Sample records for acids polycyclic aromatic

  1. Determination of polycyclic aromatic hydrocarbons by four-way parallel factor analysis in presence of humic acid.

    PubMed

    Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Yu, Shaohui; Liu, Jianguo; Liu, Wenqing

    2016-01-05

    There is not effective method to solve the quenching effect of quencher in fluorescence spectra measurement and recognition of polycyclic aromatic hydrocarbons in aquatic environment. In this work, a four-way dataset combined with four-way parallel factor analysis is used to identify and quantify polycyclic aromatic hydrocarbons in the presence of humic acid, a fluorescent quencher and an ubiquitous substance in aquatic system, through modeling the quenching effect of humic acid by decomposing the four-way dataset into four loading matrices corresponding to relative concentration, excitation spectra, emission spectra and fluorescence quantum yield, respectively. It is found that Phenanthrene, pyrene, anthracene and fluorene can be recognized simultaneously with the similarities all above 0.980 between resolved spectra and reference spectra. Moreover, the concentrations of them ranging from 0 to 8μgL(-1) in the test samples prepared with river water could also be predicted successfully with recovery rate of each polycyclic aromatic hydrocarbon between 100% and 120%, which were higher than those of three-way PARAFAC. These results demonstrate that the combination of four-way dataset with four-way parallel factor analysis could be a promising method to recognize the fluorescence spectra of polycyclic aromatic hydrocarbons in the presence of fluorescent quencher from both qualitative and quantitative perspective. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. THE PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) continues to be interested in developing methods for the detection of polycyclic aromatic hydrocarbons (PAHS) in the environment. Polycyclic aromatic hydrocarbons (PAHS) are common contaminants in our environment. Being major product...

  3. Photooxidation products of polycyclic aromatic compounds containing sulfur.

    PubMed

    Bobinger, Stefan; Andersson, Jan T

    2009-11-01

    Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.

  4. Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise.

    PubMed

    Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A

    2017-08-15

    The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.

  5. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Nitrogen Heterocycles (PANHs)

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W.; Allamandola, L. J.; Biemesderfer, C. D.; Rosi, M.

    2002-01-01

    The mid-infrared spectra of the nitrogen-containing heterocyclic polycyclic aromatic compounds 1-azabenz[a]-anthracene; 2-azabenz[a]anthracene; 1-azachrysene; 2-azachrysene; 4-azachrysene; 2-azapyrene, and 7,8 benzoquinoline in their neutral and cation forms were investigated. The spectra of these species isolated in an argon matrix have been measured. Band frequencies and intensities were tabulated and these data compared with spectra computed using density functional theory at the B3LYP level. The overall agreement between experiment and theory is quite good, in keeping with earlier results on homonuclear polycyclic aromatic hydrocarbons. The differences between the spectral properties of nitrogen bearing aromatics and non-substituted, neutral polycyclic aromatic hydrocarbons will be discussed.

  7. Strong CH/O interactions between polycyclic aromatic hydrocarbons and water: Influence of aromatic system size.

    PubMed

    Veljković, Dušan Ž

    2018-03-01

    Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Combustion kinetics and emission characteristics of polycyclic aromatic hydrocarbons from polylactic acid combustion.

    PubMed

    Chien, Yi-Chi; Liang, Chenju; Liu, Shou-Heng; Yang, Shu-Hua

    2010-07-01

    This study investigates the combustion kinetics and emission factors of 16 U.S. Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) in polylactic acid (PLA) combustion. Experimentally, two reactions are involved in the PLA combustion process that potentially result in the release of lactide, acetaldehyde, and n-hexaldehyde. The products may continuously be oxidized to form carbon dioxide (CO2) and some PAHs produced because of incomplete combustion. The analytical results indicate that the emission factors for PAHs are in the range of not detectable to 98.04 microg/g. The emission factors are much lower than those of poly(ethylene terephalate) (PET) and other combustion of plastics. Results from this work suggest that combustion is a good choice for waste PLA disposal.

  9. Assessment of polycyclic aromatic hydrocarbons (PAHs) pollution in soil of suburban areas in Tianjin, China.

    PubMed

    Lv, Jungang; Shi, Rongguang; Cai, Yanming; Liu, Yong

    2010-07-01

    Soil contamination with polycyclic aromatic hydrocarbons is an increasing problem and has aroused more and more concern in many countries, including China. In this study, representative soil samples (n = 87) of suburban areas in Tianjin (Xiqing, Dongli, Jinnan, Beichen) were evaluated for 16 polycyclic aromatic hydrocarbons. Surface soil samples were air-dried and sieved. Microwave assisted extraction was used for polycyclic aromatic hydrocarbons preparation prior to analysis with gas chromatography-mass spectrometry. The total concentrations of tested polycyclic aromatic hydrocarbons in Xiqing, Dongli, Jinnan, Beichen ranged in 58.5-2,748.3, 36.1-6,734.7, 58.5-4,502.5, 29.7-852.5 ng/g and the averages of total concentration of polycyclic aromatic hydrocarbons were 600.5, 933.6, 640.8, 257.3 ng/g, respectively. Spatial variation of polycyclic aromatic hydrocarbons in soil was illustrated; Pollution status and comparison to other cities were also investigated. Serious polycyclic aromatic hydrocarbons soil pollution was found in Dongli district, on the contrary, Bap in most sites in Beichen did not exceed relative standards and most sites in Beichen should be classified as non-contaminated soil. Principal component analysis was used to identify the possible sources of different districts. It turned out that coal combustion still was the most important sources in three districts except Beichen. Coking, traffic, cooking, biomass combustion also accounted for polycyclic aromatic hydrocarbons pollution to certain extent in different districts. These data can be further used to assess the health risk associated with soils polluted with polycyclic aromatic hydrocarbons and help local government find proper way to reduce polycyclic aromatic hydrocarbons pollution in soils.

  10. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation.

    PubMed

    Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela

    2017-10-01

    The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.

  11. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation

    NASA Astrophysics Data System (ADS)

    Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela

    2017-10-01

    The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.

  12. Optimization and determination of polycyclic aromatic hydrocarbons in biochar-based fertilizers.

    PubMed

    Chen, Ping; Zhou, Hui; Gan, Jay; Sun, Mingxing; Shang, Guofeng; Liu, Liang; Shen, Guoqing

    2015-03-01

    The agronomic benefit of biochar has attracted widespread attention to biochar-based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar-based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar-based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box-Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26-102.99%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes

    DOEpatents

    Reilly, Peter T. A.

    2004-10-19

    The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.

  14. Fusing porphyrins with polycyclic aromatic hydrocarbons and heterocycles for optoelectronic applications

    DOEpatents

    Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.

    2015-08-18

    A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.

  15. Energy sources of polycyclic aromatic hydrocarbons. [Carcinogenicity of PAHs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerin, M. R.

    1977-01-01

    Combustion is the predominant end-process by which fossil fuels are converted to energy. Combustion, particularly when inefficient, is also the primary technological source of polycyclic aromatic hydrocarbons (PAHs) released into the environment. The need for liquid fuels to supply the transportation industry and for nonpolluting fuels for heat and power generation provide the incentive to commercialize processes to convert coal to substitute natural gas and oil. These processes represent a potentially massive new source of environmental PAHs. Insuring an adequate supply of energy with minimum impact on the environment and on health is one of the most important, urgent, andmore » challenging goals currently facing science and technology. Polycyclic aromatic hydrocarbon related carcinogenesis is among the most important of possible occupational- and environmental-health impacts of much of the current and projected national energy base. An understanding of the relationship of polycyclic aromatic hydrocarbons (PAHs) to human cancer and a continued surveillance of energy sources for PAH content are necessary to minimize this impact.« less

  16. Polytetrafluoroethylene-jacketed stirrer modified with graphene oxide and polydopamine for the efficient extraction of polycyclic aromatic hydrocarbons.

    PubMed

    Zhang, Zinxin; Mwadini, Mwadini Ahmada; Chen, Zilin

    2016-10-01

    Steel stirrers jacketed with polytetrafluoroethylene can be regarded as an ideal substrate for stirrer bar sorptive extraction. However, it is still a great challenge to immobilize graphene onto a polytetrafluoroethylene stirrer due to the high chemical resistance of the surface of a polytetrafluoroethylene stirrer. We describe here a method to modify the surface of polytetrafluoroethylene stirrers with graphene. In this work, graphene was used as the sorbent due to its excellent adsorption capability for aromatic compounds, such as polycyclic aromatic compounds. Graphene was successfully immobilized onto polytetrafluoroethylene-stirrer by a bio-inspired polydopamine functionalization method. The graphene-modified polytetrafluoroethylene-stirrer shows good stability and tolerance to stirring, ultrasonication, strong acidic and basic solutions, and to organic solvents. The multilayer coating was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. After the optimization of some experimental conditions, the graphene-modified polytetrafluoroethylene stirrer was used for the stirrer bar sorptive extraction of polycyclic aromatic hydrocarbons, in which the binding between the polycyclic aromatic hydrocarbons and the graphene layer was mainly based on π-π stacking and hydrophobic interactions. The graphene-modified polytetrafluoroethylene-stirrer-based stirrer bar sorptive extraction and high-performance liquid chromatography method was developed for the determination of polycyclic aromatic hydrocarbons with great extraction efficiency, with enrichment factors from 18 to 62. The method has low limits of detection of 1-5 pg/mL, wide linear range (5-100 and 10-200 pg/mL), good linearity (R ≥ 0.9957) and good reproducibility (RSD ≤ 6.45%). The proposed method has been applied to determine polycyclic aromatic hydrocarbons in real dust samples. Good recoveries were obtained, ranging from 88.53 to 109.43%. © 2016 WILEY-VCH Verlag

  17. Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Bakes, E. L. O.

    2000-01-01

    We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.

  18. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime.

    PubMed

    Tejeda-Agredano, Maria-Carmen; Mayer, Philipp; Ortega-Calvo, Jose-Julio

    2014-01-01

    Binding of polycyclic aromatic hydrocarbons (PAHs) to dissolved organic matter (DOM) can reduce the freely dissolved concentration, increase apparent solubility or enhance diffusive mass transfer. To study the effects of DOM on biodegradation, we used phenanthrene and pyrene as model PAHs, soil humic acids as model DOM and a soil Mycobacterium strain as a representative degrader organism. Humic acids enhanced the biodegradation of pyrene when present as solid crystals but not when initially dissolved or provided by partitioning from a polymer. Synchronous fluorescence spectrophotometry, scintillation counting and a microscale diffusion technique were applied in order to determine the kinetics of dissolution and diffusive mass transfer of pyrene. We suggest that humic acids can enhance or inhibit biodegradation as a result of the balance of two opposite effects, namely, solubilization of the chemicals on the one hand and inhibition of cell adhesion to the pollutant source on the other. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Airborne Exposures to Polycyclic Aromatic Compounds Among Workers in Asphalt Roofing Manufacturing Facilities.

    PubMed

    Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E

    2015-01-01

    We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very

  20. AROMATIC AND POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN A LAMINAR PREMIXED N-BUTANE FLAME. (R825412)

    EPA Science Inventory

    Abstract

    Experimental and detailed chemical kinetic modeling work has been performed to investigate aromatic and polycyclic aromatic hydrocarbon (PAH) formation pathways in a premixed, rich, sooting, n-butane¯oxygen¯argon burner s...

  1. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOEpatents

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  2. Prenatal exposure to polycyclic aromatic hydrocarbons/aromatics, BDNF and child development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perera, Frederica, E-mail: fpp1@columbia.edu; Columbia Center for Children's Environmental Health, Columbia University, 722 W. 168th St., New York, NY 10032; Phillips, David H.

    Objectives: Within a New York City (NYC) birth cohort, we assessed the associations between polycyclic aromatic hydrocarbon (PAH) and other aromatic DNA adducts and brain derived neurotrophic factor (BDNF) concentrations in umbilical cord blood, and neurodevelopment at age 2 years and whether BDNF is a mediator of the associations between PAH/aromatic-DNA adducts and neurodevelopment. Methods: PAH/aromatic-DNA adduct concentrations in cord blood were measured in 505 children born to nonsmoking African-American and Dominican women residing in NYC, and a subset was assessed for neurodevelopment at 2 years using the Bayley Scales of Infant Development Mental Development Index (MDI). A spectrum ofmore » PAH/aromatic-DNA adducts was measured using the {sup 32}P-postlabeling assay; DNA adducts formed by benzo[a]pyrene (B[a]P), a representative PAH, were measured by High Performance Liquid Chromatography (HPLC)/fluorescence. BDNF mature protein in cord blood plasma was quantified by an ELISA. Multivariate regression analysis, adjusting for potential confounders, was conducted. Results: PAH/aromatic-DNA adduct concentration measured by postlabeling was inversely associated with BDNF concentration (p=0.02) and with MDI scores at 2 years (p=0.04). BDNF level was positively associated with MDI scores (p=0.003). Restricting to subjects having all three measures (PAH/aromatic-DNA adducts by postlabeling, MDI, and BDNF), results were similar but attenuated (p=0.13, p=0.05, p=0.01, respectively). Associations between B[a]P-DNA adducts and BDNF and B[a]P-DNA adducts and MDI at age 2 years were not significant. At age 3 years, the positive association of BDNF with MDI was not observed. Conclusions: The results at age 2 suggest that prenatal exposure to a spectrum of PAH/aromatic pollutants may adversely affect early neurodevelopment, in part by reducing BDNF levels during the fetal period. However, the same relationship was not seen at age 3. - Highlights: • Cord blood

  3. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-07-01

    Acid treatment of clay minerals is known to modify their properties such as increase their surface area and surface acidity, making them suitable as catalysts in many chemical processes. However, the role of these surface properties during biodegradation processes of polycyclic aromatic hydrocarbons (PAHs) is only known for mild acid (0.5 M Hydrochloric acid) treated clays. Four different clay minerals were used for this study: a montmorillonite, a saponite, a palygorskite and a kaolinite. They were treated with 3 M hydrochloric acid to produce acid activated clay minerals. The role of the acid activated montmorillonite, saponite, palygorskite and kaolinite in comparison with the unmodified clay minerals in the removal of PAHs during biodegradation was investigated in microcosm experiments. The microcosm experiments contained micro-organisms, oil, and clays in aqueous medium with a hydrocarbon degrading microorganism community predominantly composed of Alcanivorax spp. Obtained results indicated that acid activated clays and unmodified kaolinite did not enhance the biodegradation of the PAHs whereas unmodified montmorillonite, palygorskite and saponite enhanced their biodegradation. In addition, unmodified palygorskite adsorbed the PAHs significantly due to its unique channel structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine.

    PubMed

    Zhu, Linli; Xu, Hui

    2014-09-01

    Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. AGRONOMIC OPTIMIZATION FOR PHYTOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Phytoremediation is a low-cost method of using plants to degrade, volatilize or sequester organic and metal pollutants that has been used in efforts to remediate sites contaminated with polycyclic aromatic hydrocarbon (PAH) refinery wastes. Non-native plant species aggressivel...

