Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Yu, Shaohui; Liu, Jianguo; Liu, Wenqing
2016-01-05
There is not effective method to solve the quenching effect of quencher in fluorescence spectra measurement and recognition of polycyclic aromatic hydrocarbons in aquatic environment. In this work, a four-way dataset combined with four-way parallel factor analysis is used to identify and quantify polycyclic aromatic hydrocarbons in the presence of humic acid, a fluorescent quencher and an ubiquitous substance in aquatic system, through modeling the quenching effect of humic acid by decomposing the four-way dataset into four loading matrices corresponding to relative concentration, excitation spectra, emission spectra and fluorescence quantum yield, respectively. It is found that Phenanthrene, pyrene, anthracene and fluorene can be recognized simultaneously with the similarities all above 0.980 between resolved spectra and reference spectra. Moreover, the concentrations of them ranging from 0 to 8μgL(-1) in the test samples prepared with river water could also be predicted successfully with recovery rate of each polycyclic aromatic hydrocarbon between 100% and 120%, which were higher than those of three-way PARAFAC. These results demonstrate that the combination of four-way dataset with four-way parallel factor analysis could be a promising method to recognize the fluorescence spectra of polycyclic aromatic hydrocarbons in the presence of fluorescent quencher from both qualitative and quantitative perspective. Copyright © 2015 Elsevier B.V. All rights reserved.
Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I
2014-09-01
Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kamiński, M; Gilgenast, E; Przyjazny, A; Romanik, G
2006-07-28
The content of aromatic hydrocarbons in diesel fuels is regulated by appropriate standards, and a further reduction in the allowed concentration of these hazardous substances in these fuels is expected. The content of aromatic hydrocarbons in diesel fuels is most often determined using standard methods EN-12916 or ASTM D-6591. The content of polycyclic aromatic hydrocarbons (PAHs) is determined from a single peak obtained using normal phase high-performance liquid chromatography (NP-HPLC), a column of the NH2 type, n-heptane as the eluent, refractive index detector (RID) and backflushing of the eluent. However, the methods mentioned above cannot be applied when the fuel contains fatty acid methyl esters (FAME), which lately has become more common. The content of FAME in diesel oils is determined using mid-IR spectrophotometry based on the absorption of carbonyl group. However, no standard procedure for the determination of classes of aromatic hydrocarbons in diesel fuels containing FAME is yet available. The present work describes such a modification of methods EN-12916/ASTM D-6591 that provides a simultaneous determination of individual groups of aromatic hydrocarbons, total content of polycyclic aromatic hydrocarbons and the FAME content in diesel fuels. The refractive index detector (RID) and n-heptane as the mobile phase are still used, but backflushing of the eluent is applied after the elution of all polycyclic aromatic hydrocarbons. Additionally, ultraviolet diode array detection is used for the exact determination of low contents of polycyclic aromatic hydrocarbons and to confirm the presence of FAME in the analyzed fuel.
Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A
2017-08-15
The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.
Photooxidation products of polycyclic aromatic compounds containing sulfur.
Bobinger, Stefan; Andersson, Jan T
2009-11-01
Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.
Zhang, Zinxin; Mwadini, Mwadini Ahmada; Chen, Zilin
2016-10-01
Steel stirrers jacketed with polytetrafluoroethylene can be regarded as an ideal substrate for stirrer bar sorptive extraction. However, it is still a great challenge to immobilize graphene onto a polytetrafluoroethylene stirrer due to the high chemical resistance of the surface of a polytetrafluoroethylene stirrer. We describe here a method to modify the surface of polytetrafluoroethylene stirrers with graphene. In this work, graphene was used as the sorbent due to its excellent adsorption capability for aromatic compounds, such as polycyclic aromatic compounds. Graphene was successfully immobilized onto polytetrafluoroethylene-stirrer by a bio-inspired polydopamine functionalization method. The graphene-modified polytetrafluoroethylene-stirrer shows good stability and tolerance to stirring, ultrasonication, strong acidic and basic solutions, and to organic solvents. The multilayer coating was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. After the optimization of some experimental conditions, the graphene-modified polytetrafluoroethylene stirrer was used for the stirrer bar sorptive extraction of polycyclic aromatic hydrocarbons, in which the binding between the polycyclic aromatic hydrocarbons and the graphene layer was mainly based on π-π stacking and hydrophobic interactions. The graphene-modified polytetrafluoroethylene-stirrer-based stirrer bar sorptive extraction and high-performance liquid chromatography method was developed for the determination of polycyclic aromatic hydrocarbons with great extraction efficiency, with enrichment factors from 18 to 62. The method has low limits of detection of 1-5 pg/mL, wide linear range (5-100 and 10-200 pg/mL), good linearity (R ≥ 0.9957) and good reproducibility (RSD ≤ 6.45%). The proposed method has been applied to determine polycyclic aromatic hydrocarbons in real dust samples. Good recoveries were obtained, ranging from 88.53 to 109.43%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors
Engtrakul, Chaiwat; Mukarakate, Calvin; Starace, Anne K.; ...
2015-11-14
The impact of catalyst acidity on the selectivity of upgraded biomass pyrolysis products was studied by passing pine pyrolysis vapors over five ZSM-5 catalysts of varying acidity at 500 degrees C. The SiO 2-to-Al 2O 3 ratio (SAR) of the ZSM-5 zeolite was varied from 23 to 280 to control the acidity of the catalyst and the composition of upgraded products. The upgraded product stream was analyzed by GCMS. Additionally, catalysts were characterized using temperature programmed desorption, diffuse-reflectance FTIR spectroscopy, N 2 physisorption, and X-ray diffraction. The results showed that the biomass pyrolysis vapors were highly deoxygenated to form amore » slate of aromatic hydrocarbons over all of the tested ZSM-5 catalysts. As the overall acidity of the ZSM-5 increased the selectivity toward alkylated (substituted) aromatics (e.g., xylene, dimethyl-naphthalene, and methyl-anthracene) decreased while the selectivity toward unsubstituted aromatics (e.g., benzene, naphthalene, and anthracene) increased. Additionally, the selectivity toward polycyclic aromatic compounds (2-ring and 3-ring) increased as catalyst acidity increased, corresponding to a decrease in acid site spacing. The increased selectivity toward less substituted polycyclic aromatic compounds with increasing acidity is related to the relative rates of cyclization and alkylation reactions within the zeolite structure. As the acid site concentration increases and sites become closer to each other, the formation of additional cyclization products occurs at a greater rate than alkylated products. The ability to adjust product selectivity within 1-, 2-, and 3-ring aromatic families, as well as the degree of substitution, by varying ZSM-5 acidity could have significant benefits in terms creating a slate of upgraded biomass pyrolysis products to meet specific target market demands.« less
Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems
Johannes, Christian; Majcherczyk, Andrzej
2000-01-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds. PMID:10653713
NASA Astrophysics Data System (ADS)
Wang, Jincui; Zhao, Yongsheng; Sun, Jichao; Zhang, Ying; Liu, Chunyan
2018-06-01
This paper has investigated the concentration and distribution of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China. Results show that the concentration levels of 16 priority polycyclic aromatic hydrocarbons range from 0 to 92.06 ng/L, do not conform to drinking water quality standards in China (GB 5749- 2006). However, the concentration figures of priority polycyclic aromatic hydrocarbons are much lower than that of other studies conducted elsewhere in China. In addition, highly-concentrated polycyclic aromatic hydrocarbons (50-92 ng/L) are fragmentarily distributed. The composition of polycyclic aromatic hydrocarbons from this study indicates that low molecular polycyclic aromatic hydrocarbons are predominant in groundwater samples, medium molecular compounds occur at low concentrations, and high molecular hydrocarbons are not detected. The polycyclic aromatic hydrocarbon composition in groundwater samples is basically the same as that of gaseous samples in the atmosphere in this study. Therefore, the atmospheric input is assumed to be an important source of polycyclic aromatic hydrocarbons, no less than wastewater discharge, adhesion on suspended solids, and surface water leakage. Ratios of specific polycyclic aromatic hydrocarbons demonstrate that they mainly originate from wood or coal combustion as well as natural gas and partially from petroleum according to the result of principal component analysis. On the whole, conclusions are drawn that the contamination sources of these polycyclic aromatic hydrocarbons are likely petrogenic and pyrolytic inputs. Future investigations by sampling topsoil, vadose soil, and the atmosphere can further verify aforementioned conclusions.
Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannes, C.; Majcherczyk, A.
2000-02-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2{prime}-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter withmore » redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.« less
Lv, Jungang; Shi, Rongguang; Cai, Yanming; Liu, Yong
2010-07-01
Soil contamination with polycyclic aromatic hydrocarbons is an increasing problem and has aroused more and more concern in many countries, including China. In this study, representative soil samples (n = 87) of suburban areas in Tianjin (Xiqing, Dongli, Jinnan, Beichen) were evaluated for 16 polycyclic aromatic hydrocarbons. Surface soil samples were air-dried and sieved. Microwave assisted extraction was used for polycyclic aromatic hydrocarbons preparation prior to analysis with gas chromatography-mass spectrometry. The total concentrations of tested polycyclic aromatic hydrocarbons in Xiqing, Dongli, Jinnan, Beichen ranged in 58.5-2,748.3, 36.1-6,734.7, 58.5-4,502.5, 29.7-852.5 ng/g and the averages of total concentration of polycyclic aromatic hydrocarbons were 600.5, 933.6, 640.8, 257.3 ng/g, respectively. Spatial variation of polycyclic aromatic hydrocarbons in soil was illustrated; Pollution status and comparison to other cities were also investigated. Serious polycyclic aromatic hydrocarbons soil pollution was found in Dongli district, on the contrary, Bap in most sites in Beichen did not exceed relative standards and most sites in Beichen should be classified as non-contaminated soil. Principal component analysis was used to identify the possible sources of different districts. It turned out that coal combustion still was the most important sources in three districts except Beichen. Coking, traffic, cooking, biomass combustion also accounted for polycyclic aromatic hydrocarbons pollution to certain extent in different districts. These data can be further used to assess the health risk associated with soils polluted with polycyclic aromatic hydrocarbons and help local government find proper way to reduce polycyclic aromatic hydrocarbons pollution in soils.
Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias
2015-12-01
Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors.
Olazarán, Fabian E; García-Pérez, Carlos A; Bandyopadhyay, Debasish; Balderas-Rentería, Isaias; Reyes-Figueroa, Angel D; Henschke, Lars; Rivera, Gildardo
2017-03-01
In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.
Volatile and semivolatile organic compounds in laboratory ...
Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particulate organics were quantified by gas chromatography/mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (~60 %) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. Speciated organic PM2.5 mass was dominated by the following compound classes: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for PM2.5 organic acids including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12 %) of all speciated compound classes measured in this work. Levoglucosan contributed 2-3 % of the OC mass, while methoxyphenols represented 0.2-0.3 % of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon. Total HAP VOC and particulate polycyclic aromatic hydrocarbon emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions. This p
Mahl, Magnus; Shoyama, Kazutaka; Rühe, Jessica; Grande, Vincenzo; Würthner, Frank
2018-04-24
Herein we report a palladium-catalyzed annulation reaction consisting of a Suzuki-Miyaura cross-coupling and a C-H arylation cascade for the synthesis of tetrachlorinated polycyclic aromatic dicarboximides (PADIs). This convergent synthetic route afforded a broad series of hitherto unknown electron-deficient PADIs under optimized reaction conditions by coupling of a dibromo-tetrachloro-perylene dicarboximide with different polycyclic aromatic hydrocarbon (PAH) boronic acid pinacol esters in up to 89% yields. The new PADI compounds show broad absorption in the visible range and some of them emit in the near-infrared (NIR) region. Cyclic and square wave voltammetric studies revealed that these tetrachlorinated PADIs are more electron-deficient than a non-chlorinated reference compound and they possess lower lying frontier orbitals. Thus, the newly synthesized electron-poor PADIs are potential n-type semiconductors. Moreover, these chlorinated PADIs are interesting building blocks for the construction of large π-extended arrays by metal-mediated coupling reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chien, Yi-Chi; Liang, Chenju; Liu, Shou-Heng; Yang, Shu-Hua
2010-07-01
This study investigates the combustion kinetics and emission factors of 16 U.S. Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) in polylactic acid (PLA) combustion. Experimentally, two reactions are involved in the PLA combustion process that potentially result in the release of lactide, acetaldehyde, and n-hexaldehyde. The products may continuously be oxidized to form carbon dioxide (CO2) and some PAHs produced because of incomplete combustion. The analytical results indicate that the emission factors for PAHs are in the range of not detectable to 98.04 microg/g. The emission factors are much lower than those of poly(ethylene terephalate) (PET) and other combustion of plastics. Results from this work suggest that combustion is a good choice for waste PLA disposal.
Gong, Miao; Wang, Yulan; Fan, Yujie; Zhu, Wei; Zhang, Huiwen; Su, Ying
2018-02-01
The formation of polycyclic aromatic hydrocarbon is a widespread issue during the supercritical water gasification of sewage sludge, which directly reduces the gasification efficiency and restricts the technology practical application. The changes of the concentrations and forms as well as the synthesis rate of polycyclic aromatic hydrocarbons in the residues from supercritical water gasification of dewatered sewage sludge were investigated to understand influence factors and the reaction pathways. Results showed that the increase of reaction temperature during the heating period favours directly concentration of polycyclic aromatic hydrocarbon (especially higher-molecular-weight), especially when it raise above 300 °C. Lower heating and cooling rate essentially extend the total reaction time. Higher polycyclic aromatic hydrocarbon concentration and higher number of rings were generally promoted by lower heating and cooling rate, longer reaction time and higher reaction temperature. The lower-molecular-weight polycyclic aromatic hydrocarbons can be directly generated through the decomposition of aromatic-containing compounds in sewage sludge, as well as 3-ring and 4-ring polycyclic aromatic hydrocarbons can be formed by aromatization of steroids. Possible mechanisms of reaction pathways of supercritical water gasification of sewage sludge were also proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
THE PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS
The U.S. Environmental Protection Agency (EPA) continues to be interested in developing methods for the detection of polycyclic aromatic hydrocarbons (PAHS) in the environment. Polycyclic aromatic hydrocarbons (PAHS) are common contaminants in our environment. Being major product...
Tejeda-Agredano, Maria-Carmen; Mayer, Philipp; Ortega-Calvo, Jose-Julio
2014-01-01
Binding of polycyclic aromatic hydrocarbons (PAHs) to dissolved organic matter (DOM) can reduce the freely dissolved concentration, increase apparent solubility or enhance diffusive mass transfer. To study the effects of DOM on biodegradation, we used phenanthrene and pyrene as model PAHs, soil humic acids as model DOM and a soil Mycobacterium strain as a representative degrader organism. Humic acids enhanced the biodegradation of pyrene when present as solid crystals but not when initially dissolved or provided by partitioning from a polymer. Synchronous fluorescence spectrophotometry, scintillation counting and a microscale diffusion technique were applied in order to determine the kinetics of dissolution and diffusive mass transfer of pyrene. We suggest that humic acids can enhance or inhibit biodegradation as a result of the balance of two opposite effects, namely, solubilization of the chemicals on the one hand and inhibition of cell adhesion to the pollutant source on the other. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
McCollom, T. M.; Simoneit, B. R.; Shock, E. L.
1999-01-01
Polycyclic aromatic hydrocarbons (PAH) are found at high concentrations in thermally altered organic matter and hydrothermally generated petroleum from sediment-covered seafloor hydro-thermal systems. To better understand the factors controlling the occurrence of PAH in thermally altered environments, the reactivities of two PAH, phenanthrene and anthracene, were investigated in hydrothermal experiments. The compounds were heated with water at 330 degrees C in sealed reaction vessels for durations ranging from 1 to 17 days. Iron oxide and sulfide minerals, formic acid, or sodium for-mate were included in some experiments to vary conditions within the reaction vessel. Phenanthrene was unreactive both in water alone and in the presence of minerals for up to 17 days, while anthracene was partially hydrogenated (5-10%) to di- and tetrahydroanthracene. In the presence of 6-21 vol % formic acid, both phenanthrene and anthracene reacted extensively to form hydrogenated and minor methylated derivatives, with the degree of hydrogenation and methylation increasing with the amount of formic acid. Phenanthrene was slightly hydrogenated in sodium formate solutions. The hydrogenation reactions could be readily reversed; heating a mixture of polysaturated phenanthrenes resulted in extensive dehydrogenation (aromatization) after 3 days at 330 degrees C. While the experiments demonstrate that reaction pathways for the hydrogenation of PAH under hydrothermal conditions exist, the reactions apparently require higher concentrations of H2 than are typical of geologic settings. The experiments provide additional evidence that PAH may be generated in hydrothermal systems from progressive aromatization and dealkylation of biologically derived polycyclic precursors such as steroids and terpenoids. Furthermore, the results indicate that PAH initially present in sediments or formed within hydrothermal systems are resistant to further thermal degradation during hydrothermal alteration.
Ugochukwu, Uzochukwu C; Fialips, Claire I
2017-07-01
Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Xianli; Kang, Haiyan; Wu, Junfeng
2016-05-01
Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1981-08-31
Interior Paairt r’ts RorzotalSapleIeun Forle Tranduer Figure I. Combustion Products Test Chamber. .. 2. *Sold hda 0 Ol~n kb 3’. 8.iIdg IN= W I Vll ue2...hydrocarbons (alkanes, alkenes, and alkynes), alcohols, aldehydes, ketones, ethers, carboxylic acids , aromatic hydrocarbons, polycyclic aromatic hydrocarbons...carboxylic acids , a few nitriles, acetaldehyde, and acetone. A few exotic fluorine containing organic compounds have unusually low refractive indices for
Zhang, Xiaotao; Hou, Hongwei; Chen, Huan; Liu, Yong; Wang, An; Hu, Qingyuan
2015-09-17
A stable isotope dilution liquid chromatography with tandem mass spectrometry method for the analysis of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate was developed and validated. Compared with previously reported methods, this method has lower limits of detection (0.04-1.35 ng/cig). Additionally, the proposed method saves time, reduces the number of separation steps, and reduces the quantity of solvent needed. The new method was applied to evaluate polycyclic aromatic hydrocarbon content in 213 commercially available cigarettes in China, under the International Standardization Organization smoking regime and the Health Canadian intense smoking regime. The results showed that the total polycyclic aromatic hydrocarbon content was more than two times higher in samples from the Health Canadian intense smoking regime than in samples from the International Standardization Organization smoking regime (1189.23 vs. 2859.50 ng/cig, p<0.05). Meanwhile, the concentration of individual polycyclic aromatic hydrocarbons (and total polycyclic aromatic hydrocarbons) increased with labeled tar content in both of the tested smoking regimes. There was a positive correlation between total polycyclic aromatic hydrocarbons under the International Standardization Organization smoking regime with that under the Health Canadian intense smoking regime. The proposed liquid chromatography with tandem mass spectrometry method is satisfactory for the rapid, sensitive, and accurately quantitative evaluation of polycyclic aromatic hydrocarbon content in cigarette smoke condensate, and it can be applied to assess potential health risks from smoking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Nitrogen Heterocycles (PANHs)
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.; Biemesderfer, C. D.; Rosi, M.
2002-01-01
The mid-infrared spectra of the nitrogen-containing heterocyclic polycyclic aromatic compounds 1-azabenz[a]-anthracene; 2-azabenz[a]anthracene; 1-azachrysene; 2-azachrysene; 4-azachrysene; 2-azapyrene, and 7,8 benzoquinoline in their neutral and cation forms were investigated. The spectra of these species isolated in an argon matrix have been measured. Band frequencies and intensities were tabulated and these data compared with spectra computed using density functional theory at the B3LYP level. The overall agreement between experiment and theory is quite good, in keeping with earlier results on homonuclear polycyclic aromatic hydrocarbons. The differences between the spectral properties of nitrogen bearing aromatics and non-substituted, neutral polycyclic aromatic hydrocarbons will be discussed.
He, Yun-feng; Zhang, Wang-zhen; Kuang, Dan; Deng, Hua-xin; Li, Xiao-hai; Lin, Da-feng; Deng, Qi-fei; Huang, Kun; Wu, Tang-chun
2012-12-01
To explore the effects of smoking on urinary 10 metabolites of polycyclic aromatic hydrocarbons (PAHs) in the coke oven workers. Occupational health examination was performed on 1401 coke oven workers in one coking plant, their urine were collected respectively. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons in urine were detected by gas chromatography/mass spectrometry. The 1401 workers were divided into four groups, namely control, adjunct workplaces, bottom and side, top group according to their workplaces and the different concentrations of PAHs in the environment. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons between smokers and nonsmokers in each workplace group were compared using analysis of covariance, respectively. The levels of concentrations of the sixteen polycyclic aromatic hydrocarbons we detected at control were significantly higher than those at other areas (P < 0.05). Comparing the ten monohydroxy polycyclic aromatic hydrocarbons levels between smokers and nonsmokers, the levels of 1-hydroxynaphthalene and 2-hydroxynaphthalene among smokers were higher than nonsmokers with statistically significance in control, adjunct workplaces, bottom and side and top groups (P < 0.05). However, the levels of 1-hydroxypyrene had no statistically significant differences between the four areas. Urinary 1-hydroxynaphthalene and 2-hydroxynaphthalene may be used as biomarkers for the impact of smoking on monohydroxy polycyclic aromatic hydrocarbons in the coke oven workers.
Zhu, Linli; Xu, Hui
2014-09-01
Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes
Reilly, Peter T. A.
2004-10-19
The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.
Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds
Kameda, Takayuki; Azumi, Eri; Fukushima, Aki; Tang, Ning; Matsuki, Atsushi; Kamiya, Yuta; Toriba, Akira; Hayakawa, Kazuichi
2016-01-01
Atmospheric nitrated polycyclic aromatic hydrocarbons (NPAHs), which have been shown to have adverse health effects such as carcinogenicity, are formed in part through nitration reactions of their parent polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. However, little is known about heterogeneous nitration rates of PAHs by gaseous NO2 on natural mineral substrates, such as desert dust aerosols. Herein by employing kinetic experiments using a flow reactor and surface analysis by Fourier transform infrared spectroscopy with pyridine adsorption, we demonstrate that the reaction is accelerated on acidic surfaces of mineral dust, particularly on those of clay minerals. In support of this finding, we show that levels of ambient particle-associated NPAHs in Beijing, China, significantly increased during heavy dust storms. These results suggest that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere and that they enhance the toxicity of mineral dust aerosols in urban environments. PMID:27075250
NASA Technical Reports Server (NTRS)
Otterson, D. A.; Seng, G. T.
1985-01-01
An high performance liquid chromatography (HPLC) method to estimate four aromatic classes in middistillate fuels is presented. Average refractive indices are used in a correlation to obtain the concentrations of each of the aromatic classes from HPLC data. The aromatic class concentrations can be obtained in about 15 min when the concentration of the aromatic group is known. Seven fuels with a wide range of compositions were used to test the method. Relative errors in the concentration of the two major aromatic classes were not over 10 percent. Absolute errors of the minor classes were all less than 0.3 percent. The data show that errors in group-type analyses using sulfuric acid derived standards are greater for fuels containing high concentrations of polycyclic aromatics. Corrections are based on the change in refractive index of the aromatic fraction which can occur when sulfuric acid and the fuel react. These corrections improved both the precision and the accuracy of the group-type results.
Gonzalez, J; Marchand-Geneste, N; Giraudel, J L; Shimada, T
2012-01-01
To obtain chemical clues on the process of bioactivation by cytochromes P450 1A1 and 1B1, some QSAR studies were carried out based on cellular experiments of the metabolic activation of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds by those enzymes. Firstly, the 3D structures of cytochromes 1A1 and 1B1 were built using homology modelling with a cytochrome 1A2 template. Using these structures, 32 ligands including heterocyclic aromatic compounds, polycyclic aromatic hydrocarbons and corresponding diols, were docked with LigandFit and CDOCKER algorithms. Binding mode analysis highlighted the importance of hydrophobic interactions and the hydrogen bonding network between cytochrome amino acids and docked molecules. Finally, for each enzyme, multilinear regression and artificial neural network QSAR models were developed and compared. These statistical models highlighted the importance of electronic, structural and energetic descriptors in metabolic activation process, and could be used for virtual screening of ligand databases. In the case of P450 1A1, the best model was obtained with artificial neural network analysis and gave an r (2) of 0.66 and an external prediction [Formula: see text] of 0.73. Concerning P450 1B1, artificial neural network analysis gave a much more robust model, associated with an r (2) value of 0.73 and an external prediction [Formula: see text] of 0.59.
Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang
2012-01-01
A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Burkhardt, Andrew M.; Kalenskii, Sergei; Shingledecker, Christopher N.; Remijan, Anthony J.; Herbst, Eric; McCarthy, Michael C.
2018-01-01
Polycyclic aromatic hydrocarbons and polycyclic aromatic nitrogen heterocycles are thought to be widespread throughout the universe, because these classes of molecules are probably responsible for the unidentified infrared bands, a set of emission features seen in numerous Galactic and extragalactic sources. Despite their expected ubiquity, astronomical identification of specific aromatic molecules has proven elusive. We present the discovery of benzonitrile (c-C6H5CN), one of the simplest nitrogen-bearing aromatic molecules, in the interstellar medium. We observed hyperfine-resolved transitions of benzonitrile in emission from the molecular cloud TMC-1. Simple aromatic molecules such as benzonitrile may be precursors for polycyclic aromatic hydrocarbon formation, providing a chemical link to the carriers of the unidentified infrared bands.
Veljković, Dušan Ž
2018-03-01
Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stockton, A. M.; Kim, J.; Willis, P. A.; Lillis, R.; Amundson, R.; Beegle, L.; Butterworth, A.; Curtis, D.; Ehrenfreund, P.; Grunthaner, F.; Hazen, R.; Kaiser, R.; Ludlam, M.; Mora, M. F.; Scherer, J.; Turin, P.; Welten, K.; Williford, K.; Mathies, R. A.
2014-07-01
Mars Organic Analyzer was designed to give the Mars 2020 Mission capability to look for organic molecules, including amines, aldehydes, ketones, organic acids, thiols and polycyclic aromatic hydrocarbons, in martian samples with sub-ppb sensitivity.
Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation.
Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela
2017-10-01
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation
NASA Astrophysics Data System (ADS)
Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela
2017-10-01
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane¯oxygen¯argon burner s...
Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E
2015-01-01
We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.
Tian, Weijun; Zhao, Jing; Zhou, Yuhang; Qiao, Kaili; Jin, Xin; Liu, Qing
2017-01-01
Changes in root exudates, including low molecular weight organic acids (LMWOAs), amino acids and sugars, in rhizosphere soils during the gel-beads/reeds combination remediation for high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) and the degree of the effects on HMW-PAH biodegradation were evaluated in this study. The results showed that the gel-beads/reeds combination remediation notably increased the removal rates of pyrene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene (65.0-68.9%, 60.0-68.5% and 85.2-85.9%, respectively). During the removal of HMW-PAHs, the LMWOAs, particularly maleic acid, enhanced the biodegradation of HMW-PAHs. Arginine and trehalose monitored in reed root exudates promoted the growth of plants and microorganisms and then improved the removal of HMW-PAHs, especially pyrene. However, the contribution of reed root exudates on degradation of 5- and 6-ring PAHs was minor. These results indicated that the utilization of root exudates was certainly not the only important trait for the removal of HMW-PAHs. Copyright © 2016 Elsevier Inc. All rights reserved.
Silva, Simone Alves da; Torres, Elizabeth A F da Silva; Almeida, Adriana Palma de; Sampaio, Geni Rodrigues
2018-04-15
This study aimed at evaluating the polycyclic aromatic hydrocarbons (PAHs) contamination of commercial vegetable oils and examined the identity through the fatty acids profiles. Coconut, safflower, evening primrose, and linseed oils marketed in São Paulo (Brazil) were investigated totaling 69 samples. Four PAHs, benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), and benzo[a]pyrene (BaP), were detected in 96% of the samples at individual levels ranging from not detected to 14.99 μg kg -1 . Chrysene was the abundant hydrocarbon found among all types of oils, with the highest median values. The results of the fatty acid profiles revealed that 43% showed different profiles according to the ones on their labels, with a higher incidence of adulteration of evening primrose oils. The maximum tolerable limits by European Regulation No. 835/2011 were exceeded for BaP in 12%, and for total 4 PAHs in 28%, with a greater contribution of adulterated samples. Copyright © 2017. Published by Elsevier Ltd.
Biodegradation of naphthenic acid surrogates by axenic cultures.
Yue, Siqing; Ramsay, Bruce A; Ramsay, Juliana A
2015-07-01
This is the first study to report that bacteria from the genera Ochrobactrum, Brevundimonas and Bacillus can be isolated by growth on naphthenic acids (NAs) extracted from oil sands process water (OSPW). These pure cultures were screened for their ability to use a range of aliphatic, cyclic and aromatic NA surrogates in 96-well microtiter plates using water-soluble tetrazolium redox dyes (Biolog Redox Dye H) as the indicator of metabolic activity. Of the three cultures, Ochrobactrum showed most metabolic activity on the widest range of NA surrogates. Brevundomonas and especially Ochrobactrum had higher metabolic activity on polycyclic aromatic compounds than other classes of NA surrogates. Bacillus also oxidized a wide range of NA surrogates but not as well as Ochrobactrum. Using this method to characterize NA utilisation, one can identify which NAs or NA classes in OSPW are more readily degraded. Since aromatic NAs have been shown to have an estrogenic effect and polycyclic monoaromatic compounds have been suggested to pose the greatest environmental threat among the NAs, these bacterial genera may play an important role in detoxification of OSPW. Furthermore, this study demonstrates that bacteria belonging to the genera Ochrobactrum and Bacillus can also degrade surrogates of tricyclic NAs.
Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz
2017-02-01
Natural neutralization of acidic mining lakes is often limited by organic matter. The knowledge of the sources and degradability of organic matter is crucial for understanding alkalinity generation in these lakes. Sediments collected at different depths (surface sediment layer from 0 to 1 cm and deep sediment layer from 4 to 5cm) from an acidic mining lake were studied in order to characterize sedimentary organic matter based on neutral signature markers. Samples were exhaustively extracted, subjected to pre-chromatographic derivatizations and analyzed by GC/MS. Herein, molecular distributions of diagnostic alkanes/alkenes, terpenes/terpenoids, polycyclic aromatic hydrocarbons, aliphatic alcohols and ketones, sterols, and hopanes/hopanoids were addressed. Characterization of the contribution of natural vs. anthropogenic sources to the sedimentary organic matter in these extreme environments was then possible based on these distributions. With the exception of polycyclic aromatic hydrocarbons, combined concentrations across all marker classes proved higher in the surface sediment layer as compared to those in the deep sediment layer. Alkane and aliphatic alcohol distributions pointed to predominantly allochthonous over autochthonous contribution to sedimentary organic matter. Sterol patterns were dominated by phytosterols of terrestrial plants including stigmasterol and β-sitosterol. Hopanoid markers with the ββ-biohopanoid "biological" configuration were more abundant in the surface sediment layer, which pointed to higher bacterial activity. The pattern of polycyclic aromatic hydrocarbons pointed to prevailing anthropogenic input. Pyrolytic makers were likely to due to atmospheric deposition from a nearby former coal combustion facility. The combined analysis of the array of biomarkers provided new insights into the sources and transformations of organic matter in lake sediments. Copyright © 2016 Elsevier B.V. All rights reserved.
Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.
2015-08-18
A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.
Study of the organic matter in the DSDP /JOIDES/ cores, legs 10-15. [Deep Sea Drilling Program
NASA Technical Reports Server (NTRS)
Simoneit, B. R. T.; Burlingame, A. L.
1974-01-01
The composition of the organic matter collected on legs 10 to 15 of the DSDP (Deep Sea Drilling Project) is described. Distributions of various alkanes, carboxylic acids, steroids and terpenoids, isoprenoid ketones and olefins, and aromatic polycyclic compounds are given. Samples analyzed had terrigenous clay components, with variable organic carbon contents and thus diverse solvent soluble matter. The distribution patterns for the various compound series monitored were of marine derivation, with the terrigenous components superimposed. Diagenesis of steroids appeared to proceed via both stanones and stanols to their respective steranes. Degradative processes were observed to be operative: oxidative products, mainly ketones derived from steroids and phytol, were identified, probably due to microbial alteration prior to or during sedimentation. Loss of alkane and fatty acid C preferences and presence of polycyclic aromatics evinced maturation. Results indicate that the accumulation, degradation, diagenesis and maturation of organic matter occurs in various steps in the deep sea environment.
[Preliminary determination of organic pollutants in agricultural fertilizers].
Mo, Ce-hui; Li, Yun-hui; Cai, Quan-ying; Zeng, Qiao-yun; Wang, Bo-guang; Li, Hai-qin
2005-05-01
Organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in agricultural fertilizers are new problem deserved more study. Eight kinds of organic pollutants including 43 compounds classified as US EPA priority pollutants in twenty one agricultural fertilizers which were universally used in China were determined by Gas chromatography-mass spectrum (GC-MS). Three kinds of organic pollutants including more than 5 compounds were detected in most fertilizers, composing mainly of phthalic acid esters (PAEs), nitrobenzenes (NBs) and polycyclic aromatic hydrocarbons (PAHs). There were 26 compounds detected in at least one fertilizer, five of them especially PAEs detected in most fertilizer and even in all fertilizers. Benzo(a)pyrene, a strongly carcinogenic compound was detected in two fertilizers. Higher concentrations of compounds were determined in those fertilizers such as multifunction compound fertilizers and coated fertilizers.
Liu, Qiying; Guo, Yuanming; Sun, Xiumei; Hao, Qing; Cheng, Xin; Zhang, Lu
2018-02-22
We propose a method for the simultaneous determination of 15 kinds of polycyclic aromatic hydrocarbons in marine samples (muscle) employing gas chromatography with mass spectrometry after saponification with ultrasound-assisted extraction and solid-phase extraction. The experimental conditions were optimized by the response surface method. In addition, the effects of different lyes and extractants on polycyclic aromatic hydrocarbons extraction were discussed, and saturated sodium carbonate was first used as the primary saponification reaction and extracted with 10 mL of ethyl acetate and secondly 1 mol/L of sodium hydroxide and 10 mL of n-hexane were used to achieve better results. The average recovery was 67-112%. Satisfactory data showed that the method has good reproducibility with a relative standard deviation of <13%. The detection limits of polycyclic aromatic hydrocarbons were 0.02-0.13 ng/g. Compared with other methods, this method has the advantages of simple pretreatment, low solvent consumption, maximum polycyclic aromatic hydrocarbons extraction, the fast separation speed, and the high extraction efficiency. It is concluded that this method meets the batch processing requirements of the sample and can also be used to determine polycyclic aromatic hydrocarbons in other high-fat (fish, shrimp, crab, shellfish) biological samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization and determination of polycyclic aromatic hydrocarbons in biochar-based fertilizers.
Chen, Ping; Zhou, Hui; Gan, Jay; Sun, Mingxing; Shang, Guofeng; Liu, Liang; Shen, Guoqing
2015-03-01
The agronomic benefit of biochar has attracted widespread attention to biochar-based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar-based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar-based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box-Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26-102.99%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Δg: The new aromaticity index based on g-factor calculation applied for polycyclic benzene rings
NASA Astrophysics Data System (ADS)
Ucun, Fatih; Tokatlı, Ahmet
2015-02-01
In this work, the aromaticity of polycyclic benzene rings was evaluated by the calculation of g-factor for a hydrogen placed perpendicularly at geometrical center of related ring plane at a distance of 1.2 Å. The results have compared with the other commonly used aromatic indices, such as HOMA, NICSs, PDI, FLU, MCI, CTED and, generally been found to be in agreement with them. So, it was proposed that the calculation of the average g-factor as Δg could be applied to study the aromaticity of polycyclic benzene rings without any restriction in the number of benzene rings as a new magnetic-based aromaticity index.
Characterization of the Particulate Emissions from the BP Deepwell Horizon Spill Surface Oil Burns
A particle sample gathered from the plume of the purposely-burned surface oil during the BP Deepwater Horizon disaster in the Gulf of Mexico was analyzed for polycyclic aromatic hydrocarbons (PAHs), organic acids, organic carbon (OC), elemental carbon (EC), metals, and chloro-org...
Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito
2008-10-01
To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.
Zhang, Xiaotao; Zhang, Li; Ruan, Yibin; Wang, Weiwei; Ji, Houwei; Wan, Qiang; Lin, Fucheng; Liu, Jian
2017-10-08
A method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons in cigarette filter was developed by isotope internal standard combined with gas chromatography-tandem mass spectrometry. The cigarette filters were extracted with dichloromethane, and the extract was filtered with 0.22 μm organic phase membrane. The samples were isolated by DB-5MS column (30 m×0.25 mm, 0.25 μm) and detected using multiple reaction monitoring mode of electron impact source under positive ion mode. The linearities of the 15 polycyclic aromatic hydrocarbons (acenapthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, ben[ a ]anthracene, chrysene, benzo[ b ]fluoranthene, benzo[ k ]fluoranthene, benzo[ a ]pyrene, dibenzo[ a,h ]anthracene, benzo[ g,h,i ]perylene and indeno[1,2,3- c,d ]pyrene) were good, and the correlation coefficients ( R 2 ) ranged from 0.9914 to 0.9999. The average recoveries of the 15 polycyclic aromatic hydrocarbons were 81.6%-109.6% at low, middle and high spiked levels, and the relative standard deviations were less than 16%, except that the relative standard deviation of fluorene at the low spiked level was 19.2%. The limits of detection of the 15 polycyclic aromatic hydrocarbons were 0.02 to 0.24 ng/filter, and the limits of quantification were 0.04 to 0.80 ng/filter. The method is simple, rapid, accurate, sensitive and reproducible. It is suitable for the quantitative analysis of the 15 polycyclic aromatic hydrocarbons in cigarette filters.
The formation of polycyclic aromatic hydrocarbons (PAH) and soot has been investigated in atmospheric-pressure, laminar, ethane/oxygen/argon premixed flames as a function of mixture equivalence ratio. Mole fraction profiles of major products, trace aromatics, ...
NASA Astrophysics Data System (ADS)
Bernstein, Max P.; Moore, Marla H.; Elsila, Jamie E.; Sandford, Scott A.; Allamandola, Louis J.; Zare, Richard N.
2003-01-01
Ices at ~15 K consisting of the polycyclic aromatic hydrocarbon coronene (C24H12) condensed either with H2O, CO2, or CO in the ratio of 1:100 or greater have been subjected to MeV proton bombardment from a Van de Graaff generator. The resulting reaction products have been examined by infrared transmission-reflection-transmission spectroscopy and by microprobe laser-desorption laser-ionization mass spectrometry. Just as in the case of UV photolysis, oxygen atoms are added to coronene, yielding, in the case of H2O ices, the addition of one or more alcohol (OH) and ketone (>CO) side chains to the coronene scaffolding. There are, however, significant differences between the products formed by proton irradiation and the products formed by UV photolysis of coronene containing CO and CO2 ices. The formation of a coronene carboxylic acid (COOH) by proton irradiation is facile in solid CO but not in CO2, the reverse of what was previously observed for UV photolysis under otherwise identical conditions. This work presents evidence that cosmic-ray irradiation of interstellar or cometary ices should have contributed to the formation of aromatics bearing ketone and carboxylic acid functional groups in primitive meteorites and interplanetary dust particles.
Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...
Doped polycyclic aromatic hydrocarbons as building blocks for nanoelectronics: a theoretical study.
Dral, Pavlo O; Kivala, Milan; Clark, Timothy
2013-03-01
Density functional theory (DFT) and semiempirical UHF natural orbital configuration interaction (UNO-CI) calculations are used to investigate the effect of heteroatom substitution at the central position of a model polycyclic aromatic hydrocarbon. The effects of the substitution on structure, strain, electronic and spectral properties, and aromaticity of the compounds are discussed.
Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons
Polycyclic Aromatic Hydrocarbons (PAHs) are products of incomplete combustion of organic materials; sources are, thus, widespread,including cigarette smoke, municipal waste incineration, wood stove emissions, coal conversion, energy production form fossil fuels, and automobile an...
Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Bakes, E. L. O.
2000-01-01
We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.
Gao, Yanzheng; Li, Hui; Gong, Shuaishuai
2012-01-01
Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628
Ji, Wenhua; Zhang, Mingming; Duan, Wenjuan; Wang, Xiao; Zhao, Hengqiang; Guo, Lanping
2017-11-15
Phytic acid-stabilized Fe 3 O 4 -graphene oxide (GOPA@Fe 3 O 4 ) was assembled by microwave-enhanced hydrothermal synthesis and super-amphipathicity was demonstrated by measurement of dynamic oil and water contact angles. GOPA@Fe 3 O 4 was used as a sorbent for enrichment of eight polycyclic aromatic hydrocarbons (PAHs) from vegetable oils by magnetic solid-phase extraction (MSPE). The extraction-desorption factors were systematically investigated and, under optimum conditions, the super-amphiphilic sorbent achieved wide linear ranges (0.2-200ngg -1 ), satisfactory precision (3.44-6.64% for intra-day and 5.39-8.41% for inter-day) and low limits of detection (LODs, 0.06-0.15ngg -1 ) for PAHs. Excellent recoveries (85.6-102.3%) for spiked PAHs were obtained with genuine vegetable oil samples. These results indicate that MSPE using GOPA@Fe 3 O 4 as the sorbent, coupled with high performance liquid chromatography (HPLC), is an efficient and simple method for the detection of low concentrations of PAHs in vegetable oils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ncube, Somandla; Kunene, Phumlile; Tavengwa, Nikita T; Tutu, Hlanganani; Richards, Heidi; Cukrowska, Ewa; Chimuka, Luke
2017-09-01
A smart sorbent consisting of benzo[k]fluoranthene-imprinted and indeno[1 2 3-cd]pyrene-imprinted polymers mixed at 1:1 (w/w) was successfully screened from several cavity-tuning experiments and used in the isolation of polycyclic aromatic hydrocarbons from spiked solution. The polymer mixture showed high cross selectivity and affinity towards all the 16 US-EPA priority polycyclic aromatic hydrocarbons. The average extraction efficiency from a cyclohexane solution was 65 ± 13.3% (n = 16, SD). Batch adsorption and kinetic studies confirmed that the binding of polycyclic aromatic hydrocarbons onto the polymer particles resulted in formation of a monolayer and that the binding process was the rate limiting step. The imprinted polymer performance studies confirmed that the synthesized polymer had an imprinting efficiency of 103.9 ± 3.91% (n = 3, SD). A comparison of the theoretical number of cavities and the experimental binding capacity showed that the overall extent of occupation of the imprinted cavities in the presence of excess polycyclic aromatic hydrocarbons was 128 ± 6.45% (n = 3, SD). The loss of selectivity was estimated at 2.9% with every elution cycle indicating that the polymer can be re-used several times with limited loss of selectivity and sensitivity. The polymer combination has shown to be an effective adsorbent that can be used to isolate all the 16 US-EPA priority polycyclic aromatic hydrocarbons in solution. Copyright © 2017 Elsevier Ltd. All rights reserved.
This presentation, Prenatal Exposures to Polycyclic Aromatic Hydrocarbons (PAH) and Childhood Body Mass Index Trajectories, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series held on Feb. 11, 2015.
PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COASTAL GREAT LAKES WATERS
Photoinduced toxicity is the exacerbated toxicity of environmental contaminants by UV radiation. Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) has been well established in the laboratory for numerous aquatic species including larval fish. The contaminants sub-p...
Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A
2014-01-01
A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(–)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three-and two-aromatic ring products. The structurally similar four-and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(–)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. PMID:24325265
Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment
NASA Technical Reports Server (NTRS)
Deamer, D. W.
1992-01-01
The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.
Shoyama, Kazutaka; Mahl, Magnus; Seifert, Sabine; Würthner, Frank
2018-03-20
Here we report a general method for the synthesis of polycyclic aromatic dicarboximides (PADIs) by palladium-catalyzed annulation of naphthalene dicarboximide to different types of aromatic substrates. Reaction conditions were optimized by systematic variation of ligand, solvent, and additive. It was shown that solvent has a decisive effect on the yield of the reaction products, and thus 1-chloronaphthalene as solvent afforded the highest yield. By applying the optimized reaction conditions, a broad series of planar carbo- and heterocycle containing PADIs were synthesized in up to 97% yield. Moreover, this approach could be applied to curved aromatic scaffold to achieve the respective bowl-shaped PADI. Two-fold annulation was accomplished by employing arene diboronic esters, affording polycyclic aromatic bis(dicarboximides). The optical and electrochemical properties of this broad series of PADIs were explored as well.
ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS
Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...
AGRONOMIC OPTIMIZATION FOR PHYTOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBONS
Phytoremediation is a low-cost method of using plants to degrade, volatilize or sequester organic and metal pollutants that has been used in efforts to remediate sites contaminated with polycyclic aromatic hydrocarbon (PAH) refinery wastes. Non-native plant species aggressivel...
ASSAYING PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM ARCHIVED PM2.5 FILTERS
Airborne particulate matter contains numerous organic species, including several polycyclic aromatic hydrocarbons (PAHs) that are known or suspected carcinogens. Existing methods for measuring airborne PAHs are complex and costly, primarily because they are designed to collect...
POLYCYCLIC AROMATIC HYDROCARBON (PAH) EXPOSURE OF 257 PRESCHOOL CHILDREN
We investigated the polycyclic aromatic hydrocarbon (PAH) exposure of 257 preschool children and their adult caregivers in their everyday environments. Participants were recruited randomly from eligible homes and daycare centers within six North Carolina (NC) and six Ohio (OH) c...
The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...
Polycyclic aromatic sulfur heterocycles (PASH) are common constituents of cigarette smoke, fossil fuel-derived materials, and their combustion byproducts. Many PASH are known mutagens and carcinogens. However, unlike their nonsulfur-containing counterparts, relatively little is k...
NASA Astrophysics Data System (ADS)
Estrada-Izquierdo, Irma; Sánchez-Espindola, Esther; Uribe-Hernández, Raúl; Ramón-Gallegos, Eva
2012-10-01
Each cigarette can generate 1149 ng of a mixture of 14 polycyclic aromatic hydrocarbons, of which there are a lot of information about its harmful effects on the environment and human health, they are considered mutagenic, teratogenic and carcinogenic. In this paper we tested ZnO:Mn2+ nanoparticles, attached to the filters of cigarettes. The first results showed that the filtration system was able to catch the Benzo(a)pyrene contained in cigarette smoke; but more tests are needed to quantify the efficiency with greater accuracy over other polycyclic aromatic hydrocarbons.
A series of laboratory and field test studies were conducted to evaluate the effectiveness of Ambersorb, a carbonaceous resin, in reducing bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediments collected from the field. Amending contaminated sediment...
Marine sediments around urban areas serve as catch basins for anthropogenic particles containing polycyclic aromatic hydrocarbons (PAHs). Using incubations with gut fluids extracted from a deposit-feeding polychaete (Arenicola marina), we determined the digestive bioavailability ...
ANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS BY ION TRAP TANDEM MASS SPECTROMETRY
An ion-trap mass spectrometer with a wave board and tandem mass spectrometry software was used to analyze gas chromatographically separated polycyclic aromatic hydrocarbons (PAHs) by using collision-induced dissociation (CID). The nonresonant (multiple collision) mode was used to...
