidopsis thaliana.

    PubMed

    Nie, Shengjun; Yue, Haiyun; Zhou, Jun; Xing, Da

    2015-01-01

    Plant mitochondria constitute a major source of ROS and are proposed to act as signaling organelles in the orchestration of defense response. At present, the signals generated and then integrated by mitochondria are still limited. Here, fluorescence techniques were used to monitor the events of mitochondria in vivo, as well as the induction of mitochondrial signaling by a natural defensive signal chemical salicylic acid (SA). An inhibition of respiration was observed in isolated mitochondria subjected to SA. The cytochrome reductase activity analysis in isolated mitochondria demonstrated that SA might act directly on the complex III in the respiration chain by inhibiting the activity. With this alteration, a quick burst of mitochondrial ROS (mtROS) was stimulated. SA-induced mtROS caused mitochondrial morphology transition in leaf tissue or protoplasts expressing mitochondria-GFP (43C5) and depolarization of membrane potential. However, the application of AsA, an H2O2 scavenger, significantly prevented both events, indicating that both of them are attributable to ROS accumulation. In parallel, SA-induced mtROS up-regulated AOX1a transcript abundance and this induction was correlated with the disease resistance, whereas AsA-pretreatment interdicted this effect. It is concluded that mitochondria play an essential role in the signaling pathway of SA-induced ROS generation, which possibly provided new insight into the SA-mediated biological processes, including plant defense response. PMID:25811367

  20. Mitochondrial-Derived Reactive Oxygen Species Play a Vital Role in the Salicylic Acid Signaling Pathway in Arabidopsis thaliana

    PubMed Central

    Nie, Shengjun; Yue, Haiyun; Zhou, Jun; Xing, Da

    2015-01-01

    Plant mitochondria constitute a major source of ROS and are proposed to act as signaling organelles in the orchestration of defense response. At present, the signals generated and then integrated by mitochondria are still limited. Here, fluorescence techniques were used to monitor the events of mitochondria in vivo, as well as the induction of mitochondrial signaling by a natural defensive signal chemical salicylic acid (SA). An inhibition of respiration was observed in isolated mitochondria subjected to SA. The cytochrome reductase activity analysis in isolated mitochondria demonstrated that SA might act directly on the complex III in the respiration chain by inhibiting the activity. With this alteration, a quick burst of mitochondrial ROS (mtROS) was stimulated. SA-induced mtROS caused mitochondrial morphology transition in leaf tissue or protoplasts expressing mitochondria-GFP (43C5) and depolarization of membrane potential. However, the application of AsA, an H2O2 scavenger, significantly prevented both events, indicating that both of them are attributable to ROS accumulation. In parallel, SA-induced mtROS up-regulated AOX1a transcript abundance and this induction was correlated with the disease resistance, whereas AsA-pretreatment interdicted this effect. It is concluded that mitochondria play an essential role in the signaling pathway of SA-induced ROS generation, which possibly provided new insight into the SA-mediated biological processes, including plant defense response. PMID:25811367

  1. Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania

    PubMed Central

    Robert, Agnes; Mfilinge, Prosper; Limbu, Samwel M.; Mwita, Chacha J.

    2014-01-01

    Fatty acids (FAs) particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs) play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), Tilapia zillii, and dagaa (Rastrineobola argentea) from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA), eicosapentaenoic (EPA), docosapentaenoic (DPA), and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34) compared to L. niloticus (27), T. zillii (26), and R. argentea (21). The levels of EPA differed significantly among the four commercial fish species (F = 6.19,  P = 0.001). The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F = 0.652,  P = 0.583). The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA. PMID:25610654

  2. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer

    NASA Astrophysics Data System (ADS)

    Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin

    2015-03-01

    The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids.

  3. Medicinal importance of gallic acid and its ester derivatives: a patent review.

    PubMed

    Choubey, Sneha; Varughese, Lesley Rachel; Kumar, Vinod; Beniwal, Vikas

    2015-01-01

    Gallic acid and its derivatives have a large number of applications in various fields of science. In nature, these compounds are widely distributed in plants and fruits, and thus they are being used as food stuffs, preservatives, etc. directly or indirectly by human community. They have also been implicated as anticarcinogenic, antimicrobial, antimutagenic, antiangiogenic and anti-inflammatory agents besides their use in treating critical diseases like depression, cancer, microbial infections, lipid-related diseases, etc. Herein, an attempt has been made to summarize the important uses of gallic acid derivatives which have extensively been disclosed particularly in various patents. This review would certainly create a great interest of the scientific community toward the developments and uses of gallic acid based compounds in the future. PMID:26174568

  4. Nucleic acid import into mitochondria: New insights into the translocation pathways.

    PubMed

    Weber-Lotfi, Frédérique; Koulintchenko, Milana V; Ibrahim, Noha; Hammann, Philippe; Mileshina, Daria V; Konstantinov, Yuri M; Dietrich, André

    2015-12-01

    Mitochondria have retained indispensable but limited genetic information and they import both proteins and nucleic acids from the cytosol. RNA import is essential for gene expression and regulation, whereas competence for DNA uptake is likely to contribute to organellar genome dynamics and evolution. Contrary to protein import mechanisms, the way nucleic acids cross the mitochondrial membranes remains poorly understood. Using proteomic, genetic and biochemical approaches with both plant and yeast organelles, we develop here a model for DNA uptake into mitochondria. The first step includes the voltage-dependent anion channel and an outer membrane-located precursor fraction of a protein normally located in the inner membrane. To proceed, the DNA is then potentially recruited in the intermembrane space by an accessible subunit of one of the respiratory chain complexes. Final translocation through the inner membrane remains the most versatile but points to the components considered to make the mitochondrial permeability transition pore. Depending on the size, DNA and RNA cooperate or compete for mitochondrial uptake, which shows that they share import mechanisms. On the other hand, our results imply the existence of more than one route for nucleic acid translocation into mitochondria. PMID:26376423

  5. Relative importance of nitrite oxidation by hypochlorous acid under chloramination conditions.

    PubMed

    Wahman, David G; Speitel, Gerald E

    2012-06-01

    Nitrification can occur in water distribution systems where chloramines are used as the disinfectant. The resulting product, nitrite, can be oxidized by monochloramine and hypochlorous acid (HOCl), potentially leading to rapid monochloramine loss. This research characterizes the importance of the HOCl reaction, which has typically been ignored because of HOCl's low concentration. Also, the general acid-assisted rate constants for carbonic acid and bicarbonate ion were estimated for the monochloramine reaction. The nitrite oxidation reactions were incorporated into a widely accepted chloramine autodecomposition model, providing a comprehensive model that was implemented in AQUASIM. Batch kinetic experiments were conducted to evaluate the significance of the HOCl reaction and to estimate carbonate buffer rate constants for the monochloramine reaction. The experimental data and model simulations indicated that HOCl may be responsible for up to 60% of the nitrite oxidation, and that the relative importance of the HOCl reaction for typical chloramination conditions peaks between pH 7.5 and 8.5, generally increasing with (1) decreasing nitrite concentration, (2) increasing chlorine to nitrogen mass ratio, and (3) decreasing monochloramine concentration. Therefore, nitrite's reaction with HOCl may be important during chloramination and should be included in water quality models to simulate nitrite and monochloramine's fate. PMID:22571335

  6. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean

    PubMed Central

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na+ and K+, and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  7. Eos is redundant for T regulatory cell function, but plays an important role in IL-2 and Th17 production by CD4+ T conventional cells

    PubMed Central

    Rieder, Sadiye Amcaoglu; Metidji, Amina; Glass, Deborah Dacek; Thornton, Angela M.; Ikeda, Tohru; Morgan, Bruce A.; Shevach, Ethan M.

    2015-01-01

    Eos is a transcription factor that belongs to the Ikaros family of transcription factors. Eos has been reported to be a T regulatory cell (Treg) signature gene, to play a critical role in Treg suppressor functions, and to maintain Treg stability. We have utilized mice with a global deficiency of Eos to re-examine the role of Eos expression in both Treg and T conventional (Tconv) cells. Treg from Eos deficient (Eos−/−) mice developed normally, displayed a normal Treg phenotype, and exhibited normal suppressor function in vitro. Eos−/− Treg were as effective as Treg from wild type (WT) mice in suppression of inflammation in a model of inflammatory bowel disease. Bone marrow (BM) from Eos−/− mice was as effective as BM from WT mice in controlling T cell activation when used to reconstitute immunodeficient mice in the presence of Scurfy fetal liver cells. Surprisingly, Eos was expressed in activated Tconv cells and was required for IL-2 production, CD25 expression and proliferation in vitro by CD4+ Tconv cells. Eos−/− mice developed more severe Experimental Autoimmune Encephalomyelitis than WT mice, displayed increased numbers of effector T cells in the periphery and CNS, and amplified IL-17 production. In conclusion, our studies are not consistent with a role for Eos in Treg development and function, but demonstrate that Eos plays an important role in the activation and differentiation of Tconv cells. PMID:26062998

  8. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean.

    PubMed

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na(+) and K(+), and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  9. Characterization of amino acid residues within the N-terminal region of Ubc9 that play a role in Ubc9 nuclear localization

    SciTech Connect

    Sekhri, Palak; Tao, Tao; Kaplan, Feige; Zhang, Xiang-Dong

    2015-02-27

    As the sole E2 enzyme for SUMOylation, Ubc9 is predominantly nuclear. However, the underlying mechanisms of Ubc9 nuclear localization are still not well understood. Here we show that RNAi-depletion of Imp13, an importin known to mediate Ubc9 nuclear import, reduces both Ubc9 nuclear accumulation and global SUMOylation. Furthermore, Ubc9-R13A or Ubc9-H20D mutation previously shown to interrupt the interaction of Ubc9 with nucleus-enriched SUMOs reduces the nuclear enrichment of Ubc9, suggesting that the interaction of Ubc9 with the nuclear SUMOs may enhance Ubc9 nuclear retention. Moreover, Ubc9-R17E mutation, which is known to disrupt the interaction of Ubc9 with both SUMOs and Imp13, causes a greater decrease in Ubc9 nuclear accumulation than Ubc9-R13A or Ubc9-H20D mutation. Lastly, Ubc9-K74A/S89D mutations that perturb the interaction of Ubc9 with nucleus-enriched SUMOylation-consensus motifs has no effect on Ubc9 nuclear localization. Altogether, our results have elucidated that the amino acid residues within the N-terminal region of Ubc9 play a pivotal role in regulation of Ubc9 nuclear localization. - Highlights: • Imp13-mediated nuclear import of Ubc9 is critical for global SUMOylation. • Ubc9 mutations disrupting Ubc9-SUMO interaction decrease Ubc9 nuclear accumulation. • N-terminal amino acid residues of Ubc9 are critical for Ubc9 nuclear enrichment.

  10. Does asymmetric charge transfer play an important role as an ionization mode in low power-low pressure glow discharge mass spectrometry?

    NASA Astrophysics Data System (ADS)

    Mushtaq, S.; Steers, E. B. M.; Churchill, G.; Barnhart, D.; Hoffmann, V.; Pickering, J. C.; Putyera, K.

    2016-04-01

    We report results of comprehensive studies using the Nu Instruments Astrum high-resolution glow discharge mass spectrometer (GD-MS) and optical emission spectrometry (OES) to investigate the relative importance of discharge mechanisms, such as Penning ionization (PI) and asymmetric charge transfer (ACT), at low-power/low-pressure discharge conditions. Comparison of the ratios of the ion signals of each constituent element to that of the plasma gas shows that for oxygen, the ratio in krypton is more than ten times higher than in argon (oxygen ground state ions are produced by Kr-ACT). For many elements, the ratios are very similar but that for tungsten is higher with krypton, while for iron, the reverse holds. These effects are linked to the arrangement of ionic energy levels of the elements concerned and the resulting relative importance of ACT and PI. The GD-MS and GD-OES results have shown that the ACT process can play an important role as the ionization mode in low-power/low-pressure discharges. However, OES results have shown that the magnitude of change in spectral intensities of elements studied are dependent on the discharge conditions.

  11. Membrane cholesterol plays an important role in enteropathogen adhesion and the activation of innate immunity via flagellin-TLR5 signaling.

    PubMed

    Zhou, Mingxu; Duan, Qiangde; Li, Yinchau; Yang, Yang; Hardwidge, Philip R; Zhu, Guoqiang

    2015-08-01

    Lipid rafts are cholesterol- and sphingolipid-rich ordered microdomains distributed in the plasma membrane that participates in mammalian signal transduction pathways. To determine the role of lipid rafts in mediating interactions between enteropathogens and intestinal epithelial cells, membrane cholesterol was depleted from Caco-2 and IPEC-J2 cells using methyl-β-cyclodextrin. Cholesterol depletion significantly reduced Escherichia coli and Salmonella enteritidis adhesion and invasion into intestinal epithelial cells. Complementation with exogenous cholesterol restored bacterial adhesion to basal levels. We also evaluated the role of lipid rafts in the activation of Toll-like receptor 5 signaling by bacterial flagellin. Depleting membrane cholesterol reduced the ability of purified recombinant E. coli flagellin to activate TLR5 signaling in intestinal cells. These data suggest that both membrane cholesterol and lipid rafts play important roles in enteropathogen adhesion and contribute to the activation of innate immunity via flagellin-TLR5 signaling. PMID:25935453

  12. Diabetes-induced upregulation of urotensin II and its receptor plays an important role in TGF-beta1-mediated renal fibrosis and dysfunction.

    PubMed

    Tian, Lin; Li, Cai; Qi, Jiping; Fu, Peng; Yu, Xiaoyan; Li, Xiaokun; Cai, Lu

    2008-11-01

    Urotensin II (UII) was identified as the ligand for a novel G protein-coupled receptor, GPR14. UII was found not only to have a potent vasoconstrictive action but also to have profibrotic effects in the heart. The present study was to define whether UII and GPR14 also play important roles in diabetes-induced renal fibrosis and dysfunction. Diabetic rats were induced using streptozotocin, and the rat proximal tubular epithelial cells (NRK-52E) were used for the in vitro mechanism study. Results showed that expression of UII and GPR14 was significantly upregulated at both mRNA and protein levels in the diabetic kidneys compared with controls. The upregulated expressions of UII and GPR14 in the kidney were accompanied by significant increases in the renal profibrotic factor transforming growth factor (TGF)-beta1 expression, the renal extracellular matrix (fibronectin and collagen IV) accumulation, and the renal dysfunction (increases in urinal N-acetyl-beta-d-glucosaminidase content, 24-h urinary retinol-binding protein excretion rate, and decrease in creatinine clearance rate). Exposure of NRK-52E cells to 10(-8) mol/l UII for 48 h caused a significant increase of TGF-beta1, but not ANG II, production that was GPR14- and calcium-dependent, since GPR14 small-interfering RNA and calcium channel blocker nimodipine or calcium chelator EDTA all could abolish the induction of TGF- beta1 by UII. Furthermore, exposure of NRK-52E cells to TGF-beta1 or ANG II also increased UII and GPR14 mRNA expressions. These results suggested that diabetes-induced upregulation of UII and GPR14, most likely through autocrine and/or paracrine mechanisms, plays an important role in TGF-beta1-mediated renal fibrosis and dysfunction. PMID:18796544

  13. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt.

    PubMed

    Yang, Jun; Ma, Qing; Zhang, Yan; Wang, Xingfen; Zhang, Guiyin; Ma, Zhiying

    2016-01-10

    Most of the disease resistance genes already characterized in plants encode nucleotide-binding site-leucine rich repeat (NBS-LRR) proteins that have key roles in resistance to Verticillium dahliae. Using a cDNA library and RACE protocols, we cloned a coiled-coil (CC)-NBS-LRR-type gene, GbRVd, from a resistant tetraploid cotton species, Gossypium barbadense (RVd=Resistance to V. dahliae). We also applied RT-qPCR and VIGS technologies to analyze how expression of GbRVd was induced upon attack by V. dahliae. Its 2862-bp ORF encodes a predicted protein containing 953 amino acid residues, with a predicted molecular weight of 110.17kDa and an isoelectric point of 5.87. GbRVd has three domains - CC, NBS, and LRR - and is most closely related to Gossypium raimondii RVd (88% amino acid identity). Profiling demonstrated that GbRVd is constitutively expressed in all tested tissues, and transcript levels are especially high in the leaves. In plants inoculated with V. dahliae, GbRVd was significantly up-regulated when compared with the control, with expression peaking at 48h post-inoculation. Silencing of GbRVd in cotton through VIGS dramatically down-regulated SA, NO, and H2O2 production, resulting in greater susceptibility to V. dahliae. Taken together, these results suggest that GbRVd has an important role in protecting G. barbadense against infection by V. dahliae. PMID:26407869

  14. Inhibition of nocturnal acidity is important but not essential for duodenal ulcer healing.

    PubMed Central

    Bianchi Porro, G; Parente, F; Sangaletti, O

    1990-01-01

    We have determined the relative importance of day and night time gastric acid inhibition for duodenal ulcer healing by comparing the anti-ulcer efficacy of a single morning with that of a single bedtime dose of ranitidine. One hundred and thirty patients with active duodenal ulcer were randomly assigned to a double-blind therapy with ranitidine 300 mg at 8 am or the same dose at 10 pm for up to eight weeks. The antisecretory effects of these regimens were also assessed by 24 h intragastric pH monitoring in 18 of these patients. At four weeks ulcers had healed in 41/61 (67%) of patients taking the morning dose and in 47/63 (75%) of those receiving the nocturnal dose (95% CI for the difference -0.09 +0.25; p ns). At eight weeks, the corresponding healing rates were 82% and 85.5%, respectively (95% CI for the difference -0.11 +0.17; p ns). Both treatments were significantly superior to placebo in raising 24 h intragastric pH, although the effects of the morning dose were of shorter duration than those of the nocturnal dose. These findings suggest that suppression of nocturnal acidity is important but not essential to promote healing of duodenal ulcers; a prolonged period of acid inhibition during the day (as obtained with a single large morning dose of H2-blockers) may be equally effective. PMID:2186980

  15. Outdoor Play and Play Equipment.

    ERIC Educational Resources Information Center

    Naylor, Heather

    1985-01-01

    Discusses aspects of the play environment and its effect on children's play behavior. Indoor and outdoor play spaces are considered along with factors affecting the use of outdoor environments for play. Children's preferences for different outdoor play environments and for various play structures are explored. Guides for choosing play equipment…

  16. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation

    PubMed Central

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-01-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development. PMID:25609828

  17. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  18. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation.

    PubMed

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-04-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development. PMID:25609828

  19. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  20. Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate.

    PubMed

    Maruyama, Yukie; Itoh, Takafumi; Kaneko, Ai; Nishitani, Yu; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2015-09-01

    The acidic polysaccharide alginate represents a promising marine biomass for the microbial production of biofuels, although the molecular and structural characteristics of alginate transporters remain to be clarified. In Sphingomonas sp. A1, the ATP-binding cassette transporter AlgM1M2SS is responsible for the import of alginate across the cytoplasmic membrane. Here, we present the substrate-transport characteristics and quaternary structure of AlgM1M2SS. The addition of poly- or oligoalginate enhanced the ATPase activity of reconstituted AlgM1M2SS coupled with one of the periplasmic solute-binding proteins, AlgQ1 or AlgQ2. External fluorescence-labeled oligoalginates were specifically imported into AlgM1M2SS-containing proteoliposomes in the presence of AlgQ2, ATP, and Mg(2+). The crystal structure of AlgQ2-bound AlgM1M2SS adopts an inward-facing conformation. The interaction between AlgQ2 and AlgM1M2SS induces the formation of an alginate-binding tunnel-like structure accessible to the solvent. The translocation route inside the transmembrane domains contains charged residues suitable for the import of acidic saccharides. PMID:26235029

  1. Fatty acid binding protein 4 and 5 play a crucial role in thermogenesis under the conditions of fasting and cold stress.

    PubMed

    Syamsunarno, Mas Rizky A A; Iso, Tatsuya; Yamaguchi, Aiko; Hanaoka, Hirofumi; Putri, Mirasari; Obokata, Masaru; Sunaga, Hiroaki; Koitabashi, Norimichi; Matsui, Hiroki; Maeda, Kazuhisa; Endo, Keigo; Tsushima, Yoshito; Yokoyama, Tomoyuki; Kurabayashi, Masahiko

    2014-01-01

    Hypothermia is rapidly induced during cold exposure when thermoregulatory mechanisms, including fatty acid (FA) utilization, are disturbed. FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipose tissues and macrophages, have been identified as key molecules in the pathogenesis of overnutrition-related diseases, such as insulin resistance and atherosclerosis. We have recently shown that FABP4/5 are prominently expressed in capillary endothelial cells in the heart and skeletal muscle and play a crucial role in FA utilization in these tissues. However, the role of FABP4/5 in thermogenesis remains to be determined. In this study, we showed that thermogenesis is severely impaired in mice lacking both FABP4 and FABP5 (DKO mice), as manifested shortly after cold exposure during fasting. In DKO mice, the storage of both triacylglycerol in brown adipose tissue (BAT) and glycogen in skeletal muscle (SkM) was nearly depleted after fasting, and a biodistribution analysis using 125I-BMIPP revealed that non-esterified FAs (NEFAs) are not efficiently taken up by BAT despite the robustly elevated levels of serum NEFAs. In addition to the severe hypoglycemia observed in DKO mice during fasting, cold exposure did not induce the uptake of glucose analogue 18F-FDG by BAT. These findings strongly suggest that DKO mice exhibit pronounced hypothermia after fasting due to the depletion of energy storage in BAT and SkM and the reduced supply of energy substrates to these tissues. In conclusion, FABP4/5 play an indispensable role in thermogenesis in BAT and SkM. Our study underscores the importance of FABP4/5 for overcoming life-threatening environments, such as cold and starvation. PMID:24603714

  2. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance

    PubMed Central

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2015-01-01

    Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth. PMID:26053400

  3. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds

    PubMed Central

    Papagianni, Maria

    2012-01-01

    Lactic acid bacteria (LAB) are receiving increased attention for use as cell factories for the production of metabolites with wide use by the food and pharmaceutical industries. The availability of efficient tools for genetic modification of LAB during the past decade permitted the application of metabolic engineering strategies at the levels of both the primary and the more complex secondary metabolism. The recent developments in the area with a focus on the production of industrially important metabolites will be discussed in this review. PMID:24688663

  4. Mineralization of naphtenic acids with thermally-activated persulfate: The important role of oxygen.

    PubMed

    Xu, Xiyan; Pliego, Gema; Zazo, Juan A; Casas, Jose A; Rodriguez, Juan J

    2016-11-15

    This study reports on the mineralization of model naphtenic acids (NAs) in aqueous solution by catalyst-free thermally-activated persulfate (PS) oxidation. These species are found to be pollutants in oil sands process-affected waters. The NAs tested include saturated-ring (cyclohexanecarboxylic and cyclohexanebutyric acids) and aromatic (2-naphthoic and 1,2,3,4-tetrahydro-2-naphthoic acids) structures, at 50mgL(-1)starting concentration. The effect of PS dose within a wide range (10-100% of the theoretical stoichiometric) and working temperature (40-97°C) was investigated. At 80°C and intitial pH=8 complete mineralization of the four NAs was achieved with 40-60% of the stoichiometric PS dose. This is explained because of the important contribution of oxygen, which was experimentally verified and was found to be more effective toward the NAs with a single cyclohexane ring than for the bicyclic aromatic-ring-bearing ones. The effect of chloride and bicarbonate was also checked. The former showed negative effect on the degradation rate of NAs whereas it was negligible or even positive for bicarbonate. The rate of mineralization was well described by simple pseudo-first order kinetics with values of the rate constants normalized to the PS dose within the range of 0.062-0.099h(-1). Apparent activation energy values between 93.7-105.3kJmol(-1) were obtained. PMID:27442986

  5. Quantitative importance of the 25-hydroxylation pathway for bile acid biosynthesis in the rat

    SciTech Connect

    Duane, W.C.; Bjoerkhem, I.H.; Hamilton, J.N.; Mueller, S.M.

    1988-05-01

    During biosynthesis of bile acid, carbons 25-26-27 are removed from the cholesterol side chain. Side-chain oxidation begins either with hydroxylation at the 26-position, in which case the three-carbon fragment is released as propionic acid, or with hydroxylation at the 25-position, in which case the three-carbon fragment is released as acetone. In the present study, we have quantitated the relative importance of these two pathways in vivo by measuring production of (14C) acetone from (14C)-26-cholesterol. Four days after intraperitoneal injection of 20 to 40 muCi (14C)-26-cholesterol and 1 day after beginning a constant intravenous infusion of unlabeled acetone at 25 mumoles per kg per min, 6 male and 2 female Sprague-Dawley rats underwent breath collections. Expired acetone was trapped and purified as the 2,4-dinitrophenylhydrazine derivative. 14CO2 was trapped quantitatively using phenethylamine. Specific activity of breath acetone was multiplied times the acetone infusion rate to calculate production of (14C)acetone. (14C) Acetone production averaged 1.7% of total release of 14C from (14C)-26-cholesterol, estimated by 14CO2 output. The method was validated by showing that (14C) acetone production from (14C)isopropanol averaged 111% of the (14C)isopropanol infusion rate. We conclude that, in the normal rat, the 25-hydroxylation pathway accounts for less than 2% of bile acid synthesis.

  6. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response.

    PubMed

    Slaymaker, David H; Navarre, Duroy A; Clark, Daniel; del Pozo, Olga; Martin, Gregory B; Klessig, Daniel F

    2002-09-01

    In plants, salicylic acid (SA) plays an important role in signaling both local and systemic defense responses. Previous efforts to identify SA effector proteins in tobacco have led to the isolation of two soluble cytoplasmic SA-binding proteins (SABPs): catalase, SABP, and an approximately 25-kDa protein, SABP2. Here we describe the identification of an SA-binding protein, SABP3, in the stroma of tobacco chloroplasts. SABP3 bound SA with an apparent dissociation constant (K(d)) of 3.7 microM and exhibited much greater affinity for biologically active than inactive analogs. Purification and partial sequencing of SABP3 indicated that it is the chloroplast carbonic anhydrase (CA). Confirming this finding, recombinant tobacco chloroplast CA exhibited both CA enzymatic and SA-binding activities. Expression of this protein in yeast also demonstrated that CA/SABP3 has antioxidant activity. A second gene encoding CA was also cloned, and its encoded protein was shown to behave similarly to that purified as SABP3. Finally, silencing of CA gene expression in leaves suppressed the Pto:avrPto-mediated hypersensitive response in disease resistance. These results demonstrate that SA may act through multiple effector proteins in plants and shed further light on the function of CA in chloroplasts. PMID:12185253

  7. Importance of Fatty Acid Compositions in Patients with Peripheral Arterial Disease

    PubMed Central

    Shiba, Yuji; Motoki, Hirohiko; Takeuchi, Takahiro; Okada, Ayako; Tomita, Takeshi; Miyashita, Yusuke; Koyama, Jun; Ikeda, Uichi

    2014-01-01

    Objective Importance of fatty acid components and imbalances has emerged in coronary heart disease. In this study, we analyzed fatty acids and ankle-brachial index (ABI) in a Japanese cohort. Methods Peripheral arterial disease (PAD) was diagnosed in 101 patients by ABI ≤0.90 and/or by angiography. Traditional cardiovascular risk factors and components of serum fatty acids were examined in all patients (mean age 73.2±0.9 years; 81 males), and compared with those in 373 age- and sex-matched control subjects with no evidence of PAD. Results The presence of PAD (mean ABI: 0.71±0.02) was independently associated with low levels of gamma-linolenic acid (GLA) (OR: 0.90; 95% CI: 0.85–0.96; P = 0.002), eicosapentaenoic acid∶arachidonic acid (EPA∶AA) ratio (OR: 0.38; 95% CI: 0.17–0.86; P = 0.021), and estimated glomerular filtration rate (OR: 0.97; 95% CI: 0.96–0.98; P<0.0001), and with a high hemoglobin A1c level (OR: 1.34; 95% CI: 1.06–1.69; P = 0.013). Individuals with lower levels of GLA (≤7.95 µg/mL) and a lower EPA∶AA ratio (≤0.55) had the lowest ABI (0.96±0.02, N = 90), while the highest ABI (1.12±0.01, N = 78) was observed in individuals with higher values of both GLA and EPA∶AA ratio (P<0.0001). Conclusion A low level of GLA and a low EPA∶AA ratio are independently associated with the presence of PAD. Specific fatty acid abnormalities and imbalances could lead to new strategies for risk stratification and prevention in PAD patients. PMID:25191963

  8. The Importance of Nitrous Acid (hono) For Tropospheric Daytime Chemistry In Urban Areas

    NASA Astrophysics Data System (ADS)

    Trick, S.; Geyer, A.; Platt, U.; Bruno, P.; Febo, A.; Acker, K.; Wieprecht, W.

    Nitrous acid (HONO) has been first detected as a typical product of the polluted urban atmosphere about 20 years ago. At this time OH radicals were believed to be formed dominantly by ozone photolysis followed by the reaction with water vapor. Influences of the photolysis of nitrous acid and aldehydes as well as the ozonolysis of alkenes were suggested to be of minor importance for a long time. This was item reasoned by measurements of ozone levels reaching its maximum at noontime, when HONO was found to be below the detection limit at the same time. Here we present the data set and interpretation of an intensive field campaign in May and June 2001 in Rome, Italy during various situations (rainy and clear sky days and photochemical smog events). HONO, NO2, O3, HCHO, NO, SO2, CO, photoly- sis frequencies, aerosol amount and distribution, meteorological data and radon were reported in the city of Rome, at a background station in Rome and in the plume of Rome. During the campaign high HONO daytime levels averaging 200 ppt clear above the detection limits have been measured by three different and independent measurement techniques: Differential Optical Absorption Spectroscopy, Wetted Ef- fluent Diffusion Denuder and High Performance Liquid Chromatography. These mea- surements and first modeling studies give strong evidence that HONO is the most important OH source in urban atmosphere throughout the day. Especially early in the morning, when ozone is still around the detection limit, HONO photolysis was found to initialize photochemical smog events in Rome.

  9. Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells

    PubMed Central

    Lee, Jane Ying-Chieh; Kuo, Ching-Wen; Tsai, Shing-Ling; Cheng, Siao Muk; Chen, Shang-Hung; Chan, Hsiu-Han; Lin, Chun-Hui; Lin, Kun-Yuan; Li, Chien-Feng; Kanwar, Jagat R.; Leung, Euphemia Y.; Cheung, Carlos Chun Ho; Huang, Wei-Jan; Wang, Yi-Ching; Cheung, Chun Hei Antonio

    2016-01-01

    SAHA is a class I HDAC/HDAC6 co-inhibitor and an autophagy inducer currently undergoing clinical investigations in breast cancer patients. However, the molecular mechanism of action of SAHA in breast cancer cells remains unclear. In this study, we found that SAHA is equally effective in targeting cells of different breast cancer subtypes and tamoxifen sensitivity. Importantly, we found that down-regulation of survivin plays an important role in SAHA-induced autophagy and cell viability reduction in human breast cancer cells. SAHA decreased survivin and XIAP gene transcription, induced survivin protein acetylation and early nuclear translocation in MCF7 and MDA-MB-231 breast cancer cells. It also reduced survivin and XIAP protein stability in part through modulating the expression and activation of the 26S proteasome and heat-shock protein 90. Interestingly, targeting HDAC3 and HDAC6, but not other HDAC isoforms, by siRNA/pharmacological inhibitors mimicked the effects of SAHA in modulating the acetylation, expression, and nuclear translocation of survivin and induced autophagy in MCF7 and MDA-MB-231 cancer cells. Targeting HDAC3 also mimicked the effect of SAHA in up-regulating the expression and activity of proteasome, which might lead to the reduced protein stability of survivin in breast cancer cells. In conclusion, this study provides new insights into SAHA's molecular mechanism of actions in breast cancer cells. Our findings emphasize the complexity of the regulatory roles in different HDAC isoforms and potentially assist in predicting the mechanism of novel HDAC inhibitors in targeted or combinational therapies in the future. PMID:27065869

  10. SARI, a novel target gene of glucocorticoid receptor, plays an important role in dexamethasone-mediated killing of B lymphoma cells.

    PubMed

    Huang, Yinghui; Zhou, Jie; Huang, Yan; He, Jintao; Wang, Yuting; Yang, Chaohui; Liu, Dongbo; Zhang, Li; He, Fengtian

    2016-04-01

    Dexamethasone (Dex) has been commonly used in lymphoma and leukemia treatment, but the detailed mechanisms are not fully understood. Suppressor of AP-1 regulated by interferon (SARI) has tumor-selective growth inhibitory effect. However, it's unclear whether SARI is involved in the Dex-mediated lymphoma growth suppression. In this study, we found that Dex-treated B lymphoma tissues had a higher level of SARI. Dex repressed the growth of B lymphoma cells and upregulated SARI expression by activating glucocorticoid receptor (GR) in vitro and in vivo. Silencing of SARI attenuated the Dex-mediated growth suppression of B lymphoma cells and inhibition of AP-1 activity. Reporter assays revealed that activation of GR enhanced the transcriptional activity of SARI promoter. EMSA and ChIP assays showed that GR directly bound to the ER9 element in SARI promoter region. These results for the first time demonstrated that SARI is a novel target gene of GR, and the upregulation of SARI plays an important role in Dex's killing effect on B lymphoma cells, suggesting that SARI may serve as a novel target and a potential indicator of Dex sensitivity in B lymphoma treatment. PMID:26808579

  11. Overexpression of CDR1 and CDR2 genes plays an important role in fluconazole resistance in Candida albicans with G487T and T916C mutations.

    PubMed

    Chen, L M; Xu, Y H; Zhou, C L; Zhao, J; Li, C Y; Wang, R

    2010-01-01

    This study was designed to investigate potential resistance mechanisms by studying the expression of resistant genes in 14 fluconazole-resistant Candida albicans isolates, with G487T and T916C mutations in the 14alpha-demethylase (ERG11) gene, collected from human immunodeficiency virus uninfected patients and a fluconazole-susceptible control strain. The in vitro susceptibilities of the C. albicans isolates to fluconazole were determined using the broth microdilution method and a disc diffusion assay. Expression of Candida drug resistance (CDR)1, CDR2, ERG11, fluconazole resistance (FLU)1 and multidrug resistance (MDR)1 genes was measured using real-time reverse transcription-polymerase chain reaction and evaluated relative to the expression of the control gene 18SrRNA. The CDR1 and CDR2 genes were upregulated in all the fluconazole-resistant C. albicans isolates, whereas only a few isolates showed high expression of MDR1, FLU1 and ERG11 genes compared with the control strain. In conclusion, overexpression of the CDR1 and CDR2 genes may play an important role in fluconazole-resistant C. albicans with G487T and T916C mutations. PMID:20515567

  12. Mast cells and histamine play an important role in edema and leukocyte recruitment induced by Potamotrygon motoro stingray venom in mice.

    PubMed

    Kimura, Louise F; Prezotto-Neto, José Pedro; Távora, Bianca C L F; Faquim-Mauro, Eliana L; Pereira, Nicole A; Antoniazzi, Marta M; Jared, Simone G S; Teixeira, Catarina F P; Santoro, Marcelo L; Barbaro, Katia C

    2015-09-01

    This work aimed to investigate mechanisms underlying the inflammatory response caused by Potamotrygon motoro stingray venom (PmV) in mouse paws. Pre-treatment of animals with a mast cell degranulation inhibitor (cromolyn) diminished edema (62% of inhibition) and leukocyte influx into the site of PmV injection. Promethazine (histamine type 1 receptor antagonist) or thioperamide (histamine type 3 and 4 receptor antagonist) also decreased edema (up to 30%) and leukocyte numbers, mainly neutrophils (40-50 %). Cimetidine (histamine type 2 receptor antagonist) had no effect on PmV-induced inflammation. In the RBL-2H3 lineage of mast cells, PmV caused proper cell activation, in a dose-dependent manner, with release of PGD2 and PGE2. In addition, the role of COXs products on PmV inflammatory response was evaluated. Indomethacin (COX-1/COX-2 inhibitor) or etoricoxib (COX-2 inhibitor) partially diminished edema (around 20%) in PmV-injected mice. Indomethacin, but not etoricoxib, modulated neutrophil influx into the site of venom injection. In conclusion, mast cell degranulation and histamine, besides COXs products, play an important role in PmV-induced reaction. Since PmV mechanism of action remains unknown, hindering accurate treatment, clinical studies can be performed to validate the prescription of antihistaminic drugs, besides NSAIDs, to patients injured by freshwater stingrays. PMID:26100666

  13. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    PubMed Central

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  14. A complex of Cox4 and mitochondrial Hsp70 plays an important role in the assembly of the cytochrome c oxidase

    PubMed Central

    Böttinger, Lena; Guiard, Bernard; Oeljeklaus, Silke; Kulawiak, Bogusz; Zufall, Nicole; Wiedemann, Nils; Warscheid, Bettina; van der Laan, Martin; Becker, Thomas

    2013-01-01

    The formation of the mature cytochrome c oxidase (complex IV) involves the association of nuclear- and mitochondria-encoded subunits. The assembly of nuclear-encoded subunits like cytochrome c oxidase subunit 4 (Cox4) into the mature complex is poorly understood. Cox4 is crucial for the stability of complex IV. To find specific biogenesis factors, we analyze interaction partners of Cox4 by affinity purification and mass spectroscopy. Surprisingly, we identify a complex of Cox4, the mitochondrial Hsp70 (mtHsp70), and its nucleotide-exchange factor mitochondrial GrpE (Mge1). We generate a yeast mutant of mtHsp70 specifically impaired in the formation of this novel mtHsp70-Mge1-Cox4 complex. Strikingly, the assembly of Cox4 is strongly decreased in these mutant mitochondria. Because Cox4 is a key factor for the biogenesis of complex IV, we conclude that the mtHsp70-Mge1-Cox4 complex plays an important role in the formation of cytochrome c oxidase. Cox4 arrests at this chaperone complex in the absence of mature complex IV. Thus the mtHsp70-Cox4 complex likely serves as a novel delivery system to channel Cox4 into the assembly line when needed. PMID:23864706

  15. cDNA-AFLP analysis reveals heat shock proteins play important roles in mediating cold, heat, and drought tolerance in Ammopiptanthus mongolicus.

    PubMed

    Guo, Huiming; Li, Zhaochun; Zhou, Meiliang; Cheng, Hongmei

    2014-03-01

    Ammopiptanthus mongolicus (Maxim.ex kom.) Cheng F. is the only evergreen broadleaf shrub endemic to the desert of central Asian and it can survive at drought, salt, and alkali stress. It is believed that A. mongolicus is an important germplasm containing abiotic-tolerance genes. In order to identify drought-, cold-, and heat-responsive genes and to gain a better understanding of stress responses in A. mongolicus, genome-wide investigation of drought-, cold-, and heat-responsive genes was performed in A. mongolicus using cDNA-amplified fragment length polymorphism. Selective amplification with 240 primer combinations generated 5,000 differentially expressed transcript derived fragments (TDFs). Of these, 201 TDFs with differential expression patterns were excised from gels, reamplified by PCR, and sequenced. The gene expression patterns of 11 regulated genes were further investigated by semiquantitative reverse transcriptase polymerase chain reaction analysis. Sequencing and similarity analysis revealed that TDFs present homologies chiefly with proteins involved in various abiotic and biotic stress and developmental responses. The information presented in this study reveals that heat shock proteins play an active role in mediating drought, cold, and heat tolerance in A. mongolicus. PMID:24241624

  16. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.

    PubMed

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  17. New Play.

    ERIC Educational Resources Information Center

    Lersten, Kenneth C.

    There have been many theories and hypotheses about play, one of which is the equation of play with "transcendence." Play may have the ingredients to allow us to transcend and, for a moment, remythologize life. There have been recent authors who have given play the status of theology, indicating that play contains elements also found in religion.…

  18. Playful Gaming.

    ERIC Educational Resources Information Center

    Makedon, Alexander

    A philosophical analysis of play and games is undertaken in this paper. Playful gaming, which is shown to be a synthesis of play and games, is utilized as a category for undertaking the examination of play and games. The significance of playful gaming to education is demonstrated through analyses of Plato's, Dewey's, Sartre's, and Marcuse's…

  19. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes*

    PubMed Central

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-01-01

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes. PMID:26041776

  20. New functions of the chloroplast Preprotein and Amino acid Transporter (PRAT) family members in protein import.

    PubMed

    Rossig, Claudia; Reinbothe, Christiane; Gray, John; Valdes, Oscar; von Wettstein, Diter; Reinbothe, Steffen

    2014-01-01

    Plant cells contain distinct compartments such as the nucleus, the endomembrane system comprising the endoplasmic reticulum and Golgi apparatus, peroxisomes, vacuoles, as well as mitochondria and chloroplasts. All of these compartments are surrounded by 1 or 2 limiting membranes and need to import proteins from the cytosol. Previous work led to the conclusion that mitochondria and chloroplasts use structurally different protein import machineries in their outer and inner membranes for the uptake of cytosolic precursor proteins. Our most recent data show that there is some unexpected overlap. Three members of the family of preprotein and amino acid transporters, PRAT, were identified in chloroplasts that mediate the uptake of transit sequence-less proteins into the inner plastid envelope membrane. By analogy, mitochondria contain with TIM22 a related PRAT protein that is involved in the import of transit sequence-less proteins into the inner mitochondrial membrane. Both mitochondria and chloroplasts thus make use of similar import mechanisms to deliver some of their proteins to their final place. Because single homologs of HP20- and HP30-like proteins are present in algae such as Chlamydomonas, Ostreococcus, and Volvox, which diverged from land plants approximately 1 billion years ago, it is likely that the discovered PRAT-mediated mechanism of protein translocation evolved concomitantly with the secondary endosymbiotic event that gave rise to green plants. PMID:24476934

  1. Proximate and fatty acid composition of some commercially important fish species from the Sinop region of the Black Sea.