  6. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.

    PubMed

    Forsey, Steven P; Thomson, Neil R; Barker, James F

    2010-04-01

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalenearomatic sextet theory was used to predict the relative stability of arenes towards ring oxidation by permanganate. 2010 Elsevier Ltd. All rights reserved.

  7. Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems

    PubMed Central

    Johannes, Christian; Majcherczyk, Andrzej

    2000-01-01

    The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds. PMID:10653713

  8. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannes, C.; Majcherczyk, A.

    2000-02-01

    The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2{prime}-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter withmore » redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.« less

  9. Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions.

    PubMed

    Ugochukwu, Uzochukwu C; Fialips, Claire I

    2017-05-01

    Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Polycyclic aromatic hydrocarbons content and fatty acids profile in coconut, safflower, evening primrose and linseed oils.

    PubMed

    Silva, Simone Alves da; Torres, Elizabeth A F da Silva; Almeida, Adriana Palma de; Sampaio, Geni Rodrigues

    2018-04-15

    This study aimed at evaluating the polycyclic aromatic hydrocarbons (PAHs) contamination of commercial vegetable oils and examined the identity through the fatty acids profiles. Coconut, safflower, evening primrose, and linseed oils marketed in São Paulo (Brazil) were investigated totaling 69 samples. Four PAHs, benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), and benzo[a]pyrene (BaP), were detected in 96% of the samples at individual levels ranging from not detected to 14.99 μg kg -1 . Chrysene was the abundant hydrocarbon found among all types of oils, with the highest median values. The results of the fatty acid profiles revealed that 43% showed different profiles according to the ones on their labels, with a higher incidence of adulteration of evening primrose oils. The maximum tolerable limits by European Regulation No. 835/2011 were exceeded for BaP in 12%, and for total 4 PAHs in 28%, with a greater contribution of adulterated samples. Copyright © 2017. Published by Elsevier Ltd.

  11. Absorption of nitro-polycyclic aromatic hydrocarbons by biomembrane models: effect of the medium lipophilicity.

    PubMed

    Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito

    2008-10-01

    To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.

  12. ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...

  13. POLYCYCLIC AROMATIC HYDROCARBON (PAH) EXPOSURE OF 257 PRESCHOOL CHILDREN

    EPA Science Inventory

    We investigated the polycyclic aromatic hydrocarbon (PAH) exposure of 257 preschool children and their adult caregivers in their everyday environments. Participants were recruited randomly from eligible homes and daycare centers within six North Carolina (NC) and six Ohio (OH) c...

  14. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry.

    PubMed

    Wang, Xianli; Kang, Haiyan; Wu, Junfeng

    2016-05-01

    Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. [Effects of smoking on the concentrations of urinary 10 metabolites of polycyclic aromatic hydrocarbons in coke oven workers].

    PubMed

    He, Yun-feng; Zhang, Wang-zhen; Kuang, Dan; Deng, Hua-xin; Li, Xiao-hai; Lin, Da-feng; Deng, Qi-fei; Huang, Kun; Wu, Tang-chun

    2012-12-01

    To explore the effects of smoking on urinary 10 metabolites of polycyclic aromatic hydrocarbons (PAHs) in the coke oven workers. Occupational health examination was performed on 1401 coke oven workers in one coking plant, their urine were collected respectively. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons in urine were detected by gas chromatography/mass spectrometry. The 1401 workers were divided into four groups, namely control, adjunct workplaces, bottom and side, top group according to their workplaces and the different concentrations of PAHs in the environment. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons between smokers and nonsmokers in each workplace group were compared using analysis of covariance, respectively. The levels of concentrations of the sixteen polycyclic aromatic hydrocarbons we detected at control were significantly higher than those at other areas (P < 0.05). Comparing the ten monohydroxy polycyclic aromatic hydrocarbons levels between smokers and nonsmokers, the levels of 1-hydroxynaphthalene and 2-hydroxynaphthalene among smokers were higher than nonsmokers with statistically significance in control, adjunct workplaces, bottom and side and top groups (P < 0.05). However, the levels of 1-hydroxypyrene had no statistically significant differences between the four areas. Urinary 1-hydroxynaphthalene and 2-hydroxynaphthalene may be used as biomarkers for the impact of smoking on monohydroxy polycyclic aromatic hydrocarbons in the coke oven workers.

  16. A General Synthetic Route to Polycyclic Aromatic Dicarboximides by Palladium-Catalyzed Annulation Reaction.

    PubMed

    Shoyama, Kazutaka; Mahl, Magnus; Seifert, Sabine; Würthner, Frank

    2018-03-20

    Here we report a general method for the synthesis of polycyclic aromatic dicarboximides (PADIs) by palladium-catalyzed annulation of naphthalene dicarboximide to different types of aromatic substrates. Reaction conditions were optimized by systematic variation of ligand, solvent, and additive. It was shown that solvent has a decisive effect on the yield of the reaction products, and thus 1-chloronaphthalene as solvent afforded the highest yield. By applying the optimized reaction conditions, a broad series of planar carbo- and heterocycle containing PADIs were synthesized in up to 97% yield. Moreover, this approach could be applied to curved aromatic scaffold to achieve the respective bowl-shaped PADI. Two-fold annulation was accomplished by employing arene diboronic esters, affording polycyclic aromatic bis(dicarboximides). The optical and electrochemical properties of this broad series of PADIs were explored as well.

  17. Birds and polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  18. The distribution and sources of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China

    NASA Astrophysics Data System (ADS)

    Wang, Jincui; Zhao, Yongsheng; Sun, Jichao; Zhang, Ying; Liu, Chunyan

    2018-06-01

    This paper has investigated the concentration and distribution of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China. Results show that the concentration levels of 16 priority polycyclic aromatic hydrocarbons range from 0 to 92.06 ng/L, do not conform to drinking water quality standards in China (GB 5749- 2006). However, the concentration figures of priority polycyclic aromatic hydrocarbons are much lower than that of other studies conducted elsewhere in China. In addition, highly-concentrated polycyclic aromatic hydrocarbons (50-92 ng/L) are fragmentarily distributed. The composition of polycyclic aromatic hydrocarbons from this study indicates that low molecular polycyclic aromatic hydrocarbons are predominant in groundwater samples, medium molecular compounds occur at low concentrations, and high molecular hydrocarbons are not detected. The polycyclic aromatic hydrocarbon composition in groundwater samples is basically the same as that of gaseous samples in the atmosphere in this study. Therefore, the atmospheric input is assumed to be an important source of polycyclic aromatic hydrocarbons, no less than wastewater discharge, adhesion on suspended solids, and surface water leakage. Ratios of specific polycyclic aromatic hydrocarbons demonstrate that they mainly originate from wood or coal combustion as well as natural gas and partially from petroleum according to the result of principal component analysis. On the whole, conclusions are drawn that the contamination sources of these polycyclic aromatic hydrocarbons are likely petrogenic and pyrolytic inputs. Future investigations by sampling topsoil, vadose soil, and the atmosphere can further verify aforementioned conclusions.

  19. Determination of 15 polycyclic aromatic hydrocarbons in aquatic products by solid-phase extraction and GC-MS.

    PubMed

    Liu, Qiying; Guo, Yuanming; Sun, Xiumei; Hao, Qing; Cheng, Xin; Zhang, Lu

    2018-02-22

    We propose a method for the simultaneous determination of 15 kinds of polycyclic aromatic hydrocarbons in marine samples (muscle) employing gas chromatography with mass spectrometry after saponification with ultrasound-assisted extraction and solid-phase extraction. The experimental conditions were optimized by the response surface method. In addition, the effects of different lyes and extractants on polycyclic aromatic hydrocarbons extraction were discussed, and saturated sodium carbonate was first used as the primary saponification reaction and extracted with 10 mL of ethyl acetate and secondly 1 mol/L of sodium hydroxide and 10 mL of n-hexane were used to achieve better results. The average recovery was 67-112%. Satisfactory data showed that the method has good reproducibility with a relative standard deviation of <13%. The detection limits of polycyclic aromatic hydrocarbons were 0.02-0.13 ng/g. Compared with other methods, this method has the advantages of simple pretreatment, low solvent consumption, maximum polycyclic aromatic hydrocarbons extraction, the fast separation speed, and the high extraction efficiency. It is concluded that this method meets the batch processing requirements of the sample and can also be used to determine polycyclic aromatic hydrocarbons in other high-fat (fish, shrimp, crab, shellfish) biological samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons

    EPA Science Inventory

    Polycyclic Aromatic Hydrocarbons (PAHs) are products of incomplete combustion of organic materials; sources are, thus, widespread,including cigarette smoke, municipal waste incineration, wood stove emissions, coal conversion, energy production form fossil fuels, and automobile an...

  1. METHODOLOGY OF AMBIENT AIR MONITORING FOR POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    In the last decade, several studies of polycyclic aromatic hydrocarbons (PAH) in ambient air in the U.S. specifically investigated (1) the sampling efficiency of two sorbents for PAH in air: XAD-2 and polyurethane foam (PUP); (2) the storage stability of PAH on quartz fiber fil...

  2. PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COASTAL GREAT LAKES WATERS

    EPA Science Inventory

    Photoinduced toxicity is the exacerbated toxicity of environmental contaminants by UV radiation. Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) has been well established in the laboratory for numerous aquatic species including larval fish. The contaminants sub-p...

  3. Polycyclic aromatic hydrocarbon formation during the gasification of sewage sludge in sub- and supercritical water: Effect of reaction parameters and reaction pathways.

    PubMed

    Gong, Miao; Wang, Yulan; Fan, Yujie; Zhu, Wei; Zhang, Huiwen; Su, Ying

    2018-02-01

    The formation of polycyclic aromatic hydrocarbon is a widespread issue during the supercritical water gasification of sewage sludge, which directly reduces the gasification efficiency and restricts the technology practical application. The changes of the concentrations and forms as well as the synthesis rate of polycyclic aromatic hydrocarbons in the residues from supercritical water gasification of dewatered sewage sludge were investigated to understand influence factors and the reaction pathways. Results showed that the increase of reaction temperature during the heating period favours directly concentration of polycyclic aromatic hydrocarbon (especially higher-molecular-weight), especially when it raise above 300 °C. Lower heating and cooling rate essentially extend the total reaction time. Higher polycyclic aromatic hydrocarbon concentration and higher number of rings were generally promoted by lower heating and cooling rate, longer reaction time and higher reaction temperature. The lower-molecular-weight polycyclic aromatic hydrocarbons can be directly generated through the decomposition of aromatic-containing compounds in sewage sludge, as well as 3-ring and 4-ring polycyclic aromatic hydrocarbons can be formed by aromatization of steroids. Possible mechanisms of reaction pathways of supercritical water gasification of sewage sludge were also proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ.

    PubMed

    Vishnevetsky, Julia; Tang, Deliang; Chang, Hsin-Wen; Roen, Emily L; Wang, Ya; Rauh, Virginia; Wang, Shuang; Miller, Rachel L; Herbstman, Julie; Perera, Frederica P

    2015-01-01

    Polycyclic aromatic hydrocarbons are common carcinogenic and neurotoxic urban air pollutants. Toxic exposures, including air pollution, are disproportionately high in communities of color and frequently co-occur with chronic economic deprivation. We examined whether the association between child IQ and prenatal exposure to polycyclic aromatic hydrocarbons differed between groups of children whose mothers reported high vs. low material hardship during their pregnancy and through child age 5. We tested statistical interactions between hardships and polycyclic aromatic hydrocarbons, as measured by DNA adducts in cord blood, to determine whether material hardship exacerbated the association between adducts and IQ scores. Prospective cohort. Participants were recruited from 1998 to 2006 and followed from gestation through age 7 years. Urban community (New York City) A community-based sample of 276 minority urban youth EXPOSURE MEASURE: Polycyclic aromatic hydrocarbon-DNA adducts in cord blood as an individual biomarker of prenatal polycyclic aromatic hydrocarbon exposure. Maternal material hardship self-reported prenatally and at multiple timepoints through early childhood. Child IQ at 7 years assessed using the Wechsler Intelligence Scale for Children. Significant inverse effects of high cord PAH-DNA adducts on full scale IQ, perceptual reasoning and working memory scores were observed in the groups whose mothers reported a high level of material hardship during pregnancy or recurring high hardship into the child's early years, and not in those without reported high hardship. Significant interactions were observed between high cord adducts and prenatal hardship on working memory scores (β = -8.07, 95% CI (-14.48, -1.66)) and between high cord adducts and recurrent material hardship (β = -9.82, 95% CI (-16.22, -3.42)). The findings add to other evidence that socioeconomic disadvantage can increase the adverse effects of toxic physical "stressors" like air pollutants

  5. [Simultaneous determination of 15 polycyclic aromatic hydrocarbons in cigarette filter by gas chromatography-tandem mass spectrometry].

    PubMed

    Zhang, Xiaotao; Zhang, Li; Ruan, Yibin; Wang, Weiwei; Ji, Houwei; Wan, Qiang; Lin, Fucheng; Liu, Jian

    2017-10-08

    A method for the simultaneous determination of 15 polycyclic aromatic hydrocarbons in cigarette filter was developed by isotope internal standard combined with gas chromatography-tandem mass spectrometry. The cigarette filters were extracted with dichloromethane, and the extract was filtered with 0.22 μm organic phase membrane. The samples were isolated by DB-5MS column (30 m×0.25 mm, 0.25 μm) and detected using multiple reaction monitoring mode of electron impact source under positive ion mode. The linearities of the 15 polycyclic aromatic hydrocarbons (acenapthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, ben[ a ]anthracene, chrysene, benzo[ b ]fluoranthene, benzo[ k ]fluoranthene, benzo[ a ]pyrene, dibenzo[ a,h ]anthracene, benzo[ g,h,i ]perylene and indeno[1,2,3- c,d ]pyrene) were good, and the correlation coefficients ( R 2 ) ranged from 0.9914 to 0.9999. The average recoveries of the 15 polycyclic aromatic hydrocarbons were 81.6%-109.6% at low, middle and high spiked levels, and the relative standard deviations were less than 16%, except that the relative standard deviation of fluorene at the low spiked level was 19.2%. The limits of detection of the 15 polycyclic aromatic hydrocarbons were 0.02 to 0.24 ng/filter, and the limits of quantification were 0.04 to 0.80 ng/filter. The method is simple, rapid, accurate, sensitive and reproducible. It is suitable for the quantitative analysis of the 15 polycyclic aromatic hydrocarbons in cigarette filters.

  6. Theoretical and experimental study of polycyclic aromatic compounds as β-tubulin inhibitors.

    PubMed

    Olazarán, Fabian E; García-Pérez, Carlos A; Bandyopadhyay, Debasish; Balderas-Rentería, Isaias; Reyes-Figueroa, Angel D; Henschke, Lars; Rivera, Gildardo

    2017-03-01

    In this work, through a docking analysis of compounds from the ZINC chemical library on human β-tubulin using high performance computer cluster, we report new polycyclic aromatic compounds that bind with high energy on the colchicine binding site of β-tubulin, suggesting three new key amino acids. However, molecular dynamic analysis showed low stability in the interaction between ligand and receptor. Results were confirmed experimentally in in vitro and in vivo models that suggest that molecular dynamics simulation is the best option to find new potential β-tubulin inhibitors. Graphical abstract Bennett's acceptance ratio (BAR) method.