DOT National Transportation Integrated Search
2012-06-01
Polycyclic aromatic hydrocarbons (PAHs) are a class of chemical compounds that are mostly : anthropogenic in nature, and they can become persistent organic contaminants in aquatic : ecosystems. Runoff from impervious surfaces is one of the many ways ...
The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed ...
Computational Methods for Studying the Interaction between Polycyclic Aromatic Hydrocarbons and Biological Macromolecules .
The mechanisms for the processes that result in significant biological activity of PAHs depend on the interaction of these molecules or their metabol...
Profiling Jet Fuel on Neurotoxic Components With Comprehensive Two-Dimensional GC
2007-11-01
nitrogen gas to remove possible contaminants that might interfere in the GCxGC-ToF-MS analysis. The generated JP-8 vapor was lead through the...dimension (min) S ec on d di m en si on (s ) Mono Aromatics Polycyclic Aromatic Hydrocarbons Naphthens Sulfur components Alkanes Figure 14...10.0 20.0 30.0 40.0 50.0 60.0 70.0 First dimension (min) S ec on d di m en si on (s ) Mono Aromatics Polycyclic Aromatic Hydrocarbons Naphthens
Tarafdar, Abhrajyoti; Sinha, Alok
2017-10-01
A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E-5 for children and 3.156E-5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E-05 for children and 3.999E-04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.
Avagyan, Rozanna; Nyström, Robin; Boman, Christoffer; Westerholm, Roger
2015-06-01
A simple and fast method for analysis of hydroxylated polycyclic aromatic hydrocarbons using pressurized liquid extraction and high performance liquid chromatography utilizing photoionization tandem mass spectrometry was developed. Simultaneous separation and determination of nine hydroxylated polycyclic aromatic hydrocarbons and two hydroxy biphenyls could be performed in negative mode with a run time of 12 min, including equilibration in 5 min. The calibration curves were in two concentration ranges; 1-50 ng/mL and 0.01-50 μg/mL, with coefficients of correlation R (2) > 0.997. The limits of detection and method quantification limits were in the range of 9-56 pg and 5-38 ng/g, respectively. A two-level full factorial experimental design was used for screening of conditions with the highest impact on the extraction. The extraction procedure was automated and suitable for a large number of samples. The extraction recoveries ranged from 70 to 102 % and the matrix effects were between 92 and 104 %. The overall method was demonstrated on wood smoke particles and soil samples with good analytical performance, and five OH-PAHs were determined in the concentration range of 0.19-210 μg/g. As far as we know, hydroxylated polycyclic aromatic hydrocarbons were determined in wood smoke and soil samples using photoionization mass spectrometry for the first time in this present study. Accordingly, this study shows that high performance liquid chromatography photoionization tandem mass spectrometry can be a good option for the determination of hydroxylated polycyclic aromatic hydrocarbons in complex environmental samples. Graphical Abstract The method developed in this study was used to determine hydroxylated polycyclic aromatic hydrocarbons in wood smoke and soil.
NASA Astrophysics Data System (ADS)
Tarafdar, Abhrajyoti; Sinha, Alok
2017-10-01
A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E-5 for children and 3.156E-5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E-05 for children and 3.999E-04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.
Fuel quality combustion analysis
NASA Technical Reports Server (NTRS)
Naegeli, D. W.; Moses, C. A.
1979-01-01
A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.
PERSONAL EXPOSURES TO POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH THE NHEXAS PILOT
Personal exposure monitoring for select polycyclic aromatic hydrocarbons (PAHs) was performed as part of the National Human Exposure Assessment Survey (NHEXAS) Pilot Study in Baltimore, MD. Twenty-four hour PM10 sample collections (~5.7 m3) were performed using personal envi...
The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...
This presentation, Exposures to Polycyclic Aromatic Hydrocarbons and Childhood Growth Trajectories and Body Composition: Linkages to Disrupted Self-Regulatory Processes, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Childhood Obesity
Sources and deposition of polycyclic aromatic hydrocarbons to western US national parks
Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) to determine their current and historical deposition, as well as to identify thei...
Energy sources of polycyclic aromatic hydrocarbons. [Carcinogenicity of PAHs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerin, M. R.
1977-01-01
Combustion is the predominant end-process by which fossil fuels are converted to energy. Combustion, particularly when inefficient, is also the primary technological source of polycyclic aromatic hydrocarbons (PAHs) released into the environment. The need for liquid fuels to supply the transportation industry and for nonpolluting fuels for heat and power generation provide the incentive to commercialize processes to convert coal to substitute natural gas and oil. These processes represent a potentially massive new source of environmental PAHs. Insuring an adequate supply of energy with minimum impact on the environment and on health is one of the most important, urgent, andmore » challenging goals currently facing science and technology. Polycyclic aromatic hydrocarbon related carcinogenesis is among the most important of possible occupational- and environmental-health impacts of much of the current and projected national energy base. An understanding of the relationship of polycyclic aromatic hydrocarbons (PAHs) to human cancer and a continued surveillance of energy sources for PAH content are necessary to minimize this impact.« less
Burgos-Núñez, Saudith; Navarro-Frómeta, Amado; Marrugo-Negrete, José; Enamorado-Montes, Germán; Urango-Cárdenas, Iván
2017-07-15
The concentrations of polycyclic aromatic hydrocarbons and heavy metals were evaluated in shallow sediments, water, fish and seabird samples from the Cispata Bay, Colombia. The heavy metals concentrations in the sediment was in the following order: Cu>Pb>Hg>Cd. The heavy metal concentration was different (p<0.05) in juvenile and adult birds. High concentrations of mercury were registered in the seabird (10.19±4.99mgkg -1 ) and fish (0.67μgg -1 ) samples. The total concentration of polycyclic aromatic hydrocarbons ranged from 7.0-41ngg -1 in sediment, 0.03-0.34ngmL -1 in water samples, 53.24ngg -1 in fish, and 66ngg -1 in seabirds. The high concentrations of heavy metals in seabirds may be explained by their feeding habits. The presence of polycyclic aromatic hydrocarbons in the Cispata Bay may be due to hydrocarbon spills during oil transport at the nearby oil port. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luo, Jingyang; Chen, Yinguang; Feng, Leiyu
2016-07-05
Till now, almost all the studies on anaerobic fermentation of waste activated sludge (WAS) for bioproducts generation focused on the influences of operating conditions, pretreatment methods and sludge characteristics, and few considered those of widespread persistent organic pollutants (POPs) in sludge, for example, polycyclic aromatic hydrocarbons (PAHs). Herein, phenanthrene, which was a typical PAH and widespread in WAS, was selected as a model compound to investigate its effect on WAS anaerobic fermentation for short-chain fatty acids (SCFAs) accumulation. Experimental results showed that the concentration of SCFAs derived from WAS was increased in the presence of phenanthrene during anaerobic fermentation. The yield of acetic acid which was the predominant SCFA in the fermentation reactor with the concentration of 100 mg/kg dry sludge was 1.8 fold of that in the control. Mechanism exploration revealed that the present phenanthrene mainly affected the acidification process of anaerobic fermentation and caused the shift of the microbial community to benefit the accumulation of acetic acid. Further investigation showed that both the activities of key enzymes (phosphotransacetylase and acetate kinase) involved in acetic acid production and the quantities of their corresponding encoding genes were enhanced in the presence of phenanthrene. Viability tests by determining the adenosine 5'-triphosphate content and membrane potential confirmed that the acetogens were more viable in anaerobic fermentation systems with phenanthrene, which resulted in the increased production of acetic acid.
Fixed wavelength fluorescence (FF) was compared to high-performance liquid chromatography with fluorescence detection (HPLC-F) as an estimation of polycyclic aromatic hydrocarbon (PAH) exposure to fish. Two excitation/emission wavelength pairs were used to measure naphthalene- an...
A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...
Polycyclic aromatic hydrocarbons (PAHs) are frequently encountered in the environment and may pose health concerns due to their carcinogenicity. A commercial enzyme-linked immunosorbent assay (ELISA), was evaluated as a screening method for monitoring PAHs at contaminated site...
EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOINDUCED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS
Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...
Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light recieved. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...
USDA-ARS?s Scientific Manuscript database
Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...
A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the p...
Humans experience chronic cumulative trace-level exposure to mixtures of volatile, semi-volatile, and non-volatile polycyclic aromatic hydrocarbons (PAHs) present in the environment as by-products of combustion processes. Certain PAHs are known or suspected human carcinogens and ...
Uyttebroek, Maarten; Vermeir, Steven; Wattiau, Pierre; Ryngaert, Annemie; Springael, Dirk
2007-01-01
Two polycyclic aromatic hydrocarbon (PAH)-contaminated soils of pH 2 were successfully used as inoculum to enrich cultures growing on phenanthrene and pyrene at different pHs, including pH 3. Selected pyrene-utilizing cultures obtained at pH 3, pH 5, and pH 7 were further characterized. All showed rapid [14C]pyrene mineralization at pH 3 and pH 5 and grew on pyrene at pH values ranging from 2 to 6. Eubacterial and mycobacterial 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and sequencing indicated that the cultures were dominated by a single bacterium closely related to Mycobacterium montefiorense, belonging to the slow-growing Mycobacterium sp. In contrast, a culture enriched on pyrene at pH 7 from a slightly alkaline soil sampled at the same site was dominated by Pseudomonas putida and a fast-growing Mycobacterium sp. The M. montefiorense-related species dominating the pyrene-utilizing cultures enriched from the acidic soils was also the dominant Mycobacterium species in the acidic soils. Our data indicate that a slow-growing Mycobacterium species is involved in PAH degradation in that culture and show that bacteria able to degrade high-molecular-weight PAHs at low pH are present in acidic PAH-contaminated soil. PMID:17369339
Marzi Khosrowshahi, Elnaz; Razmi, Habib
2018-02-08
A green biocomposite of sunflower stalks and graphitic carbon nitride nanosheets has been applied as a solid-phase extraction adsorbent for sample preparation of five polycyclic aromatic hydrocarbons in different solutions using high-performance liquid chromatography with ultraviolet detection. Before the modification, sunflower stalks exhibited relatively low adsorption to the polycyclic aromatic hydrocarbons extraction. The modified sunflower stalks showed increased adsorption to the analytes extraction due to the increase in surface and existence of a π-π interaction between the analytes and graphitic carbon nitride nanosheets on the surface. Under the optimal conditions, the limits of detection and quantification for five polycyclic aromatic hydrocarbons compounds could reach 0.4-32 and 1.2-95 ng/L, respectively. The method accuracy was evaluated using recovery measurements in spiked real samples and good recoveries from 71 to 115% with relative standard deviations of <10% have been achieved. The developed method was successfully applied for polycyclic aromatic hydrocarbons determination in various samples-well water, tap water, soil, vegetable, and barbequed meat (kebab)-with analytes contents ranging from 0.065 to 13.3 μg/L. The prepared green composite as a new sorbent has some advantages including ease of preparation, low cost, and good reusability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The hazard for photoactivated toxicity of polycyclic aromatic hydrocarbons (PAHs) has been clearly demonstrated; however, to our knowledge, the risk in contaminated systems has not been characterized. To address this question, a median lethal dose (LD50) for fluoranthene photoa...
Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.
We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...
In evaluating the risk posed by chemicals introduced into the environment, information
about their molecular mechanism of action provides a basis for extrapolating from the
laboratory to the environment. Polycyclic aromatic hydrocarbons (PAH) are a large class
of...
POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)
The effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...
The roles and relative importance of nonpyrogenic organic carbon (NPOC) and black carbon (BC) as binding phases of polycyclic aromatic hydrocarbons (PAHs) were assessed by their ability to estimate pore water concentrations and biological uptake in various marine sediments. Sedim...
Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calcu...
EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of polycyclic aromatic hydrocarbon (PAH) mixtures that when finalized will appear on the Integrated Risk Information System (IRIS) database. ...
ERIC Educational Resources Information Center
Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.
2014-01-01
This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…
SOLAR RADIATION DOSE AND PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A CASE STUDY
The toxicity of polycyclic aromatic hydrocarbons increases by as much as three orders of magnitude in the presence of solar radiation. The risk of this photoactive toxicity is thus based on both tissue concentrations of potentially photo activated compounds and the levels of subs...
Abstract
Trends of polycyclic aromatic hydrocarbons (PAHs) for 1992-1996 (cold season) and their mutagenic activity were investigated in organic extracts from the Santiago. Chile. inhalable particles (PM10). The highest PAH concentrations were observed in 1992 and decline...
PERSONAL EXPOSURE TO FINE PARTICLE POLYCYCLIC AROMATIC HYDROCARBONS: OUTDOOR SOURCE TRACERS
The most carcinogenic and toxic polycyclic aromatic hydrocarbons (PAH) are the 4-5 ring PAH found preferentially adsorbed to the fine particles (<2.54u in urban ambient air and personal air. Personal exposure to the carcinogenic particle bound PAH is also highly correlated ...
POLYCYCLIC AROMATIC HYDROCARBON BIODEGRADATION AS A FUNCTION OF OXYGEN TENSION IN CONTAMINATED SOIL
Laboratory tests were conducted to determine the effect of soil gas oxygen concentration on the degradation and mineralization of spiked 14C-pyrene and nonspiked 16 priority pollutant polycyclic aromatic hydrocarbons (PAH) present in the soil. The soil used for the evaluation was...
THE RATES OF POLYCYCLIC AROMATIC HYDROCARBON EMISSIONS FROM INCENSE BURNING
The paper presents the results of experiments performed to determine the amounts of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHS) in incense smoke. Ten brands of incense, 3 of stick, 2 of joss stick, and one each of cone, smudge bundle, rope, powder, and rock, w...
The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... a Public Teleconference of the Science Advisory Board; Polycyclic Aromatic Hydrocarbon (PAH... Hydrocarbon (PAH) Mixtures Review Panel to discuss its draft report on EPA's Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures. DATES: The SAB PAH Mixtures...
ERIC Educational Resources Information Center
Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.
2004-01-01
A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.
The sorption of polycyclic aromatic hydrocarbons (PAHs) to soot carbon in marine sediments has been hypothesized to reduce PAH bioavailability. This hypothesis was tested for eight species of marine benthic invertebrates (four polychaete worms, Clymenella torquata, Nereis virens,...
The bioavailability of polycyclic aromatic hydrocarbons (PAHs) to benthic organisms is complicated by the variety of ways that they are introduced to coastal waters (dissolved, as nonaqueous phase liquids, and tightly bound to soot, coal, tire rubber, and eroded shale). In order ...
This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...
METHODOLOGY OF AMBIENT AIR MONITORING FOR POLYCYCLIC AROMATIC HYDROCARBONS
In the last decade, several studies of polycyclic aromatic hydrocarbons (PAH) in ambient air in the U.S. specifically investigated (1) the sampling efficiency of two sorbents for PAH in air: XAD-2 and polyurethane foam (PUP); (2) the storage stability of PAH on quartz fiber fil...
Subcritical water (hot water under enough pressure to maintain the liquid
state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides
from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were
used to determine conditions f...
Iwegbue, Chukwujindu M A
2011-10-01
The concentrations and profiles of polycyclic aromatic hydrocarbons were determined in spent drilling fluid deposited at Emu-Uno, Delta State of Nigeria. The total concentrations of polycyclic aromatic hydrocarbons in the spent drilling fluid deposits ranged between 40 and 770 μg kg(-1). The PAHs profile were predominantly 2- and 3-rings with acenaphthalene, phenanthrene, fluorene being the predominant PAHs. The prevalence of 2- and 3-rings PAHs in the spent drilling fluid deposits indicate contamination of the drilling fluids with crude oil during drilling. Incorporation of spent drilling fluids into the soil has serious implication for soil, surface water and groundwater quality. © Springer Science+Business Media, LLC 2011
The bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) by the filter-feeding soft-shell clam Mya arenaria was evaluated at three sites near Boston (MA, USA) by assessing the chemical activities of those hydrophobic organic compounds (H...
Real-time monitors and low-volume air samplers were used to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. Three...
Role of sooty mold fungi in degradation of polycycllic aromatic hydrocarbons (PAHS) in soil
Venera A. Jouraeva; David L. Johnson; John P. Hassett; David J. Nowak; Natalia A. Shipunova; Dana Barbarossa
2006-01-01
The focus of this research was on elucidation of the role of deciduous tree ecosystems in accumulation of fine-particle-associated polycyclic aromatic hydrocarbons (PAHs) and heavy metals on leaves of deciduous trees. The studied species were Tilia x euchlora (frequently infested by sooty mold fungi) and Pyrus calleryana (...
USDA-ARS?s Scientific Manuscript database
Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...
On February 26, 2010, the draft Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures document and the charge to external peer reviewers were released for external peer review and public comment. The draft document and t...
Estuaries of the southeastern United States not only serve an important nursery function but also are common repositories of polycyclic aromatic hydrocarbons (PAHs) derived from upland activities. Thus, these habitats may be at risk for PAHphototoxicity. To better characterize ...
As part of the Southern California Particle Center and Supersite (SCPCS) activities, we measured, during all seasons, particle size distributions of 12 priority pollutant polycyclic aromatic hydrocarbons (PAHs), concurrently with elemental carbon (EC), organic carbon (OC), sul...
USDA-ARS?s Scientific Manuscript database
A multi-class, multi-residue method for the analysis of 13 novel flame retardants, 18 representative pesticides, 14 polychlorinated biphenyl (PCB) congeners, 16 polycyclic aromatic hydrocarbons (PAHs), and 7 polybrominated diphenyl ether (PBDE) congeners in catfish muscle was developed and evaluated...
Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous, anthropogenic chemicals found in the environment. In the present study, computational methods are used to evaluate their potential estrogenicity and the contribution chemicals in this class make to environmental e...
Polycyclic aromatic hydrocarbons are a large class of anthropogenic chemicals found in the environment. Some class members are potent animal carcinogens while other similar class members show little carcinogenic activity. When considering a series of in vitro studies of the int...
Photo-induced toxicity (PIT) of polycyclic aromatic hydrocarbons (PAH) has been documented in laboratory studies for both invertebrate and vertebrate aquatic organisms. PIT has not been verified in field studies for larval fish to date. Filtered water samples and larval fish were...
Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides
The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...
Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil
USDA-ARS?s Scientific Manuscript database
A method for the determination of the 16 USEPA polycyclic aromatic hydrocarbons (PAHs) in biochar and soil amended with biochar was developed. Samples were Soxhlet extracted with acetone:cyclohexane 1:1, and PAHs were analysed by GC-MS after silica gel clean-up. In a comparative study based on reflu...
Polycyclic aromatic hydrocarbons (PAHs) comprise a class of potentially hazardous compounds of concern to the U.S.EPA. The application of particle-beam (PB) liquid chromatography-mass spectrometry (LC-MS) to the measurement of high-molecular-weight PAHs was investigated. Instrume...
Ingestion of contaminated soil is an exposure pathway at approximately one-half of the Superfund sites in the United States. This study was designed to evaluate the impacts of aging in soil on the availability of polycyclic aromatic hydrocarbons (PAHs). Two coal tar (CT)-amended ...
Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system
Rostad, C.E.; Pereira, W.E.; Hult, M.F.
1985-01-01
Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.
Preliminary Investigation into Pyrotechnic Chemical Products via Mass Spectrometry Techniques
2015-03-11
i m u m ) Py/GC/MS: PVC 11 • Pyrolysis of PVC exclusively yield cyclic hydrocarbons – 24.3% benzyl derivatives and 75.6% polycyclic aromatic ...Determination of EPA’s priority pollutant polycyclic aromatic hydrocarbons in drinking waters by solid phase extraction-HPLC” Bruzzoniti et al., Anal... aromatic hydrocarbons (PAH) – 42.3% hydrocarbons , 53.5% phenols, 4.7% nitrogen-containing O NH OH OH N DISTRIBUTION STATEMENT A. Approved for public
Zimmerman, S C; Saionz, K W; Zeng, Z
1993-01-01
The synthesis of hosts with improved binding affinities for nitroaromatic guests is described. Association constants for several host-guest complexes were measured in chloroform solution and ranged over three orders of magnitude. Two hosts were covalently linked to silica gel to produce chemically bonded stationary phases for HPLC. The use of these phases for HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons is discussed. PMID:8433981
Wang, ShuLing; Xu, Hui
2016-12-01
An inorganic-organic hybrid nanocomposite (zinc oxide/polypyrrole) that represents a novel kind of coating for in-tube solid-phase microextraction is reported. The composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless-steel tube. Based on the coated tube, a novel online in-tube solid-phase microextraction with liquid chromatography and mass spectrometry method was developed and applied for the extraction of three monohydroxy polycyclic aromatic hydrocarbons in human urine. The coating displayed good extraction ability toward monohydroxy polycyclic aromatic hydrocarbons. In addition, long lifespan, excellent stability, and good compression resistance were also obtained for the coating. The experimental conditions affecting the extraction were optimized systematically. Under the optimal conditions, the limits of detection and quantification were in the range of 0.039-0.050 and 0.130-0.167 ng/mL, respectively. Good linearity (0.2-100 ng/mL) was obtained with correlation coefficients larger than 0.9967. The repeatability, expressed as relative standard deviation, ranged between 2.5% and 9.4%. The method offered the advantage of process simplicity, rapidity, automation, and sensitivity in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities of Hubei province. An acceptable recovery of monohydroxy polycyclic aromatic hydrocarbons (64-122%) represented the additional attractive features of the method in real urine analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions.
Ugochukwu, Uzochukwu C; Fialips, Claire I
2017-05-01
Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact. Copyright © 2017 Elsevier Ltd. All rights reserved.
Decontamination of metals and polycyclic aromatic hydrocarbons from slag-polluted soil.
Bisone, Sara; Mercier, Guy; Blais, Jean-François
2013-01-01
Metallurgy is an industrial activity that is one of the largest contributors to soil contamination by metals. This contamination is often associated with organic compound contamination; however, little research has been aimed at the development of simultaneous processes for decontamination as opposed to treatments to heavy metals or organic compounds alone. This paper presents an efficient process to decontaminate the soils polluted with smelting by-products rich in Cu, Zn and polycyclic aromatic hydrocarbons (PAHs). A simultaneous treatment for metals and PAHs was also tested. The process is mainly based on physical techniques, such as crushing, gravimetric separation and attrition. For the finest particle size fractions, an acid extraction with H2SO4 was used to remove metals. The PAH removal was enhanced by adding surfactant during attrition. The total metal removals varied from 49% to 73% for Cu and from 43% to 63% for Zn, whereas a removal yield of 92% was measured for total PAHs. Finally, a technical-economic evaluation was done for the two processes tested.
Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro
2016-09-19
The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Geochemistry of polycyclic aromatic hydrocarbons in the bottom sediments of the eastern Arctic shelf
NASA Astrophysics Data System (ADS)
Petrova, V. I.; Batova, G. I.; Kursheva, A. V.; Litvinenko, I. V.; Savinov, V. M.; Savinova, T. N.
2008-04-01
Sources and pathways of supply of polycyclic aromatic hydrocarbons (PAH) in the surface sediments of the Laptev and East Siberian seas were identified based on an analysis of the lithological-geochemical characteristics and distribution of organic matter (OM). The distribution of organic carbon, humic acids, bitumoids, and hydrocarbons demonstrates the determining role of the riverine runoff in the formation of the recent sediments. The total average content of PAH in the sediments of this region approximates 37 ng/g, not exceeding 80 ng/g of dry sediment. The biogenic components of the PAH (alkylphenanthrenes, alkylchrysenes, perylene) dominate in the estuarine-shelf and coastal-shelf sediments enriched with plant detritus and significantly decrease in the pelagic zone. The anthropogenic influence is observed in sediments of the port of Tiksi, where the total content of PAH with dominant pyrogenic components is two orders of magnitude higher as compared with the background values in the study region.
Kenneth M. Brooks
2004-01-01
Occasionally, creosote-treated railroad ties need to be replaced, sometimes in sensitive environments such as wetlands. To help determine if this is detrimental to the surrounding environment, more information is needed on the extent and pattern of creosote, or more specifically polycyclic aromatic hydrocarbon (PAH), migration from railroad ties and what effects this...
The method for extracting and preparing urine samples for analysis of hydroxy-polycyclic aromatic hydrocarbons, pentachlorophenol and 2,4-D is summarized in this SOP. It covers the extraction, concentration and methylation of samples that are to be analyzed by gas chromatography/...
Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...
Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A
2014-03-01
A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(-)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three- and two-aromatic ring products. The structurally similar four- and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(-)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Saeedi, Mohsen; Li, Loretta Y; Grace, John R
2018-05-15
The effects of soil components such as clay minerals and as humic acids, as well as co-existing metals and polycyclic aromatic hydrocarbons, on desorption and mobility are examined. Three types of artificially blended clay and clay mineral mixtures (pure kaolinite, kaolinite + sand and kaolinite + sand + bentonite), each with different humic acid content, were tested for desorption and mobility of acenaphthene, fluorene and fluoranthene by three extracting solutions CaCl 2 (0.01 M) and EDTA (0.01M) with non-ionic surfactants (Tween 80 and Triton X100). Heavy metals (Ni, Pb and Zn) were also studied for desorption and mobility. The influence of co-present metals on simultaneous desorption and mobility of PAHs was investigated as well. The results showed that <10% of metals in the clay mineral mixtures were mobile. Combined EDTA and non-ionic solutions can enhance the desorption and mobility of PAHs to >80% in clay mineral mixtures containing no sand, while in the same soils containing ∼40% sand, the desorption exceeded 90%. Heavy metals, as well as increasing humic acids content in the clay mineral mixtures, decreased the desorption and mobility of PAHs, especially for soils containing no sand, and for fluoranthene compared with fluorene and acenaphthene. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Feidi; Zhang, Haijun; Geng, Ningbo; Ren, Xiaoqian; Zhang, Baoqin; Gong, Yufeng; Chen, Jiping
2018-03-01
The combined toxicity of mixed chemicals is usually evaluated according to several specific endpoints, and other potentially toxic effects are disregarded. In this study, we provided a metabolomics strategy to achieve a comprehensive understanding of toxicological interactions between mixed chemicals on metabolism. The metabolic changes were quantified by a pseudotargeted analysis, and the types of combined effects were quantitatively discriminated according to the calculation of metabolic effect level index (MELI). The metabolomics strategy was used to assess the combined effects of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs) on the metabolism of human hepatoma HepG2 cells. Our data suggested that exposure to a combination of PAHs and SCCPs at human internal exposure levels could result in an additive effect on the overall metabolism, whereas diverse joint effects were observed on various metabolic pathways. The combined exposure could induce a synergistic up-regulation of phospholipid metabolism, an additive up-regulation of fatty acid metabolism, an additive down-regulation of tricarboxylic acid cycle and glycolysis, and an antagonistic effect on purine metabolism. SCCPs in the mixture acted as the primary driver for the acceleration of phospholipid and fatty acid metabolism. Lipid metabolism disorder caused by exposure to a combination of PAHs and SCCPs should be an important concern for human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang
2014-05-21
In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).
Arens, Collin J; Arens, Jennifer C; Hogan, Natacha S; Kavanagh, Richard J; Berrue, Fabrice; Van Der Kraak, Glen J; van den Heuvel, Michael R
2017-08-01
Biological and chemical endpoints were measured in white sucker collected downstream of Athabasca oil sands developments (AB, Canada) and compared with those at Calling Lake (AB, Canada), a reference location upstream of the Athabasca oil sands deposit. Naphthenic acid concentrations were also measured at 14 sites in the Athabasca River watershed. Concentrations of naphthenic acids were elevated in tributaries adjacent to oil sands mining developments. Tributary naphthenic acid profiles were more similar to aged oil sands process water than samples from the Athabasca River, suggesting an influence of tailings in the tributaries. White sucker showed higher energy storage in the Athabasca River as indicated by significantly higher condition and liver size. White sucker were not investing that energy into reproductive effort as measured by gonad size and fecundity, which were significantly reduced relative to the reference location. White sucker showed increased exposure to polycyclic aromatic hydrocarbons as indicated by hepatic cytochrome P4501A (CYP1A) activity and fluorescent bile metabolites, as well as higher concentrations of naphthenic acids in bile. Cadmium, copper, nickel, and selenium were also elevated in white sucker liver tissue compared with the reference location. Based on the exposure profile and response pattern observed, effects on energy storage and utilization in white sucker from the Athabasca River most likely resulted from exposure to polycyclic aromatic hydrocarbons derived from petrogenic and pyrolytic sources. Environ Toxicol Chem 2017;36:2058-2067. © 2017 SETAC. © 2017 SETAC.
Hamedi, Raheleh; Hadjmohammadi, Mohammad Reza
2017-09-01
A novel design of hollow-fiber liquid-phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol-gel technique, was developed for the pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid- and liquid-phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01-500 ng/mL and the limits of detection were in the range of 0.007-1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85-92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deng, Siyun; Deng, Qifei; Hu, Die; Li, Jun; Zhu, Xiaoyan; Guo, Huan; Wu, Tangchun
2014-06-01
To analyze the relationship between metabolites of polycyclic aromatic hydrocarbons (PAHs) and serum uric acid levels in coke oven workers and to provide new clues to the pathogenic mechanism of PAHs. A total of 1302 coke oven workers were divided into four groups, namely control group and low-, intermediate-, and high-dose exposure groups. The concentrations of ambient PAHs at each workplace were determined by high-performance liquid chromatography. The detailed information on the occupational history and health of workers was collected by questionnaire survey and physical examination, and so were their blood and urine samples. Serum uric acid and creatinine levels were measured using a Hitachi 7020 automatic biochemical analyzer. Ten urinary PAH metabolites were detected by gas chromatography-mass spectrometry. Serum uric acid levels were the highest in the high-dose exposure group, followed by the intermediate- and low-dose exposure groups, and were the lowest in the control group. There were significant correlations between serum uric acid levels and the quartiles of 1-hydroxynaphthalene and 1-hydroxyphenanthrene (P < 0.05). After adjustment for PAH metabolite-related relationship, only urinary 1-hydroxyphenanthrene was significantly correlated with serum uric acid levels (P = 0.001). After adjustment for confounding factors and using the 1st quartile of 1-hydroxyphenanthrene as a reference, the odds ratio for hyperuricemia in subjects with the 2nd, 3rd, and 4th quartiles of 1-hydroxyphenanthrene were 1.55, 1.57, and 2.35, respectively. Urinary 1-hydroxyphenanthrene is associated with a dose-response increase in serum uric acid levels in coke oven workers, and exposure to phenanthrene in PAHs may be a risk factor for hyperuricemia.
Gaviño, Maria; Hermosin, Bernardo; Vergès-Belmin, Véronique; Nowik, Witold; Saiz-Jimenez, Cesareo
2004-05-01
The organic fraction of black crusts from Saint Denis Basilica, France, is composed of a complex mixture of aliphatic and aromatic compounds. These compounds were studied by two different analytical approaches: tetramethyl ammonium hydroxide (TMAH) thermochemolysis in combination with gas chromatography-mass spectrometry (GC-MS), and solvent extraction, fractionation by silica column, and identification of the fraction components by GC-MS. The first approach, feasible at the microscale level, is able to supply fairly general information on a wide range of compounds. Using the second approach, we were able to separate the complex mixture of compounds into four fractions, enabling a better identification of the extractable compounds. These compounds belong to different classes: aliphatic hydrocarbons (nalkanes, n-alkenes), aliphatic and aromatic carboxylic acids (n-fatty acids, alpha,omega-dicarboxylic acids, and benzenecarboxylic acids), polycyclic aromatic hydrocarbons (PAH), and molecular biomarkers (isoprenoid hydrocarbons, diterpenoids, and triterpenoids). With each approach, similar classes of compounds were identified, although TMAH thermochemolysis failed to identify compounds present at low concentrations in black crusts. The two proposed methodological approaches are complementary, particularly in the study of polar fractions.
Brasholz, Malte
2017-08-21
Donation welcome: Recent developments in visible-light photocatalysis allow the utilization of increasingly negative reduction potentials. Successive energy and electron transfer with polycyclic aromatic hydrocarbons enables the catalytic formation of strongly reducing arene radical anions, classical stoichiometric reagents for one-electron reduction in organic synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moss as bio-indicators of human exposure to polycyclic aromatic hydrocarbons in Portland, OR
Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Vicente J. Monleon
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) are a class of air pollutants linked to a wide range of adverse health outcomes, including asthma, cancers, cardiovascular disease, and fetal growth impairment. PAHs are emitted by combustion of organic matter (e.g. fossil fuels, plant biomass) and can accumulate in plant and animal tissues over time. Compared to criteria...
Polycyclic aromatic hydrocarbons (PAHs) were analyzed as adsorbates on borosilicate glass at levels from 40 pg (5.5 pg mm-2) to 7
g (1
Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health
Mahler, B.J.; Van Metre, P.C.
2011-01-01
Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.
Ariyasena, Thiloka C; Poole, Colin F
2014-09-26
Retention factors on several columns and at various temperatures using gas chromatography and from reversed-phase liquid chromatography on a SunFire C18 column with various mobile phase compositions containing acetonitrile, methanol and tetrahydrofuran as strength adjusting solvents are combined with liquid-liquid partition coefficients in totally organic biphasic systems to calculate descriptors for 23 polycyclic aromatic hydrocarbons and eighteen related compounds of environmental interest. The use of a consistent protocol for the above measurements provides descriptors that are more self consistent for the estimation of physicochemical properties (octanol-water, air-octanol, air-water, aqueous solubility, and subcooled liquid vapor pressure). The descriptor in this report tend to have smaller values for the L and E descriptors and random differences in the B and S descriptors compared with literature sources. A simple atom fragment constant model is proposed for the estimation of descriptors from structure for polycyclic aromatic hydrocarbons. The new descriptors show no bias in the prediction of the air-water partition coefficient for polycyclic aromatic hydrocarbons unlike the literature values. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Kun; Jin, Rongrong; Luo, Chen; Song, Guoxin; Hu, Yaoming; Cheng, Hefa
2018-04-01
A novel adsorbent made of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core-shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.
1999-01-01
Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.
Suzuki, Nobuo; Sato, Masayuki; Nassar, Hossam F; Abdel-Gawad, Fagr Kh; Bassem, Samah M; Yachiguchi, Koji; Tabuchi, Yoshiaki; Endo, Masato; Sekiguchi, Toshio; Urata, Makoto; Hattori, Atsuhiko; Mishima, Hiroyuki; Shimasaki, Youhei; Oshima, Yuji; Hong, Chun-Sang; Makino, Fumiya; Tang, Ning; Toriba, Akira; Hayakawa, Kazuichi
2016-08-01
We have developed an original in vitro bioassay using teleost scale, that has osteoclasts, osteoblasts, and bone matrix as each marker: alkaline phosphatase (ALP) for osteoblasts and tartrate-resistant acid phosphatase (TRAP) for osteoclasts. Using this scale in vitro bioassay, we examined the effects of seawater polluted with highly concentrated polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) on osteoblastic and osteoclastic activities in the present study. Polluted seawater was collected from two sites (the Alexandria site on the Mediterranean Sea and the Suez Canal site on the Red Sea). Total levels of PAHs in the seawater from the Alexandria and Suez Canal sites were 1364.59 and 992.56 ng/l, respectively. We were able to detect NPAHs in both seawater samples. Total levels of NPAHs were detected in the seawater of the Alexandria site (12.749 ng/l) and the Suez Canal site (3.914 ng/l). Each sample of polluted seawater was added to culture medium at dilution rates of 50, 100, and 500, and incubated with the goldfish scales for 6 hrs. Thereafter, ALP and TRAP activities were measured. ALP activity was significantly suppressed by both polluted seawater samples diluted at least 500 times, but TRAP activity did not change. In addition, mRNA expressions of osteoblastic markers (ALP, osteocalcin, and the receptor activator of the NF-κB ligand) decreased significantly, as did the ALP enzyme activity. In fact, ALP activity decreased on treatment with PAHs and NPAHs. We conclude that seawater polluted with highly concentrated PAHs and NPAHs influences bone metabolism in teleosts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Dorian S. N.; Yang, Tao; Dangi, Beni B.
Meteorites contain bio-relevant molecules such as vitamins and nucleobases, which consist of aromatic structures with embedded nitrogen atoms. Questions remain over the chemical mechanisms responsible for the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) in extraterrestrial environments. By exploiting single collision conditions, we show that a radical mediated bimolecular collision between pyridyl radicals and 1,3-butadiene in the gas phase forms nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) 1,4-dihydroquinoline and to a minor amount 1,4-dihydroisoquinoline. The reaction proceeds through the formation of a van der Waals complex, which circumnavigates the entrance barrier implying it can operate at very low kinetic energy and thereforemore » at low temperatures of 10 K as present in cold molecular clouds such as TMC-1. The discovery of facile de facto barrierless exoergic reaction mechanisms leading to PANH formation could play an important role in providing a population of aromatic structures upon which further photo-processing of ice condensates could occur to form nucleobases.« less
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, Louis J.
2003-01-01
Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role aromatic materials play in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbon molecules (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry - are recognized throughout the Universe. In this paper, we will examine the current state of the interstellar PAH model and its utility as a diagnostic tool to derive insight into the nature of the interstellar PAH population. As an example of this application, we will examine the results of our recent spectroscopic studies of polycyclic aromatic nitrogen heterocycles (PANHs)-PAHs with an atom of nitrogen substituted into the aromatic skeleton-and discuss a possible tracer of such species amongst the interstellar PAH emission bands in the latest observational data.
Itouyama, Noboru; Matsui, Taiki; Yamamoto, Shigekazu; Imasaka, Tomoko; Imasaka, Totaro
2016-02-01
Particulate matter 2.5 (PM2.5), collected from ambient air in Fukuoka City, was analyzed by gas chromatography combined with multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. Numerous parent polycyclic aromatic hydrocarbons (PPAHs) were observed in a sample extracted from PM2.5, and their concentrations were determined to be in the range from 30 to 190 pg/m(3) for heavy PPAHs. Standard samples of nitrated polycyclic aromatic hydrocarbons (NPAHs) were examined, and the limits of detection were determined to be in the picogram range. The concentration of NPAH adsorbed on PM2.5 in the air was less than 900-1300 pg/m(3). Graphical Abstract ᅟ.
Anyanwu, Ihuoma N; Ikpikpini, Ojerime C; Semple, Kirk T
2018-01-01
When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14 C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore, 12/14 C-B[a]P and 14 C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons ( 14 C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14 C-B[a]P-N-PAH mineralisation recording <1% in both concentrations (10mgkg -1 and 100mgkg -1 ), over time. This study suggests that the presence of N-PAHs in contaminated soil may impact the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Lifei; Dong, Liang; Ren, Lijun; Shi, Shuangxin; Zhou, Li; Zhang, Ting; Huang, Yeru
2012-01-01
The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated. Fourteen surface water samples were collected in June 2010. Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry. Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L, respectively. Fluoranthene, naphthalene, pyrene, phenanthrene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate were the most abundant compounds in the samples. The water samples were moderately polluted with benzo[a]pyrene according to China's environmental quality standard for surface water. The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake, Wuxi City and the western section of Yangchenghu Lake. Potential sources of pollution at S7 were petroleum combustion and the plastics industry, and at Yangchenghu Lake were petroleum combustion and domestic waste. Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines. There were no obvious sources of pollution for the other water samples. These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.
Chen, Weixiao; Wang, Hui; Gao, Qian; Chen, Yin; Li, Senlin; Yang, Yu; Werner, David; Tao, Shu; Wang, Xilong
2017-11-01
To elucidate the environmental fate of polycyclic aromatic hydrocarbons (PAHs) once released into soil, sixteen humic acids (HAs) and one humin (HM) fractions were sequentially extracted from a peat soil, and sixteen priority PAHs in these humic substances (HSs) were analyzed. It was found that the total concentration of 16 PAHs (∑16PAHs) increased evidently from HA1 to HA16, and then dramatically reached the highest value in HM. The trend of ∑16PAHs in HAs relates to surface carbon and C-H/C-C contents, the bulk aliphatic carbon content and aliphaticity, as well as the condensation enhancement of carbon domains, which were derived from elemental composition, XPS, 13 C NMR, as well as thermal analyses. HM was identified to be the dominant sink of 16 PAHs retention in soil, due to its aliphatic carbon-rich chemical composition and the highly condensed physical makeup of its carbon domains. This study highlights the joint roles of the physical and chemical properties of HSs in retention of PAHs in soil and the associated mechanisms; the results are of significance for PAH-polluted soil risk assessment and remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Saint-Louis, Carl Jacky; Shavnore, Renée N; McClinton, Caleb D C; Wilson, Julie A; Magill, Lacey L; Brown, Breanna M; Lamb, Robert W; Webster, Charles Edwin; Schrock, Alan K; Huggins, Michael T
2017-12-13
Nine new polycyclic aromatic BN-1,2-azaborine analogues containing the N-BOH moiety were synthesized using a convenient two-step, one-pot procedure. Characterization of the prepared compounds show the luminescence wavelength and the quantum yields of the azaborines were tunable by controlling the power and location of the donor and acceptor substituents on the chromophore. UV-visible spectroscopy and density functional theory (DFT) computations revealed that the addition of electron-donating moieties to the isoindolinone hemisphere raised the energy of the HOMO, resulting in the reduction of the HOMO-LUMO gap. The addition of an electron-accepting moiety to the isoindolinone hemisphere and an electron-donating group to the boronic acid hemisphere decreased the HOMO-LUMO gap considerably, leading to emission properties from partial intramolecular charge transfer (ICT) states. The combined effect of an acceptor on the isoindolinone side and a donor on the boronic acid side (strong acceptor-π-donor) gave the most red-shifted absorption. The polycyclic aromatic BN-1,2-azaborines emitted strong fluorescence in solution and in the solid-state with the largest red-shifted emission at 640 nm and a Stokes shift of Δλ = 218 nm, or Δν = 8070 cm -1 .
Yassaa, N; Meklati, B Y; Cecinato, A; Marino, F
2001-10-01
The organic compositions of atmospheric particulate matter from Bab-Ezzouar (Algiers) have been investigated to assess the air pollution levels suspected to be caused by asphalt product and yeast manufactures. After a medium-volume air sampling, soxhlet extraction, alumina elution and HPLC separation, the extracts were analysed by high-resolution gas chromatography (HRGC) and gas chromatography coupled to mass spectrometry (GC-MS). The composition of n-alkane and polycyclic aromatic hydrocarbons (PAH) fractions reflected the petrogenic origin from the emission of asphalt materials production in addition to vascular plant wax emissions. In contrast, microbial activities seemed to play the main role for the presence of n-alkanoic acids at Bab-Ezzouar. The sole nitrated polycyclic aromatic hydrocarbons (NPAH) observed, i.e., 2-nitrofluoranthene (2NFA), was very likely to arise from gas-phase photochemical reaction of parent PAH in the atmosphere. The total aerial levels ranged from 75 to 206 ng m(-3) for n-alkanes, from 153 to 345 ng m(-3) for n-alkanoic acids and from 44 to 100 ng m(-3) for PAH and NPAH. Although the samples were collected during the hot season, the levels of these pollutants seemed to be important and of environmental concern, especially for PAH species.
Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems
NASA Astrophysics Data System (ADS)
Kulli, V. R.; Stone, Branden; Wang, Shaohui; Wei, Bing
2017-05-01
Many types of topological indices such as degree-based topological indices, distance-based topological indices, and counting-related topological indices are explored during past recent years. Among degree-based topological indices, Zagreb indices are the oldest one and studied well. In the paper, we define a generalised multiplicative version of these indices and compute exact formulas for Polycyclic Aromatic Hydrocarbons and jagged-rectangle Benzenoid systems.
Electron energy loss spectra of polycyclic aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Keller, John W.; Coplan, M. A.; Goruganthu, R.
1992-01-01
A survey of the electron energy-loss spectroscopy is reported of gas-phase polycyclic aromatic hydrocarbon (PAH) molecules consisting of up to seven rings where the study is limited to the more thermodynamically stable pericondensed systems. The aim of this work is to obtain absorption profiles (proportional to the oscillator strengths) from the visible to the soft X-ray region near 30 eV.
A thermodynamic analysis of the environmental indicators of natural gas combustion processes
NASA Astrophysics Data System (ADS)
Elsukov, V. K.
2010-07-01
Environmental indicators of the natural gas combustion process are studied using the model of extreme intermediate states developed at the Melent’ev Institute of Power Engineering Systems. Technological factors responsible for generation of polycyclic aromatic hydrocarbons and hydrogen cyanide are revealed. Measures for reducing the amounts of polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrogen oxide, and other pollutants emitted from boilers are developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peron, O.; Laboratoire de Nanotechnologie et d'instrumentation Optique, Institut Charles Delaunay, FRE 2848, Universite de technologie de Troyes, 12 rue Marie Curie, 10010 Troyes; Rinnert, E.
2010-08-06
In the investigation of chemical pollutions, such as PAHs (Polycyclic Aromatic Hydrocarbons) at low concentration in aqueous medium, surface-enhanced Raman scattering (SERS) stands for an alternative to the inherent low cross-section of normal Raman scattering. Indeed, SERS is a very sensitive spectroscopic technique due to the excitation of the surface plasmon modes of the nanostructured metallic film.
Polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) are co-pollutants emitted as by-products of combustion processes. Convincing evidence exists for PAHs as a primary toxic component of fine PM (PM2.5). Because PM2.5 is listed by the US EPA a...
Benzo[ a ]pyrene (BP) is a well-studied polycyclic aromatic hydrocarbon (P AH) .Many
mechanisms have been suggested to explain its carcinogenic activity, yet many questions still
remain. K-region dihydrodiols (diols) ofPAHs are common metabolites and some are genotoxic. W...
Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ.
Vishnevetsky, Julia; Tang, Deliang; Chang, Hsin-Wen; Roen, Emily L; Wang, Ya; Rauh, Virginia; Wang, Shuang; Miller, Rachel L; Herbstman, Julie; Perera, Frederica P
2015-01-01
Polycyclic aromatic hydrocarbons are common carcinogenic and neurotoxic urban air pollutants. Toxic exposures, including air pollution, are disproportionately high in communities of color and frequently co-occur with chronic economic deprivation. We examined whether the association between child IQ and prenatal exposure to polycyclic aromatic hydrocarbons differed between groups of children whose mothers reported high vs. low material hardship during their pregnancy and through child age 5. We tested statistical interactions between hardships and polycyclic aromatic hydrocarbons, as measured by DNA adducts in cord blood, to determine whether material hardship exacerbated the association between adducts and IQ scores. Prospective cohort. Participants were recruited from 1998 to 2006 and followed from gestation through age 7 years. Urban community (New York City) A community-based sample of 276 minority urban youth EXPOSURE MEASURE: Polycyclic aromatic hydrocarbon-DNA adducts in cord blood as an individual biomarker of prenatal polycyclic aromatic hydrocarbon exposure. Maternal material hardship self-reported prenatally and at multiple timepoints through early childhood. Child IQ at 7 years assessed using the Wechsler Intelligence Scale for Children. Significant inverse effects of high cord PAH-DNA adducts on full scale IQ, perceptual reasoning and working memory scores were observed in the groups whose mothers reported a high level of material hardship during pregnancy or recurring high hardship into the child's early years, and not in those without reported high hardship. Significant interactions were observed between high cord adducts and prenatal hardship on working memory scores (β = -8.07, 95% CI (-14.48, -1.66)) and between high cord adducts and recurrent material hardship (β = -9.82, 95% CI (-16.22, -3.42)). The findings add to other evidence that socioeconomic disadvantage can increase the adverse effects of toxic physical "stressors" like air pollutants. Observed associations between high cord adducts and reduced IQ were significant only among the group of children whose mothers reported high material hardship. These results indicate the need for a multifaceted approach to prevention. Copyright © 2015 Elsevier Inc. All rights reserved.
Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry.
Hayen, Heiko; Michels, Antje; Franzke, Joachim
2009-12-15
An atmospheric pressure microplasma ionization source based on a dielectric barrier discharge with a helium plasma cone outside the electrode region has been developed for liquid chromatography/mass spectrometry (LC/MS). For this purpose, the plasma was realized in a commercial atmospheric pressure ionization source. Dielectric barrier discharge ionization (DBDI) was compared to conventional electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) in the positive ionization mode. Therefore, a heterogeneous compound library was investigated that covered polar compounds such as amino acids, water-soluble vitamins, and nonpolar compounds like polycyclic aromatic hydrocarbons and functionalized hydrocarbons. It turned out that DBDI can be regarded as a soft ionization technique characterized by only minor fragmentation similar to APCI. Mainly protonated molecules were detected. Additionally, molecular ions were observed for polycyclic aromatic hydrocarbons and derivatives thereof. During DBDI, adduct formation with acetonitrile occurred. For aromatic compounds, addition of one to four oxygen atoms and to a smaller extend one nitrogen and oxygen was observed which delivered insight into the complexity of the ionization processes. In general, compounds covering a wider range of polarities can be ionized by DBDI than by ESI. Furthermore, limits of detection compared to APCI are in most cases equal or even better.
Besser, John M.; Schmitt, Christopher J.; Harshbarger, John C.; Peterman, Paul H.; Lebo, Jon A.
1991-01-01
Sediments from four inshore industrial sites and a reference site in the Great Lakes were extracted with organic solvents to produce a crude extract, which was separated on alumina into two fractions: predominantly polycyclic aromatic hydrocarbons; and predominantly nitrogencontaining polycyclic aromatic compounds. Crude extracts were redissolved in acetone and analyzed by gas chromatography and gas chromatography-mass spectrometry. The acetone-redissolved crude extracts from the four industrialized sites contained 5.6–313.3 μg total polycyclic aromatic compounds/g sediment and 3.0–36.4 μg other compounds/g sediment. In addition to the typical EPA priority pollutants, a substantial amount (228.7 μg/g sediment) of alkyl-polycyclic-aromatic compounds was detected in sediments from one of the industrialized sites. Extracts from the reference site contained 1.55 μg total polycyclic aromatic compounds/ g sediment. Medaka (Oryzias latipes) were exposed to multiple pulse doses of acetone-redissolved extracts and fractions. Medaka were also exposed to a known carcinogen, methylazoxymethanol acetate, to verify that chemicals produced tumors in the test fish. Acetone-redissolved extracts and fractions from contaminated sediments were toxic to medaka. Fin erosion and non-neoplastic liver abnormalities were more prevalent in medaka after exposure to acetoneredissolved extracts and fractions from contaminated sediments. Neoplasms previously associated with chemical exposure in wild fishes were induced in medaka exposed to acetone-redissolved extracts and fractions from two of the contaminated sites, but not from the reference site or controls. These findings further support the hypothesis that chemical contaminants in sediments are involved in epizootics of neoplasms in wild fishes at contaminated sites.
Dominikowska, Justyna; Palusiak, Marcin
2011-07-07
The concept of Clar's π-electron aromatic sextet was tested against a set of polycyclic aromatic hydrocarbons in neutral and doubly charged forms. Systems containing different types of rings (in the context of Clar's concept) were chosen, including benzene, naphthalene, anthracene, phenanthrene and triphenylene. In the case of dicationic structures both singlet and triplet states were considered. It was found that for singlet state dicationic structures the concept of aromatic sextet could be applied and the local aromaticity could be discussed in the context of that model, whereas in the case of triplet state dicationic structures Clar's model rather failed. Different aromaticity indices based on various properties of molecular systems were applied for the purpose of the studies. The discussion about the interdependence between the values of different aromaticity indices applied to neutral and charged systems in singlet and triplet states is also included. This journal is © the Owner Societies 2011
Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions
Coates, J.D.; Anderson, R.T.; Lovley, D.R.
1996-01-01
[14C]naphthalene and phenanthrene were oxidized to 14CO2 without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.
Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao
2015-01-01
An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya
2016-06-01
Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reyes-Gallardo, Emilia M; Lucena, R; Cárdenas, S; Valcárcel, M
2014-06-06
In this article, the easy synthesis of magnetic nanoparticles-nylon 6 composite is presented, characterized and applied in the microextraction field. The one-step synthesis of the composite is performed by a solvent changeover playing with the different solubility of the polymeric network in formic acid and water. The new material has been characterized by different techniques including infrared spectroscopy, transmission and scanning microscopy. The extraction performance of the composite under a dispersive micro solid phase extraction format has been evaluated by determining four polycyclic aromatic hydrocarbons (benzo[b]fluoranthene, fluoranthene, indeno[1,2,3-cd]pyrene and phenanthrene) in water using ultra performance liquid chromatography (UPLC) combined with photo diode array detection. The developed methodology allows the determination of the analytes with limits of detection in the range from 0.05 μg/L (benzo[b]fluoranthene) to 0.58 μg/L (phenanthrene). The repeatability of the method was better than 6.9% at the limit of quantification level. The relative recoveries varied in the interval 80-111%. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Ying; Li, Fangmin; Li, Fanxiu; Yuan, Fuqian; Wei, Pingfang
2015-12-01
The effects of ultrasonic irradiation, the chelating agent modified Fenton reaction, and a combination of ultrasound and the Fenton method in removing petroleum contaminants from a soil were studied. The results showed that the contaminant removal rate of the Fenton treatment combined with an oxalic acid chelating agent was 55.6% higher than that without a chelating agent. The average removal rate of the contaminants using the ultrasound-Fenton treatment was 59.0% higher than that without ultrasonic treatment. A combination of ultrasound and an Fe(2+)/Fe(3+)-oxalate complex-modified Fenton reagent resulted in significantly higher removal rates of n-alkanes (C(n)H(2n+2), n < 28), isoprenoid hydrocarbons, aromatic hydrocarbons, and saturated polycyclic terpenes compared with the ultrasound treatment alone or the Fenton method. The Fenton reaction and the ultrasound-Fenton treatment can unselectively remove multiple components of residual hydrocarbons and a number of benzene rings in polycyclic aromatic hydrocarbons. The chemistry of the heterocyclic compounds and the position and number of substituents can affect the degradation process.
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Xu, Zhanqiang; Si, Weili; Oniwa, Kazuaki; Bao, Ming; Yamamoto, Yoshinori; Jin, Tienan
2017-04-01
The extended polycyclic aromatic hydrocarbons (PAHs) have received significant interdisciplinary attention due to their semiconducting applications in diverse organic electronics as well as intriguing structural interests of well-defined graphene segments. Herein, a highly efficient oxidative spirocyclization and 1,2-aryl migration tandem synthetic method for the construction of extended polyaromatic hydrocarbons (PAHs) has been developed. The CuCl-catalyst/PhCO3 tBu or DDQ oxidation system in the presence of trifluoroacetic acid enables the selective single-electron oxidation to take place preferentially at the more electron-rich alkene moiety of o-biphenylyl-substituted methylenefluorenes, giving rise to the subsequent tandem process. A variety of structurally diverse extended PAHs including functionalized dibenzo[g,p]chrysenes, benzo[f]naphtho[1,2-s]picene, hexabenzo[a,c,fg,j,l,op]tetracene, tetrabenzo[a,c,f,m]phenanthro[9,10-k]tetraphene, tetrabenzo[a,c,f,k]phenanthro[9,10-m]tetraphene, tetrabenzo[a,c,f,o]phenanthro[9,10-m]picene and S-type helicene have been readily synthesized.
Chien, Y C; Yang, S H
2013-01-01
Polycaprolactone (PCL) is one of the most attractive biodegradable plastics that has been widely used in medicine and agriculture fields. Because of the large increase in biodegradable plastics usage, the production of waste biodegradable plastics will be increasing dramatically, producing a growing environmental problem. Generally, waste PCL is collected along with municipal solid wastes and then incinerated. This study investigates the combustion kinetics and emission factors of 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) in the PCL combustion. Experimentally, two reactions are involved in the PCL combustion process, possibly resulting in the emission of carbon dioxide, propanal, protonated caprolactone and very small amounts of PAH produced by incomplete combustion. The intermediate products may continuously be oxidized to form CO2. The emission factors for 16 US EPA priority PAHs are n.d. -2.95 microg/g, which are much lower than those of poly lactic acid and other plastics combustion. The conversion of PCL is 100%. Results from this work suggest that combustion is a good choice for the waste PCL disposal.
Lloyd-Jones, G; Lau, P C
1997-01-01
Homologs of the glutathione S-transferase (GST)-encoding gene were identified in a collection of aromatic hydrocarbon-degrading Sphingomonas spp. isolated from New Zealand, Antarctica, and the United States by using PCR primers designed from the GST-encoding gene of Sphingomonas paucimobilis EPA505. Sequence analysis of PCR fragments generated from these isolates and of the GST gene amplified from DNA extracted from polycyclic aromatic hydrocarbon (PAH)-contaminated soil revealed a high degree of conservation, which may make the GST-encoding gene a potentially useful marker for PAH-degrading bacteria. PMID:9251217
Tandem enyne metathesis-Diels-Alder reaction for construction of natural product frameworks.
Rosillo, Marta; Domínguez, Gema; Casarrubios, Luis; Amador, Ulises; Pérez-Castells, Javier
2004-03-19
Enynes connected through aromatic rings are used as substrates for metathesis reactions. The reactivity of three ruthenium carbene complexes is compared. The resulting 1,3-dienes are suitable precursors of polycyclic structures via a Diels-Alder process. Some domino RCM-Diels-Alder reactions are performed, suggesting a possible beneficial effect of the ruthenium catalyst in the cycloaddition process. Other examples require Lewis acid cocatalyst. When applied to aromatic ynamines or enamines, a new synthesis of vinylindoles is achieved. Monitorization of several metathesis reactions with NMR shows the different behavior for ruthenium catalysts. New carbenic species are detected in some reactions with an important dependence on the solvent used.
Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin
2015-08-01
In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.
Polycyclic aromatic hydrocarbons in some grounded coffee brands.
Grover, Inderpreet Singh; Sharma, Rashmi; Singh, Satnam; Pal, Bonamali
2013-08-01
Potentially toxic 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined in four brands of grounded coffee. Four to 13 PAHs were detected. Concentrations of total PAHs in different brands of coffee samples were in the range of 831.7-1,589.7 μg/kg. Benzo[a]pyrene (2A: probable human carcinogen) was found in Nescafe Premium whereas naphthalene (2B: possible human carcinogen) was found in all the samples of coffee.
Observational aspects of polycyclic aromatic hydrocarbon charging in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Bakes, E. L. O.; Tielens, Alexander G. G. M.
1995-01-01
We have investigated the charging processes which affect small carbonaceous dust grains and polycyclic aromatic hydrocarbons (PAH's). Because of their high abundance, interstellar PAH molecules can dominate the charge balance of the interstellar medium (ISM), which controls the heating and cooling interstellar gas and interstellar chemistry. We present the results of our model, which compare well with observations and suggest further applications to both laboratory measurements and data obtainable from the KAO.
Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons (PAHs) in Nansi Lake
NASA Astrophysics Data System (ADS)
Zhang, Guizhai; Diao, Youjiang
2018-06-01
Based on field data of polycyclic aromatic hydrocarbons (PAHs) in water and sediment in Nansi Lake. The concentrations and the partitioning characteristic of PAHs in the water and sediment were studied. The lgKd of high molecular weight PAHs were higher than the low molecular weight PAHs. The most of PAHs Kd values were negligible correlated with TOC, soluble salt, clay and pH of the sediment in Nansi Lake.
Chung, N J; Cho, J Y; Park, S W; Park, B J; Hwang, S A; Park, T I
2008-08-01
The effects of domestic wastewater application on the translocation and accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil and crops (rice, lettuce, and barley) were investigated by Wagner's pot experiment. In the soils and crops after domestic wastewater irrigation, high-molecular weight PAHs (5 to 6 ring) were not detected, but low-molecular weight PAHs (3 to 4 ring) were only detected at trace levels.
Monitoring of vapor phase polycyclic aromatic hydrocarbons
Vo-Dinh, Tuan; Hajaligol, Mohammad R.
2004-06-01
An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.
Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources.
Sanches, S; Leitão, C; Penetra, A; Cardoso, V V; Ferreira, E; Benoliel, M J; Crespo, M T Barreto; Pereira, V J
2011-09-15
The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm(2), anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Babić, J.; Vidaković, S.; Škaljac, S.; Kartalović, B.; Ljubojević, D.; Ćirković, M.; Teodorović, V.
2017-09-01
Smoking techniques have been progressively improved and different procedures have been developed in different regions for treating fish. In these times, the technology is mainly used for enrichment of fish with specific taste and odour, to extend the shelf-life of these perishable products and appearance required widely on the market. A lot of chemical contaminants such as polycyclic aromatic hydrocarbons (PAHs) are formed during the combustion of fuel in the smoking process. PAHs are a group of compounds that have been the subject of great concern in the recent years due to their toxic, mutagenic and/or carcinogenic potentials to humans. These fact can have a significant impact on the acceptance of these products by consumers. In this review article, the objective is to describe factors affecting elimination of polycyclic aromatic hydrocarbons from traditional smoked common carp meat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.; Gatchell, M.; Stockett, M. H.
2014-06-14
We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH{sup +}) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH{sup +} + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C{sub 6}H{sub 5}). Thus nonstatistical fragmentation may be an effectivemore » initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.« less
Ingredients for Life (Artist's Concept)
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure 1: Artist's Conception Symbolically Represents Complex Organic Molecules This artist's conception symbolically represents complex organic molecules, known as polycyclic aromatic hydrocarbons, seen in the early universe. These large molecules, comprised of carbon and hydrogen, are considered among the building blocks of life. NASA's Spitzer Space Telescope is the first telescope to see polycyclic aromatic hydrocarbons so early -- 10 billion years further back in time than seen previously. Spitzer detected these molecules in galaxies when our universe was one-fourth of its current age of about 14 billion years. These complex molecules are very common on Earth. They form any time carbon-based materials are not burned completely. They can be found in sooty exhaust from cars and airplanes, and in charcoal broiled hamburgers and burnt toast. Polycyclic aromatic hydrocarbons are pervasive in galaxies like our own Milky Way, and play a significant role in star and planet formation.Renal cancer risk and occupational exposure to polycyclic aromatic hydrocarbons and plastics
Karami, Sara; Boffetta, Paolo; Brennan, Paul; Stewart, Patricia A.; Zaridze, David; Matveev, Vsevolod; Janout, Vladimir; Kollarova, Helena; Bencko, Vladimir; Navratilova, Marie; Szeszenia-Dabrowska, Neonila; Mates, Dana; Gromiec, Jan P.; Sobotka, Roman; Chow, Wong-Ho; Rothman, Nathaniel; Moore, Lee E.
2011-01-01
Objective To investigate whether occupational exposure to polycyclic aromatic hydrocarbons and certain plastic monomers increased renal cell carcinomas (RCC) risk. Methods Unconditional logistic regression was used to calculate RCC risk in relation to exposure. Results No association between RCC risk and having ever been occupationally exposed to any polycyclic aromatic hydrocarbons or plastics was observed. Duration of exposure and average exposure also showed no association with risk. Suggestive positive associations between RCC risk and cumulative exposure to styrene (P-trend = 0.02) and acrylonitrile (P-trend = 0.06) were found. Cumulative exposure to petroleum/gasoline engine emissions was inversely associated with risk (P-trend = 0.02). Conclusions Results indicate a possible association between occupational styrene and acrylonitrile exposure and RCC risk. Additional studies are needed to replicate findings, as this is the first time these associations have been reported and they may be due to chance. PMID:21270648
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, Wren; Sephton, Mark A., E-mail: w.montgomery@imperial.ac.uk
2016-03-01
The influence of polycyclic aromatic nitrogen heterocycles (PANHs), which have been suggested as contributors to the interstellar IR emission bands, on interstellar emission features is difficult to constrain because their infrared characteristics are strongly similar to those for polycyclic aromatic hydrocarbons (PAHs). One possible solution is to seek a means of visualizing the presence of PANHs that provides information that is distinct from that for PAHs. Although PANHs and PAHs have similar infrared characteristics in many settings, this relationship may not be universally maintained. We have used in situ high-pressure synchrotron-source Fourier transform infrared spectroscopy to determine that the responsesmore » of two representative molecules, acridine and anthracene, differ at high pressures (>ca. 1 GPa). Because there are a number of high-pressure environments that can be remotely observed by infrared spectroscopy, they represent a potential to glimpse the distribution of PANHs across the cosmos.« less
Self-assembled electrical materials from contorted aromatics
NASA Astrophysics Data System (ADS)
Xiao, Shengxiong
This thesis describes the design, synthesis, self-assembly and electrical properties of new types of contorted polycyclic aromatic hydrocarbons. These topologically interesting contorted aromatics show promising transistor characteristics as new building blocks for organic field-effect transistors (OFETs) at different length scales. In chapter 2, a class of pentacenes that are substituted along their long edges with aromatic rings were synthesized. Their solid-state assemblies were studied by X-ray crystallography. Their performance as thin film transistors (TFTs) and single crystal field effect transistors (SCFETs) were systematically evaluated. A structure-property relationship between these highly phenylated pentacenes was found. Chapter 3 explores the new concept of whether a non-planar aromatic core could yield efficacious electronic materials, as the ultimate success in the organic electronics will require a holistic approach to creating new building blocks. Synthesis, functionalization and assembly of a new type of contorted hexabenzocoronene (HBC) whose aromatic core is heavily distorted away from planarity due to the steric congestion around its proximal carbons were discussed. Structural studies by X-ray crystallography showed that these HBC molecules stack into columnar structures in the solid state, which are ideal for conduction. Chapter 4 describes that microscale liquid crystalline thin film OFETs of tetradodecyloxy HBC showed the best transistor properties of all discotic columnar materials. Chapter 5 details the fabrication and characterization of nanoscale single crystalline fiber OFETs of octadodecyloxyl HBC. In Chapter 6 we show that a molecular scale monolayer of HBC acid chlorides could be self-assembled on SiO2 insulating layer and could be organized laterally between the ends of 2 nm carbon nanotube gaps to form high quality FETs that act as environmental and chemical sensors. Chapter 7 details the enforced one-dimensional photoconductivity studies of core-cladding HBCs in thin films. Physical properties, such as charge generation, separation/recombination, and transport in HBCs liquid crystalline thin films were discussed. Chapter 8 describes the synthesis and electrical properties of the second generation of contorted aromatics octabenzocircumbiphenyl (OBC). The significant finding about OBCs is that they can be reversibly protonated with Bronsted acids. The significance of those results is that the conductance of the semiconductive thin film could be controlled and attenuated by doping with acid, which can lead to switchable electronics. Chapter 9 presents our studies of extending the HBC synthetic strategies to the formation of other curved aromatics using "wet chemistry". First a series of nonplanar polycyclic aromatic hydrocarbons was made starting from the olefination of pentacenequinone. Then we utilize chemical reactivity, X-ray crystallography, and DFT calculations to explore three types of olefins of increasing structural complexity. Chapter 10 discusses the transformation of HBCs into bowl-shaped molecules on ruthenium metal surfaces. Surface chemistry studies using scanning tunneling microscopy (STM), reflectance absorbance infrared spectroscopy (RAIRS), and temperature-programmed desorption (TPD) characterization methods, referred to as "dry chemistry", showed the formation of an aromatic hemisphere, which is the end cap of a (6,6) arm-chair single-walled carbon nanotube.
Galano, Annia
2007-03-08
Physisorption and chemisorption processes of thiophene on coronene and 2Si-coronene have been studied using density functional theory and MP2 methods. These systems have been chosen as the simplest models to describe the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons (PAHs). The calculated data suggest that the presence of silicon atoms in PAHs could favor their interaction with thiophene and similar compounds. Small stabilization energies have been found for several physisorbed complexes. The thiophene chemisorption on coronene seems very unlikely to occur, while that on 2Si-coronene leads to addition products which are very stable, with respect to the isolated reactants. These chemisorption processes were found to be exoergic (DeltaG < 0) in the gas phase and in the nonpolar liquid phase. The results reported in this work suggest that silicon defects on extended polycyclic aromatic hydrocarbons, such as graphite, soot, and large-diameter carbon nanotubes, could make them useful in the removal processes of aromatic sulfur compounds from oil hydrocarbons.
Survey of chemical contaminants in the Hanalei River, Kaua'i, Hawai'i, 2001
Orazio, Carl E.; May, Thomas W.; Gale, Robert W.; Meadows, John C.; Brumbaugh, William G.; Echols, Kathy R.; Steiner, William W.M.; Berg, Carl J.
2007-01-01
The Hanalei River on the island of Kaua'i in Hawai'i was designated an American Heritage River in 1998, providing special attention to natural resource protection, economic revitalization, and historic and cultural preservation. Agricultural, urban, and tourism-related activities are potential sources of contamination within the Hanalei River watershed. The objective of this study was to measure certain persistent organic chemicals and elements in the Hanalei River.During a relatively low-flow period in December of 2001, samples of native Akupa sleeper fish (Eleotris sandwicensis), freshwater Asian clam (Corbicula fluminea), giant mud crab (Scylla serrata), surface water, and stream bed sediment were collected from a lower estuarine reach of the river near its mouth at Hanalei Bay and from an upper reach at the Hanalei National Wildlife Refuge. Samples were analyzed for residues of urban and agricultural chemicals including organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and elements (including mercury, lead, cadmium, arsenic, and selenium). Organic contaminants were extracted from the samples with solvent, enriched, and then analyzed by gas chromatographic analysis with electron capture or mass spectrometric detection. Samples were acid-digested for semi-quantitative analysis for elements by inductively-coupled plasma-mass spectrometry and for quantitative analysis by atomic absorption spectrophotometry.Concentrations of organochlorine pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in biota, surface water, and bed sediment sampled from the Hanalei River ranged from nondetectable to very low levels. Polychlorinated biphenyls were below detection in all samples. Dieldrin, the only compound detected in the water samples, was present at very low concentrations of 1-2 nanograms per liter. Akupa sleeper fish and giant mud crabs from the lower reach ranged from 1 to 5 nanograms per gram (wet weight) dieldrin and from less than 0.3 to 2.1 nanograms per gram total chlordane. Concentrations of individual polycyclic aromatic hydrocarbons in the lower reach bed sediments ranged from less than 1 to 190 nanograms per gram (dry weight). Relative concentrations (patterns) of the polycyclic aromatic hydrocarbons in one portion of a sediment sample indicated combustion sources. Concentrations of elements in the surface water, biota, and sediment samples were below toxicity thresholds of ecological concern. In summary, concentrations of the organic contaminants and elements targeted by this study of the Hanalei River in 2001 were below U.S. Environmental Protection Agency probable adverse effects levels for aquatic organisms.
NASA Technical Reports Server (NTRS)
Zare, Richard N.
1998-01-01
Perhaps the best way to summarize the past three-year grant period is to cite the publications and present a brief synopsis of each: 1. "Indigenous Polycyclic Aromatic Hydrocarbon Molecules in Circumstellar Graphite Grains." Bulk C-12/C-13 isotope ratios observed in some graphite grains extracted from primitive meteorites point strongly to a circumstellar origin. By applying our technique of microprobe two-step laser desorption laser ionization mass spectrometry ((mu)L(sup 2)MS) to individual circumstellar graphite grains we have measured the C-12/C-13 isotope ratio of various polycyclic aromatic hydrocarbons (PAHS) found in these grains. 2. "Deuterium Enrichments in Cluster IDPS," Large enrichments in the D/H isotope ratios in IDPs likely arise from the preservation of presolar molecules. 3. "Evidence for thermalization of surface-disorder molecules at heating rates of 10(exp 8) K/s". A careful study of the ((mu)L(sup 2)MS) of aniline-d(sub 7) from a single-crystal surface (0001) of sapphire (al2O3) shows that all measured properties are consistent with a thermal mechanism for desorption. 4. "Search for past life on Mars; possible relic biogenic activity in Martian meteorite ALH 84001. The authors examined the Martian meteorite ALH 84001 and found several lines of evidence compatible with existence of past primitive (single-cell) life on early Mars. 5. "Microprobe two-step laser mass spectrometry as an analytical tool for meteorite samples". THis paper presents a comprehensive review of (mu)L(sup 2)MS and how this technique can be applied to meteoritic samples. 6. "Indigenous polycyclic aromatic hydrocarbons in circumstellar graphite grains from primitive meteorites". The C-12/C-13 isotope ratios were measured for PAHs in a total of 89 spherical graphite grains. 7. "Observation of indigenous polycyclic aromatic hydrocarbons in "Giant" carbonaceous antarctic micrometeorites." The (mu)L(sup 2)MS method was used to establish the nature and distribution of PAHs in fragments of fifteen (approx. 200 microns) carbonaceous antarctic micrometeorites (AMMs). 8. "Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH 84001" We have undertaken additional contamination studies of ALH 84001.
Xi, Zemin; Chen, Baoliang
2014-04-01
Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorption kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorption coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Li, Jiuyi; Zhao, Lei; Qin, Lele; Tian, Xiujun; Wang, Aimin; Zhou, Yanmei; Meng, Liao; Chen, Yong
2016-03-01
Removal of the refractory organic matters in leachate brines generated from nanofiltration unit in two full-scale municipal solid waste landfill leachate treatment plants was investigated by Fenton oxidative-coagulation and ultraviolet photo - Fenton processes in this study. Fenton oxidative-coagulation was performed under the condition of an initial pH of 5.0 and low H2O2/Fe(2+) ratios. After precipitate separation, the remaining organic constituents were further oxidized by photo - Fenton process. For both leachate brines with varying pollution strength, more than 90% COD and TOC reductions were achieved at H2O2/Fe(2+) dosages of 35 mM/8 mM and 90 mM/10 mM, respectively. The effluent COD ranged 120-160 mg/L under the optimal operating conditions, and the biodegradability was increased significantly. Fenton oxidative-coagulation was demonstrated to contribute nearly 70% overall removal of organic matters. In the combined processes, the efficiency of hydrogen peroxide varied from 216 to 228%, which may significantly reduce the operating cost of conventional Fenton method. Six phthalic acid esters and thirteen polycyclic aromatic hydrocarbons were found in leachate brines, and, on the average, around 80% phthalic acid esters and 90% polycyclic aromatic hydrocarbons were removed by the combined treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Weidong; Chen, Bo; Huang, Yuming
2014-08-13
A new solid-phase extraction (SPE) format was demonstrated, based on eggshell membrane (ESM) templating of the mixed hemimicelle/admicelle of linear alkylbenzenesulfonates (LAS) as an adsorbent for the enrichment of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in environmental aqueous samples. The LAS mixed hemimicelle/admicelle formation and SPE of the target PAHs were conducted simultaneously by adding the organic target and LAS through a column filled with 500 mg of ESM. The effect of various factors, including LAS concentration, solution pH, ionic strength, and humic acid concentration on the recoveries of PAHs were investigated and optimized. The results showed that LAS concentration and solution pH had obvious effect on extraction of PAHs, and the recoveries of PAHs compounds decreased in the presence of salt and humic acid. Under the optimized analytical conditions, the present method could respond down to 0.1-8.6 ng/L PAHs with a linear calibration ranging from 0.02 to 10 μg/L, showing a good PAHs enrichment ability with high sensitivity. The developed method was used satisfactorily for the detection of PAHs in environmental water samples. The mixed hemimicelle/admicelle adsorbent exhibited high extraction efficiency to PAHs and good selectivity with respect to natural organic matter and was advantageous over commercial C₁₈ adsorbent, for example, high extraction yield, high breakthrough volume, and easy regeneration.
Liang, Xiaotong; Liu, Shengquan; Zhu, Rong; Xiao, Lixia; Yao, Shouzhuo
2016-07-01
In this work, novel cellulose/zeolitic imidazolate frameworks-8 composite microspheres have been successfully fabricated and utilized as sorbent for environmental polycyclic aromatic hydrocarbons efficient extraction and sensitive analysis. The composite microspheres were synthesized through the in situ hydrothermal growth of zeolitic imidazolate frameworks-8 on cellulose matrix, and exhibited favorable hierarchical structure with chemical composition as assumed through scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, and Brunauer-Emmett-Teller surface areas characterization. A robust and highly efficient method was then successfully developed with as-prepared composite microspheres as novel solid-phase extraction sorbent with optimum extraction conditions, such as sorbent amount, sample volume, extraction time, desorption conditions, volume of organic modifier, and ionic strength. The method exhibited high sensitivity with low limit of detection down to 0.1-1.0 ng/L and satisfactory linearity with correlation coefficients ranging from 0.9988 to 0.9999, as well as good recoveries of 66.7-121.2% with relative standard deviations less than 10% for environmental polycyclic aromatic hydrocarbons analysis. Thus, our method was convenient and efficient for polycyclic aromatic hydrocarbons extraction and detection, potential for future environmental water samples analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Choi, Jae Min; Jeong, Daham; Piao, Jinglan; Kim, Kyoungtea; Nguyen, Andrew Bao Loc; Kwon, Nak-Jung; Lee, Mi-Kyung; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho
2015-01-12
The removal of polycyclic aromatic hydrocarbons by soil washing using water is extremely difficult due to their intrinsic hydrophobic nature. In this study, the effective aqueous solubility enhancements of seven polycyclic aromatic hydrocarbons by chemically modified hydroxypropyl rhizobial cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimer have been investigated for the first time. In the presence of hydroxypropyl cyclic β-(1 → 2)-D-glucans, the solubility of benzo[a]pyrene is increased up to 38 fold of its native solubility. The solubility of pyrene and phenanthrene dramatically increased up to 160 and 359. Coronene, chrysene, perylene, and fluoranthene also show an increase of 11, 23, 23, and 97 fold, respectively, of enhanced solubility by complexation with synthetic epichlorohydrin β-cyclodextrin dimer. The physicochemical properties of the complex are characterized by Fourier-transform infrared spectra and differential scanning calorimetry. Utilizing a scanning electron microscopy, the morphological structures of native benzo[a]pyrene, pyrene, phenanthrene, coronene, chrysene, perylene, fluoranthene and their complex with novel carbohydrate-solubilizers are studied. These results elucidate that polycyclic aromatic hydrocarbons are able to form an efficient complex with hydroxypropyl cyclic β-(1 → 2)-D-glucans and β-cyclodextrin dimer, suggesting the potential usage of chemically modified novel carbohydrate-solubilizers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rončević, Srđan; Spasojević, Jelena; Maletić, Snežana; Jazić, Jelena Molnar; Isakovski, Marijana Kragulj; Agbaba, Jasmina; Grgić, Marko; Dalmacija, Božo
2016-02-01
Large amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sediment disposal method, to minimize the degradation of environmental quality and prevent risks to human health. Evaluating the available fractions of certain polycyclic aromatic hydrocarbons is very important, as in the presence of various organisms, they are believed to be easily subject to the processes of bioaccumulation, biosorption and transformation. In order to determine the applicability of applying these methods for the evaluation of pollutant bioavailability in sediments, the desorption kinetics from the sediment of various polycyclic aromatic hydrocarbons in the presence of Tenax and XAD4 were examined over the course of 216 h. Changes in the PAH concentrations in dredged sediments using five different seed plants during a short time of period (10 days) were also followed. Using chemical extraction techniques with Tenax and XAD4, a time of around 24 h is enough to achieve equilibrium for all four PAHs. Results showed good agreement between the seed accumulation and PAH extraction methods with both agents. If we compare the two extraction techniques, XAD4 gave better results for phenanthrene, pyrene and benzo(a)pyrene, and Tenax gave better results for chrysene.
NASA Astrophysics Data System (ADS)
Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang
2017-01-01
Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.
Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina
2016-08-15
Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhanced bioavailability of polyaromatic hydrocarbons in the form of mucin complexes.
Drug, Eyal; Landesman-Milo, Dalit; Belgorodsky, Bogdan; Ermakov, Natalia; Frenkel-Pinter, Moran; Fadeev, Ludmila; Peer, Dan; Gozin, Michael
2011-03-21
Increasing exposure of biological systems to large amounts of polycyclic aromatic hydrocarbons is of great public concern. Organisms have an array of biological defense mechanisms, and it is believed that mucosal gel (which covers the respiratory system, the gastrointestinal tract, etc.) provides an effective chemical shield against a range of toxic materials. However, in this work, we demonstrate, for the first time, that, upon complexation of polyaromatic hydrocarbons with mucins, enhanced bioavailability and, therefore, toxicity are obtained. This work was aimed to demonstrate how complexation of various highly hydrophobic polycyclic aromatic hydrocarbons with representative mucin glycoprotein could lead to the formation of previously undescribed materials, which exhibit increased toxicity versus pristine polycyclic aromatic hydrocarbons. In the present work, we show that a representative mucin glycoprotein, bovine submaxillary mucin, has impressive and unprecedented capabilities of binding and solubilizing water-insoluble materials in physiological solution. The complexes formed between the mucin and a series of polycyclic aromatic hydrocarbons were comprehensively characterized, and their toxicity was evaluated by both in vivo and in vitro assays. In addition, the bioavailability and membrane-penetration capabilities were tested using an internalization assay. Our results provide, for the first time, evidence of an unknown route by which hydrophobic materials may achieve higher bioavailability, penetrating some of the biological defense systems, in the form of water-soluble complexes with mucosal proteins.
Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara; Wise, Stephen A
2016-04-15
A methodology for the characterization of groups of polycyclic aromatic hydrocarbons (PAHs) using a combination of normal phase liquid chromatography with ultraviolet-visible spectroscopy (NPLC/UV-vis) and gas chromatography with mass spectrometry (GC/MS) was used for the identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons, PAHs, in standard reference material (SRM) 1597a, complex mixture of PAHs from coal tar. The NPLC/UV-vis isolated the fractions based on the number of aromatic carbons and the GC/MS allowed the identification and quantification of five of the nine C26H14 PAH isomers; naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene using a retention time comparison with authentic reference standards. For the other four benzenoid isomers with no available reference standards the following two approaches were used. First, the annellation theory was used to achieve the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene, and second, the elution distribution in the GC fractions was used to support the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene and to reach the tentative identifications of dibenzo[a,ghi]perylene, naphtho[7,8,1,2,3-pqrst]pentaphene, and anthra[2,1,9,8-opqra]naphthacene. It is the first time that naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene are quantified, and the first time that benzo[qr]naphtho[3,2,1,8-defg]chrysene is potentially identified, in any sample, in any context. Copyright © 2016 Elsevier B.V. All rights reserved.
An enhanced procedure for measuring organic acids and methyl esters in PM2.5
NASA Astrophysics Data System (ADS)
Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.
2015-11-01
A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.
Byss, Marius; Elhottová, Dana; Tříska, Jan; Baldrian, Petr
2008-11-01
The aim of this study was to determine the efficacy of selected basidiomycetes in the removing of polycyclic aromatic hydrocarbons (PAH) from the creosote-contaminated soil. Fungi Pleurotus ostreatus and Irpex lacteus were supplemented with creosote-contaminated (50-200 mg kg(-1) PAH) soil originating from a wood-preserving plant and incubated at 15 °C for 120 d. Either fungus degraded PAH with 4-6 aromatic rings more efficiently than the microbial community present initially in the soil. PAH removal was higher in P. ostreatus treatments (55-67%) than in I. lacteus treatments (27-36%) in general. P. ostreatus (respectively, I. lacteus) removed 86-96% (47-59%) of 2-rings PAH, 63-72% (33-45%) of 3-rings PAH, 32-49% (9-14%) of 4-rings PAH and 31-38% (11-13%) of 5-6-rings PAH. MIS (Microbial Identification System) Sherlock analysis of the bacterial community determined the presence of dominant Gram-negative bacteria (G-) Pseudomonas in the inoculated soil before the application of fungi. Complex soil microbial community was characterized by phospholipid fatty acids analysis followed by GC-MS/MS. Either fungus induced the decrease of bacterial biomass (G- bacteria in particular), but the soil microbial community was influenced by P. ostreatus in a different way than by I. lacteus. The bacterial community was stressed more by the presence of I. lacteus than P. ostreatus (as proved by the ratio of the fungal/bacterial markers and by the ratio of trans/cis mono-unsaturated fatty acids). Moreover, P. ostreatus stimulated the growth of Gram-positive bacteria (G+), especially actinobacteria and these results indicate the potential of the positive synergistic interaction of this fungus and actinobacteria in creosote biodegradation.
He, Bo; Dai, Jing; Zherebetskyy, Danylo; ...
2015-03-31
Combining core annulation and peripheral group modification, we have demonstrated a divergent synthesis of a family of highly functionalized coronene derivatives from a readily accessible dichlorodiazaperylene intermediate. Various reactions, such as aromatic nucleophilic substitution, Kumada coupling and Suzuki coupling proceed effectively on α-positions of the pyridine sites, giving rise to alkoxy, thioalkyl, alkyl or aryl substituted polycyclic aromatic hydrocarbons. In addition to peripheral group modulation, the aromatic core structures can be altered by annulation with thiophene or benzene ring systems. Corresponding single crystal X-ray diffraction and optical studies indicate that the heteroatom linkages not only impact the solid state packing,more » but also significantly influence the optoelectronic properties. Moreover, these azacoronene derivatives display significant acid-induced spectroscopic changes, suggesting their great potential as colorimetric and fluorescence proton sensors.« less
Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge
2017-07-01
In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.
NASA Astrophysics Data System (ADS)
Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim
2017-09-01
Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of refractory black carbon, such as absorption enhancement by lensing.
Mutagenicity of aerosols from the oxidative thermal decomposition of rigid polyurethane foam.
Zitting, A; Falck, K; Skyttä, E
1980-01-01
The aerosol fraction of the oxidative thermal decomposition products (700 degrees C) of rigid polyurethane foam was collected on glass fiber filters and fractionated into either-soluble neutral, acidic, and basic fractions and water-soluble compounds. The fractions showed mutagenic activity in a bacterial fluctuation test with Salmonella typhimurium TA98 or Escherichia coli CM891 as the tester strains. All the fractions induced mutations in both strains after metabolic activation with rat liver S-9 mix. The basic and the water-soluble fractions were mutagenic for S. typhimurium TA 98 even without activation. Thin-layer chromatography showed the presence of several primary aromatic amines in the aerosol. Polycyclic aromatic hydrocarbons were not detected by glass capillary gas chromatogaphy.
Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi
2016-05-10
Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Miki, Shizuho; Uno, Seiichi; Ito, Kazuki; Koyama, Jiro; Tanaka, Hiroyuki
2014-08-30
Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40-7800 ng/g dry weights and 13.7-1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995. Copyright © 2014 Elsevier Ltd. All rights reserved.
Petroleum hydrocarbons in the surface water of two estuaries in the Southeastern united states
NASA Astrophysics Data System (ADS)
Bidleman, T. F.; Castleberry, A. A.; Foreman, W. T.; Zaranski, M. T.; Wall, D. W.
1990-01-01
Surface water samples from Charleston Harbor, SC and Winyah Bay, SC were analysed for total hydrocarbons by gas chromatography (GC) and for petroleum residues (expressed as crude oil equivalents) by fluorescence spectrometry. Cleanup by column chromatography and saponification was necessary to reduce the background from extraneous fluorescing materials. Oil concentrations determined by FS ranged from 0·5-25 μg l -1 in Charleston Harbor and <0·23-9·6 μg l -1 in Winyah Bay. Hydrocarbons determined by GC were significantly correlated ( P < 0·01) with crude oil equivalents determined by FS, but the data showed considerable scatter as indicated by r2 = 0·45. Polycyclic aromatic hydrocarbons were determined by gas chromatography—mass spectrometry for one set of Winyah Bay samples. The sum of nonalkylated polycyclic aromatic hydrocarbons having ≥ 3 rings ranged from 7-64 ng l -1 at different stations. Perylene, possibly originating from sediment dredging, was one of the more abundant polycyclic aromatic hydrocarbons.
NASA Astrophysics Data System (ADS)
Pogorzelec, Marta; Piekarska, Katarzyna
2017-11-01
The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.
Xia, Wenjie; Du, Zhifeng; Cui, Qingfeng; Dong, Hao; Wang, Fuyi; He, Panqing; Tang, YongChun
2014-07-15
Alkanes and polycyclic aromatic hydrocarbons (PAHs) have threatened the environment due to toxicity and poor bioavailability. Interest in degradation of these hazardous materials by biosurfactant-producing bacteria has been steadily increasing in recent years. In this work, a novel biosurfactant-producing Pseudomonas sp. WJ6 was isolated to degrade a wide range of n-alkanes and polycyclic aromatic hydrocarbons. Production of lipopeptide biosurfactant was observed in all biodegradable studies. These lipopeptides were purified and identified by C18 RP-HPLC system and electrospray ionization-mass spectrometry. Results of structural analysis showed that these lipopeptides generated from different hydrocarbons were classified to be surfactin, fengycin and lichenysin. Heavy-oil sludge washing experiments demonstrated that lipopeptides produced by Pseudomonas sp. WJ6 have 92.46% of heavy-oil washing efficiency. The obtained results indicate that this novel bacterial strain and its lipopeptides have great potentials in the environmental remediation and petroleum recovery. Copyright © 2014 Elsevier B.V. All rights reserved.
Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi
2015-11-15
Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad(®) 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC>unmodified bentonite>Arquad-bentonite). The MIOC variably increased the microbial count (10-43%) as well as activities (respiration 3-44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils. Copyright © 2015 Elsevier B.V. All rights reserved.
Diversity of metabolic capacities among strains degrading polycyclic aromatic hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchez, M.; Besnaienou, B.; Blanchet, D.
1995-12-31
Strains of Pseudomonas and Rhodococcus genera were isolated for their capacity to use, as a sole carbon and energy source, one of the following polycyclic aromatic hydrocarbons (PAHs): naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLT), and pyrene (PYR). The range of PAHs supporting growth of these pure strains was usually restricted, but several other hydrocarbons were used by Rhodococcus sp. All strains could grow on simple organic acids. Maximal specific growth rates ({mu}{sub max}) of all strains on their PAH growth substrates were determined by respirometry. No clear relationships between {mu}{sub max} values and the molecular weightmore » or water solubility of PAHs were apparent, but Pseudomonas sp. exhibited the highest {mu}{sub max} values. Carbon balances for PAH biodegradation were established. Differences between strains were observed, but high mineralization rates and low production of soluble metabolites were obtained for all PAHs. Bacterial biomass represented 16% to 35% of the carbon consumed. Strain diversity was also apparent in the interactions observed in the degradation of a mixture of two PAHs by individual strains, which often involved inhibition of PAH substrate degradation, with or without cometabolization of the second PAH.« less
Polycyclic Aromatic Hydrocarbons Content in Contaminated Forest Soils with Different Humus Types.
Lasota, Jarosław; Błońska, Ewa
2018-01-01
The aim of the study was to determine polycyclic aromatic hydrocarbon (PAH) content in different forest humus types. The investigation was carried out in Chrzanów Forest District in southern Poland. Twenty research plots with different humus types (mor and mull) were selected. The samples for analysis were taken after litter horizons removing from a depth of 0-10 cm (from the Of- and Oh-horizon total or A-horizon). pH, organic carbon and total nitrogen content, base cations, acidity, and heavy metal content were determined. In the natural moisture state, the activity of dehydrogenase was determined. The study included the determination of PAH content. The conducted research confirms strong contamination of study soil by PAHs and heavy metals. Our experiment provided evidence that different forest humus types accumulate different PAH amounts. The highest content of PAHs and heavy metals was recorded in mor humus type. The content of PAHs in forest humus horizon depends on the content and quality of soil organic matter. Weaker degradation of hydrocarbons is associated with lower biological activity of soils. The mull humus type showed lower content of PAHs and at the same time the highest biological activity confirmed by high dehydrogenase activity.
Stockton, Amanda M; Chiesl, Thomas N; Scherer, James R; Mathies, Richard A
2009-01-15
The Mars Organic Analyzer (MOA), a portable microchip capillary electrophoresis (CE) instrument developed for sensitive amino acid analysis on Mars, is used to analyze laboratory standards and real-world samples for polycyclic aromatic hydrocarbons (PAHs). The microfabricated CE separation and analysis method for these hydrophobic analytes is optimized, resulting in a separation buffer consisting of 10 mM sulfobutylether-beta-cyclodextrin, 40 mM methyl-beta-cyclodextrin, 5 mM carbonate buffer at pH 10, 5 degrees C. A PAH standard consisting of seven PAHs found in extraterrestrial matter and two terrestrial PAHs is successfully baseline separated. Limits of detection for the components of the standard ranged from 2000 ppm to 6 ppb. Analysis of an environmental contamination standard from Lake Erie and of a hydrothermal vent chimney sample from the Guaymas Basin agreed with published composition. A Martian analogue sample from the Yungay Hills region of the Atacama Desert was analyzed and found to contain 9,10-diphenylanthracene, anthracene, anthanthrene, fluoranthene, perylene, and benzo[ghi]fluoranthene at ppm levels. This work establishes the viability of the MOA for detecting and analyzing PAHs in in situ planetary exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.; Allen, T.W.; Hussain, A.
1981-03-29
Dry-column chromatography with an aluminum oxide stationary phase and a n-hexane-ether (19:1) mobile phase was used to separate polycyclic aromatic hydrocarbons (PAH) by ring size. Prior to the dry-column chromatography step, the coal derived solvents were added to an acid treated silica gel column and eluted with chloroform. This step removed pyridine-type nitrogen heterocycles. After separation of the individual ring fractions, the fractions were further separated by either thin layer chromatography (TLC) or high performance liquid chromatography (HPLC). If TLC was used, then after separation fluorescence profiles of each PAH ring fraction distributed on 30%-acetylated cellulose chromatoplates were obtained withmore » a spectrodensitometer. Measurement of fluorescence peak heights gave an approximate measure of the amount of the 3-, 4-, 5-, and 6- ring PAH. For HPLC separation, the 3- and 4- ring PAH fractions obtained from the dry-column chromatography step were separated with a ..mu..-Bondapak C/sub 18/ column and methanol:water (65:35) mobile phase. The HPLC separated PAH were characterized by chromatographic correlation factors and corrected fluorescence excitation spectra. Alkylphenols were identified in coal recycle solvent sample following separation by HPLC.« less
Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A
2018-02-01
Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.
Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias
2015-07-01
An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Canelo, Carla M.; Friaça, Amâncio C. S.; Sales, Dinalva A.; Pastoriza, Miriani G.; Ruschel-Dutra, Daniel
2018-04-01
Analyses of the polycyclic aromatic hydrocarbon (PAH) feature profiles, especially the 6.2 μm feature, could indicate the presence of nitrogen incorporated in their aromatic rings. In this work, 155 predominantly starburst-dominated galaxies (including H II regions and Seyferts, for example), extracted from the Spitzer/Infrared Spectrograph ATLAS project, have their 6.2 μm profiles fitted allowing their separation into the Peeters' A, B, and C classes. 67 per cent of these galaxies were classified as class A, 31 per cent were as class B, and 2 per cent as class C. Currently, class A sources, corresponding to a central wavelength near 6.22 μm, seem only to be explained by polycyclic aromatic nitrogen heterocycles (PANHs), whereas class B may represent a mix between PAHs and PANHs emissions or different PANH structures or ionization states. Therefore, these spectra suggest a significant presence of PANHs in the interstellar medium (ISM) of these galaxies that could be related to their starburst-dominated emission. These results also suggest that PANHs constitute another reservoir of nitrogen in the Universe, in addition to the nitrogen in the gas phase and ices of the ISM.