    PubMed

    Kocatepe, Demet; Turan, Hülya

    2012-06-01

    The proximate and fatty acid compositions of the commercially important fish species (Engraulis encrasicolus, Alosa alosa, Belone belone, Scorpaena porcus, Pomatomus saltatrix, Mullus barbatus) from the Sinop region of the Black Sea were examined. The fat contents ranged from 1.26% (for scorpion fish) to 18.12% (for shad). The protein contents were min 14.54% (for red mullet) and maximum 20.26% (for belone). The fatty acid compositions of the fish ranged from 27.83 to 35.91% for saturated fatty acids, 19.50-33.80% for monounsaturated fatty acids and 15.25-40.02% for polyunsaturated fatty acids. Among the saturated fatty acids, palmitic acid (16:0) (17.75-22.20%) was the dominant fatty acid for all the fish species. As a second saturated fatty acid, myristic acid (14:0) was observed in four of the fish species and its content ranged from 4.72 to 7.31%. Whereas, for the other two fish species, the second saturated fatty acid was stearic acid (18:0) ranging between 4.54 and 10.64%. Among the monounsaturated fatty acids, those occurring in the highest proportions were oleic acid (18:1n-9c) (11.67-22.45%) and palmitoleic acid (16:1) (4.50-9.40%). Docosahexaenoic acid (22:6n-3) (5.41-28.52%), eicosapentaenoic acid (20:5n-3) (4.68-11.06) and linoleic acid (18:2n-6) (1.38-3.49%) were dominant polyunsaturated fatty acids, respectively. All the species, in particular the belone, the anchovy and the shad had high levels of the n-3 series. PMID:22322400

  2. Heat tolerance plays an important role in regulating remontant flowering in an F1 population of octoploid strawberry (Fragaria ×ananassa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Flower initiation in strawberry is often classified by photoperiod sensitivity; however, temperature also plays a major role in determining flower initiation. OBJECTIVE: Our goal was to determine the role heat tolerance plays in regulating remontant flowering in a segregating population ...

  3. Nuclear factor kappa B plays a pivotal role in polyinosinic-polycytidylic acid-induced expression of human β-defensin 2 in intestinal epithelial cells

    PubMed Central

    Omagari, D; Takenouchi-Ohkubo, N; Endo, S; Ishigami, T; Sawada, A; Moro, I; Asano, M; Komiyama, K

    2011-01-01

    Intestinal epithelial cells (IECs) play an important role in protecting the intestinal surface from invading pathogens by producing effector molecules. IECs are one of the major sources of human beta-defensin 2 (hBD-2), and can produce it in response to a variety of stimuli. Although IECs express Toll-like receptor 3 (TLR-3) and can respond to its ligand, double-stranded RNA (dsRNA), hBD-2 expression in response to dsRNA has not been elucidated. In the present study, using an artificial analogue of dsRNA, polyinosinic-polycytidylic acid (poly I:C), we investigated whether the human IEC line, HT-29, can produce hBD-2 in response to poly I:C. HT-29 cells can express hBD-2 mRNA only when stimulated with poly I:C. The induction of hBD-2 mRNA expression was observed at 3 h after stimulation and peaked at 12 h of post-stimulation. Pre-incubation of the cells with nuclear factor kappa B (NF-κB)-specific inhibitor, l-1–4′-tosylamino-phenylethyl-chloromethyl ketone (TPCK) and isohelenine abolished the expression of hBD-2. Detection of the poly I:C signal by TLR-3 on the surface of HT-29 cells was revealed by pre-incubating the cells with anti-TLR-3 antibody. The 5′-regulatory region of the hBD-2 gene contains two NF-κB binding sites. A luciferase assay revealed the importance of the proximal NF-κB binding site for poly I:C-induced expression of hBD-2. Among NF-κB subunits, p65 and p50 were activated by poly I:C stimulation and accumulated in the nucleus. Activation of the p65 subunit was investigated further by determining its phosphorylation status, which revealed that poly I:C stimulation resulted in prolonged phosphorylation of p65. These results indicate clearly that NF-κB plays an indispensable role in poly I:C induced hBD-2 expression in HT-29 cells. PMID:21501152

  4. Dihydroceramide-desaturase-1-mediated caspase 9 activation through ceramide plays a pivotal role in palmitic acid-induced HepG2 cell apoptosis.

    PubMed

    Zhu, Qun; Yang, Jianjun; Zhu, Rongping; Jiang, Xin; Li, Wanlian; He, Songqing; Jin, Junfei

    2016-09-01

    In this study, results showed that the inhibition of PA-induced HepG2 cell growth takes place in a time- and concentration-dependent manner, that activation of caspase 9 is necessary for PA-induced HepG2 cell apoptosis, that dihydroceramide desaturase 1 (DES1) plays a key role in PA-mediated caspase 9 and caspase 3 activation, and that palmitoleic acid (POA), an omega-7 monounsaturated fatty acid, reverses PA-induced apoptosis through DES1 → Ceramide → Caspase 9 → Caspase 3 signaling. PMID:27364952

  5. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1

    PubMed Central

    2009-01-01

    Background Antibacterial activity is a novel function of high-mobility group box 1 (HMGB1). However, the functional site for this new effect is presently unknown. Methods and Results In this study, recombinant human HMGB1 A box and B box (rHMGB1 A box, rHMGB1 B box), recombinant human HMGB1 (rHMGB1) and the truncated C-terminal acidic tail mutant (tHMGB1) were prepared by the prokaryotic expression system. The C-terminal acidic tail (C peptide) was synthesized, which was composed of 30 amino acid residues. Antibacterial assays showed that both the full length rHMGB1 and the synthetic C peptide alone could efficiently inhibit bacteria proliferation, but rHMGB1 A box and B box, and tHMGB1 lacking the C-terminal acidic tail had no antibacterial function. These results suggest that C-terminal acidic tail is the key region for the antibacterial activity of HMGB1. Furthermore, we prepared eleven different deleted mutants lacking several amino acid residues in C-terminal acidic tail of HMGB1. Antibacterial assays of these mutants demonstrate that the amino acid residues 201-205 in C-terminal acidic tail region is the core functional site for the antibacterial activity of the molecule. Conclusion In sum, these results define the key region and the crucial site in HMGB1 for its antibacterial function, which is helpful to illustrating the antibacterial mechanisms of HMGB1. PMID:19751520

  6. The antioxidant protein PARK7 plays an important role in cell resistance to Cisplatin-induced apoptosis in case of clear cell renal cell carcinoma.

    PubMed

    Trivedi, Rachana; Dihazi, Gry H; Eltoweissy, Marwa; Mishra, Durga P; Mueller, Gerhard A; Dihazi, Hassan

    2016-08-01

    Clear cell renal cell carcinoma (ccRCC) is the most malignant tumor in the adult kidney. Many factors are responsible for the development and progression of this tumor. Increased reactive oxygen species accumulation and altered redox status have been observed in cancer cells and this biochemical property of cancer cells can be exploited for therapeutic benefits. In earlier work we identified and characterize Protein DJ-1 (PARK7) as an oxidative stress squevenger in renal cells exposed to oxidative stress. To investigate whether the PARK7 or other oxidative stress proteins play a role in the renal cell carcinoma and its sensitivity or resistance to cytostatic drug treatment, differential proteomics analysis was performed with a cell model for clear cell renal carcinoma (Caki-2 and A498). Caki-2 cells were treated with cisplatin and differentially expressed proteins were investigated. The cisplatin treatment resulted in an increase in reactive oxygen species accumulation and ultimately apoptosis of Caki-2 and A498 cells. In parallel, the apoptotic effect was accompanied by a significant downregulation of antioxidant proteins especially PARK7. Knockdown of PARK7 using siRNA and overexpression using plasmid highlights the role of PARK7 as a key player in renal cell carcinoma response to cisplatin induced apoptosis. Overexpression of PARK7 resulted in significant decrease in apoptosis, whereas knockdown of the protein was accompanied by an increase in apoptosis in Caki-2 and A498 cells treated with cisplatin. These results highlights for the first time the important role of PARK7 in cisplatin induced apoptosis in clear renal cell carcinoma cells. PMID:27112662

  7. Miniature Inverted–Repeat Transposable Elements (MITEs) Have Been Accumulated through Amplification Bursts and Play Important Roles in Gene Expression and Species Diversity in Oryza sativa

    PubMed Central

    Lu, Chen; Chen, Jiongjiong; Zhang, Yu; Hu, Qun; Su, Wenqing; Kuang, Hanhui

    2012-01-01

    Miniature inverted–repeat transposable elements (MITEs) are predicted to play important roles on genome evolution. We developed a BLASTN-based approach for de novo identification of MITEs and systematically analyzed MITEs in rice genome. The genome of rice cultivar Nipponbare (Oryza sativa ssp. japonica) harbors 178,533 MITE-related sequences classified into 338 families. Pairwise nucleotide diversity and phylogenetic tree analysis indicated that individual MITE families were resulted from one or multiple rounds of amplification bursts. The timing of amplification burst varied considerably between different MITE families or subfamilies. MITEs are associated with 23,623 (58.2%) genes in rice genome. At least 7,887 MITEs are transcribed and more than 3,463 were transcribed with rice genes. The MITE sequences transcribed with rice coding genes form 1,130 pairs of potential natural sense/antisense transcripts. MITEs generate 23.5% (183,837 of 781,885) of all small RNAs identified from rice. Some MITE families generated small RNAs mainly from the terminals, while other families generated small RNAs predominantly from the central region. More than half (51.8%) of the MITE-derived small RNAs were generated exclusively by MITEs located away from genes. Genome-wide analysis showed that genes associated with MITEs have significantly lower expression than genes away from MITEs. Approximately 14.8% of loci with full-length MITEs have presence/absence polymorphism between rice cultivars 93-11 (O. sativa ssp. indica) and Nipponbare. Considering that different sets of genes may be regulated by MITE-derived small RNAs in different genotypes, MITEs provide considerable diversity for O. sativa. PMID:22096216

  8. Complement factor B is the downstream effector of TLRs and plays an important role in a mouse model of severe sepsis.

    PubMed

    Zou, Lin; Feng, Yan; Li, Yan; Zhang, Ming; Chen, Chan; Cai, Jiayan; Gong, Yu; Wang, Larry; Thurman, Joshua M; Wu, Xiaobo; Atkinson, John P; Chao, Wei

    2013-12-01

    Severe sepsis involves massive activation of the innate immune system and leads to high mortality. Previous studies have demonstrated that various types of TLRs mediate a systemic inflammatory response and contribute to organ injury and mortality in animal models of severe sepsis. However, the downstream mechanisms responsible for TLR-mediated septic injury are poorly understood. In this article, we show that activation of TLR2, TLR3, and TLR4 markedly enhanced complement factor B (cfB) synthesis and release by macrophages and cardiac cells. Polymicrobial sepsis, created by cecal ligation and puncture in a mouse model, augmented cfB levels in the serum, peritoneal cavity, and major organs including the kidney and heart. Cecal ligation and puncture also led to the alternative pathway activation, C3 fragment deposition in the kidney and heart, and cfB-dependent C3dg elevation. Bacteria isolated from septic mice activated the serum alternative pathway via a factor D-dependent manner. MyD88 deletion attenuated cfB/C3 upregulation as well as cleavage induced by polymicrobial infection. Importantly, during sepsis, absence of cfB conferred a protective effect with improved survival and cardiac function and markedly attenuated acute kidney injury. cfB deletion also led to increased neutrophil migratory function during the early phase of sepsis, decreased local and systemic bacterial load, attenuated cytokine production, and reduced neutrophil reactive oxygen species production. Together, our data indicate that cfB acts as a downstream effector of TLR signaling and plays a critical role in the pathogenesis of severe bacterial sepsis. PMID:24154627

  9. Complement Factor B is the Downstream Effector of Toll-Like Receptors and Plays an Important Role in a Mouse Model of Severe Sepsis¶

    PubMed Central

    Zou, Lin; Feng, Yan; Li, Yan; Zhang, Ming; Chen, Chan; Cai, Jiayan; Gong, Yu; Wang, Larry; Thurman, Joshua M.; Wu, Xiaobo; Atkinson, John P.; Chao, Wei

    2013-01-01

    Severe sepsis involves massive activation of the innate immune system and leads to high mortality. Previous studies have demonstrated that various types of Toll-like receptors (TLRs) mediate a systemic inflammatory response and contribute to organ injury and mortality in animal models of severe sepsis. However, the downstream mechanisms responsible for TLR-mediated septic injury are poorly understood. Here, we show that activation of TLR2, TLR3 and TLR4 markedly enhanced complement factor B (cfB) synthesis and release by macrophages and cardiac cells. Polymicrobial sepsis, created by cecal ligation and puncture (CLP) in a mouse model, augmented cfB levels in the serum, peritoneal cavity and major organs including the kidney and heart. CLP also led to the alternative pathway (AP) activation, C3 fragment deposition in the kidney and heart, and cfB-dependent C3dg elevation. Bacteria isolated from septic mice activated the serum AP via a factor D-dependent manner. MyD88 deletion attenuated cfB/C3 up-regulation as well as cleavage induced by polymicrobial infection. Importantly, during sepsis, absence of cfB conferred a protective effect with improved survival and cardiac function, and markedly attenuated acute kidney injury. cfB deletion also led to increased neutrophil migratory function during the early phase of sepsis, decreased local and systemic bacterial load, attenuated cytokine production and reduced neutrophil reactive oxygen species production. Together, our data indicate that cfB acts as a downstream effector of TLR signaling and plays a critical role in the pathogenesis of severe bacterial sepsis. PMID:24154627

  10. Reciprocal regulation of amino acid import and epigenetic state through Lat1 and EZH2

    PubMed Central

    Dann, Stephen G; Ryskin, Michael; Barsotti, Anthony M; Golas, Jonathon; Shi, Celine; Miranda, Miriam; Hosselet, Christine; Lemon, Luanna; Lucas, Judy; Karnoub, Maha; Wang, Fang; Myers, Jeremy S; Garza, Scott J; Follettie, Maximillian T; Geles, Kenneth G; Klippel, Anke; Rollins, Robert A; Fantin, Valeria R

    2015-01-01

    Lat1 (SLC7A5) is an amino acid transporter often required for tumor cell import of essential amino acids (AA) including Methionine (Met). Met is the obligate precursor of S-adenosylmethionine (SAM), the methyl donor utilized by all methyltransferases including the polycomb repressor complex (PRC2)-specific EZH2. Cell populations sorted for surface Lat1 exhibit activated EZH2, enrichment for Met-cycle intermediates, and aggressive tumor growth in mice. In agreement, EZH2 and Lat1 expression are co-regulated in models of cancer cell differentiation and co-expression is observed at the invasive front of human lung tumors. EZH2 knockdown or small-molecule inhibition leads to de-repression of RXRα resulting in reduced Lat1 expression. Our results describe a Lat1-EZH2 positive feedback loop illustrated by AA depletion or Lat1 knockdown resulting in SAM reduction and concomitant reduction in EZH2 activity. shRNA-mediated knockdown of Lat1 results in tumor growth inhibition and points to Lat1 as a potential therapeutic target. PMID:25979827

  11. Metabolites derived from omega-3 polyunsaturated fatty acids are important for cardioprotection.

    PubMed

    Gilbert, Kim; Malick, Mandy; Madingou, Ness; Touchette, Charles; Bourque-Riel, Valérie; Tomaro, Leandro; Rousseau, Guy

    2015-12-15

    Although controversial, some data suggest that omega-3 polyunsaturated fatty acids (PUFA) are beneficial to cardiovascular diseases, and could reduce infarct size. In parallel, we have reported that the administration of Resolvin D1 (RvD1), a metabolite of docosahexaenoic acid, an omega-3 PUFA, can reduce infarct size. The present study was designed to determine if the inhibition of two important enzymes involved in the formation of RvD1 from omega-3 PUFA could reduce the cardioprotective effect of omega-3 PUFA. Sprague-Dawley rats were fed with a diet rich in omega-3 PUFA during 10 days before myocardial infarction (MI). Two days before MI, rats received a daily dose of Meloxicam, an inhibitor of cyclooxygenase-2, PD146176, an inhibitor of 15-lipoxygenase, both inhibitors or vehicle. MI was induced by the occlusion of the left coronary artery for 40min followed by reperfusion. Infarct size and neutrophil accumulation were evaluated after 24h of reperfusion while caspase-3, -8 and Akt activities were assessed at 30min of reperfusion. Rats receiving inhibitors, alone or in combination, showed a larger infarct size than those receiving omega-3 PUFA alone. Caspase-3 and -8 activities are higher in ischemic areas with inhibitors while Akt activity is diminished in groups treated with inhibitors. Moreover, the study showed that RvD1 restores cardioprotection when added to the inhibitors. Results from this study indicate that the inhibition of the metabolism of Omega-3 PUFA attenuate their cardioprotective properties. Then, resolvins seem to be an important mediator in the cardioprotection conferred by omega-3 PUFA in our experimental model of MI. PMID:26550951

  12. Janus kinases and focal adhesion kinases play in the 4.1 band: a superfamily of band 4.1 domains important for cell structure and signal transduction.

    PubMed Central

    Girault, J. A.; Labesse, G.; Mornon, J. P.; Callebaut, I.

    1998-01-01

    The band 4.1 domain was first identified in the red blood cell protein band 4.1, and subsequently in ezrin, radixin, and moesin (ERM proteins) and other proteins, including tumor suppressor merlin/schwannomin, talin, unconventional myosins VIIa and X, and protein tyrosine phosphatases. Recently, the presence of a structurally related domain has been demonstrated in the N-terminal region of two groups of tyrosine kinases: the focal adhesion kinases (FAK) and the Janus kinases (JAK). Additional proteins containing the 4.1/JEF (JAK, ERM, FAK) domain include plant kinesin-like calmodulin-binding proteins (KCBP) and a number of uncharacterized open reading frames identified by systematic DNA sequencing. Phylogenetic analysis of amino acid sequences suggests that band 4.1/JEF domains can be grouped in several families that have probably diverged early during evolution. Hydrophobic cluster analysis indicates that the band 4.1/JEF domains might consist of a duplicated module of approximately 140 residues and a central hinge region. A conserved property of the domain is its capacity to bind to the membrane-proximal region of the C-terminal cytoplasmic tail of proteins with a single transmembrane segment. Many proteins with band 4.1/JEF domains undergo regulated intra- or intermolecular homotypic interactions. Additional properties common to band 4.1/JEF domains of several proteins are binding of phosphoinositides and regulation by GTPases of the Rho family. Many proteins with band 4. 1/JEF domains are associated with the actin-based cytoskeleton and are enriched at points of contact with other cells or the extracellular matrix, from which they can exert control over cell growth. Thus, proteins with band 4.1/JEF domain are at the crossroads between cytoskeletal organization and signal transduction in multicellular organisms. Their importance is underlined by the variety of diseases that can result from their mutations. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:9990861

  13. TaLHY, a 1R-MYB Transcription Factor, Plays an Important Role in Disease Resistance against Stripe Rust Fungus and Ear Heading in Wheat

    PubMed Central

    Zhang, Zijin; Chen, Jieming; Su, Yongying; Liu, Hanmei; Chen, Yanger; Luo, Peigao; Du, Xiaogang; Wang, Dan; Zhang, Huaiyu

    2015-01-01

    LHY (late elongated hypocotyl) is an important gene that regulates and controls biological rhythms in plants. Additionally, LHY is highly expressed in the SSH (suppression subtractive hybridization) cDNA library-induced stripe rust pathogen (CYR32) in our previous research. To identify the function of the LHY gene in disease resistance against stripe rust, we used RACE-PCR technology to clone TaLHY in the wheat variety Chuannong19. The cDNA of TaLHY is 3085 bp long with an open reading frame of 1947 bp. TaLHY is speculated to encode a 70.3 kDa protein of 648 amino acids , which has one typical plant MYB-DNA binding domain; additionally, phylogenetic tree shows that TaLHY has the highest homology with LHY of Brachypodium distachyon(BdLHY-like). Quantitative fluorescence PCR indicates that TaLHY has higher expression in the leaf, ear and stem of wheat but lower expression in the root. Infestation of CYR32 can result in up-regulated expression of TaLHY, peaking at 72 h. Using VIGS (virus-induced gene silencing) technology to disease-resistant wheat in the fourth leaf stage, plants with silenced TaLHY cannot complete their heading stage. Through the compatible interaction with the stripe rust physiological race CYR32, Chuannong 19 loses its immune capability toward the stripe rust pathogen, indicating that TaLHY may regulate and participate in the heading of wheat, as well as the defense responses against stripe rust infection. PMID:26010918

  14. A novel formaldehyde metabolic pathway plays an important role during formaldehyde metabolism and detoxification in tobacco leaves under liquid formaldehyde stress.

    PubMed

    Wang, Ru; Zeng, Zhidong; Liu, Ting; Liu, Ang; Zhao, Yan; Li, Kunzhi; Chen, Limei

    2016-08-01

    Tobacco and Arabidopsis are two model plants often used in botany research. Our previous study indicated that the formaldehyde (HCHO) uptake and assimilation capacities of tobacco leaves were weaker than those of Arabidopsis leaves. After treatment with a 2, 4 or 6 mM HCHO solution for 24 h, detached tobacco leaves absorbed approximately 40% of the HCHO from the treatment solution. (13)C-NMR analysis detected a novel HCHO metabolic pathway in 2 mM H(13)CHO-treated tobacco leaves. [4-(13)C]Asn, [3-(13)C]Gln and [U-(13)C]oxalic acid (OA) were produced from this pathway after H(13)COOH generation during H(13)CHO metabolism in tobacco leaves. Pretreatments of cyclosporin A (CSA) and dark almost completely inhibited the generation of [4-(13)C]Asn, [3-(13)C]Gln and [U-(13)C]OA from this pathway but did not suppressed the production of H(13)COOH in 2 mM H(13)CHO-treated tobacco leaves. The evidence suggests that this novel pathway has an important role during the metabolic detoxification of HCHO in tobacco leaves. The analysis of the chlorophyll and Rubisco contents indicated that CSA and dark pretreatments did not severely affect the survival of leaf cells but significantly inhibited the HCHO uptake by tobacco leaves. Based on the effects of CSA and dark pretreatments on HCHO uptake and metabolism, it is estimated that the contribution of this novel metabolic pathway to HCHO uptake is approximately 60%. The data obtained from the (13)C-NMR analysis revealed the mechanism underlying the weaker HCHO uptake and assimilation of tobacco leaves compared to Arabidopsis leaves. PMID:27116371

  15. Stage-Specific Fatty Acid Fluxes Play a Regulatory Role in Glycerolipid Metabolism during Seed Development in Jatropha curcas L.

    PubMed

    Chaitanya, Bharatula Sri Krishna; Kumar, Sumit; Kaki, Shiva Shanker; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Prasad, Rachapudi Badari Narayana; Sastry, Pidaparty Seshadri; Reddy, Attipalli Ramachandra

    2015-12-23

    The present study describes the changes in lipid profile as well as fatty acid fluxes during seed development in Jatropha curcas L. Endosperm from 34, 37, and 40 days after anthesis (DAA), incubated with [(14)C]acetate, showed significant synthesis of phosphatidylcholine (PC) at seed maturation. The fatty acid methyl ester profile showed PC from 34 DAA was rich in palmitic acid (16:0), whereas PC from 37 and 40 DAA was rich in oleic acid (18:1n-9). Molecular species analysis of diacylglycerol (DAG) indicated DAG (16:0/18:2n-6) was in abundance at 34 DAA, whereas DAG (18:1n-9/18:2n-6) was significantly high at 40 DAA. Triacylglycerol (TAG) analysis revealed TAG (16:0/18:2n-6/16:0) was abundant at 34 DAA, whereas TAG (18:1n-9/18:2n-6/18:1n-9) formed the majority at 40 DAA. Expression of two types of diacylglycerol acyltransferases varied with seed maturation. These data demonstrate stage-specific distinct pools of PC and DAG synthesis during storage TAG accumulation in Jatropha seed. PMID:26628196

  16. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    SciTech Connect

    Hopperton, Kathryn E.; Duncan, Robin E.; Bazinet, Richard P.; Archer, Michael C.

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare

  17. The behavior and importance of lactic acid complexation in Talspeak extraction systems

    SciTech Connect

    Grimes, Travis S.; Nilsson, Mikael; Nash, Kenneth L.

    2008-07-01

    Advanced partitioning of spent nuclear fuel in the UREX +la process relies on the TALSPEAK process for separation of fission-product lanthanides from trivalent actinides. The classic TALSPEAK utilizes an aqueous medium of both lactic acid and diethylenetriaminepentaacetic acid and the extraction reagent di(2-ethylhexyl)phosphoric acid in an aromatic diluent. In this study, the specific role of lactic acid and the complexes involved in the extraction of the trivalent actinides and lanthanides have been investigated using {sup 14}C-labeled lactic acid. Our results show that lactic acid partitions between the phases in a complex fashion. (authors)

  18. The importance of the excitatory amino acid transporter 3 (EAAT3).

    PubMed

    Bjørn-Yoshimoto, Walden E; Underhill, Suzanne M

    2016-09-01

    The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localization can buffer nearby glutamate receptors and modulate excitatory neurotransmission and synaptic plasticity. It is also the main neuronal cysteine uptake system acting as the rate-limiting factor for the synthesis of glutathione, a potent antioxidant, in EAAT3 expressing neurons, while on GABAergic neurons, it is important in supplying glutamate as a precursor for GABA synthesis. Several diseases implicate EAAT3, and modulation of this transporter could prove a useful therapeutic approach. Regulation of EAAT3 could be targeted at several points for functional modulation, including the level of transcription, trafficking and direct pharmacological modulation, and indeed, compounds and experimental treatments have been identified that regulate EAAT3 function at different stages, which together with observations of EAAT3 regulation in patients is giving us insight into the endogenous function of this transporter, as well as the consequences of altered function. This review summarizes work done on elucidating the role and regulation of EAAT3. PMID:27233497

  19. Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization.

    PubMed

    Wang, Chengqiang; Bao, Xiaoming; Li, Yanwei; Jiao, Chunlei; Hou, Jin; Zhang, Qingzhu; Zhang, Weixin; Liu, Weifeng; Shen, Yu

    2015-07-01

    Efficient and specific transporters may enhance pentose uptake and metabolism by Saccharomyces cerevisiae. Eight heterologous sugar transporters were characterized in S. cerevisiae. The transporter Mgt05196p from Meyerozyma guilliermondii showed the highest xylose transport activity among them. Several key amino acid residues of Mgt05196p were suggested by structural and sequence analysis and characterized by site-directed mutagenesis. A conserved aromatic residue-rich motif (YFFYY, position 332-336) in the seventh trans-membrane span plays an important role in D-xylose transport activity. The phenyl ring of the residue at position 336 may take the function to prevent D-xylose from escaping during uptake. F432A and N360S mutations enhanced the D-xylose transport activities of Mgt05196p. Furthermore, mutant N360F specifically transported D-xylose without any glucose-inhibition, high lighting its potential application in constructing glucose-xylose co-fermentation strains for biomass refining. PMID:25944766

  20. Proton play in the formation of low molecular weight chitosan (LWCS) by hydrolyzing chitosan with a carbon based solid acid.

    PubMed

    Krishnan, R Akhil; Deshmukh, Pranjal; Agarwal, Siddharth; Purohit, Poorvi; Dhoble, Deepa; Waske, Prashant; Khandekar, Dileep; Jain, Ratnesh; Dandekar, Prajakta

    2016-10-20

    Low molecular weight chitosan (LWCS) constitute a special class of value added chemicals that are primarily obtained from crustacean shells, which are the main water pollutants from crabs and shrimp processing centers. Unlike chitin and chitosan, LWCS possess improved solubility in water and aqueous solutions, making them widely applicable in numerous fields ranging from drug delivery to waste water treatment. Among the methods employed for their production, chemical breakdown by strong liquid acids has yielded good success. However, this method is met with severe concerns arising from the harsh nature of liquid acids, which may corrode the reactors for commercial synthesis, and their limited reusability. The physical methods like ultrasound and microwave are energy intensive in nature, while the enzymatic methods are expensive and offers limited scope for reuse. We have attempted to overcome these problems by employing carbon based solid acid (CSA) for hydrolyzing chitosan to LWCS. CSA can be easily produced using activated carbon, a cost-effective and easily available raw material. Reactions were carried out between chitosan and CSA in a hydrothermal glass reactor and the products, separated by cold centrifugation, were purified and dried. The dried products were characterized for their molecular weight and solubility. Results indicated more than ten-fold decrease in the molecular weight of chitosan and the product exhibited water solubility. The CSA could be used upto four times, without regeneration, to give a consistent quality product. The aqueous solution of resulting LWCS exhibited a pH of 6.03±0.11, as against the acidic pH range of solutions of commercially available LWCS, indicating its suitability for biomedical applications. Our investigation facilitates a 'green approach' that may be employed for commercial production of value added chemicals from waste products of marine industry. PMID:27474584

  1. Sirtuin 3, a New Target of PGC-1α, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis

    PubMed Central

    Kong, Xingxing; Wang, Rui; Xue, Yuan; Liu, Xiaojun; Zhang, Huabing; Chen, Yong; Fang, Fude; Chang, Yongsheng

    2010-01-01

    Background Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1α induces several key reactive oxygen species (ROS)-detoxifying enzymes, but the molecular mechanism underlying this is not well understood. Results Here we show that PGC-1α strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1α led to decreased Sirt3 gene expression. PGC-1α activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR) binding element (ERRE) (−407/−399) mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRα bound to the identified ERRE and PGC-1α co-localized with ERRα in the mSirt3 promoter. Knockdown of ERRα reduced the induction of Sirt3 by PGC-1α in C2C12 myotubes. Furthermore, Sirt3 was essential for PGC-1α-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1α in C2C12 myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1α on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1α on mitochondrial biogenesis in C2C12 myotubes. Conclusion Our results indicate that Sirt3 functions as a downstream target gene of PGC-1α and mediates the PGC-1α effects on cellular ROS production and mitochondrial biogenesis. Thus, SIRT3 integrates cellular energy metabolism and ROS generation. The

  2. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer.

    PubMed

    Fu, Fanfan; Wu, Yilun; Zhu, Jingyi; Wen, Shihui; Shen, Mingwu; Shi, Xiangyang

    2014-09-24

    We report the development of a lactobionic acid (LA)-modified multifunctional dendrimer-based carrier system for targeted therapy of liver cancer cells overexpressing asialoglycoprotein receptors. In this study, generation 5 (G5) poly(amidoamine) (PAMAM) dendrimers were sequentially modified with fluorescein isothiocyanate (FI) and LA (or polyethylene glycol (PEG)-linked LA, PEG-LA), followed by acetylation of the remaining dendrimer terminal amines. The synthesized G5.NHAc-FI-LA or G5.NHAc-FI-PEG-LA conjugates (NHAc denotes acetamide groups) were used to encapsulate a model anticancer drug doxorubicin (DOX). We show that both conjugates are able to encapsulate approximately 5.0 DOX molecules within each dendrimer and the formed dendrimer/DOX complexes are stable under different pH conditions and different aqueous media. The G5.NHAc-FI-PEG-LA conjugate appears to have a better cytocompatibility, enables a slightly faster DOX release rate, and displays better liver cancer cell targeting ability than the G5.NHAc-FI-LA conjugate without PEG under similar experimental conditions. Importantly, the developed G5.NHAc-FI-PEG-LA/DOX complexes are able to specifically inhibit the growth of the target cells with a better efficiency than the G5.NHAc-FI-LA/DOX complexes at a relatively high DOX concentration. Our results suggest a key role played by the PEG spacer that affords the dendrimer platform with enhanced targeting and therapeutic efficacy of cancer cells. The developed LA-modified multifunctional dendrimer conjugate with a PEG spacer may be used as a delivery system for targeted liver cancer therapy and offers new opportunities in the design of multifunctional drug carriers for targeted cancer therapy applications. PMID:25185074

  3. The importance of amino acid interactions in the crystallization of hydroxyapatite

    PubMed Central

    Jahromi, M. Tavafoghi; Yao, G.; Cerruti, M.

    2013-01-01

    Non-collagenous proteins (NCPs) inhibit hydroxyapatite (HA; Ca5(PO4)3OH) formation in living organisms by binding to nascent nuclei of HA and preventing their further growth. Polar and charged amino acids (AAs) are highly expressed in NCPs, and the negatively charged ones, such as glutamic acid (Glu) and phosphoserine (P-Ser) seem to be mainly responsible for the inhibitory effect of NCPs. Despite the recognized importance of these AAs on the behaviour of NCPs, their specific effect on HA crystallization is still unclear, and controversial results have been reported concerning the efficacy of HA inhibition of positively versus negatively charged AAs. We focused on a positively charged (arginine, Arg) and a negatively charged (Glu) AA, and their combination in the same solution. We studied their inhibitory effect on HA nucleation and growth at physiological temperature and pH and we determined the mechanism by which they can affect HA crystallization. Our results showed a strong inhibitory effect of Arg on HA nucleation; however, Glu was more effective in inhibiting HA crystal growth during the growth stage. The combination of Glu and Arg was less effective in controlling HA nucleation, but it inhibited HA crystal growth. We attributed these differences to the stability of complexes formed between AAs and calcium and phosphate ions at the nucleation stage, and in bonding strength of AAs to HA crystal faces during the growth stage. The AAs also influenced the morphology of synthesized HA. Presence of either Arg or Glu resulted in the formation of spherulites consisting of preferentially oriented nanoplatelets orientation. This was attributed to kinetic factors favoring growth front nucleation (GFN) mechanism. PMID:23269851

  4. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.

    PubMed

    Bowtell, Joanna L; Marwood, Simon; Bruce, Mark; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2007-01-01

    The tricarboxylic acid (TCA) cycle is the major final common pathway for oxidation of carbohydrates, lipids and some amino acids, which produces reducing equivalents in the form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide that result in production of large amounts of adenosine triphosphate (ATP) via oxidative phosphorylation. Although regulated primarily by the products of ATP hydrolysis, in particular adenosine diphosphate, the rate of delivery of reducing equivalents to the electron transport chain is also a potential regulatory step of oxidative phosphorylation. The TCA cycle is responsible for the generation of approximately 67% of all reducing equivalents per molecule of glucose, hence factors that influence TCA cycle flux will be of critical importance for oxidative phosphorylation. TCA cycle flux is dependent upon the supply of acetyl units, activation of the three non-equilibrium reactions within the TCA cycle, and it has been suggested that an increase in the total concentration of the TCA cycle intermediates (TCAi) is also necessary to augment and maintain TCA cycle flux during exercise. This article reviews the evidence of the functional importance of the TCAi pool size for oxidative metabolism in exercising human skeletal muscle. In parallel with increased oxidative metabolism and TCA cycle flux during exercise, there is an exercise intensity-dependent 4- to 5-fold increase in the concentration of the TCAi. TCAi concentration reaches a peak after 10-15 minutes of exercise, and thereafter tends to decline. This seems to support the suggestion that the concentration of TCAi may be of functional importance for oxidative phosphorylation. However, researchers have been able to induce dissociations between TCAi pool size and oxidative energy provision using a variety of nutritional, pharmacological and exercise interventions. Brief periods of endurance training (5 days or 7 weeks) have been found to result in reduced TCAi pool

  5. Adult Play.

    ERIC Educational Resources Information Center

    Charles, John M.

    In its broadest context, play can be interpreted as any pleasurable use of discretionary time. Playfulness is an intrinsic feature of being human, and should be viewed in the light of a total lifestyle, not as an occurrence in an isolated time of life. Adult play appears to be an indefinable and controversial concept. A holistic approach should be…

  6. City Play.

    ERIC Educational Resources Information Center

    Dargan, Amanda; Zeitlin, Steve

    2000-01-01

    Today, fewer city blocks preserve the confidence of lifestyle and urban geography that sustain traditional games and outdoor play. Large groups of children choosing sides and organizing Red Rover games are no longer commonplace. Teachers must encourage free play; urban planners must build cities that are safe play havens. (MLH)

  7. Enhancing Playful Teachers' Perception of the Importance of ICT Use in the Classroom: The Role of Risk Taking as a Mediator

    ERIC Educational Resources Information Center

    Goodwin, A. Lin; Low, Ee Ling; Ng, Pak Tee; Yeung, Alexander S.; Cai, Li

    2015-01-01

    In today's world, teaching and learning processes inevitably involve the application of information and communication technology (ICT). It seems reasonable to expect personal attributes such as cognitive playfulness to be associated with consistent application of ICT. Using survey responses from Singapore students in a teacher education programme…

  8. β-Ketoacyl-acyl Carrier Protein Synthase I (KASI) Plays Crucial Roles in the Plant Growth and Fatty Acids Synthesis in Tobacco

    PubMed Central

    Yang, Tianquan; Xu, Ronghua; Chen, Jianghua; Liu, Aizhong

    2016-01-01

    Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco. PMID:27509494

  9. β-Ketoacyl-acyl Carrier Protein Synthase I (KASI) Plays Crucial Roles in the Plant Growth and Fatty Acids Synthesis in Tobacco.

    PubMed

    Yang, Tianquan; Xu, Ronghua; Chen, Jianghua; Liu, Aizhong

    2016-01-01

    Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco. PMID:27509494

  10. Prionic Acid: An Effective Sex Attractant for an Important Pest of Sugarcane, Dorysthenes granulosus (Coleoptera: Cerambycidae: Prioninae).

    PubMed

    Wickham, Jacob D; Lu, Wen; Jin, Tao; Peng, Zhengqiang; Guo, Dongfeng; Millar, Jocelyn G; Hanks, Lawrence M; Chen, Yi

    2016-02-01

    Male Dorysthenes granulosus (Thomson, 1860) (Coleoptera: Cerambycidae: Prioninae) were caught in traps baited with racemic 3,5-dimethyldodecanoic acid (prionic acid) during field screening trials in China that tested known cerambycid pheromones. This species is an important pest of sugarcane (Saccharum officinarum L.). In follow-up dose-response trials, plastic sachets loaded with 1 or 0.1 mg of prionic acid were equally attractive to male beetles, whereas lower doses were no better than controls. Two commercial prionic acid lures also were attractive, suggesting that traps baited with prionic acid can be rapidly incorporated into integrated pest management programs targeting this major pest. It is likely that this compound is a major component of the female-produced sex pheromone of D. granulosus because this species is in the same subfamily as Prionus californicus Motschulsky, 1845, the species from which prionic acid was originally identified. PMID:26362990

  11. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations

    PubMed Central

    Arnold, Samuel L.; Kent, Travis; Hogarth, Cathryn A.; Schlatt, Stefan; Prasad, Bhagwat; Haenisch, Michael; Walsh, Thomas; Muller, Charles H.; Griswold, Michael D.; Amory, John K.; Isoherranen, Nina

    2015-01-01

    Retinoic acid (RA), the active metabolite of vitamin A, is required for spermatogenesis and many other biological processes. RA formation requires irreversible oxidation of retinal to RA by aldehyde dehydrogenase enzymes of the 1A family (ALDH1A). While ALDH1A1, ALDH1A2, and ALDH1A3 all form RA, the expression pattern and relative contribution of these enzymes to RA formation in the testis is unknown. In this study, novel methods to measure ALDH1A protein levels and intrinsic RA formation were used to accurately predict RA formation velocities in individual human testis samples and an association between RA formation and intratesticular RA concentrations was observed. The distinct localization of ALDH1A in the testis suggests a specific role for each enzyme in controlling RA formation. ALDH1A1 was found in Sertoli cells, while only ALDH1A2 was found in spermatogonia, spermatids, and spermatocytes. In the absence of cellular retinol binding protein (CRBP)1, ALDH1A1 was predicted to be the main contributor to intratesticular RA formation, but when CRBP1 was present, ALDH1A2 was predicted to be equally important in RA formation as ALDH1A1. This study provides a comprehensive novel methodology to evaluate RA homeostasis in human tissues and provides insight to how the individual ALDH1A enzymes mediate RA concentrations in specific cell types. PMID:25502770

  12. Phosphatidic acid plays a special role in stabilizing and folding of the tetrameric potassium channel KcsA.

    PubMed

    Raja, Mobeen; Spelbrink, Robin E J; de Kruijff, Ben; Killian, J Antoinette

    2007-12-11

    In this study, we investigated how the presence of anionic lipids influenced the stability and folding properties of the potassium channel KcsA. By using a combination of gel electrophoresis, tryptophan fluorescence and acrylamide quenching experiments, we found that the presence of the anionic lipid phosphatidylglycerol (PG) in a phosphatidylcholine (PC) bilayer slightly stabilized the tetramer and protected it from trifluoroethanol-induced dissociation. Surprisingly, the presence of phosphatidic acid (PA) had a much larger effect on the stability of KcsA and this lipid, in addition, significantly influenced the folding properties of the protein. The data indicate that PA creates some specificity over PG, and that it most likely stabilizes the tetramer via both electrostatic and hydrogen bond interactions. PMID:18036565

  13. A DN-mda5 Transgenic Zebrafish 1 Model Demonstrates that Mda5 Plays an Important Role in Snakehead Rhabdovirus Resistance

    PubMed Central

    Gabor, KA; Charette, JR; Pietraszewski, MJ; Wingfield, DJ; Shim, JS; Millard, PJ; Kim, CH

    2015-01-01

    Melanoma Differentiation-Associated protein 5 (MDA5) is a member of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family, which is a cytosolic pattern recognition receptor that detects viral nucleic acids. Here we show an Mda5-dependent response to rhabdovirus infection in vivo using a dominant-negative mda5 transgenic zebrafish. Dominant-negative mda5 zebrafish embryos displayed an impaired antiviral immune response compared to wild-type counterparts that can be rescued by recombinant full-length Mda5. To our knowledge, we have generated the first dominant-negative mda5 transgenic zebrafish and demonstrated a critical role for Mda5 in the antiviral response to rhabdovirus. PMID:25634485

  14. Identification of insulin domains important for binding to and degradation by endosomal acidic insulinase.

    PubMed

    Authier, F; Danielsen, G M; Kouach, M; Briand, G; Chauvet, G

    2001-01-01

    The endosomal compartment of hepatic parenchymal cells contains an acidic endopeptidase, endosomal acidic insulinase (EAI), which hydrolyzes internalized insulin at a limited number of sites. Although the positions of these cleavages are partially known, the residues of insulin important in its binding to and proteolysis by EAI have not been defined. To this end, we have studied the degradation over time of native human insulin and three insulin-analog peptides using a soluble endosomal extract from rat liver parenchyma followed by purification of the products by HPLC and determination of their structure by mass spectrometry. We found variable rates of ligand processing, i.e. high ([Asp(B10)]- and [Glu(A13),Glu(B10)]-insulin), moderate (insulin) and low (the H2-analog). On the basis of IC(50) values, competition studies revealed that human and mutant insulins display nearly equivalent affinity for the EAI. Proteolysis of human and mutant insulins by EAI resulted in eight cleavages in the B-chain which occurred in the central region (Glu(B13)-Leu(B17)) and at the C-terminus (Arg(B22)-Thr(B27)), the latter region comprising the initial cleavages at Phe(B24)-Phe(B25) (major pathway) and Phe(B25)-Tyr(B26) (minor pathway) bonds. Except for the [Glu(A13),Glu(B10)]-insulin mutant, only one cleavage on the A-chain was observed at residues Gln(A15)-Leu(A16). Analysis of the nine cleavage sites showed a preference for hydrophobic and aromatic amino acid residues on both the carboxyl and amino sides of a cleaved peptide bond. Using the B-chain alone as a substrate resulted in a 30-fold increase in affinity for EAI and a 6-fold increase in the rate of hydrolysis compared with native insulin. A similar role for the C-terminal region of the B-chain of insulin in the high-affinity recognition of EAI was supported by the use of the corresponding B(22)-B(30) peptide, which displayed an increase in EAI affinity similar to the entire B-chain vs. wild-type insulin. Thus, we have

  15. Ouabain-sensitive bicarbonate secretion and acid absorption by the marine teleost fish intestine play a role in osmoregulation.