  7. Petroleum and individual polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, Peter H.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    Crude petroleum, refined-petroleum products, and individual polycyclic aromatic hydrocarbons (PAHs) contained within petroleum are found throughout the world. their presence has been detected in living and nonliving components of ecosystems. Petroleum can be an environmental hazard for wild animals and plants. Individual PAHs are also hazardous to wildlife, but they are most commonly associated with human illnesses. Because petroleum is a major environmental source of these PAHs, petroleum and PAHs are jointly presented in this chapter. Composition, sources, environmental fate, and toxic effects on all living components of aquatic and terrestrial environments are addessed.

  8. Doped polycyclic aromatic hydrocarbons as building blocks for nanoelectronics: a theoretical study.

    PubMed

    Dral, Pavlo O; Kivala, Milan; Clark, Timothy

    2013-03-01

    Density functional theory (DFT) and semiempirical UHF natural orbital configuration interaction (UNO-CI) calculations are used to investigate the effect of heteroatom substitution at the central position of a model polycyclic aromatic hydrocarbon. The effects of the substitution on structure, strain, electronic and spectral properties, and aromaticity of the compounds are discussed.

  9. Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors

    DOE PAGES

    Engtrakul, Chaiwat; Mukarakate, Calvin; Starace, Anne K.; ...

    2015-11-14

    The impact of catalyst acidity on the selectivity of upgraded biomass pyrolysis products was studied by passing pine pyrolysis vapors over five ZSM-5 catalysts of varying acidity at 500 degrees C. The SiO 2-to-Al 2O 3 ratio (SAR) of the ZSM-5 zeolite was varied from 23 to 280 to control the acidity of the catalyst and the composition of upgraded products. The upgraded product stream was analyzed by GCMS. Additionally, catalysts were characterized using temperature programmed desorption, diffuse-reflectance FTIR spectroscopy, N 2 physisorption, and X-ray diffraction. The results showed that the biomass pyrolysis vapors were highly deoxygenated to form amore » slate of aromatic hydrocarbons over all of the tested ZSM-5 catalysts. As the overall acidity of the ZSM-5 increased the selectivity toward alkylated (substituted) aromatics (e.g., xylene, dimethyl-naphthalene, and methyl-anthracene) decreased while the selectivity toward unsubstituted aromatics (e.g., benzene, naphthalene, and anthracene) increased. Additionally, the selectivity toward polycyclic aromatic compounds (2-ring and 3-ring) increased as catalyst acidity increased, corresponding to a decrease in acid site spacing. The increased selectivity toward less substituted polycyclic aromatic compounds with increasing acidity is related to the relative rates of cyclization and alkylation reactions within the zeolite structure. As the acid site concentration increases and sites become closer to each other, the formation of additional cyclization products occurs at a greater rate than alkylated products. The ability to adjust product selectivity within 1-, 2-, and 3-ring aromatic families, as well as the degree of substitution, by varying ZSM-5 acidity could have significant benefits in terms creating a slate of upgraded biomass pyrolysis products to meet specific target market demands.« less

  10. Δg: The new aromaticity index based on g-factor calculation applied for polycyclic benzene rings

    NASA Astrophysics Data System (ADS)

    Ucun, Fatih; Tokatlı, Ahmet

    2015-02-01

    In this work, the aromaticity of polycyclic benzene rings was evaluated by the calculation of g-factor for a hydrogen placed perpendicularly at geometrical center of related ring plane at a distance of 1.2 Å. The results have compared with the other commonly used aromatic indices, such as HOMA, NICSs, PDI, FLU, MCI, CTED and, generally been found to be in agreement with them. So, it was proposed that the calculation of the average g-factor as Δg could be applied to study the aromaticity of polycyclic benzene rings without any restriction in the number of benzene rings as a new magnetic-based aromaticity index.

  11. Tetrachlorinated Polycyclic Aromatic Dicarboximides: New Electron-Poor Π-Scaffolds and NIR Emitters by Palladium-Catalyzed Annulation Reaction.

    PubMed

    Mahl, Magnus; Shoyama, Kazutaka; Rühe, Jessica; Grande, Vincenzo; Würthner, Frank

    2018-04-24

    Herein we report a palladium-catalyzed annulation reaction consisting of a Suzuki-Miyaura cross-coupling and a C-H arylation cascade for the synthesis of tetrachlorinated polycyclic aromatic dicarboximides (PADIs). This convergent synthetic route afforded a broad series of hitherto unknown electron-deficient PADIs under optimized reaction conditions by coupling of a dibromo-tetrachloro-perylene dicarboximide with different polycyclic aromatic hydrocarbon (PAH) boronic acid pinacol esters in up to 89% yields. The new PADI compounds show broad absorption in the visible range and some of them emit in the near-infrared (NIR) region. Cyclic and square wave voltammetric studies revealed that these tetrachlorinated PADIs are more electron-deficient than a non-chlorinated reference compound and they possess lower lying frontier orbitals. Thus, the newly synthesized electron-poor PADIs are potential n-type semiconductors. Moreover, these chlorinated PADIs are interesting building blocks for the construction of large π-extended arrays by metal-mediated coupling reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum

    NASA Technical Reports Server (NTRS)

    McCollom, T. M.; Simoneit, B. R.; Shock, E. L.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAH) are found at high concentrations in thermally altered organic matter and hydrothermally generated petroleum from sediment-covered seafloor hydro-thermal systems. To better understand the factors controlling the occurrence of PAH in thermally altered environments, the reactivities of two PAH, phenanthrene and anthracene, were investigated in hydrothermal experiments. The compounds were heated with water at 330 degrees C in sealed reaction vessels for durations ranging from 1 to 17 days. Iron oxide and sulfide minerals, formic acid, or sodium for-mate were included in some experiments to vary conditions within the reaction vessel. Phenanthrene was unreactive both in water alone and in the presence of minerals for up to 17 days, while anthracene was partially hydrogenated (5-10%) to di- and tetrahydroanthracene. In the presence of 6-21 vol % formic acid, both phenanthrene and anthracene reacted extensively to form hydrogenated and minor methylated derivatives, with the degree of hydrogenation and methylation increasing with the amount of formic acid. Phenanthrene was slightly hydrogenated in sodium formate solutions. The hydrogenation reactions could be readily reversed; heating a mixture of polysaturated phenanthrenes resulted in extensive dehydrogenation (aromatization) after 3 days at 330 degrees C. While the experiments demonstrate that reaction pathways for the hydrogenation of PAH under hydrothermal conditions exist, the reactions apparently require higher concentrations of H2 than are typical of geologic settings. The experiments provide additional evidence that PAH may be generated in hydrothermal systems from progressive aromatization and dealkylation of biologically derived polycyclic precursors such as steroids and terpenoids. Furthermore, the results indicate that PAH initially present in sediments or formed within hydrothermal systems are resistant to further thermal degradation during hydrothermal alteration.

  13. Electron energy loss spectra of polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Coplan, M. A.; Goruganthu, R.

    1992-01-01

    A survey of the electron energy-loss spectroscopy is reported of gas-phase polycyclic aromatic hydrocarbon (PAH) molecules consisting of up to seven rings where the study is limited to the more thermodynamically stable pericondensed systems. The aim of this work is to obtain absorption profiles (proportional to the oscillator strengths) from the visible to the soft X-ray region near 30 eV.

  14. MODELING GALACTIC EXTINCTION WITH DUST AND 'REAL' POLYCYCLIC AROMATIC HYDROCARBONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulas, Giacomo; Casu, Silvia; Cecchi-Pestellini, Cesare

    We investigate the remarkable apparent variety of galactic extinction curves by modeling extinction profiles with core-mantle grains and a collection of single polycyclic aromatic hydrocarbons. Our aim is to translate a synthetic description of dust into physically well-grounded building blocks through the analysis of a statistically relevant sample of different extinction curves. All different flavors of observed extinction curves, ranging from the average galactic extinction curve to virtually 'bumpless' profiles, can be described by the present model. We prove that a mixture of a relatively small number (54 species in 4 charge states each) of polycyclic aromatic hydrocarbons can reproducemore » the features of the extinction curve in the ultraviolet, dismissing an old objection to the contribution of polycyclic aromatic hydrocarbons to the interstellar extinction curve. Despite the large number of free parameters (at most the 54 Multiplication-Sign 4 column densities of each species in each ionization state included in the molecular ensemble plus the 9 parameters defining the physical properties of classical particles), we can strongly constrain some physically relevant properties such as the total number of C atoms in all species and the mean charge of the mixture. Such properties are found to be largely independent of the adopted dust model whose variation provides effects that are orthogonal to those brought about by the molecular component. Finally, the fitting procedure, together with some physical sense, suggests (but does not require) the presence of an additional component of chemically different very small carbonaceous grains.« less

  15. Separation of {sup 32}P-postlabeled DNA adducts of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons by HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, L.C.; Gallagher, J.E.; Lewtas, J.

    The {sup 32}P-postlabeling assay, thin-layer chromatography, and reverse-phase high-pressure liquid chromatography (HPLC) were used to separate DNA adducts formed from 10 polycyclic aromatic hydrocarbons (PAHs) and 6 nitrated polycyclic aromatic hydrocarbons (NO{sub 2}-PAHs). The PAHs included benzo[j]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]pyrene, chrysene, 6-methylchrysene, 5-methylchrysene, and benz[a]anthracene. The NO{sub 2}-PAHs included 1-nitropyrene, 2-nitrofluoranthene, 3-nitrofluoranthene, 1,6-dinitropyrene, 1,3-dinitropyrene, and 1,8-dinitropyrene. Separation of seven of the major PAH-DNA adducts was achieved by an initial PAH HPLC gradient system. The major NO{sub 2}-PAH-DNA adducts were not all separated from each other using the initial PAH HPLC gradient but were clearly separated from the PAH-DNA adducts. Amore » second NO{sub 2}-PAH HPLC gradient system was developed to separate NO{sub 2}-PAH-DNA adducts following one-dimensional TLC and HPLC analysis. HPLC profiles of NO{sub 2}-PAH-DNA adducts were compared using both adduct enhancement versions of the {sup 32}P-postlabeling assay to evaluate the use of this technique on HPLC to screen for the presence of NO{sub 2}-PAH-DNA adducts. To demonstrate the application of these separation methods to a complex mixture of DNA adducts, the chromatographic mobilities of the {sup 32}P-postlabeled DNA adduct standards (PAHs and NO{sub 2}-PAHs) were compared with those produced by a complex mixture of polycyclic organic matter (POM) extracted from diesel emission particles. The diesel-derived adducts did not elute with the identical retention time of any of the PAH or NO{sub 2}-PAH standards used in this study. HPLC analyses of the NO{sub 2}-PAH-derived adducts (butanol extracted) revealed the presence of multiple DNA adducts.« less

  16. Emission characteristics of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons from diesel trucks based on on-road measurements

    NASA Astrophysics Data System (ADS)

    Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang

    2017-01-01

    Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.

  17. Polycyclic aromatic hydrocarbons in stellar medium

    NASA Astrophysics Data System (ADS)

    Rastogi, Shantanu

    2005-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important com- ponent of the Interstellar Medium (ISM). They are being used as probes for understanding of process and conditions of different astrophysical environments. The understanding of their IR spectra and its variations with PAH size and ionization state is useful in characterizing the ISM. Spectral features of model graphene sheets and also that of smaller PAH molecules are reported. The variation of intensity with charge state of the molecule shows that cations give a better correlation with observations. The relationship between changes in charge distribution with intensity changes upon ionization has been probed.

  18. THE RATES OF POLYCYCLIC AROMATIC HYDROCARBON EMISSIONS FROM INCENSE BURNING

    EPA Science Inventory

    The paper presents the results of experiments performed to determine the amounts of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHS) in incense smoke. Ten brands of incense, 3 of stick, 2 of joss stick, and one each of cone, smudge bundle, rope, powder, and rock, w...

  19. Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources.

    PubMed

    Sanches, S; Leitão, C; Penetra, A; Cardoso, V V; Ferreira, E; Benoliel, M J; Crespo, M T Barreto; Pereira, V J

    2011-09-15

    The widely used low pressure lamps were tested in terms of their efficiency to degrade polycyclic aromatic hydrocarbons listed as priority pollutants by the European Water Framework Directive and the U.S. Environmental Protection Agency, in water matrices with very different compositions (laboratory grade water, groundwater, and surface water). Using a UV fluence of 1500 mJ/cm(2), anthracene and benzo(a)pyrene were efficiently degraded, with much higher percent removals obtained when present in groundwater (83-93%) compared to surface water (36-48%). The removal percentages obtained for fluoranthene were lower and ranged from 13 to 54% in the different water matrices tested. Several parameters that influence the direct photolysis of polycyclic aromatic hydrocarbons were determined and their photolysis by-products were identified by mass spectrometry. The formation of photolysis by-products was found to be highly dependent on the source waters tested. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Polycyclic aromatic hydrocarbons and heavy metals in the Cispata Bay, Colombia: A marine tropical ecosystem.

    PubMed

    Burgos-Núñez, Saudith; Navarro-Frómeta, Amado; Marrugo-Negrete, José; Enamorado-Montes, Germán; Urango-Cárdenas, Iván

    2017-07-15

    The concentrations of polycyclic aromatic hydrocarbons and heavy metals were evaluated in shallow sediments, water, fish and seabird samples from the Cispata Bay, Colombia. The heavy metals concentrations in the sediment was in the following order: Cu>Pb>Hg>Cd. The heavy metal concentration was different (p<0.05) in juvenile and adult birds. High concentrations of mercury were registered in the seabird (10.19±4.99mgkg -1 ) and fish (0.67μgg -1 ) samples. The total concentration of polycyclic aromatic hydrocarbons ranged from 7.0-41ngg -1 in sediment, 0.03-0.34ngmL -1 in water samples, 53.24ngg -1 in fish, and 66ngg -1 in seabirds. The high concentrations of heavy metals in seabirds may be explained by their feeding habits. The presence of polycyclic aromatic hydrocarbons in the Cispata Bay may be due to hydrocarbon spills during oil transport at the nearby oil port. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. MULTISUBSTRATE BIODEGRADATION KINETICS FOR BINARY AND COMPLEX MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...

  2. ANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS BY ION TRAP TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    An ion-trap mass spectrometer with a wave board and tandem mass spectrometry software was used to analyze gas chromatographically separated polycyclic aromatic hydrocarbons (PAHs) by using collision-induced dissociation (CID). The nonresonant (multiple collision) mode was used to...