Makoś, Patrycja; Fernandes, André; Boczkaj, Grzegorz
2018-06-01
We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1-84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium
The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance li...
Yeh, Chia-Nan; Chai, Jeng-Da
2016-01-01
We investigate the role of Kekulé and non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons (PAHs) using thermally-assisted-occupation density functional theory (TAO-DFT), an efficient electronic structure method for the study of large ground-state systems with strong static correlation effects. Our results reveal that the studies of Kekulé and non-Kekulé structures qualitatively describe the radical character of alternant PAHs, which could be useful when electronic structure calculations are infeasible due to the expensive computational cost. In addition, our results support previous findings on the increase in radical character with increasing system size. For alternant PAHs with the same number of aromatic rings, the geometrical arrangements of aromatic rings are responsible for their radical character. PMID:27457289
MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare
We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproducemore » the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 Multiplication-Sign 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.« less
Precambrian Lunar Volcanic Protolife
Green, Jack
2009-01-01
Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated. PMID:19582224
Moreno-Paz, Mercedes; Gómez-Cifuentes, Ana; Ruiz-Bermejo, Marta; Hofstetter, Oliver; Maquieira, Ángel; Manchado, Juan M; Morais, Sergi; Sephton, Mark A; Niessner, Reinhard; Knopp, Dietmar; Parro, Victor
2018-04-11
Potential martian molecular targets include those supplied by meteoritic carbonaceous chondrites such as amino acids and polycyclic aromatic hydrocarbons and true biomarkers stemming from any hypothetical martian biota (organic architectures that can be directly related to once living organisms). Heat extraction and pyrolysis-based methods currently used in planetary exploration are highly aggressive and very often modify the target molecules making their identification a cumbersome task. We have developed and validated a mild, nondestructive, multiplex inhibitory microarray immunoassay and demonstrated its implementation in the SOLID (Signs of Life Detector) instrument for simultaneous detection of several nonvolatile life- and nonlife-derived organic molecules relevant in planetary exploration and environmental monitoring. By utilizing a set of highly specific antibodies that recognize D- or L- aromatic amino acids (Phe, Tyr, Trp), benzo[a]pyrene (B[a]P), pentachlorophenol, and sulfone-containing aromatic compounds, respectively, the assay was validated in the SOLID instrument for the analysis of carbon-rich samples used as analogues of the organic material in carbonaceous chondrites or even Mars samples. Most of the antibodies enabled sensitivities at the 1-10 ppb level and some even at the ppt level. The multiplex immunoassay allowed the detection of B[a]P as well as aromatic sulfones in a water/methanol extract of an Early Cretaceous lignite sample (c.a., 140 Ma) representing type IV kerogen. No L- or D-aromatic amino acids were detected, reflecting the advanced diagenetic stage and the fossil nature of the sample. The results demonstrate the ability of the liquid extraction by ultrasonication and the versatility of the multiplex inhibitory immunoassays in the SOLID instrument to discriminate between organic matter derived from life and nonlife processes, an essential step toward life detection outside Earth. Key Words: Planetary exploration-Molecular biomarkers-D- and L- aromatic amino acids-Life detection-Multiplex inhibitory/competitive immunoassay-Kerogen type IV. Astrobiology 18, xxx-xxx.
Laboratory rotational spectroscopy of cyano substituted polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
McNaughton, Don; Jahn, Michaela K.; Travers, Michael J.; Wachsmuth, Dennis; Godfrey, Peter D.; Grabow, Jens-Uwe
2018-06-01
The rotational spectra of the four cyano substituted polycyclic aromatic hydrocarbon (PAH) molecules 1-cyanonaphthalene, 2-cyanonaphthalene, 9-cyanoanthracene, and 9-cyanophenanthrene have been recorded in molecular expansions using a Stark-modulated millimetre-wave spectrometer and a Fourier transform microwave spectrometer in the centimetre-wave region. The spectra have been assigned and fitted to provide molecular constants and quadrupole hyperfine constants of sufficient accuracy to enable complete hyperfine structure line predictions for interstellar searches. The data may provide a route into detection of small PAHs in the interstellar medium.
Microwave-assisted extraction of polycyclic aromatic compounds from coal.
Kerst, M; Andersson, J T
2001-08-01
Microwave-assisted extraction (MAE) of polycyclic aromatic compounds (PACs) from coal is shown to give the same pattern of compounds as Soxhlet extraction. MAE requires only 10 mL solvent and 10 min extraction time whereas Soxhlet uses 200 mL and takes 24 h. Although the yields were lower, dichloromethane (DCM) was preferred to pyridine, N-methyl-2-pyrrolidone (NMP), and NMP with CS2 because the pattern of the PACs is shown to be independent of solvent and DCM is a much more convenient solvent to work with.
Petroleum and individual polycyclic aromatic hydrocarbons
Albers, Peter H.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John
1995-01-01
Crude petroleum, refined-petroleum products, and individual polycyclic aromatic hydrocarbons (PAHs) contained within petroleum are found throughout the world. their presence has been detected in living and nonliving components of ecosystems. Petroleum can be an environmental hazard for wild animals and plants. Individual PAHs are also hazardous to wildlife, but they are most commonly associated with human illnesses. Because petroleum is a major environmental source of these PAHs, petroleum and PAHs are jointly presented in this chapter. Composition, sources, environmental fate, and toxic effects on all living components of aquatic and terrestrial environments are addessed.
Thomson, Paul F.; Parrish, Damon; Pradhan, Padmanava; Lakshman, Mahesh K.
2015-01-01
Palladium-catalyzed cross-coupling reactions of 2-bromobenzaldehyde and 6-bromo-2,3-dimethoxybenzaldehyde with 4-methyl-1-naphthaleneboronic acid and acenaphthene-5-boronic acid gave corresponding o-naphthyl benzaldehydes. Corey–Fuchs olefination followed by reaction with n-BuLi led to various 1-(2-ethynylphenyl)naphthalenes. Cycloisomerization of individual 1-(2-ethynylphenyl)naphthalenes to various benzo[c]phenanthrene (BcPh) analogues was accomplished smoothly with catalytic PtCl2 in PhMe. In the case of 4,5-dihydrobenzo[l]acephenanthrylene, oxidation with DDQ gave benzo[l]acephenanthrylene. The dimethoxy-substituted benzo[c]phenanthrenes were demethylated with BBr3 and oxidized to the ortho-quinones with PDC. Reduction of these quinones with NaBH4 in THF/EtOH in an oxygen atmosphere gave the respective dihydrodiols. Exposure of the dihydrodiols to N-bromoacetamide in THF-H2O led to bromohydrins that were cyclized with Amberlite IRA 400 HO− to yield the series 1 diol epoxides. Epoxidation of the dihydrodiols with mCPBA gave the isomeric series 2 diol epoxides. All of the hydrocarbons as well as the methoxy-substituted ones were crystallized and analyzed by X-ray crystallography, and these data are compared to other previously studied BcPh derivatives. The methodology described is highly modular and can be utilized for the synthesis of a wide variety of angularly fused polycyclic aromatic hydrocarbons and their putative metabolites and/or other derivatives. PMID:26196673
Pergal, Miodrag M; Relić, Dubravka; Tešić, Zivoslav Lj; Popović, Aleksandar R
2014-03-01
Nikola Tesla B power plant (TENT B), located at the Sava River, in Obrenovac, 50 km west from the Serbian's capital, Belgrade, is the second largest coal-fired power plant in the country, consisting of two blocks, each of 620 MW capacity. In order to investigate the threat polycyclic aromatic hydrocarbons (PAHs) from deposited coal ash, obtained by coal combustion in this power plant, can represent for the surrounding environment, samples of coal ash were submitted to extraction with river water used for transport of coal ash to the dump, as well as with water of different ionic strength and acidity. It was found that, out of 16 EPA priority PAHs, only naphthalene, acenaphthylene, fluorene, phenantrene, fluoranthene, and pyrene were found in measurable concentrations in the different extracts. Their combined concentration was around 0.1 μg/L, so they do not, in terms of leached concentrations, represent serious danger for the surrounding environment. In all cases of established (and leached) PAH compounds, changes of ionic strength, acidity, or the presence of organic compounds in river water may to some extent influence the leached concentrations. However, under the examined conditions, similar to those present in the environment, leached concentrations were not more than 50 % greater than the concentrations leached by distilled water. Therefore, water desorption is likely the most important mechanism responsible for leaching of PAH compounds from filter coal ash.
Ochoa-Martínez, Ángeles C; Ruíz-Vera, Tania; Pruneda-Álvarez, Lucia G; González-Palomo, Ana K; Almendarez-Reyna, Claudia I; Pérez-Vázquez, Francisco J; Pérez-Maldonado, Iván N
2017-01-01
Recent studies indicate that exposure to polycyclic aromatic hydrocarbons (PAHs) is a very important risk factor for the development of cardiovascular diseases (CVDs). Correspondingly, adipocyte-fatty acid binding protein (FABP4, also known as aP2 and AFABP) has been proposed as a new, meaningful and useful biomarker to predict metabolic and cardiovascular diseases. Therefore, the aim of this study was to evaluate serum FABP4 levels in Mexican women exposed to PAHs. Urinary 1-hydroxypyrene ((1-OHP), exposure biomarker for PAHs) levels were quantified using a high-performance liquid chromatography (HPLC) technique, and serum FABP4 concentrations were analyzed using a commercially available ELISA kit. The mean urinary 1-OHP level found in women participating in this study was 1.30 ± 1.10 μmol/mol creatinine (2.45 ± 2.10 μg/g creatinine). Regarding serum FABP4 concentrations, the levels ranged from 3.80 to 62.5 ng/mL in the assessed population. Moreover, a significant association (p < 0.001) was found between urinary 1-OHP levels and serum FABP4 concentrations in women after adjusting for potential confounding variables. The presented data in this study can be considered only as a starting point for further studies. Then, in order to elucidate whether FABP4 represents a risk factor for CVD disease in humans exposed to air contaminants (such as PAHs), large epidemiological studies are necessary.
New Molecular Detections in TMC-1 with the Green Bank Telescope: Carbon-Chain and Aromatic Molecules
NASA Astrophysics Data System (ADS)
Burkhardt, Andrew Michael
2018-01-01
Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocycles PA(N)Hs are believed to be widespread throughout the Universe, and are likely responsible for the unidentified infrared bands. However, the individual detection of aromatic molecules has been limited to a single weak absorption feature of an infrared bending mode of benzene (c-C6H6). The cold core TMC-1 has long been a source of new molecular detections, particularly for unsaturated carbon-rich molecules that are appealing potential precursors of PA(N)Hs. Through deep observations with the Green Bank Telescope of TMC-1, we report the first rotational detection of an aromatic molecule, benzonitrile (c-C6H5CN), along with 8 new isotopologues of HC5N and HC7N and an entirely new molecular family (HC5O, HC7O). These new detections provide crucial insights to the formation of PAHs and the underlying carbon-chain chemistry of dark clouds.
Hirano, Shin-Ichi; Haruki, Mitsuru; Takano, Kazufumi; Imanaka, Tadayuki; Morikawa, Masaaki; Kanaya, Shigenori
2006-02-01
Xanthobacter polyaromaticivorans sp. nov. 127W is a bacterial strain that is capable of degrading a wide range of cyclic aromatic compounds such as dibenzothiophene, biphenyl, naphthalene, anthracene, and phenanthrene even under extremely low oxygen [dissolved oxygen (DO)< or = 0.2 ppm] conditions (Hirano et al., Biosci Biotechnol Biochem 68:557-564, 2004). A major protein fraction carrying dibenzothiophene degradation activity was purified. Based on its partial amino acid sequences, dbdCa gene encoding alpha subunit terminal oxygenase (DbdCa) and its flanking region were cloned and sequenced. A phylogenetic analysis based on the amino acid sequence demonstrates that DbdCa is a member of a terminal oxygenase component of group IV ring-hydroxylating dioxygenases for biphenyls and monocyclic aromatic hydrocarbons, rather than group III dioxygenases for polycyclic aromatic hydrocarbons. Gene disruption in dbdCa abolished almost of the degradation activity against biphenyl, dibenzothiophene, and anthracene. The gene disruption also impaired degradation activity of the strain under extremely low oxygen conditions (DO< or = 0.2 ppm). These results indicate that Dbd from 127W represents a group IV dioxygenase that is functional even under extremely low oxygen conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, G.; Colmsjoe, A.; Oestman, C.
1999-05-01
Quantitation of a variety of tetra-, penta-, and hexacyclic aromatic sulfur heterocycles (thiaarenes) in workplace air of an aluminum reduction plant has been made by help of gas chromatography with atomic emission detection (GC-AED). Personal exposure to those thiaarenes and to polycyclic aromatic hydrocarbons depending on work categories has been evaluated. Summarized concentrations of the thiaarenes investigated have been found to be 0.4--19.0 {micro}g/m{sup 3}. When using sulfur selective AED, samples could be analyzed without a prior separation of the thiaarenes from the PAH. The present data indicate a contribution of thiaarenes to the overall toxicity of coal tar pitchmore » volatiles in this work environment.« less
Polycyclic Aromatic Hydrocarbons Adsorption onto Graphene: A DFT and AIMD Study.
Li, Bing; Ou, Pengfei; Wei, Yulan; Zhang, Xu; Song, Jun
2018-05-03
Density functional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations were performed to understand graphene and its interaction with polycyclic aromatic hydrocarbons (PAHs) molecules. The adsorption energy was predicted to increase with the number of aromatic rings in the adsorbates, and linearly correlate with the hydrophobicity of PAHs. Additionally, the analysis of the electronic properties showed that PAHs behave as mild n-dopants and introduce electrons into graphene; but do not remarkably modify the band gap of graphene, indicating that the interaction between PAHs and graphene is physisorption. We have also discovered highly sensitive strain dependence on the adsorption strength of PAHs onto graphene surface. The AIMD simulation indicated that a sensitive and fast adsorption process of PAHs can be achieved by choosing graphene as the adsorbent. These findings are anticipated to shed light on the future development of graphene-based materials with potential applications in the capture and removal of persistent aromatic pollutants.
Chemical quality of water, sediment, and fish in Mountain Creek Lake, Dallas, Texas, 1994-97
Van Metre, Peter C.; Jones, S.A.; Moring, J. Bruce; Mahler, B.J.; Wilson, Jennifer T.
2003-01-01
The occurrence, trends, and sources of numerous inorganic and organic contaminants were evaluated in Mountain Creek Lake, a reservoir in Dallas, Texas. The study, done in cooperation with the Southern Division Naval Facilities Engineering Command, was prompted by the Navy’s concern for potential off-site migration of contaminants from two facilities on the shore of Mountain Creek Lake, the Naval Air Station Dallas and the Naval Weapons Industrial Reserve Plant. Sampling of stormwater (including suspended sediment), lake water, bottom sediment (including streambed sediment), and fish was primarily in Mountain Creek Lake but also was in stormwater outfalls from the Navy facilities, nearby urban streams, and small streams draining the Air Station.Volatile organic compounds, predominantly solvents from the Reserve Plant and fuel-related compounds from the Air Station, were detected in stormwater from both Navy facilities. Fuel-related compounds also were detected in Mountain Creek Lake at two locations, one near the Air Station inlet where stormwater from a part of the Air Station enters the lake and one at the center of the lake. Concentrations of volatile organic compounds at the two lake sites were small, all less than 5 micrograms per liter.Elevated concentrations of cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc, from 2 to 4 times concentrations at background sites and urban reference sites, were detected in surficial bottom sediments in Cottonwood Bay, near stormwater outfalls from the Reserve Plant. Elevated concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls, compared to background and urban reference sites, were detected in surficial sediments in Cottonwood Bay. Elevated concentrations of polycyclic aromatic hydrocarbons, indicative of urban sources, also were detected in Cottonwood Creek, which drains an urbanized area apart from the Navy facilities. Elevated concentrations of polychlorinated biphenyls were detected in two inlets near the Air Station shoreline. Polycyclic aromatic hydrocarbon and heavy metal concentrations near the Air Station shoreline were not elevated compared to urban reference sites.Much larger concentrations of selected heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls were detected in deeper, older sediments than in surficial sediments in Cottonwood Bay. The decreases in concentrations coincide with changes in wastewater discharge practices at the Reserve Plant. Elevated concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls also were detected in older sediments in the Air Station inlet.On the basis of dated sediment cores and contaminant discharge histories, contaminant accumulation rates in Cottonwood Bay were much greater historically than recently. Most heavy metals, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls that accumulated in the central and eastern parts of Cottonwood Bay appear to have come from the west lagoon on the Reserve Plant. Treated sewage and industrial-process wastewater were discharged to the west lagoon from about 1941 to 1974. Estimated annual contaminant accumulation rates in Cottonwood Bay decreased by from 1 to 2 orders of magnitude after 1974, when most point-source discharges to the west lagoon ceased.Polychlorinated biphenyls were detected in 61 of 62 individual fish-tissue samples. The largest average concentrations were in eviscerated channel catfish and the smallest were in largemouth bass fillets. Polychlorinated biphenyl and selenium concentrations from analyses of this study were large enough to prompt the Texas State Department of Health to issue a fish-possession ban for Mountain Creek Lake in 1996.Suspended sediments in stormwater at the lagoon outfalls and at sites on Cottonwood Creek were sampled and analyzed for major and trace elements, polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls. The suspended sediments from the outfalls contained about the same mixture of heavy metals and organic compounds, in elevated concentrations compared to reference sites, as bottom sediments from the lagoons and surficial bottom sediments in Cottonwood Bay.Diagnostic ratios of polycyclic aromatic hydrocarbons indicate that uncombusted fuel sources contribute to older sediments and that pyrogenic sources of polycyclic aromatic hydrocarbons dominate recently deposited sediments in Cottonwood Bay and along the Air Station shoreline.
Li, Qing; Li, Chun-Min; Xu, Hong-Liang; Su, Zhong-Min
2017-08-01
A graphene nanoflake (GNF) is a polycyclic aromatic hydrocarbon (PAH) with a huge two-dimensional π-conjugated carbon material in which a central benzene ring is surrounded by identical benzene-type rings through infinite alternant method. In this paper, we explore the structure-aromaticity relationship of the GNFs and the GNFs with hollow sites (GNFHs) by combining the nucleus-independent chemical shifts (NICS) with the anisotropy of the current induced density (ACID). Firstly, the benzene is a typical aromatic molecule (NICS = -9.671 ppm), GNFs 1-6 is darned with benzene and the corresponding GNFHs 1'-6'. Secondly, the NICS values of GNFs 1-6 alternately vary: -1.214 (1) > -13.847 (2) < -2.662 (3) > -14.530 (4) < -3.932 (5) > -13.978 (6) ppm, the GNFs (2, 4, 6) with even fragments of annulene have larger aromaticity than that of GNFs (1, 3, 5) with odd fragments of annulene. Significantly, the NICS values of GNFs 1-6 can also be fragment analyzed by the NICS values and ACID of benzene and corresponding GNFHs 1'-6'. The NICS values for GNFs (2, 4, 6) can be roughly estimated by the NICS value of benzene minus the NICS value of the GNFHs (2', 4', 6'), respectively. The NICS values for GNFs (1, 3, 5) can be roughly estimated by the NICS value of the GNFHs (1', 3', 5') minus the NICS value of benzene, respectively. We hope that the present work can provide a simple and reliable method for the rational design of the GNF with aromaticity, which may be used to understand the origin of the graphene nanoflake aromatic properties.
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, Douglas M.; Bauschlicher, C. W., Jr.; Rosi, M.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)
2002-01-01
The matrix-isolation technique has been employed to measure the mid-infrared spectra of several polycyclic aromatic nitrogen heterocycles in both neutral and cationic forms. The species studied include: 7,8 benzoquinoline (C13H9N); 2-azapyrene (C15H9N); 1- and 2-azabenz(a)anthracene (C17H11N); and 1-, 2-, and 4-azachrysene (also C17H11N). The experimentally measured band frequencies and intensities for each molecule are tabulated and compared with their theoretically calculated values computed using density functional theory at the B3LYP/4-31G level. The overall agreement between experiment and theory is quite good, in keeping with previous investigations involving the parent aromatic hydrocarbons. Several interesting spectroscopic trends are found to accompany nitrogen substitution into the aromatic framework of these compounds. First, for the neutral species, the nitrogen atom produces a significant increase in the total integrated infrared intensity across the 1600 - 1100/cm region and plays an essential role in the molecular vibration that underlies an uncharacteristically intense, discrete feature that is observed near 1400/cm in the spectra of 7,8 benzoquinoline, 1-azabenz(a)anthracene, and 4-azachrysene. The origin of this enhanced infrared activity and the nature of the new 1400/cm vibrational mode are explored. Finally, in contrast to the parent hydrocarbon species, these aromatic nitrogen heterocycles possess a significant permanent dipole moment. Consequently, these dipole moments and the rotational constants are reported for these species in their neutral and ionized forms.
Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina
2015-01-01
A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.
Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.
Forsey, Steven P; Thomson, Neil R; Barker, James F
2010-04-01
The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene
Ugochukwu, Uzochukwu Cornelius; Ochonogor, Alfred
2018-03-26
Diesel pollution of groundwater poses great threat to public health, mainly as a result of the constituent polycyclic aromatic hydrocarbons (PAHs). In this study, the human health risk exposure to polycyclic aromatic hydrocarbons (PAHs) in diesel contaminated groundwater used by several families at Ring Road, Jos, Nigeria (as caused by diesel spill from a telecom base station) was assessed. Prior to the groundwater being treated, the residents were using the water after scooping off the visible diesel sheen for purposes of cooking, washing, and bathing. Until this study, it is not clear whether the groundwater contamination had resulted in sub-chronic exposure of the residents using the water to polycyclic aromatic hydrocarbons (PAHs) to the extent of the PAHs posing a health risk. The diesel contaminated groundwater and uncontaminated nearby groundwater (control) were collected and analyzed for PAHs using gas chromatography-mass spectrometry (GC-MS). The dosage of the dermal and oral ingestion entry routes of PAHs was determined. The estimation of the non-carcinogenic health risk was via hazard quotients (HQ) and the associated hazard index (HI), while the estimation of the carcinogenic health risk was via lifetime cancer risks (LCR) and the associated risk index (RI). Obtained results indicate that the exposure of the residents to the PAHs may have made them susceptible to the risk of non-carcinogenic health effects of benzo(a)pyrene and the carcinogenic health effects of benzo(a)anthracene and benzo(a)pyrene.
Rozi, Siti Khalijah Mahmad; Nodeh, Hamid Rashidi; Kamboh, Muhammad Afzal; Manan, Ninie Suhana Abdul; Mohamad, Sharifah
2017-07-01
A novel adsorbent, palm fatty acid coated magnetic Fe 3 O 4 nanoparticles (MNP-FA) was successfully synthesized with immobilization of the palm fatty acid onto the surface of MNPs. The successful synthesis of MNP-FA was further confirmed by X-Ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray spectroscopy (EDX) analyses and water contact angle (WCA) measurement. This newly synthesized MNP-FA was applied as magnetic solid phase extraction (MSPE) adsorbent for the enrichment of polycyclic aromatic hydrocarbons (PAHs), namely fluoranthene (FLT), pyrene (Pyr), chrysene (Cry) and benzo(a)pyrene (BaP) from environmental samples prior to High Performance Liquid Chromatography- Diode Array Detector (HPLC-DAD) analysis. The MSPE method was optimized by several parameters such as amount of sorbent, desorption solvent, volume of desorption solvent, extraction time, desorption time, pH and sample volume. Under the optimized conditions, MSPE method provided a low detection limit (LOD) for FLT, Pyr, Cry and BaP in the range of 0.01-0.05 ng mL -1 . The PAHs recoveries of the spiked leachate samples ranged from 98.5% to 113.8% with the RSDs (n = 5) ranging from 3.5% to 12.2%, while for the spiked sludge samples, the recoveries ranged from 81.1% to 119.3% with the RSDs (n = 5) ranging from 3.1% to 13.6%. The recyclability study revealed that MNP-FA has excellent reusability up to five times. Chromatrographic analysis demonstrated the suitability of MNP-FA as MSPE adsorbent for the efficient extraction of PAHs from environmental samples.
Ringelberg, David B.; Talley, Jeffrey W.; Perkins, Edward J.; Tucker, Samuel G.; Luthy, Richard G.; Bouwer, Edward J.; Fredrickson, Herbert L.
2001-01-01
Dredged harbor sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) was removed from the Milwaukee Confined Disposal Facility and examined for in situ biodegradative capacity. Molecular techniques were used to determine the successional characteristics of the indigenous microbiota during a 4-month bioslurry evaluation. Ester-linked phospholipid fatty acids (PLFA), multiplex PCR of targeted genes, and radiorespirometry techniques were used to define in situ microbial phenotypic, genotypic, and metabolic responses, respectively. Soxhlet extractions revealed a loss in total PAH concentrations of 52%. Individual PAHs showed reductions as great as 75% (i.e., acenapthene and fluorene). Rates of 14C-PAH mineralization (percent/day) were greatest for phenanthrene, followed by pyrene and then chrysene. There was no mineralization capacity for benzo[a]pyrene. Ester-linked phospholipid fatty acid analysis revealed a threefold increase in total microbial biomass and a dynamic microbial community composition that showed a strong correlation with observed changes in the PAH chemistry (canonical r2 of 0.999). Nucleic acid analyses showed copies of genes encoding PAH-degrading enzymes (extradiol dioxygenases, hydroxylases, and meta-cleavage enzymes) to increase by as much as 4 orders of magnitude. Shifts in gene copy numbers showed strong correlations with shifts in specific subsets of the extant microbial community. Specifically, declines in the concentrations of three-ring PAH moieties (i.e., phenanthrene) correlated with PLFA indicative of certain gram-negative bacteria (i.e., Rhodococcus spp. and/or actinomycetes) and genes encoding for naphthalene-, biphenyl-, and catechol-2,3-dioxygenase degradative enzymes. The results of this study suggest that the intrinsic biodegradative potential of an environmental site can be derived from the polyphasic characterization of the in situ microbial community. PMID:11282603
Baldrian, Petr; in der Wiesche, Carsten; Gabriel, Jiří; Nerud, František; Zadražil, František
2000-01-01
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited. PMID:10831426
Muñoz, Jose; Navarro-Senent, Cristina; Crivillers, Nuria; Mas-Torrent, Marta
2018-04-14
Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L -1 ) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).
NASA Technical Reports Server (NTRS)
Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W., Jr.; Allamandola, L. J.
2004-01-01
The matrix-isolation technique has been employed to measure the mid-infrared spectra of phenazine (C12H8N2), a dual substituted Polycyclic Aromatic Nitrogen Heterocycle (PANH), in the neutral, cationic and anionic forms. The experimentally measured band frequencies and intensities are tabulated and compared with their calculated values as well as those of the non-substituted parent molecule, anthracene. The theoretical band positions and intensities were calculated using both the 3-31 G as well as the larger 6-3lG* Basis Sets. A comparison of the results can be found in the tables. The spectroscopic properties of phenazine and its cation are similar to those observed in mono-substituted PANHs, with one exception. The presence of a second nitrogen atom results in an additional enhancement of the cation's total integrated intensity, for the 1500-1000 cm(sup -1) (6.7 to 10 micron) region, over that observed for a mono-substituted PANH cation. The significance of this enhancement and the astrobiological implications of these results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, L.C.; Gallagher, J.E.; Lewtas, J.
The {sup 32}P-postlabeling assay, thin-layer chromatography, and reverse-phase high-pressure liquid chromatography (HPLC) were used to separate DNA adducts formed from 10 polycyclic aromatic hydrocarbons (PAHs) and 6 nitrated polycyclic aromatic hydrocarbons (NO{sub 2}-PAHs). The PAHs included benzo[j]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]pyrene, chrysene, 6-methylchrysene, 5-methylchrysene, and benz[a]anthracene. The NO{sub 2}-PAHs included 1-nitropyrene, 2-nitrofluoranthene, 3-nitrofluoranthene, 1,6-dinitropyrene, 1,3-dinitropyrene, and 1,8-dinitropyrene. Separation of seven of the major PAH-DNA adducts was achieved by an initial PAH HPLC gradient system. The major NO{sub 2}-PAH-DNA adducts were not all separated from each other using the initial PAH HPLC gradient but were clearly separated from the PAH-DNA adducts. Amore » second NO{sub 2}-PAH HPLC gradient system was developed to separate NO{sub 2}-PAH-DNA adducts following one-dimensional TLC and HPLC analysis. HPLC profiles of NO{sub 2}-PAH-DNA adducts were compared using both adduct enhancement versions of the {sup 32}P-postlabeling assay to evaluate the use of this technique on HPLC to screen for the presence of NO{sub 2}-PAH-DNA adducts. To demonstrate the application of these separation methods to a complex mixture of DNA adducts, the chromatographic mobilities of the {sup 32}P-postlabeled DNA adduct standards (PAHs and NO{sub 2}-PAHs) were compared with those produced by a complex mixture of polycyclic organic matter (POM) extracted from diesel emission particles. The diesel-derived adducts did not elute with the identical retention time of any of the PAH or NO{sub 2}-PAH standards used in this study. HPLC analyses of the NO{sub 2}-PAH-derived adducts (butanol extracted) revealed the presence of multiple DNA adducts.« less
Nonsaponifiable lipid components of the pollen of elder (Sambucus nigra L.).
Stránsky, K; Valterová, I; Fiedler, P
2001-11-30
Pollen of the elder (Sambucus nigra L.) was extracted with chloroform-methanol. The extract was separated by column chromatography into the following groups of compounds: hydrocarbons (8.7%). polycyclic aromatic hydrocarbons (0.2%), complex esters (5.2%), triglycerides (18.7%), hydroxy esters (27.9%), free fatty acids and alcohols (16.8%), free sterols (6.8%), and triterpenic alcohols (4.0%). The nonsaponifiable components (hydrocarbons, fatty acids, alcohols, and sterols) were examined in detail using spectroscopic and chromatographic methods (IR spectroscopy, GC, and GC-MS). The identified compounds were characterized by their mass spectra and Kováts retention indices. The double bond positions and their configurations in unsaturated compounds are also reported.
Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, S.; Li, K.; Xia, X.J.
2009-02-15
This study was conducted to determine the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in sandstorm depositions in Beijing, China. The PAH concentrations in 13 samples collected in Beijing ranged from 0.18 to 3.52 {mu} g g{sup -1}. Analysis of the sources of contamination revealed that the PAHs were derived from a coal combustion source, although various effects of traffic emissions were also observed. Furthermore, the PAH levels in Beijing tended to be higher in the southeast. Finally, the Nemerow composite index revealed that the degree of pollution in the sandstorm depositions varied widely among sampling sites.
Glushkov, Andrey N; Kostyanko, Mikhail V; Cherno, Sergey V; Vasilchenko, Ilya L
2002-04-01
The method is described dealing with the synthesis of conjugates protein-polycyclic aromatic hydrocarbons (PAHs), highly soluble in water, stable without special stabilizers and containing the minimum quantity of cross-linked products. The reaction of protein with PAH containing an aldehyde group, has been carried out in an alkaline solution, and stabilization of the conjugate has been achieved by reduction with sodium borohydride in the presence of a compound blocking the formation of an insoluble polymeric fraction. The efficiency of synthesized conjugates for the induction and immunoassay of Abs to PAH for benzo[a]pyrene is shown.
NASA Technical Reports Server (NTRS)
Plows, F. L.; Elsila, J. E.; Zare, R. N.; Buseck, P. R.
2003-01-01
Organic material in meteorites provides insight into the cosmochemistry of the early solar system. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende and Murchison carbonaceous chondrites was investigated using spatially resolved microprobe laser-desorption laser-ionization mass spectrometry. Sharp chemical gradients of PAHs are associated with specific meteorite features. The ratios of various PAH intensities relative to the smallest PAH, naphthalene, are nearly constant across the sample. These findings suggest a common origin for PAHs dating prior to or contemporary with the formation of the parent body, consistent with proposed interstellar formation mechanisms.
Sloan, G C; Hayward, T L; Allamandola, L J; Bregman, J D; DeVito, B; Hudgins, D M
1999-03-01
Long-slit 8-13 micrometers spectroscopy of the nebula around NGC 1333 SVS 3 reveals spatial variations in the strength and shape of emission features that are probably produced by polycyclic aromatic hydrocarbons (PAHs). Close to SVS 3, the 11.2 micrometers feature develops an excess at approximately 10.8-11.0 micrometers and a feature appears at approximately 10 micrometers. These features disappear with increasing distance from the central source, and they show striking similarities to recent laboratory data of PAH cations, providing the first identification of emission features arising specifically from ionized PAHs in the interstellar medium.
NASA Technical Reports Server (NTRS)
Frenklach, Michael
1990-01-01
A variety of seemingly different carbon formation processes -- polycyclic aromatic hydrocarbons and diamond in the interstellar medium, soot in hydrocarbon flames, graphite and diamond in plasma-assisted-chemical vapor deposition reactors -- may all have closely related underlying chemical reaction mechanisms. Two distinct mechanisms for gas-phase carbon growth are discussed. At high temperatures it proceeds via the formation of carbon clusters. At lower temperatures it follows a polymerization-type kinetic sequence of chemical reactions of acetylene addition to a radical, and reactivation of the resultant species through H-abstraction by a hydrogen atom.
Polycyclic aromatic hydrocarbons in stellar medium
NASA Astrophysics Data System (ADS)
Rastogi, Shantanu
2005-06-01
Polycyclic Aromatic Hydrocarbons (PAHs) are an important com- ponent of the Interstellar Medium (ISM). They are being used as probes for understanding of process and conditions of different astrophysical environments. The understanding of their IR spectra and its variations with PAH size and ionization state is useful in characterizing the ISM. Spectral features of model graphene sheets and also that of smaller PAH molecules are reported. The variation of intensity with charge state of the molecule shows that cations give a better correlation with observations. The relationship between changes in charge distribution with intensity changes upon ionization has been probed.
Ayub, Rabia; Bakouri, Ouissam El; Jorner, Kjell; Solà, Miquel; Ottosson, Henrik
2017-06-16
Compounds that can be labeled as "aromatic chameleons" are π-conjugated compounds that are able to adjust their π-electron distributions so as to comply with the different rules of aromaticity in different electronic states. We used quantum chemical calculations to explore how the fusion of benzene rings onto aromatic chameleonic units represented by biphenylene, dibenzocyclooctatetraene, and dibenzo[a,e]pentalene modifies the first triplet excited states (T 1 ) of the compounds. Decreases in T 1 energies are observed when going from isomers with linear connectivity of the fused benzene rings to those with cis- or trans-bent connectivities. The T 1 energies decreased down to those of the parent (isolated) 4nπ-electron units. Simultaneously, we observe an increased influence of triplet state aromaticity of the central 4n ring as given by Baird's rule and evidenced by geometric, magnetic, and electron density based aromaticity indices (HOMA, NICS-XY, ACID, and FLU). Because of an influence of triplet state aromaticity in the central 4nπ-electron units, the most stabilized compounds retain the triplet excitation in Baird π-quartets or octets, enabling the outer benzene rings to adapt closed-shell singlet Clar π-sextet character. Interestingly, the T 1 energies go down as the total number of aromatic cycles within a molecule in the T 1 state increases.
Lipińska, Aneta; Wyszkowska, Jadwiga; Kucharski, Jan
2015-12-01
Polycyclic aromatic hydrocarbons are organic compounds with highly toxic, carcinogenic, and mutagenic properties, which adversely affect the basic biological parameters of the soil, including the count of microorganisms, and the enzymatic activity. In addition to disturbances to the biological activity of the soil, PAHs may also exhibit toxic effects on plants. In view of the above, the study involved testing aimed at the determination of the effects of polycyclic aromatic hydrocarbons in a form of naphthalene, phenanthrene, anthracene and pyrene on the count, colony development (CD) index, ecophysiological (EP) diversity index of organotrophic bacteria, and the activity of soil dehydrogenases and soil urease. Moreover, an attempt was made to determine the soil's resistance based on the activity of the above-listed enzymes, and the effect of polycyclic aromatic hydrocarbons on seed germination and root growth was assessed by Lepidium sativum, Sorghum saccharatum, and Sinapis alba. In addition, the species of bacteria found in a soil subjected to strong pressure of polycyclic aromatic hydrocarbons were isolated. The experiment was performed in a laboratory on samples of loamy sand. Polycyclic aromatic hydrocarbons were introduced into the soil in an amount of 0, 1000, 2000, and 4000 mg kg(-1) of soil dry matter. Germination and growth of cress (L. sativum), white mustard (S. alba), and sweet sorghum (S. saccharatum) were determined using Phytotoxkit tests. It was found that the tested PAHs increased the average colony counts of organotrophic soil bacteria; pyrene did so to the greatest extent (2.2-fold relative to non-contaminated soil), phenanthrene to the smallest extent (1.4-fold relative to non-contaminated soil). None of the PAHs changed the value of the bacterial colony development (CD) index, while anthracene and pyrene increased the value of the eco-physiological (EP) diversity indicator. PAHs lowered the activity of the tested enzymes. The activity of dehydrogenases was dependent on a greater extent by the type of hydrocarbon (54.56%) rather than by the dose (10.64%), while for the activity of urease, it was the opposite. The greater extent was dependent on dose (95.42%) rather than by type (0.21%). Dehydrogenases are characterised by greater resistance to the action of PAHs than urease. Based on seed germination and root growth, it has shown that S. alba is best suited, being the most vulnerable plant, while S. saccharatum is the least suited. Subjecting a soil to strong pressure of PAHs leads to disturbances to the biological parameters of the soil, seed germination, and root growth L. sativum, S. saccharatum, and S. alba.
Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...
Limited data exist on exposures of young children to polycyclic aromatic hydrocarbons (PAHs) in the United States (US). The urinary metabolite of pyrene, 1-hydroxypyrene (1-OHPyr), is widely used as a biomarker of total PAH exposure. Our objectives were to quantify urinary 1-OHPy...
Wang, Meng; Cheng, Chunsheng; Liu, Chunbo; Yang, Yaling
2018-01-01
A rapid, simple, reliable and efficient hollow fiber supported ionic liquids liquid-phase micro-extraction method (IL-HF-LPME) followed by high-performance liquid chromatography was successfully applied to the determination of four kinds of polycyclic aromatic hydrocarbons (PAHs) in milk samples. In the IL-HF-LPME method, a mixture of [OMIM]PF6 and lauric acid, in a ratio of 3:1, was immobilized in the pores of a polypropylene hollow fiber used as extraction solvent. A series of essential parameters influencing the extraction efficiency were investigated and optimized. Under the optimal conditions, the extraction equilibrium is achieved within 3 min, the good linearity was >0.9990, the limits of detection varied from 0.14 to 0.71 ng/mL, the limit of quantification values were between 0.4 and 1.8 ng/mL, and the relative standard deviations were in the range of 1.24-3.27% (n = 5). The proposed method was applied to analyze four PAHs in milk samples and recoveries were between 93.6 and 102.8%. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Andreolli, Marco; Lampis, Silvia; Brignoli, Pierlorenzo; Vallini, Giovanni
2016-05-01
Trichoderma sp. strain Evx1 was isolated from a semi-deciduous forest soil in Southern Italy. It decolorizes polynuclear organic dyes and tolerates high concentrations of phenanthrene, anthracene, fluoranthene, and pyrene. The ability of this ascomycete fungus to degrade polycyclic aromatic hydrocarbons was verified in vitro and confirmed by its strong phenoloxidase activity in the presence of gallic acid. Phylogenetic characterization of Trichoderma sp. Evx1 positioned this strain within the species Trichoderma longibrachiatum. The potential use of this species for the bioremediation of contaminated environmental matrices was tested by inoculating diesel-spiked soil with a dense mycelial suspension. The biodegradation percentage of the C12-40 hydrocarbon fraction in the inoculated soil rose to 54.2 ± 1.6 %, much higher than that in non-inoculated soil or soil managed solely by a combination of watering and aeration. The survival and persistence of T. longibrachiatum Evx1 throughout the bioremediation trial was monitored by PCR-DGGE analysis. The fungal strain was still present in the soil 30 days after bioaugmentation. These findings indicate that T. longibrachiatum Evx1 may be a suitable inoculum in bioremediation protocols for the reclamation of soils contaminated by complex mixtures of hydrocarbons.
Chirima, George Johannes
2016-01-01
Restoration of polycyclic aromatic hydrocarbon- (PAH-) polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates' partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA) production. A total of 44 isolates were obtained and belong to the genera Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, Microbacterium, Ochrobactrum, Pseudomonas, Pseudoxanthomonas, Rhodococcus, and Stenotrophomonas. Data analysed by principal component analysis showed the Bacillus and Ochrobactrum isolates displayed outstanding IAA production. Generalized linear modelling statistical approaches were applied to evaluate the contribution of the four most represented genera (Pseudomonas, Acinetobacter, Arthrobacter, and Rhodococcus) to soil fertility. The Pseudomonas isolates were the most promising in all three soil fertility enhancement traits evaluated and all isolates showed potential for one or more of the attributes evaluated. These findings demonstrate a clear potential of the isolates to participate in restorative bioremediation of polluted soil, which will enhance sustainable agricultural production and environmental protection. PMID:27774456
Llamas, Alberto; Al-Lal, Ana-María; García-Martínez, María-Jesús; Ortega, Marcelo F; Llamas, Juan F; Lapuerta, Magín; Canoira, Laureano
2017-05-15
Polycyclic Aromatic Hydrocarbons (PAHs) are pollutants of concern due to their carcinogenic and mutagenic activity. Their emissions are mainly related with the combustion or pyrolysis of the organic matter, such as in fossil fuels combustion. It is important to characterize PAHs in the combustions of biofuels due to their increasing importance in the actual energetic setting. There is a lot of research focused in PAHs emission due to the combustion in diesel engines; but only few of them have analyzed the effect of raw material and type of alcohol used in the transesterification process. Different raw materials (i.e. animal fat, palm, rapeseed, linseed, peanut, coconut, and soybean oils) have been used for obtaining FAME and FAEE. A method for measuring PAHs generated during combustion in a bomb calorimeter has been developed. Combustion was made at different oxygen pressures and the samples were taken from the bomb after each combustion. Samples were extracted and the PAHs amounts formed during combustion were analyzed by GC-MS. This research shows the statistical relationships among the 16 PAHs of concern, biodiesel composition and oxygen pressure during combustion. Copyright © 2017 Elsevier B.V. All rights reserved.
Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides.
Sun, Yubing; Yang, Shubin; Zhao, Guixia; Wang, Qi; Wang, Xiangke
2013-11-01
Graphene has attracted increasing attention in multidisciplinary studies because of its unique physical and chemical properties. Herein, the adsorption of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene (NAP), anthracene (ANT), and pyrene (PYR), on reduced graphene oxides (rGOs) and graphene oxides (GOs) as a function of pH, humic acid (HA), and temperature were elucidated by means of a batch technique. For comparison, nonpolar and nonporous graphite were also employed in this study. The increasing of pH from 2 to 11 did not influence the adsorption of PAHs on rGOs, whereas the suppressed adsorption of NAP on rGOs was observed both in the presence of HA and under high-temperature conditions. Adsorption isotherms of PAHs on rGOs were in accordance with the Polanyi-Dubinin-Ashtahhov (PDA) model, providing evidence that pore filling and flat surface adsorption were involved. The saturated adsorbed capacities (in mmol g(-1)) of rGOs for PAHs calculated from the PDA model significantly decreased in the order of NAP>PYR>ANT, which was comparable to the results of theoretical calculations. The pore-filling mechanism dominates the adsorption of NAP on rGOs, but the adsorption mechanisms of ANT and PYR on rGOs are flat surface adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nzila, Alexis
2018-05-07
The biodegradation of low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) (LWM-PAHs and HMW-PAHs, respectively) has been studied extensively under aerobic conditions. Molecular O 2 plays 2 critical roles in this biodegradation process. O 2 activates the aromatic rings through hydroxylation prior to ring opening and serves as a terminal electron acceptor (TEA). However, several microorganisms have devised ways of activating aromatic rings, leading to ring opening (and thus biodegradation) when TEAs other than O 2 are used (under anoxic conditions). These microorganisms belong to the sulfate-, nitrate-, and metal-ion-reducing bacteria and the methanogens. Although the anaerobic biodegradation of monocyclic aromatic hydrocarbons and LWM-PAH naphthalene have been studied, little information is available about the biodegradation of HMW-PAHs. This manuscript reviews studies of the anaerobic biodegradation of HMW-PAHs and identifies gaps that limit both our understanding and the efficiency of this biodegradation process. Strategies that can be employed to overcome these limitations are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mondal, Pritam; Sarkar, Sabyasachi; Rath, Sankar Prasad
2017-05-23
Three cyclic zinc(II) bis-porphyrins (CB) with highly flexible linkers are employed as artificial molecular containers that efficiently encapsulate/coordinate various aromatic aldehydes within their cavities. Interestingly, the arrangements of guests and their reactivity inside the molecular clefts are significantly influenced by the cavity size of the cyclic containers. In the presence of polycyclic aromatic aldehydes, such as 3-formylperylene, as a guest, the cyclic bis-porphyrin host with a smaller cavity (CB1) forms a 1:1 sandwich complex. Upon slightly increasing the spacer length and thereby the cavity size, the cyclic host (CB2) encapsulates two molecules of 3-formylperylene that are also stacked together due to strong π-π interactions between them and CH-π interactions with the porphyrin rings. However, in the cyclic host (CB3) with an even larger cavity, two metal centers of the bis-porphyrin axially coordinate two molecules of 3-formylperylene within its cavity. Different arrangements of guest inside the cyclic bis-porphyrin hosts are investigated by using UV/Vis, ESI-MS, and 1 H NMR spectroscopy, along with X-ray structure determination of the host-guest complexes. Moreover, strong binding of guests within the cyclic bis-porphyrin hosts support the robust nature of the host-guest assemblies in solution. Such preferential binding of the bis-porphyrinic cavity towards aromatic aldehydes through encapsulation/coordination has been employed successfully to catalyze the Knoevenagel condensation of a series of polycyclic aldehydes with active methylene compounds (such as Meldrum's acid and 1, 3-dimethylbarbituric acid) under ambient conditions. Interestingly, the yields of the condensed products significantly increase upon increasing spacer lengths of the cyclic bis-porphyrins because more substrates can then be encapsulated within the cavity. Such controllable cavity size of the cyclic containers has profound implications for constructing highly functional and modular enzyme mimics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Sandford, Scott A.; Bernstein, Max P.; Materese, Christopher K.