    PubMed

    Grosell, M; Genz, J

    2006-10-01

    The gulf toadfish (Opsanus beta) intestine secretes base mainly in the form of HCO3- via apical anion exchange to serve Cl- and water absorption for osmoregulatory purposes. Luminal HCO3- secretion rates measured by pH-stat techniques in Ussing chambers rely on oxidative energy metabolism and are highly temperature sensitive. At 25 degrees C under in vivo-like conditions, secretion rates averaged 0.45 micromol x cm(-2) x h(-1), of which 0.25 micromol x cm(-2) x h(-1) can be accounted for by hydration of endogenous CO2 partly catalyzed by carbonic anhydrase. Complete polarity of secretion of HCO3- and H+ arising from the CO2 hydration reaction is evident from equal rates of luminal HCO3- secretion via anion exchange and basolateral H+ extrusion. When basolateral H+ extrusion is partly inhibited by reduction of serosal pH, luminal HCO3- secretion is reduced. Basolateral H+ secretion occurs in exchange for Na+ via an ethylisopropylamiloride-insensitive mechanism and is ultimately fueled by the activity of the basolateral Na+-K+-ATPase. Fluid absorption by the toadfish intestine to oppose diffusive water loss to the concentrated marine environment is accompanied by a substantial basolateral H+ extrusion, intimately linking osmoregulation and acid-base balance. PMID:16709644

  16. Two glycerol 3-phosphate dehydrogenase isogenes from Candida versatilis SN-18 play an important role in glycerol biosynthesis under osmotic stress.

    PubMed

    Mizushima, Daiki; Iwata, Hisashi; Ishimaki, Yuki; Ogihara, Jun; Kato, Jun; Kasumi, Takafumi

    2016-05-01

    Two isogenes of glycerol 3-phosphate dehydrogenase (GPD) from Candida versatilis SN-18 were cloned and sequenced. These intronless genes (Cagpd1 and Cagpd2) were both predicted to encode a 378 amino acid polypeptide, and the deduced amino acid sequences mutually showed 76% identity. Interestingly, Cagpd1 and Cagpd2 were located tandemly in a locus of genomic DNA within a 262 bp interval. To our knowledge, this represents a novel instance of isogenic genes relating to glucose metabolism. The stress response element (STRE) was found respectively at -93 to -89 bp upstream of the 5'end of Cagpd1 and -707 to -703 bp upstream of Cagpd2, indicating that these genes are involved in osmotic stress response. In heterologous expression using a gpd1Δgpd2Δ double deletion mutant of Saccharomyces cerevisiae, Cagpd1 and Cagpd2 transformants complemented the function of GPD, with Cagpd2 being much more effective than Cagpd1 in promoting growth and glycerol synthesis. Phylogenetic analysis of the amino acid sequences suggested that Cagpd1p and Cagpd2p are NADP(+)-dependent GPDs (EC 1.1.1.94). However, crude enzyme extract from Cagpd1 and Cagpd2 transformants showed GPD activity with only NAD(+) as cofactor. Hence, both Cagpd1p and Cagpd2p are likely NAD(+)-dependent GPDs (EC 1.1.1.8), similar to GPDs from S. cerevisiae and Candida magnoliae. PMID:26906228

  17. War, Conflict and Play. Debating Play

    ERIC Educational Resources Information Center

    Hyder, Tina

    2004-01-01

    Young refugees from many parts of the world are increasingly present in UK early years settings. This book explores the crucial importance of play for young refugee children's development. It considers the implications of war and conflict on young children and notes how opportunities for play are denied. It provides a framework for early years…

  18. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids

    PubMed Central

    Kristensen, David M; Ward, R Matthew; Lisewski, Andreas Martin; Erdin, Serkan; Chen, Brian Y; Fofanov, Viacheslav Y; Kimmel, Marek; Kavraki, Lydia E; Lichtarge, Olivier

    2008-01-01

    Background Structural genomics projects such as the Protein Structure Initiative (PSI) yield many new structures, but often these have no known molecular functions. One approach to recover this information is to use 3D templates – structure-function motifs that consist of a few functionally critical amino acids and may suggest functional similarity when geometrically matched to other structures. Since experimentally determined functional sites are not common enough to define 3D templates on a large scale, this work tests a computational strategy to select relevant residues for 3D templates. Results Based on evolutionary information and heuristics, an Evolutionary Trace Annotation (ETA) pipeline built templates for 98 enzymes, half taken from the PSI, and sought matches in a non-redundant structure database. On average each template matched 2.7 distinct proteins, of which 2.0 share the first three Enzyme Commission digits as the template's enzyme of origin. In many cases (61%) a single most likely function could be predicted as the annotation with the most matches, and in these cases such a plurality vote identified the correct function with 87% accuracy. ETA was also found to be complementary to sequence homology-based annotations. When matches are required to both geometrically match the 3D template and to be sequence homologs found by BLAST or PSI-BLAST, the annotation accuracy is greater than either method alone, especially in the region of lower sequence identity where homology-based annotations are least reliable. Conclusion These data suggest that knowledge of evolutionarily important residues improves functional annotation among distant enzyme homologs. Since, unlike other 3D template approaches, the ETA method bypasses the need for experimental knowledge of the catalytic mechanism, it should prove a useful, large scale, and general adjunct to combine with other methods to decipher protein function in the structural proteome. PMID:18190718

  19. Control of Abscisic Acid Catabolism and Abscisic Acid Homeostasis Is Important for Reproductive Stage Stress Tolerance in Cereals1[W][OA

    PubMed Central

    Ji, Xuemei; Dong, Baodi; Shiran, Behrouz; Talbot, Mark J.; Edlington, Jane E.; Hughes, Trijntje; White, Rosemary G.; Gubler, Frank; Dolferus, Rudy

    2011-01-01

    Drought stress at the reproductive stage causes pollen sterility and grain loss in wheat (Triticum aestivum). Drought stress induces abscisic acid (ABA) biosynthesis genes in anthers and ABA accumulation in spikes of drought-sensitive wheat varieties. In contrast, drought-tolerant wheat accumulates lower ABA levels, which correlates with lower ABA biosynthesis and higher ABA catabolic gene expression (ABA 8′-hydroxylase). Wheat TaABA8′OH1 deletion lines accumulate higher spike ABA levels and are more drought sensitive. ABA treatment of the spike mimics the effect of drought, causing high levels of sterility. ABA treatment represses the anther cell wall invertase gene TaIVR1, and drought-tolerant lines appeared to be more sensitive to the effect of ABA. Drought-induced sterility shows similarity to cold-induced sterility in rice (Oryza sativa). In cold-stressed rice, the rate of ABA accumulation was similar in cold-sensitive and cold-tolerant lines during the first 8 h of cold treatment, but in the tolerant line, ABA catabolism reduced ABA levels between 8 and 16 h of cold treatment. The ABA biosynthesis gene encoding 9-cis-epoxycarotenoid dioxygenase in anthers is mainly expressed in parenchyma cells surrounding the vascular bundle of the anther. Transgenic rice lines expressing the wheat TaABA8′OH1 gene under the control of the OsG6B tapetum-specific promoter resulted in reduced anther ABA levels under cold conditions. The transgenic lines showed that anther sink strength (OsINV4) was maintained under cold conditions and that this correlated with improved cold stress tolerance. Our data indicate that ABA and ABA 8′-hydroxylase play an important role in controlling anther ABA homeostasis and reproductive stage abiotic stress tolerance in cereals. PMID:21502188

  20. Selective protection and relative importance of the carboxylic acid groups of zaragozic acid A for squalene synthase inhibition.

    PubMed

    Biftu, T; Acton, J J; Berger, G D; Bergstrom, J D; Dufresne, C; Kurtz, M M; Marquis, R W; Parsons, W H; Rew, D R; Wilson, K E

    1994-02-01

    Chemistry that allows selective modification of the carboxylic acid groups of the squalene synthase inhibitor zaragozic acid A (1) was developed and applied to the synthesis of compounds modified at the 3-,4-,5-,3,4-,3,5-, and 4,5-positions. A key step in this procedure is the selective debenzylation by transfer hydrogenolysis in the presence of other olefinic groups. These compounds were tested in the rat squalene synthase assay and in vivo mouse model. Modification at C3 retains significant enzyme potency and enhances oral activity, indicating that C3 is not essential for squalene synthase activity. Modification at C4 and C5 results in significant loss in enzyme activity. In contrast, substitution at C3 or C4 enhances in vivo activity. Furthermore, disubstitution at the C3 and C4 positions results in additive in vivo potency. PMID:8308869

  1. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities

    PubMed Central

    FitzGerald, Jamie A.; Allen, Eoin; Wall, David M.; Jackson, Stephen A.; Murphy, Jerry D.; Dobson, Alan D. W.

    2015-01-01

    Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation. PMID:26555136

  2. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities.

    PubMed

    FitzGerald, Jamie A; Allen, Eoin; Wall, David M; Jackson, Stephen A; Murphy, Jerry D; Dobson, Alan D W

    2015-01-01

    Macro-algae represent an ideal resource of third generation biofuels, but their use necessitates a refinement of commonly used anaerobic digestion processes. In a previous study, contrasting mixes of dairy slurry and the macro-alga Ulva lactuca were anaerobically digested in mesophilic continuously stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to inhibited digestion and rapid accumulation of volatile fatty acids, requiring a reduced organic loading rate. In this study, 16S pyrosequencing was employed to characterise the microbial communities of both the weakest (R1) and strongest (R6) performing reactors from the previous work as they developed over a 39 and 27-week period respectively. Comparing the reactor communities revealed clear differences in taxonomy, predicted metabolic orientation and mechanisms of inhibition, while constrained canonical analysis (CCA) showed ammonia and biogas yield to be the strongest factors differentiating the two reactor communities. Significant biomarker taxa and predicted metabolic activities were identified for viable and failing anaerobic digestion of U. lactuca. Acetoclastic methanogens were inhibited early in R1 operation, followed by a gradual decline of hydrogenotrophic methanogens. Near-total loss of methanogens led to an accumulation of acetic acid that reduced performance of R1, while a slow decline in biogas yield in R6 could be attributed to inhibition of acetogenic rather than methanogenic activity. The improved performance of R6 is likely to have been as a result of the large Methanosarcina population, which enabled rapid removal of acetic acid, providing favourable conditions for substrate degradation. PMID:26555136

  3. Shadow Play

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Hilson, Margilee P.

    2012-01-01

    A bunny rabbit playfully hops across the wall. Then hands realign and fingers shift to make a hawk soar toward the ceiling. Most children have enjoyed the delightful experience of playing with shadow puppets. The authors build on this natural curiosity to help students link shadows to complex astronomical concepts such as seasons. The…

  4. Two people playing together: some thoughts on play, playing, and playfulness in psychoanalytic work.

    PubMed

    Vliegen, Nicole

    2009-01-01

    Children's play and the playfulness of adolescents and adults are important indicators of personal growth and development. When a child is not able to play, or an adolescent/adult is not able to be playful with thoughts and ideas, psychotherapy can help to find a more playful and creative stance. Elaborating Winnicott's (1968, p. 591) statement that "psychotherapy has to do with two people playing together," three perspectives on play in psychotherapy are discussed. In the first point of view, the child gets in touch with and can work through aspects of his or her inner world, while playing in the presence of the therapist. The power of play is then rooted in the playful communication with the self In a second perspective, in play the child is communicating aspects of his or her inner world to the therapist as a significant other. In a third view, in "playing together" child and therapist are coconstructing new meanings. These three perspectives on play are valid at different moments of a therapy process or for different children, depending on the complex vicissitudes of the child's constitution, life experiences, development, and psychic structure. Concerning these three perspectives, a parallel can be drawn between the therapist's attitude toward the child's play and the way the therapist responds to the verbal play of an adolescent or adult. We illustrate this with the case of Jacob, a late adolescent hardly able to play with ideas. PMID:20578437

  5. The Pedagogy of Play

    ERIC Educational Resources Information Center

    Giesbrecht, Sheila

    2012-01-01

    Play is important. Environmental educators Sobel and Louv write about the relationship between children and outside play and suggest that early transcendental experiences within nature allow children to develop empathetic orientations towards the natural world. Children who play out-of-doors develop an appreciation for the environment and…

  6. Play Is the Way

    ERIC Educational Resources Information Center

    Gross, Steve; Sanderson, Rebecca Cornelli

    2012-01-01

    Historically, play has been viewed as a frivolous break from important endeavors like working and learning when, in fact, a child's ability to fully and freely engage in play is essential to their learning, productivity, and overall development. A natural drive to play is universal across all young mammals. Children from every society on earth…

  7. Comparative Analysis of Lipid Content and Fatty Acid Composition of Commercially Important Fish and Shellfish from Sri Lanka and Japan.

    PubMed

    Devadason, Chandravathany; Jayasinghe, Chamila; Sivakanesan, Ramiah; Senarath, Samanthika; Beppu, Fumiaki; Gotoh, Naohiro

    2016-01-01

    Sri Lanka is surrounded by the Indian Ocean, allowing plenty of fishes to be caught. Moreover, these fishes represent one of the undocumented fish resources in the world and their detailed lipid profiles have not been previously examined. In this study, the lipid content and fatty acid composition of 50 commercially important fishes from the Indian Ocean (Sri Lanka) and the Pacific Ocean (Japan) were compared. The total lipid content and fatty acid composition, including eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA), differed significantly among species. Fish from the Pacific Ocean had higher proportions of fatty acids, including EPA and DHA. Herrings and mackerels from both oceanic areas demonstrated high levels of EPA and DHA, and n-3/n-6 ratio. Brackish and freshwater fishes from both groups showed low levels of PUFAs. Fish from the Indian Ocean were high in n-6 fatty acids. Monounsaturated fatty acid levels were high in omnivorous fish from the Pacific Ocean, and saturated fatty acid levels were high in fish from the Indian Ocean. The results of this study will be of value in determining the dietary usefulness of fish caught in Sri Lanka. PMID:27373421

  8. Steroidogenesis in MA-10 Mouse Leydig Cells Is Altered via Fatty Acid Import into the Mitochondria1

    PubMed Central

    Rone, Malena B.; Midzak, Andrew S.; Martinez-Arguelles, Daniel B.; Fan, Jinjiang; Ye, Xiaoying; Blonder, Josip; Papadopoulos, Vassilios

    2014-01-01

    ABSTRACT Mitochondria are home to many cellular processes, including oxidative phosphorylation and fatty acid metabolism, and in steroid-synthesizing cells, they are involved in cholesterol import and metabolism, which is the initiating step in steroidogenesis. The formation of macromolecular protein complexes aids in the regulation and efficiency of these mitochondrial functions, though because of their dynamic nature, they are hard to identify. To overcome this problem, we used Blue-Native PAGE with whole-gel mass spectrometry on isolated mitochondria from control and hormone-treated MA-10 mouse tumor Leydig cells. The presence of multiple mitochondrial protein complexes was shown. Although these were qualitatively similar under control and human chorionic gonadotropin (hCG)-stimulated conditions, quantitative differences in the components of the complexes emerged after hCG treatment. A prominent decrease was observed with proteins involved in fatty acid import into the mitochondria, implying that mitochondrial beta-oxidation is not essential for steroidogenesis. To confirm this observation, we inhibited fatty acid import utilizing the CPT1a inhibitor etomoxir, resulting in increased steroid production. Conversely, stimulation of mitochondrial beta-oxidation with metformin resulted in a dose-dependent reduction in steroidogenesis. These changes were accompanied by changes in mitochondrial respiration and in the lactic acid formed during glycolysis. Taken together, these results suggest that upon hormonal stimulation, mitochondria efficiently import cholesterol for steroid production at the expense of other lipids necessary for energy production, specifically fatty acids required for beta-oxidation. PMID:25210128

  9. Play: early and eternal.

    PubMed Central

    Mears, C E; Harlow, H F

    1975-01-01

    A systematic 12-week investigation of development of play behavior was conducted with eight socially reared rhesus monkey infants. A new, basic and primary play form termed self-motion play or peragration was identified and examined. This behavior follows a human model which includes a wide range of pleasurable activities involving motion of the body through space, e.g., rocking, swinging, running, leaping, and water or snow skiing. It can be argued that self-motion play is the initial primate play form and because of its persistence constitutes a reinforcing agent for maintaining many complex patterns and even pastimes. Monkey self-motion play in the present study was divided into five separate patterns in order to compare the relative importance of social and individual peragration play, the role of apparatus and the overall developmental relationships between the different individual and social self-motion play patterns. The data showed that from 90 to 180 days of age self-motion play was independent of other forms of play, that individual self-motion play appeared earlier and with significantly greater increases in frequency than did social self-motion play, and that apparatus was a necessary component for significant increases in social self-motion play. Other findings were that self-motion play existed independent of locomotion and, though initiated by exploration, was separate from it. Therapeutic implications of self-motion play were discussed. Images PMID:1057178

  10. A Motif Unique to the Human Dead-Box Protein DDX3 Is Important for Nucleic Acid Binding, ATP Hydrolysis, RNA/DNA Unwinding and HIV-1 Replication

    PubMed Central

    Di Cicco, Giulia; Dietrich, Ursula; Maga, Giovanni

    2011-01-01

    DEAD-box proteins are enzymes endowed with nucleic acid-dependent ATPase, RNA translocase and unwinding activities. The human DEAD-box protein DDX3 has been shown to play important roles in tumor proliferation and viral infections. In particular, DDX3 has been identified as an essential cofactor for HIV-1 replication. Here we characterized a set of DDX3 mutants biochemically with respect to nucleic acid binding, ATPase and helicase activity. In particular, we addressed the functional role of a unique insertion between motifs I and Ia of DDX3 and provide evidence for its implication in nucleic acid binding and HIV-1 replication. We show that human DDX3 lacking this domain binds HIV-1 RNA with lower affinity. Furthermore, a specific peptide ligand for this insertion selected by phage display interferes with HIV-1 replication after transduction into HelaP4 cells. Besides broadening our understanding of the structure-function relationships of this important protein, our results identify a specific domain of DDX3 which may be suited as target for antiviral drugs designed to inhibit cellular cofactors for HIV-1 replication. PMID:21589879

  11. [Importance of docosahexaenoic acid (DHA): Functions and recommendations for its ingestion in infants].

    PubMed

    Gil-Campos, M; Dalmau Serra, J

    2010-09-01

    Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid with multiple functions, although these are still under study. The development of visual and neurological functions have been demonstrated in premature infants and neonates, however, its effects are still being studied in certain chronic neurological diseases, and inflammatory and metabolic disorders. The DHA requirements are not fixed but recommendations must be based on an intake similar to the composition of breastfeeding, and in older children and during pregnancy and lactation, to ensure consumption of oily fish at least twice a week. It is essential to recognise the need for supplementation of this fatty acid in some diseases that require restricted diet, and in metabolic alterations resulting in a deficiency, but also know the scientific evidence on the effects produced in different situations. This review updates this information to propose an adequate intake of DHA at different ages and in different diseases. PMID:20570579

  12. Store-operated Ca2+ Entry-associated Regulatory factor (SARAF) Plays an Important Role in the Regulation of Arachidonate-regulated Ca2+ (ARC) Channels.

    PubMed

    Albarran, Letizia; Lopez, Jose J; Woodard, Geoffrey E; Salido, Gines M; Rosado, Juan A

    2016-03-25

    The store-operated Ca(2+)entry-associated regulatory factor (SARAF) has recently been identified as a STIM1 regulatory protein that facilitates slow Ca(2+)-dependent inactivation of store-operated Ca(2+)entry (SOCE). Both the store-operated channels and the store-independent arachidonate-regulated Ca(2+)(ARC) channels are regulated by STIM1. In the present study, we show that, in addition to its location in the endoplasmic reticulum, SARAF is constitutively expressed in the plasma membrane, where it can interact with plasma membrane (PM)-resident ARC forming subunits in the neuroblastoma cell line SH-SY5Y. Using siRNA-based and overexpression approaches we report that SARAF negatively regulates store-independent Ca(2+)entry via the ARC channels. Arachidonic acid (AA) increases the association of PM-resident SARAF with Orai1. Finally, our results indicate that SARAF modulates the ability of AA to promote cell survival in neuroblastoma cells. In addition to revealing new insight into the biology of ARC channels in neuroblastoma cells, these findings provide evidence for an unprecedented location of SARAF in the plasma membrane. PMID:26817842

  13. Campylobacter jejuni serine protease HtrA plays an important role in heat tolerance, oxygen resistance, host cell adhesion, invasion, and transmigration

    PubMed Central

    Lind, Judith; Backert, Steffen; Tegtmeyer, Nicole

    2015-01-01

    Campylobacter jejuni is an important pathogen of foodborne illness. Transmigration across the intestinal epithelial barrier and invasion are considered as primary reasons for tissue damage triggered by C. jejuni. Using knockout mutants, it was shown that the serine protease HtrA may be important for stress tolerance and physiology of C. jejuni. HtrA is also secreted in the extra­cellular environment, where it can cleave junctional host cell proteins such as E-cadherin. Aim of the present study was to establish a genetic complementation system in two C. jejuni strains in order to introduce the wild-type htrA gene in trans, test known htrA phenotypes, and provide the basis to perform further mutagenesis. We confirm that reexpression of the htrA wild-type gene in ΔhtrA mutants restored the following phenotypes: 1) C. jejuni growth at high temperature (44 °C), 2) growth under high oxygen stress conditions, 3) expression of proteolytically active HtrA oligomers, 4) secretion of HtrA into the supernatant, 5) cell attachment and invasion, and 6) transmigration across polarized epithelial cells. These results establish a genetic complementation system for htrA in C. jejuni, exclude polar effects in the ΔhtrA mutants, confirm important HtrA properties, and permit the discovery and dissection of new functions. PMID:25883795

  14. The quantitative assessment of the role played by basic amino acid clusters in the nuclear uptake of human ribosomal protein L7

    SciTech Connect

    Tai, Lin-Ru; Chou, Chang-Wei; Lee, I-Fang; Kirby, Ralph; Lin, Alan

    2013-02-15

    In this study, we used a multiple copy (EGFP){sub 3} reporter system to establish a numeric nuclear index system to assess the degree of nuclear import. The system was first validated by a FRAP assay, and then was applied to evaluate the essential and multifaceted nature of basic amino acid clusters during the nuclear import of ribosomal protein L7. The results indicate that the sequence context of the basic cluster determines the degree of nuclear import, and that the number of basic residues in the cluster is irrelevant; rather the position of the pertinent basic residues is crucial. Moreover, it also found that the type of carrier protein used by basic cluster has a great impact on the degree of nuclear import. In case of L7, importin β2 or importin β3 are preferentially used by clusters with a high import efficiency, notwithstanding that other importins are also used by clusters with a weaker level of nuclear import. Such a preferential usage of multiple basic clusters and importins to gain nuclear entry would seem to be a common practice among ribosomal proteins in order to ensure their full participation in high rate ribosome synthesis. - Highlights: ► We introduce a numeric index system that represents the degree of nuclear import. ► The rate of nuclear import is dictated by the sequence context of the basic cluster. ► Importin β2 and β3 were mainly responsible for the N4 mediated nuclear import.

  15. Nucleic acid probes as a diagnostic method for tick-borne hemoparasites of veterinary importance.

    PubMed

    Figueroa, J V; Buening, G M

    1995-03-01

    An increased number of articles on the use of nucleic acid-based hybridization techniques for diagnostic purposes have been recently published. This article reviews nucleic acid-based hybridization as an assay to detect hemoparasite infections of economic relevance in veterinary medicine. By using recombinant DNA techniques, selected clones containing inserts of Anaplasma, Babesia, Cowdria or Theileria genomic DNA sequences have been obtained, and they are now available to be utilized as specific, highly sensitive DNA or RNA probes to detect the presence of the hemoparasite DNA in an infected animal. Either in an isotopic or non-isotopic detection system, probes have allowed scientists to test for--originally in samples collected from experimentally infected animals and later in samples collected in the field--the presence of hemoparasites during the prepatent, patent, convalescent, and chronic periods of the infection in the host. Nucleic acid probes have given researchers the opportunity to carry out genomic analysis of parasite DNA to differentiate hemoparasite species and to identify genetically distinct populations among and within isolates, strains and clonal populations. Prevalence of parasite infection in the tick vector can now be accomplished more specifically with the nucleic acid probes. Lately, with the advent of the polymerase chain reaction technique, small numbers of hemoparasites can be positively identified in the vertebrate host and tick vector. These techniques can be used to assess the veterinary epidemiological situation in a particular geographical region for the planning of control measures. PMID:7597795

  16. Reduction of ferrylmyoglobin by theanine and green tea catechins. Importance of specific Acid catalysis.

    PubMed

    Yin, Jie; Andersen, Mogens L; Skibsted, Leif H

    2013-03-27

    Reduction of the hypervalent heme pigment ferrylmyoglobin by green tea catechins in aqueous solution of pH = 7.5 was investigated by stopped-flow spectroscopy. Reduction by the gallic acid esters epigallocatechin gallate (EGCG, k2 = 1460 L mol(-1) s(-1), 25.0 °C, 0.16 ionic strength) and epicatechin gallate (ECG, 1410 L mol(-1) s(-1)) was found faster than for epicatechin (EC, 300 L mol(-1) s(-1)) and epigallocatechin (EGC, 200 L mol(-1) s(-1)), even though the gallate ion (G, 330 L mol(-1) s(-1)) is similar in rate to EC. The rate for reduction by EC, EGC, ECG, EGCG, and G shows no correlation with their oxidation potentials or phenolic hydrogen-oxygen bond dissociation energy, but with the pKa of the most acidic phenol group. Theanine, with an acidity similar to that of EC, reduces ferrylmyoglobin with a similar rate (200 L mol(-1) s(-1)), in support of general acid catalysis with an initial proton transfer prior to electron transfer. PMID:23461366

  17. Interaction of myosin VI and its binding partner DOCK7 plays an important role in NGF-stimulated protrusion formation in PC12 cells.

    PubMed

    Sobczak, Magdalena; Chumak, Vira; Pomorski, Paweł; Wojtera, Emilia; Majewski, Łukasz; Nowak, Jolanta; Yamauchi, Junji; Rędowicz, Maria Jolanta

    2016-07-01

    DOCK7 (dedicator of cytokinesis 7) is a guanidine nucleotide exchange factor (GEF) for Rac1 GTPase that is involved in neuronal polarity and axon generation as well in Schwann cell differentiation and myelination. Recently, we identified DOCK7 as the binding partner of unconventional myosin VI (MVI) in neuronal-lineage PC12 cells and postulated that this interaction could be important in vivo [Majewski et al. (2012) Biochem Cell Biol., 90:565-574]. Herein, we found that MVI-DOCK7 interaction takes also place in other cell lines and demonstrated that MVI cargo domain via its RRL motif binds to DOCK7 C-terminal M2 and DHR2 domains. In MVI knockdown cells, lower Rac1 activity and a decrease of DOCK7 phosphorylation on Tyr1118 were observed, indicating that MVI could contribute to DOCK7 activity. MVI and DOCK7 co-localization was maintained during NGF-stimulated PC12 cell differentiation and observed also in the outgrowths. Also, during differentiation an increase in phosphorylation of DOCK7 as well as of its downstream effector JNK kinase was detected. Interestingly, overexpression of GFP-tagged MVI cargo domain (GFP-GT) impaired protrusion formation indicating that full length protein is important for this process. Moreover, a transient increase in Rac activity observed at 5min of NGF-stimulated differentiation of PC12 cells (overexpressing either GFP or GFP-MVI) was not detected in cells overexpressing the cargo domain. These data indicate that MVI-DOCK7 interaction could have functional implications in the protrusion outgrowth, and full length MVI seems to be important for delivery and maintenance of DOCK7 along the protrusions, and exerting its GEF activity. PMID:27018747

  18. Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt.

    PubMed

    Sun, Yong; Yi, Xiaoping; Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

    2014-01-01

    Banana Fusarium wilt is a soil-spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt. PMID:25460190

  19. Age plays an important role in the relationship between smoking status and obesity risk: a large scale cross-sectional study of Chinese adults

    PubMed Central

    Su, Pu; Hong, Liu; Sun, Hang; Zhao, Yi Fan; Li, Liang

    2015-01-01

    Objective: To study the role of age plays in the relationship between smoking status and obesity in both Chinese men and women. Methods: From Chinese Physical and Psychological Database, participants were divided into non-smokers, current smokers, and former smokers. Body mass index (BMI), waist circumference (WC), fat percentage, fat mass, and fat free mass were measured. The mean, standard deviation and frequency of these indicators were calculated for each age bracket. One-way ANOVA and post-hoc test analyses were used to detect the difference among these three groups. Results: In men, from 19 to 24 years old, BMI, WC and fat free mass of current smokers were higher than that of non-smokers (P<0.01). However, fat mass and fat percentage of current smokers were lower than that of non-smokers but higher than that of former smokers (P<0.01). From 25 to 34 years old, BMI and fat mass of former smokers were higher than non-smokers and current smokers (P<0.01). In addition, WC and fat free mass of non-smokers were lower than that of current smokers and former smokers (P<0.01). From 45 to older, BMI, WC, fat mass, fat free mass and fat percentage of former smokers were higher than that of current smokers (P<0.01). From 55 to older, BMI, WC, fat mass, fat free mass and fat percentage of current smokers were lower than that of non-smokers (P<0.01). In women, smoking status might not be significantly related to obesity (P>0.05). Conclusion: For young men, smoking might have an effect on increasing fat free mass, BMI and WC, and decreasing fat mass and fat percentage. For middle and older men, smoking might have an effect on decreasing fat free mass, fat mass, BMI, WC, and fat percentage. Obesity risk should be paid more attention in smoking cessation programs for those former smokers. PMID:26770514

  20. The Effects of 120 Minutes of Simulated Match Play on Indices of Acid-Base Balance in Professional Academy Soccer Players.

    PubMed

    Harper, Liam D; Clifford, Tom; Briggs, Marc A; McNamee, Ged; West, Daniel J; Stevenson, Emma; Russell, Mark

    2016-06-01

    Harper, LD, Clifford, T, Briggs, MA, McNamee, G, West, DJ, Stevenson, E, and Russell, M. The effects of 120 minutes of simulated match play on indices of acid-base balance in professional academy soccer players. J Strength Cond Res 30(6): 1517-1524, 2016-This study investigated the changes in indices of acid-base balance during 120 minutes of simulated soccer match play that included a 30 minute extra-time (ET) period. Eight English Premier League academy soccer players participated in a simulated soccer match that required varying intensities of intermittent exercise including 15-m sprints and soccer dribbling throughout. Blood samples were obtained before (i.e., baseline and pre-exercise) and throughout exercise (i.e., 15, 30, 45, 60, 75, 90, 105, and 120 minutes), and at half time. Sprint speeds over 15 m reduced in ET compared to the first half (-0.39 ± 0.37 m·s, -7 ± 6%, p = 0.021) but not the second half (-0.18 ± 0.25 m·s, -3 ± 4%, p = 0.086). At 105 minutes, blood lactate concentrations reduced compared with that in the opening 30 minutes (-0.9 to -1.2 mmol·L, p ≤ 0.05). Blood pH (-0.03 to -0.04 units), base excess (-0.95 to -1.48 mmol·L), and bicarbonate concentrations (-0.9 ± 0.8 mmol·L) were depressed at 120 minutes compared with those at 105 minutes, baseline and half time (all p ≤ 0.05). There were no significant correlations between changes in acid-base balance and sprint speed (all p > 0.05). Although the perturbations in acid-base balance during ET were statistically significant, the decreases in blood pH, lactate, base excess, and bicarbonate concentrations may not represent metabolic acidosis or impairments in buffering capacity that are likely to explain reduced physical performance. Further research is warranted to investigate mechanisms of fatigue during ET and to develop interventions that attenuate decrements in performance. PMID:26605809

  1. The importance of the ratio of omega-6/omega-3 essential fatty acids.

    PubMed

    Simopoulos, A P

    2002-10-01

    Several sources of information suggest that human beings evolved on a diet with a ratio of omega-6 to omega-3 essential fatty acids (EFA) of approximately 1 whereas in Western diets the ratio is 15/1-16.7/1. Western diets are deficient in omega-3 fatty acids, and have excessive amounts of omega-6 fatty acids compared with the diet on which human beings evolved and their genetic patterns were established. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA) and a very high omega-6/omega-3 ratio, as is found in today's Western diets, promote the pathogenesis of many diseases, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA (a low omega-6/omega-3 ratio) exert suppressive effects. In the secondary prevention of cardiovascular disease, a ratio of 4/1 was associated with a 70% decrease in total mortality. A ratio of 2.5/1 reduced rectal cell proliferation in patients with colorectal cancer, whereas a ratio of 4/1 with the same amount of omega-3 PUFA had no effect. The lower omega-6/omega-3 ratio in women with breast cancer was associated with decreased risk. A ratio of 2-3/1 suppressed inflammation in patients with rheumatoid arthritis, and a ratio of 5/1 had a beneficial effect on patients with asthma, whereas a ratio of 10/1 had adverse consequences. These studies indicate that the optimal ratio may vary with the disease under consideration. This is consistent with the fact that chronic diseases are multigenic and multifactorial. Therefore, it is quite possible that the therapeutic dose of omega-3 fatty acids will depend on the degree of severity of disease resulting from the genetic predisposition. A lower ratio of omega-6/omega-3 fatty acids is more desirable in reducing the risk of many of the chronic diseases of high prevalence in Western societies, as well as in the developing countries, that are being exported to the rest of the world. PMID:12442909

  2. ‘Serious thigh muscle strains’: beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains

    PubMed Central

    Brukner, Peter; Connell, David

    2016-01-01

    Why do some hamstring and quadriceps strains take much longer to repair than others? Which injuries are more prone to recurrence? Intramuscular tendon injuries have received little attention as an element in ‘muscle strain’. In thigh muscles, such as rectus femoris and biceps femoris, the attached tendon extends for a significant distance within the muscle belly. While the pathology of most muscle injures occurs at a musculotendinous junction, at first glance the athlete appears to report pain within a muscle belly. In addition to the musculotendinous injury being a site of pathology, the intramuscular tendon itself is occasionally injured. These injuries have a variety of appearances on MRIs. There is some evidence that these injuries require a prolonged rehabilitation time and may have higher recurrence rates. Therefore, it is important to recognise the tendon component of a thigh ‘muscle strain’. PMID:26519522

  3. Vitamin D deficiency plays an important role in cardiac disease and affects patient outcome: Still a myth or a fact that needs exploration?

    PubMed Central

    Fanari, Zaher; Hammami, Sumaya; Hammami, Muhammad Baraa; Hammami, Safa; Abdellatif, Abdul

    2015-01-01

    There is increasing evidence that a low vitamin D status may be an important and hitherto neglected factor of cardiovascular disease. This review is an overview of the current body of literature, and presents evidence of the mechanisms through which vitamin D deficiency affects the cardiovascular system in general and the heart in particular. Available data indicate that the majority of congestive heart failure patients have 25-hydroxyvitamin D deficiency. Furthermore, the low serum 25-hydroxyvitamin D level has a higher impact on hypertension, coronary artery disease an on the occurrence of relevant cardiac events. A serum 25-hydroxyvitamin D level below 75 nmol/l (30 ng/l) is generally regarded as vitamin D insufficiency in both adults and children, while a level below 50 nmol/l (20 ng/l) is considered deficiency. Levels below 50 nmol/l (20 ng/l) are linked independently to cardiovascular morbidity and mortality. PMID:26557744

  4. F1C Fimbriae Play an Important Role in Biofilm Formation and Intestinal Colonization by the Escherichia coli Commensal Strain Nissle 1917▿

    PubMed Central

    Lasaro, Melissa A.; Salinger, Nina; Zhang, Jing; Wang, Yantao; Zhong, Zhengtao; Goulian, Mark; Zhu, Jun

    2009-01-01

    Bacterial biofilm formation is thought to enhance survival in natural environments and during interaction with hosts. A robust colonizer of the human gastrointestinal tract, Escherichia coli Nissle 1917, is widely employed in probiotic therapy. In this study, we performed a genetic screen to identify genes that are involved in Nissle biofilm formation. We found that F1C fimbriae are required for biofilm formation on an inert surface. In addition, these structures are also important for adherence to epithelial cells and persistence in infant mouse colonization. The data suggest a possible connection between Nissle biofilm formation and the survival of this commensal within the host. Further study of the requirements for robust biofilm formation may improve the therapeutic efficacy of Nissle 1917. PMID:18997018

  5. Vitamin D deficiency plays an important role in cardiac disease and affects patient outcome: Still a myth or a fact that needs exploration?

    PubMed

    Fanari, Zaher; Hammami, Sumaya; Hammami, Muhammad Baraa; Hammami, Safa; Abdellatif, Abdul

    2015-10-01

    There is increasing evidence that a low vitamin D status may be an important and hitherto neglected factor of cardiovascular disease. This review is an overview of the current body of literature, and presents evidence of the mechanisms through which vitamin D deficiency affects the cardiovascular system in general and the heart in particular. Available data indicate that the majority of congestive heart failure patients have 25-hydroxyvitamin D deficiency. Furthermore, the low serum 25-hydroxyvitamin D level has a higher impact on hypertension, coronary artery disease an on the occurrence of relevant cardiac events. A serum 25-hydroxyvitamin D level below 75 nmol/l (30 ng/l) is generally regarded as vitamin D insufficiency in both adults and children, while a level below 50 nmol/l (20 ng/l) is considered deficiency. Levels below 50 nmol/l (20 ng/l) are linked independently to cardiovascular morbidity and mortality. PMID:26557744

  6. Activation of P2X7 Receptor by ATP Plays an Important Role in Regulating Inflammatory Responses during Acute Viral Infection

    PubMed Central

    Lee, Benjamin H.; Hwang, David M.; Palaniyar, Nades; Grinstein, Sergio; Philpott, Dana J.; Hu, Jim

    2012-01-01

    Acute viral infection causes damages to the host due to uncontrolled viral replication but even replication deficient viral vectors can induce systemic inflammatory responses. Indeed, overactive host innate immune responses to viral vectors have led to devastating consequences. Macrophages are important innate immune cells that recognize viruses and induce inflammatory responses at the early stage of infection. However, tissue resident macrophages are not easily activated by the mere presence of virus suggesting that their activation requires additional signals from other cells in the tissue in order to trigger inflammatory responses. Previously, we have shown that the cross-talk between epithelial cells and macrophages generates synergistic inflammatory responses during adenoviral vector infection. Here, we investigated whether ATP is involved in the activation of macrophages to induce inflammatory responses during an acute adenoviral infection. Using a macrophage-epithelial cell co-culture system we demonstrated that ATP signaling through P2X7 receptor (P2X7R) is required for induction of inflammatory mediators. We also showed that ATP-P2X7R signaling regulates inflammasome activation as inhibition or deficiency of P2X7R as well as caspase-1 significantly reduced IL-1β secretion. Furthermore, we found that intranasal administration of replication deficient adenoviral vectors in mice caused a high mortality in wild-type mice with symptoms of acute respiratory distress syndrome but the mice deficient in P2X7R or caspase-1 showed increased survival. In addition, wild-type mice treated with apyrase or inhibitors of P2X7R or caspase-1 showed higher rates of survival. The improved survival in the P2X7R deficient mice correlated with diminished levels of IL-1β and IL-6 and reduced neutrophil infiltration in the early phase of infection. These results indicate that ATP, released during viral infection, is an important inflammatory regulator that activates the

  7. Importance of Unimolecular HO2 Elimination in the Heterogeneous OH Reaction of Highly Oxygenated Tartaric Acid Aerosol.

    PubMed

    Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R

    2016-07-28

    Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this study investigates the OH-radical initiated oxidation of aqueous tartaric acid (C4H6O6) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysis in Real Time) coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C4 functionalization product (C4H4O6) and three C3 fragmentation products (C3H4O4, C3H2O4, and C3H2O5). The C4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C4H4O6), the major reaction product. While in general, C-C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OSC), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OSC = 1.5). These results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms. PMID:27397411

  8. Hypoxia optimises tumour growth by controlling nutrient import and acidic metabolite export.

    PubMed

    Parks, Scott K; Cormerais, Yann; Marchiq, Ibtissam; Pouyssegur, Jacques

    2016-01-01

    In their quest for survival and successful growth, cancer cells optimise their cellular processes to enable them to outcompete normal cells in their microenvironment. In essence cancer cells: (i) enhance uptake of nutrients/metabolites, (ii) utilise nutrients more efficiently via metabolic alterations and (iii) deal with the metabolic waste products in a way that furthers their progression while hampering the survival of normal tissue. Hypoxia Inducible Factors (HIFs) act as essential drivers of these adaptations via the promotion of numerous membrane proteins including glucose transporters (GLUTs), monocarboxylate transporters (MCTs), amino-acid transporters (LAT1, xCT), and acid-base regulating carbonic anhydrases (CAs). In addition to a competitive growth advantage for tumour cells, these HIF-regulated proteins are implicated in metastasis, cancer 'stemness' and the immune response. Current research indicates that combined targeting of these HIF-regulated membrane proteins in tumour cells will provide promising therapeutic strategies in the future. PMID:26724171

  9. Evaluation of the Impact of Ruminant Trans Fatty Acids on Human Health: Important Aspects to Consider.

    PubMed

    Kuhnt, Katrin; Degen, Christian; Jahreis, Gerhard

    2016-09-01

    The definition and evaluation of trans fatty acids (TFA) with regard to foodstuffs and health hazard are not consistent. Based on the current situation, the term should be restricted only to TFA with isolated double bonds in trans-configuration. Conjugated linoleic acids (CLA) should be separately assessed. Ideally, the origin of the consumed fat should be declared, i.e., ruminant TFA (R-TFA) and industrial TFA (non-ruminant; I-TFA). In ruminant fat, more than 50% of R-TFA consists of vaccenic acid (C18:1 t11). In addition, natural CLA, i.e., c9,t11 CLA is also present. Both are elevated in products from organic farming. In contrast to elaidic acid (t9) and t10, which occur mainly in partially hydrogenated industrial fat, t11 is partially metabolized into c9,t11 CLA via Δ9-desaturation. This is the major metabolic criterion used to differentiate between t11 and other trans C18:1. t11 indicates health beneficial effects in several studies. Moreover, CLA in milk fat is associated with the prevention of allergy and asthma. An analysis of the few studies relating to R-TFA alone makes clear that no convincing adverse physiological effect can be attributed to R-TFA. Only extremely high R-TFA intakes cause negative change in blood lipids. In conclusion, in most European countries, the intake of R-TFA is assessed as being low to moderate. Restriction of R-TFA would unjustifiably represent a disadvantage for organic farming of milk. PMID:25746671

  10. Physical interactions between Ets and NF-kappaB/NFAT proteins play an important role in their cooperative activation of the human immunodeficiency virus enhancer in T cells.