  3. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Compounds and their Ions. 6; Polycyclic Aromatic Nitrogen Heterocycles

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, Douglas M.; Bauschlicher, C. W., Jr.; Rosi, M.; Allamandola, L. J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The matrix-isolation technique has been employed to measure the mid-infrared spectra of several polycyclic aromatic nitrogen heterocycles in both neutral and cationic forms. The species studied include: 7,8 benzoquinoline (C13H9N); 2-azapyrene (C15H9N); 1- and 2-azabenz(a)anthracene (C17H11N); and 1-, 2-, and 4-azachrysene (also C17H11N). The experimentally measured band frequencies and intensities for each molecule are tabulated and compared with their theoretically calculated values computed using density functional theory at the B3LYP/4-31G level. The overall agreement between experiment and theory is quite good, in keeping with previous investigations involving the parent aromatic hydrocarbons. Several interesting spectroscopic trends are found to accompany nitrogen substitution into the aromatic framework of these compounds. First, for the neutral species, the nitrogen atom produces a significant increase in the total integrated infrared intensity across the 1600 - 1100/cm region and plays an essential role in the molecular vibration that underlies an uncharacteristically intense, discrete feature that is observed near 1400/cm in the spectra of 7,8 benzoquinoline, 1-azabenz(a)anthracene, and 4-azachrysene. The origin of this enhanced infrared activity and the nature of the new 1400/cm vibrational mode are explored. Finally, in contrast to the parent hydrocarbon species, these aromatic nitrogen heterocycles possess a significant permanent dipole moment. Consequently, these dipole moments and the rotational constants are reported for these species in their neutral and ionized forms.

  4. Polycyclic aromatic hydrocarbons in some grounded coffee brands.

    PubMed

    Grover, Inderpreet Singh; Sharma, Rashmi; Singh, Satnam; Pal, Bonamali

    2013-08-01

    Potentially toxic 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined in four brands of grounded coffee. Four to 13 PAHs were detected. Concentrations of total PAHs in different brands of coffee samples were in the range of 831.7-1,589.7 μg/kg. Benzo[a]pyrene (2A: probable human carcinogen) was found in Nescafe Premium whereas naphthalene (2B: possible human carcinogen) was found in all the samples of coffee.

  5. PERSONAL EXPOSURES TO POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH THE NHEXAS PILOT

    EPA Science Inventory

    Personal exposure monitoring for select polycyclic aromatic hydrocarbons (PAHs) was performed as part of the National Human Exposure Assessment Survey (NHEXAS) Pilot Study in Baltimore, MD. Twenty-four hour PM10 sample collections (~5.7 m3) were performed using personal envi...

  6. Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, R.C.

    1999-04-01

    Sediment quality guidelines (SQGs) for polycyclic aromatic hydrocarbons (PAHs) have been derived from a variety of laboratory, field, and theoretical foundations. They include the screening level concentration, effects ranges-low and -median, equilibrium partitioning concentrations, apparent effects threshold, {Sigma}PAH model, and threshold and probable effects levels. The resolution of controversial differences among the PAH SQGs lies in an understanding of the effects of mixtures. Polycyclic aromatic hydrocarbons virtually always occur in field-collected sediment as a complex mixture of covarying compounds. When expressed as a mixture concentration, that is, total PAH (TPAH), the guidelines form three clusters that were intended in theirmore » original derivations to represent threshold (TEC = 290 {micro}g/g organic carbon [OC]), median (MEC = 1,800 {micro}g/g OC), and extreme (EEC = 10,000 {micro}g/g OC) effects concentrations. The TEC/MEC/EEC consensus guidelines provide a unifying synthesis of other SQGs, reflect causal rather than correlative effects, account for mixtures, and predict sediment toxicity and benthic community perturbations at sites of PAH contamination. The TEC offers the most useful SQG because PAH mixtures are unlikely to cause adverse effects on benthic ecosystems below the TEC.« less

  7. PERSONAL EXPOSURE TO FINE PARTICLE POLYCYCLIC AROMATIC HYDROCARBONS: OUTDOOR SOURCE TRACERS

    EPA Science Inventory


    The most carcinogenic and toxic polycyclic aromatic hydrocarbons (PAH) are the 4-5 ring PAH found preferentially adsorbed to the fine particles (<2.54u in urban ambient air and personal air. Personal exposure to the carcinogenic particle bound PAH is also highly correlated ...

  8. Interstellar Polycyclic Aromatic Compounds and Astrophysics

    NASA Technical Reports Server (NTRS)

    Hodgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Polycyclic aromatic compounds (PACs), a class of organic molecules whose structures are characterized by the presence of two or more fused aromatic rings, have been the subject of astrophysical interest for nearly two decades. Large by interstellar standards (from as few as 20 to perhaps as many as several hundred atoms), it has been suggested that these species are among the most abundant interstellar molecules impacting a wide range of astrophysical phenomena including: the ubiquitous family of infrared emission bands observed in an ever-increasing assortment of astronomical objects; the subtle but rich array of discrete visible/near-infrared interstellar molecular absorption features known as the diffuse interstellar bands (DIBs); the broad near-infrared quasi-continuum observed in a number of nebulae known as excess red emission (ERE); the interstellar ultraviolet extinction curve and broad '2200 Angstrom bump'; the heating/cooling mechanisms of interstellar clouds. Nevertheless, until recently a lack of good-quality laboratory spectroscopic data on PACs under astrophysically relevant conditions (i.e. isolated, ionized molecules; ionized molecular clusters, etc.) has hindered critical evaluation and extension of this model

  9. Quantification of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate using stable isotope dilution liquid chromatography with atmospheric-pressure photoionization tandem mass spectrometry.

    PubMed

    Zhang, Xiaotao; Hou, Hongwei; Chen, Huan; Liu, Yong; Wang, An; Hu, Qingyuan

    2015-09-17

    A stable isotope dilution liquid chromatography with tandem mass spectrometry method for the analysis of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate was developed and validated. Compared with previously reported methods, this method has lower limits of detection (0.04-1.35 ng/cig). Additionally, the proposed method saves time, reduces the number of separation steps, and reduces the quantity of solvent needed. The new method was applied to evaluate polycyclic aromatic hydrocarbon content in 213 commercially available cigarettes in China, under the International Standardization Organization smoking regime and the Health Canadian intense smoking regime. The results showed that the total polycyclic aromatic hydrocarbon content was more than two times higher in samples from the Health Canadian intense smoking regime than in samples from the International Standardization Organization smoking regime (1189.23 vs. 2859.50 ng/cig, p<0.05). Meanwhile, the concentration of individual polycyclic aromatic hydrocarbons (and total polycyclic aromatic hydrocarbons) increased with labeled tar content in both of the tested smoking regimes. There was a positive correlation between total polycyclic aromatic hydrocarbons under the International Standardization Organization smoking regime with that under the Health Canadian intense smoking regime. The proposed liquid chromatography with tandem mass spectrometry method is satisfactory for the rapid, sensitive, and accurately quantitative evaluation of polycyclic aromatic hydrocarbon content in cigarette smoke condensate, and it can be applied to assess potential health risks from smoking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    PubMed

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions

    USGS Publications Warehouse

    Coates, J.D.; Anderson, R.T.; Lovley, D.R.

    1996-01-01

    [14C]naphthalene and phenanthrene were oxidized to 14CO2 without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.

  12. Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Soils and Sediments of India: A Meta-Analysis.

    PubMed

    Tarafdar, Abhrajyoti; Sinha, Alok

    2017-10-01

    A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E-5 for children and 3.156E-5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E-05 for children and 3.999E-04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.

  13. Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Soils and Sediments of India: A Meta-Analysis

    NASA Astrophysics Data System (ADS)

    Tarafdar, Abhrajyoti; Sinha, Alok

    2017-10-01

    A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E-5 for children and 3.156E-5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E-05 for children and 3.999E-04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.

  14. Identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons in a complex mixture of polycyclic aromatic hydrocarbons from coal tar.

    PubMed

    Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara; Wise, Stephen A

    2016-04-15

    A methodology for the characterization of groups of polycyclic aromatic hydrocarbons (PAHs) using a combination of normal phase liquid chromatography with ultraviolet-visible spectroscopy (NPLC/UV-vis) and gas chromatography with mass spectrometry (GC/MS) was used for the identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons, PAHs, in standard reference material (SRM) 1597a, complex mixture of PAHs from coal tar. The NPLC/UV-vis isolated the fractions based on the number of aromatic carbons and the GC/MS allowed the identification and quantification of five of the nine C26H14 PAH isomers; naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene using a retention time comparison with authentic reference standards. For the other four benzenoid isomers with no available reference standards the following two approaches were used. First, the annellation theory was used to achieve the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene, and second, the elution distribution in the GC fractions was used to support the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene and to reach the tentative identifications of dibenzo[a,ghi]perylene, naphtho[7,8,1,2,3-pqrst]pentaphene, and anthra[2,1,9,8-opqra]naphthacene. It is the first time that naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene are quantified, and the first time that benzo[qr]naphtho[3,2,1,8-defg]chrysene is potentially identified, in any sample, in any context. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Sources and deposition of polycyclic aromatic hydrocarbons to western US national parks

    EPA Science Inventory

    Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) to determine their current and historical deposition, as well as to identify thei...

  16. Assessment of the bioavailability and phytotoxicity of sediment spiked with polycyclic aromatic hydrocarbons.

    PubMed

    Rončević, Srđan; Spasojević, Jelena; Maletić, Snežana; Jazić, Jelena Molnar; Isakovski, Marijana Kragulj; Agbaba, Jasmina; Grgić, Marko; Dalmacija, Božo

    2016-02-01

    Large amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sediment disposal method, to minimize the degradation of environmental quality and prevent risks to human health. Evaluating the available fractions of certain polycyclic aromatic hydrocarbons is very important, as in the presence of various organisms, they are believed to be easily subject to the processes of bioaccumulation, biosorption and transformation. In order to determine the applicability of applying these methods for the evaluation of pollutant bioavailability in sediments, the desorption kinetics from the sediment of various polycyclic aromatic hydrocarbons in the presence of Tenax and XAD4 were examined over the course of 216 h. Changes in the PAH concentrations in dredged sediments using five different seed plants during a short time of period (10 days) were also followed. Using chemical extraction techniques with Tenax and XAD4, a time of around 24 h is enough to achieve equilibrium for all four PAHs. Results showed good agreement between the seed accumulation and PAH extraction methods with both agents. If we compare the two extraction techniques, XAD4 gave better results for phenanthrene, pyrene and benzo(a)pyrene, and Tenax gave better results for chrysene.

  17. Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil

    USDA-ARS?s Scientific Manuscript database

    A method for the determination of the 16 USEPA polycyclic aromatic hydrocarbons (PAHs) in biochar and soil amended with biochar was developed. Samples were Soxhlet extracted with acetone:cyclohexane 1:1, and PAHs were analysed by GC-MS after silica gel clean-up. In a comparative study based on reflu...

  18. [Association between urinary polycyclic aromatic hydrocarbon metabolites and elevated serum uric acid levels in coke oven workers].

    PubMed

    Deng, Siyun; Deng, Qifei; Hu, Die; Li, Jun; Zhu, Xiaoyan; Guo, Huan; Wu, Tangchun

    2014-06-01

    To analyze the relationship between metabolites of polycyclic aromatic hydrocarbons (PAHs) and serum uric acid levels in coke oven workers and to provide new clues to the pathogenic mechanism of PAHs. A total of 1302 coke oven workers were divided into four groups, namely control group and low-, intermediate-, and high-dose exposure groups. The concentrations of ambient PAHs at each workplace were determined by high-performance liquid chromatography. The detailed information on the occupational history and health of workers was collected by questionnaire survey and physical examination, and so were their blood and urine samples. Serum uric acid and creatinine levels were measured using a Hitachi 7020 automatic biochemical analyzer. Ten urinary PAH metabolites were detected by gas chromatography-mass spectrometry. Serum uric acid levels were the highest in the high-dose exposure group, followed by the intermediate- and low-dose exposure groups, and were the lowest in the control group. There were significant correlations between serum uric acid levels and the quartiles of 1-hydroxynaphthalene and 1-hydroxyphenanthrene (P < 0.05). After adjustment for PAH metabolite-related relationship, only urinary 1-hydroxyphenanthrene was significantly correlated with serum uric acid levels (P = 0.001). After adjustment for confounding factors and using the 1st quartile of 1-hydroxyphenanthrene as a reference, the odds ratio for hyperuricemia in subjects with the 2nd, 3rd, and 4th quartiles of 1-hydroxyphenanthrene were 1.55, 1.57, and 2.35, respectively. Urinary 1-hydroxyphenanthrene is associated with a dose-response increase in serum uric acid levels in coke oven workers, and exposure to phenanthrene in PAHs may be a risk factor for hyperuricemia.

  19. Renal cancer risk and occupational exposure to polycyclic aromatic hydrocarbons and plastics

    PubMed Central

    Karami, Sara; Boffetta, Paolo; Brennan, Paul; Stewart, Patricia A.; Zaridze, David; Matveev, Vsevolod; Janout, Vladimir; Kollarova, Helena; Bencko, Vladimir; Navratilova, Marie; Szeszenia-Dabrowska, Neonila; Mates, Dana; Gromiec, Jan P.; Sobotka, Roman; Chow, Wong-Ho; Rothman, Nathaniel; Moore, Lee E.

    2011-01-01

    Objective To investigate whether occupational exposure to polycyclic aromatic hydrocarbons and certain plastic monomers increased renal cell carcinomas (RCC) risk. Methods Unconditional logistic regression was used to calculate RCC risk in relation to exposure. Results No association between RCC risk and having ever been occupationally exposed to any polycyclic aromatic hydrocarbons or plastics was observed. Duration of exposure and average exposure also showed no association with risk. Suggestive positive associations between RCC risk and cumulative exposure to styrene (P-trend = 0.02) and acrylonitrile (P-trend = 0.06) were found. Cumulative exposure to petroleum/gasoline engine emissions was inversely associated with risk (P-trend = 0.02). Conclusions Results indicate a possible association between occupational styrene and acrylonitrile exposure and RCC risk. Additional studies are needed to replicate findings, as this is the first time these associations have been reported and they may be due to chance. PMID:21270648

  20. Polycyclic aromatic hydrocarbons profiles of spent drilling fluids deposited at Emu-Uno, Delta State, Nigeria.

    PubMed

    Iwegbue, Chukwujindu M A

    2011-10-01

    The concentrations and profiles of polycyclic aromatic hydrocarbons were determined in spent drilling fluid deposited at Emu-Uno, Delta State of Nigeria. The total concentrations of polycyclic aromatic hydrocarbons in the spent drilling fluid deposits ranged between 40 and 770 μg kg(-1). The PAHs profile were predominantly 2- and 3-rings with acenaphthalene, phenanthrene, fluorene being the predominant PAHs. The prevalence of 2- and 3-rings PAHs in the spent drilling fluid deposits indicate contamination of the drilling fluids with crude oil during drilling. Incorporation of spent drilling fluids into the soil has serious implication for soil, surface water and groundwater quality. © Springer Science+Business Media, LLC 2011

  1. Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1992-01-01

    The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.