2013-01-01
A population of polycyclic aromatic hydrocarbons (PAHs) and related materials are thought to be responsible for the family of infrared emission features that are seen towards a wide variety of astrophysical environments. A potentially important subclass of these materials are polycyclic aromatic hydrocarbons whose edges contain excess H atoms (H(sub n)-PAHs). While it has been suggested that this type of compound may be present in the interstellar population, it has been difficult to properly assess this possibility because of a lack of suitable infrared laboratory spectra to assist with analysis of the astronomical data. We present the 4000-500 cm(exp -1) (2.5-20 micrometers) infrared spectra of 23 H(sub n)-PAHs and related molecules isolated in argon matrices, under conditions suitable for use in the interpretation of astronomical data. The spectra of molecules with mixed aromatic and aliphatic domains show unique characteristics that distinguish them from their fully aromatic PAH equivalents. We discuss the changes to the spectra of these types of molecules as they transition from fully aromatic to fully aliphatic forms. The implications for the interpretation of astronomical spectra are discussed with specific emphasis on the 3.4 and 6.9 micrometer features. Laboratory data is compared with emission spectra from IRAS 21282+5050, an object with normal PAH emission features, in addition to IRAS 22272+5435 and IRAS 0496+3429, two protoplanetary nebulae with abnormally large 3.4 micrometer features. We show that 'normal' PAH emission objects contain relatively few H(sub n)-PAHs in their emitter populations, but less evolved protoplanetary nebulae may contain significant abundances of these molecules.
Avagyan, Rozanna; Åberg, Magnus; Westerholm, Roger
2016-11-01
Wood combustion has been shown to contribute significantly to emissions of polycyclic aromatic hydrocarbons and hydroxylated polycyclic aromatic hydrocarbons, compounds with toxic and carcinogenic properties. However, only a small number of hydroxylated polycyclic aromatic hydrocarbons have been determined in particles from wood combustion, usually compounds with available reference standards. In this present study, suspect and non-target screening strategies were applied to characterize the wood smoke particles from four different wood types and two combustion conditions with respect to hydroxylated polycyclic aromatic hydrocarbons and other organic compounds. In the suspect screening, 32 peaks corresponding to 12 monohydroxylated masses were tentatively identified by elemental composition assignments and matching of isotopic pattern and fragments. More than one structure was suggested for most of the measured masses. Statistical analysis was performed on the non-target screening data in order to single out significant peaks having intensities that depend on the wood type and/or combustion condition. Significant peaks were found in both negative and positive ionization modes, with unique peaks for each wood type and combustion condition, as well as a combination of both factors. Furthermore, structural elucidation of some peaks was done by comparing the spectra in the samples with spectra found in the spectral databases. Six compounds were tentatively identified in positive ionization mode, and 19 in negative ionization mode. The results in this present study demonstrate that there are significant overall differences in the chemistry of wood smoke particles that depends on both the wood type and the combustion condition used. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yu, Chunhe; Yao, Zhimin; Hu, Bin
2009-05-08
A "dumbbell-shaped" stir bar was proposed to prevent the friction loss of coating during the stirring process, and thus prolonged the lifetime of stir bars. The effects of the coating components, including polydimethylsiloxane (PDMS), beta-cyclodextrin (beta-CD) and divinylbenzene (DVB) were investigated according to an orthogonal experimental design, using three polycyclic aromatic hydrocarbons (PAHs) and four polycyclic aromatic sulfur heterocycles (PASHs) as model analytes. Four kinds of stir bars coated with PDMS, PDMS/beta-CD, PDMS/DVB and PDMS/beta-CD/DVB were prepared and their extraction efficiencies for the target compounds were compared. It was demonstrated that PDMS/beta-CD/DVB-coated stir bar showed the best affinity to the studied compounds. The preparation reproducibility of PDMS/beta-CD/DVB-coated stir bar ranged from 3.2% to 15.2% (n = 6) in one batch, and 5.2% to 13.4% (n = 6) among batches. The "dumbbell-shaped" stir bar could be used for about 40 times, which were 10 extractions more than a normal stir bar. The prepared PDMS/beta-CD/DVB-coated "dumbbell-shaped" stir bar was used for stir bar sorptive extraction (SBSE) of PAHs and PASHs and the desorbed solution was introduced into HPLC-UV for subsequent analysis. The limits of detection of the proposed method for seven target analytes ranged from 0.007 to 0.103 microg L(-1), the relative standard deviations were in the range of 6.3-12.9% (n = 6, c = 40 microg L(-1)), and the enrichment factors were 19-86. The proposed method was successfully applied to the analysis of seven target analytes in lake water and soil samples.
NASA Astrophysics Data System (ADS)
Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana M.; Fachel, Jandyra Maria Guimarães; Leal, Karen Alam; Garcia, Karine de Oliveira; Wiegand, Flavio
2012-11-01
The purpose of the present study was to evaluate the polycyclic aromatic hydrocarbons (PAHs) in fine (PM2.5) and coarse particles (PM2.5-10) in an urban and industrial area in the Metropolitan Area of Porto Alegre (MAPA), Brazil. Sixteen U.S. Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) were measured. Filters containing ambient air particulate were extracted with dichloromethane using Soxhlet. Extracts were later analyzed, for determining PAH concentrations, using a gaseous chromatograph coupled with a mass spectrometer (GC-MS). The polycyclic aromatic hydrocarbons (PAHs) were more concentrated in PM2.5 with an average of 70% of total PAHs in the MAPA. The target PAH apportionment among the main emission sources was carried out by diagnostic PAH concentration ratios, and principal component analysis (PCA). PAHs with higher molecular weight showed higher percentages in the fine particles in the MAPA. Based on the diagnostic ratios and PCA analysis, it may be concluded that the major contribution of PAHs was from vehicular sources (diesel and gasoline), especially in the PM2.5 fraction, as well as coal and wood burning. The winter/summer ratio in the PM2.5 and PM2.5-10 fractions in the MAPA was 3.1 and 1.8, respectively, revealing the seasonal variation of PAHs in the two fractions. The estimated toxicity equivalent factor (TEF), used to assess the contribution of the carcinogenic potency, confirms a significant presence of the moderately active carcinogenic PAHs BaP and DahA in the samples collected in the MAPA.
Trujillo-Rodríguez, María J; Nacham, Omprakash; Clark, Kevin D; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M
2016-08-31
This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Fei; Hu, Wei; Zhong, Qin
2013-04-01
Real-world vehicle emission factors for PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and particle-phase polycyclic aromatic hydrocarbons (PAHs) from mixed vehicles were quantified in the Fu Gui-shan Tunnel of Nanjing during summer and winter of 2010. Concentrations of PM10 and sixteen particle phase polycyclic aromatic hydrocarbons (PAHs) in the entrance and exit of the tunnel were studied. The results showed that the four most abundant particular phase polycyclic aromatic hydrocarbons (PAHs) of motor vehicle were benzo[ghi]perylene, benzo[k]fluoranthene, benz[a]anthracene and benzo[a]pyrene. The emission factors for PM10 and particle-phase PAHs were 687 mg veh- 1 km- 1 and 18.853 mg veh- 1 km- 1 in summer, 714 mg veh- 1 km- 1 and 20.374 mg veh- 1 km- 1 in winter. Higher particle-phase PAH emission factors were found to be associated with a high proportion of diesel-fueled vehicles (DV). The estimated PM10 emission factor of gasoline-fueled vehicles (GV) was 513 mg veh- 1 km- 1 and the value for DV was 914 mg veh- 1 km- 1, while EFDV of particulate PAH (31.290 mg veh- 1 km- 1) was nearly 4 times higher than EFGV (9.310 mg veh- 1 km- 1). The five highest emission factors of diesel-fueled vehicles (DV) were benzo[ghi]perylene, benzo[k]fluoranthene, Indeno[1,2,3-cd]pyrene, benz[a]anthracene and benzo[a]pyrene, which was similarly found in the gasoline-fueled vehicles (GV). The sum of these five emission factors accounted for ~ 69% of the total particle-phase PAH of DV and ~ 67% of GV.
Prenatal exposure to polycyclic aromatic hydrocarbons/aromatics, BDNF and child development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perera, Frederica, E-mail: fpp1@columbia.edu; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032; Phillips, David H.
Objectives: Within a New York City (NYC) birth cohort, we assessed the associations between polycyclic aromatic hydrocarbon (PAH) and other aromatic DNA adducts and brain derived neurotrophic factor (BDNF) concentrations in umbilical cord blood, and neurodevelopment at age 2 years and whether BDNF is a mediator of the associations between PAH/aromatic-DNA adducts and neurodevelopment. Methods: PAH/aromatic-DNA adduct concentrations in cord blood were measured in 505 children born to nonsmoking African-American and Dominican women residing in NYC, and a subset was assessed for neurodevelopment at 2 years using the Bayley Scales of Infant Development Mental Development Index (MDI). A spectrum ofmore » PAH/aromatic-DNA adducts was measured using the {sup 32}P-postlabeling assay; DNA adducts formed by benzo[a]pyrene (B[a]P), a representative PAH, were measured by High Performance Liquid Chromatography (HPLC)/fluorescence. BDNF mature protein in cord blood plasma was quantified by an ELISA. Multivariate regression analysis, adjusting for potential confounders, was conducted. Results: PAH/aromatic-DNA adduct concentration measured by postlabeling was inversely associated with BDNF concentration (p=0.02) and with MDI scores at 2 years (p=0.04). BDNF level was positively associated with MDI scores (p=0.003). Restricting to subjects having all three measures (PAH/aromatic-DNA adducts by postlabeling, MDI, and BDNF), results were similar but attenuated (p=0.13, p=0.05, p=0.01, respectively). Associations between B[a]P-DNA adducts and BDNF and B[a]P-DNA adducts and MDI at age 2 years were not significant. At age 3 years, the positive association of BDNF with MDI was not observed. Conclusions: The results at age 2 suggest that prenatal exposure to a spectrum of PAH/aromatic pollutants may adversely affect early neurodevelopment, in part by reducing BDNF levels during the fetal period. However, the same relationship was not seen at age 3. - Highlights: • Cord blood Polycyclic Aromatic Hydrocarbon (PAH)/aromatic-DNA adducts were assayed. • Brain Derived Neurotrophic Factor (BDNF) concentration was measured concurrently. • Associations between biomarkers and neurodevelopment at age 2 years were assessed. • Adduct level was inversely associated with BDNF concentration and neurodevelopment. • BDNF level was positively associated with neurodevelopment scores at age 2 years.« less
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.; Gillette, J. S.; Zare, R. N.
2000-01-01
The polycyclic aromatic hydrocarbon (PAH) coronene (C24H12) frozen in D2O ice in a ratio of less than 1 part in 500 rapidly exchanges its hydrogen atoms with the deuterium in the ice at interstellar temperatures and pressures when exposed to ultraviolet radiation. Exchange occurs via three different chemical processes: D atom addition, D atom exchange at oxidized edge sites, and D atom exchange at aromatic edge sites. Observed exchange rates for coronene (C24H12)-D2O and d12-coronene (C24D12)-H2O isotopic substitution experiments show that PAHs in interstellar ices could easily attain the D/H levels observed in meteorites. These results may have important consequences for the abundance of deuterium observed in aromatic materials in the interstellar medium and in meteorites. These exchange mechanisms produce deuteration in characteristic molecular locations on the PAHs that may distinguish them from previously postulated processes for D enrichment of PAHs.
One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization.
Ozaki, Kyohei; Kawasumi, Katsuaki; Shibata, Mari; Ito, Hideto; Itami, Kenichiro
2015-02-16
The optoelectronic nature of two-dimensional sheets of sp(2)-hydridized carbons (for example, graphenes and nanographenes) can be dramatically altered and tuned by altering the degree of π-extension, shape, width and edge topology. Among various approaches to synthesize nanographenes with atom-by-atom precision, one-shot annulative π-extension (APEX) reactions of polycyclic aromatic hydrocarbons hold significant potential not only to achieve a 'growth from template' synthesis of nanographenes, but also to fine-tune the properties of nanographenes. Here we describe one-shot APEX reactions that occur at the K-region (convex armchair edge) of polycyclic aromatic hydrocarbons by the Pd(CH3CN)4(SbF6)2/o-chloranil catalytic system with silicon-bridged aromatics as π-extending agents. Density functional theory calculations suggest that the complete K-region selectivity stems from the olefinic (decreased aromatic) character of the K-region. The protocol is applicable to multiple APEX and sequential APEX reactions, to construct various nanographene structures in a rapid and programmable manner.
One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization
NASA Astrophysics Data System (ADS)
Ozaki, Kyohei; Kawasumi, Katsuaki; Shibata, Mari; Ito, Hideto; Itami, Kenichiro
2015-02-01
The optoelectronic nature of two-dimensional sheets of sp2-hydridized carbons (for example, graphenes and nanographenes) can be dramatically altered and tuned by altering the degree of π-extension, shape, width and edge topology. Among various approaches to synthesize nanographenes with atom-by-atom precision, one-shot annulative π-extension (APEX) reactions of polycyclic aromatic hydrocarbons hold significant potential not only to achieve a ‘growth from template’ synthesis of nanographenes, but also to fine-tune the properties of nanographenes. Here we describe one-shot APEX reactions that occur at the K-region (convex armchair edge) of polycyclic aromatic hydrocarbons by the Pd(CH3CN)4(SbF6)2/o-chloranil catalytic system with silicon-bridged aromatics as π-extending agents. Density functional theory calculations suggest that the complete K-region selectivity stems from the olefinic (decreased aromatic) character of the K-region. The protocol is applicable to multiple APEX and sequential APEX reactions, to construct various nanographene structures in a rapid and programmable manner.
Device for aqueous detection of nitro-aromatic compounds
Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.
1994-04-26
This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.
Device for aqueous detection of nitro-aromatic compounds
Reagen, William K.; Schulz, Amber L.; Ingram, Jani C.; Lancaster, Gregory D.; Grey, Alan E.
1994-01-01
This invention relates to a compact and portable detection apparatus for ro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound.
Liao, Weisheng; Liu, Hsin-Wang; Chen, Hsing-Jung; Chang, Wen-Yen; Chiu, Kong-Hwa; Wai, Chien M
2011-01-01
Catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) with up to four fused benzene rings over high-density-polyethylene-stabilized palladium nanoparticles in supercritical carbon dioxide via in situ UV/Vis spectroscopy is presented. PAHs can be efficiently converted to saturated polycyclic hydrocarbons using this green technique under mild conditions at 20 MPa of CO₂ containing 1 MPa of H₂ at 40-50°C. Kinetic studies based on in situ UV/Vis spectra of the CO₂ phase reveal that the initial hydrogenation of a given PAH and the subsequent hydrogenations of its intermediates are pseudo-first-order. The hydrogenation rate of the latter is always much smaller than that of the former probably due to increasing steric hindrance introduced by the hydrogenated benzene rings of PAHs which impedes the adsorption process and hydrogen access to PAHs on catalyst surfaces. Copyright © 2010 Elsevier Ltd. All rights reserved.
Willumstad, Thomas P.; Haze, Olesya; Mak, Xiao Yin; Lam, Tin Yiu; Wang, Yu-Pu; Danheiser*, Rick L.
2013-01-01
Highly substituted polycyclic aromatic and heteroaromatic compounds are produced via a two-stage tandem benzannulation/cyclization strategy. The initial benzannulation step proceeds via a pericyclic cascade mechanism triggered by thermal or photochemical Wolff rearrangement of a diazo ketone. The photochemical process can be performed using a continuous flow reactor which facilitates carrying out reactions on a large scale and minimizes the time required for photolysis. Carbomethoxy ynamides as well as more ketenophilic bissilyl ynamines and N-sulfonyl and N-phosphoryl ynamides serve as the reaction partner in the benzannulation step. In the second stage of the strategy, RCM generates benzofused nitrogen heterocycles, and various heterocyclization processes furnish highly substituted and polycyclic indoles of types that were not available by using the previous cyclobutenone-based version of the tandem strategy. PMID:24116731
Polycyclic aromatic hydrocarbons in Cambodian smoked fish.
Slámová, Tereza; Fraňková, Adéla; Hubáčková, Anna; Banout, Jan
2017-12-01
More than 85% of the population in Cambodia is strongly dependent on agriculture, of which freshwater aquaculture is one of the most important sources of food production. The smoked fish represents an important source of nutrients for Cambodian population; however, it can also lead to excessive intake of polycyclic aromatic hydrocarbons (PAHs). A field survey was conducted among selected smoked fish producers near to Tonle Sap river in Kampong Chhnang province, Cambodia. The study revealed that maximal limits for benzo[a]pyrene and the sum of four PAHs given by EC 1881/2006 were exceeded 2-50 times. Such burden can lead to increased risk of development of carcinogenic diseases.
A further study of air pollution in diesel bus garages.
Waller, R E; Hampton, L; Lawther, P J
1985-01-01
The concentrations of smoke, polycyclic aromatic hydrocarbons (PAHs), and some gaseous air pollutants have been measured in two London Transport diesel bus garages and compared with observations made in the same garages over 20 years earlier. The main feature of the results was a large reduction in the background concentrations of smoke and polycyclic aromatic hydrocarbons from sources such as coal fires, attributable to the implementation of the Clean Air Act. Contributions from the buses to the benzo(a) pyrene content of the air inside the garages were of the same magnitude as before, being small in relation to former coal smoke contributions. PMID:4074654
Gjeltema, Jenessa; Stoskopf, Michael; Shea, Damian; De Voe, Ryan
2012-01-01
Habitat preservation and management may play an important role in the conservation of the Puerto Rican crested toad, Peltophryne lemur, due to this species' small geographic range and declining native wild population. Bioavailable water concentrations of Polycyclic Aromatic Hydrocarbon (PAH) contaminants within breeding pools at 3 sites were established using Passive Sampling Devices (PSDs) and gas chromatography-mass spectrometry (GC/MS). A more diverse population of PAH analytes were found in higher concentrations at the breeding site that allowed direct vehicular access, but calculated risk quotients indicated low risk to toad reproduction associated with the current PAH analyte levels. PMID:23762634
Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils
Lau, E. V.; Gan, S.; Ng, H. K.
2010-01-01
This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670
Ho, Kin-Fai; Chang, Chih-Cheng; Tian, Linwei; Chan, Chi-Sing; Musa Bandowe, Benjamin A; Lui, Ka-Hei; Lee, Kang-Yun; Chuang, Kai-Jen; Liu, Chien-Ying; Ning, Zhi; Chuang, Hsiao-Chi
2016-11-01
Induction of PM 2.5 -associated lung cancer in response to EGFR-tyrosine kinase inhibitors (EGFR-TKI) remains unclear. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM 2.5 ) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Human lung adenocarcinoma cells A549 (with wild-type EGFR) and HCC827 (with EGFR mutation) were exposed to the PM 2.5 , followed by treatment with EGFR-TKI. Two samples showed significant and dose-dependent reduction in the cell viability in A549. EGFR-TKI further demonstrated significantly decreased in cell viability in A549 after exposure to the coal emissions. Chrysene and triphenylene, dibenzo[a,h]anthracene, benzo[ghi]perylene, azaarenes and oxygenated polycyclic aromatic hydrocarbons (carbonyl-OPAHs) were all associated with EGFR-TKI-dependent reduced cell viability after 72-h exposure to the PM 2.5 . The findings suggest the coal emissions could influence the response of EGFR-TKI in lung cancer cells in Xuanwei. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pogorzelec, Marta; Piekarska, Katarzyna
2018-08-01
The primary goal of the presented study was the investigation of occurrence and concentration of sixteen selected polycyclic aromatic hydrocarbons in samples from various stages of water treatment and verification of the applicability of semi-permeable membrane devices in the monitoring of drinking water. Another objective was to verify if weather seasons affect the concentration and complexity of PAHs. For these purposes, semipermeable membrane devices were installed in a surface water treatment plant located in Lower Silesia (Poland). Samples were collected monthly over a period of one year. To determine the effect of water treatment on PAH concentrations, four sampling sites were selected: raw water input, a stream of water in the pipe just before ozonation, treated water output and water after passing through the distribution system. After each month of sampling, SPMDs were exchanged for fresh ones and prepared for instrumental analysis. Concentrations of polycyclic aromatic hydrocarbons were determined by high-performance liquid chromatography (HPLC). The presented study indicates that semipermeable membrane devices can be an effective tool for the analysis of drinking water, in which organic micropollutants occur at very low concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.
Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, R.C.
1999-04-01
Sediment quality guidelines (SQGs) for polycyclic aromatic hydrocarbons (PAHs) have been derived from a variety of laboratory, field, and theoretical foundations. They include the screening level concentration, effects ranges-low and -median, equilibrium partitioning concentrations, apparent effects threshold, {Sigma}PAH model, and threshold and probable effects levels. The resolution of controversial differences among the PAH SQGs lies in an understanding of the effects of mixtures. Polycyclic aromatic hydrocarbons virtually always occur in field-collected sediment as a complex mixture of covarying compounds. When expressed as a mixture concentration, that is, total PAH (TPAH), the guidelines form three clusters that were intended in theirmore » original derivations to represent threshold (TEC = 290 {micro}g/g organic carbon [OC]), median (MEC = 1,800 {micro}g/g OC), and extreme (EEC = 10,000 {micro}g/g OC) effects concentrations. The TEC/MEC/EEC consensus guidelines provide a unifying synthesis of other SQGs, reflect causal rather than correlative effects, account for mixtures, and predict sediment toxicity and benthic community perturbations at sites of PAH contamination. The TEC offers the most useful SQG because PAH mixtures are unlikely to cause adverse effects on benthic ecosystems below the TEC.« less
Volatile and semivolatile organic compounds in laboratory peat fire emissions
NASA Astrophysics Data System (ADS)
George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.
2016-05-01
In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Negative-ion chemical-ionization mass spectrometry (NICI MS) has the potential to be a very useful technique in identifying various polycyclic aromatic hydrocarbons (PAHs) in soil and sediment samples. Some PAHs give much stronger signals under NICI MS conditions than others. On ...
Shokri, Siamak; Li, Jingbai; Manna, Manoj K.; ...
2017-08-24
In this paper, we report a novel reductive desulfurization reaction involving π-acidic naphthalene diimides 1 (NDI) using thionating agents such as Lawesson’s reagent. Along with the expected thionated NDI derivatives 2-6, new heterocyclic naphtho-p-quinodimethane compounds 7 depicting broken/reduced symmetry were successfully isolated and fully characterized. Empirical studies and theoretical modeling suggest that was formed via a six-membered ring oxathiaphosphenine intermediate rather than the usual four-membered ring oxathiaphosphetane of 2-6. Aside from the reduced symmetry in 7 as confirmed by single-crystal XRD analysis, we established that the ground state UV-vis absorption of 7 is red-shifted in comparison to the parent NDImore » 1. This result was expected in the case of thionated polycyclic diimides. However, unusual low energy transitions originate from Baird 4nπ aromaticity of compounds 7 in lieu of the intrinsic Huckel (4n + 2)π aromaticity as encountered in NDI 1. Moreover, complementary theoretical modeling results also corroborate this change in aromaticity of 7. Consequently, photophysical investigations show that, compared to parent NDI 1, 7 can easily access and emit from its T 1 state with a phosphorescence 3(7a)* lifetime of τ P = 395 μs at 77 K indicative of the formation of the corresponding “aromatic triplet” species according to the Baird’s rule of aromaticity.« less
Compounds in airborne particulates - Salts and hydrocarbons. [at Cleveland, OH
NASA Technical Reports Server (NTRS)
King, R. B.; Antoine, A. C.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.
1977-01-01
Concentrations of 10 polycyclic aromatic hydrocarbons (PAH), the aliphatics as a group, sulfate, nitrate, fluoride, acidity, and carbon in the airborne particulate matter were measured at 16 sites in Cleveland, OH over a 1-year period during 1971 and 1972. Analytical methods used included gas chromatography, colorimetry, and combustion techniques. Uncertainties in the concentrations associated with the sampling procedures, and the analytical methods are evaluated. The data are discussed relative to other studies and source origins. High concentrations downwind of coke ovens for 3,4 benzopyrene are discussed. Hydrocarbon correlation studies indicated no significant relations among compounds studied.
Electron affinities (EAs) and free energies for electron attachment have been calculated for 42 polynuclear aromatic hydrocarbons and related molecules by a variety of theoretical models, including Koopmans' theorem methods and the L1E method from differences in energy between th...
Hydrogen peroxide (H2O2) catalyzed by soluble iron or naturally occurring soil minerals, (i.e., modified Fenton's reagent) was investigated as a basis for mineralizing sorbed and NAPL-phase benzo[a]pyrene (BaP), a hydrophobic and toxic polycyclic a...
NASA Astrophysics Data System (ADS)
Sharma, Homdutt; Jain, V. K.; Khan, Zahid H.
2013-05-01
We have developed a simple, rapid, inexpensive method for the identification of fluoranthene (Flan), benz(a)anthracene (BaA), benzo(a)pyrene (BaP), benzo(k)fluoranthene (BkF), pyrene (Pyr), benz(ghi)perylene (BghiP) in suspended particulate matter in an urban environment of Delhi. Suspended particulate matter samples of 24 h duration were collected on glass fiber filter papers. Polycyclic aromatic hydrocarbons (PAHs) were extracted from the filter papers using dichloromethane (DCM) and hexane with ultrasonication method. Comparison of the characteristic emission of spectra of PAHs with standard spectra indicated the degree of condensation of aromatic compounds present in investigated mixtures. It was also possible to identify some individual compounds. However, this identification could be more effective with the use of the respective values of Δλ parameter for each particular component of the mixture.
NASA Technical Reports Server (NTRS)
Wagner, D. R.; Kim, H. S.; Saykally, R. J.
2000-01-01
Infrared emission spectra of five gas-phase UV laser-excited polycyclic aromatic hydrocarbons (PAHs) containing aliphatic hydrogens are compared with the main 3.3 microns and associated interstellar unidentified infrared emission bands (UIRs). We show that neutral PAHs can account for the majority of the 3 microns emission complex while making little contribution to the other UIR bands; peripherally hydrogenated PAHs produce a better match to astrophysical data than do those containing methyl side groups; 3.4 microns plateau emission is shown to be a general spectral feature of vibrationally excited PAHs containing aliphatic hydrogens, especially those containing methyl groups; and finally, hot-band and overtone emissions arising from aromatic C-H vibrations are not observed in laboratory emission spectra, and therefore, in contrast to current assignments, are not expected to be observed in the UIRs.
Embryotoxic and teratogenic effects of petroleum hydrocarbons in mallards (Anas platyrhynchos)
Hoffman, D.J.
1979-01-01
Egg surface applications of microliter quantities of crude and refined oils of high aromatic content are embryotoxic to mallards (Anas platyrhynchos) and other avian species; applications of aliphatic hydrocarbons have virtually no effect. Mallard eggs at 72 h of development were exposed to a mixture of aromatic hydrocarbons or to aromatic compounds representative to those present in crude oil to assess their toxicity. The class composition of the mixture was similar to that of South Louisiana crude oil, an American Petroleum Institute reference oil. Application of 20 microliter of the mixture reduced embryonic survival by nearly 70%. The temporal pattern of embryonic death was similar to that after exposure to South Louisiana crude oil. Embryonic growth was stunted, as reflected by weight, crown-rump length, and bill length, and there was a significant increase in the incidence of abnormal survivors. When individual classes of aromatic hydrocarbons were tested, tetracyclics caused some embryonic death at the concentrations in the mixture. When classes were tested in all possible combinations of two, no combination appeared to be as toxic as the entire mixture. Addition of the tetracyclic compound chrysene to the aromatic mixture considerably enhanced embryotoxicity, but could not completely account for the toxicity of the crude oil. The presence of additional unidentified polycyclic aromatic hydrocarbons as well as methylated derivatives of polycyclic aromatic compounds such as chrysene may further account for the embryotoxicity of the crude oil.
Bhattacharjee, Rituparna; Roy, Ram Kinkar
2013-11-14
The relative contribution of the sum of kinetic [(10/9)CFρ(r)2/3] and exchange energy [(4/9)CXρ(r)1/3] terms to that of the electronic part of the molecular electrostatic potential [Vel(r)] in the variants of hardness potential is investigated to assess the proposed definition of Δ+h(k) = −[VelN+1(k) – VelN(k)] and Δ–h(k) = −[VelN(k) – VelN–1(k)] (Saha; et al. J. Comput. Chem. 2013, 34, 662). Some substituted benzenes and polycyclic aromatic hydrocarbons (PAHs) (undergoing electrophilic aromatic substitution), carboxylic acids, and their derivatives are chosen to carry out the theoretical investigation as stated above. Intra- and intermolecular reactivity trends generated by Δ+h(k) and Δ–h(k) are found to be satisfactory and are correlated reasonably well with experimental results.
Fluorescent aromatic sensors and their methods of use
NASA Technical Reports Server (NTRS)
Meador, Michael A. (Inventor); Tyson, Daniel S. (Inventor); Ilan, Ulvi F. (Inventor)
2012-01-01
Aromatic molecules that can be used as sensors are described. The aromatic sensors include a polycyclic aromatic hydrocarbon core with a five-membered imide rings fused to the core and at least two pendant aryl groups. The aromatic sensor molecules can detect target analytes or molecular strain as a result of changes in their fluorescence, in many cases with on-off behavior. Aromatic molecules that fluoresce at various frequencies can be prepared by altering the structure of the aromatic core or the substituents attached to it. The aromatic molecules can be used as sensors for various applications such as, for example, the detection of dangerous chemicals, biomedical diagnosis, and the detection of damage or strain in composite materials. Methods of preparing aromatic sensor molecules are also described.
Reflectance spectroscopy (350-2500 nm) of solid-state polycyclic aromatic hydrocarbons (PAHs)
NASA Astrophysics Data System (ADS)
Izawa, M. R. M.; Applin, D. M.; Norman, L.; Cloutis, E. A.
2014-07-01
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds based on fused aromatic rings, and are formed in a variety of astrophysical, solar nebula and planetary processes. Polycyclic aromatic hydrocarbons are known or suspected to occur in a wide variety of planetary settings including icy satellites, Titan’s hazes, carbonaceous meteorites, comet nuclei, ring particles; and terrestrial organic-rich lithologies such as coals, asphaltites, and bituminous sands. Relatively few measurements of the visible and near-infrared spectra of PAHs exist, yet this wavelength region (350-2500 nm) is widely used for remote sensing. This study presents detailed analyses of the 350-2500 nm reflectance spectra of 47 fine-grained powders of different high-purity solid-state PAHs. Spectral properties of PAHs change with variations in the number and connectivity of linked aromatic rings and the presence and type of side-groups and heterocycles. PAH spectra are characterized by three strong features near ∼880 nm, ∼1145 nm, and ∼1687 nm due to overtones of νCH fundamental stretching vibrations. Some PAHs are amenable to remote detection due to the presence of diagnostic spectral features, including: Nsbnd H stretching overtones at 1490-1515 nm in NH- and NH2-bearing PAHs, aliphatic or saturated bond Csbnd H overtone vibrations at ∼1180-1280 nm and ∼1700-1860 nm; a broad asymmetric feature between ∼1450 nm and ∼1900 nm due to Osbnd H stretching overtones in aromatic alcohols, Csbnd H and Cdbnd O combinations near ∼2000-2010 nm and ∼2060-2270 nm in acetyl and carboxyl-bearing PAHs. Other substituents such as sulphonyl, thioether ether and carboxyl heterocycles, or cyano, nitrate, and aromatic side groups, do not produce well-resolved diagnostic spectral features but do cause shifts in the positions of the aromatic Csbnd H vibrational overtone features. Fluorescence is commonly suppressed by the presence of heterocycles, side-groups and in many non-alternant PAHs. The spectral characteristics of PAHs offer the potential, under suitable circumstances, for remote characterization of the classes of PAH present and in some cases, identification of particular heterocyclic or side-group substituents.
Pozdnyakova, Natalia; Dubrovskaya, Ekaterina; Chernyshova, Marina; Makarov, Oleg; Golubev, Sergey; Balandina, Svetlana; Turkovskaya, Olga
2018-05-01
The degradation of two isomeric three-ringed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus D1 and the litter-decomposing fungus Agaricus bisporus F-8 was studied. Despite some differences, the degradation of phenanthrene and anthracene followed the same scheme, forming quinone metabolites at the first stage. The further fate of these metabolites was determined by the composition of the ligninolytic enzyme complexes of the fungi. The quinone metabolites of phenanthrene and anthracene produced in the presence of only laccase were observed to accumulate, whereas those formed in presence of laccase and versatile peroxidase were metabolized further to form products that were further included in basal metabolism (e.g. phthalic acid). Laccase can catalyze the initial attack on the PAH molecule, which leads to the formation of quinones, and that peroxidase ensures their further oxidation, which eventually leads to PAH mineralization. A. bisporus, which produced only laccase, metabolized phenanthrene and anthracene to give the corresponding quinones as the dominant metabolites. No products of further utilization of these compounds were detected. Thus, the fungi's affiliation with different ecophysiological groups and their cultivation conditions affect the composition and dynamics of production of the ligninolytic enzyme complex and the completeness of PAH utilization. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium.
Zhao, Baisuo; Wang, Hui; Li, Ruirui; Mao, Xinwei
2010-05-01
A polycyclic aromatic hydrocarbon-degrading marine bacterium, designated strain P-4(T), was isolated from oil-polluted saline soil in Xianhe, Shangdong Province, China. Strain P-4(T) was Gram-negative-staining with curved to spiral rod-shaped cells and grew optimally with 3-6 % (w/v) NaCl and at 30 degrees C. The predominant fatty acids were C(18 : 1)omega7c (35.0 %), C(16 : 0) (25.0 %), C(16 : 1)omega7c (17.9 %), C(14 : 0) (6.2 %) and C(17 : 0) cyclo (5.2 %). The major respiratory quinone was Q-9 and the genomic DNA G+C content was 61.2+/-1.0 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain P-4(T) belonged to the genus Thalassospira of the class Alphaproteobacteria. DNA-DNA hybridization with Thalassospira xiamenensis DSM 17429(T) showed relatedness of 36.0 %, and lower values were obtained with respect to other Thalassospira species. Based on physiological and biochemical tests and 16S rRNA gene sequence analysis as well as DNA-DNA relatedness, strain P-4(T) should be placed in the genus Thalassospira within a novel species. The name Thalassospira xianhensis sp. nov. is proposed, with P-4(T) (=CGMCC 1.6849(T) =JCM 14850(T)) as the type strain.
Kodama, Yumiko; Stiknowati, Lies Indah; Ueki, Atsuko; Ueki, Katsuji; Watanabe, Kazuya
2008-03-01
A Gram-negative, mesophilic bacterial strain, designated 1-1B(T), which degrades polycyclic aromatic hydrocarbons, was isolated from petroleum-contaminated seawater during a bioremediation experiment. A 16S rRNA gene sequence analysis indicated that the isolate was affiliated with the genus Thalassospira in the Alphaproteobacteria; the sequence was found to be most similar to those of Thalassospira profundimaris WP0211(T) (99.8 %), Thalassospira xiamenensis M-5(T) (98.2 %) and Thalassospira lucentensis DSM 14000(T) (98.1 %). However, the levels of DNA-DNA relatedness between strain 1-1B(T) and these type strains were 50.7+/-17.2, 35.7+/-17.8 and 32.0+/-21.1 %, respectively. In addition, strain 1-1B(T) was found to be distinct from the other described species of the genus Thalassospira in terms of some taxonomically important traits, including DNA G+C content, optimum growth temperature, salinity tolerance, utilization of carbon sources and fatty acid composition. Furthermore, strain 1-1B(T) and T. profundimaris were also different with regard to motility and denitrification capacities. On the basis of physiological and DNA-DNA hybridization data, strain 1-1B(T) represents a novel species within the genus Thalassospira, for which the name Thalassospira tepidiphila sp. nov. is proposed. The type strain is 1-1B(T) (=JCM 14578(T) =DSM 18888(T)).
Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui
2017-01-01
Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26–8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18–20.68 mg kg−1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes. PMID:28051171
NASA Astrophysics Data System (ADS)
Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui
2017-01-01
Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26-8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18-20.68 mg kg-1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes.
Yan, Zhonghai; Zhang, Hanjie; Maher, Christina; Arteaga-Solis, Emilio; Champagne, Frances A.; Wu, Licheng; McDonald, Jacob D.; Yan, Beizhan; Schwartz, Gary J.; Miller, Rachel L.
2014-01-01
Rationale Greater levels of prenatal exposure to polycyclic aromatic hydrocarbon (PAH) have been associated with childhood obesity in epidemiological studies. However, the underlying mechanisms are unclear. Objectives We hypothesized that prenatal PAH over-exposure during gestation would lead to weight gain and increased fat mass in offspring and grand-offspring mice. Further, we hypothesized that altered adipose gene expression and DNA methylation in genes important to adipocyte differentiation would be affected. Materials and Methods Pregnant dams were exposed to a nebulized PAH mixture versus negative control aerosol 5 days a week, for 3 weeks. Body weight was recorded from postnatal day (PND) 21 through PND60. Body composition, adipose cell size, gene expression of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding proteins (C/EBP) α, cyclooxygenase (Cox)-2, fatty acid synthase (FAS) and adiponectin, and DNA methylation of PPAR γ, were assayed in both the offspring and grand-offspring adipose tissue. Findings Offspring of dams exposed to greater PAH during gestation had increased weight, fat mass, as well as higher gene expression of PPAR γ, C/EBP α, Cox2, FAS and adiponectin and lower DNA methylation of PPAR γ. Similar differences in phenotype and DNA methylation extended through the grand-offspring mice. Conclusions Greater prenatal PAH exposure was associated with increased weight, fat mass, adipose gene expression and epigenetic changes in progeny. PMID:25347678
Astolfi, Maria Luisa; Di Filippo, Patrizia; Gentili, Alessandra; Canepari, Silvia
2017-11-01
We describe the optimization and validation of a sequential extractive method for the determination of the polycyclic aromatic hydrocarbons (PAHs) and elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, V and Zn) that are chemically fractionated into bio-accessible and mineralized residual fractions on a single particulate matter filter. The extraction is performed by automatic accelerated solvent extraction (ASE); samples are sequentially treated with dichloromethane/acetone (4:1) for PAHs extraction and acetate buffer (0.01M; pH 4.5) for elements extraction (bio-accessible fraction). The remaining solid sample is then collected and subjected to acid digestion with HNO 3 :H 2 O 2 (2:1) to determine the mineralized residual element fraction. We also describe a homemade ASE cell that reduces the blank values for most elements; in this cell, the steel frit was replaced by a Teflon pierced disk and a Teflon cylinder was used as the filler. The performance of the proposed method was evaluated in terms of recovery from standard reference material (SRM 1648 and SRM 1649a) and repeatability. The equivalence between the new ASE method and conventional methods was verified for PAHs and for bio-accessible and mineralized residual fractions of elements on PM 10 twin filters. Copyright © 2017 Elsevier B.V. All rights reserved.
Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma
Klingbeil, E. C.; Hew, K. M.; Nygaard, U. C.; Nadeau, K. C.
2014-01-01
Environmental determinants including aerosolized pollutants such as polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke have been associated with exacerbation and increased incidence of asthma. The influence of aerosolized pollutants on the development of immune dysfunction in asthmatics has been suggested to be mediated through epigenetic remodeling. Genome accessibility and transcription are regulated primarily through DNA methylation, histone modification, and microRNA transcript silencing. Epigenetic remodeling has been shown in studies to be associated with Th2 polarization and associated cytokine and chemokine regulation in the development of asthma. This review will present evidence for the contribution of the aerosolized pollutants PAH and environmental tobacco smoke to epigenetic remodeling in asthma. PMID:24760221
Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation
NASA Astrophysics Data System (ADS)
Gatchell, M.; Stockett, M. H.; de Ruette, N.; Chen, T.; Giacomozzi, L.; Nascimento, R. F.; Wolf, M.; Anderson, E. K.; Delaunay, R.; Vizcaino, V.; Rousseau, P.; Adoui, L.; Huber, B. A.; Schmidt, H. T.; Zettergren, H.; Cederquist, H.
2015-11-01
A recent study of soft x-ray absorption in native and hydrogenated coronene cations, C24H12+m +m =0 -7 , led to the conclusion that additional hydrogen atoms protect (interstellar) polycyclic aromatic hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014), 10.1103/PhysRevLett.113.053002]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C16H10+m + , m =0 , 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.
Aromatic ring generation as a dust precursor in acetylene discharges
NASA Astrophysics Data System (ADS)
De Bleecker, Kathleen; Bogaerts, Annemie; Goedheer, Wim
2006-04-01
Production of aromatic hydrocarbon compounds as an intermediate step for particle formation in low-pressure acetylene discharges is investigated via a kinetic approach. The detailed chemical reaction mechanism contains 140 reactions among 55 species. The cyclic hydrocarbon chemistry is mainly based on studies of polycyclic aromatic hydrocarbon formation in cosmic environments. The model explicitly includes organic chain, cyclic molecules, radicals, and ions up to a size of 12 carbon atoms. The calculated density profiles show that the aromatic formation yields are quite significant, suggesting that aromatic compounds play a role in the underlying mechanisms of particle formation in hydrocarbon plasmas.
Chen, Edward S; Chen, Edward C M
2018-02-15
The anion mass spectral lifetimes for several aromatic hydrocarbons reported in the subject article were related to significantly different electron affinities. The different values are rationalized using negative ion mass spectral data. Electron affinities for polycyclic aromatic hydrocarbons are reported from the temperature dependence of unpublished electron capture detector data. These are compared with published values and the largest values are assigned to the ground state. The ground state adiabatic electron affinities: (eV) pentacene, 1.41 (3); tetracene, 1.058 (5); benz(a)pyrene, 0.82 (4); benz(a) anthracene, 0.69 (2) anthracene, 0.68 (2); and pyrene, 0.59 (1) are used to assign excited state adiabatic electron affinities: (eV) tetracene: 0.88 (4); anthracene 0.53 (1); pyrene, 0.41 (1); benz(a)anthracene, 0.39 (10); chrysene, 0.32 (1); and phenanthrene, 0.12 (2) and ground state adiabatic electron affinities: (eV) dibenz(a,j)anthracene, 0.69 (3); dibenz(a,h)anthracene, 0.68 (3); benz(e)pyrene, 0.60 (3); and picene, 0.59 (3) from experimental data. The lifetime of benz(a)pyrene is predicted to be larger than 150 μs and for benzo(c)phenanthrene and picene about 40 μs, from ground state adiabatic electron affinities. The assignments of adiabatic electron affinities of aromatic hydrocarbons determined from electron capture detector and mass spectrometric data to ground and excited states are supported by constant electronegativities. A set of consistent ground state adiabatic electron affinities for 15 polycyclic aromatic hydrocarbons is related to lifetimes from the subject article. Copyright © 2017 John Wiley & Sons, Ltd.
Oguntimehin, Ilemobayo; Bandai, Sayuri; Sakugawa, Hiroshi
2013-03-01
The negative health effects of simulated acid mists and fluoranthene on juvenile Japanese red pine were investigated, and the methods of protection from these pollutants were examined. The needle gas exchange, chlorophyll fluorescence, chemical contents and visual damage to needles caused by acid mist applied alone or its conjunction with fluoranthene were investigated over 60 d and 20 d, respectively. Acid mist at pH 2 and 3 caused physiological and visual damage, which was enhanced by the addition of fluoranthene to the mist. However, fluoranthene and acid mist at pH 4 and 5 showed only minor effects. These findings indicate that acid mist may be more harmful to pine trees if it occurs in conjunction with polycyclic aromatic hydrocarbons. Moreover, suppression of the singular and additive effects of these compounds was achieved using mannitol, which may be widely applicable to suppression of reactive oxygen species-mediated plant damage. Copyright © 2012 Elsevier Ltd. All rights reserved.
2006-05-01
Polycyclic Aromatic Hydrocarbons and Petroleum to Marine Invertebrate Larvae and Juveniles,” Environ. Toxicol. Chem., vol. 16, pp. 2190–2199...aromatic hydrocarbons , polychlorinated biphenyls, and chlorinated pesticides. Seventeen plume mapping surveys, including an on-site floating bioassay...Non-point Source NS&T National Status and Trends PAH Polynuclear Aromatic Hydrocarbon PCB Polychlorinated Biphenyl PMSD Percent
Bohrer, Denise; Viana, Carine; Barichello, Marcia M; de Moura, Juliane F; de Carvalho, Leandro M; Nascimento, Paulo C
2017-08-01
Rubber closures are the primary packaging material for sterile preparations intended for repeated use. Important features of rubber closures are achieved after additives are added to the elastomeric material that compounds the rubber. Among these additives is carbon black. Because of its origin, carbon black may contain polycyclic aromatic hydrocarbons (PAHs). The U.S. Environmental Protection Agency has identified 16 priority PAHs on the basis of concerns that they cause or might cause cancer in animals and humans. Regulatory agencies impose carbon black purity specifications based on limits for total PAHs (0.5 mg/kg) and benzo[a]pyrene (5 μg/kg) or benzo[a]pyrene only (250 μg/kg). PAHs in rubber packaging used for pharmaceutical formulations and in parenteral products stored in containers with rubber stoppers were investigated. To this end, the method proposed by the National Institute for Occupational Safety and Health-based on high-performance liquid chromatography with ultraviolet and fluorescence detection-was adapted to determine the levels of PAHs in rubber stoppers (gray and red) and in lipid emulsions and amino acid solutions stored in bottles with rubber stoppers. The rubber materials were shown to contain 12 PAHs, in concentrations ranging from 0.25-3.31 µg/g. Only 1 of 18 samples (11 amino acid solutions and 7 lipid emulsions) was uncontaminated. The most prevalent contaminants were pyrene, benzo[a]pyrene, and fluoranthene. The total PAH concentrations in the samples ranged from 0.11-5.96 µg/mL. Components of parenteral nutrition may be contaminated with PAHs, and rubber stoppers represent a potential source of these contaminants.
Lin, Li; Dong, Lei; Meng, Xiaoyang; Li, Qingyun; Huang, Zhuo; Li, Chao; Li, Rui; Yang, Wenjun; Crittenden, John
2018-07-01
After the impoundment of the Three Gorges Reservoir (TGR), the hydrological situation of the reservoir has changed greatly. The concentration and distribution of typical persistent organic pollutants in water and sediment have also changed accordingly. In this study, the concentration, distribution and potential sources of 16 polycyclic aromatic hydrocarbons (PAHs) and 6 phthalic acid esters (PAEs) during the water drawdown and impoundment periods were investigated in water and sediment from the TGR. According to our results, PAHs and PAEs showed temporal and spatial variations. The mean ΣPAH and ΣPAE concentrations in water and sediment were both higher during the water impoundment period than during the water drawdown period. The water samples from the main stream showed larger ΣPAH concentration fluctuations than those from tributaries. Both the PAH and PAE concentrations meet the Chinese national water environmental quality standard (GB 3838-2002). PAH monomers with 2-3 rings and 4 rings were dominant in water, and 4-ring and 5-6-ring PAHs were dominant in sediment. Di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) were the dominant PAE pollutants in the TGR. DBP and DEHP had the highest concentrations in water and sediment, respectively. The main source of PAHs in water from the TGR was petroleum and emissions from coal and biomass combustion, whereas the main sources of PAHs in sediments included coal and biomass combustion, petroleum, and petroleum combustion. The main source of PAEs in water was domestic waste, and the plastics and heavy chemical industries were the main sources of PAEs in sediment. Copyright © 2017. Published by Elsevier B.V.