    PubMed Central

    Bassuk, A G; Anandappa, R T; Leiden, J M

    1997-01-01

    The transcriptional regulatory elements of many inducible T-cell genes contain adjacent or overlapping binding sites for the Ets and NF-kappaB/NFAT families of transcription factors. Similar arrays of functionally important NF-kappaB/NFAT and Ets binding sites are present in the transcriptional enhancers of human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2), suggesting that this pattern of nuclear protein binding sites reflects an evolutionarily conserved mechanism for regulating inducible T-cell gene expression that has been co-opted during HIV evolution. Despite these findings, the molecular mechanisms by which Ets and NF-kappaB/NFAT proteins cooperatively regulate inducible T-cell gene expression remained unknown. In the studies described in this report, we demonstrated a physical interaction between multiple Ets and NF-kappaB/NFAT proteins both in vitro and in activated normal human T cells. This interaction is mediated by the Ets domain of Ets proteins and the C-terminal region of the Rel homology domains of NF-kappaB/NFAT proteins. In addition, the Ets-NF-kappaB/NFAT interaction requires the presence of DNA binding sites for both proteins, as it is abolished by the DNA intercalating agents propidium iodide and ethidium bromide and enhanced by the presence of synthetic oligonucleotides containing binding sites for Ets and NF-kappaB proteins. A dominant-negative mutant of NF-kappaB p50 that binds DNA but fails to interact with Ets proteins inhibits the synergistic activation of the HIV-1 and HIV-2 enhancers by NF-kappaB (p50 + p65) and Ets-1, suggesting that physical interaction between Ets and NF-kappaB proteins is required for the transcriptional activity of the HIV-1 and HIV-2 enhancers. Taken together, these findings suggest that evolutionarily conserved physical interactions between Ets and NF-kappaB/NFAT proteins are important in regulating the inducible expression of T-cell genes and viruses. These interactions represent a potential target

  11. Clay Play

    ERIC Educational Resources Information Center

    Rogers, Liz; Steffan, Dana

    2009-01-01

    This article describes how to use clay as a potential material for young children to explore. As teachers, the authors find that their dialogue about the potential of clay as a learning medium raises many questions: (1) What makes clay so enticing? (2) Why are teachers noticing different play and conversation around the clay table as compared to…

  12. Playing Teacher.

    ERIC Educational Resources Information Center

    Gilbert, Juan E.

    The acceptance of animation technologies is increasing. Video games, such as Sony PlayStation (SONY, 2002), have become part of the culture for young people from kindergarten through undergraduate school. Animation technologies have been implemented into educational systems in the form of animated pedagogical agents (Johnson, 2000). The research…

  13. Game playing.

    PubMed

    Rosin, Christopher D

    2014-03-01

    Game playing has been a core domain of artificial intelligence research since the beginnings of the field. Game playing provides clearly defined arenas within which computational approaches can be readily compared to human expertise through head-to-head competition and other benchmarks. Game playing research has identified several simple core algorithms that provide successful foundations, with development focused on the challenges of defeating human experts in specific games. Key developments include minimax search in chess, machine learning from self-play in backgammon, and Monte Carlo tree search in Go. These approaches have generalized successfully to additional games. While computers have surpassed human expertise in a wide variety of games, open challenges remain and research focuses on identifying and developing new successful algorithmic foundations. WIREs Cogn Sci 2014, 5:193-205. doi: 10.1002/wcs.1278 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:26304308

  14. Sweet Play

    ERIC Educational Resources Information Center

    Leung, Shuk-kwan S.; Lo, Jane-Jane

    2010-01-01

    This article features Sweet play math, a "math by the month" activity that involves decorating and making sugar cubes. Teachers may want to substitute straws, paper squares, alphabet blocks, or such commercially made manipulatives as Unifix[R] cubes for the real sweets. Given no allergy concerns, teachers and students alike would enjoy some sweet…

  15. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells.

    PubMed Central

    Nugroho, T T; Mendenhall, M D

    1994-01-01

    The gene encoding a 40-kDa protein, previously studied as a substrate and inhibitor of the yeast cyclin-dependent protein kinase, Cdc28, has been cloned. The DNA sequence reveals that p40 is a highly charged protein of 32,187 Da with no significant homology to other proteins. Overexpression of the gene encoding p40, SIC1, produces cells with an elongated but morphology similar to that of cells with depleted levels of the CLB gene products, suggesting that p40 acts as an inhibitor of Cdc28-Clb complexes in vivo. A SIC1 deletion is viable and has highly increased frequencies of broken and lost chromosomes. The deletion strain segregates out many dead cells that are primarily arrested at the G2 checkpoint in an asymmetric fashion. Only daughters and young mothers display the lethal defect, while experienced mothers appear to grow normally. These results suggest that negative regulation of Cdc28 protein kinase activity by p40 is important for faithful segregation of chromosomes to daughter cells. Images PMID:8164683

  16. The Arabidopsis F-box E3 ligase RIFP1 plays a negative role in abscisic acid signalling by facilitating ABA receptor RCAR3 degradation.

    PubMed

    Li, Ying; Zhang, Liang; Li, Dekuan; Liu, Zhibin; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a vital role in plant growth and development. The function of ABA is mediated by a group of newly discovered ABA receptors, named PYRABACTIN RESISTANCE 1/PYR-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORs (PYR1/PYLs/RCARs). Here, we report that an Arabidopsis thaliana F-box protein RCAR3 INTERACTING F-BOX PROTEIN 1 (RIFP1) interacts with ABA receptor (RCAR3) and SCF E3 ligase complex subunits Arabidopsis SKP1-LIKE PROTEINs (ASKs) in vitro and in vivo. The rifp1 mutant plants displayed increased ABA-mediated inhibition of seed germination and water loss of detached leaves, while the overexpression of RIFP1 in Arabidopsis led to plants being insensitive to ABA. Meanwhile, the rifp1 mutant plants showed greater tolerance to water deficit. In addition, the RCAR3 protein level was more stable in the rifp1 mutant plants than in the wild-type plants, indicating that RIFP1 facilitates the proteasome degradation of RCAR3. Accordingly, the loss of RIFP1 increased the transcript levels of several ABA-responsive genes. Taken together, these data indicate that RIFP1 plays a negative role in the RCAR3-mediated ABA signalling pathway and likely functions as an adaptor subunit of the SCF ubiquitin ligase complex to regulate ABA receptor RCAR3 stability. PMID:26386272

  17. Domain III of Bacillus thuringiensis Cry1Ie Toxin Plays an Important Role in Binding to Peritrophic Membrane of Asian Corn Borer.

    PubMed

    Feng, Dongmei; Chen, Zhen; Wang, Zhiwen; Zhang, Chunlu; He, Kanglai; Guo, Shuyuan

    2015-01-01

    The insecticidal IE648 toxin is a truncated Cry1Ie protein with increased toxicity against Asian corn borer (ACB). Cry toxins are pore-forming toxins that disrupt insect midgut cells to kill the larvae. However, the peritrophic membrane (PM) is an important barrier that Cry toxins must cross before binding to midgut cells. Previously, it was shown that Cry toxins are able to bind and accumulate in the PM of several lepidopteran insects. Binding of IE648 toxin to PM of ACB was previously reported and the goal of the current work was the identification of the binding region between Cry1Ie and the PM of ACB. Homologous competition binding assays showed that this interaction was specific. Heterologous competition binding assays performed with different fragments corresponding to domain I, domain II and domain III allowed us to identify that domain III participates in the interaction of IE648 with the PM. Specifically, peptide D3-L8 (corresponding to Cry1Ie toxin residues 607 to 616), located in an exposed loop region of domain III is probably involved in this interaction. Ligand blot assays show that IE648 interact with chitin and PM proteins with sizes of 30, 32 and 80 kDa. The fact that domain III interacts with proteins of similar molecular masses supports that this region of the toxin might be involved in PM interaction. These data provide for the first time the identification of domain III as a putative binding region between PM and 3D-Cry toxin. PMID:26295704

  18. Cooperative effects of hepatitis B virus and TNF may play important roles in the activation of metabolic pathways through the activation of NF-κB

    PubMed Central

    Wu, Shuang; Kanda, Tatsuo; Nakamoto, Shingo; Jiang, Xia; Nakamura, Masato; Sasaki, Reina; Haga, Yuki; Shirasawa, Hiroshi; Yokosuka, Osamu

    2016-01-01

    Elevated levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β are often observed in the sera of hepatitis B virus (HBV)-infected patients. It is well known that these cytokines activate nuclear factor-κB (NF-κB)-signaling, and are associated with endoplasmic reticulum (ER) stress. We investigated whether HBV or HBV X protein (HBx) enhanced the activation of NF-κB in the presence of TNF and/or IL-1β, and their effects on the expression of metabolic pathway-associated genes. We examined whether HBV or HBx enhanced cytokine-induced activation of NF-κB in hepatocytes, using a reporter assay, in the presence or absence of TNF and/or IL-1β. The expression of insulin-like growth factor binding protein 1 (IGFBP1), one of the NF-κB target genes was also examined. The expression of metabolic pathway-associated genes in HepG2 and HepG2.2.15 cells in the presence or absence of TNF was evaluated by RT-qPCR. Human hepatocytes expressed TNF receptors and IL-1 receptors. NF-κB was activated by cooperation between HBx and TNF in human hepatocytes. We observed IGFBP1 expression in HBV infection and that a number of metabolic pathway-associated genes were upregulated in HepG2.2.15 cells, compared with HepG2 cells with or without TNF treatment. We observed the cooperative effects of HBV and TNF which enhanced the activation of NF-κB as well as upregulated the expression of metabolic pathway-associated genes in hepatocytes. These effects may be important in the development of HBV-associated metabolic syndrome. PMID:27315566

  19. Domain III of Bacillus thuringiensis Cry1Ie Toxin Plays an Important Role in Binding to Peritrophic Membrane of Asian Corn Borer

    PubMed Central

    Feng, Dongmei; Chen, Zhen; Wang, Zhiwen; Zhang, Chunlu; He, Kanglai; Guo, Shuyuan

    2015-01-01

    The insecticidal IE648 toxin is a truncated Cry1Ie protein with increased toxicity against Asian corn borer (ACB). Cry toxins are pore-forming toxins that disrupt insect midgut cells to kill the larvae. However, the peritrophic membrane (PM) is an important barrier that Cry toxins must cross before binding to midgut cells. Previously, it was shown that Cry toxins are able to bind and accumulate in the PM of several lepidopteran insects. Binding of IE648 toxin to PM of ACB was previously reported and the goal of the current work was the identification of the binding region between Cry1Ie and the PM of ACB. Homologous competition binding assays showed that this interaction was specific. Heterologous competition binding assays performed with different fragments corresponding to domain I, domain II and domain III allowed us to identify that domain III participates in the interaction of IE648 with the PM. Specifically, peptide D3-L8 (corresponding to Cry1Ie toxin residues 607 to 616), located in an exposed loop region of domain III is probably involved in this interaction. Ligand blot assays show that IE648 interact with chitin and PM proteins with sizes of 30, 32 and 80 kDa. The fact that domain III interacts with proteins of similar molecular masses supports that this region of the toxin might be involved in PM interaction. These data provide for the first time the identification of domain III as a putative binding region between PM and 3D-Cry toxin. PMID:26295704

  20. Cooperative effects of hepatitis B virus and TNF may play important roles in the activation of metabolic pathways through the activation of NF-κB.

    PubMed

    Wu, Shuang; Kanda, Tatsuo; Nakamoto, Shingo; Jiang, Xia; Nakamura, Masato; Sasaki, Reina; Haga, Yuki; Shirasawa, Hiroshi; Yokosuka, Osamu

    2016-08-01

    Elevated levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β are often observed in the sera of hepatitis B virus (HBV)-infected patients. It is well known that these cytokines activate nuclear factor-κB (NF-κB)-signaling, and are associated with endoplasmic reticulum (ER) stress. We investigated whether HBV or HBV X protein (HBx) enhanced the activation of NF-κB in the presence of TNF and/or IL-1β, and their effects on the expression of metabolic pathway‑associated genes. We examined whether HBV or HBx enhanced cytokine-induced activation of NF-κB in hepatocytes, using a reporter assay, in the presence or absence of TNF and/or IL-1β. The expression of insulin-like growth factor binding protein 1 (IGFBP1), one of the NF-κB target genes was also examined. The expression of metabolic pathway-associated genes in HepG2 and HepG2.2.15 cells in the presence or absence of TNF was evaluated by RT-qPCR. Human hepatocytes expressed TNF receptors and IL-1 receptors. NF-κB was activated by cooperation between HBx and TNF in human hepatocytes. We observed IGFBP1 expression in HBV infection and that a number of metabolic pathway-associated genes were upregulated in HepG2.2.15 cells, compared with HepG2 cells with or without TNF treatment. We observed the cooperative effects of HBV and TNF which enhanced the activation of NF-κB as well as upregulated the expression of metabolic pathway-associated genes in hepatocytes. These effects may be important in the development of HBV-associated metabolic syndrome. PMID:27315566

  1. The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization.

    PubMed

    Leslie, Patrick L; Ke, Hengming; Zhang, Yanping

    2015-05-15

    The oncoprotein murine double minute 2 (MDM2) is an E3 ligase that plays a prominent role in p53 suppression by promoting its polyubiquitination and proteasomal degradation. In its active form, MDM2 forms homodimers as well as heterodimers with the homologous protein murine double minute 4 (MDMX), both of which are thought to occur through their respective C-terminal RING (really interesting new gene) domains. In this study, using multiple MDM2 mutants, we show evidence suggesting that MDM2 homo- and heterodimerization occur through distinct mechanisms because MDM2 RING domain mutations that inhibit MDM2 interaction with MDMX do not affect MDM2 interaction with WT MDM2. Intriguingly, deletion of a portion of the MDM2 central acidic domain selectively inhibits interaction with MDM2 while leaving intact the ability of MDM2 to interact with MDMX and to ubiquitinate p53. Further analysis of an MDM2 C-terminal deletion mutant reveals that the C-terminal residues of MDM2 are required for both MDM2 and MDMX interaction. Collectively, our results suggest a model in which MDM2-MDMX heterodimerization requires the extreme C terminus and proper RING domain structure of MDM2, whereas MDM2 homodimerization requires the extreme C terminus and the central acidic domain of MDM2, suggesting that MDM2 homo- and heterodimers utilize distinct MDM2 domains. Our study is the first to report mutations capable of separating MDM2 homo- and heterodimerization. PMID:25809483

  2. Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10.

    PubMed

    Kawamoto, Jun; Kurihara, Tatsuo; Yamamoto, Kentaro; Nagayasu, Makiko; Tani, Yasushi; Mihara, Hisaaki; Hosokawa, Masashi; Baba, Takeshi; Sato, Satoshi B; Esaki, Nobuyoshi

    2009-01-01

    Shewanella livingstonensis Ac10, a psychrotrophic gram-negative bacterium isolated from Antarctic seawater, produces eicosapentaenoic acid (EPA) as a component of phospholipids at low temperatures. EPA constitutes about 5% of the total fatty acids of cells grown at 4 degrees C. We found that five genes, termed orf2, orf5, orf6, orf7, and orf8, are specifically required for the synthesis of EPA by targeted disruption of the respective genes. The mutants lacking EPA showed significant growth retardation at 4 degrees C but not at 18 degrees C. Supplementation of a synthetic phosphatidylethanolamine that contained EPA at the sn-2 position complemented the growth defect. The EPA-less mutant became filamentous, and multiple nucleoids were observed in a single cell at 4 degrees C, indicating that the mutant has a defect in cell division. Electron microscopy of the cells by high-pressure freezing and freeze-substitution revealed abnormal intracellular membranes in the EPA-less mutant at 4 degrees C. We also found that the amounts of several membrane proteins were affected by the depletion of EPA. While polyunsaturated fatty acids are often considered to increase the fluidity of the hydrophobic membrane core, diffusion of a small hydrophobic molecule, pyrene, in the cell membranes and large unilamellar vesicles prepared from the lipid extracts was very similar between the EPA-less mutant and the parental strain. These results suggest that EPA in S. livingstonensis Ac10 is not required for bulk bilayer fluidity but plays a beneficial role in membrane organization and cell division at low temperatures, possibly through specific interaction between EPA and proteins involved in these cellular processes. PMID:19011019

  3. The importance of acid-base management for cardiac and cerebral preservation during open heart operations.

    PubMed

    Swan, H

    1984-04-01

    The basic physiologic characteristics of acid-base equilibria during hypothermia were briefly reviewed. By graphic analysis, four possible clinical strategies for managing the acid-base status of the patient undergoing H-CPB were documented. The effect of hemodilution on buffer capacity was charted in a manner applicable to common current operative procedures. During hypothermia for cardiac operations as presently conducted, the perfusionist is in control of the temperature of the body and the perfusion preservation of the body and brain; the surgeon must assume responsibility for preservation of the heart. The literature pertinent to the relationship of the acid-base state to the functions and structural preservation of the heart and brain during the conditions of cooling to and rewarming from deep hypothermia associated with cardiopulmonary bypass, aortic cross clamping, cardioplegia and total circulatory arrest have been reviewed. The evidence is overwhelming that myocardial anoxia caused by aortic occlusion or total circulatory arrest at any temperature to 15 degrees C. result in progressive acidosis which, of itself, is myotoxic. In contrast, alkalinity is ionotropic. Myocardial ischemia, in both adults and infants, should be prevented and treated by alkaline perfusion cooling and by frequent coronary perfusion of a cardiopreservative solution which is extremely cold (4 to 8 degrees C.), oxygenated, has a pH of 7.8, slightly hyperosmolar and which has a hematocrit of 20 per cent (imidazole, erythrocytes and plasma protein colloid), a cardioplegic ionic pattern and energy substrates. Reperfusion of the heart should begin at a 37 pH of 7.8. Evidence is strong that the use of CO2 added to any gas mixture is harmful. It increases myocardial acidosis; it does not increase cerebral blood flow during hypothermia. Protection of the unperfused brain of an infant should emphasize prevention of circulatory arrest prolonged to more than 40 minutes. Temporary reperfusion

  4. Relative Rates of Amino Acid Import via the ABC Transporter GlnPQ Determine the Growth Performance of Lactococcus lactis

    PubMed Central

    Fulyani, Faizah; Schuurman-Wolters, Gea K.; Slotboom, Dirk-Jan

    2015-01-01

    ABSTRACT The GlnPQ transporter from Lactococcus lactis has the remarkable feature of having two substrate-binding domains (SBDs) fused to the N terminus of the transmembrane domain (TMD), and thus four SBDs are present in the homodimeric complex. Although X-ray structures and ligand binding data are available for both SBDs, little is known of how different amino acids compete with each other for transport via GlnPQ. Here we show GlnPQ has a broader substrate specificity than previously thought, with the ability to take up asparagine, glutamine, and glutamic acid, albeit via different routes and with different affinities. Asparagine and glutamine compete with each other at the level of binding to SBD1 and SBD2 (with differences in dissociation constant), but at the same time SBD1 and SBD2 compete with each other at the level of interaction with the translocator domain (with differences in affinity constant and rate of transport). Although glutamine transport via SBD1 is outcompeted by physiological concentrations of asparagine, SBD2 ensures high rates of import of the essential amino acid glutamine. Taken together, this study demonstrates that even in the presence of competing asparagine concentrations, GlnPQ has a high capacity to transport glutamine, which matches the high needs of the cell for glutamine and glutamate. IMPORTANCE GlnPQ is an ATP-binding cassette (ABC) transporter for glutamine, glutamic acid, and asparagine. The system is essential in various Gram-positive bacteria, including L. lactis and several pathogens. Here we show how the amino acids compete with each other for binding to the multiple SBDs of GlnPQ and how these SBDs compete with each other for substrate delivery to the transporter. Overall, our results show that GlnPQ has evolved to transport diverse substrates via different paths and to optimally acquire the abundant and essential amino acid glutamine. PMID:26553850

  5. Structure-Function of CD36 and Importance of Fatty Acid Signal Transduction in Fat Metabolism

    PubMed Central

    Pepino, Marta Yanina; Kuda, Ondrej; Samovski, Dmitri; Abumrad, Nada A

    2015-01-01

    CD36 is a scavenger receptor that functions in high affinity tissue uptake of long chain fatty acids (FA) and contributes under excessive fat supply to lipid accumulation and metabolic dysfunction. This review describes recent evidence regarding the CD36 FA binding site and a potential mechanism for FA transfer. It also presents the view that CD36 and FA signaling coordinate fat utilization based on newly identified CD36 actions that involve oral fat perception, intestinal fat absorption, secretion of the peptides cholecystokinin and secretin, regulation of hepatic lipoprotein output, activation of beta oxidation by muscle and regulation of the production of the FA derived bioactive eicosanoids. Thus abnormalities of fat metabolism and the associated pathology might involve dysfunction of CD36-mediated signal transduction in addition to the changes of FA uptake. PMID:24850384

  6. The Basic Leucine Zipper Transcription Factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 Is an Important Transcriptional Regulator of Abscisic Acid-Dependent Grape Berry Ripening Processes1[W][OPEN

    PubMed Central

    Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma

    2014-01-01

    In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949

  7. Relative Importance of Nitrite Oxidation by Hypochlorous Acid under Chloramination Conditions

    EPA Science Inventory

    The importance of nitrite’s oxidation by tree chlorine under chloramination conditions was evaluated using batch kinetic experiments and a chloramine model implemented into the computer program AWUASIM. The experimental data was best represented with the inclusion of a reaction b...

  8. Acid-fast lipids are important structural components of oocyst walls of Cryptosporidium, Toxoplasma, and Eimeria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccidia are protozoan parasites that cause significant human disease and are of major agricultural importance. Cryptosporidium spp.cause diarrhea in humans and animals, while congenital Toxoplasma infections causes blindness and death. Eimeria kills chickens, so all poultry feed contain antibioti...

  9. The Importance of Play: Part Two

    ERIC Educational Resources Information Center

    Exceptional Parent, 2008

    2008-01-01

    The International Playground Equipment Manufacturers Association (IPEMA) is a non-profit membership association of playground equipment and surfacing companies. IPEMA's primary mission is to provide playground equipment and surfacing with independently tested safety certification to meet American Society for Testing and Materials (ASTM) standards…

  10. The Importance of Self-Directed Play

    ERIC Educational Resources Information Center

    Schwarzmueller, Gretchen; Rinaldo, Vincent

    2013-01-01

    Although many cite the No Child Left Behind Act ([NCLB], 2002) as the first result of public outcry for accountability in American education, evidence of this change can be traced back more than three decades, to the Reagan administration and "A Nation at Risk" (National Commission on Excellence in Education [NCEE], 1983). This…

  11. The Importance of Playing Devil's Advocate.

    ERIC Educational Resources Information Center

    Schwenk, Charles; Cosier, Richard

    1990-01-01

    A "devil's advocacy" approach is proposed for the management of higher education conflict and ultimate improvement in the quality of decisions. Research supporting the value of active questioning of a preferred plan or strategy is summarized and its application is described. (DB)

  12. Intergenerational Learning through Play.

    ERIC Educational Resources Information Center

    Davis, Lindsay; Larkin, Elizabeth; Graves, Stephen B.

    2002-01-01

    Argues that shared play experiences are a good way to build mutually beneficial relationships among older and younger generations. Outlines why intergenerational play is important, focusing on its cognitive, social, physical, and emotional benefits for both older adults and young children. Describes toys, materials, and games conducive to positive…

  13. Play as Experience

    ERIC Educational Resources Information Center

    Henricks, Thomas S.

    2015-01-01

    The author investigates what he believes one of the more important aspects of play--the experience it generates in its participants. He considers the quality of this experience in relation to five ways of viewing play--as action, interaction, activity, disposition, and within a context. He treats broadly the different forms of affect, including…

  14. The Importance of Sediment Sulfate Reduction to the Sulfate Budget of an Impoundment Receiving Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Herlihy, Alan T.; Mills, Aaron L.; Hornberger, George M.; Bruckner, Amy E.

    1987-02-01

    Alkalinity generation by bacterial sulfate reduction (SR) has been shown to be an important neutralizing agent for acid mine drainage and acid precipitation in lakes and reservoirs. In order to quantify the importance of SR in an acidified system, a sulfate influx-efflux budget was constructed for Lake Anna, an impoundment in central Virginia that receives acid mine drainage. For the 1983 and 1984 water years, 48% (namely, 8.0 × 105 kg) of the sulfate entering the impoundment was removed from the water column within the first 2 km of the arm of the lake receiving the pollution. SR rates measured using 35S-labeled sulfate were extrapolated across the surface area of this arm of the lake; this calculated amount of sulfate removed was equal to 200% of the sulfate removed from the lake as calculated in the budget. The calculated alkalinity generated by this sulfate removal was more than twice that necessary to account for the observed pH increase in the impoundment. The magnitude of the sulfate removal and alkalinity generation demonstrates the quantitative importance of SR as an ecosystem level buffering mechanism.

  15. An aromatic amino acid in the coiled-coil 1 domain plays a crucial role in the auto-inhibitory mechanism of STIM1.

    PubMed

    Yu, Junwei; Zhang, Haining; Zhang, Mingshu; Deng, Yongqiang; Wang, Huiyu; Lu, Jingze; Xu, Tao; Xu, Pingyong

    2013-09-15

    STIM1 (stromal interaction molecule 1) is one of the key elements that mediate store-operated Ca²⁺ entry via CRAC (Ca²⁺- release-activated Ca²⁺) channels in immune and non-excitable cells. Under physiological conditions, the intramolecular auto-inhibitions in STIM1 C- and STIM1 N-termini play essential roles in keeping STIM1 in an inactive state. However, the auto-inhibitory mechanism of the STIM1 C-terminus is still unclear. In the present study, we first predicted a short inhibitory domain (residues 310-317) in human STIM1 that might determine the different localizations of human STIM1 from Caenorhabditis elegans STIM1 in resting cells. Next, we confirmed the prediction and further identified an aromatic amino acid residue, Tyr³¹⁶, that played a crucial role in maintaining STIM1 in a closed conformation in quiescent cells. Full-length STIM1-Y316A formed constitutive clusters near the plasma membrane and activated the CRAC channel in the resting state when co-expressed with Orai1. The introduction of a Y316A mutation caused the higher-order oligomerization of the in vitro purified STIM1 fragment containing both the auto-inhibitory domain and CAD(CRAC-activating domain).We propose that the Tyr³¹⁶ residue may be involved in the auto-inhibitory mechanism of the STIM1 C-terminus in the quiescent state. This inhibition could be achieved either by interacting with the CAD using hydrogen and/or hydrophobic bonds, or by an intermolecular interaction using repulsive forces, which maintained a dimeric STIM1. PMID:23795811

  16. African oil plays

    SciTech Connect

    Clifford, A.J. )

    1989-09-01

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  17. Key importance of compression properties in the biophysical characteristics of hyaluronic acid soft-tissue fillers.

    PubMed

    Gavard Molliard, Samuel; Albert, Séverine; Mondon, Karine

    2016-08-01

    Hyaluronic acid (HA) soft-tissue fillers are the most popular degradable injectable products used for correcting skin depressions and restoring facial volume loss. From a rheological perspective, HA fillers are commonly characterised through their viscoelastic properties under shear-stress. However, despite the continuous mechanical pressure that the skin applies on the fillers, compression properties in static and dynamic modes are rarely considered. In this article, three different rheological tests (shear-stress test and compression tests in static and dynamic mode) were carried out on nine CE-marked cross-linked HA fillers. Corresponding shear-stress (G', tanδ) and compression (E', tanδc, normal force FN) parameters were measured. We show here that the tested products behave differently under shear-stress and under compression even though they are used for the same indications. G' showed the expected influence on the tissue volumising capacity, and the same influence was also observed for the compression parameters E'. In conclusion, HA soft-tissue fillers exhibit widely different biophysical characteristics and many variables contribute to their overall performance. The elastic modulus G' is not the only critical parameter to consider amongst the rheological properties: the compression parameters E' and FN also provide key information, which should be taken into account for a better prediction of clinical outcomes, especially for predicting the volumising capacity and probably the ability to stimulate collagen production by fibroblasts. PMID:27093589

  18. Chiral separation of the clinically important compounds fucose and pipecolic acid using CE: determination of the most effective chiral selector.

    PubMed

    Hadjistasi, Christoforos A; Stavrou, Ioannis J; Stefan-Van Staden, Raluca-Ioana; Aboul-Enein, Hassan Y; Kapnissi-Christodoulou, Constantina P

    2013-09-01

    In this study, simple electrophoretic methods were developed for the chiral separation of the clinically important compounds fucose and pipecolic acid. In recent years, these analytes, and particularly their individual enantiomers, have attracted considerable attention due to their role in biological functions and disorders. The detectability and sensitivity of pipecolic acid and fucose were improved by reacting them with fluorenylmethyloxycarbonyl chloride (FMOC-Cl) and 5-amino-2-naphthalene-sulfonic acid (ANSA), respectively. The enantioseparation conditions were optimized by initially investigating the type of the chiral selector. Different chiral selectors, such as polymeric surfactants and cyclodextrins, were used and the most effective ones were determined with regard to resolution and analysis time. A 10-mM β-cyclodextrin was able to separate the enantiomers of ANSA-DL-fucose and the polymeric surfactant poly(sodium N-undecanoyl-LL-leucine-valinate) was able to separate the enantiomers of FMOC-DL-pipecolic acid, with resolution values of 3.45 and 2.78, respectively. Additional parameters, such as the concentration and the pH of the background electrolyte (BGE), the concentration of the chiral selector, and the addition of modifiers were examined in order to optimize the separations. The addition of the chiral ionic liquid D-alanine tert-butyl ester lactate into the BGE was also investigated, for the first time, in order to improve resolution of the enantiomers. PMID:23757267

  19. Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts

    PubMed Central

    Baek, Beomyeol; Lee, Su Hee; Lim, Hye-Won

    2016-01-01

    Ellagic acid (EA), an antioxidant polyphenolic constituent of plant origin, has been reported to possess diverse pharmacological properties, including anti-inflammatory, anti-tumor and immunomodulatory activities. This work aimed to clarify the skin anti-photoaging properties of EA in human dermal fibroblasts. The skin anti-photoaging activity was evaluated by analyzing the reactive oxygen species (ROS), matrix metalloproteinase-2 (MMP-2), total glutathione (GSH) and superoxide dismutase (SOD) activity levels as well as cell viability in dermal fibroblasts under UV-B irradiation. When fibroblasts were exposed to EA prior to UV-B irradiation, EA suppressed UV-B-induced ROS and proMMP-2 elevation. However, EA restored total GSH and SOD activity levels diminished in fibroblasts under UV-B irradiation. EA had an up-regulating activity on the UV-B-reduced Nrf2 levels in fibroblasts. EA, at the concentrations used, was unable to interfere with cell viabilities in both non-irradiated and irradiated fibroblasts. In human dermal fibroblasts, EA plays a defensive role against UV-B-induced oxidative stress possibly through an Nrf2-dependent pathway, indicating that this compound has potential skin antiphotoaging properties. PMID:27162481

  20. Microarray and genetic analysis reveals that csa-miR159b plays a critical role in abscisic acid-mediated heat tolerance in grafted cucumber plants.

    PubMed

    Li, Hao; Wang, Yu; Wang, Ze; Guo, Xie; Wang, Feng; Xia, Xiao-Jian; Zhou, Jie; Shi, Kai; Yu, Jing-Quan; Zhou, Yan-Hong

    2016-08-01

    Root-shoot communication plays a vital role in plant growth, development and adaptation to environmental stimuli. Grafting-induced stress tolerance is associated with the induction of plentiful stress-related genes and proteins; the mechanism involved, however, remains obscure. Here, we show that the enhanced tolerance against heat stress in cucumber plants with luffa as rootstock was accompanied with an increased accumulation of abscisic acid (ABA), down-regulation of a subset of microRNAs (miRNAs) but up-regulation of their target genes and CsHSP70 accumulation in the shoots. Significantly, luffa rootstock and foliar application of ABA both down-regulated csa-miR159b and up-regulated its target mRNAs CsGAMYB1 and CsMYB29-like and CsHSP70 accumulation in cucumber, while ectopic expression of csa-miR159b led to decreased heat tolerance, AtMYB33 transcript and AtHSP70 accumulation in Arabidopsis plants. Taken together, our results suggest that root-originated signals such as ABA could alter miRNAs in the shoots, which have a major role in the post-transcriptional regulation of the stress-responsive genes. PMID:27037862

  1. Methionine deficiency leads to hepatic fat accretion via impairment of fatty acid import by carnitine palmitoyltransferase I.

    PubMed

    Kikusato, M; Sudo, S; Toyomizu, M

    2015-04-01

    1. To clarify the underlying mechanism of hepatic fat accretion due to methionine (Met) deficiency in broiler chickens, the present study investigated the effect of Met deficiency on the hepatic carnitine palmitoyltransferase (CPT) system, which imports fatty acids into mitochondria. 2. Fifteen-d-old male meat-type chickens were fed on either a control diet (containing 0.52 g/100 g Met) or a Met-deficient diet (containing 0.27 g Met/100 g). After a 10-d feeding period, the birds were killed by decapitation and their livers excised to determine hepatic CPT1 and CPT2 mRNA levels and for the related hepatic fatty acid-supported mitochondrial respiration to be measured. 3. Met deficiency decreased body weight gain and feed efficiency and increased hepatic lipid content compared to the control group. Whereas the hepatic CPT2 mRNA level in the Met-deficient group remained unchanged compared to that of the control group, the CPT1 mRNA level was decreased in the Met-deficient group and CPT1-dependent hepatic mitochondrial respiration was impaired. 4. Our results suggest that the hepatic lipid accretion that occurs in response to Met deficiency might be attributable to the impairment of CPT1-mediated fatty acid import into mitochondria. PMID:25561085

  2. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1

    PubMed Central

    Ivie, Susan E.; McClain, Mark S.

    2012-01-01

    Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1. PMID:22938730

  3. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1.

    PubMed

    Ivie, Susan E; McClain, Mark S

    2012-09-25

    Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1. PMID:22938730

  4. Messy Play

    ERIC Educational Resources Information Center

    Feeney, Stephanie; Freeman, Nancy

    2011-01-01

    This article considers the story of 3-year-old Mia and her mother's request that teachers keep Mia away from messy projects. It offers an opportunity to apply the Code, with a special emphasis on its 2011 reaffirmation and update. This revision has sharpened the focus on the importance of nurturing two-way communication between teachers/caregivers…

  5. Identification of two amino acids within E2 important for the pathogenicity of chimeric classical swine fever virus.

    PubMed

    Wu, Rui; Li, Ling; Zhao, Yu; Tu, Jun; Pan, Zishu

    2016-01-01

    Our previous study demonstrated that a chimeric classical swine fever virus (CSFV) vSM/CE2 containing the E2 gene of the vaccine C-strain on the genetic background of the virulent CSFV strain Shimen (vSM) was attenuated in swine but reversed to virulence after serial passages in PK15 cells. To investigate the molecular basis of the pathogenicity, the genome of the 11th passage vSM/CE2 variant (vSM/CE2-p11) was sequenced, and two amino acid mutations, T745I and M979K, within E2 of vSM/CE2-p11 were observed. Based on reverse genetic manipulation of the chimeric cDNA clone pSM/CE2, the mutated viruses vSM/CE2/T745I, vSMCE2/M979K and vSM/CE2/T745I;M979K were rescued. The data from infection of pigs demonstrated that the M979K amino acid substitution was responsible for pathogenicity. Studies in vitro indicated that T745I and M979K increased infectious virus production and replication. Our results indicated that two residues located at sites 745 and 979 within E2 play a key role in determining the replication in vitro and pathogenicity in vivo of chimeric CSFV vSM/CE2. PMID:26454191

  6. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids.

    PubMed

    Song, Letian; Tsang, Adrian; Sylvestre, Michel

    2015-06-01

    Xylanases are used in many industrial processes including pulp bleaching, baking, detergent, and the hydrolysis of plant cell wall in biofuels production. In this work we have evolved a single domain GH10 xylanase, Xyn10A_ASPNG, from Aspergillus niger to improve its thermostability. We introduced a rational approach involving as the first step a computational analysis to guide the design of a mutagenesis library in targeted regions which identified thermal important residues that were subsequently randomly mutagenized through rounds of iterative saturation mutagenesis (ISM). Focusing on five residues, four rounds of ISM had generated a quintuple mutant 4S1 (R25W/V29A/I31L/L43F/T58I) which exhibited thermal inactivation half-life (t1/2 ) at 60°C that was prolonged by 30 folds in comparison with wild-type enzyme. Whereas the wild-type enzyme retained 0.2% of its initial activity after a heat treatment of 10 min at 60°C and was completely inactivated after 2 min at 65°C, 4S1 mutant retained 30% of its initial activity after 15 min heating at 65°C. Furthermore, the mutant melting temperature (Tm ) increased by 17.4°C compared to the wild type. Each of the five mutations in 4S1 was found to contribute to thermoresistance, but the dramatic improvement of enzyme thermoresistance of 4S1 was attributed to the synergistic effects of the five mutations. Comparison of biochemical data and model structure between 4S1 and the wild-type enzyme suggested that the N-terminal coil of the enzyme is important in stabilizing GH10 xylanase structure. Based on model structure analyses, we propose that enforced hydrophobic interactions within N-terminal elements and between N- and C-terminal ends are responsible for the improved thermostability of Xyn10A_ASPNG. PMID:25640404

  7. Methyl groups of thymine bases are important for nucleic acid recognition by DtxR.

    PubMed

    Chen, C S; White, A; Love, J; Murphy, J R; Ringe, D

    2000-08-29

    The expression of diphtheria toxin is controlled by the diphtheria toxin repressor (DtxR). Under conditions of high iron concentration, DtxR binds the tox operator to inhibit transcription. To study how DNA binding specificity is achieved by this repressor, we solved the crystal structure of the nickel(II) activated DtxR(C102D) mutant complexed with a 43mer DNA duplex containing the DtxR consensus binding sequence. Structural analysis of this complex and comparison with a previously determined DtxR(C102D)-Ni(II)-tox operator ternary complex revealed unusual van der Waals interactions between Ser37/Pro39 of the repressor helix-turn-helix (HTH) motif and the methyl groups of specific thymine bases in the consensus binding sequence. Gel mobility shift assays utilizing deoxyuridine modified duplex DNA probes proved the importance of these interactions: the four methyl groups shown to interact with Ser37/Pro39 in the crystal structure contribute a total of 3.4 kcal/mol to binding energy. Thus, in addition to making base-specific hydrogen-bonding interactions to the DNA through its Gln43 residue, DtxR also recognizes methyl groups at certain positions in the DNA sequence with its Ser37 and Pro39 side chains, to achieve binding specificity toward its cognate operator sequences. PMID:10956029

  8. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    NASA Astrophysics Data System (ADS)

    Gallimore, P. J.; Achakulwisut, P.; Pope, F. D.; Davies, J. F.; Spring, D. R.; Kalberer, M.

    2011-12-01

    Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH) in the range of <5-90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160-200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent observations. This

  9. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells.

    PubMed

    Ali, Ramadan A; Camick, Christina; Wiles, Katherine; Walseth, Timothy F; Slama, James T; Bhattacharya, Sumit; Giovannucci, David R; Wall, Katherine A

    2016-02-26

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. PMID:26728458

  10. Synthesis, structure and DFT study of a chelidamic acid based Cu coordination polymer: On the importance of π-π interactions and hexameric water clusters

    NASA Astrophysics Data System (ADS)

    Mirzaei, Masoud; Eshtiagh-Hosseini, Hossein; Karrabi, Zahra; Notash, Behrouz; Bauzá, Antonio; Frontera, Antonio

    2015-01-01

    One-dimensional coordination polymer, i.e., {(Hampy)[Cu(chel)(H2O)]ṡ2H2O}n (1, ampy = 2-amino-6-methylpyridine, H3chel = chelidamic acid), has been synthesized and characterized by elemental analysis, IR spectroscopy, solution studies and X-ray single-crystal diffraction. In the monomeric unit of compound 1 the metal center exhibits a distorted square-pyramidal coordination sphere. The Cu(II) ion is coordinated to chelidamic acid and water. These monomers are interlinked generating a 1D polymer by means of the para hydroxyl group of the ligand. Protonated 2-amino-6-methylpyridine rings act as counter cations. The crystal lattice is aggregated through intermolecular interactions, such as electrostatic attraction, N-H⋯O, O-H⋯O and C-H⋯O hydrogen bonding and aromatic π stacking interactions. Hydrogen bond interactions between the water molecules led to formation of six-membered rings with chair conformation. These assemblies are described and analyzed by means of density functional theory (DFT) calculations since they play an important role in the construction of three-dimensional supramolecular frameworks.

  11. Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean.