  2. Characterization of Cultures Enriched from Acidic Polycyclic Aromatic Hydrocarbon-Contaminated Soil for Growth on Pyrene at Low pH▿

    PubMed Central

    Uyttebroek, Maarten; Vermeir, Steven; Wattiau, Pierre; Ryngaert, Annemie; Springael, Dirk

    2007-01-01

    Two polycyclic aromatic hydrocarbon (PAH)-contaminated soils of pH 2 were successfully used as inoculum to enrich cultures growing on phenanthrene and pyrene at different pHs, including pH 3. Selected pyrene-utilizing cultures obtained at pH 3, pH 5, and pH 7 were further characterized. All showed rapid [14C]pyrene mineralization at pH 3 and pH 5 and grew on pyrene at pH values ranging from 2 to 6. Eubacterial and mycobacterial 16S rRNA gene denaturing gradient gel electrophoresis fingerprinting and sequencing indicated that the cultures were dominated by a single bacterium closely related to Mycobacterium montefiorense, belonging to the slow-growing Mycobacterium sp. In contrast, a culture enriched on pyrene at pH 7 from a slightly alkaline soil sampled at the same site was dominated by Pseudomonas putida and a fast-growing Mycobacterium sp. The M. montefiorense-related species dominating the pyrene-utilizing cultures enriched from the acidic soils was also the dominant Mycobacterium species in the acidic soils. Our data indicate that a slow-growing Mycobacterium species is involved in PAH degradation in that culture and show that bacteria able to degrade high-molecular-weight PAHs at low pH are present in acidic PAH-contaminated soil. PMID:17369339

  3. ASSAYING PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM ARCHIVED PM2.5 FILTERS

    EPA Science Inventory

    Airborne particulate matter contains numerous organic species, including several polycyclic aromatic hydrocarbons (PAHs) that are known or suspected carcinogens. Existing methods for measuring airborne PAHs are complex and costly, primarily because they are designed to collect...

  4. PHOTOACTIVATION AND TOXICITY OF MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBON COMPOUNDS IN MARINE SEDIMENT

    EPA Science Inventory

    The direct toxicity and photoinduced toxicity of sediment-associated acenaphthene, phenanthrene, fluoranthene, and pyrene were determined for the marine amphipod Rhepoxynius abronius. The four polycyclic aromatic hydrocarbons (PAHs) were spiked into sediment in a concentration se...

  5. MUTAGENICITY IN SALMONELLA OF SULFUR-CONTAINING POLYCYCLIC AROMATIC HETEROCYCLES AND THEIR DIHYDRODIOL DERIVATIVES

    EPA Science Inventory

    Polycyclic aromatic sulfur heterocycles (PASH) are common constituents of cigarette smoke, fossil fuel-derived materials, and their combustion byproducts. Many PASH are known mutagens and carcinogens. However, unlike their nonsulfur-containing counterparts, relatively little is k...

  6. SOLAR RADIATION DOSE AND PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A CASE STUDY

    EPA Science Inventory

    The toxicity of polycyclic aromatic hydrocarbons increases by as much as three orders of magnitude in the presence of solar radiation. The risk of this photoactive toxicity is thus based on both tissue concentrations of potentially photo activated compounds and the levels of subs...

  7. AMENDMENT OF SEDIMENTS WITH A CARBONACEOUS RESIN REDUCES BIOAVAILABILITY OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    A series of laboratory and field test studies were conducted to evaluate the effectiveness of Ambersorb, a carbonaceous resin, in reducing bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated sediments collected from the field. Amending contaminated sediment...

  8. Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems

    NASA Astrophysics Data System (ADS)

    Kulli, V. R.; Stone, Branden; Wang, Shaohui; Wei, Bing

    2017-05-01

    Many types of topological indices such as degree-based topological indices, distance-based topological indices, and counting-related topological indices are explored during past recent years. Among degree-based topological indices, Zagreb indices are the oldest one and studied well. In the paper, we define a generalised multiplicative version of these indices and compute exact formulas for Polycyclic Aromatic Hydrocarbons and jagged-rectangle Benzenoid systems.

  9. Distributions of polycyclic aromatic hydrocarbons and alkylated polycyclic aromatic hydrocarbons in Osaka Bay, Japan.

    PubMed

    Miki, Shizuho; Uno, Seiichi; Ito, Kazuki; Koyama, Jiro; Tanaka, Hiroyuki

    2014-08-30

    Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40-7800 ng/g dry weights and 13.7-1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Polycyclic aromatic hydrocarbons in Cambodian smoked fish.

    PubMed

    Slámová, Tereza; Fraňková, Adéla; Hubáčková, Anna; Banout, Jan

    2017-12-01

    More than 85% of the population in Cambodia is strongly dependent on agriculture, of which freshwater aquaculture is one of the most important sources of food production. The smoked fish represents an important source of nutrients for Cambodian population; however, it can also lead to excessive intake of polycyclic aromatic hydrocarbons (PAHs). A field survey was conducted among selected smoked fish producers near to Tonle Sap river in Kampong Chhnang province, Cambodia. The study revealed that maximal limits for benzo[a]pyrene and the sum of four PAHs given by EC 1881/2006 were exceeded 2-50 times. Such burden can lead to increased risk of development of carcinogenic diseases.

  11. COMPUTATIONAL METHODS FOR STUDYING THE INTERACTION BETWEEN POLYCYCLIC AROMATIC HYDROCARBONS AND BIOLOGICAL MACROMOLECULES

    EPA Science Inventory

    Computational Methods for Studying the Interaction between Polycyclic Aromatic Hydrocarbons and Biological Macromolecules .

    The mechanisms for the processes that result in significant biological activity of PAHs depend on the interaction of these molecules or their metabol...

  12. Factors affecting elimination of polycyclic aromatic hydrocarbons from traditional smoked common carp meat

    NASA Astrophysics Data System (ADS)

    Babić, J.; Vidaković, S.; Škaljac, S.; Kartalović, B.; Ljubojević, D.; Ćirković, M.; Teodorović, V.

    2017-09-01

    Smoking techniques have been progressively improved and different procedures have been developed in different regions for treating fish. In these times, the technology is mainly used for enrichment of fish with specific taste and odour, to extend the shelf-life of these perishable products and appearance required widely on the market. A lot of chemical contaminants such as polycyclic aromatic hydrocarbons (PAHs) are formed during the combustion of fuel in the smoking process. PAHs are a group of compounds that have been the subject of great concern in the recent years due to their toxic, mutagenic and/or carcinogenic potentials to humans. These fact can have a significant impact on the acceptance of these products by consumers. In this review article, the objective is to describe factors affecting elimination of polycyclic aromatic hydrocarbons from traditional smoked common carp meat.

  13. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil.

    PubMed

    Anyanwu, Ihuoma N; Ikpikpini, Ojerime C; Semple, Kirk T

    2018-01-01

    When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14 C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore, 12/14 C-B[a]P and 14 C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons ( 14 C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14 C-B[a]P-N-PAH mineralisation recording <1% in both concentrations (10mgkg -1 and 100mgkg -1 ), over time. This study suggests that the presence of N-PAHs in contaminated soil may impact the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOINDUCED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...

  15. Ascorbic Acid Enhances the Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roots of Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Gao, Yanzheng; Li, Hui; Gong, Shuaishuai

    2012-01-01

    Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628

  16. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gas chromatography of polycyclic aromatic hydrocarbons in water.

    PubMed

    Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2012-01-01

    A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)

    EPA Science Inventory

    Abstract

    The effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...

  19. POLYCYCLIC AROMATIC HYDROCARBON BIODEGRADATION AS A FUNCTION OF OXYGEN TENSION IN CONTAMINATED SOIL

    EPA Science Inventory

    Laboratory tests were conducted to determine the effect of soil gas oxygen concentration on the degradation and mineralization of spiked 14C-pyrene and nonspiked 16 priority pollutant polycyclic aromatic hydrocarbons (PAH) present in the soil. The soil used for the evaluation was...

  20. PRESSURE EFFECTS IN POLYCYCLIC AROMATIC NITROGENATED HETEROCYCLES (PANHs): DIAGNOSTIC QUALITIES AND COSMOBAROMETRY POTENTIAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Wren; Sephton, Mark A., E-mail: w.montgomery@imperial.ac.uk

    2016-03-01

    The influence of polycyclic aromatic nitrogen heterocycles (PANHs), which have been suggested as contributors to the interstellar IR emission bands, on interstellar emission features is difficult to constrain because their infrared characteristics are strongly similar to those for polycyclic aromatic hydrocarbons (PAHs). One possible solution is to seek a means of visualizing the presence of PANHs that provides information that is distinct from that for PAHs. Although PANHs and PAHs have similar infrared characteristics in many settings, this relationship may not be universally maintained. We have used in situ high-pressure synchrotron-source Fourier transform infrared spectroscopy to determine that the responsesmore » of two representative molecules, acridine and anthracene, differ at high pressures (>ca. 1 GPa). Because there are a number of high-pressure environments that can be remotely observed by infrared spectroscopy, they represent a potential to glimpse the distribution of PANHs across the cosmos.« less

  1. Determination of hydroxylated polycyclic aromatic hydrocarbons by HPLC-photoionization tandem mass spectrometry in wood smoke particles and soil samples.

    PubMed

    Avagyan, Rozanna; Nyström, Robin; Boman, Christoffer; Westerholm, Roger

    2015-06-01

    A simple and fast method for analysis of hydroxylated polycyclic aromatic hydrocarbons using pressurized liquid extraction and high performance liquid chromatography utilizing photoionization tandem mass spectrometry was developed. Simultaneous separation and determination of nine hydroxylated polycyclic aromatic hydrocarbons and two hydroxy biphenyls could be performed in negative mode with a run time of 12 min, including equilibration in 5 min. The calibration curves were in two concentration ranges; 1-50 ng/mL and 0.01-50 μg/mL, with coefficients of correlation R (2) > 0.997. The limits of detection and method quantification limits were in the range of 9-56 pg and 5-38 ng/g, respectively. A two-level full factorial experimental design was used for screening of conditions with the highest impact on the extraction. The extraction procedure was automated and suitable for a large number of samples. The extraction recoveries ranged from 70 to 102 % and the matrix effects were between 92 and 104 %. The overall method was demonstrated on wood smoke particles and soil samples with good analytical performance, and five OH-PAHs were determined in the concentration range of 0.19-210 μg/g. As far as we know, hydroxylated polycyclic aromatic hydrocarbons were determined in wood smoke and soil samples using photoionization mass spectrometry for the first time in this present study. Accordingly, this study shows that high performance liquid chromatography photoionization tandem mass spectrometry can be a good option for the determination of hydroxylated polycyclic aromatic hydrocarbons in complex environmental samples. Graphical Abstract The method developed in this study was used to determine hydroxylated polycyclic aromatic hydrocarbons in wood smoke and soil.

  2. Susceptibility of eastern oyster early life stages to road surface polycyclic aromatic hydrocarbons (PAHs).

    DOT National Transportation Integrated Search

    2012-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of chemical compounds that are mostly : anthropogenic in nature, and they can become persistent organic contaminants in aquatic : ecosystems. Runoff from impervious surfaces is one of the many ways ...

  3. Closed-Shell Polycyclic Aromatic Hydrocarbon Cations: A New Category of Interstellar Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of polycyclic aromatic hydrocarbon (PAH) cations that explore both size and electronic structure effects of the infrared spectroscopic properties of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms (C(sub odd) PAHs); and (2) protonated PAH cations (HPAH+). Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18 in both neutral and (radical) cationic form are also reported and compared with those of the other species. Overall, the C(sub odd) PAHs spectra are dominated by strong CC stretching modes near 1600 cm(exp -1) and display spectra that are remarkably insensitive to molecular size. The HPAH+ species evince a more complex spectrum consistent with the added contributions of aliphatic modes and their generally lower symmetry. Finally, for both classes of closed-shell cations, the intensity of the aromatic CH stretching modes is found to increase with molecular size far out of proportion with the number of CH groups, approaching a value more typical of neutral PAHs for the largest species studied.

  4. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil

    EPA Science Inventory

    The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed ...

  5. Webinar Presentation: Prenatal Exposures to Polycyclic Aromatic Hydrocarbons (PAH) and Childhood Body Mass Index Trajectories

    EPA Pesticide Factsheets

    This presentation, Prenatal Exposures to Polycyclic Aromatic Hydrocarbons (PAH) and Childhood Body Mass Index Trajectories, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series held on Feb. 11, 2015.

  6. Procedure for and results of simultaneous determination of aromatic hydrocarbons and fatty acid methyl esters in diesel fuels by high performance liquid chromatography.

    PubMed

    Kamiński, M; Gilgenast, E; Przyjazny, A; Romanik, G

    2006-07-28

    The content of aromatic hydrocarbons in diesel fuels is regulated by appropriate standards, and a further reduction in the allowed concentration of these hazardous substances in these fuels is expected. The content of aromatic hydrocarbons in diesel fuels is most often determined using standard methods EN-12916 or ASTM D-6591. The content of polycyclic aromatic hydrocarbons (PAHs) is determined from a single peak obtained using normal phase high-performance liquid chromatography (NP-HPLC), a column of the NH2 type, n-heptane as the eluent, refractive index detector (RID) and backflushing of the eluent. However, the methods mentioned above cannot be applied when the fuel contains fatty acid methyl esters (FAME), which lately has become more common. The content of FAME in diesel oils is determined using mid-IR spectrophotometry based on the absorption of carbonyl group. However, no standard procedure for the determination of classes of aromatic hydrocarbons in diesel fuels containing FAME is yet available. The present work describes such a modification of methods EN-12916/ASTM D-6591 that provides a simultaneous determination of individual groups of aromatic hydrocarbons, total content of polycyclic aromatic hydrocarbons and the FAME content in diesel fuels. The refractive index detector (RID) and n-heptane as the mobile phase are still used, but backflushing of the eluent is applied after the elution of all polycyclic aromatic hydrocarbons. Additionally, ultraviolet diode array detection is used for the exact determination of low contents of polycyclic aromatic hydrocarbons and to confirm the presence of FAME in the analyzed fuel.

  7. Polycyclic Aromatic Hydrocarbon Affects Acetic Acid Production during Anaerobic Fermentation of Waste Activated Sludge by Altering Activity and Viability of Acetogen.