Corteselli, Elizabeth M; Aitken, Michael D; Singleton, David R
2017-04-01
The bacterial strain TR3.2T was isolated from aerobic bioreactor-treated soil from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Salisbury, NC, USA. Strain TR3.2T was identified as a member of 'Pyrene Group 2' or 'PG2', a previously uncultivated cluster of organisms associated with the degradation of high-molecular-weight PAHs by stable-isotope probing. Based on its 16S rRNA gene sequence, the strain was classified as a member of the class Gammaproteobacteria but possessed only 90.5 % gene identity to its closest described relative, Methylococcus capsulatus strain Bath. Strain TR3.2T grew on the PAHs pyrene, phenanthrene, anthracene, benz[a]anthracene and fluorene, as well as the azaarene carbazole, and could additionally metabolize a limited number of organic acids. Optimal growth occurred aerobically under mesophilic temperature, neutral pH and low salinity conditions. Strain TR3.2T was catalase and oxidase positive. Predominant fatty acids were C17 : 0 cyclo and C16 : 0. Genomic G+C content of the single chromosome was 67.79 mol% as determined by complete genome sequencing. Due to the high sequence divergence from any cultivated species and its unique physiological properties compared to its closest relatives, strain TR3.2T is proposed as a representative of a novel order, family, genus and species within the class Gammaproteobacteria, for which the name Immundisolibacter cernigliae gen. nov., sp. nov. is proposed. The associated order and family are therefore proposed as Immundisolibacteralesord. nov. and Immundisolibacteraceaefam. nov. The type strain of the species is TR3.2T (=ATCC TSD-58T=DSM 103040T).
Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.
Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira
2014-09-01
This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wilson, Walter B; Costa, Andréia A; Wang, Huiyong; Dias, José A; Dias, Sílvia C L; Campiglia, Andres D
2012-07-06
The analytical performance of BEA - a commercial zeolite - is evaluated for the pre-concentration of fifteen Environmental Protection Agency - polycyclic aromatic hydrocarbons and their subsequent HPLC analysis in tap and lake water samples. The pre-concentration factors obtained with BEA have led to a method with excellent analytical figures of merit. One milliliter aliquots were sufficient to obtain excellent precision of measurements at the parts-per-trillion concentration level with relative standard deviations varying from 4.1% (dibenzo[a,h]anthracene) to 13.4% (pyrene). The limits of detection were excellent as well and varied between 1.1 (anthracene) and 49.9 ng L(-1) (indeno[1,2,3-cd]pyrene). The recovery values of all the studied compounds meet the criterion for regulated polycyclic aromatic hydrocarbons, which mandates relative standard deviations equal or lower than 25%. The small volume of organic solvents (100 μL per sample) and amount of BEA (2 mg per sample) makes sample pre-concentration environmentally friendly and cost effective. The extraction procedure is well suited for numerous samples as the small working volume (1 mL) facilitates the implementation of simultaneous sample extraction. These are attractive features when routine monitoring of numerous samples is contemplated. Copyright © 2012 Elsevier B.V. All rights reserved.
Vinci, Giuliana; Antonelli, Marta L; Preti, Raffaella
2013-02-01
Liquid-liquid microextraction coupled to LC with fluorescence detection for the determination of Environmental Protection Agency's 16 priority pollutant polycyclic aromatic hydrocarbons in rainwater has been developed. The optimization of the extraction method has involved several parameters, including the comparison between an ultrasonic bath and a magnetic stirrer as extractant apparatus, the choice of the extractant solvent, and the optimization of the extraction time. Liquid-liquid microextraction gave good results in terms of recoveries (from 73.6 to 102.8% in rainwater) and repeatability, with a very simple procedure and low solvent consumption. The reported chromatographic method uses a Core-Shell technology column, with particle size <3 μm instead of classical 5-μm particles column. The resulting backpressure was below 300 bar, allowing the use of a conventional HPLC system rather than the more expensive ultrahigh performance LC (UHPLC). An average decrease of 59% in run time and 75% in eluent consumption has been obtained, compared to classical HPLC methods, keeping good separation, sensitivity, and repeatability. The proposed conditions were successfully applied to the determinations of polycyclic aromatic hydrocarbons in genuine rainwater samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abuhelou, Fayez; Mansuy-Huault, Laurence; Lorgeoux, Catherine; Catteloin, Delphine; Collin, Valéry; Bauer, Allan; Kanbar, Hussein Jaafar; Gley, Renaud; Manceau, Luc; Thomas, Fabien; Montargès-Pelletier, Emmanuelle
2017-10-01
In this study, we compared the influence of two different collection methods, filtration (FT) and continuous flow field centrifugation (CFC), on the concentration and the distribution of polycyclic aromatic compounds (PACs) in suspended particulate matter (SPM) occurring in river waters. SPM samples were collected simultaneously with FT and CFC from a river during six sampling campaigns over 2 years, covering different hydrological contexts. SPM samples were analyzed to determine the concentration of PACs including 16 polycyclic aromatic hydrocarbons (PAHs), 11 oxygenated PACs (O-PACs), and 5 nitrogen PACs (N-PACs). Results showed significant differences between the two separation methods. In half of the sampling campaigns, PAC concentrations differed from a factor 2 to 30 comparing FT and CFC-collected SPMs. The PAC distributions were also affected by the separation method. FT-collected SPM were enriched in 2-3 ring PACs whereas CFC-collected SPM had PAC distributions dominated by medium to high molecular weight compounds typical of combustion processes. This could be explained by distinct cut-off threshold of the two separation methods and strongly suggested the retention of colloidal and/or fine matter on glass-fiber filters particularly enriched in low molecular PACs. These differences between FT and CFC were not systematic but rather enhanced by high water flow rates.
Sadeghi, Ramezan; Kobarfard, Farzad; Yazdanpanah, Hassan; Eslamizad, Samira; Bayate, Mitra
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are classified as persistent and carcinogenic organic pollutants. PAHs contamination has been reported in water. Many of relevant regulatory bodies such as EU and EPA have regulated the limit levels for PAHs in drinking water. In this study, 13 priority polycyclic aromatic hydrocarbons (PAHs) were determined in tap water samples of Tehran and water for injection. Dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry was used for the extraction and determination of PAHs in the samples. Under the optimized conditions, the range of extraction recoveries and relative standard deviations (RSDs) of PAHs in water using internal standard (anthracene-d10) were in the range of 71-90% and 4-16%, respectively. Limit of detection for different PAHs were between 0.03 and 0.1 ngmL-1. The concentration of PAHs in all tap water as well as water for injection samples were lower than the limit of quantification of PAHs. This is the first study addressing the occurrence of PAHs in water for injection samples in Iran using dispersive liquid-liquid micro extraction procedure combined with gas chromatography-mass spectrometry. PMID:27642318
Zhou, Qingxiang; Lei, Man; Wu, Yalin; Yuan, Yongyong
2017-03-03
Metal-organic framework material has been paid more attention because of its good physical and chemical properties. Nanoscale zero valent iron is also in the center of concern recently. Combination of their merits will give impressive results. Present study firstly synthesized a new magnetic nanomaterial nano-scale zero valent iron-functionalized metal-organic framworks MIL-101 (Fe@MIL-101) by co-precipitation method. The morphology and structure of the as-prepared Fe@MIL-101 were characterized by transmission electron microscopy and X-ray diffraction, etc. The experimental results showed that Fe@MIL-101 earned good adsorption ability to polycyclic aromatic hydrocarbons. The limits of detection of developed magnetic solid phase extraction were all below 0.064μgL -1 and precision can be expressed as relative standard deviation (RSD, %) and which was better than 4.4% (n=6). The real water analysis indicated that the spiked recoveries were satisfied, and Fe@MIL-101 earned excellent reusability. All these demonstrated that Fe@MIL-101 exhibited excellent adsorption capability to polycyclic aromatic hydrocarbons and would be a good adsorbent for development of new monitoring methods for environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.
Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi
2017-04-01
Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A 14 C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
'No Organics' Zone Circles Pinwheel
NASA Technical Reports Server (NTRS)
2008-01-01
The Pinwheel galaxy, otherwise known as Messier 101, sports bright reddish edges in this new infrared image from NASA's Spitzer Space Telescope. Research from Spitzer has revealed that this outer red zone lacks organic molecules present in the rest of the galaxy. The red and blue spots outside of the spiral galaxy are either foreground stars or more distant galaxies. The organics, called polycyclic aromatic hydrocarbons, are dusty, carbon-containing molecules that help in the formation of stars. On Earth, they are found anywhere combustion reactions take place, such as barbeque pits and exhaust pipes. Scientists also believe this space dust has the potential to be converted into the stuff of life. Spitzer found that the polycyclic aromatic hydrocarbons decrease in concentration toward the outer portion of the Pinwheel galaxy, then quickly drop off and are no longer detected at its very outer rim. According to astronomers, there's a threshold at the rim where the organic material is being destroyed by harsh radiation from stars. Radiation is more damaging at the far reaches of a galaxy because the stars there have less heavy metals, and metals dampen the radiation. The findings help researchers understand how stars can form in these harsh environments, where polycyclic aromatic hydrocarbons are lacking. Under normal circumstances, the polycyclic aromatic hydrocarbons help cool down star-forming clouds, allowing them to collapse into stars. In regions like the rim of the Pinwheel as well as the very early universe stars form without the organic dust. Astronomers don't know precisely how this works, so the rim of the Pinwheel provides them with a laboratory for examining the process relatively close up. In this image, infrared light with a wavelength of 3.6 microns is colored blue; 8-micron light is green; and 24-micron light is red. All three of Spitzer's instruments were used in the study: the infrared array camera, the multiband imaging photometer and the infrared spectrograph.Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.
Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G
2003-01-24
The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.
Role of modifiers for analytical-scale supercritical fluid extraction of environmental samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenfeld, J.J.; Hawthorne, S.B.; Miller, D.J.
1994-03-15
Supercritical fluid extraction (SFE) using eight different CO[sub 2] + organic modifier mixtures and one ternary mixture (CO[sub 2] + methanol/toluene) at two different concentrations (1 and 10% v/v) was performed on two certified reference materials including polychlorinated biphenyls (PCBs) from river sediment and polycyclic aromatic hydrocarbons (PAHs) from urban air particulate matter. The modifier identity was more important than modifier concentration for increasing extraction efficiencies. Acidic/basic modifiers including methanol, acetic acid, and aniline greatly enhanced the extraction of PCBs. Low molecular weight PAHs were best extracted with modifiers including aniline, acetic acid, acetonitrile, methanol/toluene, hexane, and diethylamine. In contrast,more » modifiers capable of dipole-induced dipole interactions and [pi]-[pi] interactions such as toluene, diethylamine, and methylene chloride were the best modifiers to use for SFE of high molecular weight PAHs from air particulates. 37 refs., 6 tabs.« less
Water-quality data of stormwater runoff from Davenport, Iowa, 1992 and 1994
Schaap, B.D.; Einhellig, R.F.
1996-01-01
During 1992 and 1994, stormwater runoff in Davenport, Iowa, was sampled from the following land use types: agricultural and vacant, residential, commercial, parks and wooded areas, and industrial. Grab samples collected within the first hour of the runoff event were analyzed for many constituents including volatile organic compounds. Flow-weighted composite samples, composed from discrete samples collected at 15-minute intervals during the first three hours of the event or until discharge returned to pre-event levels, also were analyzed for many constituents including major ions, nitrogen, phosphorus, metals, total organic carbon, acid/base-neutral organics, organochlorine pesticides, and polycyclic aromatic hydrocarbons.
Organic compounds in radiation fogs in Davis (California)
NASA Astrophysics Data System (ADS)
Herckes, Pierre; Hannigan, Michael P.; Trenary, Laurie; Lee, Taehyoung; Collett, Jeffrey L.
New stainless steel active fogwater collectors were designed and used in Davis (CA, USA) to collect fogwater for the speciation of organic matter. Organic compounds in fog samples were extracted by liquid-liquid extraction and analyzed by gas chromatography coupled to mass spectrometry. Numerous organic compounds, including various alkanes, polycyclic aromatic hydrocarbons (PAH) and alkanoic acids, have been identified in the fogwater samples. Higher molecular weight (MW) compounds are preferentially associated with an insoluble phase inside the fog drops, whereas lower molecular weight and more polar compounds are found predominantly in the dissolved phase. Concentrations in the dissolved phase were sometimes much higher than estimated by the compounds' aqueous solubilities.
Thiol/disulfide homeostasis in asphalt workers.
Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric
2016-09-02
The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.
Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Hudgins, D. M.; Sandford, S. A.
1999-01-01
The infrared emission band spectrum associated with many different interstellar objects can be modeled successfully by using combined laboratory spectra of neutral and positively charged polycyclic aromatic hydrocarbons (PAHs). These model spectra, shown here for the first time, alleviate the principal spectroscopic criticisms previously leveled at the PAH hypothesis and demonstrate that mixtures of free molecular PAHs can indeed account for the overall appearance of the widespread interstellar infrared emission spectrum. Furthermore, these models give us insight into the structures, stabilities, abundances, and ionization balance of the interstellar PAH population. These, in turn, reflect conditions in the emission zones and shed light on the microscopic processes involved in the carbon nucleation, growth, and evolution in circumstellar shells and the interstellar medium.
NASA Astrophysics Data System (ADS)
Zhu, Lin; Tang, Xuexi; Wang, Ying; Sui, Yadong; Xiao, Hui
2016-03-01
The typical organic pollutant polycyclic aromatic hydrocarbon (PAH) anthracene was selected as a contaminant to investigate its effects on the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the clam Ruditapes philippinarum. The results show that SOD, CAT and GSH-Px had diff erent induction and inhibition reactions to anthracene stress, and that three diff erent organs in R. philippinarum (visceral mass, muscle tissue and mantle) had diff erent sensitivities to anthracene stress. This study suggest that SOD activities of the visceral mass, CAT activitities of the mantle and the visceral mass, and GSH-Px activity of the muscle tissue could be used as sensitive indicators of anthracene stress in R. philippinarum.
Polycyclic aromatic hydrocarbon-DNA adducts in Beluga whales from the Arctic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathieu, A.; Payne, J.F.; Fancey, L.L.
1997-09-01
The Arctic is still relatively pristine in nature, but it is also vulnerable to pollution because contaminants originating from midlatitudes are transported to the Arctic by atmospheric processes, ocean currents, and river. Recognition of this fact of Arctic vulnerability has resulted in a Declaration on the Protection of the Arctic Environment by eight Arctic countries. A manifest aim of this declaration is to develop an Arctic Monitoring and Assessment Program. We report here on the presence of measurable levels of polycyclic aromatic hydrocarbon-DNA adducts, including relatively high levels in Arctic beluga (Delphinapterus leucas). These results lend support to the valuemore » of developing biological assessment programs for Arctic wildlife. 15 refs., 1 tab.« less
Kästner, Matthias; Breuer-Jammali, Maren; Mahro, Bernd
1998-01-01
Degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of bacteria in soil was investigated by applying different inoculation protocols. The soil was inoculated with Sphingomonas paucimobilis BA 2 and strain BP 9, which are able to degrade anthracene and pyrene, respectively. CFU of soil bacteria and of the introduced bacteria were monitored in native and sterilized soil at different pHs. Introduction with mineral medium inhibited PAH degradation by the autochthonous microflora and by the strains tested. After introduction with water (without increase of the pore water salinity), no inhibition of the autochthonous microflora was observed and both strains exhibited PAH degradation. PMID:9435090
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.
Hernández-López, E Lorena; Perezgasga, Lucia; Huerta-Saquero, Alejandro; Mouriño-Pérez, Rosa; Vazquez-Duhalt, Rafael
2016-06-01
Neosartorya fischeri, an Aspergillaceae fungus, was evaluated in its capacity to transform high molecular weight polycyclic aromatics hydrocarbons (HMW-PAHs) and the recalcitrant fraction of petroleum, the asphaltenes. N. fischeri was able to grow in these compounds as sole carbon source. Coronene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene, together with the asphaltenes, were assayed for fungal biotransformation. The transformation of the asphaltenes and HMW-PAHs was confirmed by reverse-phase high-performance liquid chromatography (HPLC), nano-LC mass spectrometry, and IR spectrometry. The formation of hydroxy and ketones groups on the PAH molecules suggest a biotransformation mediated by monooxygenases such as cytochrome P450 system (CYP). A comparative microarray with the complete genome from N. fischeri showed three CYP monooxygenases and one flavin monooxygenase genes upregulated. These findings, together with the internalization of aromatic substrates into fungal cells and the microsomal transformation of HMW-PAHs, strongly support the role of CYPs in the oxidation of these recalcitrant compounds.
[Polycyclic aromatic hydrocarbons (PAHs) in herbs and fruit teas].
Ciemniak, Artur
2005-01-01
Polycyclic aromatic hydrocarbons (PAHs) of which benzo[a]pyrene is the most commonly studied and measured, are fused - ring aromatic compounds formed in both natural and man made processes and are found widely distributed throughout the human environment. PAHs occur as contaminants in different food categories and beverages including water, vegetables, fruit, cereals, oils and fats, barbecued and smoked meat. The sources of PAHs in food are predominantly from environmental pollution and food processing. PAHs emissions from automobile traffic and industry activities were show to influence the PAHs levels in vegetables and fruits. The present study was carried out to determine levels of 16 basic PAHs in herbs and fruit teas. The method was based on the hexane extraction and cleaned up by florisil cartridge. The extracts were analysed by GC-MS. The levels of total PAHs varied from 48,27 microg/kg (hibiscus tea) to 1703 microg/kg (green tea). The highest level of BaP was found in lime tea (74,2 microg/kg).
Devi, Parmila; Saroha, Anil K
2015-09-01
The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs). Copyright © 2015 Elsevier Ltd. All rights reserved.
Birds and polycyclic aromatic hydrocarbons
Albers, P.H.
2006-01-01
Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.
Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1.
Kumara, Manoj; Leon, Vladimir; De Sisto Materano, Angela; Ilzins, Olaf A; Galindo-Castro, Ivan; Fuenmayor, Sergio L
2006-01-01
We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm(-1) to 35.4 dN cm(-1) and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons.
USDA-ARS?s Scientific Manuscript database
Furanocoumarins (FCs) are a class of aromatic compounds in grapefruit that inhibit human intestinal cytochrome P450 3A4 (CYP3A4). Since fungi metabolize polycyclic aromatic hydrocarbons, we hypothesized that certain fungi might also metabolize FCs into forms that may be inactive as CYP3A4 inhibitors...
Peña-Méndez, E M; Astorga-España, M S; García-Montelongo, F J
2001-01-01
Chemical fingerprinting approach to environmental assessment is illustrated in the evaluation of marine oil pollution in the coasts using two limpet species as bioindicator organisms, and based on profiles and concentrations of n-alkanes and aromatic hydrocarbons in their tissues. Accidental and chronic releases of hydrocarbons can contaminate the marine environment of the Canary Islands not only because of their geographical situation but also because of the very dense tanker traffic around. This situation affects coastal areas, fishing activities, tourism resort, etc. Concentrations of n-alkanes and aromatic hydrocarbons (polycyclic aromatic hydrocarbons and methyl-polycyclic aromatic hydrocarbons) in the soft tissues of the marine intertidal and subtidal limpets, Patella crenata and Patella ullysiponensis aspera, were evaluated. Limpet samples were collected at monthly intervals, at three locations on the southeast coast of Tenerife over a 3-year period (1991-93). Levels of hydrocarbons found in limpets are similar to concentrations found in unpolluted areas around the world. From application of principal component analysis, the interpretation of variable loading plots gives information on variable correlation and can be used to distinguish among potential sources of pollution and the ability of studied molluscs to be used as bioindicator organisms.
Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gagni, Simona; Cam, Darinn
2007-05-01
In the last decade, a refinery plant located in Lido Adriano, East Ravenna (Italy) has been subject to mineral oil contamination. The mineral crude oil, extracted from the offshore in Adriatic sea, consisted of 78% aliphatics, cyclic alkanes and saturated polycyclic hydrocarbons, 9% aromatics, polycyclic aromatic hydrocarbons (PAHs) and alkylated derivatives, and 13% of tars/asphaltenes. Analysis of soil after 10 years of natural attenuation revealed a complete depletion of linear (n-C(9)-C(24)), light aromatics (C1-C3/benzenes) and PAHs (C2/naphthalene, C1/phenanthrene); besides a substantial degradation of isoprenoids prystane and phytane, branched and cyclic alkanes. The remaining contaminants which withstood to natural degradation was saturated polycyclic hydrocarbons (perhydro-PAH derivatives), unsaturated polycyclic hydrocarbons (tetrahydro, dihydro-PAH derivatives), terpanes, steranes and unidentified compounds. Such residues resulted in 80% reduction of its concentration after two months of laboratory treatment. Samples were extracted by organic solvents, separated by silica/alumina gel column chromatography and analyzed by gas chromatography-mass selective detector (GC-MSD). Identification and quantification of aliphatic, cyclic alkanes, typical PAHs, terpanes and steranes were carried out to chromatograms of M/Z=85, 83, individual M/Zs, M/Z=191 and 217, respectively. The present work shows that, among numerous biomarkers present in the source oil, stigmastane and two isomers of hopane showed invariable concentrations after laboratory experiments that mimic natural biodegradation in the field, so they can be used as conserved internal biomarkers. These are very useful tools to assess alterations in less stable classes of saturated compounds contained in petroleum. Marked degradation of perhydro, tetrahydro, dihydro-PAH derivatives in the laboratory treatment has been evidenced.
Behfar, Mina; Ghiasvand, Ali Reza; Yazdankhah, Fatemeh
2017-07-01
The surface of a stainless-steel wire was platinized using electrophoretic deposition method to create a high-surface-area with porous and cohesive substrate. The platinized fiber was coated by the polypyrrole/graphene oxide nanocomposite by electropolymerization and accommodated into a stainless-steel needle to fabricate an in-needle coated fiber. The developed setup was coupled to gas chromatography with flame ionization detection and applied to extract and determine polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene, and pyrene) in complicated solid matrices, along with reinforcement of the extraction by cooling the sorbent, using liquid carbon dioxide. To obtain the best extraction efficiency, the important experimental variables including extraction temperature and time, temperature of cooled sorbent, sampling flow rate, and desorption condition were studied. Under the optimal condition, limits of detection for five studied analytes were in the range of 0.2-0.8 pg/g. Linear dynamic ranges for the calibration curves were found to be in the range of 0.001-1000 ng/g. Relative standard deviations obtained for six replicated analyses of 1 ng/g of analytes were 4.9-13.5%. The reinforced in-needle coated fiber method was successfully applied for the analysis of polycyclic aromatic hydrocarbons in contaminated soil samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Medina, Giselle S; Reta, Mario
2016-11-01
A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rayne, Sierra; Forest, Kaya
2016-09-18
The air-water partition coefficients (Kaw) for 86 large polycyclic aromatic hydrocarbons and their unsaturated relatives were estimated using high-level G4(MP2) gas and aqueous phase calculations with the SMD, IEFPCM-UFF, and CPCM solvation models. An extensive method validation effort was undertaken which involved confirming that, via comparisons to experimental enthalpies of formation, gas-phase energies at the G4(MP2) level for the compounds of interest were at or near thermochemical accuracy. Investigations of the three solvation models using a range of neutral and ionic compounds suggested that while no clear preferential solvation model could be chosen in advance for accurate Kaw estimates of the target compounds, the employment of increasingly higher levels of theory would result in lower Kaw errors. Subsequent calculations on the polycyclic aromatic and unsaturated hydrocarbons at the G4(MP2) level revealed excellent agreement for the IEFPCM-UFF and CPCM models against limited available experimental data. The IEFPCM-UFF-G4(MP2) and CPCM-G4(MP2) solvation energy calculation approaches are anticipated to give Kaw estimates within typical experimental ranges, each having general Kaw errors of less than 0.5 log10 units. When applied to other large organic compounds, the method should allow development of a broad and reliable Kaw database for multimedia environmental modeling efforts on various contaminants.
Finch, Bryson E; Marzooghi, Solmaz; Di Toro, Dominic M; Stubblefield, William A
2017-08-01
Crude oils are composed of an assortment of hydrocarbons, some of which are polycyclic aromatic hydrocarbons (PAHs). Polycyclic aromatic hydrocarbons are of particular interest due to their narcotic and potential phototoxic effects. Several studies have examined the phototoxicity of individual PAHs and fresh and weathered crude oils, and several models have been developed to predict PAH toxicity. Fingerprint analyses of oils have shown that PAHs in crude oils are predominantly alkylated. However, current models for estimating PAH phototoxicity assume toxic equivalence between unsubstituted (i.e., parent) and alkyl-substituted compounds. This approach may be incorrect if substantial differences in toxic potency exist between unsubstituted and substituted PAHs. The objective of the present study was to examine the narcotic and photo-enhanced toxicity of commercially available unsubstituted and alkylated PAHs to mysid shrimp (Americamysis bahia). Data were used to validate predictive models of phototoxicity based on the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap approach and to develop relative effect potencies. Results demonstrated that photo-enhanced toxicity increased with increasing methylation and that phototoxic PAH potencies vary significantly among unsubstituted compounds. Overall, predictive models based on the HOMO-LUMO gap were relatively accurate in predicting phototoxicity for unsubstituted PAHs but are limited to qualitative assessments. Environ Toxicol Chem 2017;36:2043-2049. © 2017 SETAC. © 2017 SETAC.
Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin
2016-07-15
Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.
[Characteristics of organic pollutants in the sediments from a typical electronics industrial zone].
Liu, Jin; Deng, Dai-Yong; Xu, Mei-Ying; Sun, Guo-Ping
2013-03-01
In order to investigate the contamination status of organic pollutants in a river of a typical electrical equipment industrial area, Ronggui, Foshan, the sediments were sampled for the composition, concentration and occurrence analysis of organic pollutants. The polar and non-polar fractionation methods were employed for the fingerprint establishment of organic pollutants. One hundred and seventy-one of organic chemicals including ten categories of alkanes, alkenes, polycyclic aromatic hydrocarbons, benzene, heterocyclic compounds, phthalate esters, aldehydes, ketones, polar compounds, silicon-containing material as well as alkyl esters were examined. The number of different categories of the detected organic pollutants in a descending order was: alkanes > polar compounds > polycyclic aromatic hydrocarbons > aldehydes and ketones > heterocyclic compounds > benzene homologues, phthalate ester > alkyl esters > silicon material > olefins. The abundance of detected organic pollutants in a descending order was: alkanes > polar compounds > alkyl esters > olefins > polycyclic aromatic hydrocarbons > phthalates > silicon material > aldehydes and ketones > heterocyclic compounds > benzene homologues. Among the 51 kinds of alkanes detected, nonadecane accounted for 14.83%, and the persistent organic pollutants accounted for 2.33% of the total organic matter. Compared to similar studies, there were 51 kinds of alkanes and they accounted for 55.5% of the total organic chemicals, showing high diversity and abundance. In addition, some electronics industry-related organic pollutants such as silicone materials were also detected in high frequency.
Mandalakis, Manolis; Polymenakou, Paraskevi N; Tselepides, Anastasios; Lampadariou, Nikolaos
2014-07-01
Deep sediments from the southern Cretan margin were analyzed to establish baseline levels for various types of organic pollutants before the anticipated intensification of anthropogenic activities. The total concentration of aliphatic hydrocarbons (ΣAH:326-3758ngg(-1), dry weight) was similar to those reported for deep sediments of the western Mediterranean Sea, while considerably lower levels were measured for polycyclic aromatic hydrocarbons (ΣPAH:9-60ngg(-1)). Source-diagnostic ratios suggested that the aliphatic hydrocarbons in sediments were mainly of terrestrial biogenic origin, while polycyclic aromatic hydrocarbons stemmed from the deposition of long-range transported combustion aerosols. Among the organochlorinated compounds analyzed, β-hexachlorocyclohexane (β-HCH:222-7052pgg(-1)), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT:37-2236pgg(-1)) and polychlorinated biphenyls (ΣPCB:38-1182pgg(-1)) showed the highest abundance in sediments. The presence of HCHs and PCBs was attributed to historical inputs that have undergone extensive weathering, whereas an ongoing fresh input was suggested for p,p'-DDT. Multiple linear regression analysis revealed that the levels of the various pollutants in sediments were controlled by different factors, but with organic carbon content playing a prominent role in most cases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Oña-Ruales, Jorge O.; Sharma, Arun K.; Wise, Stephen A.
2015-01-01
We applied a combination of normal-phase liquid chromatography (NPLC) with ultraviolet-visible spectroscopy and gas chromatography with mass spectrometry (GC/MS) for the fractionation, identification, and quantification of six ring C26H16 cata-condensed polycyclic aromatic hydrocarbons, PAHs, in the Standard Reference Material 1597a, Complex Mixture of PAHs from Coal Tar. For the characterization analysis, we calculated the GC retention indices of 17 C26H16 PAH authentic reference standards using the Rxi-PAH and DB-5 GC columns. Then, we used NPLC with ultraviolet-visible spectroscopy to isolate the fractions containing the C26H16 PAHs, and subsequently, we used GC/MS to establish the identity and quantity of the C26H16 PAHs using authentic reference standards. Following this procedure, 12 C26H16 cata-condensed PAHs benzo[c]pentaphene, dibenzo[f,k]tetraphene, benzo[h]pentaphene, dibenzo[a,l]tetracene, dibenzo[c,k]tetraphene, naphtho[2,3-c]tetraphene, dibenzo[a,c]tetracene, benzo[b]picene, dibenzo[a,j]tetracene, naphtho[2,1-a]tetracene, dibenzo[c,p]chrysene, and dibenzo[a,f]tetraphene were identified and quantified for the first time, and benzo[c]picene was quantified for the first time in an environmental combustion sample. PMID:26449848
Edokpayi, Joshua N.; Odiyo, John O.; Popoola, Oluwaseun E.; Msagati, Titus A. M.
2016-01-01
Polycyclic aromatic hydrocarbons are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs (Polycyclic aromatic hydrocarbons) classified by the United State Environmental Protection Agency as priority pollutants in water and sediments of the Mvudi and Nzhelele Rivers. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using an ultrasonication method. The extracts were purified using an SPE technique and reconstituted in n-hexane before analyses with a gas chromatograph time of flight—mass spectrometer. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174–26.382 mg/L and 27.10–55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs found in both river water and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs. PMID:27043597
Suzuki, Nobuo; Ogiso, Shouzo; Yachiguchi, Koji; Kawabe, Kimi; Makino, Fumiya; Toriba, Akira; Kiyomoto, Masato; Sekiguchi, Toshio; Tabuchi, Yoshiaki; Kondo, Takashi; Kitamura, Kei-ichiro; Hong, Chun-Sang; Srivastav, Ajai K; Oshima, Yuji; Hattori, Atsuhiko; Hayakawa, Kazuichi
2015-05-01
We previously demonstrated that monohydroxylated polycyclic aromatic hydrocarbons (OHPAHs), which are metabolites of polycyclic aromatic hydrocarbons (PAHs), act on calcified tissue and suppress osteoblastic and osteoclastic activity in the scales of teleost fish. The compounds may possibly influence other calcified tissues. Thus, the present study noted the calcified spicules in sea urchins and examined the effect of both PAHs and OHPAHs on spicule formation during the embryogenesis of sea urchins. After fertilization, benz[a]anthracene (BaA) and 4-hydroxybenz[a]anthracene (4-OHBaA) were added to seawater at concentrations of 10(-8) and 10(-7) M and kept at 18 °C. The influence of the compound was given at the time of the pluteus larva. At this stage, the length of the spicule was significantly suppressed by 4-OHBaA (10(-8) and 10(-7) M). BaA (10(-7) M) decreased the length of the spicule significantly, while the length did not change with BaA (10(-8) M). The expression of mRNAs (spicule matrix protein and transcription factors) in the 4-OHBaA (10(-7) M)-treated embryos was more strongly inhibited than were those in the BaA (10(-7) M)-treated embryos. This is the first study to demonstrate that OHPAHs suppress spicule formation in sea urchins. Copyright © 2015 Elsevier Inc. All rights reserved.
Bacterial Degradation of Aromatic Compounds
Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.
2009-01-01
Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284
Balas, Vasilios I.; Hadjikakou, Sotiris K.; Hadjiliadis, Nick; Kourkoumelis, Nikolaos; Light, Mark E.; Hursthouse, Mike; Metsios, Apostolos K.; Karkabounas, Spyros
2008-01-01
A novel tri-n-butyl(IV) derivative of 2-thiobarbituric acid (HTBA) of formula [(n-Bu)3Sn(TBA) H2O] (1) has been synthesized and characterized by elemental analysis and 119Sn-NMR and FT-IR spectroscopic techniques. The crystal structure of complex 1 has been determined by single crystal X-ray diffraction analysis at 120(2) K. The geometry around Sn(IV) is trigonal bipyramidal. Three n-butyl groups and one oxygen atom from a deprotonated 2-thiobarbituric ligand are bonded to the metal center. The geometry is completed with one oxygen from a water molecule. Compound 1 exhibits potent, in vitro, cytotoxicity against sarcoma cancer cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (PAH, benzo[a]pyrene) carcinogenesis. In addition, the inhibition caused by 1, in the rate of lipoxygenase (LOX) catalyzed oxidation reaction of linoleic acid to hyperoxolinoleic acid, has been also kinetically and theoretically studied. The results are compared to that of cisplatin. PMID:18401456
Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong
2016-07-01
This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p < 0.05). The findings of this study provide insights into the surfactant-induced shifts of microbial community, as well as critical factors for efficient bioremediation.
Sperm quality and DNA integrity of coke oven workers exposed to polycyclic aromatic hydrocarbons.
Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Chiu, Chien-Chih; Zhou, Guodong; Chou, Chon-Kit; Lin, Wen-Yi
2016-11-18
The objective of this study was to assess sperm quality and deoxyribonucleic acid (DNA) integrity of coke oven workers exposed to polycyclic aromatic hydrocarbons (PAHs) as compared to control subjects. The coke oven workers (N = 52) and administrative staff (N = 35) of a steel plant served as the exposed and control groups, respectively. Exposure to PAHs was assessed by measuring 1-hydroxypyren. Analysis of sperm quality (concentration, motility, vitality, and morphology) was performed simultaneously with sperm DNA integrity analysis, including DNA fragmentation, denaturation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). A questionnaire was conducted to collect demographic and potential confounding data. The coke oven workers had lower percentages of sperm motility, vitality and normal morphology than the control group, but the difference was not significant. For DNA integrity, the coke oven workers had significantly higher concentrations of bulky DNA adducts and 8-oxo-dGuo than the control subjects (p = 0.009 and p = 0.048, respectively). However, DNA fragmentation percentages did not significantly increase as compared to those in the subjects from the control group (p = 0.232). There was no correlation between sperm quality parameters and DNA integrity indicators. Occupational exposure of the coke oven workers to PAHs was associated with decreased sperm DNA integrity. Int J Occup Med Environ Health 2016;29(6):915-926. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Flesher, James W; Lehner, Andreas F
2016-01-01
The Unified Theory of PAH Carcinogenicity accommodates the activities of methylated and non-methylated polycyclic aromatic hydrocarbons (PAHs) and states that substitution of methyl groups on meso-methyl substituted PAHs with hydroxy, acetoxy, chloride, bromide or sulfuric acid ester groups imparts potent cancer producing properties. It incorporates specific predictions from past researchers on the mechanism of carcinogenesis by methyl-substituted hydrocarbons, including (1) requirement for metabolism to an ArCH2X type structure where X is a good leaving group and (2) biological substitution of a meso-methyl group at the most reactive center in non-methylated hydrocarbons. The Theory incorporates strong inferences of Fieser: (1) The mechanism of carcinogenesis involves a specific metabolic substitution of a hydrocarbon at its most reactive center and (2) Metabolic elimination of a carcinogen is a detoxifying process competitive with that of carcinogenesis and occurring by a different mechanism. According to this outlook, chemical or biochemical substitution of a methyl group at the reactive meso-position of non-methylated hydrocarbons is the first step in the mechanism of carcinogenesis for most, if not all, PAHs and the most potent metabolites of PAHs are to be found among the meso methyl-substituted hydrocarbons. Some PAHs and their known or potential metabolites and closely related compounds have been tested in rats for production of sarcomas at the site of subcutaneous injection and the results strongly support the specific predictions of the Unified Theory.
Stanfill, Stephen B.; da Silva, André Luiz Oliveira; Lisko, Joseph G.; Lawler, Tameka S.; Kuklenyik, Peter; Tyx, Robert E.; Peuchen, Elizabeth H.; Richter, Patricia; Watson, Clifford H.
2017-01-01
Rapé, a diverse group of smokeless tobacco products indigenous to South America, is generally used as a nasal snuff and contains substantial amount of plant material with or without tobacco. Previously uncharacterized, rapé contains addictive and harmful chemicals that may have public health implications for users. Here we report % moisture, pH and the levels of total nicotine, un-ionized nicotine, flavor-related compounds, tobacco-specific N-nitrosamines (TSNAs) and polycyclic aromatic hydrocarbons (PAHs) for manufactured and hand-made rapé. Most rapé products were mildly acidic (pH 5.17 – 6.23) with total nicotine ranging from 6.32 to 47.6 milligram per gram of sample (mg/g). Calculated un-ionized nicotine ranged from 0.03 to 18.5 mg/g with the highest values associated with hand-made rapés (pH 9.75 – 10.2), which contain alkaline ashes. In tobacco-containing rapés, minor alkaloid levels and Fourier transform infrared spectra were used to confirm the presence of Nicotiana rustica, a high nicotine tobacco species. There was a wide concentration range of TSNAs and PAHs among the rapés analyzed. Several TSNAs and PAHs identified in the products are known or probable carcinogens according to the International Agency for Research in Cancer. Milligram quantities of some non-tobacco constituents, such as camphor, coumarin, and eugenol, warrant additional evaluation. PMID:25934468
Stanfill, Stephen B; Oliveira da Silva, André Luiz; Lisko, Joseph G; Lawler, Tameka S; Kuklenyik, Peter; Tyx, Robert E; Peuchen, Elizabeth H; Richter, Patricia; Watson, Clifford H
2015-08-01
Rapé, a diverse group of smokeless tobacco products indigenous to South America, is generally used as a nasal snuff and contains substantial amount of plant material with or without tobacco. Previously uncharacterized, rapé contains addictive and harmful chemicals that may have public health implications for users. Here we report % moisture, pH, and the levels of total nicotine, un-ionized nicotine, flavor-related compounds, tobacco-specific N-nitrosamines (TSNAs) and polycyclic aromatic hydrocarbons (PAHs) for manufactured and hand-made rapé. Most rapé products were mildly acidic (pH 5.17-6.23) with total nicotine ranging from 6.32 to 47.6 milligram per gram of sample (mg/g). Calculated un-ionized nicotine ranged from 0.03 to 18.5 mg/g with the highest values associated with hand-made rapés (pH 9.75-10.2), which contain alkaline ashes. In tobacco-containing rapés, minor alkaloid levels and Fourier transform infrared spectra were used to confirm the presence of Nicotiana rustica, a high nicotine tobacco species. There was a wide concentration range of TSNAs and PAHs among the rapés analyzed. Several TSNAs and PAHs identified in the products are known or probable carcinogens according to the International Agency for Research on Cancer. Milligram quantities of some non-tobacco constituents, such as camphor, coumarin, and eugenol, warrant additional evaluation. Published by Elsevier Ltd.
Shih, Yu-Jen; Binh, Nguyen Thanh; Chen, Chiu-Wen; Chen, Chih-Feng; Dong, Cheng-Di
2016-05-01
Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized. Copyright © 2016 Elsevier Ltd. All rights reserved.
Leung, Anna O W; Cheung, Kwai Chung; Wong, Ming Hung
2015-06-01
The environmental pollution and health impacts caused by the primitive and crude recycling of e-waste have become urgent global issues. Guiyu, China is a major hotspot of e-waste recycling. In this study, the levels and distribution of polycyclic aromatic hydrocarbons in soil in Guiyu were determined to investigate the effect of e-waste activities on the environment and to identify possible sources of these pollutants. Sediment samples from a local duck pond, water gullies, a river tributary, and combusted residue from e-waste burning sites were also investigated. The general trend found in soil (Σ16 PAHs) was acid leaching site > duck pond > rice field > printer roller dump site > reservoir (control site) and ranged from 95.2 ± 54.2 to 5,210 ± 89.6 ng/g (dry wt). The highest average total PAH concentrations were found in combusted residues of wires, cables, and other computer electrical components located at two e-waste open burning sites (18,600 and 10,800 ± 3,940 ng/g). These were 195- and 113-fold higher than the PAH concentrations of soil at the control site. Sediment PAH concentrations ranged from 37.2 ± 6 to 534 ± 271 ng/g. Results of this study provide further evidence of significant input of PAHs to the environment attributed to crude e-waste recycling.
NASA Astrophysics Data System (ADS)
Cochran, Richard E.; Jeong, Haewoo; Haddadi, Shokouh; Fisseha Derseh, Rebeka; Gowan, Alexandra; Beránek, Josef; Kubátová, Alena
2016-03-01
The 3- and 4-ring polycyclic aromatic hydrocarbons (PAHs) are the most abundant of PAHs in air particulate matter (PM). Thus we have investigated heterogeneous oxidation of 3- and 4-ring PAHs in a small-scale flow reactor using quartz filter as a support. Four representative PAHs, anthracene, phenanthrene, pyrene, and fluoranthene, were exposed to either NO2, O3 or NO2+O3 (NO3/N2O5) with a goal to identify and attempt quantification of major product distribution. A combination of gas chromatography with mass spectrometry (GC-MS) with/without derivatization and liquid chromatography with high resolution MS (LC-HRMS) was used for identification. For the first time, a comprehensive characterization of a broad range of products enabled identifying ketone/diketone, aldehyde, hydroxyl, and carboxylic acid PAH derivatives. Exposure to NO3/N2O5 (formed by reacting NO2 with O3, a more powerful reactant than either O3 or NO2) produced additional compounds not observed with either oxidant alone. Multiple isomers of nitrofluoranthene and, for the first time, nitrophenanthrene were identified. In addition hydroxy-nitro-PAH derivatives were observed for the reaction of anthracene with NO3/N2O5. Monitoring of specific common ions such as those of 176 and 205 m/z attributed to carbonyl phenanthrene and deprotonated phenanthrene ions respectively was shown to be a useful tool for identification of multiple pyrene oxidation products.
Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1.
Kweon, Ohgew; Kim, Seong-Jae; Holland, Ricky D; Chen, Hongyan; Kim, Dae-Wi; Gao, Yuan; Yu, Li-Rong; Baek, Songjoon; Baek, Dong-Heon; Ahn, Hongsik; Cerniglia, Carl E
2011-09-01
This study investigated a metabolic network (MN) from Mycobacterium vanbaalenii PYR-1 for polycyclic aromatic hydrocarbons (PAHs) from the perspective of structure, behavior, and evolution, in which multilayer omics data are integrated. Initially, we utilized a high-throughput proteomic analysis to assess the protein expression response of M. vanbaalenii PYR-1 to seven different aromatic compounds. A total of 3,431 proteins (57.38% of the genome-predicted proteins) were identified, which included 160 proteins that seemed to be involved in the degradation of aromatic hydrocarbons. Based on the proteomic data and the previous metabolic, biochemical, physiological, and genomic information, we reconstructed an experiment-based system-level PAH-MN. The structure of PAH-MN, with 183 metabolic compounds and 224 chemical reactions, has a typical scale-free nature. The behavior and evolution of the PAH-MN reveals a hierarchical modularity with funnel effects in structure/function and intimate association with evolutionary modules of the functional modules, which are the ring cleavage process (RCP), side chain process (SCP), and central aromatic process (CAP). The 189 commonly upregulated proteins in all aromatic hydrocarbon treatments provide insights into the global adaptation to facilitate the PAH metabolism. Taken together, the findings of our study provide the hierarchical viewpoint from genes/proteins/metabolites to the network via functional modules of the PAH-MN equipped with the engineering-driven approaches of modularization and rationalization, which may expand our understanding of the metabolic potential of M. vanbaalenii PYR-1 for bioremediation applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oanh, N.T.K.; Reutergardh, L.B.; Dung, N.T.
Total suspended particulate matter in ambient air was sampled by high volume samplers at four sites at the Asian Institute of Technology campus, west of the Phahonyothin Road, Phathumthani Province, 40 km North of Bangkok, Thailand. The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs), were measured by gas liquid chromatography with flame ionization and/or liquid solid chromatography with fluorescence detection. The PAH profile with relatively high concentrations of benzo(ghi)perylene and coronene, decreasing with the distance from the road, suggested a substantial contribution from the traffic. The concentrations in the core of the campus were compatible to those reported for residentialmore » areas in Bangkok, but higher than some western metropolitan areas.« less
NASA Astrophysics Data System (ADS)
Mitra, Siddhartha; Kimmel, David G.; Snyder, Jessica; Scalise, Kimberly; McGlaughon, Benjamin D.; Roman, Michael R.; Jahn, Ginger L.; Pierson, James J.; Brandt, Stephen B.; Montoya, Joseph P.; Rosenbauer, Robert J.; Lorenson, Thomas D.; Wong, Florence L.; Campbell, Pamela L.
2012-01-01
Mesozooplankton (>200 μm) collected in August and September of 2010 from the northern Gulf of Mexico show evidence of exposure to polycyclic aromatic hydrocarbons (PAHs). Multivariate statistical analysis revealed that distributions of PAHs extracted from mesozooplankton were related to the oil released from the ruptured British Petroleum Macondo-1 (M-1) well associated with the R/V Deepwater Horizon blowout. Mesozooplankton contained 0.03-97.9 ng g-1 of total PAHs and ratios of fluoranthene to fluoranthene + pyrene less than 0.44, indicating a liquid fossil fuel source. The distribution of PAHs isolated from mesozooplankton extracted in this study shows that the 2010 Deepwater Horizon spill may have contributed to contamination in the northern Gulf of Mexico ecosystem.
Liu, Y; Zhu, L; Wang, J; Shen, X; Chen, X
2001-11-01
Twelve polycyclic aromatic hydrocarbons (PAHs) were measured in eight homes in Hangzhou during the summer and autumn in 1999. The sources of PAHs and the contributions of the sources to the total concentration of PAHs in the indoor air were identified by the combination of correlation analysis, factor analysis and multiple regression, and the equations between the concentrations of PAHs in indoor and outdoor air and factors were got. It was indicated that the factors of PAHs in the indoor air were domestic cuisine, the volatility of the mothball, cigarette smoke and heating, the waste gas from vehicles. In the smokers' home, cigarette smoke was the most important factor, and it contributed 25.8% of BaP to the indoor air of smokers' home.
NASA Technical Reports Server (NTRS)
Schutte, W. A.; Tielens, A. G. G. M.; Allamandola, L. J.; Wooden, D. H.; Cohen, M.
1990-01-01
The 5-8 micron spectra obtained toward the two protostellar sources, HD 97048 and Elias 1 exhibit strong anomalous emission features at 3.43 and 3.53 microns. Combining these results with earlier data established that the emission in the general IR features is extended on at least a 20-arcsec scale. In view of the high energy density in the emission zone, as well as the apparent correspondence of the anomalous 3.43 and 3.53 micron features with weak emission shoulders associated with the general family of IR emission bands, an explanation for these observations in terms of C-C overtones and combination tones of large or dehydrogenated polycyclic aromatic hydrocarbons is judged to be provisionally suitable.
Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Allamandola, L. J.
2004-01-01
Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.
NASA Technical Reports Server (NTRS)
Woon, D. E.; Park, J.-Y.