    PubMed

    Dold, B; Gonzalez-Toril, E; Aguilera, A; Lopez-Pamo, E; Cisternas, M E; Bucchi, F; Amils, R

    2013-06-18

    Here we describe biogeochemical processes that lead to the generation of acid rock drainage (ARD) and rock weathering on the Antarctic landmass and describe why they are important sources of iron into the Antarctic Ocean. During three expeditions, 2009-2011, we examined three sites on the South Shetland Islands in Antarctica. Two of them displayed intensive sulfide mineralization and generated acidic (pH 3.2-4.5), iron-rich drainage waters (up to 1.78 mM Fe), which infiltrated as groundwater (as Fe(2+)) and as superficial runoff (as Fe(3+)) into the sea, the latter with the formation of schwertmannite in the sea-ice. The formation of ARD in the Antarctic was catalyzed by acid mine drainage microorganisms found in cold climates, including Acidithiobacillus ferrivorans and Thiobacillus plumbophilus. The dissolved iron (DFe) flux from rock weathering (nonmineralized control site) was calculated to be 0.45 × 10(9) g DFe yr(-1) for the nowadays 5468 km of ice-free Antarctic rock coastline which is of the same order of magnitude as glacial or aeolian input to the Southern Ocean. Additionally, the two ARD sites alone liberate 0.026 and 0.057 × 10(9) g DFe yr(-1) as point sources to the sea. The increased iron input correlates with increased phytoplankton production close to the source. This might even be enhanced in the future by a global warming scenario, and could be a process counterbalancing global warming. PMID:23682976

  12. Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif.

    PubMed

    Bernacchi, Serena; Mercenne, Gaëlle; Tournaire, Clémence; Marquet, Roland; Paillart, Jean-Christophe

    2011-03-01

    The HIV-1 viral infectivity factor (Vif) is required for productive infection of non-permissive cells, including most natural HIV-1 targets, where it counteracts the antiviral activities of the cellular cytosine deaminases APOBEC-3G (A3G) and A3F. Vif is a multimeric protein and the conserved proline-rich domain (161)PPLP(164) regulating Vif oligomerization is crucial for its function and viral infectivity. Here, we expressed and purified wild-type Vif and a mutant protein in which alanines were substituted for the proline residues of the (161)PPLP(164) domain. Using dynamic light scattering, circular dichroism and fluorescence spectroscopy, we established the impact of these mutations on Vif oligomerization, secondary structure content and nucleic acids binding properties. In vitro, wild-type Vif formed oligomers of five to nine proteins, while Vif AALA formed dimers and/or trimers. Up to 40% of the unbound wild-type Vif protein appeared to be unfolded, but binding to the HIV-1 TAR apical loop promoted formation of β-sheets. Interestingly, alanine substitutions did not significantly affect the secondary structure of Vif, but they diminished its binding affinity and specificity for nucleic acids. Dynamic light scattering showed that Vif oligomerization, and interaction with folding-promoting nucleic acids, favor formation of high molecular mass complexes. These properties could be important for Vif functions involving RNAs. PMID:21076154

  13. Importance of the proline-rich multimerization domain on the oligomerization and nucleic acid binding properties of HIV-1 Vif

    PubMed Central

    Bernacchi, Serena; Mercenne, Gaëlle; Tournaire, Clémence; Marquet, Roland; Paillart, Jean-Christophe

    2011-01-01

    The HIV-1 viral infectivity factor (Vif) is required for productive infection of non-permissive cells, including most natural HIV-1 targets, where it counteracts the antiviral activities of the cellular cytosine deaminases APOBEC-3G (A3G) and A3F. Vif is a multimeric protein and the conserved proline-rich domain 161PPLP164 regulating Vif oligomerization is crucial for its function and viral infectivity. Here, we expressed and purified wild-type Vif and a mutant protein in which alanines were substituted for the proline residues of the 161PPLP164 domain. Using dynamic light scattering, circular dichroism and fluorescence spectroscopy, we established the impact of these mutations on Vif oligomerization, secondary structure content and nucleic acids binding properties. In vitro, wild-type Vif formed oligomers of five to nine proteins, while Vif AALA formed dimers and/or trimers. Up to 40% of the unbound wild-type Vif protein appeared to be unfolded, but binding to the HIV-1 TAR apical loop promoted formation of β-sheets. Interestingly, alanine substitutions did not significantly affect the secondary structure of Vif, but they diminished its binding affinity and specificity for nucleic acids. Dynamic light scattering showed that Vif oligomerization, and interaction with folding-promoting nucleic acids, favor formation of high molecular mass complexes. These properties could be important for Vif functions involving RNAs. PMID:21076154

  14. p38 MAPK Is Activated but Does Not Play a Key Role during Apoptosis Induction by Saturated Fatty Acid in Human Pancreatic β-Cells

    PubMed Central

    Šrámek, Jan; Němcová-Fürstová, Vlasta; Balušíková, Kamila; Daniel, Petr; Jelínek, Michael; James, Roger F.; Kovář, Jan

    2016-01-01

    Saturated stearic acid (SA) induces apoptosis in the human pancreatic β-cells NES2Y. However, the molecular mechanisms involved are unclear. We showed that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway in these cells. Therefore, we tested the role of p38 MAPK signaling pathway activation in apoptosis induction by SA in NES2Y cells. Crosstalk between p38 MAPK pathway activation and accompanying ERK pathway inhibition after SA application was also tested. The inhibition of p38 MAPK expression by siRNA silencing resulted in a decrease in MAPKAPK-2 activation after SA application, but it had no significant effect on cell viability or the level of phosphorylated ERK pathway members. The inhibition of p38 MAPK activity by the specific inhibitor SB202190 resulted in inhibition of MAPKAPK-2 activation and noticeable activation of ERK pathway members after SA treatment but in no significant effect on cell viability. p38 MAPK overexpression by plasmid transfection produced an increase in MAPKAPK-2 activation after SA exposure but no significant influence on cell viability or ERK pathway activation. The activation of p38 MAPK by the specific activator anisomycin resulted in significant activation of MAPKAPK-2. Concerning the effect on cell viability, application of the activator led to apoptosis induction similar to application of SA (PARP cleavage and caspase-7, -8, and -9 activation) and in inhibition of ERK pathway members. We demonstrated that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway and that this activation could be involved in apoptosis induction by SA in the human pancreatic β-cells NES2Y. However, this involvement does not seem to play a key role. Crosstalk between p38 MAPK pathway activation and ERK pathway inhibition in NES2Y cells seems likely. Thus, the ERK pathway inhibition by p38 MAPK activation does not also seem to be essential for SA-induced apoptosis. PMID:26861294

  15. The Child's Right To Play.

    ERIC Educational Resources Information Center

    Morris, Beverley

    This paper argues that play is an important and fundamental educational process and that the child's right to play should be respected. The paper also comments on the 1990 Tokyo International Conference on the Child's Right to Play. Several issues related to children's play, both in and out of school, are discussed. The focus is on the state of…

  16. Play and Positive Group Dynamics

    ERIC Educational Resources Information Center

    Thompson, Pam; White, Samantha

    2010-01-01

    Play is an important part of a child's life and essential to learning and development (Vygotsky, 1978). It is vital that students participate in play and that play be conducted in a restorative manner. Play allows a variety of group dynamics to emerge. Irvin Yalom (1995) identifies 11 curative factors of the group experience. These factors include…

  17. The fatty acid beta-oxidation pathway is important for decidualization of endometrial stromal cells in both humans and mice.

    PubMed

    Tsai, Jui-He; Chi, Maggie M-Y; Schulte, Maureen B; Moley, Kelle H

    2014-02-01

    Embryo implantation and development requires the endometrial stromal cells (ESCs) to undergo decidualization. This differentiation process requires glucose utilization, and blockade of the pentose phosphate pathway inhibits decidualization of ESCs both in vitro and in vivo. Glucose and fatty acids are energy substrates for many cell types, and fatty acid beta-oxidation is critical for embryo implantation. Here, we investigated whether beta-oxidation is required for decidualization of ESCs. As assessed by marker gene expression, decidualization of human primary ESCs was blocked by reducing activity of carnitine calmitoyltransferase I, the rate-limiting enzyme in beta-oxidation, either by short hairpin RNA-mediated silencing or by treatment with the inhibitor etomoxir. Ranolazine (RAN), a partial beta-oxidation inhibitor, blocked early decidualization of a human ESC line. However, decidualization resumed after several days, most likely due to a compensatory up-regulation of GLUT1 expression and an increase in glucose metabolism. Simultaneous inhibition of the beta-oxidation pathway with RAN and the pentose phosphate pathway with glucosamine (GlcN) impaired in vitro decidualization of human ESCs more strongly than inhibition of either pathway alone. These findings were confirmed in murine ESCs in vitro, and exposure to RAN plus GlcN inhibited decidualization in vivo in a deciduoma model. Finally, intrauterine implantation of time-release RAN and GlcN pellets reduced pup number. Importantly, pup number returned to normal after the end of the pellet-active period. This work indicates that both fatty acids and glucose metabolism pathways are important for ESC decidualization, and suggests novel pathways to target for the design of future nonhormonal contraceptives. PMID:24403548

  18. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): Importance of steric and electronic effects on the unusual cyclization of the sulfenic acid intermediate to a sulfenyl amide

    NASA Astrophysics Data System (ADS)

    Sarma, Bani Kanta

    2013-09-01

    The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by nO → σ*S-OH orbital interactions, which force the -OH group to adopt a position trans to the S⋯O interaction, leading to an almost linear arrangement of the O⋯S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S⋯N or S⋯O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.

  19. Pretend Play and Creative Processes

    ERIC Educational Resources Information Center

    Russ, Sandra W.; Wallace, Claire E.

    2013-01-01

    The authors contend that many cognitive abilities and affective processes important in creativity also occur in pretend play and that pretend play in childhood affects the development of creativity in adulthood. They discuss a variety of theories and observations that attempt to explain the importance of pretend play to creativity. They argue that…

  20. Association of Alix with late endosomal lysobisphosphatidic acid is important for dengue virus infection in human endothelial cells.

    PubMed

    Pattanakitsakul, Sa-nga; Poungsawai, Jesdaporn; Kanlaya, Rattiyaporn; Sinchaikul, Supachok; Chen, Shui-Tein; Thongboonkerd, Visith

    2010-09-01

    The most severe form of dengue virus (DENV) infection is dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), which is accompanied by increased vascular permeability indicating that endothelial cells are the targets of DENV infection. However, molecular mechanisms underlying DENV replication in endothelial cells remained poorly understood. We therefore examined changes in subcellular proteomes of different cellular compartments (including cytosolic, membrane/organelle, nucleus, and cytoskeleton) of human endothelial (EA.hy926) cells upon DENV2 infection using a 2-DE-based proteomics approach followed by Q-TOF MS and MS/MS. A total of 35 altered proteins were identified in these subcellular locales, including an increase in the level of Alix (apoptosis-linked gene-2-interacting protein X) in the cytosolic fraction of DENV2-infected cells compared to mock control cells. Double immunofluorescence staining revealed colocalization of Alix with late endosomal lysobisphosphatidic acid (LBPA). This complex has been proposed to be involved in the export of DENV proteins from late endosomes to the cytoplasm. Subsequent functional study revealed that pretreatment with an anti-LBPA antibody prior to DENV challenge significantly reduced the level of viral envelope protein synthesis and DENV replication. Our data indicate that Alix plays a pivotal role in the early phase of DENV replication, particularly when it arrives at the late endosome stage. Blocking this step may lead to a novel therapeutic approach to reducing the level of DENV replication in vivo. PMID:20669987

  1. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.

    PubMed

    Wong, Bernice H; Chan, Jia Pei; Cazenave-Gassiot, Amaury; Poh, Rebecca W; Foo, Juat Chin; Galam, Dwight L A; Ghosh, Sujoy; Nguyen, Long N; Barathi, Veluchamy A; Yeo, Sia W; Luu, Chi D; Wenk, Markus R; Silver, David L

    2016-05-13

    Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs. PMID:27008858

  2. Amino acids flanking the central core of Cu,Zn superoxide dismutase are important in retaining enzyme activity after autoclaving.

    PubMed

    Kumar, Arun; Randhawa, Vinay; Acharya, Vishal; Singh, Kashmir; Kumar, Sanjay

    2016-01-01

    Enzymes are known to be denatured upon boiling, although Cu,Zn superoxide dismutase of Potentilla atrosanguinea (Pot-SOD) retains significant catalytic activity even after autoclaving (heating at 121 °C at a pressure of 1.1 kg per square cm for 20 min). The polypeptide backbone of Pot-SOD consists of 152 amino acids with a central core spanning His45 to Cys145 that is involved in coordination of Cu(2+) and Zn(2+) ions. While the central core is essential for imparting catalytic activity and structural stability to the enzyme, the role of sequences flanking the central core was not understood. Experiments with deletion mutants showed that the amino acid sequences flanking the central core were important in retaining activity of Pot-SOD after autoclaving. Molecular dynamics simulations demonstrated the unfavorable structure of mutants due to increased size of binding pocket and enhanced negative charge on the electrostatic surface, resulting in unavailability of the substrate superoxide radical ([Formula: see text]) to the catalytic pocket. Deletion caused destabilization of structural elements and reduced solvent accessibility that further produced unfavorable structural geometry of the protein. PMID:25990646

  3. The Phosphatidic Acid Binding Site of the Arabidopsis Trigalactosyldiacylglycerol 4 (TGD4) Protein Required for Lipid Import into Chloroplasts*

    PubMed Central

    Wang, Zhen; Anderson, Nicholas Scott; Benning, Christoph

    2013-01-01

    Chloroplast membrane lipid synthesis relies on the import of glycerolipids from the ER. The TGD (TriGalactosylDiacylglycerol) proteins are required for this lipid transfer process. The TGD1, -2, and -3 proteins form a putative ABC (ATP-binding cassette) transporter transporting ER-derived lipids through the inner envelope membrane of the chloroplast, while TGD4 binds phosphatidic acid (PtdOH) and resides in the outer chloroplast envelope. We identified two sequences in TGD4, amino acids 1–80 and 110–145, which are necessary and sufficient for PtdOH binding. Deletion of both sequences abolished PtdOH binding activity. We also found that TGD4 from 18:3 plants bound specifically and with increased affinity PtdOH. TGD4 did not interact with other proteins and formed a homodimer both in vitro and in vivo. Our results suggest that TGD4 is an integral dimeric β-barrel lipid transfer protein that binds PtdOH with its N terminus and contains dimerization domains at its C terminus. PMID:23297418

  4. Identification of functionally important amino acid residues in the mitochondria targeting sequence of Hepatitis B virus X protein

    SciTech Connect

    Li, Sai Kam; Ho, Sai Fan; Tsui, Kwok Wing; Fung, Kwok Pui; Waye, M.Y. Mary

    2008-11-10

    Chronic hepatitis B virus (HBV) infection has been strongly associated with hepatocellular carcinoma (HCC) and the X protein (HBx) is thought to mediate the cellular changes associated with carcinogenesis. Recently, isolation of the hepatitis B virus integrants from HCC tissue by others have established the fact that the X gene is often truncated at its C-terminus. Expression of the GFP fusion proteins of HBx and its truncation mutants with a GFP tag in human liver cell-lines in this study revealed that the C-terminus of HBx is indispensable for its specific localization in the mitochondria. A crucial region of seven amino acids at the C-terminus has been mapped out in which the cysteine residue at position 115 serves as the most important residue for the subcellular localization. When cysteine 115 of HBx is mutated to alanine the mitochondria targeting property of HBx is abrogated.

  5. A novel human T-leukemia virus type 1 cell-to-cell transmission assay permits definition of SU glycoprotein amino acids important for infectivity.

    PubMed Central

    Delamarre, L; Rosenberg, A R; Pique, C; Pham, D; Dokhélar, M C

    1997-01-01

    Human T-leukemia virus type 1 (HTLV-1) envelope glycoproteins play a major role in viral transmission, which in the case of this virus occurs almost exclusively via cell-to-cell contact. Until very recently, the lack of an HTLV-1 infectivity assay precluded the determination of the HTLV-1 protein domains required for infectivity. Here, we describe an assay which allows the quantitative evaluation of HTLV-1 cell-to-cell transmission in a single round of infection. Using this assay, we demonstrate that in this system, cell-to-cell transmission is at least 100 times more efficient than transmission with free viral particles. We have examined 46 surface (SU) glycoprotein mutants in order to define the amino acids of the HTLV-1 SU glycoprotein required for full infectivity. We demonstrate that these amino acids are distributed along the entire length of the SU glycoprotein, including the N-terminus and C-terminus regions, which have not been previously defined as being important for HTLV-1 glycoprotein function. For most of the mutated glycoproteins, the capacity to mediate cell-to-cell transmission is correlated with the ability to induce formation of syncytia. This result indicates that the fusion capacity is the main factor responsible for infectivity mediated by the HTLV-1 SU envelope glycoprotein, as is the case for other retroviral glycoproteins. However, other factors must also intervene, since two of the mutated glycoproteins were correctly fusogenic but could not mediate cell-to-cell transmission. Existence of this phenotype shows that capacity for fusion is not sufficient to confer infectivity, even in cell-to-cell transmission, and could suggest that postfusion events involve the SU. PMID:8985345

  6. The Games Children Play

    ERIC Educational Resources Information Center

    Padak, Nancy; Rasinski, Timothy

    2008-01-01

    The games that children play are not just for fun-they often lead to important skill development. Likewise, word games are fun opportunities for parents and children to spend time together and for children to learn a lot about sounds and words. In this Family Involvement column, the authors describe 12 easy-to-implement word games that parents and…

  7. An amino acid substitution in the pyruvate dehydrogenase E1{alpha} gene, affecting mitochondrial import of the precursor protein

    SciTech Connect

    Takakubo, F.; Thorburn, D.R.; Dahl, H.H.M.

    1995-10-01

    A mutation in the mitochondrial targeting sequence was characterized in a male patient with X chromosome-linked pyruvate dehydrogenase E1{alpha} deficiency. The mutation was a base substitution of G by C at nucleotide 134 in the mitochondrial targeting sequence of the PDHA1 gene, resulting in an arginine-to-proline substitution at codon 10 (R10P). Pyruvate dehydrogenase activity in cultured skin fibroblasts was 28% of the control value, and immunoblot analysis revealed a decreased level of pyruvate dehydrogenase E1{alpha}immunoreactivity. Chimeric constructs in which the normal and mutant pyruvate dehydrogenase E1{alpha} targeting sequences were attached to the mitochondrial matrix protein ornithine transcarbamylase were synthesized in a cell free translation system, and mitochondrial import of normal and mutant proteins was compared in vitro. The results show that ornithine transcarbamylase targeted by the mutant pyruvate dehydrogenase E1{alpha} sequence was translocated into the mitochondrial matrix at a reduced rate, suggesting that defective import is responsible for the reduced pyruvate dehydrogenase level in mitochondria. The mutation was also present in an affected brother and the mildly affected mother. The clinical presentations of this X chromosome-linked disorder in affected family members are discussed. To our knowledge, this is the first report of an amino acid substitution in a mitochondrial targeting sequence resulting in a human genetic disease. 58 refs., 5 figs., 1 tab.

  8. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species

    SciTech Connect

    Shiozawa, Yuichiro; Koitaya, Takanori; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2015-12-21

    Quantitative analysis of desorption and decomposition kinetics of formic acid (HCOOH) on Cu(111) was performed by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy, and time-resolved infrared reflection absorption spectroscopy. The activation energy for desorption is estimated to be 53–75 kJ/mol by the threshold TPD method as a function of coverage. Vibrational spectra of the first layer HCOOH at 155.3 K show that adsorbed molecules form a polymeric structure via the hydrogen bonding network. Adsorbed HCOOH molecules are dissociated gradually into monodentate formate species. The activation energy for the dissociation into monodentate formate species is estimated to be 65.0 kJ/mol at a submonolayer coverage (0.26 molecules/surface Cu atom). The hydrogen bonding between adsorbed HCOOH species plays an important role in the stabilization of HCOOH on Cu(111). The monodentate formate species are stabilized at higher coverages, because of the lack of vacant sites for the bidentate formation.

  9. Quantitative analysis of desorption and decomposition kinetics of formic acid on Cu(111): The importance of hydrogen bonding between adsorbed species

    NASA Astrophysics Data System (ADS)

    Shiozawa, Yuichiro; Koitaya, Takanori; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2015-12-01

    Quantitative analysis of desorption and decomposition kinetics of formic acid (HCOOH) on Cu(111) was performed by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy, and time-resolved infrared reflection absorption spectroscopy. The activation energy for desorption is estimated to be 53-75 kJ/mol by the threshold TPD method as a function of coverage. Vibrational spectra of the first layer HCOOH at 155.3 K show that adsorbed molecules form a polymeric structure via the hydrogen bonding network. Adsorbed HCOOH molecules are dissociated gradually into monodentate formate species. The activation energy for the dissociation into monodentate formate species is estimated to be 65.0 kJ/mol at a submonolayer coverage (0.26 molecules/surface Cu atom). The hydrogen bonding between adsorbed HCOOH species plays an important role in the stabilization of HCOOH on Cu(111). The monodentate formate species are stabilized at higher coverages, because of the lack of vacant sites for the bidentate formation.

  10. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    PubMed Central

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea

    2015-01-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin. PMID:25724962

  11. Increase on the Initial Soluble Heme Levels in Acidic Conditions Is an Important Mechanism for Spontaneous Heme Crystallization In Vitro

    PubMed Central

    Egan, Timothy J.; Wright, David W.; Oliveira, Marcus F.

    2010-01-01

    Background Hemozoin (Hz) is a heme crystal that represents a vital pathway for heme disposal in several blood-feeding organisms. Recent evidence demonstrated that β-hematin (βH) (the synthetic counterpart of Hz) formation occurs under physiological conditions near synthetic or biological hydrophilic-hydrophobic interfaces. This seems to require a heme dimer acting as a precursor of Hz crystals that would be formed spontaneously in the absence of the competing water molecules bound to the heme iron. Here, we aimed to investigate the role of medium polarity on spontaneous βH formation in vitro. Methodology/Principal Findings We assessed the effect of water content on spontaneous βH formation by using the aprotic solvent dimethylsulfoxide (DMSO) and a series of polyethyleneglycols (PEGs). We observed that both DMSO and PEGs (3.350, 6.000, 8.000, and 22.000) increased the levels of soluble heme under acidic conditions. These compounds were able to stimulate the production of βH crystals in the absence of any biological sample. Interestingly, the effects of DMSO and PEGs on βH formation were positively correlated with their capacity to promote previous heme solubilization in acidic conditions. Curiously, a short chain polyethyleneglycol (PEG 300) caused a significant reduction in both soluble heme levels and βH formation. Finally, both heme solubilization and βH formation strongly correlated with reduced medium water activity provided by increased DMSO concentrations. Conclusions The data presented here support the notion that reduction of the water activity is an important mechanism to support spontaneous heme crystallization, which depends on the previous increase of soluble heme levels. PMID:20856937

  12. Reciprocal mutations of neuropeptide Y receptor Y2 in human and chicken identify amino acids important for antagonist binding.

    PubMed

    Berglund, Magnus M; Fredriksson, Robert; Salaneck, Erik; Larhammar, Dan

    2002-05-01

    The neuropeptide Y (NPY) receptor Y2 antagonist BIIE0246 has sub-nanomolar affinity for the human Y2 (hY2) receptor but binds very poorly to chicken Y2 (chY2) with micromolar affinity. Sequence comparisons identified several amino acids for investigation by mutagenesis. Reciprocal mutagenesis between hY2 and chY2 revealed that three of these, individually and in combination, are important for BIIE0246 binding, namely positions Gln(135) in transmembrane (TM) 3, Leu(227) in TM5, and Leu(284) in TM6. Mutagenesis of hY2 to the corresponding amino in chY2 (generating hY2[Q135H,L227Q,L284F]) made the affinity of BIIE0246 as low as for chY2. Introduction into chY2 of the three human residues resulted in antagonist affinity almost as high as for hY2. To distinguish between direct and indirect effects, each of the three residues in hY2 was replaced with alanine. BIIE0246 bound with 28-fold lower affinity to hY2[L227A], suggesting the Leu(227) interacts directly with the antagonist. The other two alanine mutants bound with unaltered affinity, suggesting that the corresponding chY2 residues abolish binding through steric hindrance or charge repulsion. Thus, three amino acid residues can in an additive manner completely account for the difference in antagonist binding between the hY2 and chY2 receptors. These results will be useful for construction of three-dimensional models of the widely divergent NPY receptor subtypes. PMID:11997008

  13. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    SciTech Connect

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  14. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGESBeta

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  15. Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases.

    PubMed

    Tong, Fumin; Black, Paul N; Coleman, Rosalind A; DiRusso, Concetta C

    2006-03-01

    Mammals express multiple isoforms of acyl-CoA synthetase (ACSL1 and ACSL3-6) in various tissues. These enzymes are essential for fatty acid metabolism providing activated intermediates for complex lipid synthesis, protein modification, and beta-oxidation. Yeast in contrast express four major ACSLs, which have well-defined functions. Two, Faa1p and Faa4p, are specifically required for fatty acid transport by vectorial acylation. Four ACSLs from the rat were expressed in a yeast faa1delta faa4delta strain and their roles in fatty acid transport and trafficking characterized. All four restored ACS activity yet varied in substrate preference. ACSL1, 4, and 6 were able to rescue fatty acid transport activity and triglyceride synthesis. ACSL5, however, was unable to facilitate fatty acid transport despite conferring robust oleoyl-CoA synthetase activity. This is the first study evaluating the role of the mammalian ACSLs in fatty acid transport and supports a role for ACSL1, 4, and 6 in transport by vectorial acylation. PMID:16466685

  16. Design and Exploration of Novel Boronic Acid Inhibitors Reveals Important Interactions with a Clavulanic Acid-Resistant Sulfhydryl-Variable (SHV) β-Lactamase

    PubMed Central

    Winkler, Marisa L.; Rodkey, Elizabeth A.; Taracila, Magdalena A.; Drawz, Sarah M.; Bethel, Christopher R.; Papp-Wallace, Krisztina M.; Smith, Kerri M.; Xu, Yan; Dwulit-Smith, Jeffrey R.; Romagnoli, Chiara; Caselli, Emilia; Prati, Fabio; van den Akker, Focco; Bonomo, Robert A.

    2014-01-01

    Inhibitor resistant (IR) class A β-lactamases pose a significant threat to many current antibiotic combinations. The K234R substitution in the SHV β-lactamase, from Klebsiella pneumoniae, results in resistance to ampicillin/clavulanate. After site-saturation mutagenesis of Lys-234 in SHV, microbiological and biochemical characterization of the resulting β-lactamases revealed that only –Arg conferred resistance to ampicillin/clavulanate. X-ray crystallography revealed two conformations of Arg-234 and Ser-130 in SHV K234R. The movement of Ser-130 is the principal cause of the observed clavulanate resistance. A panel of boronic acid inhibitors was designed and tested against SHV-1 and SHV K234R. A chiral ampicillin analogue was discovered to have a 2.4 ± 0.2 nM Ki for SHV K234R; the chiral ampicillin analogue formed a more complex hydrogen-bonding network in SHV K234R vs SHV-1. Consideration of the spatial position of Ser-130 and Lys-234 and this hydrogen-bonding network will be important in the design of novel antibiotics targeting IR β-lactamases. PMID:23252553

  17. N-terminal basic amino acid residues of Beet black scorch virus capsid protein play a critical role in virion assembly and systemic movement

    PubMed Central

    2013-01-01

    Background Beet black scorch virus (BBSV) is a small single-stranded, positive-sense RNA plant virus belonging to the genus Necrovirus, family Tombusviridae. Its capsid protein (CP) contains a 13 amino acid long basic region at the N-terminus, rich in arginine and lysine residues, which is thought to interact with viral RNA to initiate virion assembly. Results In the current study, a series of BBSV mutants containing amino acid substitutions as well as deletions within the N-terminal region were generated and examined for their effects on viral RNA replication, virion assembly, and long distance spread in protoplasts and whole host plants of BBSV. The RNA-binding activities of the mutated CPs were also evaluated in vitro. These experiments allowed us to identify two key basic amino acid residues in this region that are responsible for initiating virus assembly through RNA-binding. Proper assembly of BBSV particles is in turn needed for efficient viral systemic movement. Conclusions We have identified two basic amino acid residues near the N-terminus of the BBSV CP that bind viral RNA with high affinity to initiate virion assembly. We further provide evidence showing that systemic spread of BBSV in infected plants requires intact virions. This study represents the first in-depth investigation of the role of basic amino acid residues within the N-terminus of a necroviral CP. PMID:23786675

  18. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5.6 in embryo development and fatty acids synthesis.

    PubMed

    Deng, Wei; Yan, Fang; Zhang, Xiaolan; Tang, Yuwei; Yuan, Yujin

    2015-08-01

    Canola is an important vegetable oil crop globally, and the understanding of the molecular mechanism underlying fatty acids biosynthesis during seed embryo development is an important research goal. Here we report the transcriptional profiling analysis of developing canola embryos using RNA-sequencing (RNA-Seq) method. RNA-Seq analysis generated 58,579,451 sequence reads aligned with 32,243 genes. It was found that a total of 55 differential expression genes (DEGs) encoding 28 enzymes function in carbon flow to fatty acids of storage TAG. Most of the DEGs encoding above enzymes showed similar expression pattern, indicating the DEGs are cooperatively involved in carbon flow into fatty acids. In addition, 41 DEGs associated with signal transductions, transport and metabolic processing of auxin, gibberellin, abscisic acid, cytokinin and salicylic acids were found in the RNA-Seq database, which indicates the important roles of the phytohormones in controlling embryo development and fatty acids synthesis. 122 DEGs encoding transcriptional factor family members were found in developing canola embryos. Furthermore, BnDOF5.6, a zinc finger transcriptional factor gene, found in RNA-Seq database was down-regulated in developing canola embryos. The transgenic plants displayed reduced embryo sizes, decreased fatty acids contents and altered seed fatty acids composition in canola. Down-regulated of BnDof5.6 also changed the expression levels of genes involved in fatty acids synthesis and desaturation. Our results indicate that BnDof5.6 is required for embryo development and fatty acids synthesis in canola. Overall this study presents new information on the global expression patterns of genes during embryo development and will expand our understanding of the complex molecular mechanism of carbon flow into fatty acids and embryo development in canola. PMID:26092973

  19. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species.

    PubMed

    McAdam, Scott A M; Sussmilch, Frances C; Brodribb, Timothy J; Ross, John J

    2015-01-01

    Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants. PMID:26216469

  20. The Importance of the Ionic Product for Water to Understand the Physiology of the Acid-Base Balance in Humans

    PubMed Central

    Adeva-Andany, María M.; Carneiro-Freire, Natalia; Donapetry-García, Cristóbal; Rañal-Muíño, Eva; López-Pereiro, Yosua

    2014-01-01

    Human plasma is an aqueous solution that has to abide by chemical rules such as the principle of electrical neutrality and the constancy of the ionic product for water. These rules define the acid-base balance in the human body. According to the electroneutrality principle, plasma has to be electrically neutral and the sum of its cations equals the sum of its anions. In addition, the ionic product for water has to be constant. Therefore, the plasma concentration of hydrogen ions depends on the plasma ionic composition. Variations in the concentration of plasma ions that alter the relative proportion of anions and cations predictably lead to a change in the plasma concentration of hydrogen ions by driving adaptive adjustments in water ionization that allow plasma electroneutrality while maintaining constant the ionic product for water. The accumulation of plasma anions out of proportion of cations induces an electrical imbalance compensated by a fall of hydroxide ions that brings about a rise in hydrogen ions (acidosis). By contrast, the deficiency of chloride relative to sodium generates plasma alkalosis by increasing hydroxide ions. The adjustment of plasma bicarbonate concentration to these changes is an important compensatory mechanism that protects plasma pH from severe deviations. PMID:24877130

  1. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species

    PubMed Central

    McAdam, Scott A. M.; Sussmilch, Frances C.; Brodribb, Timothy J.; Ross, John J.

    2015-01-01

    Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants. PMID:26216469

  2. Importance of acidic mucin secretions by foveolar and mucous neck cells of rat fundic mucosa as the defence mechanisms against HCl as revealed by fasting.

    PubMed

    Yamazaki, Y; Ueda, T; Kohli, Y; Fujiki, N; Imamura, Y; Fukuda, M

    1992-01-01

    The localization of neutral mucin and acidic mucins in both control and fasted rat gastric fundic mucosa were examined by microscopic and electron microscopic histochemical methods. By Carnoy's fixation, the surface mucous coat of the control rat gastric fundic mucosa was found to be composed of alternating layers of acidic mucins and neutral mucin, indicating the synchronous and cyclic secretions of them. In many gastric pits of the fundic glands, the acidic mucins were found to spring out from the deep foveolar regions like volcanoes. This phenomenon may suggest that the acidic mucins play a fundamental role in protecting the pit cells against HCl during its passage, and the layers of neutral mucin and acidic mucins in the surface coat is the safeguard against the HCl and digestive enzymes in the gastric lumen. In the fasting rat gastric fundic mucosa, the acidity and the amount of the gastric juice were markedly decreased, indicating the suppressed secretions of mucins and HCl. The decreased production of sulfomucin was directly demonstrated by 35SO4-autoradiography. Many mucous neck cells existing in close association with the parietal cells were ballooned due to accumulation of alcian blue (AB)-positive but high iron-diamine (HID)-negative sialomucin, which was not demonstrable in the control. The secretory granules of sialomucin contained in the ballooned mucous neck cells were positively stained ultrastructurally with cacodylate-ferric colloid to stain acid mucopolysaccharides. PMID:1380850

  3. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza.

    PubMed

    Zhou, Yangyun; Sun, Wei; Chen, Junfeng; Tan, Hexin; Xiao, Ying; Li, Qing; Ji, Qian; Gao, Shouhong; Chen, Li; Chen, Shilin; Zhang, Lei; Chen, Wansheng

    2016-01-01

    Salvia miltiorrhiza Bunge, which contains tanshinones and phenolic acids as major classes of bioactive components, is one of the most widely used herbs in traditional Chinese medicine. Production of tanshinones and phenolic acids is enhanced by methyl jasmonate (MeJA). Transcription factor MYC2 is the switch of jasmontes signaling in plants. Here, we focused on two novel JA-inducible genes in S. miltiorrhiza, designated as SmMYC2a and SmMYC2b, which were localized in the nucleus. SmMYC2a and SmMYC2b were also discovered to interact with SmJAZ1 and SmJAZ2, implying that the two MYC2s might function as direct targets of JAZ proteins. Ectopic RNA interference (RNAi)-mediated knockdown experiments suggested that SmMYC2a/b affected multiple genes in tanshinone and phenolic acid biosynthetic pathway. Besides, the accumulation of tanshinones and phenolic acids was impaired by the loss of function in SmMYC2a/b. Meanwhile, SmMYC2a could bind with an E-box motif within SmHCT6 and SmCYP98A14 promoters, while SmMYC2b bound with an E-box motif within SmCYP98A14 promoter, through which the regulation of phenolic acid biosynthetic pathway might achieve. Together, these results suggest that SmMYC2a and SmMYC2b are JAZ-interacting transcription factors that positively regulate the biosynthesis of tanshinones and Sal B with similar but irreplaceable effects. PMID:26947390

  4. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza

    PubMed Central

    Zhou, Yangyun; Sun, Wei; Chen, Junfeng; Tan, Hexin; Xiao, Ying; Li, Qing; Ji, Qian; Gao, Shouhong; Chen, Li; Chen, Shilin; Zhang, Lei; Chen, Wansheng

    2016-01-01

    Salvia miltiorrhiza Bunge, which contains tanshinones and phenolic acids as major classes of bioactive components, is one of the most widely used herbs in traditional Chinese medicine. Production of tanshinones and phenolic acids is enhanced by methyl jasmonate (MeJA). Transcription factor MYC2 is the switch of jasmontes signaling in plants. Here, we focused on two novel JA-inducible genes in S. miltiorrhiza, designated as SmMYC2a and SmMYC2b, which were localized in the nucleus. SmMYC2a and SmMYC2b were also discovered to interact with SmJAZ1 and SmJAZ2, implying that the two MYC2s might function as direct targets of JAZ proteins. Ectopic RNA interference (RNAi)-mediated knockdown experiments suggested that SmMYC2a/b affected multiple genes in tanshinone and phenolic acid biosynthetic pathway. Besides, the accumulation of tanshinones and phenolic acids was impaired by the loss of function in SmMYC2a/b. Meanwhile, SmMYC2a could bind with an E-box motif within SmHCT6 and SmCYP98A14 promoters, while SmMYC2b bound with an E-box motif within SmCYP98A14 promoter, through which the regulation of phenolic acid biosynthetic pathway might achieve. Together, these results suggest that SmMYC2a and SmMYC2b are JAZ-interacting transcription factors that positively regulate the biosynthesis of tanshinones and Sal B with similar but irreplaceable effects. PMID:26947390

  5. DNA-dependent protein kinase interacts functionally with the RNA polymerase II complex recruited at the human immunodeficiency virus (HIV) long terminal repeat and plays an important role in HIV gene expression.

    PubMed

    Tyagi, Shilpi; Ochem, Alex; Tyagi, Mudit

    2011-07-01

    DNA-dependent protein kinase (DNA-PK), a nuclear protein kinase that specifically requires association with DNA for its kinase activity, plays important roles in the regulation of different DNA transactions, including transcription, replication and DNA repair, as well as in the maintenance of telomeres. Due to its large size, DNA-PK is also known to facilitate the activities of other factors by providing the docking platform at their site of action. In this study, by running several chromatin immunoprecipitation assays, we demonstrate the parallel distribution of DNA-PK with RNA polymerase II (RNAP II) along the human immunodeficiency virus (HIV) provirus before and after activation with tumour necrosis factor alpha. The association between DNA-PK and RNAP II is also long-lasting, at least for up to 4 h (the duration analysed in this study). Knockdown of endogenous DNA-PK using specific small hairpin RNAs expressed from lentiviral vectors resulted in significant reduction in HIV gene expression and replication, demonstrating the importance of DNA-PK for HIV gene expression. Sequence analysis of the HIV-1 Tat protein revealed three potential target sites for phosphorylation by DNA-PK and, by using kinase assays, we confirmed that Tat is an effective substrate of DNA-PK. Through peptide mapping, we found that two of these three potential phosphorylation sites are recognized and phosphorylated by DNA-PK. Mutational studies on the DNA-PK target sites of Tat further demonstrated the functional significance of the Tat-DNA-PK interaction. Thus, overall our results clearly demonstrate the functional interaction between DNA-PK and RNAP II during HIV transcription. PMID:21450944

  6. The role played by acid and basic centers in the activity of biomimetic catalysts of the catalase, peroxidase, and monooxidase reactions

    NASA Astrophysics Data System (ADS)

    Magerramov, A. M.; Nagieva, I. T.

    2010-11-01

    The acid-basic centers of heterogeneous carriers of catalase, peroxidase, and monooxigenase biomimetics, in particular, iron protoporphyrin deposited on active or neutral aluminum magnesium silicate, were studied. The catalytic activity of biomimetics was stabilized, which allowed us not only to synthesize fairly effective biomimetics but also to clarify certain details of the mechanism of their action and perform a comparative analysis of the functioning of biomimetics and the corresponding enzymes.

  7. A novel Na(+)(K(+))/H(+) antiporter plays an important role in the growth of Acetobacter tropicalis SKU1100 at high temperatures via regulation of cation and pH homeostasis.

    PubMed

    Soemphol, Wichai; Tatsuno, Maki; Okada, Takahiro; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu

    2015-10-10

    A gene encoding a putative Na(+)/H(+) antiporter was previously proposed to be involved in the thermotolerance mechanism of Acetobacter tropicalis SKU 1100. The results of this study show that disruption of this antiporter gene impaired growth at high temperatures with an external pH>6.5. The growth impairment at high temperatures was much more severe in the absence of Na(+) (with only the presence of K(+)); under these conditions, cells failed to grow even at 30°C and neutral to alkaline pH values, suggesting that this protein is also important for K(+) tolerance. Functional analysis with inside-out membrane vesicles from wild type and mutant strains indicated that the antiporter, At-NhaK2 operates as an alkali cation/proton antiporter for ions such as Na(+), K(+), Li(+), and Rb(+) at acidic to neutral pH values (6.5-7.5). The membrane vesicles were also shown to contain a distinct pH-dependent Na(+)(specific)/H(+) antiporter(s) that might function at alkaline pH values. In addition, phylogenetic analysis showed that At-NhaK2 is a novel type of Na(+)/H(+) antiporter belonging to a phylogenetically distinct new clade. These data demonstrate that At-NhaK2 functions as a Na(+)(K(+))/H(+) antiporter and is essential for K(+) and pH homeostasis during the growth of A. tropicalis SKU1100, especially at higher temperatures. PMID:26100236

  8. Type II Diacylglycerol Acyltransferase from Claviceps purpurea with Ricinoleic Acid, a Hydroxyl Fatty Acid of Industrial Importance, as Preferred Substrate ▿

    PubMed Central

    Mavraganis, Ioannis; Meesapyodsuk, Dauenpen; Vrinten, Patricia; Smith, Mark; Qiu, Xiao

    2010-01-01

    Claviceps purpurea, the fungal pathogen that causes the cereal disease ergot, produces glycerides that contain high levels of ricinoleic acid [(R)-12-hydroxyoctadec-cis-9-enoic acid] in its sclerotia. Recently, a fatty acid hydroxylase (C. purpurea FAH [CpFAH]) involved in the biosynthesis of ricinoleic acid was identified from this fungus (D. Meesapyodsuk and X. Qiu, Plant Physiol. 147:1325-1333, 2008). Here, we describe the cloning and biochemical characterization of a C. purpurea type II diacylglycerol acyltransferase (CpDGAT2) involved in the assembly of ricinoleic acid into triglycerides. The CpDGAT2 gene was cloned by degenerate RT-PCR (reverse transcription-PCR). The expression of this gene restored the in vivo synthesis of triacylglycerol (TAG) in the quadruple mutant strain Saccharomyces cerevisiae H1246, in which all four TAG biosynthesis genes (DGA1, LRO1, ARE1, and ARE2) are disrupted. In vitro enzymatic assays using microsomal preparations from the transformed yeast strain indicated that CpDGAT2 prefers ricinoleic acid as an acyl donor over linoleic acid, oleic acid, or linolenic acid, and it prefers 1,2-dioleoyl-sn-glycerol over 1,2-dipalmitoyl-sn-glycerol as an acyl acceptor. The coexpression of CpFAH with CpDGAT2 in yeast resulted in an increased accumulation of ricinoleic acid compared to the coexpression of CpFAH with the native yeast DGAT2 (S. cerevisiae DGA1 [ScDGA1]) or the expression of CpFAH alone. Northern blot analysis indicated that CpFAH is expressed solely in sclerotium cells, with no transcripts of this gene being detected in mycelium or conidial cells. CpDGAT2 was more widely expressed among the cell types examined, although expression was low in conidiospores. The high expression of CpDGAT2 and CpFAH in sclerotium cells, where high levels of ricinoleate glycerides accumulate, provided further evidence supporting the roles of CpDGAT2 and CpFAH as key enzymes for the synthesis and assembly of ricinoleic acid in C. purpurea. PMID

  9. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Politis, P. K.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator); Dolan, M. (Principal Investigator)

    1999-01-01

    Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.