    PubMed

    Luo, Jingyang; Chen, Yinguang; Feng, Leiyu

    2016-07-05

    Till now, almost all the studies on anaerobic fermentation of waste activated sludge (WAS) for bioproducts generation focused on the influences of operating conditions, pretreatment methods and sludge characteristics, and few considered those of widespread persistent organic pollutants (POPs) in sludge, for example, polycyclic aromatic hydrocarbons (PAHs). Herein, phenanthrene, which was a typical PAH and widespread in WAS, was selected as a model compound to investigate its effect on WAS anaerobic fermentation for short-chain fatty acids (SCFAs) accumulation. Experimental results showed that the concentration of SCFAs derived from WAS was increased in the presence of phenanthrene during anaerobic fermentation. The yield of acetic acid which was the predominant SCFA in the fermentation reactor with the concentration of 100 mg/kg dry sludge was 1.8 fold of that in the control. Mechanism exploration revealed that the present phenanthrene mainly affected the acidification process of anaerobic fermentation and caused the shift of the microbial community to benefit the accumulation of acetic acid. Further investigation showed that both the activities of key enzymes (phosphotransacetylase and acetate kinase) involved in acetic acid production and the quantities of their corresponding encoding genes were enhanced in the presence of phenanthrene. Viability tests by determining the adenosine 5'-triphosphate content and membrane potential confirmed that the acetogens were more viable in anaerobic fermentation systems with phenanthrene, which resulted in the increased production of acetic acid.

  8. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    NASA Astrophysics Data System (ADS)

    Pogorzelec, Marta; Piekarska, Katarzyna

    2017-11-01

    The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  9. STUDIES ON BIOREMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON-CONTAMINATED SEDIMENTS: BIOAVAILABILITY, BIODEGRADABILITY, AND TOXICITY ISSUES

    EPA Science Inventory

    The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective bioremediation processes, on which the bioavailability and the toxicity of PAHs often have a significant impact. This research investigated the biode...

  10. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.

  11. THE EFFECT OF IRRADIANCE SPECTRA ON THE PHOTOACTIVATED TOXICITY OF THREE POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light recieved. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events un...

  12. Laboratory rotational spectroscopy of cyano substituted polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    McNaughton, Don; Jahn, Michaela K.; Travers, Michael J.; Wachsmuth, Dennis; Godfrey, Peter D.; Grabow, Jens-Uwe

    2018-06-01

    The rotational spectra of the four cyano substituted polycyclic aromatic hydrocarbon (PAH) molecules 1-cyanonaphthalene, 2-cyanonaphthalene, 9-cyanoanthracene, and 9-cyanophenanthrene have been recorded in molecular expansions using a Stark-modulated millimetre-wave spectrometer and a Fourier transform microwave spectrometer in the centimetre-wave region. The spectra have been assigned and fitted to provide molecular constants and quadrupole hyperfine constants of sufficient accuracy to enable complete hyperfine structure line predictions for interstellar searches. The data may provide a route into detection of small PAHs in the interstellar medium.

  13. Microwave-assisted extraction of polycyclic aromatic compounds from coal.

    PubMed

    Kerst, M; Andersson, J T

    2001-08-01

    Microwave-assisted extraction (MAE) of polycyclic aromatic compounds (PACs) from coal is shown to give the same pattern of compounds as Soxhlet extraction. MAE requires only 10 mL solvent and 10 min extraction time whereas Soxhlet uses 200 mL and takes 24 h. Although the yields were lower, dichloromethane (DCM) was preferred to pyridine, N-methyl-2-pyrrolidone (NMP), and NMP with CS2 because the pattern of the PACs is shown to be independent of solvent and DCM is a much more convenient solvent to work with.

  14. "Super-Reducing" Photocatalysis: Consecutive Energy and Electron Transfers with Polycyclic Aromatic Hydrocarbons.

    PubMed

    Brasholz, Malte

    2017-08-21

    Donation welcome: Recent developments in visible-light photocatalysis allow the utilization of increasingly negative reduction potentials. Successive energy and electron transfer with polycyclic aromatic hydrocarbons enables the catalytic formation of strongly reducing arene radical anions, classical stoichiometric reagents for one-electron reduction in organic synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.

    2011-01-01

    Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.

  16. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    PubMed Central

    Lau, E. V.; Gan, S.; Ng, H. K.

    2010-01-01

    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670

  17. Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons (PAHs) in Nansi Lake

    NASA Astrophysics Data System (ADS)

    Zhang, Guizhai; Diao, Youjiang

    2018-06-01

    Based on field data of polycyclic aromatic hydrocarbons (PAHs) in water and sediment in Nansi Lake. The concentrations and the partitioning characteristic of PAHs in the water and sediment were studied. The lgKd of high molecular weight PAHs were higher than the low molecular weight PAHs. The most of PAHs Kd values were negligible correlated with TOC, soluble salt, clay and pH of the sediment in Nansi Lake.

  18. Analysis of the impregnation of ZnO:Mn2+ nanoparticles on cigarette filters for trapping polycyclic aromatic hydrocarbons (PAHs)

    NASA Astrophysics Data System (ADS)

    Estrada-Izquierdo, Irma; Sánchez-Espindola, Esther; Uribe-Hernández, Raúl; Ramón-Gallegos, Eva

    2012-10-01

    Each cigarette can generate 1149 ng of a mixture of 14 polycyclic aromatic hydrocarbons, of which there are a lot of information about its harmful effects on the environment and human health, they are considered mutagenic, teratogenic and carcinogenic. In this paper we tested ZnO:Mn2+ nanoparticles, attached to the filters of cigarettes. The first results showed that the filtration system was able to catch the Benzo(a)pyrene contained in cigarette smoke; but more tests are needed to quantify the efficiency with greater accuracy over other polycyclic aromatic hydrocarbons.

  19. Interstellar Polycyclic Aromatic Compounds and Astrophysics

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role polycyclic aromatic compounds (PAC) in the interstellar medium (ISM). Twenty years ago, the notion of an abundant population of large, carbon rich molecules in the ISM was considered preposterous. Today, the unmistakable spectroscopic signatures of PAC - shockingly large molecules by previous interstellar chemistry standards - are recognized throughout the Universe. In this paper, we will examine the interstellar PAC model and its importance to astrophysics, including: (1) the evidence which led to inception of the model; (2) the ensuing laboratory and theoretical studies of the fundamental spectroscopic properties of PAC by which the model has been refined and extended; and (3) a few examples of how the model is being exploited to derive insight into the nature of the interstellar PAC population.

  20. Reflectance spectroscopy (350-2500 nm) of solid-state polycyclic aromatic hydrocarbons (PAHs)

    NASA Astrophysics Data System (ADS)

    Izawa, M. R. M.; Applin, D. M.; Norman, L.; Cloutis, E. A.

    2014-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic compounds based on fused aromatic rings, and are formed in a variety of astrophysical, solar nebula and planetary processes. Polycyclic aromatic hydrocarbons are known or suspected to occur in a wide variety of planetary settings including icy satellites, Titan’s hazes, carbonaceous meteorites, comet nuclei, ring particles; and terrestrial organic-rich lithologies such as coals, asphaltites, and bituminous sands. Relatively few measurements of the visible and near-infrared spectra of PAHs exist, yet this wavelength region (350-2500 nm) is widely used for remote sensing. This study presents detailed analyses of the 350-2500 nm reflectance spectra of 47 fine-grained powders of different high-purity solid-state PAHs. Spectral properties of PAHs change with variations in the number and connectivity of linked aromatic rings and the presence and type of side-groups and heterocycles. PAH spectra are characterized by three strong features near ∼880 nm, ∼1145 nm, and ∼1687 nm due to overtones of νCH fundamental stretching vibrations. Some PAHs are amenable to remote detection due to the presence of diagnostic spectral features, including: Nsbnd H stretching overtones at 1490-1515 nm in NH- and NH2-bearing PAHs, aliphatic or saturated bond Csbnd H overtone vibrations at ∼1180-1280 nm and ∼1700-1860 nm; a broad asymmetric feature between ∼1450 nm and ∼1900 nm due to Osbnd H stretching overtones in aromatic alcohols, Csbnd H and Cdbnd O combinations near ∼2000-2010 nm and ∼2060-2270 nm in acetyl and carboxyl-bearing PAHs. Other substituents such as sulphonyl, thioether ether and carboxyl heterocycles, or cyano, nitrate, and aromatic side groups, do not produce well-resolved diagnostic spectral features but do cause shifts in the positions of the aromatic Csbnd H vibrational overtone features. Fluorescence is commonly suppressed by the presence of heterocycles, side-groups and in many non-alternant PAHs

  1. LOW TEMPERATURE FORMATION OF NITROGEN-SUBSTITUTED POLYCYCLIC AROMATIC HYDROCARBONS (PANHs)—BARRIERLESS ROUTES TO DIHYDRO(iso)QUINOLINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Dorian S. N.; Yang, Tao; Dangi, Beni B.

    Meteorites contain bio-relevant molecules such as vitamins and nucleobases, which consist of aromatic structures with embedded nitrogen atoms. Questions remain over the chemical mechanisms responsible for the formation of nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) in extraterrestrial environments. By exploiting single collision conditions, we show that a radical mediated bimolecular collision between pyridyl radicals and 1,3-butadiene in the gas phase forms nitrogen-substituted polycyclic aromatic hydrocarbons (PANHs) 1,4-dihydroquinoline and to a minor amount 1,4-dihydroisoquinoline. The reaction proceeds through the formation of a van der Waals complex, which circumnavigates the entrance barrier implying it can operate at very low kinetic energy and thereforemore » at low temperatures of 10 K as present in cold molecular clouds such as TMC-1. The discovery of facile de facto barrierless exoergic reaction mechanisms leading to PANH formation could play an important role in providing a population of aromatic structures upon which further photo-processing of ice condensates could occur to form nucleobases.« less

  2. Observational aspects of polycyclic aromatic hydrocarbon charging in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Bakes, E. L. O.; Tielens, Alexander G. G. M.

    1995-01-01

    We have investigated the charging processes which affect small carbonaceous dust grains and polycyclic aromatic hydrocarbons (PAH's). Because of their high abundance, interstellar PAH molecules can dominate the charge balance of the interstellar medium (ISM), which controls the heating and cooling interstellar gas and interstellar chemistry. We present the results of our model, which compare well with observations and suggest further applications to both laboratory measurements and data obtainable from the KAO.

  3. [Polycyclic aromatic hydrocarbons (PAHs) in herbs and fruit teas].

    PubMed

    Ciemniak, Artur

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) of which benzo[a]pyrene is the most commonly studied and measured, are fused - ring aromatic compounds formed in both natural and man made processes and are found widely distributed throughout the human environment. PAHs occur as contaminants in different food categories and beverages including water, vegetables, fruit, cereals, oils and fats, barbecued and smoked meat. The sources of PAHs in food are predominantly from environmental pollution and food processing. PAHs emissions from automobile traffic and industry activities were show to influence the PAHs levels in vegetables and fruits. The present study was carried out to determine levels of 16 basic PAHs in herbs and fruit teas. The method was based on the hexane extraction and cleaned up by florisil cartridge. The extracts were analysed by GC-MS. The levels of total PAHs varied from 48,27 microg/kg (hibiscus tea) to 1703 microg/kg (green tea). The highest level of BaP was found in lime tea (74,2 microg/kg).

  4. Polycyclic Aromatic Hydrocarbons Adsorption onto Graphene: A DFT and AIMD Study.

    PubMed

    Li, Bing; Ou, Pengfei; Wei, Yulan; Zhang, Xu; Song, Jun

    2018-05-03

    Density functional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations were performed to understand graphene and its interaction with polycyclic aromatic hydrocarbons (PAHs) molecules. The adsorption energy was predicted to increase with the number of aromatic rings in the adsorbates, and linearly correlate with the hydrophobicity of PAHs. Additionally, the analysis of the electronic properties showed that PAHs behave as mild n-dopants and introduce electrons into graphene; but do not remarkably modify the band gap of graphene, indicating that the interaction between PAHs and graphene is physisorption. We have also discovered highly sensitive strain dependence on the adsorption strength of PAHs onto graphene surface. The AIMD simulation indicated that a sensitive and fast adsorption process of PAHs can be achieved by choosing graphene as the adsorbent. These findings are anticipated to shed light on the future development of graphene-based materials with potential applications in the capture and removal of persistent aromatic pollutants.

  5. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review

    USDA-ARS?s Scientific Manuscript database

    Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...

  6. Inorganic-organic hybrid coating material for the online in-tube solid-phase microextraction of monohydroxy polycyclic aromatic hydrocarbons in urine.

    PubMed

    Wang, ShuLing; Xu, Hui

    2016-12-01

    An inorganic-organic hybrid nanocomposite (zinc oxide/polypyrrole) that represents a novel kind of coating for in-tube solid-phase microextraction is reported. The composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless-steel tube. Based on the coated tube, a novel online in-tube solid-phase microextraction with liquid chromatography and mass spectrometry method was developed and applied for the extraction of three monohydroxy polycyclic aromatic hydrocarbons in human urine. The coating displayed good extraction ability toward monohydroxy polycyclic aromatic hydrocarbons. In addition, long lifespan, excellent stability, and good compression resistance were also obtained for the coating. The experimental conditions affecting the extraction were optimized systematically. Under the optimal conditions, the limits of detection and quantification were in the range of 0.039-0.050 and 0.130-0.167 ng/mL, respectively. Good linearity (0.2-100 ng/mL) was obtained with correlation coefficients larger than 0.9967. The repeatability, expressed as relative standard deviation, ranged between 2.5% and 9.4%. The method offered the advantage of process simplicity, rapidity, automation, and sensitivity in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities of Hubei province. An acceptable recovery of monohydroxy polycyclic aromatic hydrocarbons (64-122%) represented the additional attractive features of the method in real urine analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis and characterization of a molecularly imprinted polymer for the isolation of the 16 US-EPA priority polycyclic aromatic hydrocarbons (PAHs) in solution.

    PubMed

    Ncube, Somandla; Kunene, Phumlile; Tavengwa, Nikita T; Tutu, Hlanganani; Richards, Heidi; Cukrowska, Ewa; Chimuka, Luke

    2017-09-01

    A smart sorbent consisting of benzo[k]fluoranthene-imprinted and indeno[1 2 3-cd]pyrene-imprinted polymers mixed at 1:1 (w/w) was successfully screened from several cavity-tuning experiments and used in the isolation of polycyclic aromatic hydrocarbons from spiked solution. The polymer mixture showed high cross selectivity and affinity towards all the 16 US-EPA priority polycyclic aromatic hydrocarbons. The average extraction efficiency from a cyclohexane solution was 65 ± 13.3% (n = 16, SD). Batch adsorption and kinetic studies confirmed that the binding of polycyclic aromatic hydrocarbons onto the polymer particles resulted in formation of a monolayer and that the binding process was the rate limiting step. The imprinted polymer performance studies confirmed that the synthesized polymer had an imprinting efficiency of 103.9 ± 3.91% (n = 3, SD). A comparison of the theoretical number of cavities and the experimental binding capacity showed that the overall extent of occupation of the imprinted cavities in the presence of excess polycyclic aromatic hydrocarbons was 128 ± 6.45% (n = 3, SD). The loss of selectivity was estimated at 2.9% with every elution cycle indicating that the polymer can be re-used several times with limited loss of selectivity and sensitivity. The polymer combination has shown to be an effective adsorbent that can be used to isolate all the 16 US-EPA priority polycyclic aromatic hydrocarbons in solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Phytic acid-stabilized super-amphiphilic Fe3O4-graphene oxide for extraction of polycyclic aromatic hydrocarbons from vegetable oils.