2004-01-01
We employed density functional theory (DFT) calculations to model the photoionization behavior of benzene and small polycyclic aromatic hydrocarbons when they are embedded in a matrix of water ice in order to investigate issues raised by recent experimental work by Gudipati and Allamandola. The ionization energies of benzene, naphthalene, anthracene, and pyrene were found to be lowered by 1.5-2.1 eV in water ice. Low-lying vertical electronic excitation energies were computed with time-dependent DFT for both neutral and ionized species and are found in both cases to be remarkably unaffected by the ice matrix. Chemical behavior in ultraviolet-photoprocessed ices is also discussed, with a focus on electron recombination and pathways leading to phenol and analogous products.
NASA Astrophysics Data System (ADS)
Xu, Shuang; Tao, Ping; Li, Yuxia; Guo, Qi; Zhang, Yan; Wang, Man; Jia, Hongliang; Shao, Mihua
2018-01-01
Sixteen polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from Liaodong Bay, northeast China. The concentration levels of total PAHs (Σ16PAHs) in sediment were 11.0˜249.6 ng·g-1 dry weight (dw), with a mean value of 89.9 ng·g-1 dry weight (dw). From the point of the spatial distribution, high PAHs levels were found in the western areas of Liaodong Bay. In the paper, sources of PAHs were investigated by diagnostic ratios, which indicated that pyrogenic sources were the main sources of PAHs in the sediment of Liaodong Bay. Therefore, selected PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL indexes) for evaluation probable toxic effects on marine organism.
Mitra, Siddhartha; Kimmel, David G.; Snyder, Jessica; Scalise, Kimberly; McGlaughon, Benjamin D.; Roman, Michael R.; Jahn, Ginger L.; Pierson, James J.; Brandt, Stephen B.; Montoya, Joseph P.; Rosenbauer, Robert J.; Lorenson, T.D.; Wong, Florence L.; Campbell, Pamela L.
2012-01-01
Mesozooplankton (>200 μm) collected in August and September of 2010 from the northern Gulf of Mexico show evidence of exposure to polycyclic aromatic hydrocarbons (PAHs). Multivariate statistical analysis revealed that distributions of PAHs extracted from mesozooplankton were related to the oil released from the ruptured British Petroleum Macondo-1 (M-1) well associated with the R/VDeepwater Horizon blowout. Mesozooplankton contained 0.03–97.9 ng g−1 of total PAHs and ratios of fluoranthene to fluoranthene + pyrene less than 0.44, indicating a liquid fossil fuel source. The distribution of PAHs isolated from mesozooplankton extracted in this study shows that the 2010 Deepwater Horizon spill may have contributed to contamination in the northern Gulf of Mexico ecosystem.
Yan, Zaisheng; He, Yuhong; Cai, Haiyuan; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Krumholz, Lee R; Jiang, He-Long
2017-08-01
Sediment microbial fuel cells (SMFCs) can stimulate the degradation of polycyclic aromatic hydrocarbons in sediments, but the mechanism of this process is poorly understood at the microbial functional gene level. Here, the use of SMFC resulted in 92% benzo[a]pyrene (BaP) removal over 970 days relative to 54% in the controls. Sediment functions, microbial community structure, and network interactions were dramatically altered by the SMFC employment. Functional gene analysis showed that c-type cytochrome genes for electron transfer, aromatic degradation genes, and extracellular ligninolytic enzymes involved in lignin degradation were significantly enriched in bulk sediments during SMFC operation. Correspondingly, chemical analysis of the system showed that these genetic changes resulted in increases in the levels of easily oxidizable organic carbon and humic acids which may have resulted in increased BaP bioavailability and increased degradation rates. Tracking microbial functional genes and corresponding organic matter responses should aid mechanistic understanding of BaP enhanced biodegradation by microbial electrochemistry and development of sustainable bioremediation strategies.
Integration of a Micro-Chip Amino Acid Chirality Detector into the MOD Instrument Concept
NASA Technical Reports Server (NTRS)
Bada, Jeffrey L.; Grunthaner, Frank; Mathies, Richard
2004-01-01
The MOD (Mars Organic Detector) instrument concept consists of a sublimation apparatus for organic compound isolation connected to a microfabricated microfluidic analyzer containing a sipper, pumps and a separation channel for organic compound characterization. The target organic compounds are amino acids and polycyclic aromatic hydrocarbons (PAHs). Solid samples are placed within the sublimation apparatus and heated to release organic compounds which sublime onto a cold finger. Half of the cold finger is coated with fluorescamine. which reacts with amino acids and other primary amines to generate an intense fluorescent derivative while the other half is uncoated and is used to directly detect PAH fluorescence, A capillary sipper is then used to dissolve and sample the labeled amino acids and integrated microfabricated pumps transport the labeled amino acids to the chip for analysis. The sample is separated using capillary zone electrophoresis (CZE) together with chiral dextrins to determine amino acid composition and chirality. During the grant period, the following steps have been completed toward the development of a robust instrument and chemistry.
Pathiratne, Asoka; Hemachandra, Chamini K
2010-08-01
Despite ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the tropical environments, little information is available concerning responses of tropical fish to PAHs and associated toxicity. In the present study, effects of five PAHs containing two to four aromatic rings on hepatic CYP1A dependent ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST) and serum sorbitol dehydrogenase (SDH) activities in Nile tilapia, a potential fish species for biomonitoring pollution in tropical waters, were evaluated. Results showed that EROD activities were induced by the PAHs containing four aromatic rings (pyrene and chrysene) in a dose dependent manner. However PAHs with two to three aromatic rings (naphthalene, phenanthrene and fluoranthene) caused no effect or inhibition of EROD activities depending on the dose and the duration. Fluoranthene was the most potent inhibitor. SDH results demonstrated that high doses of fluoranthene induced hepatic damage. GST activity was induced by the lowest dose of phenanthrene, fluoranthene and chrysene but high doses had no effect. The results indicate that induction of EROD enzyme in Nile tilapia is a useful biomarker of exposure to PAHs such as pyrene and chrysene. However EROD inhibiting PAHs such as fluoranthene in the natural environment may modulate the EROD inducing potential of other PAHs thereby influencing PAH exposure assessments.
Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.
Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J
1995-01-01
Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007
Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.
Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J
1995-10-01
Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found.
Gutierrez, Tony; Green, David H; Nichols, Peter D; Whitman, William B; Semple, Kirk T; Aitken, Michael D
2013-01-01
A strictly aerobic, halotolerant, rod-shaped bacterium, designated strain TG408, was isolated from a laboratory culture of the marine diatom Skeletonema costatum (CCAP1077/1C) by enrichment with polycyclic aromatic hydrocarbons (PAHs) as the sole carbon source. 16S rRNA gene sequence analysis placed this organism within the order Xanthomonadales of the class Gammaproteobacteria. Its closest relatives included representatives of the Hydrocarboniphaga-Nevskia-Sinobacter clade (<92% sequence similarity) in the family Sinobacteraceae. The strain exhibited a narrow nutritional spectrum, preferring to utilize aliphatic and aromatic hydrocarbon compounds and small organic acids. Notably, it displayed versatility in degrading two- and three-ring PAHs. Moreover, catechol 2,3-dioxygenase activity was detected in lysates, indicating that this strain utilizes the meta-cleavage pathway for aromatic compound degradation. Cells produced surface blebs and contained a single polar flagellum. The predominant isoprenoid quinone of strain TG408 was Q-8, and the dominant fatty acids were C(16:0), C(16:1) ω7c, and C(18:1) ω7c. The G+C content of the isolate's DNA was 64.3 mol% ± 0.34 mol%. On the basis of distinct phenotypic and genotypic characteristics, strain TG408 represents a novel genus and species in the class Gammaproteobacteria for which the name Polycyclovorans algicola gen. nov., sp. nov., is proposed. Quantitative PCR primers targeting the 16S rRNA gene of this strain were developed and used to show that this organism is found associated with other species of marine phytoplankton. Phytoplankton may be a natural biotope in the ocean where new species of hydrocarbon-degrading bacteria await discovery and which contribute significantly to natural remediation processes.
Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy
Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre
2016-01-01
The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air. PMID:27619546
Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy
NASA Astrophysics Data System (ADS)
Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre
2016-09-01
The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.
Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy.
Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre
2016-09-13
The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.
Hindersmann, Benjamin; Achten, Christine
2017-08-11
Pyrogenic carbon species are of particular interest due to their ubiquitous occurrence in the environment and their high sorption capacities for nonpolar organic compounds. It has recently been shown that the analysis of the molecular markers for complex aromatic carbon structures, benzene polycarboxylic acids (BPCA), has a high potential for aid in the identification of different carbon sources. In this study, the first LC method using mass spectrometry (MS) for reliable and accelerated (<24h) quantification of pyrogenic and petrogenic carbon by BPCA analysis has been developed. The main advantage of LC-MS compared to previous methods is the higher sensitivity, which is important if only small sample amounts are available. Sample pre-treatment could be reduced to a minimum. Deuterated phthalic acid was introduced as internal standard due to its structural similarity to BPCA and its lack of occurrence in the environment. Linear quantification with r 2 ≥0997 was accomplished for all BPCA. Method validation showed an excellent quantification reproducibility (mean CV<5%) which is comparable to LC-DAD methods and more reliable than GC-FID measurements (CV 16-23%). In summary, the presented BPCA method is more economic, efficient and presumably attractive to use. Besides reference materials, various pyrogenic and petrogenic samples were analyzed to test if the sources were indicated by BPCA analysis. In addition to pyrogenic carbon, large amounts of petrogenic carbon species can also be present in urban soils and river sediments, especially in mining regions. They also to a large degree consist of aromatic carbon structures and therefore have an impact on source identification by BPCA analysis. Comparison of petrogenic and pyrogenic carbon samples shows similarities in the BPCA concentrations and patterns, in their aromaticity and degree of aromatic condensation. Thus, a differentiation between petrogenic and pyrogenic carbon only by BPCA analysis of samples with unknown carbon sources is not possible. For reliable source identification of the carbon species, the combination with other methods, such as e. g. analysis of polycyclic aromatic hydrocarbons may be successful. Copyright © 2017 Elsevier B.V. All rights reserved.
2010-07-28
Two extremely bright stars illuminate a greenish mist in this image from the new GLIMPSE360 survey from NASA Spitzer Space Telescope. The fog is comprised of hydrogen and carbon compounds called polycyclic aromatic hydrocarbons.
Ingredients for Life Artist Concept
2005-07-27
This artist conception symbolically represents complex organic molecules, known as polycyclic aromatic hydrocarbons, seen in the early universe. These large molecules, comprised of carbon and hydrogen, are considered among the building blocks of life.
ISO Mid-Infrared Spectra of Reflection Nebulae
NASA Technical Reports Server (NTRS)
Werner, M.; Uchida, K.; Sellgren, K.; Houdashelt, M.
1999-01-01
Our goal is to test predictions of models attributing the IEFs to polycyclic aromatic hydrocarbons (PAHs). Interstellar models predict PAHs change from singly ionized to neutral as the UV intensity, Go, decreases.
Melanosome degradation: fact or fiction.
Borovanský, Jan; Elleder, Milan
2003-06-01
Our mini review summarizes what is known about the (bio)degradation of melanosomes. Unlike melanosome biogenesis where our knowledge enables us to explain it in molecular terms posing many interesting questions on the relation between lysosomes and melanosomes, melanosome degradation has remained 'terra incognita'. Observations at optical and ultrastructural levels describe the disintegration of melanosomes in the lysosomal compartment (in auto- and heterophagosomes). Histochemical studies suggest the participation of acid hydrolases in the process of melanosome degradation. Biochemical data confirm the ability of lysosomal hydrolases to degrade melanosome constituents except the melanin moiety. The similarity of melanin structure to that of polycyclic aromatic hydrocarbons suggests that melanin should be sensitive mainly, if not exclusively, to oxidative breakdown. In vitro melanin can indeed be decomposed by an oxidative attack and the degradation is accompanied by fluorescence and decreasing absorbance. From enzymes engaged in the biotransformation of polycyclic hydrocarbons only phagosomal NADPH oxidase meets the criteria (particularly as for compartmental and catalytic properties) to be involved in melanin biodegradation. The in vivo biodegradation of melanin has so far been clearly demonstrated in Aspergillus and fungi melanins.
Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14.
Lee, Sung-Eun; Seo, Jong-Su; Keum, Young-Soo; Lee, Kwang-Jun; Li, Qing X
2007-06-01
Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) commonly present in PAH-contaminated soils. We studied fluoranthene catabolism and associated proteins in Mycobacterium sp. JS14, a bacterium isolated from a PAH-contaminated soil in Hilo (HI, USA). Fluoranthene degrades in at least three separated pathways via 1-indanone, 2',3'-dihydroxybiphenyl-2,3,-dicarboxylic acid, and naphthalene-1,8-dicarboxylic acid. Part of the diverse catabolism is converged into phthalate catabolism. An increased expression of 25 proteins related to fluoranthene catabolism is found with 1-D PAGE or 2-DE and nano-LC-MS/MS. Detection of fluoranthene catabolism associated proteins coincides well with its multiple degradation pathways that are mapped via metabolites identified. Among the up-regulated proteins, PAH ring-hydroxylating dioxygenase alpha-subunit and beta-subunit and 2,3-dihydroxybiphenyl 1,2-dioxygenase are notably induced. The up-regulation of trans-2-carboxybenzalpyruvate hydratase suggests that some of fluoranthene metabolites may be further degraded through aromatic dicarboxylic acid pathways. Catalase and superoxide dismutase were up-regulated to control unexpected oxidative stress during the fluoranthene catabolism. The up-regulation of chorismate synthase and nicotine-nucleotide phosphorylase may be necessary for sustaining shikimate pathway and pyrimidine biosynthesis, respectively. A fluoranthene degradation pathway for Mycobacterium sp. JS14 was proposed and confirmed by proteomic study by identifying almost all the enzymes required during the initial steps of fluoranthene degradation.
NASA Astrophysics Data System (ADS)
Huang, De-Yin; Zhou, Shun-Gui; Hong, Wei; Feng, Wei-Feng; Tao, Liang
2013-06-01
With the aim to investigate the main pollution characteristics of exhaust gases emitted from plastic waste recycling granulation plants, mainly volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) were analyzed in Xingtan Town, the largest distribution center of plastic waste recycling in China. Both inside and outside the plants, the total concentrations of volatile monocyclic aromatic hydrocarbons (MAHs), PAHs and PAEs ranged from 2000 to 3000 μg m-3, 450 to 1200 ng m-3, and 200 to 1200 ng m-3, respectively. Their concentration levels inside the plants were higher than those outside the plants, and PAHs and PAEs were mainly distributed in the gas-phase. Notably, highly toxic benzo[a]pyrene (BaP) could be detected inside the plants, and harmful PAEs could be detected not only inside but also outside the plants, although PAEs are non-volatile. The exhaust gas composition and concentration were related to the plastic feedstock and granulation temperature.
NASA Technical Reports Server (NTRS)
Du, Ping; Salama, Farid; Loew, Gilda H.
1993-01-01
In order to preselect possible candidates for the origin of diffuse interstellar bands observed, semiempirical quantum mechanical method INDO/S was applied to the optical spectra of neutral, cationic, and anionic states of naphthalene and its hydrogen abstraction and addition derivatives. Comparison with experiment shows that the spectra of naphthalene and its ions were reliably predicted. The configuration interaction calculations with single-electron excitations provided reasonable excited state wavefunctions compared to ab initio calculations that included higher excitations. The degree of similarity of the predicted spectra of the hydrogen abstraction and derivatives to those of naphthalene and ions depends largely on the similarity of the it electron configurations. For the hydrogen addition derivatives, very little resemblance of the predicted spectra to naphthalene was found because of the disruption of the aromatic conjugation system. The relevance of these calculations to astrophysical issues is discussed within the context of these polycyclic aromatic hydrocarbon models. Comparing the calculated electronic energies to the Diffuse Interstellar Bands (DIBs), a list of possible candidates of naphthalene derivatives is established which provides selected candidates for a definitive test through laboratory studies.
Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Zhao, Rusong; Zhi, Chunyi; Wu, Chiman Lawrence
2014-09-01
Boron nitride nanotube (BNNT) is a novel material that shows potential ability in capturing organic pollutants. In this study, BNNTs fixed on a stainless steel fiber by a sol-gel technique were used as sorbent for solid-phase microextraction. Five polycyclic aromatic hydrocarbons with different numbers of aromatic rings were selected as target analysts. Gas chromatography coupled with tandem mass spectrometry was used for detection and quantitative determination. Under optimized conditions, the experimental results show a wide range of linearity (1 to 1,000 ng L(-1)), less than 10.1 % repeatability of relative standard deviation, and low detection limits (0.08 to 0.39 ng L(-1)). In addition, the fabricated fiber offered good thermal and chemical stability. The proposed method was successfully applied for the analysis of real water samples, and satisfactory results were obtained with relative recoveries ranging from 80.2 to 116.8 %. The results demonstrated that BNNTs could be used as sorbent for the analysis of environmental pollutants at trace levels.
Interstellar Polycyclic Aromatic Compounds and Astrophysics
NASA Technical Reports Server (NTRS)
Hodgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)
1999-01-01
Polycyclic aromatic compounds (PACs), a class of organic molecules whose structures are characterized by the presence of two or more fused aromatic rings, have been the subject of astrophysical interest for nearly two decades. Large by interstellar standards (from as few as 20 to perhaps as many as several hundred atoms), it has been suggested that these species are among the most abundant interstellar molecules impacting a wide range of astrophysical phenomena including: the ubiquitous family of infrared emission bands observed in an ever-increasing assortment of astronomical objects; the subtle but rich array of discrete visible/near-infrared interstellar molecular absorption features known as the diffuse interstellar bands (DIBs); the broad near-infrared quasi-continuum observed in a number of nebulae known as excess red emission (ERE); the interstellar ultraviolet extinction curve and broad '2200 Angstrom bump'; the heating/cooling mechanisms of interstellar clouds. Nevertheless, until recently a lack of good-quality laboratory spectroscopic data on PACs under astrophysically relevant conditions (i.e. isolated, ionized molecules; ionized molecular clusters, etc.) has hindered critical evaluation and extension of this model
Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T
2015-02-01
The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.
Leonard, J D; Hellou, J
2001-03-01
Speckled trout, Salvelinus fontinalis, were orally exposed to individual polycyclic aromatic compounds (PACs) represented by benzo[a]pyrene, carbazole, chrysene, dibenzofuran, dibenzothiophene, fluorene, phenanthrene, and pyrene. Fish were sacrificed 7 d after exposure and the gall bladder removed for bile analysis. High pressure liquid chromatography (HPLC) with fluorescence (F) and ultraviolet (UV) detection was used to determine the presence of PAC derivatives in the bile without pretreatment. Glucuronide conjugates were predominant in all exposures with variable amounts (0-53%) of phenols and starting material. Identification of compounds was confirmed by selective extraction of less polar nonconjugated PACs and enzymatic hydrolysis of water-soluble material. This was followed by HPLC and/or gas chromatography-mass spectrometry (GCMS) characterization of the produced phenols. Total metabolite levels varied widely among compounds.
Determination of polycyclic aromatic hydrocarbons in roasted coffee
JIMENEZ, ANGELICA; ADISA, AFOLABI; WOODHAM, CARA; SALEH, MAHMOUD
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are suspected to be carcinogenic and mutagenic. This study describes the presence of PAHs in light, medium and dark roasted coffee including instant and decaffeinated brands. Total PAHs concentration was related to the degree of roasting with light roasted coffee showing the least and dark roasted coffee showing the highest level. Both instant and decaffeinated coffee brand showed lower levels of PAHs. Naphthalene, acenaphthylene, pyrene and chrysene were the most abundant individual isomers. The concentrations ranged from 0 to 561 ng g−1 for naphthalene, 0 to 512 ng g−1 for acenaphthylene, 60 to 459 ng g−1 for pyrene and 56 to 371 ng g−1 for chrysene. Thus, roasting conditions should be controlled to avoid the formation of PAHs due to their suspected carcinogenic and mutagenic properties. PMID:25190557
Nisticò, Roberto; Cesano, Federico; Franzoso, Flavia; Magnacca, Giuliana; Scarano, Domenica; Funes, Israel G; Carlos, Luciano; Parolo, Maria E
2018-07-01
Composted urban biowaste-derived substances (BBS-GC) are used as carbon sources for the preparation of carbon-coated magnet-sensitive nanoparticles obtained via co-precipitation method and the subsequent thermal treatment at 550 °C under nitrogen atmosphere. A multitechnique approach has been applied to investigate the morphology, magnetic properties, phase composition, thermal stability of the obtained magnet-sensitive materials. In particular, pyrolysis-induced modifications affecting the BBS-GC/carbon shell were highlighted. The adsorption capacity of such bio-derivative magnetic materials for the removal of hydrophobic contaminants such as polycyclic aromatic hydrocarbons was evaluated in order to verify their potential application in wastewater remediation process. The promising results suggest their use as a new generation of magnet-responsive easily-recoverable adsorbents for water purification treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei
2017-07-01
Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.
Teixeira, Elba Calesso; Pra, Daniel; Idalgo, Daniele; Henriques, João Antonio Pêgas; Wiegand, Flavio
2012-03-01
This study was designed to biomonitor the effect of PAH extracts from urban areas on the DNA of lung cell cultures. The analyses of the polycyclic aromatic hydrocarbons (PAHs) were performed in atmospheric PM(2.5) and PM(10) collected at three sampling sites with heavy traffic located in the Metropolitan Area of Porto Alegre (MAPA) (Brazil). The concentrations of 16 major PAHs were determined according to EPA. Comet assay on V79 hamster lung cells was chosen for genotoxicity evaluation. Temperature, humidity, and wind speed were recorded. With regard to the damage index, higher levels were reported in the extract of particulate matter samples from the MAPA during the summer. High molecular weight compounds showed correlation with DNA damage frequency and their respective carcinogenicity. Copyright © 2011. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutte, W.A.; Tielens, A.G.G.M.; Allamandola, L.J.
1990-09-01
The 5-8 micron spectra obtained toward the two protostellar sources, HD 97048 and Elias 1 exhibit strong anomalous emission features at 3.43 and 3.53 microns. Combining these results with earlier data established that the emission in the general IR features is extended on at least a 20-arcsec scale. In view of the high energy density in the emission zone, as well as the apparent correspondence of the anomalous 3.43 and 3.53 micron features with weak emission shoulders associated with the general family of IR emission bands, an explanation for these observations in terms of C-C overtones and combination tones ofmore » large or dehydrogenated polycyclic aromatic hydrocarbons is judged to be provisionally suitable. 62 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipsky, S.R.; Alexander, G.; McMurray, W.
1977-02-01
Techniques were developed to produce excellent high performance glass capillary columns for gas chromatographic analyses of a wide range of complex mixtures of organic compounds, including those containing a wide array of polycyclic aromatic hydrocarbons (PAH) derived from a coal liquefaction process. Work was begun to assess the potential mutogenicity and/or carcinogenicity of the various isolated PAH fractions utilizing a unique host mediated bioassay system. Preliminary results indicate that further efforts will be required to determine dose response parameters of cultured mouse leukemia cells, as well as suitable vehicles for the satisfactory introduction of certain PAH fractions into this particularmore » bioassay system.« less
Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina.
Ngabe, B; Bidleman, T F; Scott, G I
2000-06-08
Stormwater runoff was collected in urbanized areas of South Carolina to investigate the levels and sources of polycyclic aromatic hydrocarbons (PAHs). Mean concentrations of total PAHs in runoff (sum(PAHs), 14 compounds), determined by gas chromatography-mass spectrometry, were 5590 ng/l in the city of Columbia and 282 ng/l in the coastal community of Murrells Inlet. Lower concentrations were found in estuarine water at Murrells Inlet (mean = 35 ng/l) and at undeveloped North Inlet estuary (13 ng/l). The PAH profiles in Columbia and Murrells Inlet runoff were similar to those of atmospheric particulate matter and unlike those in used crankcase oil. Examination of the aliphatic fraction of Columbia runoff samples by gas chromatography with flame ionization detection showed patterns that were more similar to used crankcase oil than to urban aerosols.
Amperometric Immunosensors for screening of Polycyclic Aromatic Hydrocarbons in water
NASA Astrophysics Data System (ADS)
Ahmad, A.; Paschero, A.; Moore, E.
2011-08-01
An amperometric immunosensor with low limit detection was developed for the screening of polycyclic aromatic hydrocarbons (PAHs) in water. The system was based on detecting the specific substance using an immunological reaction by measuring the chemical responses to specific antibodies. An integrated biochip with a three electrode system was fabricated. Gold was used as the working electrode with platinum was used as the counter electrode. A modified Ag/AgCl reference electrode was employed to enhance the stability of the immunosensors. Indirect competition enzyme-linked immunosorbent assay (ELISA) was carried out within the electrode using alkaline phosphatase (AP) as the labelled-enzyme. The system shows acceptable reproducibility and good stability. The immunosensor exhibited a wide linear response to PAHs. A limit of detection for this sensor was in the range of 1 to 10 ng ml-1 in aqueous sample.
THE NASA AMES POLYCYCLIC AROMATIC HYDROCARBON INFRARED SPECTROSCOPIC DATABASE: THE COMPUTED SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauschlicher, C. W.; Ricca, A.; Boersma, C.
The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant to test and refine the PAH hypothesis have been assembled into a spectroscopic database. This database now contains over 800 PAH spectra spanning 2-2000 {mu}m (5000-5 cm{sup -1}). These data are now available on the World Wide Web at www.astrochem.org/pahdb. This paper presents an overview of the computational spectra in the database and the tools developed to analyzemore » and interpret astronomical spectra using the database. A description of the online and offline user tools available on the Web site is also presented.« less
NMR shifts for polycyclic aromatic hydrocarbons from first-principles
NASA Astrophysics Data System (ADS)
Thonhauser, T.; Ceresoli, Davide; Marzari, Nicola
We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the 1H and 13 shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.
Kwak, Yunyoung; Li, Qing X; Shin, Jae-Ho
2016-01-01
Mycobacterium rufum JS14(T) (=ATCC BAA-1377(T), CIP 109273(T), JCM 16372(T), DSM 45406(T)), a type strain of the species Mycobacterium rufum sp. . belonging to the family Mycobacteriaceae, was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil in Hilo (HI, USA) because it harbors the capability of degrading PAH. Here, we describe the first genome sequence of strain JS14(T), with brief phenotypic characteristics. The genome is composed of 6,176,413 bp with 69.25 % G + C content and contains 5810 protein-coding genes with 54 RNA genes. The genome information on M. rufum JS14(T) will provide a better understanding of the complexity of bacterial catabolic pathways for degradation of specific chemicals.
Parking lot sealcoat: An unrecognized source of urban polycyclic aromatic hydrocarbons
Mahler, B.J.; Van Metre, P.C.; Bashara, T.J.; Wilson, J.T.; Johns, D.A.
2005-01-01
Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous contaminant in urban environments. Although numerous sources of PAHs to urban runoff have been identified, their relative importance remains uncertain. We show that a previously unidentified source of urban PAHs, parking lot sealcoat, may dominate loading of PAHs to urban water bodies in the United States. Particles in runoff from parking lots with coal-tar emulsion sealcoat had mean concentrations of PAHs of 3500 mg/kg, 65 times higher than the mean concentration from unsealed asphalt and cement lots. Diagnostic ratios of individual PAHs indicating sources are similar for particles from coal-tar emulsion sealed lots and suspended sediment from four urban streams. Contaminant yields projected to the watershed scale for the four associated watersheds indicate that runoff from sealed parking lots could account for the majority of stream PAH loads.
Emissions of polycyclic aromatic hydrocarbons (PAH) from open burning of biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, B.M.
Emissions of polycyclic aromatic hydrocarbons (PAH) were measured during wind tunnel simulations of open burning for various types of biomass. The wind tunnel (Jenkins, et al., 1993) was used to simulate open fires spreading in opposition to the wind for cereal crop residues, and pile fires in agricultural and sylvicultural wood residues. Emission factors expressing the mass of pollutant species emitted per unit mass of dry fuel consumed were derived from mass balances conducted on each fire. Emission factors for primary pollutants and volatile organic species were similarly derived. Partitioning of PAH in the combustion products was investigated by determiningmore » mass fractions on particulate matter and in a downstream resin trap and other sampling train components. Yields of PAH are given for the major types of fuels and burning conditions.« less
Shu, Y Y; Lao, R C; Chiu, C H; Turle, R
2000-12-01
The microwave-assisted extraction (MAE) of polycyclic aromatic hydrocarbons (PAHs) from harbor sediment reference material EC-1, marine sediment reference material HS-2 and PAH-spiked river bed soil was conducted. The extraction conditions for EC-1 were carried out at 70 degrees C and 100 degrees C under pressure in closed vessels with cyclohexane acetone (1:1), cyclohexane-water (3:1), hexane acetone (1:1), and hexane-water (3:1) for 10 min. A comparison between MAE and a 16-h Soxhlet extraction (SX) method showed that both techniques gave comparable results with certified values. MAE has advantages over the currently used Soxhlet technique due to a faster extraction time and lower quantity of solvent used. The consumption of organic solvent of the microwave method was less than one-tenth compared to Soxhlet.
Lebo, Jon A.; Zajicek, James L.; Orazio, Carl E.; Petty, Jimmie D.; Huckins, James; Douglas, Ernest H.
1996-01-01
Relative concentrations of aqueous polycyclic aromatic hydrocarbons (PAH) were investigated in an urban creek. Samples were obtained at five sites within a 600-m segment of the creek that is critical habitat for an endangered species of fish. the sampling technique entailed immersion of semipermeable membrane devices (SPMDs) in the water for intervals as long as 64 d. SPMDs are passive, in situ, mtegrative samplers of bioavailable (truly dissolved) PAH and other hydrophobic organic contaminants. Two point sources of PAH to the 600-m segment of the creek were differentiated. Aqueous concentrations were found to wane dramatically over the relatively short section of the creek between the point sources. All samples were almost devoid of alkyl-substituted PAH, indicating that the ultimate sources were probably of pyrogenic nature.
Messinger, Terrence
2004-01-01
Polycyclic aromatic hydrocarbons (PAHs), including some on the U.S. Environmental Protection Agency's priority pollutant list, were found in bottom sediment in streams in the coal-producing region of the Kanawha River Basin in 1996-1998, and in and near the New River Gorge National River in 2002, in concentrations exceeding those thought likely to cause adverse effects to wildlife. Very low concentrations of bioavailable PAHs were measured in streams in and near the New River Gorge National River by the use of semipermeable membrane devices. The apparent contradiction between the high concentrations of total PAHs and the low concentrations of bioavailable PAHs may result from the presence of a substantial amount of particulate coal in bottom sediment.
Analytical Determination of KDOC-Values of Polycyclic Musk Compounds with HS-SPME and GC/MS/MS
NASA Astrophysics Data System (ADS)
Böhm, L.; Düring, R.-A.
2009-04-01
Polycyclic musk compounds, used as fragrances in cosmetics and detergents, get into rivers via domestic wastewater and sewage treatment plants and with sewage sludge as fertilizer into soils. Because of their persistence and lipophilic character they accumulate in biota, so they are pollutants with environmental relevance. The coefficient KDOC is used to quantify the distribution of substances between aqueous phase and dissolved organic matter (DOM) which is quantified by the determination of dissolved organic carbon (DOC). DOM is of specific relevance for the transport and fate of persistent and lipophilic compounds in the environment. The affinity to DOM increases, the more lipophilic a substance is. So the environmental mobility is enhanced with increasing binding on DOM. For that reason, measured KDOC-values are important to predict the fate and behaviour of chemicals in the environment and should be used for environmental fate modelling purposes. LITZ ET AL. (2007) state that, to carry out a risk-assessment for polycyclic musk compounds, further research on their sorption-behaviour is necessary. For the determination of KDOC-values, different concentrations of humic acid were spiked with a multi-component stock solution. The samples were analysed with headspace solid-phase microextraction in combination with gas chromatography coupled with mass spectrometry (HS-SPME GC/MS/MS). The KDOC-values were calculated according to YABUTA ET AL. (2004). The method was validated with single substance stock solutions and with polycyclic aromatic hydrocarbons (PAHs). The results show that the method is applicable, repeatable and suitable to get KDOC-values for many substances very fast, cheap and solvent-free. With our results KDOC-values for polycyclic musk compounds were determined for the first time. Literature LITZ, N. TH., MüLLER, J. AND BöHMER, W. (2007): Occurrence of Polycyclic Musks in Sewage Sludge and their Behaviour in Soils and Plants. Part 2: Investigation of Polycyclic Musks in Soils and Plants. J Soils Sediments 7: 36-44 YABUTA, H., FUKUSHIMA, M., TANAKA, F., ICHIKAWA, H. AND TATSUMI, K. (2004): Solid-phase Microextraction for the Evaluation of Partition Coefficients of a Chlorinated Dioxin and Hexachlorobenzene into Humic Substances. Anal. Sci. 20: 787-791
Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant.
Wang, Beili; Wan, Yi; Gao, Yingxin; Zheng, Guomao; Yang, Min; Wu, Song; Hu, Jianying
2015-05-05
Naphthenic acids (NAs) are one class of compounds in wastewaters from petroleum industries that are known to cause toxic effects, and their removal from oilfield wastewater is an important challenge for remediation of large volumes of petrochemical effluents. The present study investigated occurrences and behaviors of total NAs and aromatic NAs in a refinery wastewater treatment plant, located in north China, which combined physicochemical and biological processes. Concentrations of total NAs were semiquantified to be 113-392 μg/L in wastewater from all the treatment units, and the percentages of aromatic NAs in total NAs was estimated to be 2.1-8.8%. The mass reduction for total NAs and aromatic NAs was 15±16% and 7.5±24% after the physicochemical treatment, respectively. Great mass reduction (total NAs: 65±11%, aromatic NAs: 86±5%) was observed in the biological treatment units, and antiestrogenic activities observed in wastewater from physicochemical treatment units disappeared in the effluent of the activated sludge system. The distributions of mass fractions of NAs demonstrated that biodegradation via activated sludge was the major mechanism for removing alicyclic NAs, aromatic NAs, and related toxicities in the plant, and the polycyclic NA congener classes were relatively recalcitrant to biodegradation, which is a complete contrast to the preferential adsorption of NAs with higher cyclicity (low Z value). Removal efficiencies of total NAs were 73±17% in summer, which were higher than those in winter (53±15%), and the seasonal variation was possibly due to the relatively high microbial biotransformation activities in the activated sludge system in summer (indexed by O3-NAs/NAs). The results of the investigations indicated that biotransformation of NA mixtures by the activated sludge system were largely affected by temperature, and employing an efficient adsorbent together with biodegradation processes would help cost-effectively remove NAs in petroleum effluents.
Watershed-based sources of polycyclic aromatic hydrocarbons in urban storm water.
Stein, Eric D; Tiefenthaler, Liesl L; Schiff, Kenneth
2006-02-01
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and mutagenic compounds, ubiquitous in the air and water of urban environments, and have been shown to accumulate in coastal estuarine and marine sediments. Although previous studies have documented concentrations and loads of PAHs in urban runoff, little is known about the sources and temporal patterns of PAH loading from storm water. This study characterized the sources and temporal patterns of PAHs in urban storm water by analyzing PAH concentrations and loads from a range of homogeneous land use sites and in-river mass emission sites throughout the greater Los Angeles, California, USA, region. Samples were collected at 30- to 60-min intervals over the course of a storm during multiple storm events over a four-year period in order to investigate PAH sources and inter- and intrastorm patterns in loading. Polycyclic aromatic hydrocarbon storm fluxes ranged from 1.3 g/km2 for the largely undeveloped Arroyo Sequit watershed to 223.7 g/km2 for the highly urbanized Verdugo Wash watershed, with average storm fluxes being 46 times higher in developed versus undeveloped watersheds. Early-season storms repeatedly produced substantially higher loads than comparably sized late-season storms. Within individual storms, PAHs exhibited a moderate first flush with between 30 and 60% of the total PAH load being discharged in the first 20% of the storm volume. The relative distribution of individual PAHs demonstrated a consistent predominance of high-molecular-weight compounds indicative of pyrogenic sources.
Tang, Caiming; Tan, Jianhua; Fan, Ruifang; Zhao, Bo; Tang, Caixing; Ou, Weihui; Jin, Jiabin; Peng, Xianzhi
2016-08-26
Metabolite identification is crucial for revealing metabolic pathways and comprehensive potential toxicities of polycyclic aromatic hydrocarbons (PAHs) in human body. In this work, a quasi-targeted analysis strategy was proposed for metabolite identification of monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in human urine using liquid chromatography triple quadruple mass spectrometry (LC-QqQ-MS/MS) combined with liquid chromatography high resolution mass spectrometry (LC-HRMS). Potential metabolites of OH-PAHs were preliminarily screened out by LC-QqQ-MS/MS in association with filtering in a self-constructed information list of possible metabolites, followed by further identification and confirmation with LC-HRMS. The developed method can provide more reliable and systematic results compared with traditional untargeted analysis using LC-HRMS. In addition, data processing for LC-HRMS analysis were greatly simplified. This quasi-targeted analysis method was successfully applied to identifying phase I and phase II metabolites of OH-PAHs in human urine. Five metabolites of hydroxynaphthalene, seven of hydroxyfluorene, four of hydroxyphenanthrene, and three of hydroxypyrene were tentatively identified. Metabolic pathways of PAHs in human body were putatively revealed based on the identified metabolites. The experimental results will be valuable for investigating the metabolic processes of PAHs in human body, and the quasi-targeted analysis strategy can be expanded to the metabolite identification and profiling of other compounds in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Pruneda-Alvarez, Lucía G; Ruíz-Vera, Tania; Ochoa-Martínez, Angeles C; Pérez-Vázquez, Francisco J; González Palomo, Ana K; Ilizaliturri-Hernández, Cesar A; Pérez-Maldonado, Iván N
2016-12-01
Recent studies indicate that exposure to environmental pollutants (as polycyclic aromatic hydrocarbons) is a very important risk factor for development of cardiovascular diseases (CVDs). Correspondingly, in recent times asymmetric dimethylarginine (ADMA) has been proposed as a new and meaningful biomarker predictor for the risk of CVDs. Therefore, the objective of this study was to evaluate plasma ADMA concentrations in Mexican women (n=155) exposed to polycyclic aromatic hydrocarbons (PAHs). Urinary 1-hydroxypyrene [(1-OHP), exposure biomarker for PAHs] levels were quantified using a high performance liquid chromatography (HPLC) technique and plasma ADMA concentrations were analyzed using a commercially available ELISA kit. Urinary 1-OHP levels in all women assessed ranged from
Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu
2018-04-01
In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lin, Yuan-Chung; Lee, Wen-Jhy; Li, Hsing-Wang; Chen, Chung-Ban; Fang, Guor-Cheng; Tsai, Perng-Jy
Because of the fishery subsidy policy, the fishing boat fuel oil (FBFO) exemption from commodity taxes, business taxes and air pollution control fees, resulted in the price of FBFO was ˜50% lower than premium diesel fuel (PDF) in Taiwan. It is estimated that ˜650,000 kL FBFO was illegally used by traveling diesel-vehicles (TDVs) with a heavy-duty diesel engine (HDDE), which accounted for ˜16.3% of the total diesel fuel consumed by TDVs. In this study, sulfur, poly aromatic and total-aromatic contents in both FBFO and PDF were measured and compared. Exhaust emissions of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies (BaP eq) from a HDDE under transient cycle testing for both FBFO and PDF were compared and discussed. Finally, the impact caused by the illegal use of FBFO on the air quality was examined. Results show that the mean sulfur-, poly aromatic and aromatic-contents in FBFO were 43.0, 3.89 and 1.04 times higher than that of PDF, respectively. Emission factors of total-PAHs and total-BaP eq obtained by utilizing FBFO were 51.5 and 0.235 mg L -1-Fuel, which were 3.41 and 5.82 times in magnitude higher than obtained by PDF, respectively. The estimated annual emissions of total-PAHs and total-BaP eq to the ambient environment due to the illegally used FBFO were 23.6 and 0.126 metric tons, respectively, which resulted in a 17.9% and a 25.0% increment of annual emissions from all mobile sources, respectively. These results indicated that the FBFO used illegally by TDVs had a significant impact on PAH emissions to the ambient environment.
Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A
2017-09-01
Retention indices for 124 polycyclic aromatic hydrocarbons (PAHs) and 62 methyl-substituted (Me-) PAHs were determined using normal-phase liquid chromatography (NPLC) on a aminopropyl (NH 2 ) stationary phase. PAH retention behavior on the NH 2 phase is correlated to the total number of aromatic carbons in the PAH structure. Within an isomer group, non-planar isomers generally elute earlier than planar isomers. MePAHs generally elute slightly later but in the same region as the parent PAHs. Correlations between PAH retention behavior on the NH 2 phase and PAH thickness (T) values were investigated to determine the influence of non-planarity for isomeric PAHs with four to seven aromatic rings. Correlation coefficients ranged from r = 0.19 (five-ring peri-condensed molecular mass (MM) 252 Da) to r = -0.99 (five-ring cata-condensed MM 278 Da). In the case of the smaller PAHs (MM ≤ 252 Da), most of the PAHs had a planar structure and provided a low correlation. In the case of larger PAHs (MM ≥ 278 Da), nonplanarity had a significant influence on the retention behavior and good correlation between retention and T was obtained for the MM 278 Da, MM 302 Da, MM 328 Da, and MM 378 Da isomer sets. Graphical abstract NPLC separation of the three-, four-, five-, and six-ring PAH isomers with different number of aromatic carbon atoms and degrees of non-planarity (Thickness, T). The inserted figure plots the number of aromatic carbon atoms vs. the log I value for the 124 parent PAHs.
Kunihiro, Marie; Ozeki, Yasuhiro; Nogi, Yuichi; Hamamura, Natsuko
2013-01-01
A soil bacterium, designated strain KK22, was isolated from a phenanthrene enrichment culture of a bacterial consortium that grew on diesel fuel, and it was found to biotransform the persistent environmental pollutant and high-molecular-weight polycyclic aromatic hydrocarbon (PAH) benz[a]anthracene. Nearly complete sequencing of the 16S rRNA gene of strain KK22 and phylogenetic analysis revealed that this organism is a new member of the genus Sphingobium. An 8-day time course study that consisted of whole-culture extractions followed by high-performance liquid chromatography (HPLC) analyses with fluorescence detection showed that 80 to 90% biodegradation of 2.5 mg liter−1 benz[a]anthracene had occurred. Biodegradation assays where benz[a]anthracene was supplied in crystalline form (100 mg liter−1) confirmed biodegradation and showed that strain KK22 cells precultured on glucose were equally capable of benz[a]anthracene biotransformation when precultured on glucose plus phenanthrene. Analyses of organic extracts from benz[a]anthracene biodegradation by liquid chromatography negative electrospray ionization tandem mass spectrometry [LC/ESI(−)-MS/MS] revealed 10 products, including two o-hydroxypolyaromatic acids and two hydroxy-naphthoic acids. 1-Hydroxy-2- and 2-hydroxy-3-naphthoic acids were unambiguously identified, and this indicated that oxidation of the benz[a]anthracene molecule occurred via both the linear kata and angular kata ends of the molecule. Other two- and single-aromatic-ring metabolites were also documented, including 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid and salicylic acid, and the proposed pathways for benz[a]anthracene biotransformation by a bacterium were extended. PMID:23686261
Biodegradation and detoxification of naphthenic acids in oil sands process affected waters.
Yue, Siqing; Ramsay, Bruce A; Wang, Jiaxi; Ramsay, Juliana A
2016-12-01
After oil sands process affected water (OSPW) was treated in a continuous flow biofilm reactor, about 40% of the organic compounds in the acid extractable fraction (AEF) including naphthenic acids (NAs) were degraded resulting in a reduction of 73% in the Microtox acute toxicity and of 22% in the yeast estrogenic assay. Using effect directed analysis, treated and untreated OSPW were fractionated by solid phase extraction and the fractions with the largest decrease in toxicity and estrogenicity were selected for analysis by electrospray ionization combined with linear ion trap and a high-resolution Orbitrap mass spectrometer (negative ion mode). The aim of this study was to determine whether compositional changes between the untreated and treated fractions provide insight related to biodegradation and detoxification of NAs. The O2S, O3S and O4S compounds were either not major contributors of toxicity or estrogenicity or the more toxic or estrogenic ones were biodegraded. The O3- and O4-NAs seem to be more readily metabolized than O2NAs and their degradation would contribute to detoxification. The decrease in acute toxicity may be associated with the degradation of C12 and C13 bicyclic and C12-C14 tricyclic NAs while the decrease in estrogenicity may be linked to the degradation of C16 O2-NAs with double bond equivalents (DBE)=5 and 6, C16 and 17 O2-NAs with DBE=7, and C19-O2-NAs with DBE=8. The residual acute toxicity may be caused by recalcitrant components and/or degradation products such as the O2 bicyclic and tricyclic NAs, particularly the C14 and C15 bicyclic and C14-C16 tricyclic NAs as well as the polycyclic aromatic NAs (DBE≥5 compounds). The decrease in estrogenicity may be linked to the degradation of the O3 and O4 oxidized NAs while much of the residual estrogenicity may be due to the recalcitrant polycyclic aromatic O2-NAs. Hence, treatment to further detoxify OSPW should target these compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Composition and major sources of organic compounds in urban aerosols
NASA Astrophysics Data System (ADS)
Bi, Xinhui; Simoneit, Bernd R. T.; Sheng, Guoying; Ma, Shexia; Fu, Jiamo
Total suspended particles (TSP), collected during June 2002 to July 2003 in Guangzhou, a typical economically developed city in South China, were analyzed for the organic compound compositions using gas chromatography-mass spectrometry (GC/MS). Over 140 organic compounds were detected in the aerosols and grouped into different classes including n-alkanes, hopanoids, polycyclic aromatic hydrocarbons, alkanols, fatty acids, dicarboxylic acids excluding oxalic acid, polyols/polyacids, lignin products, phytosterols, phthalates and water-soluble sugars. The total amounts of the identified organic compounds including unresolved complex mixture (UCM) ranged from 3112 ng/m 3 in spring to 5116 ng/m 3 in winter, comprising on seasonal average 2.8% of TSP. Primary organic compounds peaked in winter although there are no heating systems burning fuels in Guangzhou. The highest saccharide levels occurred in fall due to agricultural activities. This study demonstrated that utilization of fossil fuels, biomass burning, soil resuspension and plastic/refuse burning are the major contributors to the identified organic compounds in the urban atmosphere of South China.
Maeda, Allyn H; Kunihiro, Marie; Ozeki, Yasuhiro; Nogi, Yuichi; Kanaly, Robert A
2015-09-01
A Gram-stain-negative, yellow, rod-shaped bacterium, designated strain KK22(T), was isolated from a microbial consortium that grew on diesel fuel originally recovered from cattle pasture soil. Strain KK22(T) has been studied for its ability to biotransform high molecular weight polycyclic aromatic hydrocarbons. On the basis of 16S rRNA gene sequence phylogeny, strain KK22(T) was affiliated with the genus Sphingobium in the phylum Proteobacteria and was most closely related to Sphingobium fuliginis TKP(T) (99.8%) and less closely related to Sphingobium quisquiliarum P25(T) (97.5%). Results of DNA-DNA hybridization (DDH) revealed relatedness values between strain KK22(T) and strain TKP(T) and between strain KK22(T) and strain P25(T) of 21 ± 4% (reciprocal hybridization, 27 ± 2%) and 15 ± 2% (reciprocal hybridization, 17 ± 1%), respectively. Chemotaxonomic analyses of strain KK22(T) showed that the major respiratory quinone was ubiquinone Q-10, that the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidyl-N-methylethylethanolamine and sphingoglycolipid, and that C18 : 1ω7c and C14 : 0 2-OH were the main fatty acid and hydroxylated fatty acids, respectively. This strain was unable to reduce nitrate and the genomic DNA G+C content was 64.7 mol%. Based upon the results of the DDH analyses, the fact that strain KK22(T) was motile, and its biochemical and physiological characteristics, strain KK22(T) could be separated from recognized species of the genus Sphingobium. We conclude that strain KK22(T) represents a novel species of this genus for which the name Sphingobium barthaii sp. nov. is proposed; the type strain is KK22(T) ( = DSM 29313(T) = JCM 30309(T)).