  10. Identification and Characterization of the CYP52 Family of Candida tropicalis ATCC 20336, Important for the Conversion of Fatty Acids and Alkanes to α,ω-Dicarboxylic Acids

    PubMed Central

    Craft, David L.; Madduri, Krishna M.; Eshoo, Mark; Wilson, C. Ron

    2003-01-01

    Candida tropicalis ATCC 20336 excretes α,ω-dicarboxylic acids as a by-product when cultured on n-alkanes or fatty acids as the carbon source. Previously, a β-oxidation-blocked derivative of ATCC 20336 was constructed which showed a dramatic increase in the production of dicarboxylic acids. This paper describes the next steps in strain improvement, which were directed toward the isolation and characterization of genes encoding the ω-hydroxylase enzymes catalyzing the first step in the ω-oxidation pathway. Cytochrome P450 monooxygenase (CYP) and the accompanying NADPH cytochrome P450 reductase (NCP) constitute the hydroxylase complex responsible for the first and rate-limiting step of ω-oxidation of n-alkanes and fatty acids. 10 members of the alkane-inducible P450 gene family (CYP52) of C. tropicalis ATCC20336 as well as the accompanying NCP were cloned and sequenced. The 10 CYP genes represent four unique genes with their putative alleles and two unique genes for which no allelic variant was identified. Of the 10 genes, CYP52A13 and CYP52A14 showed the highest levels of mRNA induction, as determined by quantitative competitive reverse transcription-PCR during fermentation with pure oleic fatty acid (27-fold increase), pure octadecane (32-fold increase), and a mixed fatty acid feed, Emersol 267 (54-fold increase). The allelic pair CYP52A17 and CYP52A18 was also induced under all three conditions but to a lesser extent. Moderate induction of CYP52A12 was observed. These results identify the CYP52 and NCP genes as being involved in α,ω-dicarboxylic acid production by C. tropicalis and provide the foundation for biocatalyst improvement. PMID:14532053

  11. Genes Related to Fatty Acid β-Oxidation Play a Role in the Functional Decline of the Drosophila Brain with Age

    PubMed Central

    Laranjeira, António; Schulz, Joachim; Dotti, Carlos G.

    2016-01-01

    In living organisms, ageing is widely considered to be the result of a multifaceted process consisting of the progressive accumulation of damage over time, having implications both in terms of function and survival. The study of ageing presents several challenges, from the different mechanisms implicated to the great diversity of systems affected over time. In the current study, we set out to identify genes involved in the functional decline of the brain with age and study its relevance in a tissue dependent manner using Drosophila melanogaster as a model system. Here we report the age-dependent upregulation of genes involved in the metabolic process of fatty acid β-oxidation in the nervous tissue of female wild-type flies. Downregulation of CG10814, dHNF4 and lipid mobilizing genes bmm and dAkh rescues the functional decline of the brain with age, both at the cellular and behaviour level, while over-expression worsens performance. Our data proposes the occurrence of a metabolic alteration in the fly brain with age, whereby the process of β-oxidation of fatty acids experiences a genetic gain-of-function. This event proved to be one of the main causes contributing to the functional decline of the brain with age. PMID:27518101

  12. LMO7 Mediates Cell-Specific Activation of the Rho-Myocardin-Related Transcription Factor-Serum Response Factor Pathway and Plays an Important Role in Breast Cancer Cell Migration ▿

    PubMed Central

    Hu, Qiande; Guo, Chun; Li, Yali; Aronow, Bruce J.; Zhang, Jinsong

    2011-01-01

    Serum response factor (SRF) is a ubiquitously expressed transcription factor that regulates cell-specific functions such as muscle development and breast cancer metastasis. The myocardin-related transcription factors (MRTFs), which are transcriptional coactivators mediating cell-specific functions of SRF, are also ubiquitously expressed. How MRTFs and SRF drive cell-specific transcription is still not fully understood. Here we show that LIM domain only 7 (LMO7) is a cell-specific regulator of MRTFs and plays an important role in breast cancer cell migration. LMO7 activates MRTFs by relieving actin-mediated inhibition in a manner that requires, and is synergistic with, Rho GTPase. Whereas Rho is required for LMO7 to activate full-length MRTFs that have three RPEL actin-binding motifs, the disruption of individual actin-RPEL interactions is sufficient to eliminate the Rho dependency and to allow the strong Rho-independent function of LMO7. Mechanistically, we show that LMO7 colocalizes with F-actin and reduces the G-actin/F-actin ratio via a Rho-independent mechanism. The knockdown of LMO7 in HeLa and MDA-MB-231 cells compromises both basal and Rho-stimulated MRTF activities and impairs the migration of MDA-MB-231 breast cancer cells. We also show that LMO7 is upregulated in the stroma of invasive breast carcinoma in a manner that correlates with the increased expression of SRF target genes that regulate muscle and actin cytoskeleton functions. Together, this study reveals a novel cell-specific mechanism regulating Rho-MRTF-SRF signaling and breast cancer cell migration and identifies a role for actin-RPEL interactions in integrating Rho and cell-specific signals to achieve both the synergistic and Rho-dependent activation of MRTFs. PMID:21670154

  13. Play Therapy: A Review

    ERIC Educational Resources Information Center

    Porter, Maggie L.; Hernandez-Reif, Maria; Jessee, Peggy

    2009-01-01

    This article discusses the current issues in play therapy and its implications for play therapists. A brief history of play therapy is provided along with the current play therapy approaches and techniques. This article also touches on current issues or problems that play therapists may face, such as interpreting children's play, implementing…

  14. Understanding Young Children's Learning through Play: Building Playful Pedagogies

    ERIC Educational Resources Information Center

    Broadhead, Pat; Burt, Andy

    2011-01-01

    This timely and accessible text introduces, theorises and practically applies two important concepts which now underpin early years practice: those of "playful learning" and "playful pedagogies". Pat Broadhead and Andy Burt draw upon filmed material, conversations with children, reflection, observation, and parental and staff interviews, in their…

  15. Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles

    PubMed Central

    Scott, Alison J.; Ford, Lauren A.; Pei, Zhengtong; Watkins, Paul A.; Ernst, Robert K.; Belov, George A.

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  16. RELATIVE IMPORTANCE TO SULFATE PRODUCTION OF OXIDATION PATHWAYS AND CLOUDS AS PREDICTED BY THE REGIONAL ACID DEPOSITION MODEL

    EPA Science Inventory

    Recent investigations into the oxidation of S(IV) to S(VI) in the aqueous phase have suggested that clouds play a major role in to production of sulfate in the troposphere (McHenry and Dennis, 1991; Hegg and Hobbs, 1981; Hegg, 1985; Shin and Carmichael, 1992). loud production of ...

  17. The Child's Right To Play.

    ERIC Educational Resources Information Center

    Guddemi, Marcy

    Several factors are eroding children's right to play. The first is continuing poverty throughout the world. This factor is evident in underdeveloped countries and the inner cities of industrialized countries. Changing cultural values are a second factor in developed societies where indifference toward the importance of play is prevalent. The many…

  18. Outdoor Play: Combating Sedentary Lifestyles

    ERIC Educational Resources Information Center

    Thigpen, Betsy

    2007-01-01

    Increasingly sedentary lifestyles are contributing to overweight and other health concerns as children spend less and less time outside engaged in active play. Outdoor play provides important opportunities to explore the natural world, interact with peers, engage in vigorous physical activity, and learn about our environment. However, outdoor…

  19. A Place for Block Play.

    ERIC Educational Resources Information Center

    Moore, Gary T.

    1997-01-01

    Discusses the importance of block play--including its contributions to perceptual, fine motor, and cognitive development--and components of a good preschool block play area. Recommends unit blocks complemented by stacking blocks, toys, beads, cubes, and Brio wooden toys. Makes recommendations for space, size, locations and connections to other…

  20. Engaging Families through Artful Play

    ERIC Educational Resources Information Center

    Brown, Robert

    2015-01-01

    This paper explores how aligned arts and play experiences can extend child and family engagement in a public outdoor space. The importance of outdoor play for children is strongly advocated and in response local governments provide playgrounds and recreational open spaces. To extend further the experiences afforded in such spaces some local…

  1. Neuroscience, Play, and Child Development.

    ERIC Educational Resources Information Center

    Frost, Joe L.

    This paper presents a brief overview of the array of neuroscience research as it applies to play and child development. The paper discusses research showing the importance of play for brain growth and child development, and recommends that families, schools and other social and corporate institutions rearrange their attitudes and priorities about…

  2. SENSITIVITY OF IMPORTANT WESTERN CONIFER SPECIES TO SO2 AND SEASONAL INTERACTION OF ACID FOG AND OZONE

    EPA Science Inventory

    The increased concern for forest health and the role of anthropogenic deposition, including acidic/wet deposition and gaseous air pollutants, has led to the need to understand which forest species face the highest risk from atmospheric deposition. n order to address this issue fo...

  3. ROS-Mediated Autophagy Induced by Dysregulation of Lipid Metabolism Plays a Protective Role in Colorectal Cancer Cells Treated with Gambogic Acid

    PubMed Central

    Zhang, Haiyuan; Lei, Yunlong; Yuan, Ping; Li, Lingjun; Luo, Chao; Gao, Rui; Tian, Jun; Feng, Zuohua; Nice, Edouard C.; Sun, Jun

    2014-01-01

    Gambogic acid (GA), the main active component of gamboge resin, has potent antitumor activity both in vivo and in vitro. However, the underlying molecular mechanisms remain unclear. In this study, we found that GA could initiate autophagy in colorectal cancer cells, and inhibition of the autophagy process accelerated the effect of proliferative inhibition and apoptotic cell death induced by GA, implying a protective role of autophagy. Two-dimensional electrophoresis-based proteomics showed that GA treatment altered the expression of multiple proteins involved in redox signaling and lipid metabolism. Functional studies revealed that GA-induced dysregulation of lipid metabolism could activate 5-lipoxygenase (5-LOX), resulting in intracellular ROS accumulation, followed by inhibition of Akt-mTOR signaling and autophagy initiation. Finally, results using a xenograft model suggested ROS-induced autophagy protect against the antitumor effect of GA. Taken together, these data showed new biological activities of GA against colorectal cancer underlying the protective role of ROS-induced autophagy. This study will provide valuable insights for future studies regarding the anticancer mechanisms of GA. PMID:24810758

  4. Design and synthesis of novel derivatives of all-trans retinoic acid demonstrate the combined importance of acid moiety and conjugated double bonds in its binding to PML–RAR-α oncogene in acute promyelocytic leukemia

    PubMed Central

    Schinke, Carolina; Goel, Swati; Bhagat, Tushar D.; Zhou, Li; Mo, Yongkai; Gallagher, Robert; Kabalka, George W.; Platanias, Leonidas C.; Verma, Amit; Das, Bhaskar

    2014-01-01

    The binding of all-trans retinoic acid (ATRA) to retinoid receptor-α (RAR-α) relieves transcriptional repression induced by the promyelocytic leukemia–retinoic acid receptor (PML–RAR) oncoprotein. The ATRA molecule contains a cyclohexenyl ring, a polyene chain containing conjugated double alkene bonds, and a terminal carboxyl group. To determine the contributions of these structural components of ATRA to its clinical efficacy, we synthesized three novel retinoids. These consisted of either a modified conjugated alkene backbone with an intact acid moiety (13a) or a modified conjugated alkene backbone and conversion of the acid group to either an ester (13b) or an aromatic amide (13c). Reporter assays demonstrated that compound 13a successfully relieved transcriptional repression by RAR-α, while 13b and 13c could not, demonstrating the critical role of the acid moiety in this binding. However, only ATRA was able to significantly inhibit the proliferation of APL cells while 13a, 13b, or 13c was not. Furthermore, only 13a led to partial non-significant differentiation of NB4 cells, demonstrating the importance of C9–C10 double bonds in differentiation induced CD11 expression. Our results demonstrate that both the acid moiety and conjugated double bonds present in the ATRA molecule are important for its biological activity in APL and have important implications for the design of future novel retinoids. PMID:20536349

  5. The Denial of Play.

    ERIC Educational Resources Information Center

    Sutton-Smith, Brian

    Well meaning parents and teachers often use children's play for the purposes of literacy and socialization. Yet, these attempts may deny play to children by subordinating play to some other concept. Evidence shows that even when parents play with their very young children they generally play games like shopping, cooking, and eating; whereas when…

  6. STAT5 plays a critical role in regulating the 5'-flanking region of the porcine whey acidic protein gene in transgenic mice.

    PubMed

    Ji, Mi-Ran; Lee, Sang In; Jang, Ye-Jin; Jeon, Mi-Hyang; Kim, Jeom Sun; Kim, Kyung-Woon; Park, Jin-Ki; Yoo, Jae Gyu; Jeon, Ik-Soo; Kwon, Dae-Jin; Park, Choon-Keun; Byun, Sung June

    2015-12-01

    The mammary gland serves as a valuable bioreactor system for the production of recombinant proteins in lactating animals. Pharmaceutical-grade recombinant protein can be harvested from the milk of transgenic animals that carry a protein of interest under the control of promoter regions genes encoding milk proteins. Whey acidic protein (WAP), for example, is predominantly expressed in the mammary gland and is regulated by lactating hormones during pregnancy. We cloned the 5'-flanking region of the porcine WAP gene (pWAP) to confirm the sequence elements in its promoter that are required for gene-expression activity. In the present study, we investigated how lactogenic hormones--including prolactin, hydrocortisone, and insulin--contribute to the transcriptional activation of the pWAP promoter region in mammalian cells, finding that these hormones activate STAT5 signaling, which in turn induce gene expression via STAT5 binding sites in its 5'-flanking region. To confirm the expression and hormonal regulation of the 5'-flanking region of pWAP in vivo, we generated transgenic mice expressing human recombinant granulocyte colony stimulating factor (hCSF2) in the mammary gland under the control of the pWAP promoter. These mice secreted hCSF2 protein in their milk at levels ranging from 242 to 1,274.8 ng/ml. Collectively, our findings show that the pWAP promoter may be useful for confining the expression of foreign proteins to the mammary gland, where they can be secreted along with milk. PMID:26256125

  7. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana

    PubMed Central

    Plaxton, William C.

    2012-01-01

    Orthophosphate (Pi) is an essential but limiting macronutrient for plant growth. Extensive soil P reserves exist in the form of organic P (Po), which is unavailable for root uptake until hydrolysed by secretory acid phosphatases (APases). The predominant purple APase (PAP) isozymes secreted by roots of Pi-deficient (–Pi) Arabidopsis thaliana were recently identified as AtPAP12 (At2g27190) and AtPAP26 (At5g34850). The present study demonstrated that exogenous Po compounds such as glycerol-3-phosphate or herring sperm DNA: (i) effectively substituted for Pi in supporting the P nutrition of Arabidopsis seedlings, and (ii) caused upregulation and secretion of AtPAP12 and AtPAP26 into the growth medium. When cultivated under –Pi conditions or supplied with Po as its sole source of P nutrition, an atpap26/atpap12 T-DNA double insertion mutant exhibited impaired growth coupled with >60 and >30% decreases in root secretory APase activity and rosette total Pi concentration, respectively. Development of the atpap12/atpap26 mutant was unaffected during growth on Pi-replete medium but was completely arrested when 7-day-old Pi-sufficient seedlings were transplanted into a –Pi, Po-containing soil mix. Both PAPs were also strongly upregulated on root surfaces and in shoot cell-wall extracts of –Pi seedlings. It is hypothesized that secreted AtPAP12 and AtPAP26 facilitate the acclimation of Arabidopsis to nutritional Pi deficiency by: (i) functioning in the rhizosphere to scavenge Pi from the soil’s accessible Po pool, while (ii) recycling Pi from endogenous phosphomonoesters that have been leaked into cell walls from the cytoplasm. Thus, AtPAP12 and AtPAP26 are promising targets for improving crop P-use efficiency. PMID:23125358

  8. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases.

    PubMed

    Simopoulos, Artemis P

    2008-06-01

    Several sources of information suggest that human beings evolved on a diet with a ratio of omega-6 to omega-3 essential fatty acids (EFA) of approximately 1 whereas in Western diets the ratio is 15/1-16.7/1. Western diets are deficient in omega-3 fatty acids, and have excessive amounts of omega-6 fatty acids compared with the diet on which human beings evolved and their genetic patterns were established. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA) and a very high omega-6/omega-3 ratio, as is found in today's Western diets, promote the pathogenesis of many diseases, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA (a lower omega-6/omega-3 ratio), exert suppressive effects. In the secondary prevention of cardiovascular disease, a ratio of 4/1 was associated with a 70% decrease in total mortality. A ratio of 2.5/1 reduced rectal cell proliferation in patients with colorectal cancer, whereas a ratio of 4/1 with the same amount of omega-3 PUFA had no effect. The lower omega-6/omega-3 ratio in women with breast cancer was associated with decreased risk. A ratio of 2-3/1 suppressed inflammation in patients with rheumatoid arthritis, and a ratio of 5/1 had a beneficial effect on patients with asthma, whereas a ratio of 10/1 had adverse consequences. These studies indicate that the optimal ratio may vary with the disease under consideration. This is consistent with the fact that chronic diseases are multigenic and multifactorial. Therefore, it is quite possible that the therapeutic dose of omega-3 fatty acids will depend on the degree of severity of disease resulting from the genetic predisposition. A lower ratio of omega-6/omega-3 fatty acids is more desirable in reducing the risk of many of the chronic diseases of high prevalence in Western societies, as well as in the developing countries. PMID:18408140

  9. Playing the Play: What the Children Want

    ERIC Educational Resources Information Center

    Kraus, Jo Anne

    2006-01-01

    Playing the Play describes the experiences of a storyteller and teacher of literature who created a literature-based literacy program at Concourse House, a homeless shelter in Bronx, New York, for women and their young children. This program is based on the belief that pleasure is the primary reason children want to learn to read, and that where…

  10. Bibliography on Play Therapy and Children's Play.

    ERIC Educational Resources Information Center

    Rogers, Mary Brown; L'Abate, Luciano

    The references listed are: (1) journals, (2) dissertation abstracts, (3) books, (4) reports, and (5) monographs. The main subjects covered are: (1) children's play, (2) psychotherapy with disturbed children through the medium of play therapy, and (3) various aspects of child development, both normal and abnormal. The materials listed date from…

  11. Host-Derived Sialic Acids Are an Important Nutrient Source Required for Optimal Bacterial Fitness In Vivo

    PubMed Central

    McDonald, Nathan D.; Lubin, Jean-Bernard; Chowdhury, Nityananda

    2016-01-01

    ABSTRACT A major challenge facing bacterial intestinal pathogens is competition for nutrient sources with the host microbiota. Vibrio cholerae is an intestinal pathogen that causes cholera, which affects millions each year; however, our knowledge of its nutritional requirements in the intestinal milieu is limited. In this study, we demonstrated that V. cholerae can grow efficiently on intestinal mucus and its component sialic acids and that a tripartite ATP-independent periplasmic SiaPQM strain, transporter-deficient mutant NC1777, was attenuated for colonization using a streptomycin-pretreated adult mouse model. In in vivo competition assays, NC1777 was significantly outcompeted for up to 3 days postinfection. NC1777 was also significantly outcompeted in in vitro competition assays in M9 minimal medium supplemented with intestinal mucus, indicating that sialic acid uptake is essential for fitness. Phylogenetic analyses demonstrated that the ability to utilize sialic acid was distributed among 452 bacterial species from eight phyla. The majority of species belonged to four phyla, Actinobacteria (members of Actinobacillus, Corynebacterium, Mycoplasma, and Streptomyces), Bacteroidetes (mainly Bacteroides, Capnocytophaga, and Prevotella), Firmicutes (members of Streptococcus, Staphylococcus, Clostridium, and Lactobacillus), and Proteobacteria (including Escherichia, Shigella, Salmonella, Citrobacter, Haemophilus, Klebsiella, Pasteurella, Photobacterium, Vibrio, and Yersinia species), mostly commensals and/or pathogens. Overall, our data demonstrate that the ability to take up host-derived sugars and sialic acid specifically allows V. cholerae a competitive advantage in intestinal colonization and that this is a trait that is sporadic in its occurrence and phylogenetic distribution and ancestral in some genera but horizontally acquired in others. PMID:27073099

  12. Characterization and symbiotic importance of acidic extracellular polysaccharides of Rhizobium sp. strain GRH2 isolated from acacia nodules.

    PubMed Central

    Lopez-Lara, I M; Orgambide, G; Dazzo, F B; Olivares, J; Toro, N

    1993-01-01

    Rhizobium sp. wild-type strain GRH2 was originally isolated from root nodules of the leguminous tree Acacia cyanophylla and has a broad host range which includes herbaceous legumes, e.g., Trifolium spp. We examined the extracellular exopolysaccharides (EPSs) produced by strain GRH2 and found three independent glycosidic structures: a high-molecular-weight acidic heteropolysaccharide which is very similar to the acidic EPS produced by Rhizobium leguminosarum biovar trifolii ANU843, a low-molecular-weight native heterooligosaccharide resembling a dimer of the repeat unit of the high-molecular-weight EPS, and low-molecular-weight neutral beta (1,2)-glucans. A Tn5 insertion mutant derivative of GRH2 (exo-57) that fails to form acidic heteropolysaccharides was obtained. This Exo- mutant formed nitrogen-fixing nodules on Acacia plants but infected a smaller proportion of cells in the central zone of the nodules than did wild-type GRH2. In addition, the exo-57 mutant failed to nodulate several herbaceous legume hosts that are nodulated by wild-type strain GRH2. Images PMID:8491702

  13. Identification of important amino acid residues that modulate binding of Escherichia coli GroEL to its various cochaperones.

    PubMed Central

    Klein, G; Georgopoulos, C

    2001-01-01

    Genetic experiments have shown that the GroEL/GroES chaperone machine of Escherichia coli is absolutely essential, not only for bacterial growth but also for the propagation of many bacteriophages including lambda. The virulent bacteriophages T4 and RB49 are independent of the host GroES function, because they encode their own cochaperone proteins, Gp31 and CocO, respectively. E. coli groEL44 mutant bacteria do not form colonies above 42 degrees nor do they propagate bacteriophages lambda, T4, or RB49. We found that the vast majority (40/46) of spontaneous groEL44 temperature-resistant colonies at 43 degrees were due to the presence of an intragenic suppressor mutation. These suppressors define 21 different amino acid substitutions in GroEL, each affecting one of 13 different amino acid residues. All of these amino acid residues are located at or near the hinge, which regulates the large en bloc movements of the GroEL apical domain. All of these intragenic suppressors support bacteriophages lambda, T4, and RB49 growth to various extents in the presence of the groEL44 allele. Since it is known that the GroEL44 mutant protein does not interact effectively with Gp31, the suppressor mutations should enhance cochaperone binding. Analogous intragenic suppressor studies were conducted with the groEL673 temperature-sensitive allele. PMID:11404317

  14. The Uses of Play

    ERIC Educational Resources Information Center

    Cabaniss, Thomas

    2005-01-01

    Teaching artists have techniques for keeping play alive and vital in their work. But how do they think of play as TAs? In this article, the author examines the role of play in the work and life of teaching artists.

  15. Rice GDP-mannose pyrophosphorylase OsVTC1-1 and OsVTC1-3 play different roles in ascorbic acid synthesis.

    PubMed

    Qin, Hua; Deng, Zaian; Zhang, Chuanyu; Wang, Yayun; Wang, Juan; Liu, Hai; Zhang, Zhili; Huang, Rongfeng; Zhang, Zhijin

    2016-02-01

    GDP-D-mannose pyrophosphorylase (GMPase) catalyzes the synthesis of GDP-D-mannose, which is a precursor for ascorbic acid (AsA) synthesis in plants. The rice genome encodes three GMPase homologs OsVTC1-1, OsVTC1-3 and OsVTC1-8, but their roles in AsA synthesis are unclear. The overexpression of OsVTC1-1 or OsVTC1-3 restored the AsA synthesis of vtc1-1 in Arabidopsis, while that of OsVTC1-8 did not, indicating that only OsVTC1-1 and OsVTC1-3 are involved in AsA synthesis in rice. Similar to Arabidopsis VTC1, the expression of OsVTC1-1 was high in leaves, induced by light, and inhibited by dark. Unlike OsVTC1-1, the expression level of OsVTC1-3 was high in roots and quickly induced by the dark, while the transcription level of OsVTC1-8 did not show obvious changes under constant light or dark treatments. In OsVTC1-1 RNAi plants, the AsA content of rice leaves decreased, and the AsA production induced by light was limited. In contrast, OsVTC1-3 RNAi lines altered AsA synthesis levels in rice roots, but not in the leaves or under the light/dark treatment. The enzyme activity showed that OsVTC1-1 and OsVTC1-3 had higher GMPase activities than OsVTC1-8 in vitro. Our data showed that, unlike in Arabidopsis, the rice GPMase homologous proteins illustrated a new model in AsA synthesis: OsVTC1-1 may be involved in the AsA synthesis, which takes place in leaves, while OsVTC1-3 may be responsible for AsA synthesis in roots. The different roles of rice GMPase homologous proteins in AsA synthesis may be due to their differences in transcript levels and enzyme activities. PMID:26715595

  16. Cathepsin L Plays a Role in Quinolinic Acid-Induced NF-Κb Activation and Excitotoxicity in Rat Striatal Neurons

    PubMed Central

    Han, Rong; Wu, Jun-Chao; Liang, Zhong-Qin; Qin, Zheng-Hong; Wang, Yan

    2013-01-01

    The present study seeks to investigate the role of cathepsin L in glutamate receptor-induced transcription factor nuclear factor-kappa B (NF-κB) activation and excitotoxicity in rats striatal neurons. Stereotaxic administration of the N-methyl-d-aspartate (NMDA) receptor agonist Quinolinic acid (QA) into the unilateral striatum was used to produce the in vivo excitotoxic model. Co-administration of QA and the cathepsin L inhibitor Z-FF-FMK or 1-Naphthalenesulfonyl-IW-CHO (NaphthaCHO) was used to assess the contribution of cathepsin L to QA-induced striatal neuron death. Western blot analysis and cathepsin L activity assay were used to assess the changes in the levels of cathepsin L after QA treatment. Western blot analysis was used to assess the changes in the protein levels of inhibitor of NF-κB alpha isoform (IκB-α) and phospho-IκB alpha (p-IκBα) after QA treatment. Immunohistochemical analysis was used to detect the effects of Z-FF-FMK or NaphthaCHO on QA-induced NF-κB. Western blot analysis was used to detect the effects of Z-FF-FMK or NaphthaCHO on QA-induced IκB-α phosphorylation and degradation, changes in the levels of IKKα, p-IKKα, TP53, caspase-3, beclin1, p62, and LC3II/LC3I. The results show that QA-induced loss of striatal neurons were strongly inhibited by Z-FF-FMK or NaphthaCHO. QA-induced degradation of IκB-α, NF-κB nuclear translocation, up-regulation of NF-κB responsive gene TP53, and activation of caspase-3 was strongly inhibited by Z-FF-FMK or NaphthaCHO. QA-induced increases in beclin 1, LC3II/LC3I, and down-regulation of p62 were reduced by Z-FF-FMK or NaphthaCHO. These results suggest that cathepsin L is involved in glutamate receptor-induced NF-κB activation. Cathepsin L inhibitors have neuroprotective effects by inhibiting glutamate receptor-induced IκB-α degradation and NF-κB activation. PMID:24073275

  17. H2O2/UV-C treatment of the commercially important aryl sulfonates H-, K-, J-acid and Para base: assessment of photodegradation kinetics and products.

    PubMed

    Arslan-Alaton, Idil; Olmez-Hanci, Tugba; Gursoy, Betul Hande; Tureli, Gokce

    2009-07-01

    H2O2/UV-C treatment of four commercially important aryl sulfonates (naphthalene sulfonic acids H-acid, K-acid, J-acid and benzene sulfonic acid Para base) in aqueous solutions was investigated. Photodegradation kinetics was followed in terms of changes brought about in the parent compound concentration via high performance liquid chromatography, as well as abatement of the collective environmental parameters COD and TOC. The efficiency of H2O2/UV-C treatment was also evaluated by determining H2O2 consumption rates throughout the reactions whereas the formation of intermediates (photodegradation products) was traced by means of mass spectrometry. Our experimental findings indicated that especially trisulfonated K-acid was not very prone to photochemical degradation, closely followed by the other studied aryl sulfonates. The highest abatement rates (treatment efficiencies and reaction kinetics) were obtained for the relatively simpler structured Para base. Mass spectrometric analysis revealed that the early stages of H2O2/UV-C treatment followed a (.)OH-addition mechanism as mainly hydroxylated photodegradation products were qualitatively identified. PMID:19481776

  18. Why do adult dogs 'play'?

    PubMed

    Bradshaw, John W S; Pullen, Anne J; Rooney, Nicola J

    2015-01-01

    Among the Carnivora, play behaviour is usually made up of motor patterns characteristic of predatory, agonistic and courtship behaviour. Domestic dogs are unusual in that play is routinely performed by adults, both socially, with conspecifics and with humans, and also asocially, with objects. This enhanced playfulness is commonly thought to be a side effect of paedomorphosis, the perpetuation of juvenile traits into adulthood, but here we suggest that the functions of the different types of play are sufficiently distinct that they are unlikely to have arisen through a single evolutionary mechanism. Solitary play with objects appears to be derived from predatory behaviour: preferred toys are those that can be dismembered, and a complex habituation-like feedback system inhibits play with objects that are resistant to alteration. Intraspecific social play is structurally different from interspecific play and may therefore be motivationally distinct and serve different goals; for example, dogs often compete over objects when playing with other dogs, but are usually more cooperative when the play partner is human. The majority of dogs do not seem to regard competitive games played with a human partner as "dominance" contests: rather, winning possession of objects during games appears to be simply rewarding. Play may be an important factor in sociality, since dogs are capable of extracting social information not only from games in which they participate, but also from games that they observe between third parties. We suggest that the domestic dog's characteristic playfulness in social contexts is an adaptive trait, selected during domestication to facilitate both training for specific purposes, and the formation of emotionally-based bonds between dog and owner. Play frequency and form may therefore be an indicator of the quality of dog-owner relationships. PMID:25251020

  19. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  20. Incidence and Risk Factors of Acute Kidney Injury after Radical Cystectomy: Importance of Preoperative Serum Uric Acid Level

    PubMed Central

    Joung, Kyoung-Woon; Choi, Seong-Soo; Kong, Yu-Gyeong; Yu, Jihion; Lim, Jinwook; Hwang, Jai-Hyun; Kim, Young-Kug

    2015-01-01

    Background: Acute kidney injury (AKI) is a common complication after surgery and increases costs, morbidity, and mortality of hospitalized patients. While radical cystectomy associates significantly with an increased risk of serious complications, including AKI, risk factors of AKI after radical cystectomy has not been reported. This study was performed to determine the incidence and independent predictors of AKI after radical cystectomy. Methods: All consecutive patients who underwent radical cystectomy in 2001-2013 in a single tertiary-care center were identified. Their demographics, laboratory values, and intraoperative data were recorded. Postoperative AKI was defined and staged according to the Acute Kidney Injury Network criteria on the basis of postoperative changes in creatinine levels. Independent predictors of AKI were identified by univariate and multivariate logistic regression analyses. Results: Of the 238 patients who met the eligibility criteria, 91 (38.2%) developed AKI. Univariate logistic regression analyses showed that male gender, high serum uric acid level, and long operation time associated with the development of AKI. On multivariate logistic regression analysis, preoperative serum uric acid concentration (odds ratio [OR] = 1.251; 95% confidence interval [CI] = 1.048-1.493; P = 0.013) and operation time (OR = 1.005; 95% CI = 1.002-1.008; P = 0.003) remained as independent predictors of AKI after radical cystectomy. Conclusions: AKI after radical cystectomy was a relatively common complication. Its independent risk factors were high preoperative serum uric acid concentration and long operation time. These observations can help to prevent AKI after radical cystectomy. PMID:26283877

  1. The Importance of Palmitoleic Acid to Adipocyte Insulin Resistance and Whole-Body Insulin Sensitivity in Type 1 Diabetes

    PubMed Central

    Howard, David; Schauer, Irene E.; Maahs, David M.; Snell-Bergeon, Janet K.; Clement, Timothy W.; Eckel, Robert H.; Perreault, Leigh; Rewers, Marian

    2013-01-01

    Context: Type 1 diabetes is an insulin-resistant state, but it is less clear which tissues are affected. Our previous report implicated skeletal muscle and liver insulin resistance in people with type 1 diabetes, but this occurred independently of generalized, visceral, or ectopic fat. Objective: The aim of the study was to measure adipose tissue insulin sensitivity and plasma triglyceride composition in individuals with type 1 diabetes after overnight insulin infusion to lower fasting glucose. Design, Patients, and Methods: Fifty subjects (25 individuals with type 1 diabetes and 25 controls without) were studied. After 3 d of dietary control and overnight insulin infusion, we performed a three-stage hyperinsulinemic/euglycemic clamp infusing insulin at 4, 8, and 40 mU/m2 · min. Infusions of [1,1,2,3,3-2H2]glycerol and [1-13C]palmitate were used to quantify lipid metabolism. Results: Basal glycerol and palmitate rates of appearance were similar between groups, decreased more in control subjects during the first two stages of the clamp, and similarly suppressed during the highest insulin dose. The concentration of insulin required for 50% inhibition of lipolysis was twice as high in individuals with type 1 diabetes. Plasma triglyceride saturation was similar between groups, but palmitoleic acid in plasma triglyceride was inversely related to adipocyte insulin sensitivity. Unesterified palmitoleic acid in plasma was positively related to insulin sensitivity in controls, but not in individuals with type 1 diabetes. Conclusions: Adipose tissue insulin resistance is a significant feature of type 1 diabetes. Palmitoleic acid is not related to insulin sensitivity in type 1 diabetes, as it was in controls, suggesting a novel mechanism for insulin resistance in this population. PMID:23150678

  2. Importance of the gamma-aminobutyric acid(B) receptor C-termini for G-protein coupling.

    PubMed

    Grünewald, Sylvia; Schupp, Bettina J; Ikeda, Stephen R; Kuner, Rohini; Steigerwald, Frank; Kornau, Hans-Christian; Köhr, Georg

    2002-05-01

    Functional gamma-aminobutyric acid(B) (GABA(B)) receptors assemble from two subunits, GABA(B(1)) and GABA(B(2).) This heteromerization, which involves a C-terminal coiled-coil interaction, ensures efficient surface trafficking and agonist-dependent G-protein activation. In the present study, we took a closer look at the implications of the intracellular C termini of GABA(B(1)) and GABA(B(2)) for G-protein coupling. We generated a series of C-terminal mutants of GABA(B(1)) and GABA(B(2)) and tested them for physical interaction, surface trafficking, coupling to adenylyl cyclase, and G-protein-gated inwardly rectifying potassium channels in human embryonic kidney (HEK) 293 cells as well as on endogenous calcium channels in sympathetic neurons of the superior cervical ganglion (SCG). We found that the C-terminal interaction contributes only partly to the heterodimeric assembly of the subunits, indicating the presence of an additional interaction site. The described endoplasmic reticulum retention signal within the C terminus of GABA(B(1)) functioned only in the context of specific amino acids, which constitute part of the GABA(B(1)) coiled-coil sequence. This finding may provide a link between the retention signal and its shielding by the coiled coil of GABA(B(2).) In HEK293 cells, we observed that the two well-known GABA(B) receptor antagonists [S-(R*,R*)]-[3-[[1-(3,4-dichlorophenyl)ethyl]amino]-2-hydroxypropyl](cyclohexylmethyl) phosphinic acid (CGP54626) and (+)-(2S)-5,5-dimethyl-2-morpholineacetic acid (SCH50911) CGP54626 and SCH50911 function as inverse agonists. The C termini of GABA(B(1)) and GABA(B(2)) strongly influenced agonist-independent G-protein coupling, although they were not necessary for agonist-dependent G-protein coupling. The C-terminal GABA(B) receptor mutants described here demonstrate that the active receptor conformation is stabilized by the coiled-coil interaction. Thus, the C-terminal conformation of the GABA(B) receptor may determine its

  3. The Play of Psychotherapy

    ERIC Educational Resources Information Center

    Marks-Tarlow, Terry

    2012-01-01

    The author reviews the role of play within psychotherapy. She does not discuss the formal play therapy especially popular for young children, nor play from the Jungian perspective that encourages the use of the sand tray with adults. Instead, she focuses on the informal use of play during psychotherapy as it is orchestrated intuitively. Because…

  4. Child's Play: Therapist's Narrative

    PubMed Central

    Reddy, Rajakumari P.; Hirisave, Uma

    2014-01-01

    Play has been recognized as an essential component to children's healthy development. Schools of play therapy differ philosophically and technically, but they all embrace the therapeutic and developmental properties of play. This case report is an illustration of how a 6-year-old child with emotional disorder was facilitated to express concerns in child-centered play therapy. The paper discusses the therapist's narration of the child's play. PMID:24860228

  5. Docosahexaenoic acid in Arctic charr (Salvelinus alpinus): the importance of dietary supply and physiological response during the entire growth period.

    PubMed

    Murray, David S; Hager, Hannes; Tocher, Douglas R; Kainz, Martin J

    2015-03-01

    The aim of this 14-month feeding study was to investigate the effects of dietary docosahexaenoic acid (DHA) on tissue fatty acid composition, DHA retention, and DHA content per biomass accrual in muscle tissues of Arctic charr (Salvelinus alpinus). A control feed, formulated with a relatively high DHA inclusion level (F1), was compared with feeds containing gradually reduced amounts of DHA (Feeds F2, F3, and F4). Arctic charr were randomly distributed among 12 tanks and fed one of the feeds in triplicate. The DHA content within muscle tissues of fish fed diets F1 and F2 was generally higher compared to fish fed diets F3 and F4. However, there was an interaction between dietary DHA treatment and season, which resulted in fish muscle tissues having similar DHA contents irrespective of dietary supply during specific sampling periods. Although diets F3 and F4 contained ~4-fold less DHA compared to diets F1 and F2, the retention of DHA in dorsal and ventral muscle tissue was up to 5-fold higher relative to the diet content in fish fed diets F3 and F4. However, the difference among treatments was dependent on the month sampled. In addition, younger fish retained DHA more efficiently compared to older fish. DHA (μg DHA/g/day) accrual in muscle tissue was independent of somatic growth, and there was no difference among treatments. The results suggested that dietary DHA may be essential throughout the life cycle of Arctic charr and that the DHA content of muscle tissues was influenced by diet and metabolic/physiological factors, such as specific DHA retention during the entire growth cycle . Finally, this long-term feeding study in Arctic charr indicated a non-linear function in DHA retention in dorsal and ventral muscle tissues throughout the life cycle, which varied in its relationship to dietary DHA. PMID:25461677

  6. Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants[OPEN

    PubMed Central

    Thalmann, Matthias; Pazmino, Diana; Seung, David; Horrer, Daniel; Nigro, Arianna; Meier, Tiago; Zeeman, Samuel C.; Santelia, Diana

    2016-01-01

    Starch serves functions that range over a timescale of minutes to years, according to the cell type from which it is derived. In guard cells, starch is rapidly mobilized by the synergistic action of β-AMYLASE1 (BAM1) and α-AMYLASE3 (AMY3) to promote stomatal opening. In the leaves, starch typically accumulates gradually during the day and is degraded at night by BAM3 to support heterotrophic metabolism. During osmotic stress, starch is degraded in the light by stress-activated BAM1 to release sugar and sugar-derived osmolytes. Here, we report that AMY3 is also involved in stress-induced starch degradation. Recently isolated Arabidopsis thaliana amy3 bam1 double mutants are hypersensitive to osmotic stress, showing impaired root growth. amy3 bam1 plants close their stomata under osmotic stress at similar rates as the wild type but fail to mobilize starch in the leaves. 14C labeling showed that amy3 bam1 plants have reduced carbon export to the root, affecting osmolyte accumulation and root growth during stress. Using genetic approaches, we further demonstrate that abscisic acid controls the activity of BAM1 and AMY3 in leaves under osmotic stress through the AREB/ABF-SnRK2 kinase-signaling pathway. We propose that differential regulation and isoform subfunctionalization define starch-adaptive plasticity, ensuring an optimal carbon supply for continued growth under an ever-changing environment. PMID:27436713

  7. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    NASA Astrophysics Data System (ADS)

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  8. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    PubMed Central

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-01-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide–phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation. PMID:25501391

  9. Incorporation of n-3 fatty acids into plasma and liver lipids of rats: importance of background dietary fat.

    PubMed

    MacDonald-Wicks, Lesley K; Garg, Manohar L

    2004-06-01

    The health benefits of long-chain n-3 PUFA (20:5n-3 and 22:6n-3) depend on the extent of incorporation of these FA into plasma and tissue lipids. This study aimed to investigate the effect of the background dietary fat (saturated, monounsaturated, or n-6 polyunsaturated) on the quantitative incorporation of dietary 18:3n-3 and its elongated and desaturated products into the plasma and the liver lipids of rats. Female weanling Wistar rats (n = 54) were randomly assigned to six diet groups (n = 9). The fat added to the semipurified diets was tallow (SFA), tallow plus linseed oil (SFA-LNA), sunola oil (MUFA), sunola oil plus linseed oil (MUFA-LNA), sunflower oil (PUFA), or sunflower oil plus linseed oil (PUFA-LNA). At the completion of the 4-wk feeding period, quantitative FA analysis of the liver and plasma was undertaken by GC. The inclusion of linseed oil in the rat diets increased the level of 18:3n-3, 20:5n-3, and, to a smaller degree, 22:6n-3 in plasma and liver lipids regardless of the background dietary fat. The extent of incorporation of 18:3n-3, 20:5n-3, and 22:5n-3 followed the order SFA-LNA > MUFA-LNA > PUFA-LNA. Levels of 22:6n-3 were increased to a similar extent regardless of the type of major fat in the rat diets. This indicates that the background diet affects the incorporation in liver and plasma FA pools of the n-3 PUFA with the exception of 22:6n-3 and therefore the background diet has the potential to influence the already established health benefits of long-chain n-3 fatty acids. PMID:15554153

  10. An Important Role for N-Acylethanolamine Acid Amidase in the Complete Freund's Adjuvant Rat Model of Arthritis.

    PubMed

    Bonezzi, F T; Sasso, O; Pontis, S; Realini, N; Romeo, E; Ponzano, S; Nuzzi, A; Fiasella, A; Bertozzi, F; Piomelli, D

    2016-03-01

    The endogenous lipid amides, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), exert marked antinociceptive and anti-inflammatory effects in animal models by engaging nuclear peroxisome proliferator-activated receptor-α. PEA and OEA are produced by macrophages and other host-defense cells and are deactivated by the cysteine amidase, N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages and B-lymphocytes. In the present study, we examined whether a) NAAA might be involved in the inflammatory reaction triggered by injection of complete Freund's adjuvant (CFA) into the rat paw and b) administration of 4-cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]-carbamate (ARN726), a novel systemically active NAAA inhibitor, attenuates such reaction. Injection of CFA into the paw produced local edema and heat hyperalgesia, which were accompanied by decreased PEA and OEA content (assessed by liquid chromatography/mass spectrometry) and increased NAAA levels (assessed by Western blot and ex vivo enzyme activity measurements) in paw tissue. Administration of undec-10-ynyl-N-[(3S)-2-oxoazetidin-3-yl] carbamate (ARN14686), a NAAA-preferring activity-based probe, revealed that NAAA was catalytically active in CFA-treated paws. Administration of ARN726 reduced NAAA activity and restored PEA and OEA levels in inflamed tissues, and significantly decreased CFA-induced inflammatory symptoms, including pus production and myeloperoxidase activity. The results confirm the usefulness of ARN726 as a probe to investigate the functions of NAAA in health and disease and suggest that this enzyme may provide a new molecular target for the treatment of arthritis. PMID:26769918

  11. Niger Delta play types, Nigeria

    SciTech Connect

    Akinpelu, A.O.