    PubMed

    Ji, Wenhua; Zhang, Mingming; Duan, Wenjuan; Wang, Xiao; Zhao, Hengqiang; Guo, Lanping

    2017-11-15

    Phytic acid-stabilized Fe 3 O 4 -graphene oxide (GOPA@Fe 3 O 4 ) was assembled by microwave-enhanced hydrothermal synthesis and super-amphipathicity was demonstrated by measurement of dynamic oil and water contact angles. GOPA@Fe 3 O 4 was used as a sorbent for enrichment of eight polycyclic aromatic hydrocarbons (PAHs) from vegetable oils by magnetic solid-phase extraction (MSPE). The extraction-desorption factors were systematically investigated and, under optimum conditions, the super-amphiphilic sorbent achieved wide linear ranges (0.2-200ngg -1 ), satisfactory precision (3.44-6.64% for intra-day and 5.39-8.41% for inter-day) and low limits of detection (LODs, 0.06-0.15ngg -1 ) for PAHs. Excellent recoveries (85.6-102.3%) for spiked PAHs were obtained with genuine vegetable oil samples. These results indicate that MSPE using GOPA@Fe 3 O 4 as the sorbent, coupled with high performance liquid chromatography (HPLC), is an efficient and simple method for the detection of low concentrations of PAHs in vegetable oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Role of sooty mold fungi in degradation of polycycllic aromatic hydrocarbons (PAHS) in soil

    Treesearch

    Venera A. Jouraeva; David L. Johnson; John P. Hassett; David J. Nowak; Natalia A. Shipunova; Dana Barbarossa

    2006-01-01

    The focus of this research was on elucidation of the role of deciduous tree ecosystems in accumulation of fine-particle-associated polycyclic aromatic hydrocarbons (PAHs) and heavy metals on leaves of deciduous trees. The studied species were Tilia x euchlora (frequently infested by sooty mold fungi) and Pyrus calleryana (...

  10. [Improving Agricultural Safety of Soils Contaminated with Polycyclic Aromatic Hydrocarbons by In Situ Bioremediation].

    PubMed

    Jiao, Hai-huan; Pan, Jian-gang; Xu, Shena-jun; Bai, Zhi-hui; Wang, Dong; Huang, Zhan-bin

    2015-08-01

    In order to reduce the risk of enrichment of polycyclic aromatic hydrocarbons (PAHs) in crops, reduce the potential hazards of food-sourced PAHs to human and increase the agricultural safety of PAHs contaminated soils, the bio-augmented removal of polycyclic aromatic hydrocarbons (PAHs) was investigated through in situ remediation by introducing Rhodobacter sphaeroides (RS) into the agricultural soil contaminated by PAHs. The 50-times diluted RS was sprayed on leaf surface (in area B) or irrigated to roots (in area D). The treatment of spraying water of the equal amount was taken as the control (A) and the wheat field without any treatment as the blank (CK). Treatments were conducted since wheat seeding. Soil and wheat samples were collected in the mature period to analyze the changes of community structure of the soil microorganisms and the concentration of PAHs in soils and investigate the strengthening and restoration effects of RS on PAHs contaminated soils. Compared to the CK Area, the areas B and D revealed that the variation ratio of phospholipid fatty acids (PLFAs) that were the biomarker of soil microorganisms was 29.6%, and the ratio of total PAHs removed was increased 1.59 times and 1.68 times, respectively. The dry weight of wheat grain of 50 spikes was increased by 8.95% and 12.5%, respectively, and the enrichment factor of total PAHs was decreased by 58.9% and 62.2% respectively in the wheat grains. All the results suggested that RS reduced enrichment of PAHs in wheat grains and increased wheat yield, which had great exploitation and utilization potentiality in repairing and improving the agricultural safety of the soils contaminated with PHAs.

  11. Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  12. DIGESTIVE BIOAVAILABILITY TO A DEPOSIT FEDDER (ARENICOLA MARINA) OF POLYCYCLIC AROMATIC HYDROCARBONS ASSOCIATED WITH ANTHRPOGENIC PARTICLES

    EPA Science Inventory

    Marine sediments around urban areas serve as catch basins for anthropogenic particles containing polycyclic aromatic hydrocarbons (PAHs). Using incubations with gut fluids extracted from a deposit-feeding polychaete (Arenicola marina), we determined the digestive bioavailability ...

  13. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  14. PILOT-SCALE SUBCRITICAL WATER REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON- AND PESTICIDE-CONTAMINATED SOIL. (R825394)

    EPA Science Inventory

    Subcritical water (hot water under enough pressure to maintain the liquid
    state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides
    from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were
    used to determine conditions f...

  15. Docking and QSAR comparative studies of polycyclic aromatic hydrocarbons and other procarcinogen interactions with cytochromes P450 1A1 and 1B1.

    PubMed

    Gonzalez, J; Marchand-Geneste, N; Giraudel, J L; Shimada, T

    2012-01-01

    To obtain chemical clues on the process of bioactivation by cytochromes P450 1A1 and 1B1, some QSAR studies were carried out based on cellular experiments of the metabolic activation of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds by those enzymes. Firstly, the 3D structures of cytochromes 1A1 and 1B1 were built using homology modelling with a cytochrome 1A2 template. Using these structures, 32 ligands including heterocyclic aromatic compounds, polycyclic aromatic hydrocarbons and corresponding diols, were docked with LigandFit and CDOCKER algorithms. Binding mode analysis highlighted the importance of hydrophobic interactions and the hydrogen bonding network between cytochrome amino acids and docked molecules. Finally, for each enzyme, multilinear regression and artificial neural network QSAR models were developed and compared. These statistical models highlighted the importance of electronic, structural and energetic descriptors in metabolic activation process, and could be used for virtual screening of ligand databases. In the case of P450 1A1, the best model was obtained with artificial neural network analysis and gave an r (2) of 0.66 and an external prediction [Formula: see text] of 0.73. Concerning P450 1B1, artificial neural network analysis gave a much more robust model, associated with an r (2) value of 0.73 and an external prediction [Formula: see text] of 0.59.

  16. Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1.

    PubMed

    Kweon, Ohgew; Kim, Seong-Jae; Holland, Ricky D; Chen, Hongyan; Kim, Dae-Wi; Gao, Yuan; Yu, Li-Rong; Baek, Songjoon; Baek, Dong-Heon; Ahn, Hongsik; Cerniglia, Carl E

    2011-09-01

    This study investigated a metabolic network (MN) from Mycobacterium vanbaalenii PYR-1 for polycyclic aromatic hydrocarbons (PAHs) from the perspective of structure, behavior, and evolution, in which multilayer omics data are integrated. Initially, we utilized a high-throughput proteomic analysis to assess the protein expression response of M. vanbaalenii PYR-1 to seven different aromatic compounds. A total of 3,431 proteins (57.38% of the genome-predicted proteins) were identified, which included 160 proteins that seemed to be involved in the degradation of aromatic hydrocarbons. Based on the proteomic data and the previous metabolic, biochemical, physiological, and genomic information, we reconstructed an experiment-based system-level PAH-MN. The structure of PAH-MN, with 183 metabolic compounds and 224 chemical reactions, has a typical scale-free nature. The behavior and evolution of the PAH-MN reveals a hierarchical modularity with funnel effects in structure/function and intimate association with evolutionary modules of the functional modules, which are the ring cleavage process (RCP), side chain process (SCP), and central aromatic process (CAP). The 189 commonly upregulated proteins in all aromatic hydrocarbon treatments provide insights into the global adaptation to facilitate the PAH metabolism. Taken together, the findings of our study provide the hierarchical viewpoint from genes/proteins/metabolites to the network via functional modules of the PAH-MN equipped with the engineering-driven approaches of modularization and rationalization, which may expand our understanding of the metabolic potential of M. vanbaalenii PYR-1 for bioremediation applications.

  17. THE EFFECTS OF EQUIVALENCE RATIO ON THE FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOOT IN PREMIXED ETHANE FLAMES. (R825412)

    EPA Science Inventory

    Abstract

    The formation of polycyclic aromatic hydrocarbons (PAH) and soot has been investigated in atmospheric-pressure, laminar, ethane/oxygen/argon premixed flames as a function of mixture equivalence ratio. Mole fraction profiles of major products, trace aromatics, ...

  18. FISH BILIARY POLYCYCLIC AROMATIC HYDROCARBON METABOLITES ESTIMATED BY FIXED-WAVELENGTH FLUORESCENCE: COMPARISON WITH HPLC-FLUORESCENT DETECTION

    EPA Science Inventory

    Fixed wavelength fluorescence (FF) was compared to high-performance liquid chromatography with fluorescence detection (HPLC-F) as an estimation of polycyclic aromatic hydrocarbon (PAH) exposure to fish. Two excitation/emission wavelength pairs were used to measure naphthalene- an...

  19. Polycyclic aromatic hydrocarbon migration from creosote-treated railway ties into ballast and adjacent wetlands

    Treesearch

    Kenneth M. Brooks

    2004-01-01

    Occasionally, creosote-treated railroad ties need to be replaced, sometimes in sensitive environments such as wetlands. To help determine if this is detrimental to the surrounding environment, more information is needed on the extent and pattern of creosote, or more specifically polycyclic aromatic hydrocarbon (PAH), migration from railroad ties and what effects this...

  20. Modeling the Role of Alkanes, Polycyclic Aromatic Hydrocarbons, and Their Oligomers in Secondary Organic Aerosol Formation

    EPA Science Inventory

    A computationally efficient method to treat secondary organic aerosol (SOA) from various length and structure alkanes as well as SOA from polycyclic aromatic hydrocarbons (PAHs) is implemented in the Community Multiscale Air Quality (CMAQ) model to predict aerosol concentrations ...

  1. Cumulative Exposure Assessment for Trace-Level Polycyclic Aromatic Hydrocarbons (PAHs) using Human Blood and Plasma Analysis

    EPA Science Inventory

    Humans experience chronic cumulative trace-level exposure to mixtures of volatile, semi-volatile, and non-volatile polycyclic aromatic hydrocarbons (PAHs) present in the environment as by-products of combustion processes. Certain PAHs are known or suspected human carcinogens and ...

  2. Decontamination of metals and polycyclic aromatic hydrocarbons from slag-polluted soil.

    PubMed

    Bisone, Sara; Mercier, Guy; Blais, Jean-François

    2013-01-01

    Metallurgy is an industrial activity that is one of the largest contributors to soil contamination by metals. This contamination is often associated with organic compound contamination; however, little research has been aimed at the development of simultaneous processes for decontamination as opposed to treatments to heavy metals or organic compounds alone. This paper presents an efficient process to decontaminate the soils polluted with smelting by-products rich in Cu, Zn and polycyclic aromatic hydrocarbons (PAHs). A simultaneous treatment for metals and PAHs was also tested. The process is mainly based on physical techniques, such as crushing, gravimetric separation and attrition. For the finest particle size fractions, an acid extraction with H2SO4 was used to remove metals. The PAH removal was enhanced by adding surfactant during attrition. The total metal removals varied from 49% to 73% for Cu and from 43% to 63% for Zn, whereas a removal yield of 92% was measured for total PAHs. Finally, a technical-economic evaluation was done for the two processes tested.

  3. Side Group Addition to the Polycyclic Aromatic Hydrocarbon Coronene by Proton Irradiation in Cosmic Ice Analogs

    NASA Astrophysics Data System (ADS)

    Bernstein, Max P.; Moore, Marla H.; Elsila, Jamie E.; Sandford, Scott A.; Allamandola, Louis J.; Zare, Richard N.

    2003-01-01

    Ices at ~15 K consisting of the polycyclic aromatic hydrocarbon coronene (C24H12) condensed either with H2O, CO2, or CO in the ratio of 1:100 or greater have been subjected to MeV proton bombardment from a Van de Graaff generator. The resulting reaction products have been examined by infrared transmission-reflection-transmission spectroscopy and by microprobe laser-desorption laser-ionization mass spectrometry. Just as in the case of UV photolysis, oxygen atoms are added to coronene, yielding, in the case of H2O ices, the addition of one or more alcohol (OH) and ketone (>CO) side chains to the coronene scaffolding. There are, however, significant differences between the products formed by proton irradiation and the products formed by UV photolysis of coronene containing CO and CO2 ices. The formation of a coronene carboxylic acid (COOH) by proton irradiation is facile in solid CO but not in CO2, the reverse of what was previously observed for UV photolysis under otherwise identical conditions. This work presents evidence that cosmic-ray irradiation of interstellar or cometary ices should have contributed to the formation of aromatics bearing ketone and carboxylic acid functional groups in primitive meteorites and interplanetary dust particles.

  4. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    PubMed

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from

  5. Determination of total and polycyclic aromatic hydrocarbons in aviation jet fuel.

    PubMed

    Bernabei, M; Reda, R; Galiero, R; Bocchinfuso, G

    2003-01-24

    The aviation jet fuel widely used in turbine engine aircraft is manufactured from straight-run kerosene. The combustion quality of jet fuel is largely related to the hydrocarbon composition of the fuel itself; paraffins have better burning properties than aromatic compounds, especially naphthalenes and light polycyclic aromatic hydrocarbons (PAHs), which are characterised as soot and smoke producers. For this reason the burning quality of fuel is generally measured as smoke fermation. This evaluation is carried out with UV spectrophotometric determination of total naphthalene hydrocarbons and a chromatographic analysis to determine the total aromatic compounds. These methods can be considered insufficient to evaluate the human health impact of these compounds due to their inability to measure trace (ppm) amounts of each aromatic hyrcarbon and each PAH in accordance with limitations imposed because of their toxicological properties. In this paper two analytical methods are presented. Both are based on a gas chromatographic technique with a mass detector operating in be selected ion monitoring mode. The first method was able to determine more than 60 aromatic hydrocarbons in a fuel sample in a 35-min chromatographic run, while the second was able to carry out the analysis of more than 30 PAHs in a 40-min chromatographic run. The linearity and sensitivity of the methods in measuring these analytes at trace levels are described.

  6. Diversity of metabolic capacities among strains degrading polycyclic aromatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchez, M.; Besnaienou, B.; Blanchet, D.

    1995-12-31

    Strains of Pseudomonas and Rhodococcus genera were isolated for their capacity to use, as a sole carbon and energy source, one of the following polycyclic aromatic hydrocarbons (PAHs): naphthalene (NAP), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene (FLT), and pyrene (PYR). The range of PAHs supporting growth of these pure strains was usually restricted, but several other hydrocarbons were used by Rhodococcus sp. All strains could grow on simple organic acids. Maximal specific growth rates ({mu}{sub max}) of all strains on their PAH growth substrates were determined by respirometry. No clear relationships between {mu}{sub max} values and the molecular weightmore » or water solubility of PAHs were apparent, but Pseudomonas sp. exhibited the highest {mu}{sub max} values. Carbon balances for PAH biodegradation were established. Differences between strains were observed, but high mineralization rates and low production of soluble metabolites were obtained for all PAHs. Bacterial biomass represented 16% to 35% of the carbon consumed. Strain diversity was also apparent in the interactions observed in the degradation of a mixture of two PAHs by individual strains, which often involved inhibition of PAH substrate degradation, with or without cometabolization of the second PAH.« less

  7. THE PHOTOTOXOICITY OF POLYCYCLIC AROMATIC HYDROCARBONS: A THEORETICAL STUDY OF EXCITED STATES AND CORRELATION TO EXPERIMENT

    EPA Science Inventory



    Investigators using models to determine the phototoxic effects of sunlight on polycyclic aromatic hydrocarbons (PAHS) have invoked the excited states of the molecule as important in elucidating the mechanism of these reactions. Energies of actual excited states were calcu...