Oko, Bonahis J; Tao, Yu; Stuckey, David C
2017-01-01
Oil field produced water (OFPW) is widely produced in large volumes around the world. Transforming the organic matter in OFPW into bioenergy, such as biomethane, is one promising way to sustainability. However, OFPW is difficult to biologically degrade because it contains complex compounds such as naphthenic acids (NAs), or polycyclic aromatic hydrocarbons (PAHs). Although active microbial communities have been found in many oil reservoirs, little is known about how an exotic microbiome, e.g. the one which originates from municipal wastewater treatment plants, would evolve when incubated with OFPW. In this study, we harvested methanogenic biomass from two sources: a full-scale anaerobic digester (AD) treating oil and gas processing wastewater (named O&G sludge), and from a full-scale AD reactor treating multiple fractions of municipal solid wastes (named MS, short for mixed sludge). Both were incubated in replicate microcosms fed with PAHs, NAs, or OFPW. The results showed that the PAHs, NAs, and OFPW feeds could rapidly alter the methanogenic microbiomes, even after 14 days, while the O&G sludge adapted faster than the mixed sludge in all the incubations. Two rarely reported microorganisms, a hydrogenotrophic methanogen Candidatus methanoregula and a saccharolytic fermenter Kosmotoga , were found to be prevalent in the PAHs and OFPW microcosms, and are likely to play an important role in the syntrophic degradation of PAHs and OFPW, cooperating with methanogens such as Methanoregula, Methanosarcina, or Methanobacterium . The dominant phyla varied in certain patterns during the incubations, depending on the biomass source, feed type, and variation in nutrients. The sludge that originated from the oil and gas processing wastewater treatment (O&G) reactor adapted faster than the one from municipal solid waste reactors, almost certainly because the O&G biomass had been "pre-selected" by the environment. This study reveals the importance of biomass selection for other crude oil-waste-related bioengineering studies, such as bioaugmentation and bioremediation.
Polymorphisms in carcinogen metabolism enzymes, fish intake, and risk of prostate cancer
Stern, Mariana C.
2012-01-01
Cooking fish at high temperature can produce potent carcinogens such as heterocyclic amines and polycyclic aromatic hydrocarbons. The effects of these carcinogens may undergo modification by the enzymes responsible for their detoxification and/or activation. In this study, we investigated genetic polymorphisms in nine carcinogen metabolism enzymes and their modifying effects on the association between white or dark fish consumption and prostate cancer (PCA) risk. We genotyped 497 localized and 936 advanced PCA cases and 760 controls from the California Collaborative Case–Control Study of Prostate Cancer. Three polymorphisms, EPHX1 Tyr113His, CYP1B1 Leu432Val and GSTT1 null/present, were associated with localized PCA risk. The PTGS2 765 G/C polymorphism modified the association between white fish consumption and advanced PCA risk (interaction P 5 0.002), with high white fish consumption being positively associated with risk only among carriers of the C allele. This effect modification by PTGS2 genotype was stronger when restricted to consumption of well-done white fish (interaction P 5 0.021). These findings support the hypotheses that changes in white fish brought upon by high-temperature cooking methods, such as carcinogen accumulation and/or fatty acid composition changes, may contribute to prostate carcinogenesis. However, the gene–diet interactions should be interpreted with caution given the limited sample size. Thus, our findings require further validation with additional studies. Abbreviations: AA African American; BMI body mass index; CI confidence interval; CNV copy number variant; EPIC European Prospective Investigation into Cancer and Nutrition; HCA heterocyclic amine; HCFA Health Care Financing Administration; LAC Los Angeles county; MAF minor allele frequency; NHW non-Hispanic White; OR odds ratio; PAH polycyclic aromatic hydrocarbon; PCA prostate cancer; PTGS2 prostaglandin- endoperoxide synthase 2; PUFA polyunsaturated fatty acids; RDD random-digit dialing; SEER Surveillance, Epidemiology, and End Result; SES socio-economic status; SFBA San Francisco Bay Area; SNP single-nucleotide polymorphism PMID:22610071
NASA Astrophysics Data System (ADS)
Chuang, Jane C.; Mack, Gregory A.; Kuhlman, Michael R.; Wilson, Nancy K.
A pilot field study was performed in Columbus, OH, during the winter of 1986/1987. The objectives were to determine the feasibility of the use of a newly developed quiet sampler in indoor air sampling for particles and semivolatile organic compounds (SVOC) and to measure the concentrations of polycyclic aromatic hydrocarbons (PAH), PAH derivatives, and nicotine in air in selected residences. Eight homes were chosen for sampling on the basis of these characteristics: electric/gas heating system, electric/gas cooking appliances, and the absence/presence of environmental tobacco smoke (ETS). The indoor sampler was equipped with a quartz-fiber filter to collect particles followed by XAD-4 resin to trap SVOC. A PS-1 sampler with a similar sampling module was used outdoors. The indoor air was sampled in the kitchen and living room areas over two consecutive 8-h periods. The outdoor air was sampled concurrently with the indoor samples over a 16-h period. Fifteen PAH, five nitro-PAH, five oxygenated PAH, and three nitrogen heterocyclic compounds were determined in these samples. The most abundant PAH found indoors was naphthalene. The indoor concentrations of PAH derivatives were lower than those of their parent compounds. Average concentrations of all but three target compounds (naphthalene dicarboxylic acid anhydride, pyrene dicarboxylic acid anhydride, and 2-nitrofluoranthene) were higher indoors than outdoors. Environmental tobacco smoke was the most significant influence on indoor pollutant levels. Homes with gas heating systems had higher indoor pollutant levels than homes with electric heating systems. However, the true effects of heating and cooking systems were not characterized as accurately as the effects of ETS because of the small sample sizes and the lack of statistical significance for most pollutant differences in the absence of ETS. The concentrations of PAH marker compounds (phenanthrene, fluoranthene, and pyrene) correlated well with the concentrations of other target compounds. Quinoline and isoquinoline can be used to indicate indoor levels of ETS.
Liu, Shao-Heng; Zeng, Guang-Ming; Niu, Qiu-Ya; Liu, Yang; Zhou, Lu; Jiang, Lu-Hua; Tan, Xiao-Fei; Xu, Piao; Zhang, Chen; Cheng, Min
2017-01-01
In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lab Analysis of Dust Wipe Samples
Dust wipe samples collected on residential properties near the fenceline of KCBX North and South Terminals in Chicago, which store and handle pet coke, were analyzed for polycyclic aromatic hydrocarbons (PAHs) and trace metals and minerals.
ENGINEERING BULLETIN: COMPOSTING
Composting is an emerging ex situ biological technology that is potentially applicable to nonvolatile and semivolatile organic compounds (SVOCs) in soils. It has been applied to polycyclic aromatic hydrocarbons (PAHs) and explosives. It has been found to be potentially effectiv...
Fida, Tekle Tafese; Breugelmans, Philip; Lavigne, Rob; Coronado, Edith; Johnson, David R.; van der Meer, Jan Roelof; Mayer, Antonia P.; Heipieper, Hermann J.; Hofkens, Johan
2012-01-01
Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity. PMID:23001650
CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS
Rogoff, Martin H.
1962-01-01
Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381
Three-dimensional aromatic networks.
Toyota, Shinji; Iwanaga, Tetsuo
2014-01-01
Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.
Treatment of contaminated roadway runoff using vegetated filter strips.
DOT National Transportation Integrated Search
2009-01-01
The overall goal of this field study was to evaluate the potential effectiveness of vegetated highway embankments as a stormwater runoff best management practice (BMP) for retention of metals, polycyclic aromatic hydrocarbons (PAHs), and particulates...
IMPORTANCE OF ENZYMATIC BIOTRANSFORMATION IN IMMUNOTOXICOLOGY
Many immunotoxic compounds, such as benzene and other organic solvents, pesticides, mycotoxins and polycyclic aromatic hydrocarbons, can alter immune function only after undergoing enzyme-mediated reactions within various tissues. In the review that follows, the role of enzymatic...
SITE EMERGING TECHNOLOGY REPORT: INNOVATIVE METHODS FOR BIOSLURRY TREATMENT
IT Corporation (IT), Knoxville, Tennessee, in collaboration with U.S. Environmental protection Agency (EPA), investigated the feasibility of combined biological and chemical oxidation of polycyclic aromatic hydrocarbons (PAH). Bioslurry treatment of PAH-contaminated soils was dem...
21 CFR 74.2053 - D&C Black No. 3.
Code of Federal Regulations, 2010 CFR
2010-04-01
... may be avoided by current good manufacturing practices: (1) Calcium hydroxyapatite (CaO and P2O5), not...) Total polycyclic aromatic hydrocarbons (PAHs), not more than 5 mg/kg (5 ppm). (c) Uses and restrictions...
SOURCES OF HUMAN EXPOSURE TO AIRBORNE PAH
Personal exposures to airborne particulate polycyclic aromatic hydrocarbons (PAHs) were studied in several populations in the US, Japan, and Czech Republic. Personal exposure monitors, developed for human exposure biomonitoring studies were used to collect fine particles (<_ 1....
ACTIVATION OF OYSTER DEFENSES BY ENVIRONMENTAL CONTAMINANTS
Four field studies performed on eastern oysters Crassostrea virginica support a hypothesis that Cu, Zn, and perhaps butyltins and polycyclic aromatic hydrocarbons (PAH) can stimulate hemopoiesis, hemocyte locomotion and hemocyte bactericidal capacity. The first study found circul...
Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M
2017-08-05
The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bajt, Oliver
2014-09-01
The Gulf of Trieste (northern Adriatic) is one of the most urbanized and industrialized areas in the northern Adriatic, with intense maritime traffic experienced at multiple ports. The impact of maritime traffic on contamination by hydrocarbons in this area was assessed. Concentrations of hydrocarbons were higher near the expected contamination sources and still elevated in the adjacent offshore areas. Aliphatic hydrocarbons were mainly of petrogenic origin, with some contribution of biogenic origin. A continuous contamination by aliphatic hydrocarbons and degradation processes were hypothesized. Concentrations of total polycyclic aromatic hydrocarbons (PAH) were generally greater near the contamination sources. Compared to the prevailing pyrolytic origin, the petrogenic PAH origin seemed to be less important, but not negligible. Results revealed that intensive maritime traffic is a probable source of contamination by hydrocarbons in the investigated area, which is largely limited to areas near the contamination sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, H.M.
The Baltic Sea (Central Europe) is surrounded by coastal regions with long histories of industrialization. The heavy metal profiles in the sediments in the center of the Arkona Basin, one of the depressions of the southern Baltic Sea area, clearly reflect the historical anthropogenic influence. The Arkona Basin-is the final sink for materials derived from the Oder river which drains a highly polluted industrial area of Eastern Europe. Surficial muddy sediments from a close-meshed field of sampling-points were analyzed for distribution patterns of aliphatics and quantities and ratios of selected polycyclic aromatic hydrocarbons (PAH). These compounds are thought to reflectmore » anthropogenic pollution related to emissions from traffic, heating, etc. We use these marker substances to test if the basin sediments reflect riverine input, and if additional sources can be identified.« less
Cao, X; Xu, X; Cui, W; Xi, Z
2001-08-01
The development and certification of a coal fly ash certified reference material (CRM) for polycyclic aromatic hydrocarbons (PAH) is described; this is the first natural matrix CRM for organic environmental analysis in China. The homogeneity and stability of this material have been tested by HPLC. The concentrations of several PAH were determined by use of two independent, different methods--solvent extraction-HPLC analysis with UV detection coupled with fluorescence detection (FLD) and solvent extraction, isolation with a silica column, and GC analysis with flame ionization detection (FID). Five certified values were determined: phenanthrene 7.1 +/- 2.6 microg g(-1), anthracene 2.0 +/- 0.8 microg g(-1), fluoranthene 7.4 +/- 1.9 microg g(-1), pyrene 7 +/- 2 microg g(-1), and benzo[a]pyrene 1.3 +/- 0.3 microg g(-1). Reference values for several other PAH are also suggested.
Landrum, Peter F; Chapman, Peter M; Neff, Jerry; Page, David S
2012-04-01
Experimental designs for evaluating complex mixture toxicity in aquatic environments can be highly variable and, if not appropriate, can produce and have produced data that are difficult or impossible to interpret accurately. We build on and synthesize recent critical reviews of mixture toxicity using lessons learned from 4 case studies, ranging from binary to more complex mixtures of primarily polycyclic aromatic hydrocarbons and petroleum hydrocarbons, to provide guidance for evaluating the aquatic toxicity of complex mixtures of organic chemicals. Two fundamental requirements include establishing a dose-response relationship and determining the causative agent (or agents) of any observed toxicity. Meeting these 2 requirements involves ensuring appropriate exposure conditions and measurement endpoints, considering modifying factors (e.g., test conditions, test organism life stages and feeding behavior, chemical transformations, mixture dilutions, sorbing phases), and correctly interpreting dose-response relationships. Specific recommendations are provided. Copyright © 2011 SETAC.
Pavanello, Sofia; Bollati, Valentina; Pesatori, Angela Cecilia; Kapka, Lucyna; Bolognesi, Claudia; Bertazzi, Pier Alberto; Baccarelli, Andrea
2009-10-01
We investigated the effect of chronic exposure to polycyclic aromatic hydrocarbons (PAHs) on DNA methylation states (percentage of methylated cytosines (%mC)) in Polish male nonsmoking coke-oven workers and matched controls. Methylation states of gene-specific promoters (p53, p16, HIC1 and IL-6) and of Alu and LINE-1 repetitive elements, as surrogate measures of global methylation, were quantified by pyrosequencing in peripheral blood lymphocytes (PBLs). DNA methylation was evaluated in relation to PAH exposure, assessed by urinary 1-pyrenol and anti-benzo[a]pyrene diolepoxide (anti-B[a]PDE)-DNA adduct levels, a critical genetic damage from B[a]P. We also evaluated whether PAH-induced DNA methylation states were in turn associated with micronuclei in PBLs, an indicator of chromosomal instability.
NASA Astrophysics Data System (ADS)
del Rosario Sienra, María; Rosazza, Nelson G.; Préndez, Margarita
2005-06-01
Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in Santiago de Chile city were evaluated to study particulate PAHs profiles during cold and spring weather periods. Urban atmospheric particulate matter PM10 was collected using High Volume PM10 samplers. Fifteen samples of 24 h during austral winter and 20 samples of 24 h during spring, 2000 were collected at two sampling sites (North-East and Central areas of the city) whose characteristics were representative of the prevailing conditions. Seventeen PAHs were quantified and total PAHs concentration ranged from 1.39 to 59.98 ng m -3, with a seasonal variation (winter vs. spring ratio) from 0.5 to 12.6 ng m -3. Molecular diagnostic ratios were used to characterize and identify PAHs emission sources such as combustion and biogenic emissions. Results showed that the major sources of respirable organic aerosol PM10 in Santiago are mobile and stationary ones.
Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions.
Delaunay, Rudy; Gatchell, Michael; Rousseau, Patrick; Domaracka, Alicja; Maclot, Sylvain; Wang, Yang; Stockett, Mark H; Chen, Tao; Adoui, Lamri; Alcamí, Manuel; Martín, Fernando; Zettergren, Henning; Cederquist, Henrik; Huber, Bernd A
2015-05-07
The present work combines experimental and theoretical studies of the collision between keV ion projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by ion collisions lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire collision process-from the ion impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturn's moon Titan.
Chen, Ming; Xu, Piao; Zeng, Guangming; Yang, Chunping; Huang, Danlian; Zhang, Jiachao
2015-11-01
Increasing soil pollution problems have caused world-wide concerns. Large numbers of contaminants such as polycyclic aromatic hydrocarbons (PAHs), petroleum and related products, pesticides, chlorophenols and heavy metals enter the soil, posing a huge threat to human health and natural ecosystem. Chemical and physical technologies for soil remediation are either incompetent or too costly. Composting or compost addition can simultaneously increase soil organic matter content and soil fertility besides bioremediation, and thus is believed to be one of the most cost-effective methods for soil remediation. This paper reviews the application of composting/compost for soil bioremediation, and further provides a critical view on the effects of this technology on microbial aspects in contaminated soils. This review also discusses the future research needs for contaminated soils. Copyright © 2015 Elsevier Inc. All rights reserved.
Van Meter, Robin J; Spotila, James R; Avery, Harold W
2006-08-01
Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds found in the John Heinz National Wildlife Refuge in Philadelphia, Pennsylvania. We assessed the impact of PAHs and crude oil on snapping turtle development and behavior by exposing snapping turtle eggs from the Refuge and from three clean reference sites to individual PAHs or a crude oil mixture at stage 9 of embryonic development. Exposure to PAHs had a significant effect on survival rates in embryos from one clean reference site, but not in embryos from the other sites. There was a positive linear relationship between level of exposure to PAHs and severity of deformities in embryos collected from two of the clean reference sites. Neither righting response nor upper temperature tolerance (critical thermal maximum, CTM) of snapping turtle hatchlings with no or minor deformities was significantly affected by exposure to PAHs.
Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.
Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria
2015-01-01
The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values <20% for all analytes. The results obtained demonstrate that acenaphthene, fluorantene, phenanthrene, anthracene, fluoranthene and pyrene were found in all samples with a similar distribution, but different content when yogurts with low and high fats were compared.
Parking lot sealcoat: an unrecognized source of urban polycyclic aromatic hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbara J. Mahler; Peter C. Van Metre; Thomas J. Bashara
2005-08-01
Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous contaminant in urban environments. Although numerous sources of PAHs to urban runoff have been identified, their relative importance remains uncertain. The authors show that a previously unidentified source of urban PAHs, parking lot sealcoat, may dominate loading of PAHs to urban water bodies in the United States. Particles in runoff from parking lots with coal-tar emulsion sealcoat had mean concentrations of PAHs of 3500 mg/kg, 65 times higher than the mean concentration from unsealed asphalt and cement lots. Diagnostic ratios of individual PAHs indicating sources are similar for particles from coal-tar emulsion sealedmore » lots and suspended sediment from four urban streams. Contaminant yields projected to the watershed scale for the four associated watersheds indicate that runoff from sealed parking lots could account for the majority of stream PAH loads. 35 refs., 6 figs., 2 tabs.« less
Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles
NASA Astrophysics Data System (ADS)
Teixeira, Elba Calesso; Garcia, Karine Oliveira; Meincke, Larissa; Leal, Karen Alam
2011-08-01
The purpose of the present study was to evaluate six nitro-polycyclic aromatic hydrocarbons (NPAHs) in fine (< 2.5 μm) and coarse (2.5-10 μm) atmospheric particles in an urban and industrial area located in the Metropolitan Area of Porto Alegre (MAPA), RS, Brazil. The method used was of NPAHs isolation and derivatization, and subsequent gas chromatography by electron capture detection (CG/ECD). Results revealed a higher concentration of NPAHs, especially 3-nitrofluoranthene and 1-nitropyrene, in fine particles in the sampling sites studied within the MAPA. The diagnostic ratios calculated for PAHs and NPAHs identified the influence of heavy traffic, mainly of diesel emissions. The correlation of NPAHs with other pollutants (NO x, NO 2, NO and O 3) evidence the influence of vehicular emissions in the MAPA. The seasonal variation evidenced higher NPAHs concentrations in the fine particles during winter for most compounds studied.
Airborne Dioxins, Furans and Polycyclic Aromatic Hydrocarbons Exposure to Military Personnel in Iraq
Masiol, Mauro; Mallon, Timothy; Haines, Kevin M.; Utell, Mark J.; Hopke, Philip K.
2016-01-01
Objectives The objective was to use ambient polycyclic aromatic hydrocarbon (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) concentrations measured at Joint Base Balad in Iraq in 2007 to identify the sources of these species and their spatial patterns. Methods The ratios of the measured species were compared to literature data for likely emission sources. Using the multiple site measurements on specific days, contour maps have been drawn using inverse distance weighting (IDW). Results These analyses suggest multiple sources including the burn pit (primarily a source of PCDD/PCDFs), the transportation field (primarily as source of PAHs) and other sources of PAHs that include aircraft, space heating, and diesel power generation. Conclusions The nature and locations of the sources were identified. PCDD/PCDFs were emitted by the burn pit. Multiple PAH sources exist across the base. PMID:27501100
Ielpo, Pierina; Fermo, Paola; Comite, Valeria; Mastroianni, Domenico; Viviano, Gaetano; Salerno, Franco; Tartari, Gianni
2016-12-15
During a sampling campaign, carried out during June 2012, inside some traditional households located in four villages (Phakding, Namche, Pangboche and Tukla) of Mt. Everest region in southern part of the central Himalaya (Nepal), particulate matter (PM) depositions and ashes have been collected. Moreover, outdoor PM depositions have also been analyzed. Chemical characterization of PM depositions and ashes for major ions, organic carbon, elemental carbon (EC), metal content and PAHs (Polycyclic Aromatic Hydrocarbons) allowed identifying, as major contributes to indoor PM, the following sources: biomass burning, cooking and chimney ashes. These sources significantly affect outdoor PM depositions: in-house biomass burning is the major source for outdoor EC and K + as well as biomass burning and cooking activities are the major sources for Polycyclic Aromatic Hydrocarbons. Copyright © 2016 Elsevier B.V. All rights reserved.
Arun, A; Eyini, M
2011-09-01
A total of 130 wild basidiomycetes fungi were collected and identified. The polycyclic aromatic hydrocarbons (PAHs) degradation by the potential Phellinus sp., Polyporus sulphureus (in liquid state fermentation (LSF), solid state fermentation (SSF), in soil) and lignin biodegradation were compared with those of a bacterial isolate and their corresponding cocultures. The PAHs degradation was higher in LSF and the efficiency of the organisms declined in SSF and in soil treatment. Phellinus sp. showed better degradation in SSF and in soil. Bacillus pumilus showed higher degradation in LSF. B. pumilus was seen to have lower lignin degradation than the fungal cultures and the cocultures could not enhance the degradation. Phellinus sp. which had higher PAHs and lignin degradation showed higher biosurfactant production than other organism. Manganese peroxidase (MnP) was the predominant enzyme in Phellinus sp. while lignin peroxidase (Lip) was predominant in P. sulphureus. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colin, P.; Nicoletis, S.; Froidevaux, R.
1996-12-31
A case study is presented of building a map showing the probability that the concentration in polycyclic aromatic hydrocarbon (PAH) exceeds a critical threshold. This assessment is based on existing PAH sample data (direct information) and on an electrical resistivity survey (indirect information). Simulated annealing is used to build a model of the range of possible values for PAH concentrations and of the bivariate relationship between PAH concentrations and electrical resistivity. The geostatistical technique of simple indicator kriging is then used, together with the probabilistic model, to infer, at each node of a grid, the range of possible values whichmore » the PAH concentration can take. The risk map is then extracted for this characterization of the local uncertainty. The difference between this risk map and a traditional iso-concentration map is then discussed in terms of decision-making.« less
Destruction and survival of polycyclic aromatic hydrocarbons in active galaxies
NASA Technical Reports Server (NTRS)
Voit, G. M.
1992-01-01
Infrared spectra of dusty galactic environments often contain emission features attributed to polycyclic aromatic hydrocarbons or PAHs, which can be considered to be very small grains or very large molecules. Although IR spectra of starburst galaxies almost always show these emission features, similar spectra of active galaxies are usually featureless. Even in those active galaxies that do exhibit PAH emission, the PAHs still appear to be eradicated from the nuclear region. This dichotomy suggests that PAHs are destroyed by the intense hard radiation field from an AGN. Laboratory experiments show that certain PAHs are, in fact, so effectively destroyed by individual EUV and X-ray photons that they cannot survive even at kiloparsec distances from active nuclei. Regions within active galaxies that do show PAH emission must therefore be shielded from the central X-ray source by a substantial column density of X-ray absorbing gas.
Cakmak, Sabit; Hebbern, Chris; Cakmak, Jasmine D; Dales, Robert E
2017-09-01
We investigated the associations between exposure to polycyclic aromatic hydrocarbons (PAHs) and selected respiratory physiologic measures in cycles 2 and 3 of the Canadian Health Measures Survey, a nationally representative population sample. Using generalized linear mixed models, we tested the association between selected PAH metabolites and 1-second forced expiratory volume (FEV 1 ), forced vital capacity (FVC), and the ratio between the two (FEV 1 /FVC) in 3531 people from 6 to 79 years of age. An interquartile change in urinary PAH metabolite was associated with significant decrements in FEV 1 and FVC for eight PAHs, 2-hydroxynapthalene, 1-, and 2-hydroxyphenanthrene, 2-, 3-, and 9-hydroxyfluorene and 3- and 4-hydroxyphenanthrene. Exposure to PAH may negatively affect lung function in the Canadian population. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Allamandola, L. J.; Bregman, J. D.; Sandford, S. A.; Tielens, A. G. G. M.; Witteborn, F. C.
1989-01-01
A new IR emission feature at 1905/cm (5.25 microns) has been discovered in the spectrum of BD + 30 deg 3639. This feature joins the family of well-known IR emission features at 3040, 2940, 1750, 1610, '1310', 1160, and 890/cm. The origin of this new feature is discussed and it is assigned to an overtone or combination band involving C-H bending modes of polycyclic aromatic hydrocarbons (PAHs). Laboratory work suggests that spectral studies of the 2000-1650/cm region may be very useful in elucidating the molecular structure of interstellar PAHs. The new feature, in conjunction with other recently discovered spectral structures, suggests that the narrow IR emission features originate in PAH molecules rather than large carbon grains.
Lundin, Jessica I; Riffell, Jeffrey A; Wasser, Samuel K
2015-11-01
Impacts of toxic substances from oil production in the Alberta oil sands (AOS), such as polycyclic aromatic hydrocarbons (PAHs), have been widely debated. Studies have been largely restricted to exposures from surface mining in aquatic species. We measured PAHs in Woodland caribou (Rangifer tarandus caribou), moose (Alces americanus), and Grey wolf (Canis lupus) across three areas that varied in magnitude of in situ oil production. Our results suggest a distinction of PAH level and source profile (petro/pyrogenic) between study areas and species. Caribou samples indicated pyrogenic sourced PAHs in the study area previously devastated by forest fire. Moose and wolf samples from the high oil production area demonstrated PAH ratios indicative of a petrogenic source and increased PAHs, respectively. These findings emphasize the importance of broadening monitoring and research programs in the AOS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Jiaquan; Qu, Chengkai; Qi, Shihua; Cao, Junji; Zhan, Changlin; Xing, Xinli; Xiao, Yulun; Zheng, Jingru; Xiao, Wensheng
2015-10-01
Thirty atmospheric dustfall samples collected from an industrial corridor in Hubei Province, central China, were analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) to investigate their concentrations, spatial distributions, sources, and health risks. Total PAH concentrations (ΣPAHs) ranged from 1.72 to 13.17 µg/g and averaged 4.91 µg/g. High molecular weight (4-5 rings) PAHs averaged 59.67% of the ΣPAHs. Individual PAH concentrations were not significantly correlated with total organic carbon, possibly due to the semi-continuous inputs from anthropogenic sources. Source identification studies suggest that the PAHs were mainly from motor vehicles and biomass/coal combustion. The incremental lifetime cancer risks associated with exposure to PAHs in the dustfall ranged from 10(-4) to 10(-6); these indicate potentially serious carcinogenic risks for exposed populations in the industrial corridor.
Overton, E B; Ashton, B M; Miles, M S
2004-10-01
The distribution of selected hydrocarbons within ten dated sediment cores taken from the Mississippi River Bight off coastal Louisiana suggests a chronic contaminant loading from several sources including the river itself, oil and gas exploration in the central Gulf of Mexico (GOM) shelf area, and natural geologic hydrocarbon seeps. Data were grouped as either total polycyclic aromatic hydrocarbons (PAH's), which were indicative of pyrogenic PAH's; or estimated total hopanes (indicative of petrogenic hydrocarbons). The total PAH concentrations and estimated total hopanes begin increasing above background levels (approximately 200 ng g(-1)) after the 1950s. The distribution of these hydrocarbons and hopanes within the dated sediment cores suggests that the Mississippi River is a regional source of pyrogenic PAH's, and that the hopanes are from natural geologic hydrocarbon seeps, oil and gas exploration in the GOM, or both.
Polycyclic Aromatic Hydrocarbons in Electrocautery Smoke during Peritonectomy Procedures
Näslund Andréasson, Sara; Mahteme, Haile; Sahlberg, Bo; Anundi, Helena
2012-01-01
Objective. This study identified and quantified polycyclic aromatic hydrocarbons (PAHs) in electrocautery smoke during 40 peritonectomy procedures and investigated any correlations and/or differences between levels of PAHs and perioperative variables. Methods. PAHs were measured in personal and stationary sampling by 40 mm Millipore cassettes, for adsorption of both gaseous and particle-bound PAHs. Results. All 16 USEPA priority pollutant PAHs were detected during peritonectomy procedures, naphthalene being the most abundant. For the only two PAHs with Swedish occupational exposure limits (OELs), benzo[a]pyrene and naphthalene, limits were never exceeded. Amount of bleeding was the only perioperative variable that correlated with levels of PAHs. Conclusions. Low levels of PAHs were detected in electrocautery smoke during peritonectomy procedures, and an increased amount of bleeding correlated with higher levels of PAHs. For evaluation of long-term health effects, more studies are needed. PMID:22685482
NASA Astrophysics Data System (ADS)
Calderon, Francisco M.
1993-03-01
One hundred twenty-two workers (sixteen from a coke production plant and 106 from a graphite electrode manufacturing plant) agreed to participate in this study evaluating the relationship between exposure to polycyclic aromatic hydrocarbons (PAHs) and urinary excretion of 1-hydroxypyrene (1-HOP), the main metabolite of pyrene. The results show that the concentration of pyrene in air is highly correlated with total PAHs (r equals 0.83, P < 0.0001). The correlation coefficient between pyrene in air and 1-HOP is (r equals 0.69, P < 0.0001) and between 1-HOP and total PAHs is (r equals 0.77, P < 0.0001). The biological half life of the 1-HOP was determined (18 hrs) and the noninterference of smoking habits in relation to 1-HOP urinary excretion was established, concluding that 1-HOP is a suitable bioindicator of the occupational exposure to PAHs.
Mukherjee, Sutapa; Rodrigues, Ema; Weker, Robert; Palmer, Lyle J; Christiani, David C
2002-12-01
A repeated measures short-term prospective study was performed in boilermakers to determine occupational polycyclic aromatic hydrocarbon (PAH) exposure using the biomarker, 1-hydroxypyrene (1-OHP). Two work sites were studied; an apprentice school (metal fume exposure) and a boiler overhaul (residual oil fly ash [ROFA] and metal fume exposure). Pre- and postshift urine samples (n = 241; 41 male subjects) were analyzed for cotinine and 1-OHP. Descriptive statistics and generalized estimating equations were calculated. At the apprentice school cross-shift 1-OHP levels did not significantly differ. At the overhaul 1-OHP levels increased during the week in smokers and nonsmokers; in nonsmokers the 1-OHP level increased significantly postshift compared to preshift. In conclusion this study suggests that boilermakers exposed to occupational particulates are exposed to PAH. The urinary 1-OHP level may be a useful biomarker of PAH exposure in boilermakers exposed to ROFA, particularly in nonsmokers.
Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment
NASA Astrophysics Data System (ADS)
Prahl, Fredrick G.; Carpenter, Roy
1983-06-01
Polycyclic aromatic (PAH) and aliphatic hydrocarbon compositions, organic carbon, nitrogen and lignin contents were determined in whole, unfractionated sediment from the Washington continental shelf and in discrete sediment fractions separated by particle size and density. At least 20 to 25% of perylene and PAH derived from pyrolytic processes and 50% of the retene measured in whole sediment are contained within organic C- and lignin-rich panicles of density ≤ 1.9 g/cc. These particles, which include primarily vascular plant remains and bits of charcoal, comprise less than 1% of the total sediment weight. In contrast, a series of methylated phenanthrene homologs, possibly of fossil origin, are concentrated in some component of the more dense, lithic matrix of the sediment. Equilibrium models of PAH sorption/desorption from aqueous phase onto small particles of high surface area do not appear applicable to the behavior of the major PAH types identified in this aquatic environment.
Coupled LC-GC techniques for the characterisation of polycyclic aromatic compounds in fuel materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askey, S.A.; Holden, K.M.L.; Bartle, K.D.
1995-12-31
Exposure to polycyclic aromatic compounds (PAC) has long been identified as of considerable environmental concern. Originating from both natural and anthropogenic sources, many PAC exhibit significant carcinogenic and mutagenic properties. Multi-dimensional chromatographic techniques which provide separation by virtue of chemical class (group-type) or by molecular mass greatly simplifies the analysis of inherently complex fuel materials. In this study, on-line LC-GC techniques in which high resolution gas chromatography (HPLC) have been investigated. Comprehensive characterisation of fuel feedstocks and post-pyrolysis and combustion products was achieved by coupling LC-GC to low resolution ion trap mass spectrometry (ITD-MS) and atomic emission detection (AED). Themore » identification of PAC in diesel and coal materials, as well as urban air and diesel exhaust particulate extracts has provided valuable insight into the source, formation and distribution of such compounds pre- and post processing.« less
Ke, Chang-Liang; Gu, Yang-Guang; Liu, Qi; Li, Liu-Dong; Huang, Hong-Hui; Cai, Nan; Sun, Zhi-Wei
2017-04-15
Concentrations of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were measured in 15 marine wild organism species from South China Sea. The concentration (dry weight) of 16 PAHs ranged from 94.88 to 557.87ng/g, with a mean of 289.86ng/g. The concentrations of BaP in marine species were no detectable. The composition of PAHs was characterized by the 2- and 3-ring PAHs in marine species, and NA, PHE and FA were the dominant constituents. PAHs isomeric ratios indicated PAHs mainly originated from grass, wood and coal combustion, and petroleum. The human health risk assessment based on the excess cancer risk (ECR) suggested the probability of PAHs posing carcinogenic risk to human beings with consumption of marine organisms were negligible (probability<1×10 -6 ). Copyright © 2017 Elsevier Ltd. All rights reserved.
Nie, Zhiqiang; Yang, Yufei; Tang, Zhenwu; Liu, Feng; Wang, Qi; Huang, Qifei
2014-11-01
Field monitoring was conducted to develop a polycyclic aromatic hydrocarbon (PAH) emission inventory for the magnesium (Mg) metallurgy industry in China. PAH emissions in stack gas and fly/bottom ash samples from different smelting units of a typical Mg smelter were measured and compared. Large variations of concentrations, congener patterns, and emission factors of PAHs during the oxidation and reduction stages in the Mg smelter were observed. The measured average emission factor (166,487 μg/t Mg) was significantly higher than those of other industrial sources. Annual emission from Mg metallurgy in 2012 in China was estimated at 116 kg (514 g BaPeq) for PAHs. The results of this study suggest that PAH emission from Mg industries should be considered by local government agencies. These data may be helpful for understanding PAH levels produced by the Mg industry and in developing a PAH inventory.
Syed, Khajamohiddin; Porollo, Aleksey; Miller, David; Yadav, Jagjit S
2013-09-01
A promising polycyclic aromatic hydrocarbon-oxidizing P450 CYP5136A3 from Phanerochaete chrysosporium was rationally engineered to enhance its catalytic activity. The residues W129 and L324 found to be critical in substrate recognition were transformed by single (L324F) and double (W129L/L324G, W129L/L324F, W129A/L324G, W129F/L324G and W129F/L324F) mutations, and the engineered enzyme forms were expressed in Pichia pastoris. L324F and W129F/L324F mutations enhanced the oxidation activity toward pyrene and phenanthrene. L324F also altered the regio-selectivity favoring C position 4 over 9 for hydroxylation of phenanthrene. This is the first instance of engineering a eukaryotic P450 for enhanced oxidation of these fused-ring hydrocarbons.
Lambert, Timothy W; Boehmer, Jennifer; Feltham, Jason; Guyn, Lindsay; Shahid, Rizwan
2011-01-01
This paper presents spatial maps of the arsenic, lead, and polycyclic aromatic hydrocarbon (PAH) soil contamination in Sydney, Nova Scotia, Canada. The spatial maps were designed to create exposure cohorts to help understand the observed increase in health effects. To assess whether contamination can be a proxy for exposures, the following hypothesis was tested: residential soils were impacted by the coke oven and steel plant industrial complex. The spatial map showed contaminants are centered on the industrial facility, significantly correlated, and exceed Canadian health risk-based soil quality guidelines. Core samples taken at 5-cm intervals suggest a consistent deposition over time. The concentrations in Sydney significantly exceed background Sydney soil concentrations, and are significantly elevated compared with North Sydney, an adjacent industrial community. The contaminant spatial maps will also be useful for developing cohorts of exposure and guiding risk management decisions.
Mabilia, Rosanna; Cecinato, Angelo; Tomasi Scianò, Maria Concetta; Di Palo, Vincenzo; Possanzini, Massimiliano
2004-01-01
Exhaust emissions from a recent model heavy-duty diesel vehicle (city bus) in a chassis dynamometer were measured during a transient driving cycle. Particle-bound polycyclic aromatic hydrocarbons (PAHs) and gaseous carbonyls, substances that create health hazards and are, as yet, unregulated were collected, the former on filters and the latter on dinitrophenylhydrazine (DNPH)-coated silica cartridges and analysed by GC-MS and HPLC, respectively. PAH emission rates decreased with the number of benzene fused rings. They averaged 0.2 mg km(-1) for a total of 11 PAHs ranging from fluoranthene to benzo(ghi)perylene. Fluoranthene and pyrene accounted for 90% of total PAHs. The sum of emission rates of C1 approximately C6 carbonyls averaged 174 mg km(-1), even if formaldehyde alone represented approximately 70% of the total carbonyl mass, followed by acetaldehyde (13%). Results obtained were compared with emission data reported in previous studies.
Interstellar Polycyclic Aromatic Compounds and Astrophysics
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role polycyclic aromatic compounds (PAC) in the interstellar medium (ISM). Twenty years ago, the notion of an abundant population of large, carbon rich molecules in the ISM was considered preposterous. Today, the unmistakable spectroscopic signatures of PAC - shockingly large molecules by previous interstellar chemistry standards - are recognized throughout the Universe. In this paper, we will examine the interstellar PAC model and its importance to astrophysics, including: (1) the evidence which led to inception of the model; (2) the ensuing laboratory and theoretical studies of the fundamental spectroscopic properties of PAC by which the model has been refined and extended; and (3) a few examples of how the model is being exploited to derive insight into the nature of the interstellar PAC population.
Rodil, Rosario; Schellin, Manuela; Popp, Peter
2007-09-07
Membrane-assisted solvent extraction (MASE) in combination with large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) was applied for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The MASE conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of extraction conditions (shaking speed, extraction temperature and time), extraction solvent and composition (ionic strength, sample pH and presence of organic solvent). Parameters like linearity and reproducibility of the procedure were determined. The extraction efficiency was above 65% for all the analytes and the relative standard deviation (RSD) for five consecutive extractions ranged from 6 to 18%. At optimized conditions detection limits at the ng/L level were achieved. The effectiveness of the method was tested by analyzing real samples, such as river water, apple juice, red wine and milk.
Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M
2014-08-22
A solvent-free method is described for the determination of 10 volatile polycyclic aromatic hydrocarbons (PAHs), considered as priority pollutants by the EU, in different herbal infusions using headspace sorptive extraction (HSSE) and gas chromatography-mass spectrometry (GC-MS). The parameters affecting both the extraction and thermal desorption steps in the HSSE were optimized by means of Plackett-Burman designs. Ten millilitres of the herbal infusion was submitted to the HSSE preconcentration in the presence of salt for 4h at 88 °C. The use of d(10)-phenanthrene as internal standard not only improved the repeatability of the method but allowed quantification of the samples against external aqueous standards. Detection limits ranged between 11 and 26 ng L(-1). Copyright © 2014 Elsevier B.V. All rights reserved.
Park, Shin-Woong; Jeong, Jun-Hyun; Her, Jae-Young; Kim, Mina K; Lee, Kwang-Geun
2017-06-01
In this study, levels of benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene (BaP), dibenzo[a,h]anthracene, benzo[g,h,i]perylene and indeno[1,2,3-c,d]pyrene in 412 food items collected from food service facilities in Korea were analysed. The concentrations of the eight polycyclic aromatic hydrocarbons (PAHs) ranged 0.13-0.48 μg/kg. The concentrations of benzo[a]pyrene in all food samples were <1 μg/kg, which is the lowest maximum limit in foods regulated by European Union legislation. PAH contents were employed to conduct exposure and risk assessment. The chronic daily intake of PAHs from 412 food samples was 5.48 × 10 -6 -4.70 ×x 10 -4 µg-TEQ BaP /kg/day with margins of exposure of 1.04 × 10 9 -1.16 × 10 11 .
Zhang, Wei; Zhang, Shucai; Wan, Chao; Yue, Dapan; Ye, Youbin; Wang, Xuejun
2008-06-01
Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.
Bronstein, Hindy E; Scott, Lawrence T
2008-01-04
The title compound (1) undergoes 1,2-addition reactions of both electrophilic and nucleophilic reagents preferentially at the "interior" carbon atoms of the central 6:6-bond to give fullerene-type adducts 2, 3, 4, and 5. Such fullerene-like chemistry is unprecedented for a topologically 2-dimensional polycyclic aromatic hydrocarbon and qualifies this geodesic polyarene as a "bridge" between the old flat world of polycyclic aromatic hydrocarbons (PAHs) and the new round world of fullerenes. The relief of pyramidalization strain, as in the addition reactions of fullerenes, presumably contributes to the atypical mode of reactivity seen in 1. Molecular orbital calculations, however, reveal features of the nonalternant pi system in 1 that may also play an important role. Thus, the fullerene-like chemistry of 1 may be driven by two or more factors, the relative importances of which are difficult to discern.
Woo, Jung-Hee; Kwon, Tae-Hyung; Kim, Jun-Tae; Kim, Choong-Gon; Lee, Eun Yeol
2013-04-01
A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.
NASA Astrophysics Data System (ADS)
Kuskowska, Karolina; Rogula-Kozłowska, Wioletta; Rogula-Kopiec, Patrycja
2018-01-01
The paper presents the results of research on the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) associated with total suspended particles (TSP) and their respirable fraction (PM4) in one of the Warsaw sports halls. Samples of dust were collected for 15 days simultaneously inside and outside (atmospheric air) of the sports hall. The obtained data allowed calculating diagnostic ratios indicating the origin of the PAHs and selected indicators of cumulative exposure to the PAH mixture. Both PM and PAH in the surveyed area were derived from the combustion of solid fuels; this involved pollution both in the atmospheric air and in the air inside the sports hall. It has been shown that the exposure of sports hall users to PAHs is significantly higher than the exposure resulting from concentrations recorded in the atmospheric air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, W.; Wilson, N.K.; Klepeis, N.
Real-time measurement of polycyclic aromatic hydrocarbons (PAH) on fine particles was evaluated in a home with environmental tobacco smoke (ETS) as a source. Respirable suspended particles (RSP) were also monitored. Comparison of PAH and RSP concentrations from these experiments suggests: (1) the PAH concentrations for the two types of cigarettes--a regular Marlboro filter cigarette and a University of Kentucky reference cigarette No. 2R1--were similar, but the RSP concentrations were different; (2) concentrations from the real-time PAH monitor were linearly related to RSP concentrations; (3) the slopes of the regression lines between PAH and RSP differed for the two types ofmore » cigarettes. The real-time PAH monitor appears to be a useful tool for evaluating mathematical models to predict the concentration time series in indoor microenvironments.« less
NASA Technical Reports Server (NTRS)
Szczepanski, Jan; Vala, Martin
1993-01-01
Polycyclic aromatic hydrocarbons (PAHs) have been implicated as the carriers of the 'unidentified infrared' (UIR) emission bands observed from the interstellar medium. It has long been thought that these molecules, if present, probably exist as cations. In this paper we present infrared spectra of the cations of five moderate-sized PAHs. The PAH cations have been produced by low-energy electron impact and then trapped and stabilized in argon matrices at 12 K. To date, results have been obtained on naphthalene, anthracene, pyrene, perylene, and coronene. A common feature of the infrared spectra of all these cations is the very different intensity pattern of the ions compared to the neutral parents. Visible and (partial) infrared spectra of the coronene cation are also presented. It is shown that the out-of-plane CH bending mode shifts to a position very close to the UIR band at 11.3 microns. The astrophysical impact of these observations is discussed.
Tavakoly Sany, Seyedeh Belin; Hashim, Rosli; Salleh, Aishah; Rezayi, Majid; Mehdinia, Ali; Safari, Omid
2014-01-01
Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait. PMID:24747349
Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey
NASA Technical Reports Server (NTRS)
Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)
1999-01-01
We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.
NASA Technical Reports Server (NTRS)
Cherchneff, Isabelle; Barker, John R.; Tielens, Alexander G. G. M.
1991-01-01
The optical constants of four polycyclic aromatic hydrocarbon (PAH) molecules (benzene, pyrene, pentacene, and coronene) are determined from their measured laboratory absorption spectra. The Planck mean of the radiation pressure cross section is computed for each molecule and for amorphous carbon (AC) grains, and semiempirically estimated for large PAH molecules up to 400 carbon atoms. Assuming that PAHs are present in carbon-rich stellar outflows, the radiation pressure forces acting on them are calculated and compared with the radiation forces on AC particles. The results show that PAHs possess very different optical properties from AC grains. Small PAHs may experience an 'inverse greenhouse' effect in the inner part of the envelope, as they decouple from the gas close to the photosphere. The radiation pressure force on PAHs is always much less than the force at work on AC grains, and PAH molecules do not affect significantly the dynamics of the outflow.
Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons.
Kim, Hyun Ho; Kang, Boseok; Suk, Ji Won; Li, Nannan; Kim, Kwang S; Ruoff, Rodney S; Lee, Wi Hyoung; Cho, Kilwon
2015-05-26
Pentacene (C22H14), a polycyclic aromatic hydrocarbon, was used as both supporting and sacrificing layers for the clean and doping-free graphene transfer. After successful transfer of graphene to a target substrate, the pentacene layer was physically removed from the graphene surface by using intercalating organic solvent. This solvent-mediated removal of pentacene from graphene surface was investigated by both theoretical calculation and experimental studies with various solvents. The uses of pentacene and appropriate intercalation solvent enabled graphene transfer without forming a residue from the supporting layer. Such residues tend to cause charged impurity scattering and unintentional graphene doping effects. As a result, this clean graphene exhibited extremely homogeneous surface potential profiles over a large area. A field-effect transistor fabricated using this graphene displayed a high hole (electron) mobility of 8050 cm(2)/V·s (9940 cm(2)/V·s) with a nearly zero Dirac point voltage.