    1995-08-01

    Exploration databases can be more valuable when sorted by play type. Play specific databases provide a system to organize E & P data used in evaluating the range of values of parameters for reserve estimation and risk assessment. It is important both in focusing the knowledge base and in orienting research effort. A play in this context is any unique combination of trap, reservoir and source properties with the right dynamics of migration and preservation that results in hydrocarbon accumulation. This definitions helps us to discriminate the subtle differences found with these accumulation settings. About 20 play types were identified around the Niger Delta oil province in Nigeria. These are grouped into three parts: (1) The proven plays-constituting the bulk of exploration prospects in Nigeria today. (2) The unproven or semi-proven plays usually with some successes recorded in a few tries but where knowledge is still inadequate. (3) The unproven or analogous play concept. These are untested but geologically sound ideas which may or may not have been tried elsewhere. With classification and sub grouping of these play types into specific databases, intrinsic attributes and uniqueness of each of them with respect to the four major risk elements and the eight parameters for reserve estimation can be better understood.

  12. Learning through Role Play.

    ERIC Educational Resources Information Center

    Simmons, Sandra

    2001-01-01

    Explains how role playing can provide enriching experiences that develop children's literacy and numeracy skills. Lists key ingredients of good role playing and suggests ways to plan them and prepare space for them. (SK)

  13. Adlerian Play Therapy.

    ERIC Educational Resources Information Center

    Kottman, Terry; Warlick, Jayne

    1990-01-01

    Describes Adlerian method of play therapy. Claims Adlerian therapy represents an integration of the concepts and techniques of individual psychology into a method of using play to help troubled children. (Author/ABL)

  14. Role-Playing Mitosis.

    ERIC Educational Resources Information Center

    Wyn, Mark A.; Stegink, Steven J.

    2000-01-01

    Introduces a role playing activity that actively engages students in the learning process of mitosis. Students play either chromosomes carrying information, or cells in the cell membrane. (Contains 11 references.) (Author/YDS)

  15. Importance of the Chiral Centers of Jasmonic Acid in the Responses of Plants (Activities and Antagonism between Natural and Synthetic Analogs).

    PubMed Central

    Holbrook, L.; Tung, P.; Ward, K.; Reid, D. M.; Abrams, S.; Lamb, N.; Quail, J. W.; Moloney, M. M.

    1997-01-01

    The importance of the two chiral centers at C-3 and C-7 in the molecular structure of jasmonic acid in plant responses was investigated. We separated methyl jasmonate (MeJA) into (3R)- and (3S)-isomers with a fixed stereochemistry at C-3, but epimerization at C-7 is possible. The four isomers of the nonepimerizable analog 7-methyl MeJA were synthesized. These six esters and their corresponding acids were tested in three bioassays: (a) senescence in sunflower (Helianthus annuus) cotyledons; (b) proteinase inhibitor II gene expression in transgenic tobacco (Nicotiana tabacum) with [beta]-glucuronidase as a biochemical reporter; and (c) seed germination in Brassica napus and wheat (Triticum aestivum). The esters and acids had similar activities in the three assays, with the ester being more effective than its acid. The (3R)-stereochemistry was critical for jasmonate activity. Although activity was reduced after substituting the C-7 proton with a methyl group, the analogs with (3R,7R)- or (3R,7S)-stereochemistry were active in some of the assays. Although the four isomers of 7-methyl MeJA were inactive or only weakly active in the senescence assay, they could overcome the senescence-promoting effect of (3R)-MeJA. The strongest antagonistic effect was observed with the (3R,7S)-isomer. PMID:12223716

  16. Play, Policy & Practice.

    ERIC Educational Resources Information Center

    Klugman, Edgar, Ed.

    In 1992, the U.S.-Israel Binational Science Foundation (BSF), in conjunction with Wheelock College (Boston), sponsored its second workshop on children's play, entitled "Play and Cognitive Ability: The Cultural Context." This volume reflects the presentations and discussions held at the workshop, offering perspectives on children's play that, taken…

  17. Importance of Time Scale and Local Environment in Electron-Driven Proton Transfer. The Anion of Acetoacetic Acid.

    PubMed

    Keolopile, Zibo G; Gutowski, Maciej; Buonaugurio, Angela; Collins, Evan; Zhang, Xinxing; Erb, Jeremy; Lectka, Thomas; Bowen, Kit H; Allan, Michael

    2015-11-18

    Anion photoelectron spectroscopy (PES) and electron energy-loss spectroscopy (EELS) probe different regions of the anionic potential energy surface. These complementary techniques provided information about anionic states of acetoacetic acid (AA). Electronic structure calculations facilitated the identification of the most stable tautomers and conformers for both neutral and anionic AA and determined their relative stabilities and excess electron binding energies. The most stable conformers of the neutral keto and enol tautomers differ by less than 1 kcal/mol in terms of electronic energies corrected for zero-point vibrations. Thermal effects favor these conformers of the keto tautomer, which do not support an intramolecular hydrogen bond between the keto and the carboxylic groups. The valence anion displays a distinct minimum which results from proton transfer from the carboxylic to the keto group; thus, we name it an ol structure. The minimum is characterized by a short intramolecular hydrogen bond, a significant electron vertical detachment energy of 2.38 eV, but a modest adiabatic electron affinity of 0.33 eV. The valence anion was identified in the anion PES experiments, and the measured electron vertical detachment energy of 2.30 eV is in good agreement with our computational prediction. We conclude that binding an excess electron in a π* valence orbital changes the localization of a proton in the fully relaxed structure of the AA(-) anion. The results of EELS experiments do not provide evidence for an ultrarapid proton transfer in the lowest π* resonance of AA(-), which would be capable of competing with electron autodetachment. This observation is consistent with our computational results, indicating that major gas-phase conformers and tautomers of neutral AA do not support the intramolecular hydrogen bond that would facilitate ultrarapid proton transfer and formation of the ol valence anion. This is confirmed by our vibrational EELS spectrum. Anions

  18. Crystal structure of Clostridium acetobutylicum Aspartate kinase (CaAK): An important allosteric enzyme for amino acids production.

    PubMed

    Manjasetty, Babu A; Chance, Mark R; Burley, Stephen K; Panjikar, Santosh; Almo, Steven C

    2014-09-01

    Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw=48,030Da; 437aa; SwissProt: Q97MC0) has been determined to 3Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%). It is composed of two domains: an N-terminal catalytic domain (kinase) domain and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing) bacteria such as Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry. PMID:25170437

  19. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits.

    PubMed

    Wang, Yan-Liang; Almvik, Marit; Clarke, Nicholas; Eich-Greatorex, Susanne; Øgaard, Anne Falk; Krogstad, Tore; Lambers, Hans; Clarke, Jihong Liu

    2015-01-01

    Phosphorus (P) is an important element for crop productivity and is widely applied in fertilizers. Most P fertilizers applied to land are sorbed onto soil particles, so research on improving plant uptake of less easily available P is important. In the current study, we investigated the responses in root morphology and root-exuded organic acids (OAs) to low available P (1 μM P) and sufficient P (50 μM P) in barley, canola and micropropagated seedlings of potato-three important food crops with divergent root traits, using a hydroponic plant growth system. We hypothesized that the dicots canola and tuber-producing potato and the monocot barley would respond differently under various P availabilities. WinRHIZO and liquid chromatography triple quadrupole mass spectrometry results suggested that under low P availability, canola developed longer roots and exhibited the fastest root exudation rate for citric acid. Barley showed a reduction in root length and root surface area and an increase in root-exuded malic acid under low-P conditions. Potato exuded relatively small amounts of OAs under low P, while there was a marked increase in root tips. Based on the results, we conclude that different crops show divergent morphological and physiological responses to low P availability, having evolved specific traits of root morphology and root exudation that enhance their P-uptake capacity under low-P conditions. These results could underpin future efforts to improve P uptake of the three crops that are of importance for future sustainable crop production. PMID:26286222

  20. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits

    PubMed Central

    Wang, Yan-Liang; Almvik, Marit; Clarke, Nicholas; Eich-Greatorex, Susanne; Øgaard, Anne Falk; Krogstad, Tore; Lambers, Hans; Clarke, Jihong Liu

    2015-01-01

    Phosphorus (P) is an important element for crop productivity and is widely applied in fertilizers. Most P fertilizers applied to land are sorbed onto soil particles, so research on improving plant uptake of less easily available P is important. In the current study, we investigated the responses in root morphology and root-exuded organic acids (OAs) to low available P (1 μM P) and sufficient P (50 μM P) in barley, canola and micropropagated seedlings of potato—three important food crops with divergent root traits, using a hydroponic plant growth system. We hypothesized that the dicots canola and tuber-producing potato and the monocot barley would respond differently under various P availabilities. WinRHIZO and liquid chromatography triple quadrupole mass spectrometry results suggested that under low P availability, canola developed longer roots and exhibited the fastest root exudation rate for citric acid. Barley showed a reduction in root length and root surface area and an increase in root-exuded malic acid under low-P conditions. Potato exuded relatively small amounts of OAs under low P, while there was a marked increase in root tips. Based on the results, we conclude that different crops show divergent morphological and physiological responses to low P availability, having evolved specific traits of root morphology and root exudation that enhance their P-uptake capacity under low-P conditions. These results could underpin future efforts to improve P uptake of the three crops that are of importance for future sustainable crop production. PMID:26286222

  1. Play and Development From an Ethological Perspective

    ERIC Educational Resources Information Center

    Vandenberg, Brian

    1978-01-01

    A review of play in nonhuman animals indicates that play increases with phylogenetic status, is important for mature social development in more advanced species, reflects intentional activity, and is essential for the development of tool-using strategies. (Author)

  2. Eicosapentaenoic acid plays a role in stabilizing dynamic membrane structure in the deep-sea piezophile Shewanella violacea: a study employing high-pressure time-resolved fluorescence anisotropy measurement.

    PubMed

    Usui, Keiko; Hiraki, Toshiki; Kawamoto, Jun; Kurihara, Tatsuo; Nogi, Yuichi; Kato, Chiaki; Abe, Fumiyoshi

    2012-03-01

    Shewanella violacea DSS12 is a psychrophilic piezophile that optimally grows at 30MPa. It contains a substantial amount of eicosapentaenoic acid (EPA) in the membrane. Despite evidence linking increased fatty acid unsaturation and bacterial growth under high pressure, little is known of how the physicochemical properties of the membrane are modulated by unsaturated fatty acids in vivo. By means of the newly developed system performing time-resolved fluorescence anisotropy measurement under high pressure (HP-TRFAM), we demonstrate that the membrane of S. violacea is highly ordered at 0.1MPa and 10°C with the order parameter S of 0.9, and the rotational diffusion coefficient D(w) of 5.4μs(-1) for 1-[4-(trimethylamino)pheny]-6-phenyl-1,3,5-hexatriene in the membrane. Deletion of pfaA encoding the omega-3 polyunsaturated fatty acid synthase caused disorder of the membrane and enhanced the rotational motion of acyl chains, in concert with a 2-fold increase in the palmitoleic acid level. While the wild-type membrane was unperturbed over a wide range of pressures with respect to relatively small effects of pressure on S and D(w), the ΔpfaA membrane was disturbed judging from the degree of increased S and decreased D(w). These results suggest that EPA prevents the membrane from becoming hyperfluid and maintains membrane stability against significant changes in pressure. Our results counter the generally accepted concept that greater fluidity is a membrane characteristic of microorganisms that inhabit cold, high-pressure environments. We suggest that retaining a certain level of membrane physical properties under high pressure is more important than conferring membrane fluidity alone. PMID:22037146

  3. Non-extractable procyanidins and lignin are important factors in the bile acid binding and radical scavenging properties of cell wall material in some fruits.

    PubMed

    Hamauzu, Yasunori; Mizuno, Yukari

    2011-03-01

    The cell wall components and the food functions of alcohol-insoluble solids (AIS) of Chinese quince, quince, hawthorn, apple, pear and blueberry fruits were analyzed. Chinese quince contained characteristically high contents of cellulose, lignin, and non-extractable procyanidins (NEPCs). On the other hand, the quince AIS contained the highest proportion of NEPCs, the highest mean degree of polymerization (mDP), the strongest radical scavenging activity, and strong bile acid binding activity. In fruit AIS, the lignin and NEPC contents both showed positive correlations with the bile acid binding and radical scavenging activities. The value for mDP × NEPC content was a good index for the radical scavenging activity. The results suggest that highly polymerized NEPCs and lignin are important factors of cell wall components of fruits to having a high functionality, and Chinese quince and quince are interesting fruits from this view point. PMID:21243435

  4. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168.

    PubMed

    Cooper, Gareth R; Moir, Anne

    2011-05-01

    The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore. PMID:21378181

  5. Spatial distribution and importance of potential perfluoroalkyl acid precursors in urban rivers and sewage treatment plant effluent--case study of Tama River, Japan.

    PubMed

    Ye, Feng; Tokumura, Masahiro; Islam, Md Saiful; Zushi, Yasuyuki; Oh, Jungkeun; Masunaga, Shigeki

    2014-12-15

    Production and use of perfluorooctane sulfonate (PFOS) is regulated worldwide. However, numerous potential precursors that eventually decompose into PFOS and other perfluoroalkyl acids (PFAAs) such as perfluorooctanoic acid (PFOA) are still being used and have not been studied in detail. Therefore, knowledge about the levels and sources of the precursors is essential. We investigated the total concentration of potential PFAA precursors in the Tama River, which is one of the major rivers flowing into the Tokyo Bay, by converting all the perfluorinated carboxylic acid (PFCA) and perfluoroalkyl sulfonic acid (PFSA) precursors into PFCAs by chemical oxidation. The importance of controlling PFAA precursors was determined by calculating the ratios of PFCAs formed by oxidation to the PFAAs originally present (ΣΔ[PFCAC4-C12]/Σ[PFAAs]before oxidation) (average = 0.28 and 0.69 for main and tributary branch rivers, respectively). Higher total concentrations of Δ[PFCAs] were found in sewage treatment plant (STP) effluents. However, the ratios found in the effluents were lower (average = 0.21) than those found in the river water samples, which implies the decomposition of some precursors into PFAAs during the treatment process. On the other hand, higher ratios were observed in the upstream water samples and the existence of emission sources other than the STP effluents was indicated. This study showed that although the treatment process converting a part of the PFAA precursors into PFAAs, STPs were important sources of precursors to the Tama River. To reduce the levels of PFAAs in the aquatic environment, it is necessary to reduce the emission of the PFAA precursors as well. PMID:25262552

  6. AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis

    PubMed Central

    Lu, Yuqing; Li, Cong; Wang, Hai; Chen, Hao; Berg, Howard; Xia, Yiji

    2011-01-01

    SUMMARY Pentatricopeptide repeat (PPR) proteins are mainly involved in regulating post-transcriptional processes in mitochondria and plastids, including chloroplasts. Mutations in the Arabidopsis PPR2 gene have previously been found to cause defects in seed development and reduced transmission through male and female gametophytes. However, the exact function of AtPPR2 has not been defined. We found that a loss-of-function mutation of AtPPR2 leads to arrest of the first mitotic division during both male and female gametogenesis. In addition, the Atppr2 mutation causes delayed embryogenesis, leading to embryonic lethality. Mutation in emb2750, which appears to be a weak mutant allele of the AtPPR2 locus, also results in defective seeds. However, a majority of emb2750 seeds were able to germinate, but their cotyledons were albino and often deformed, and growth of the emb2750 seedlings were arrested after germination. AtPPR2 is mainly expressed in plant parts that undergo cell division, and AtPPR2 protein was localized to chloroplasts. RNA immunoprecipitation and protein gel mobility shift assays showed that AtPPR2 binds to plastid 23S rRNA. Our study adds to a growing body of evidence that plastids and/or chloroplasts play a key role in cell division. AtPPR2 may modulate the translational process to fine-tune plastid function, thereby regulating cell division. PMID:21435048

  7. Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds.

    PubMed

    Li, Yiting; Zhang, Jun; Zhang, Xiao; Fan, Hongmei; Gu, Mian; Qu, Hongye; Xu, Guohua

    2015-01-01

    Phosphorus (P) redistribution from source to sink organs within plant is required for optimizing growth and development under P deficient condition. In this study, we knocked down expression of a phosphate transporter gene OsPht1;8 (OsPT8) selectively in shoot and/or in seed endosperm by RNA-interference using RISBZ1 and GluB-1 promoter (designate these transgenic lines as SSRi and EnSRi), respectively, to characterize the role of OsPT8 in P redistribution of rice. In comparison to wild type (WT) and EnSRi lines, SSRi lines under P deficient condition accumulated more P in old blades and less P in young blades, corresponding to attenuated and enriched transcripts of P-responsive genes in old and young blades, respectively. The ratio of total P in young blades to that in old blades decreased from 2.6 for WT to 0.9-1.2 for SSRi lines. During the grain-filling stage, relative to WT, SSRi lines showed the substantial decrease of total P content in both endosperm and embryo, while EnSRi lines showed 40-50% decrease of total P content in embryo but similar P content in endosperm. Taken together, our results demonstrate that OsPT8 plays a critical role in redistribution of P from source to sink organs and P homeostasis in seeds of rice. PMID:25480005

  8. Reactivity of NaCl with Secondary Organic Acids: An Important Mechanism of the Chloride Depletion in Sea Salt Particles Mixed with Organic Materials

    NASA Astrophysics Data System (ADS)

    Wang, B.; Laskin, A.; Kelly, S.; Gilles, M. K.; Shilling, J. E.; Zelenyuk, A.; Wilson, J. M.; Tivanski, A.

    2012-12-01

    Sea salt particles, one of the major sources of atmospheric aerosols, undergo complex multi-phase reactions and have profound consequences on their physical and chemical properties, thus on climate. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of sea salt chlorides with inorganic acids, such as nitric and sulfuric acids. Some studies have also showed that the chloride deficit cannot be fully compensated for this mechanism. We present an important pathway contributing to this chloride depletion: reactions of weak organic acids with sea salt particles. NaCl particles internally mixed with secondary organic materials generated from the reactions of limonene and alpha-pinene with ozone served as surrogates for sea salt particles mixed with organic materials. Chemical imaging analysis of these particles was conducted using complementary techniques including computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX), scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and micro-fourier transform infrared spectroscopy (micro-FTIR). Substantial chloride depletion and formation of organic salts were observed along with distinctive changes in particle morphology after hydration/dehydration processes. The results indicate that secondary organic acids can effectively react with NaCl particles resulting in displacement of chloride and release of gaseous HCl. This is consistent with a recent field study showing chloride depletion in sea salt particles mixed with organic materials which cannot be fully compensated by inorganic acid displacement. Although the formation of the organic salts is not thermodynamically favored in bulk aqueous solution, these reactions are driven by the high volatility and evaporation of gaseous HCl in particles, especially during hydration/dehydration processes. The

  9. Guided Play: Where Curricular Goals Meet a Playful Pedagogy

    ERIC Educational Resources Information Center

    Weisberg, Deena Skolnick; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick

    2013-01-01

    Decades of research demonstrate that a strong curricular approach to preschool education is important for later developmental outcomes. Although these findings have often been used to support the implementation of educational programs based on direct instruction, we argue that "guided play" approaches can be equally effective at delivering content…

  10. Prebiologically Important Interstellar Molecules

    NASA Astrophysics Data System (ADS)

    Kuan, Y.-J.; Huang, H.-C.; Charnley, S. B.; Tseng, W.-L.; Snyder, L. E.; Ehrenfreund, P.; Kisiel, Z.; Thorwirth, S.; Bohn, R. K.; Wilson, T. L.

    2004-06-01

    Understanding the organic chemistry of molecular clouds, particularly the formation of biologically important molecules, is fundamental to the study of the processes which lead to the origin, evolution and distribution of life in the Galaxy. Determining the level of molecular complexity attainable in the clouds, and the nature of the complex organic material available to protostellar disks and the planetary systems that form from them, requires an understanding of the possible chemical pathways and is therefore a central question in astrochemistry. We have thus searched for prebiologically important molecules in the hot molecular cloud cores: Sgr B2(N-LMH), W51 e1/e2 and Orion-KL. Among the molecules searched: Pyrimidine is the unsubstituted ring analogue for three of the DNA and RNA bases. 2H-Azirine and Aziridine are azaheterocyclic compounds. And Glycine is the simplest amino acid. Detections of these interstellar organic molecular species will thus have important implications for Astrobiology. Our preliminary results indicate a tentative detection of interstellar glycine. If confirmed, this will be the first detection of an amino acid in interstellar space and will greatly strengthen the thesis that interstellar organic molecules could have played a pivotal role in the prebiotic chemistry of the early Earth.

  11. Production of a novel antioxidant furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furan fatty acids (F-acids) have gained attention since they are known to play important roles in a variety of biological systems. Specifically F-acids are known to have strong antioxidant activity. Although widely distributed in most biological systems, F-acids are trace components and their biosyn...

  12. Preparation of polyaniline nanostructures doped with different dicarboxylic acids through template-free method

    NASA Astrophysics Data System (ADS)

    Sun, Chuanyu; Wang, Yu

    2014-09-01

    In this article nanoscaled polyanilines (PANI) were prepared based on template-free method in the presence of dicarboxylic acid dopants (e.g. D-tartaric acid, succinic acid, maleic acid and fumaric acid). The trans-cis isomerization of butenedioic acid played an important role in the formation of nanostructures from the plane-like to nanofibers, and the PANI doped with maleic acid (MA) had larger diameter, higher crystallinity and conductivity than PANI doped with fumaric acid (FA).

  13. Evidence That a Malate/Inorganic Phosphate Exchange Translocator Imports Carbon across the Leucoplast Envelope for Fatty Acid Synthesis in Developing Castor Seed Endosperm.

    PubMed Central

    Eastmond, P. J.; Dennis, D. T.; Rawsthorne, S.

    1997-01-01

    In this study we examined the processes by which malate and pyruvate are taken up across the leucoplast envelope for fatty acid synthesis in developing castor (Ricinus communis L.) seed endosperm. Malate was taken up by isolated leucoplasts with a concentration dependence indicative of protein-mediated transport. The maximum rate of malate uptake was 704 [plus or minus] 41 nmol mg-1 protein h-1 and the Km was 0.62 [plus or minus] 0.08 mM. In contrast, the rate of pyruvate uptake increased linearly with respect to the substrate concentration and was 5-fold less than malate at a concentration of 5 mM. Malate uptake was inhibited by inorganic phosphate (Pi), glutamate, malonate, succinate, 2-oxoglutarate, and n-butyl malonate, an inhibitor of the mitochondrial malate/Pi-exchange translocator. Back-exchange experiments confirmed that malate was taken up by leucoplasts in counterexchange for Pi. The exchange stoichiometry was 1:1. The rate of malate-dependent fatty acid synthesis by isolated leucoplasts was 3-fold greater than from pyruvate at a concentration of 5 mM and was inhibited by n-butyl malonate. It is proposed that leucoplasts from developing castor endosperm contain a malate/Pi translocator that imports malate for fatty acid synthesis. This type of dicarboxylate transport activity has not been identified previously in plastids. PMID:12223747

  14. Fort Play Children Recreate Recess

    ERIC Educational Resources Information Center

    Powell, Mark

    2007-01-01

    Recess beckons well before it actually arrives. Its allure can be heard in children's lunchtime conversations as they discuss imaginary roles, plans, alliances and teams, with an obvious appetite for play and its unbounded possibility. For some children, recess provides the most important reasons to come to school. In team sports, games of chase…

  15. Creating Outdoor Play & Learning Environments.

    ERIC Educational Resources Information Center

    White, Randy; Stoecklin, Vicki L.

    Why typical playgrounds are designed the way they are by adults is discussed, including what the ideal outdoor play/learning environment for children is and how the outdoor space should be considered as an extension of the classroom. The paper emphasizes the importance of nature to children, discusses the criteria playground designers should…

  16. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    PubMed

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine). PMID:24679256

  17. Airborne soil dust and its importance in buffering of atmospheric acidity and critical load assessment, over the semi arid tract of northern India.

    NASA Astrophysics Data System (ADS)

    Sharma, Disha; Kulshrestha, Umesh

    Airborne soil dust and its importance in buffering of atmospheric acidity and critical load assessment, over the semi arid tract of northern India. The Critical Load approach alongwith integrated assessment models has been used in the European nations for policy formations to reduce acidic emissions. This unique approach was applied to assess the of vulnerability of natural systems to the present day atmospheric pollution scenario. The calculated values of critical loads of sulphur ( 225 - 275 eq/ha/yr) and nitrogen (298 - 303 eq/ha/yr), for the soil system in Delhi, were calculated with respect to Anjan grass, Hibiscus and Black siris. The present loads of sulphur (PL(S) = 26.40 eq/ha/yr) and nitrogen (PL(N) = 36.51 eq/ha/yr) were found to be much lower than their critical loads without posing any danger of atmospheric acidic deposition on the soil systems. The study indicated that the system is still protective due to high pH of soil. The nature of buffering capability of calcium derived from soil dust can be considered as a natural tool to combat acidification in the Indian region. The results showed that the pollution status in Delhi is still within the safe limits. However, at the pace at which the city is growing, it is likely that in coming decades, it may exceed these critical values. In order to set deposition limits and avoid adverse effects of acidic deposition this approach can be applied in India too. Such approach is very useful, not only in abating pollution but also in devising means of cost optimal emission abatement strategies.

  18. Identification of amino acids important for the catalytic activity of the collagen glucosyltransferase associated with the multifunctional lysyl hydroxylase 3 (LH3).

    PubMed

    Wang, Chunguang; Risteli, Maija; Heikkinen, Jari; Hussa, Anna-Kaisa; Uitto, Lahja; Myllyla, Raili

    2002-05-24

    Collagen glucosyltransferase (GGT) activity has recently been shown to be associated with human lysyl hydroxylase (LH) isoform 3 (LH3) (Heikkinen, J., Risteli, M., Wang, C., Latvala, J., Rossi, M., Valtavaara, M., Myllylä, R. (2000) J. Biol. Chem. 275, 36158-36163). The LH and GGT activities of the multifunctional LH3 protein modify lysyl residues in collagens posttranslationally to form hydroxylysyl and glucosylgalactosyl hydroxylysyl residues respectively. We now report that in the nematode, Caenorhabditis elegans, where only one ortholog is found for lysyl hydroxylase, the LH and GGT activities are also associated with the same gene product. The aim of the present studies is the identification of amino acids important for the catalytic activity of GGT. Our data indicate that the GGT active site is separate from the carboxyl-terminal LH active site of human LH3, the amino acids important for the GGT activity being located at the amino-terminal part of the molecule. Site-directed mutagenesis of a conserved cysteine at position 144 to isoleucine and a leucine at position 208 to isoleucine caused a marked reduction in GGT activity. These amino acids were conserved in C. elegans LH and mammalian LH3, but not in LH1 or LH2, which lack GGT activity. The data also reveal a DXD-like motif in LH3 characteristic of many glycosyltransferases and the mutagenesis of aspartates of this motif eliminated the GGT activity. Reduction in GGT activity was not accompanied by a change in the LH activity of the molecule. Thus GGT activity can be manipulated independently of LH activity in LH3. These data provide the information needed to design knock-out studies for investigation of the function of glucosylgalactosyl hydroxylysyl residues of collagens in vivo. PMID:11896059

  19. Play and Digital Media

    ERIC Educational Resources Information Center

    Johnson, James E.; Christie, James F.

    2009-01-01

    This article examines how play is affected by computers and digital toys. Research indicates that when computer software targeted at children is problem-solving oriented and open-ended, children tend to engage in creative play and interact with peers in a positive manner. On the other hand, drill-and-practice programs can be quite boring and limit…

  20. Let's Just Play

    ERIC Educational Resources Information Center

    Schmidt, Janet

    2003-01-01

    Children have a right to play. The idea is so simple it seems self-evident. But a stroll through any toy superstore, or any half-hour of so-called "children's" programming on commercial TV, makes it clear that violence, not play, dominates what's being sold. In this article, the author discusses how teachers and parents share the responsibility in…

  1. Family Play Therapy.

    ERIC Educational Resources Information Center

    Ariel, Shlomo

    This paper examines a case study of family play therapy in Israel. The unique contributions of play therapy are evaluated including the therapy's accessibility to young children, its richness and flexibility, its exposure of covert patterns, its wealth of therapeutic means, and its therapeutic economy. The systematization of the therapy attempts…

  2. Clinical Intuition at Play

    ERIC Educational Resources Information Center

    Marks-Tarlow, Terry

    2014-01-01

    A clinical psychologist and consulting psychotherapist discusses how elements of play, inherent in the intuition required in analysis, can provide a cornerstone for serious therapeutic work. She argues that many aspects of play--its key roles in human development, individual growth, and personal creativity, among others--can help therapists and…

  3. Poetry and Play.

    ERIC Educational Resources Information Center

    Law, Richard A.

    Philosophers and poets from classical times to the present have argued that playful and amiable discourse are conducive to teaching and learning. The play principle enhances reading and study and should be applied by teachers to benefit their students. Teachers should help their students see that it is fun to enliven the imagination with good…

  4. The Fear of Play

    ERIC Educational Resources Information Center

    Almon, Joan

    2009-01-01

    Real play--play that is initiated and directed by children and that bubbles up from within the child rather than being imposed by adults--has largely disappeared from the landscape of childhood in the United States. There are many reasons for this, such as the long hours spent in front of screens each day or in activities organized by adults. In…

  5. Return to Play

    ERIC Educational Resources Information Center

    Mangan, Marianne

    2013-01-01

    Call it physical activity, call it games, or call it play. Whatever its name, it's a place we all need to return to. In the physical education, recreation, and dance professions, we need to redesign programs to address the need for and want of play that is inherent in all of us.

  6. Role Playing and Skits

    ERIC Educational Resources Information Center

    Letwin, Robert, Ed.

    1975-01-01

    Explores non-scripted role playing, dialogue role playing, sociodrama, and skits as variations of simulation techniques. Provides step-by-step guidelines for conducting such sessions. Successful Meetings, Bill Communications, Inc., 1422 Chestnut Street, Philadelphia, Pa. 19102. Subscription Rates: yearly (US, Canada, Mexico) $14.00; elsewhere,…

  7. Playing with Autistic Children.

    ERIC Educational Resources Information Center

    Casner, Mary W.; Marks, Susan F.

    The paper looks at the development of a play group for autistic children with descriptions of the autistic population, the daily program, the program's philosophy, the play group model, and actual lessons. Children, who ranged in age from 5 to 9 years, often chose activities which were self-stimulating and/or repetitive. The daily program included…

  8. Television at Play.

    ERIC Educational Resources Information Center

    Reid, Leonard N.; Frazer, Charles F.

    1980-01-01

    Discusses children as television viewers capable of manipulating the co-viewing setting by interpreting, constructing, and carrying out planned lines of play in relation to television and its content. Examples illustrate program-oriented and free-form improvisational play situations. (JMF)

  9. 12-HETER1/GPR31, a high-affinity 12(S)-hydroxyeicosatetraenoic acid receptor, is significantly up-regulated in prostate cancer and plays a critical role in prostate cancer progression.

    PubMed

    Honn, Kenneth V; Guo, Yande; Cai, Yinlong; Lee, Menq-Jer; Dyson, Gregory; Zhang, Wenliang; Tucker, Stephanie C

    2016-06-01

    Previously we identified and deorphaned G-protein-coupled receptor 31 (GPR31) as the high-affinity 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] receptor (12-HETER1). Here we have determined its distribution in prostate cancer tissue and its role in prostate tumorigenesis using in vitro and in vivo assays. Data-mining studies strongly suggest that 12-HETER1 expression positively correlates with the aggressiveness and progression of prostate tumors. This was corroborated with real-time PCR analysis of human prostate tumor tissue arrays that revealed the expression of 12-HETER1 positively correlates with the clinical stages of prostate cancers and Gleason scores. Immunohistochemistry analysis also proved that the expression of 12-HETER1 is positively correlated with the grades of prostate cancer. Knockdown of 12-HETER1 in prostate cancer cells markedly reduced colony formation and inhibited tumor growth in animals. To discover the regulatory factors, 5 candidate 12-HETER1 promoter cis elements were assayed as luciferase reporter fusions in Chinese hamster ovary (CHO) cells, where the putative cis element required for gene regulation was mapped 2 kb upstream of the 12-HETER1 transcriptional start site. The data implicate 12-HETER1 in a critical new role in the regulation of prostate cancer progression and offer a novel alternative target for therapeutic intervention.-Honn, K. V., Guo, Y., Cai, Y., Lee, M.-J., Dyson, G., Zhang, W., Tucker, S. C. 12-HETER1/GPR31, a high-affinity 12(S)-hydroxyeicosatetraenoic acid receptor, is significantly up-regulated in prostate cancer and plays a critical role in prostate cancer progression. PMID:26965684

  10. Wnt/β-catenin signaling plays an important role in the protective effects of FDP-Sr against oxidative stress induced apoptosis in MC3T3-E1 cell.

    PubMed

    Qi, Huan-Huan; Bao, Jun; Zhang, Qi; Ma, Bo; Gu, Gui-Ying; Zhang, Peng-Ling; Ou-Yang, Gang; Wu, Zi-Mei; Ying, Han-Jie; Ou-Yang, Ping-Kai

    2016-10-01

    Strontium fructose 1,6-diphosphate (FDP-Sr) is a new strontium-containing compound. The primary aim of this study was to clarify whether the structure component of FDP-Sr, FDP could benefit the protective effect of Sr (II) against oxidative stress induced apoptosis, and meanwhile to further explore the important role of Wnt/β-catenin signaling in the anti-apoptosis effect of FDP-Sr in response to oxidative stress induced by H2O2 in an osteoblastic MC3T3-E1 cell line. Results showed that FDP-Sr could improve the osteoblastic differentiation under oxidative stress with induced cell proliferation and improved mineralization. The inhibition effect of FDP-Sr on cell apoptosis induced by H2O2 was proved by reduced reactive oxygen species production and activated caspase3. Under oxidative stress, mRNA and protein levels of phospho-β-catenin reduced, while β-catenin increased in the FDP-Sr treatment cell, leaded to the up-regulations of Runx2 and OPG at both mRNA and protein levels, finally improved the differentiation of osteoblasts. By the engagement of Wnt/β-catenin pathway's inhibitor (XAV-939), the protective effects of FDP-Sr on osteoblastic differentiation against oxidative stress were repressed along with inhibited wnt/β-catenin signaling and reduced mRNA and protein levels of Runx2 and OPG. In conclusion, FDP-Sr was demonstrated to protect osteoblast differentiation from oxidative damage induced by H2O2 through up-regulation of Wnt/β-catenin signaling, and FDP in FDP-Sr was able to directly improve the oxidative stress injury through its ROS scavenging ability. PMID:27575480

  11. Chloroplastic thioredoxin-f and thioredoxin-m1/4 play important roles in brassinosteroids-induced changes in CO2 assimilation and cellular redox homeostasis in tomato

    PubMed Central

    Cheng, Fei; Zhou, Yan-Hong; Xia, Xiao-Jian; Shi, Kai; Zhou, Jie; Yu, Jing-Quan

    2014-01-01

    Chloroplast thioredoxins (TRXs) and glutathione function as redox messengers in the regulation of photosynthesis. In this work, the roles of chloroplast TRXs in brassinosteroids (BRs)-induced changes in cellular redox homeostasis and CO2 assimilation were studied in the leaves of tomato plants. BRs-deficient d ^im plants showed decreased transcripts of TRX-f, TRX-m2, TRX-m1/4, and TRX-x, while exogenous BRs significantly induced CO2 assimilation and the expression of TRX-f, TRX-m2, TRX-m1/4, and TRX-x. Virus-induced gene silencing (VIGS) of the chloroplast TRX-f, TRX-m2, TRX-m1/4, and TRX-y genes individually increased membrane lipid peroxidation and accumulation of 2-Cys peroxiredoxin dimers, and decreased the activities of the ascorbate–glutathione cycle enzymes and the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in the leaves. Furthermore, partial silencing of TRX-f, TRX-m2, TRX-m1/4, and TRX-y resulted in decreased expression of genes involved in the Benson–Calvin cycle and decreased activity of the associated enzymes. Importantly, the BRs-induced increase in CO2 assimilation and the increased expression and activities of antioxidant- and photosynthesis-related genes and enzymes were compromised in the partially TRX-f- and TRX-m1/4-silenced plants. All of these results suggest that TRX-f and TRX-m1/4 are involved in the BRs-induced changes in CO2 assimilation and cellular redox homeostasis in tomato. PMID:24847092

  12. Where are kids getting their empty calories? Stores, schools, and fast food restaurants each play an important role in empty calorie intake among US children in 2009-2010

    PubMed Central

    Poti, Jennifer M.; Slining, Meghan M.; Popkin, Barry M.; Kenan, W.R.

    2013-01-01

    Consumption of empty calories, the sum of energy from added sugar and solid fat, exceeds recommendations, but little is known about where US children obtain these empty calories. The objectives of this study were to compare children's empty calorie consumption from retail food stores, schools, and fast food restaurants; to identify food groups that were top contributors of empty calories from each location; and to determine the location providing the majority of calories for these key food groups. This cross-sectional analysis used data from 3,077 US children aged 2-18 years participating in the 2009-2010 National Health and Nutrition Examination Survey. The empty calorie content of children's intake from stores (33%), schools (32%), and fast food restaurants (35%) was not significantly different in 2009-2010. In absolute terms, stores provided the majority of empty calorie intake (436 kcal). The top contributors of added sugar and solid fat from each location were similar: sugar sweetened beverages (SSBs), grain desserts, and high-fat milk from stores; high-fat milk, grain desserts, and pizza from schools; and SSBs, dairy desserts, french fries, and pizza from fast food restaurants. Schools contributed about 20% of children's intake of high-fat milk and pizza. In conclusion, these findings support the need for continued efforts to reduce empty calorie intake among US children aimed not just at fast food restaurants, but also at stores and schools. The importance of reformed school nutrition standards was suggested, as prior to their implementation, schools resembled fast food restaurants in their contributions to empty calorie intake. PMID:24200654

  13. Playing Fair: An Essential Element in Contracting

    ERIC Educational Resources Information Center

    Peeler, Tom

    2012-01-01

    Playing fair has a value with which people are all familiar. From the sandboxes of childhood and the competitive sports of youth to the business transactions of adulthood, people have been told how important it is to play fair. Playing fair in contracting is not only essential, it's the legal and ethical thing to do. In this article, the author…

  14. Molecular and proteome analyses highlight the importance of the Cpx envelope stress system for acid stress and cell wall stability in Escherichia coli.

    PubMed

    Surmann, Kristin; Ćudić, Emina; Hammer, Elke; Hunke, Sabine

    2016-08-01

    Two-component systems (TCS) play a pivotal role for bacteria in stress regulation and adaptation. However, it is not well understood how these systems are modulated to meet bacterial demands. Especially, for those TCS using an accessory protein to integrate additional signals, no data concerning the role of the accessory proteins within the coordination of the response is available. The Cpx envelope stress two-component system, composed of the sensor kinase CpxA and the response regulator CpxR, is orchestrated by the periplasmic protein CpxP which detects misfolded envelope proteins and inhibits the Cpx system in unstressed cells. Using selected reaction monitoring, we observed that the amount of CpxA and CpxR, as well as their stoichiometry, are only marginally affected, but that a 10-fold excess of CpxP over CpxA is needed to switch off the Cpx system. Moreover, the relative quantification of the proteome identified not only acid stress response as a new indirect target of the Cpx system, but also suggests a general function of the Cpx system for cell wall stability. PMID:27039284

  15. The Scottish Play.

    ERIC Educational Resources Information Center

    Wheat, Chris

    1999-01-01

    Recounts an episode when, as young schoolboys, Prince Charles and classmates presented "Macbeth" as an end-of-term-play. Traces the events at school that took on different meanings when viewed from maturity. (NH)

  16. The School Play

    ERIC Educational Resources Information Center

    Lathan, P. D.

    1977-01-01

    Offers a defense of the school play as a vastly underrated educational tool. Available from: Speech and Drama, Elizabeth Gradwell, Distribution Manager, The White Cottage, Allington, Chippenham, Wilts. (MH)

  17. Play Spaces in Denmark.

    ERIC Educational Resources Information Center

    Mitchell, Edna; Anderson, Robert T.

    1980-01-01

    Describes the variety of play spaces found in urban areas in Denmark: in banks, stores and individual businesses, neighborhood parks and small pocket playgrounds, specialized adventure and traffic playgrounds with supervised activities, and commercial amusement parks. (CM)

  18. Importance of a Specific Amino Acid Pairing for Murine MLL Leukemias Driven by MLLT1/3 or AFF1/4

    PubMed Central

    Lokken, Alyson A.; Achille, Nicholas J.; Chang, Ming-jin; Lin, Jeffrey J.; Kuntimaddi, Aravinda; Leach, Benjamin I.; Malik, Bhavna; Nesbit, Jacqueline B.; Zhang, Shubin; Bushweller, John H.; Zeleznik-Le, Nancy J.; Hemenway, Charles S.

    2014-01-01

    Acute leukemias caused by translocations of the MLL gene at chromosome 11 band q23 (11q23) are characterized by a unique gene expression profile. More recently, data from several laboratories indicate that the most commonly encountered MLL fusion proteins, MLLT1, MLLT3, and AFF1 are found within a molecular complex that facilitates the elongation phase of mRNA transcription. Mutational analyses suggest that interaction between the MLLT1/3 proteins and AFF family proteins are required for experimental transformation of hematopoietic progenitor cells (HPCs). Here, we define a specific pairing of two amino acids that creates a salt bridge between MLLT1/3 and AFF proteins that is critically important for MLL-mediated transformation of HPCs. Our findings, coupled with the newly defined structure of MLLT3 in complex with AFF1, should facilitate the development of small molecules that block this amino acid interaction and interfere with the activity of the most common MLL oncoproteins. PMID:25282333

  19. Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel – an overview of the current mutational data

    PubMed Central

    2013-01-01

    This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions. PMID:23800232

  20. Conserved Amino Acid Residues of the NuoD Segment Important for Structure and Function of Escherichia coli NDH-1 (Complex I)

    PubMed Central

    2015-01-01

    The NuoD segment (homologue of mitochondrial 49 kDa subunit) of the proton-translocating NADH:quinone oxidoreductase (complex I/NDH-1) from Escherichia coli is in the hydrophilic domain and bears many highly conserved amino acid residues. The three-dimensional structural model of NDH-1 suggests that the NuoD segment, together with the neighboring subunits, constitutes a putative quinone binding cavity. We used the homologous DNA recombination technique to clarify the role of selected key amino acid residues of the NuoD segment. Among them, residues Tyr273 and His224 were considered candidates for having important interactions with the quinone headgroup. Mutant Y273F retained partial activity but lost sensitivity to capsaicin-40. Mutant H224R scarcely affected the activity, suggesting that this residue may not be essential. His224 is located in a loop near the N-terminus of the NuoD segment (Gly217–Phe227) which is considered to form part of the quinone binding cavity. In contrast to the His224 mutation, mutants G217V, P218A, and G225V almost completely lost the activity. One region of this loop is positioned close to a cytosolic loop of the NuoA subunit in the membrane domain, and together they seem to be important in keeping the quinone binding cavity intact. The structural role of the longest helix in the NuoD segment located behind the quinone binding cavity was also investigated. Possible roles of other highly conserved residues of the NuoD segment are discussed. PMID:25545070

  1. An Important Adjunct for Counselors: Video Taped Role Playing

    ERIC Educational Resources Information Center

    Soltys, Michael P.

    1971-01-01

    Through effective use of video tape students can become better prepared for the interview, more confident and poised, and better able to relate more effectively with people. The work described in this article is related to the content of a recent CPS workshop reported in this issue. (Author)

  2. ASXL1 plays an important role in erythropoiesis

    PubMed Central

    Shi, Hui; Yamamoto, Shohei; Sheng, Mengyao; Bai, Jie; Zhang, Peng; Chen, Runze; Chen, Shi; Shi, Lihong; Abdel-Wahab, Omar; Xu, Mingjiang; Zhou, Yuan; Yang, Feng-Chun

    2016-01-01

    ASXL1 mutations are found in a spectrum of myeloid malignancies with poor prognosis. Recently, we reported that Asxl1+/− mice develop myelodysplastic syndrome (MDS) or MDS and myeloproliferative neoplasms (MPN) overlapping diseases (MDS/MPN). Although defective erythroid maturation and anemia are associated with the prognosis of patients with MDS or MDS/MPN, the role of ASXL1 in erythropoiesis remains unclear. Here, we showed that chronic myelomonocytic leukemia (CMML) patients with ASXL1 mutations exhibited more severe anemia with a significantly increased proportion of bone marrow (BM) early stage erythroblasts and reduced enucleated erythrocytes compared to CMML patients with WT ASXL1. Knockdown of ASXL1 in cord blood CD34+ cells reduced erythropoiesis and impaired erythrocyte enucleation. Consistently, the BM and spleens of VavCre+;Asxl1f/f (Asxl1∆/∆) mice had less numbers of erythroid progenitors than Asxl1f/f controls. Asxl1∆/∆ mice also had an increased percentage of erythroblasts and a reduced erythrocyte enucleation in their BM compared to littermate controls. Furthermore, Asxl1∆/∆ erythroblasts revealed altered expression of genes involved in erythroid development and homeostasis, which was associated with lower levels of H3K27me3 and H3K4me3. Our study unveils a key role for ASXL1 in erythropoiesis and indicates that ASXL1 loss hinders erythroid development/maturation, which could be of prognostic value for MDS/MPN patients. PMID:27352931

  3. Ice sheets play important role in climate change

    NASA Astrophysics Data System (ADS)

    Clark, Peter U.; MacAyeal, Douglas R.; Andrews, John T.; Bartlein, Patrick J.

    Ice sheets once were viewed as passive elements in the climate system enslaved to orbitally generated variations in solar radiation. Today, modeling results and new geologic records suggest that ice sheets actively participated in late-Pleistocene climate change, amplifying or driving significant variability at millennial as well as orbital timescales. Although large changes in global ice volume were ultimately caused by orbital variations (the Milankovitch hypothesis), once in existence, the former ice sheets behaved dynamically and strongly influenced regional and perhaps even global climate by altering atmospheric and oceanic circulation and temperature.Experiments with General Circulation Models (GCMs) yielded the first inklings of ice sheets' climatic significance. Manabe and Broccoli [1985], for example, found that the topographic and albedo effects of ice sheets alone explain much of the Northern Hemisphere cooling identified in paleoclimatic records of the last glacial maximum (˜21 ka).

  4. Microbial communities play important roles in modulating paddy soil fertility

    NASA Astrophysics Data System (ADS)

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-02-01

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production.

  5. Microbial communities play important roles in modulating paddy soil fertility

    PubMed Central

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-01-01

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production. PMID:26841839

  6. Case managers play important part in employers' culture of health.

    PubMed

    Owen, Mindy

    2006-01-01

    At Duncan Aviation, an aircraft support company based in Lincoln, Nebraska, meetings with the wellness staff are a job requirement. At least quarterly and often monthly, all managers and team leaders are required to schedule a presentation by the company's wellness staff as part of regular department or team meetings. "That way exposure to the wellness team and program is 100%, not just the 10% to 20% that we might have at a 'learn at lunch' program," explained wellness director Craig Johnson. "This is happening on company time. People are being paid to attend the presentation. It's part of the culture here." PMID:16720260

  7. ASXL1 plays an important role in erythropoiesis.

    PubMed

    Shi, Hui; Yamamoto, Shohei; Sheng, Mengyao; Bai, Jie; Zhang, Peng; Chen, Runze; Chen, Shi; Shi, Lihong; Abdel-Wahab, Omar; Xu, Mingjiang; Zhou, Yuan; Yang, Feng-Chun

    2016-01-01

    ASXL1 mutations are found in a spectrum of myeloid malignancies with poor prognosis. Recently, we reported that Asxl1(+/-) mice develop myelodysplastic syndrome (MDS) or MDS and myeloproliferative neoplasms (MPN) overlapping diseases (MDS/MPN). Although defective erythroid maturation and anemia are associated with the prognosis of patients with MDS or MDS/MPN, the role of ASXL1 in erythropoiesis remains unclear. Here, we showed that chronic myelomonocytic leukemia (CMML) patients with ASXL1 mutations exhibited more severe anemia with a significantly increased proportion of bone marrow (BM) early stage erythroblasts and reduced enucleated erythrocytes compared to CMML patients with WT ASXL1. Knockdown of ASXL1 in cord blood CD34(+) cells reduced erythropoiesis and impaired erythrocyte enucleation. Consistently, the BM and spleens of VavCre(+);Asxl1(f/f) (Asxl1(∆/∆)) mice had less numbers of erythroid progenitors than Asxl1(f/f) controls. Asxl1(∆/∆) mice also had an increased percentage of erythroblasts and a reduced erythrocyte enucleation in their BM compared to littermate controls. Furthermore, Asxl1(∆/∆) erythroblasts revealed altered expression of genes involved in erythroid development and homeostasis, which was associated with lower levels of H3K27me3 and H3K4me3. Our study unveils a key role for ASXL1 in erythropoiesis and indicates that ASXL1 loss hinders erythroid development/maturation, which could be of prognostic value for MDS/MPN patients. PMID:27352931

  8. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  9. Playing It Safe.

    ERIC Educational Resources Information Center

    O'Neill, Steve

    2000-01-01

    Provides tips on how to avoid accidents and injuries on school playgrounds. Tips include removing of old, dangerous equipment; relocating play areas to safer ground; choosing the right surface; factoring in long-term costs for replenishing and redistributing loose materials; and considering Americans with Disabilities Act issues. (GR)

  10. Predicting elections: child's play!

    PubMed

    Antonakis, John; Dalgas, Olaf

    2009-02-27

    In two experiments, children and adults rated pairs of faces from election races. Naïve adults judged a pair on competence; after playing a game, children chose who they would prefer to be captain of their boat. Children's (as well as adults') preferences accurately predicted actual election outcomes. PMID:19251621

  11. Want to Play Geometry?

    ERIC Educational Resources Information Center

    Kaufmann, Matthew L.; Bomer, Megan A.; Powell, Nancy Norem

    2009-01-01

    Students enter the geometry classroom with a strong concept of fairness and a sense of what it means to "play by the rules," yet many students have difficulty understanding the postulates, or rules, of geometry and their implications. Although they may never have articulated the properties of an axiomatic system, they have gained a practical…

  12. Statistics at Play

    ERIC Educational Resources Information Center

    English, Lyn D.

    2014-01-01

    An exciting event had occurred for the grade 3 classes at Woodlands State School. A new play space designated for the older grades had now been opened to the third graders. In sharing their excitement over this "real treat, real privilege," the teachers invited the children to find out more about playgrounds and, in particular, their new…

  13. "Playing" with Science

    ERIC Educational Resources Information Center

    Allen, Dave

    2012-01-01

    When faced with a multitude of tasks, any opportunity to "kill two birds with one stone" is welcome. Drama has always excited the author: as a child performing in plays, later as a student and now as a teacher directing performances and improvising within lessons. The author was lucky enough to have inspirational teachers during his primary and…

  14. Abstraction through Game Play

    ERIC Educational Resources Information Center

    Avraamidou, Antri; Monaghan, John; Walker, Aisha

    2012-01-01

    This paper examines the computer game play of an 11-year-old boy. In the course of building a virtual house he developed and used, without assistance, an artefact and an accompanying strategy to ensure that his house was symmetric. We argue that the creation and use of this artefact-strategy is a mathematical abstraction. The discussion…

  15. Who's Calling the Plays?

    ERIC Educational Resources Information Center

    Goldman, Jay P.

    1990-01-01

    Without an enforceable policy, school athletics programs are beset by politics, high finance, and public sentiment. The most nettlesome problems include loss of instructional time to sports and extracurricular activities; the appropriateness and effectiveness of no-pass/no-play rules; lack of sportsmanship; proliferation of interstate competition;…

  16. Playing with danger.

    PubMed

    Pearce, Lynne

    Young people who sit still for hours playing computer games can double their risk of potentially fatal blood clots. The charity Lifeblood is alerting nurses to 'e-thrombosis'. It is calling on them to ensure young people are aware of the risks of prolonged immobility and the need to take regular breaks from gaming or using a computer. PMID:23061127

  17. One Play a Day

    ERIC Educational Resources Information Center

    Blankenship, Mark

    2007-01-01

    Undergraduate theater students rarely get the chance to work on a major world premiere, but this year hundreds of them will. Currently, more than 70 colleges and universities are participating in "365 Days/365 Plays," an ambitious project from Pulitzer Prize-winning playwright Suzan-Lori Parks. Every week, as they mount their portion of this epic…

  18. Playing It Safe.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1997-01-01

    Offers tips for avoiding sports-related injuries: (1) expect more of coaches; (2) develop an athletic-safety plan; (3) consider hiring an athletic trainer; (4) check facilities and equipment regularly; (5) recognize athletes' limitations; (6) take precautions beyond the playing field; and (7) check liability coverage and obtain informed consent.…

  19. Integrated Play Groups

    ERIC Educational Resources Information Center

    Glovak, Sandra

    2007-01-01

    As an occupational therapist running social play groups with sensory integration for children on the autism spectrum, the author frequently doubted the wisdom of combining several children on the spectrum into a group. In fact, as the owner of a clinic she said, "No more!" The groups seemed like a waste of parents' time and money, and she refused…

  20. A Vibrio cholerae Classical TcpA Amino Acid Sequence Induces Protective Antibody That Binds an Area Hypothesized To Be Important for Toxin-Coregulated Pilus Structure

    PubMed Central

    Taylor, Ronald K.; Kirn, Thomas J.; Meeks, Michael D.; Wade, Terri K.; Wade, William F.

    2004-01-01

    Vibrio cholerae is a gram-negative bacterium that has been associated with cholera pandemics since the early 1800s. Whole-cell, killed, and live-attenuated oral cholera vaccines are in use. We and others have focused on the development of a subunit cholera vaccine that features standardized epitopes from various V. cholerae macromolecules that are known to induce protective antibody responses. TcpA protein is assembled into toxin-coregulated pilus (TCP), a type IVb pilus required for V. cholerae colonization, and thus is a strong candidate for a cholera subunit vaccine. Polypeptides (24 to 26 amino acids) in TcpA that can induce protective antibody responses have been reported, but further characterization of their amino acid targets relative to tertiary or quaternary TCP structures has not been done. We report a refinement of the TcpA sequences that can induce protective antibody. One sequence, TcpA 15 (residues 170 to 183), induces antibodies that bind linear TcpA in a Western blot as well as weakly bind soluble TcpA in solution. These antibodies bind assembled pili at high density and provide 80 to 100% protection in the infant mouse protection assay. This is in sharp contrast to other anti-TcpA peptide sera (TcpA 11, TcpA 13, and TcpA 17) that bind very strongly in Western blot and solution assays yet do not provide protection or effectively bind TCP, as evidenced by immunoelectron microscopy. The sequences of TcpA 15 that induce protective antibody were localized on a model of assembled TCP. These sequences are centered on a site that is predicted to be important for TCP structure. PMID:15385509

  1. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  2. Solar Power at Play

    NASA Astrophysics Data System (ADS)

    2007-03-01

    For the very first time, astronomers have witnessed the speeding up of an asteroid's rotation, and have shown that it is due to a theoretical effect predicted but never seen before. The international team of scientists used an armada of telescopes to discover that the asteroid's rotation period currently decreases by 1 millisecond every year, as a consequence of the heating of the asteroid's surface by the Sun. Eventually it may spin faster than any known asteroid in the solar system and even break apart. ESO PR Photo 11a/07 ESO PR Photo 11a/07 Asteroid 2000 PH5 "The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is believed to alter the way small bodies in the Solar System rotate," said Stephen Lowry (Queens University Belfast, UK), lead-author of one of the two companion papers in which this work is reported [1, 2]. "The warming caused by sunlight hitting the surfaces of asteroids and meteoroids leads to a gentle recoil effect as the heat is released," he added. "By analogy, if one were to shine light on a propeller over a long enough period, it would start spinning." Although this is an almost immeasurably weak force, its effect over millions of years is far from negligible. Astronomers believe the YORP effect may be responsible for spinning some asteroids up so fast that they break apart, perhaps leading to the formation of double asteroids. Others may be slowed down so that they take many days to complete a full turn. The YORP effect also plays an important role in changing the orbits of asteroids between Mars and Jupiter, including their delivery to planet-crossing orbits, such as those of near-Earth asteroids. Despite its importance, the effect has never been seen acting on a solar system body, until now. Using extensive optical and radar imaging from powerful Earth-based observatories, astronomers have directly observed the YORP effect in action on a small near-Earth asteroid, known as (54509) 2000 PH5. Shortly after its discovery in 2000, it was

  3. Canada's east coast play

    SciTech Connect

    Doig, I.M.

    1984-02-01

    The intent of this paper is to give a basic overview presentation on Canada's east coast play - most likely the number one offshore play in the free world - and possibly the world. The play stretches 2,500 miles north and south, as it follows the Labrador Coast, past the Strait of Belle Isle and onto the Grand Banks of Newfoundland and as it makes a 90 degree turn, 1,000 miles east to west along the coast of Nova Scotia to the Georges Bank. 3,500 miles in all - which if placed in western Canada, would stretch from northern Alberta to southern Mexico. It's geologic potential is immense - 15-20 billion barrels of oil and 80-90 Tcf of natural gas. And so far only approximately 2 billion barrels of oil and 5 Tcf of natural gas have been found. There is more out there. And less than 200 wells have been drilled - still very virgin territory. Two world size discoveries have been made in the area. Hibernia, on the Grand Banks, is estimated to contain 1.8 billion barrels. Venture, on the Scotian Shelf, has a natural gas reserve of 2.5 Tcf - big by Canadian standards and significant in that Mobil Oil has also made some other interesting discoveries on the same Sable Island block which have not been delineated.

  4. Costs of cervical cancer screening and treatment using visual inspection with acetic acid (VIA) and cryotherapy in Ghana: the importance of scale

    PubMed Central

    Quentin, Wilm; Adu-Sarkodie, Yaw; Terris-Prestholt, Fern; Legood, Rosa; Opoku, Baafuor K; Mayaud, Philippe

    2011-01-01

    Objectives To estimate the incremental costs of visual inspection with acetic acid (VIA) and cryotherapy at cervical cancer screening facilities in Ghana; to explore determinants of costs through modelling; and to estimate national scale-up and annual programme costs. Methods Resource-use data were collected at four out of six active VIA screening centres, and unit costs were ascertained to estimate the costs per woman of VIA and cryotherapy. Modelling and sensitivity analysis were used to explore the influence of observed differences between screening facilities on estimated costs and to calculate national costs. Results Incremental economic costs per woman screened with VIA ranged from 4.93 US$ to 14.75 US$, and costs of cryotherapy were between 47.26 US$ and 84.48 US$ at surveyed facilities. Under base case assumptions, our model estimated the costs of VIA to be 6.12 US$ per woman and those of cryotherapy to be 27.96 US$. Sensitivity analysis showed that the number of women screened per provider and treated per facility was the most important determinants of costs. National annual programme costs were estimated to be between 0.6 and 4.0 million US$ depending on assumed coverage and adopted screening strategy. Conclusion When choosing between different cervical cancer prevention strategies, the feasibility of increasing uptake to achieve economies of scale should be a major concern. PMID:21214692

  5. Both Free Indole-3-Acetic Acid and Photosynthetic Performance are Important Players in the Response of Medicago truncatula to Urea and Ammonium Nutrition Under Axenic Conditions.

    PubMed

    Esteban, Raquel; Royo, Beatriz; Urarte, Estibaliz; Zamarreño, Ángel M; Garcia-Mina, José M; Moran, Jose F

    2016-01-01

    We aimed to identify the early stress response and plant performance of Medicago truncatula growing in axenic medium with ammonium or urea as the sole source of nitrogen, with respect to nitrate-based nutrition. Biomass measurements, auxin content analyses, root system architecture (RSA) response analyses, and physiological parameters were determined. Both ammonium and ureic nutrition severely affected the RSA, resulting in changes in the main elongation rate, lateral root development, and insert position from the root base. The auxin content decreased in both urea- and ammonium-treated roots; however, only the ammonium-treated plants were affected at the shoot level. The analysis of chlorophyll a fluorescence transients showed that ammonium affected photosystem II, but urea did not impair photosynthetic activity. Superoxide dismutase isoenzymes in the plastids were moderately affected by urea and ammonium in the roots. Overall, our results showed that low N doses from different sources had no remarkable effects on M. truncatula, with the exception of the differential phenotypic root response. High doses of both ammonium and urea caused great changes in plant length, auxin contents and physiological measurements. Interesting correlations were found between the shoot auxin pool and both plant length and the "performance index" parameter, which is obtained from measurements of the kinetics of chlorophyll a fluorescence. Taken together, these data demonstrate that both the indole-3-acetic acid pool and performance index are important components of the response of M. truncatula under ammonium or urea as the sole N source. PMID:26909089

  6. Both Free Indole-3-Acetic Acid and Photosynthetic Performance are Important Players in the Response of Medicago truncatula to Urea and Ammonium Nutrition Under Axenic Conditions

    PubMed Central

    Esteban, Raquel; Royo, Beatriz; Urarte, Estibaliz; Zamarreño, Ángel M.; Garcia-Mina, José M.; Moran, Jose F.

    2016-01-01

    We aimed to identify the early stress response and plant performance of Medicago truncatula growing in axenic medium with ammonium or urea as the sole source of nitrogen, with respect to nitrate-based nutrition. Biomass measurements, auxin content analyses, root system architecture (RSA) response analyses, and physiological parameters were determined. Both ammonium and ureic nutrition severely affected the RSA, resulting in changes in the main elongation rate, lateral root development, and insert position from the root base. The auxin content decreased in both urea- and ammonium-treated roots; however, only the ammonium-treated plants were affected at the shoot level. The analysis of chlorophyll a fluorescence transients showed that ammonium affected photosystem II, but urea did not impair photosynthetic activity. Superoxide dismutase isoenzymes in the plastids were moderately affected by urea and ammonium in the roots. Overall, our results showed that low N doses from different sources had no remarkable effects on M. truncatula, with the exception of the differential phenotypic root response. High doses of both ammonium and urea caused great changes in plant length, auxin contents and physiological measurements. Interesting correlations were found between the shoot auxin pool and both plant length and the “performance index” parameter, which is obtained from measurements of the kinetics of chlorophyll a fluorescence. Taken together, these data demonstrate that both the indole-3-acetic acid pool and performance index are important components of the response of M. truncatula under ammonium or urea as the sole N source. PMID:26909089

  7. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy

    PubMed Central

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ). PMID:26579187

  8. Taking Play Seriously: Children and Play in Early Childhood Education--An Exciting Challenge

    ERIC Educational Resources Information Center

    Lillemyr, Ole Fredrik

    2009-01-01

    In the book the author presents from different perspectives what is understood by the phenomenon of children's play, why it is important, and how children's play challenge and stimulate the educator or caregiver in regard of educational values and practice, with the conclusion: play has to be taken seriously. A selection of theories is introduced…

  9. Play Initiating Behaviors and Responses in Red Colobus Monkeys

    ERIC Educational Resources Information Center

    Worch, Eric A.

    2012-01-01

    Red colobus monkeys are playful primates, making them an important species in which to study animal play. The author examines play behaviors and responses in the species for its play initiation events, age differences in initiating frequency and initiating behavior, and the types of social play that result from specific initiating behaviors. Out…

  10. Pathways to Play: Developing Play Skills in Young Children.

    ERIC Educational Resources Information Center

    Heidemann, Sandra; Hewitt, Deborah

    Play skills are vital to a child's overall healthy development. However, the training many caregivers receive may not include extensive information on play skills. This book presents a play checklist to help caregivers observe children's play skills, pinpoint play skills on which children need to work, and plan goals for improving those play…

  11. Playing the School Game

    ERIC Educational Resources Information Center

    Olszewski-Kubilius, Paula

    2011-01-01

    In this article, the author discusses the meaning and importance of high grades and high achievement in terms of giftedness. She offers some reasons to tell children about the importance of school achievement. She suggests that good grades are no guarantee of eventual adult success, whether that is defined as a high income or a rewarding,…

  12. Induction of CYP26A1 by Metabolites of Retinoic Acid: Evidence That CYP26A1 Is an Important Enzyme in the Elimination of Active Retinoids

    PubMed Central

    Topletz, Ariel R.; Tripathy, Sasmita; Foti, Robert S.; Shimshoni, Jakob A.; Nelson, Wendel L.

    2015-01-01

    All-trans-retinoic acid (atRA), the active metabolite of vitamin A, induces gene transcription via binding to nuclear retinoic acid receptors (RARs). The primary hydroxylated metabolites formed from atRA by CYP26A1, and the subsequent metabolite 4-oxo-atRA, bind to RARs and potentially have biologic activity. Hence, CYP26A1, the main atRA hydroxylase, may function either to deplete bioactive retinoids or to form active metabolites. This study aimed to determine the role of CYP26A1 in modulating RAR activation via formation and elimination of active retinoids. After treatment of HepG2 cells with atRA, (4S)-OH-atRA, (4R)-OH-atRA, 4-oxo-atRA, and 18-OH-atRA, mRNAs of CYP26A1 and RARβ were increased 300- to 3000-fold, with 4-oxo-atRA and atRA being the most potent inducers. However, >60% of the 4-OH-atRA enantiomers were converted to 4-oxo-atRA in the first 12 hours of treatment, suggesting that the activity of the 4-OH-atRA was due to 4-oxo-atRA. In human hepatocytes, atRA, 4-OH-atRA, and 4-oxo-atRA induced CYP26A1 and 4-oxo-atRA formation was observed from 4-OH-atRA. In HepG2 cells, 4-oxo-atRA formation was observed even in the absence of CYP26A1 activity and this formation was not inhibited by ketoconazole. In human liver microsomes, 4-oxo-atRA formation was supported by NAD+, suggesting that 4-oxo-atRA formation is mediated by a microsomal alcohol dehydrogenase. Although 4-oxo-atRA was not formed by CYP26A1, it was depleted by CYP26A1 (Km = 63 nM and intrinsic clearance = 90 μl/min per pmol). Similarly, CYP26A1 depleted 18-OH-atRA and the 4-OH-atRA enantiomers. These data support the role of CYP26A1 to clear bioactive retinoids, and suggest that the enzyme forming active 4-oxo-atRA may be important in modulating retinoid action. PMID:25492813

  13. Play Memories from Childhood to Adulthood.

    ERIC Educational Resources Information Center

    Sandberg, Anette

    2001-01-01

    This retrospective study incorporating drawing and group discussion examined the memories of 478 university students in Sweden regarding their play at 4 age periods: 3-6 years, 7-12 years, 13-18 years, and adult. Findings indicated that ages 7-12 years were especially important for play memories: people, place, and interaction were all considered…

  14. Dramatic Play in Childhood: Rehearsal for Life.

    ERIC Educational Resources Information Center

    Koste, Virginia Glasgow

    The purpose of this book is to help parents and teachers recognize and understand dramatic play in childhood as a process whereby the child acts out human experience in an attempt to order, clarify, and understand it. Written by a person experienced in theatre and drama, the book considers the following aspects of dramatic play: the importance of…

  15. Children's Gendered Drawings of Play Behaviours

    ERIC Educational Resources Information Center

    Akseer, Tabasum; Lao, Mary Grace; Bosacki, Sandra

    2012-01-01

    According to child psychologists, vital links exist between children's drawings and their emotional, social, and cognitive development. Previous research has explored the important relations between drawings and play in educational settings. Given the vast research that explores the ambiguous topic of children's play, according to Richer (1990),…

  16. The Excellence of Play. Second Edition

    ERIC Educational Resources Information Center

    Moyles, Janet, Ed.

    2005-01-01

    This second edition of "The Excellence of Play" encapsulates all of the many changes that have taken place in early childhood in the last decade. It examines the vital importance of play as a tool for learning and teaching for children and practitioners, supporting all those who work in early childhood education and care in developing and…

  17. Conformation-Specific IR and UV Spectroscopy of the Amino Acid Glutamine: Amide-Stacking and Hydrogen Bonding in AN Important Residue in Neurodegenerative Diseases

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; Dean, Jacob C.; Zwier, Timothy S.

    2014-06-01

    Glutamine plays an important role in several neurodegenerative diseases including Huntington's disease (HD) and Alzheimer's disease (AD). An intriguing aspect of the structure of glutamine is its incorporation of an amide group in its side chain, thereby opening up the possibility of forming amide-amide H-bonds between the peptide backbone and side chain. In this study the conformational preferences of two capped gluatamines Z(carboxybenzyl)-Glutamine-X (X=OH, NHMe) are studied under jet-cooled conditions in the gas phase in order to unlock the intrinsic structural motifs that are favored by this flexible sidechain. Conformational assignments are made by comparing the hydride stretch ( 3100-3700 cm-1) and amide I and II ( 1400-1800 cm-1) resonant ion-dip infrared spectra with predictions from harmonic frequency calculations. Assigned structures will be compared to previously published results on both natural and unnatural residues. Particular emphasis will be placed on the comparison between glutamine and unconstrained γ-peptides due to the similar three-carbon spacing between backbone and side chain in glutamine to the backbone spacing in γ-peptides. The ability of the glutamine side-chain to form amide stacked conformations will be a main focus, along with the prevalence of extended backbone type structures. W. H. James, III, C W. Müller, E. G. Buchanan, M. G. D. Nix, L. Guo, L. Roskop, M. S. Gordon, L. V. Slipchenko, S. H. Gellman, and T. S. Zwier, J. Am. Chem. Soc., 2009, 131(40), 14243-14245.

  18. Playing with Polymers.

    ERIC Educational Resources Information Center

    Chemecology, 1997

    1997-01-01

    Presents an activity that enables students to gain a better understanding of the importance of polymers. Students perform an experiment in which polymer chains of polyvinyl acetate form crosslinks. Includes background information and discussion questions. (DDR)

  19. Quantification of Five Clinically Important Amino Acids by HPLC-Triple TOF™ 5600 Based on Pre-column Double Derivatization Method.

    PubMed

    Deng, Shuang; Scott, David; Garg, Uttam

    2016-01-01

    Phenylalanine, tyrosine, glycine, cystine, and phosphoethanolamine are commonly measured amino acids in various physiological fluids to diagnose or follow-up various inborn errors of metabolism. The gold standard method for the amino acids quantitation has been ion exchange chromatography with ninhydrin post-column derivatization. However, this method is very laborious and time consuming. In recent years, liquid-chromatography mass spectrometry is being increasingly used for the assay of amino acids. Pre-column butyl derivatization with reverse phase chromatography has been widely used for mass spectrometry analysis of amino acids. Phosphoethanolamine is not butylated and cannot be measured by this method. Nevertheless, phosphoethanolamine can be dansyl-derivatized using dansyl chloride. We developed a double derivatization method by using butanol and dansyl chloride to derivatize carboxylic and amino groups separately, and then combining the derivatives to simultaneously measure these five amino acids using TOF-MS scan. Stable isotope-labeled internal standards were used. PMID:26602116

  20. Development through Work and Play.

    ERIC Educational Resources Information Center

    Hartung, Paul J.

    2002-01-01

    Five proposals are made for incorporating a work-play perspective in career development research: (1) fuse work and play conceptually over the life course; (2) imbue developmental career theory with a work-play fusion; (3) study work and play across the life span; (4) investigate work and play within the life space; and (5) consider a work-play…

  1. Play Theories: A Contemporary Review.

    ERIC Educational Resources Information Center

    Mellou, Eleni

    1994-01-01

    Reviews two sets of play theories, classical and modern, noting that the reason and purpose for play are explained by classical theories; the role of play in child development, determined by modern theories. States that process of play has dual functions of personal expression and social adaptation. Examines the relationship between play and…

  2. Play: Working Partner of Growth.

    ERIC Educational Resources Information Center

    McKee, Judy Spitler, Ed.

    This volume is a collection of nine papers focusing on different aspects of play. The first section, "Play, Growth, Development, and Learning," contains discussions dealing with make-believe play and learning; an all-in-fun approach to thinking, playing, and language learning for young children; and ways children learn through play. The second…

  3. Quantification of Tinto River Sediment Microbial Communities: Importance of Sulfate-Reducing Bacteria and Their Role in Attenuating Acid Mine Drainage

    PubMed Central

    Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo

    2012-01-01

    Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (<2%) at both sites, important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (−210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides. PMID:22544246

  4. Arginine-dependent acid-resistance pathway in Shigella boydii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ability to survive the low pH of the human stomach is considered be an important virulent determinant. Acid tolerance of Shigella boydii 18 CDPH, the strain implicated in an outbreak may have played an important role in surviving the acidic food (bean salad). The strain was capable of inducing arg...

  5. Farm Hall: The Play

    NASA Astrophysics Data System (ADS)

    Cassidy, David C.

    2013-03-01

    It's July 1945. Germany is in defeat and the atomic bombs are on their way to Japan. Under the direction of Samuel Goudsmit, the Allies are holding some of the top German nuclear scientists-among them Heisenberg, Hahn, and Gerlach-captive in Farm Hall, an English country manor near Cambridge, England. As secret microphones record their conversations, the scientists are unaware of why they are being held or for how long. Thinking themselves far ahead of the Allies, how will they react to the news of the atomic bombs? How will these famous scientists explain to themselves and to the world their failure to achieve even a chain reaction? How will they come to terms with the horror of the Third Reich, their work for such a regime, and their behavior during that period? This one-act play is based upon the transcripts of their conversations as well as the author's historical work on the subject.

  6. Down-regulation of messenger ribonucleic acid encoding an importer of sulfoconjugated steroids during human chorionic gonadotropin-induced follicular luteinization in vivo.

    PubMed

    Brown, Kristy A; Bouchard, Nadine; Lussier, Jacques G; Sirois, Jean

    2007-01-01

    Members of the organic anion transporting polypeptide (SLCO/OATP) superfamily are capable of importing anionic compounds across the lipid bilayer in a sodium-independent manner. Member 2B1 has been shown to transport few substrates, two of which are dihydroepiandrosterone-3-sulfate (DHEA-S) and estrone-3-sulfate. Steroid sulfatase (STS) catalyses the hydrolysis of these steroids into their unconjugated counterparts. The objective of this study was to investigate the regulation of SLCO2B1 and STS mRNAs during human chorionic gonadotropin (hCG)-induced ovulation/luteinization. The equine SLCO2B1 cDNA was cloned and shown to encode a 709-amino acid protein (OATP2B1) that is highly conserved when compared to mammalian orthologs. RT-PCR/Southern blot analyses were performed to study the regulation of SLCO2B1 and STS transcripts in equine preovulatory follicles isolated between 0 and 39h after hCG treatment. Results showed high levels of SLCO2B1 mRNA expression before hCG, with a marked decrease observed in follicles obtained 24-39h post-hCG (P<0.05). Analyses of isolated granulosa and theca interna cells identified high mRNA expression in both cell types prior to hCG treatment, with granulosa cells showing a more rapid SLCO2B1 mRNA down-regulation. No significant change in STS mRNA was observed in intact follicle walls. However, when both cell types were isolated, a significant decrease in STS mRNA was observed in granulosa cells 24-39h post-hCG. Collectively, these results demonstrate that the hCG-dependent induction of follicular luteinization is accompanied by the down-regulation of SLCO2B1 and STS transcripts. Considering that OATP2B1 can import sulfoconjugated DHEA and estrogens, and that STS can remove the sulfonate moiety from these steroids, their down-regulation in luteinizing preovulatory follicles may provide an additional biochemical basis for the decrease in ovarian 17beta-estradiol biosynthesis after the LH surge. PMID:17049229

  7. To Play or Not to Play: Diverse Motives for Latino and Euro-American Parent-Child Play in a Children's Museum

    ERIC Educational Resources Information Center

    DiBianca Fasoli, Allison

    2014-01-01

    A popular social discourse in the United States is that play is important for children's learning and that parental involvement maximizes play's learning potential. Past research has concluded that parents who hold this view of play are more likely to play with their children than those who do not. This study investigated the prevalence…

  8. Playing in Harmony

    ERIC Educational Resources Information Center

    n/a

    2006-01-01

    The National Association for Music Education (MENC) has set high goals to work toward "music for all." Since the needs of this mission are greater than MENC's resources, it is important to develop partnerships and alliances to facilitate this goal by expanding MENC's resources and influence, and boosting their projects' visibility and impact. MENC…

  9. Child's Play: Revisiting Play in Early Childhood Settings.

    ERIC Educational Resources Information Center

    Dau, Elizabeth, Ed.; Jones, Elizabeth, Ed.

    Noting that play is an essential aspect of learning for young children, this book presents a collection of articles on children's play in Australia. Part 1, "Play, Development, and Learning," contains the following chapters: (1) "The Role of Play in Development and Learning" (Ann Glover); (2) "Stop, Look, and Listen: Adopting an Investigative…

  10. Imagination, Playfulness, and Creativity in Children's Play with Different Toys

    ERIC Educational Resources Information Center

    Mo????ller, Signe?? Juhl?

    2015-01-01

    Based on a four-month experimental study of preschool children's play with creative-construction and social-fantasy toys, the author examines the in?uence of both types of toys on the play of preschool children. Her comparative analysis considers the impact of transformative play on the development of imagination during play activities and…

  11. Playing My Heart Out: Original Play as Adventure.

    ERIC Educational Resources Information Center

    Donaldson, O. Fred

    1999-01-01

    "Original" play denotes play that is pre-cultural--before conceptualizations and learned responses. Four anecdotes about play with an infant with Down's syndrome, a child with leukemia, a lioness, and a dying woman illustrate the connections between beings and between the ordinary and the sacred during trusting, fearless, playful encounters. (SV)

  12. Facilitation of Play Behavior from Associative to Cooperative Play Stages.

    ERIC Educational Resources Information Center

    Lounsbury, Karen Rasmussen; Bell, Corinne Reed

    An experimental investigation of the transition from associative play to cooperative play was conducted to determine if cooperative play in young children could be facilitated by (1) presenting a toy that required cooperative responses to make it operate, and (2) instructing the children in the use of the toy prior to having them play with it. A…

  13. Playful Learning and Montessori Education

    ERIC Educational Resources Information Center

    Lillard, Angeline S.

    2013-01-01

    Although Montessori education is often considered a form of playful learning, Maria Montessori herself spoke negatively about a major component of playful learning--pretend play, or fantasy--for young children. In this essay, the author discusses this apparent contradiction: how and why Montessori education includes elements of playful learning…

  14. Music Learning and Child's Play.

    ERIC Educational Resources Information Center

    Littleton, Danette

    1998-01-01

    Reviews various studies on childs play and its relation to young childrens development in music learning processes and explores the role that cognitive and social play categories have in studying childrens play with music. Provides strategies for initiating music-play opportunities in a preschool classroom. (CMK)

  15. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  16. Coming utility squeeze play

    SciTech Connect

    Stoiaken, L.N.

    1988-02-01

    Like a sleeping giant, utilities are waking up and preparing to participate in the increasingly competitive power production industry. Some are establishing subsidiaries to participate in join venture deals with independents. Others are competing by offering lucrative discount or deferral rates to important industrial and commercial customers considering cogeneration. And now, a third approach is beginning to shape up- the disaggregation of generation assets into a separate generation company, or genco. This article briefly discusses these three and also devotes brief sections to functional segmentation and The regulatory arena.

  17. Importance of Hydrogen-Bonding Sites in the Chiral Recognition Mechanism Between Racemic D3 Terbium(III) Complexes and Amino Acids

    PubMed Central

    MOUSSA, AHMED; PHAM, CHRISTINE; BOMMIREDDY, SHRUTHI; MULLER, GILLES

    2009-01-01

    The perturbation of the racemic equilibrium of luminescent D3 terbium(III) complexes with chelidamic acid (CDA), a hydroxylated derivative of 2,6-pyridine-dicarboxylic acid (DPA), by added chiral biomolecules such as l-amino acids has been studied using circularly polarized luminescence and 13C NMR spectroscopy. It is shown in this work that the chiral-induced equilibrium shift of [Tb(CDA)3]6− by l-amino acids (i.e. l-proline or l-arginine) was largely influenced by the hydrogen-bonding networks formed between the ligand interface of racemic [Tb(CDA)3]6− and these added chiral agents. The capping of potential hydrogen-bonding sites by acetylation in l-proline led to a ∼100-fold drop in the induced optical activity of the [Tb(CDA)3]6−:N-acetyl-l-proline system. This result suggested that the hydrogen-bonding networks serve as the basis for further noncovalent discriminatory interactions between racemic [Tb(CDA)3]6− and added l-amino acids. PMID:18698640

  18. Butyric acid in irritable bowel syndrome.

    PubMed

    Załęski, Andrzej; Banaszkiewicz, Aleksandra; Walkowiak, Jarosław

    2013-01-01

    Butyric acid (butanoic acid) belongs to a group of short-chain fatty acids and is thought to play several beneficial roles in the gastrointestinal tract. Butyric anion is easily absorbed by enteric cells and used as a main source of energy. Moreover, butyric acid is an important regulator of colonocyte proliferation and apoptosis, gastrointestinal tract motility and bacterial microflora composition in addition to its involvement in many other processes including immunoregulation and anti-inflammatory activity. The pathogenesis of irritable bowel syndrome (IBS), the most commonly diagnosed functional gastrointestinal condition, is complex, and its precise mechanisms are still unclear. This article describes the potential benefits of butyric acid in IBS. PMID:24868283

  19. Butyric acid in irritable bowel syndrome

    PubMed Central

    Załęski, Andrzej; Walkowiak, Jarosław

    2013-01-01

    Butyric acid (butanoic acid) belongs to a group of short-chain fatty acids and is thought to play several beneficial roles in the gastrointestinal tract. Butyric anion is easily absorbed by enteric cells and used as a main source of energy. Moreover, butyric acid is an important regulator of colonocyte proliferation and apoptosis, gastrointestinal tract motility and bacterial microflora composition in addition to its involvement in many other processes including immunoregulation and anti-inflammatory activity. The pathogenesis of irritable bowel syndrome (IBS), the most commonly diagnosed functional gastrointestinal condition, is complex, and its precise mechanisms are still unclear. This article describes the potential benefits of butyric acid in IBS. PMID:24868283

  20. IMPACT OF SOYBEAN OILS VARYING IN FATTY ACID PROFILE ON T CELL PROLIFERATION OF MODERATELY HYPERLIPIDEMIC SUBJECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Linoleic acid and alpha linolenic acid are essential fatty acids, which play an important role in modulation of T cell proliferation. We studied the effects of feeding selectively bred and genetically modified soybean oils distinguished by altered fatty acid profiles, resulting in varied linoleic/li...