  8. Moss as bio-indicators of human exposure to polycyclic aromatic hydrocarbons in Portland, OR

    Treesearch

    Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Vicente J. Monleon

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of air pollutants linked to a wide range of adverse health outcomes, including asthma, cancers, cardiovascular disease, and fetal growth impairment. PAHs are emitted by combustion of organic matter (e.g. fossil fuels, plant biomass) and can accumulate in plant and animal tissues over time. Compared to criteria...

  9. Occupational exposure to aromatic hydrocarbons and polycyclic aromatic hydrocarbons at a coke plant.

    PubMed

    Bieniek, Grażyna; Łusiak, Agnieszka

    2012-08-01

    The objective of this study was to assess the external exposure to aromatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) of coke-oven workers and by-product workers at a coke plant in Poland. The content of benzene, toluene, xylene, and naphthalene in a gaseous phase and the content of dibenzo[a,h]anthracene, benz[a]anthracene, anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benz[ghi]perylene, chrysene, and indeno[1,2,3-c,d]pyrene in a particulate phase of coke plant workers were measured in the workers mentioned above. A toxic equivalency factor BaP(eq) was used to estimate human health risk associated with respiratory exposure to PAHs. Time-weighted values of the exposure to AHs in the coke plant were as follows: benzene (range 0.01-2.71 mg m(-3)), toluene (0.01-1.73 mg m(-3)), xylene (0.01-0.78 mg m(-3)), naphthalene (6.0-6079 μg m(-3)), and the concentrations of hydrocarbons did not exceed the exposure limits. The results for particle-bound PAHs were equal to 1.96 μg m(-3) for B(a)P, 0.73 μg m(-3) for DBA, 3.23 μg m(-3) for BaA, 4.35 μg m(-3) for BbF, 3.02 μg m(-3) for BkF, 4.54 μg m(-3) for IND, 4.32 μg m(-3) for CHR, and 0.73 μg m(-3) for Ant. The results of personal air measurements (median values of the sum of nine carcinogenic PAHs) were 2.115 μg m(-3) (coke-oven workers, n = 207), 0.326 μg m(-3) (coke by-product workers, n = 33), and 0.653 μg m(-3) (total area workers, n = 38). The benzo[a]pyrene equivalent concentrations (BaP(eq)) of 10 PAHs were 1.33, 0.183, and 0.284 μg m(-3), respectively. We found out that coke plant workers are simultaneously exposed to a mixture of aromatic and polycyclic hydrocarbons present in the breathing zone air. Exposure levels are significantly influenced by job categories. Coke by-product workers are significantly more exposed to benzene, toluene, and xylene and less to PAHs. Coke-oven workers are mainly exposed to PAHs. Coke-oven workplaces (top side, coke side, and

  10. Chemically bonded stationary phases that use synthetic hosts containing aromatic binding clefts: HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons.

    PubMed Central

    Zimmerman, S C; Saionz, K W; Zeng, Z

    1993-01-01

    The synthesis of hosts with improved binding affinities for nitroaromatic guests is described. Association constants for several host-guest complexes were measured in chloroform solution and ranged over three orders of magnitude. Two hosts were covalently linked to silica gel to produce chemically bonded stationary phases for HPLC. The use of these phases for HPLC analysis of nitro-substituted polycyclic aromatic hydrocarbons is discussed. PMID:8433981

  11. Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.

    PubMed

    Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria

    2015-01-01

    The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values <20% for all analytes. The results obtained demonstrate that acenaphthene, fluorantene, phenanthrene, anthracene, fluoranthene and pyrene were found in all samples with a similar distribution, but different content when yogurts with low and high fats were compared.

  12. Polycyclic aromatic hydrocarbons residues in sandstorm depositions in Beijing, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, S.; Li, K.; Xia, X.J.

    2009-02-15

    This study was conducted to determine the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in sandstorm depositions in Beijing, China. The PAH concentrations in 13 samples collected in Beijing ranged from 0.18 to 3.52 {mu} g g{sup -1}. Analysis of the sources of contamination revealed that the PAHs were derived from a coal combustion source, although various effects of traffic emissions were also observed. Furthermore, the PAH levels in Beijing tended to be higher in the southeast. Finally, the Nemerow composite index revealed that the degree of pollution in the sandstorm depositions varied widely among sampling sites.

  13. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  14. ROLE OF SOURCE MATRIX IN THE BIOAVAILABILITY OF POLYCYCLIC AROMATIC HYDROCARBONS TO DEPOSIT-FEEDING BENTHIC INVERTEBRATES

    EPA Science Inventory

    The bioavailability of polycyclic aromatic hydrocarbons (PAHs) to benthic organisms is complicated by the variety of ways that they are introduced to coastal waters (dissolved, as nonaqueous phase liquids, and tightly bound to soot, coal, tire rubber, and eroded shale). In order ...

  15. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    ERIC Educational Resources Information Center

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  16. Analysis of Parent/Nitrated Polycyclic Aromatic Hydrocarbons in Particulate Matter 2.5 Based on Femtosecond Ionization Mass Spectrometry.

    PubMed

    Itouyama, Noboru; Matsui, Taiki; Yamamoto, Shigekazu; Imasaka, Tomoko; Imasaka, Totaro

    2016-02-01

    Particulate matter 2.5 (PM2.5), collected from ambient air in Fukuoka City, was analyzed by gas chromatography combined with multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. Numerous parent polycyclic aromatic hydrocarbons (PPAHs) were observed in a sample extracted from PM2.5, and their concentrations were determined to be in the range from 30 to 190 pg/m(3) for heavy PPAHs. Standard samples of nitrated polycyclic aromatic hydrocarbons (NPAHs) were examined, and the limits of detection were determined to be in the picogram range. The concentration of NPAH adsorbed on PM2.5 in the air was less than 900-1300 pg/m(3). Graphical Abstract ᅟ.

  17. Polycyclic Aromatic Hydrocarbons and Infrared Astrophysics with Spitzer

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, L. J.

    2004-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role that carbon-rich plays in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbons (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry -are recognized throughout the Universe. In this presentation, we will examine the current state of the interstellar PAH model and explore how this data, in conjunction with the unparalleled observational data provided by the Spitzer Space Telescope, can be used to draw ever-deeper insights into the physical and chemical natures of a wide range of astrophysical environments.

  18. Watershed-based sources of polycyclic aromatic hydrocarbons in urban storm water.

    PubMed

    Stein, Eric D; Tiefenthaler, Liesl L; Schiff, Kenneth

    2006-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and mutagenic compounds, ubiquitous in the air and water of urban environments, and have been shown to accumulate in coastal estuarine and marine sediments. Although previous studies have documented concentrations and loads of PAHs in urban runoff, little is known about the sources and temporal patterns of PAH loading from storm water. This study characterized the sources and temporal patterns of PAHs in urban storm water by analyzing PAH concentrations and loads from a range of homogeneous land use sites and in-river mass emission sites throughout the greater Los Angeles, California, USA, region. Samples were collected at 30- to 60-min intervals over the course of a storm during multiple storm events over a four-year period in order to investigate PAH sources and inter- and intrastorm patterns in loading. Polycyclic aromatic hydrocarbon storm fluxes ranged from 1.3 g/km2 for the largely undeveloped Arroyo Sequit watershed to 223.7 g/km2 for the highly urbanized Verdugo Wash watershed, with average storm fluxes being 46 times higher in developed versus undeveloped watersheds. Early-season storms repeatedly produced substantially higher loads than comparably sized late-season storms. Within individual storms, PAHs exhibited a moderate first flush with between 30 and 60% of the total PAH load being discharged in the first 20% of the storm volume. The relative distribution of individual PAHs demonstrated a consistent predominance of high-molecular-weight compounds indicative of pyrogenic sources.

  19. COMPARATIVE STUDIES OF THE EFFECT OF POLYCYCLIC AROMATIC HYDROCARBON GEOMETRY ON THE HYDROLYSIS OF DIOL EPOXIDES

    EPA Science Inventory

    Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides

    The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...

  20. COMPARISON OF IMMUNOASSAY AND GAS CHROMATOGRAPHY/MASS SPECTROMETRY FOR MEASUREMENT OF POLYCYCLIC AROMATIC HYDROCARBONS IN CONTAMINATED SOIL

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are frequently encountered in the environment and may pose health concerns due to their carcinogenicity. A commercial enzyme-linked immunosorbent assay (ELISA), was evaluated as a screening method for monitoring PAHs at contaminated site...

  1. CROSS-INDUCTION OF PYRENE AND PHENANTHRENE IN MYCOBACTERIUM SP. ISOLATED FROM POLYCYCLIC AROMATIC HYDROCARBON CONTAMINATED RIVER SEDIMENTS

    EPA Science Inventory

    A polycyclic aromatic hydrocarbon (PAH)-degrading culture enriched from contaminated river sediments and a Mycobacterium sp. isolated from the enrichment were tested to investigate the possible synergistic and antagonistic interactions affecting the degradation of pyrene in the p...

  2. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael; Feigelson, Eric D.

    1989-01-01

    Production of polycyclic aromatic hydrocarbons in carbon-rich circumstellar envelopes was investigated using a kinetic approach. A detailed chemical reaction mechanism of gas-phase PAH formation and growth, containing approximately 100 reactions of 40 species, was numerically solved under the physical conditions expected in cool stellar winds. The chemistry is based on studies of soot production in hydrocarbon pyrolysis and combustion. Several first-ring and second-ring cyclization processes were considered. A linear lumping algorithm was used to describe PAH growth beyond the second aromatic ring. PAH production using this mechanism was examined with respect to a grid of idealized constant velocity stellar winds as well as several published astrophysical models. The basic result is that the onset of PAH production in the interstellar envelopes is predicted to occur within the temperature interval of 1100 to 900 K. The absolute amounts of the PAHs formed, however, are very sensitive to a number of parameters, both chemical and astrophysical, whose values are not accurately known. Astrophysically meaningful quantities of PAHs require particularly dense and slow stellar winds and high initial acetylene abundance. It is suggested that most of the PAHs may be produced in a relatively small fraction of carbon-rich red giants.

  3. Anaerobic Degradation of Benzene and Polycyclic Aromatic Hydrocarbons.

    PubMed

    Meckenstock, Rainer U; Boll, Matthias; Mouttaki, Housna; Koelschbach, Janina S; Cunha Tarouco, Paola; Weyrauch, Philip; Dong, Xiyang; Himmelberg, Anne M

    2016-01-01

    Aromatic hydrocarbons such as benzene and polycyclic aromatic hydrocarbons (PAHs) are very slowly degraded without molecular oxygen. Here, we review the recent advances in the elucidation of the first known degradation pathways of these environmental hazards. Anaerobic degradation of benzene and PAHs has been successfully documented in the environment by metabolite analysis, compound-specific isotope analysis and microcosm studies. Subsequently, also enrichments and pure cultures were obtained that anaerobically degrade benzene, naphthalene or methylnaphthalene, and even phenanthrene, the largest PAH currently known to be degradable under anoxic conditions. Although such cultures grow very slowly, with doubling times of around 2 weeks, and produce only very little biomass in batch cultures, successful proteogenomic, transcriptomic and biochemical studies revealed novel degradation pathways with exciting biochemical reactions such as for example the carboxylation of naphthalene or the ATP-independent reduction of naphthoyl-coenzyme A. The elucidation of the first anaerobic degradation pathways of naphthalene and methylnaphthalene at the genetic and biochemical level now opens the door to studying the anaerobic metabolism and ecology of anaerobic PAH degraders. This will contribute to assessing the fate of one of the most important contaminant classes in anoxic sediments and aquifers. © 2016 S. Karger AG, Basel.

  4. Tunable molecular plasmons in polycyclic aromatic hydrocarbons.

    PubMed

    Manjavacas, Alejandro; Marchesin, Federico; Thongrattanasiri, Sukosin; Koval, Peter; Nordlander, Peter; Sánchez-Portal, Daniel; García de Abajo, F Javier

    2013-04-23

    We show that chemically synthesized polycyclic aromatic hydrocarbons (PAHs) exhibit molecular plasmon resonances that are remarkably sensitive to the net charge state of the molecule and the atomic structure of the edges. These molecules can be regarded as nanometer-sized forms of graphene, from which they inherit their high electrical tunability. Specifically, the addition or removal of a single electron switches on/off these molecular plasmons. Our first-principles time-dependent density-functional theory (TDDFT) calculations are in good agreement with a simpler tight-binding approach that can be easily extended to much larger systems. These fundamental insights enable the development of novel plasmonic devices based upon chemically available molecules, which, unlike colloidal or lithographic nanostructures, are free from structural imperfections. We further show a strong interaction between plasmons in neighboring molecules, quantified in significant energy shifts and field enhancement, and enabling molecular-based plasmonic designs. Our findings suggest new paradigms for electro-optical modulation and switching, single-electron detection, and sensing using individual molecules.

  5. Polycyclic Aromatic Hydrocarbons and Astrophysics: The State of the Pah Model and a Possible Tracer of Nitrogen in Carbon-Rich Dust

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; Allamandola, Louis J.

    2003-01-01

    Over the past fifteen years, thanks to significant, parallel advancements in observational, experimental, and theoretical techniques, tremendous strides have been made in our understanding of the role aromatic materials play in the interstellar medium (ISM). Twenty years ago, the possible existence of an abundant population of large, carbon-rich molecules in the ISM was unthinkable. Today, the unmistakable spectroscopic signatures of polycyclic aromatic hydrocarbon molecules (PAHs) - shockingly large molecules by the standards of traditional interstellar chemistry - are recognized throughout the Universe. In this paper, we will examine the current state of the interstellar PAH model and its utility as a diagnostic tool to derive insight into the nature of the interstellar PAH population. As an example of this application, we will examine the results of our recent spectroscopic studies of polycyclic aromatic nitrogen heterocycles (PANHs)-PAHs with an atom of nitrogen substituted into the aromatic skeleton-and discuss a possible tracer of such species amongst the interstellar PAH emission bands in the latest observational data.

  6. PHOTOACTIVATED POLYCYCLIC AROMATIC HYDROCARBON TOXICITY IN MEDAKA (ORYZIAS LATIPES) EMBRYOS: RELEVANCE TO ENVIRONMENTAL RISK IN CONTAMINATED SITES

    EPA Science Inventory

    The hazard for photoactivated toxicity of polycyclic aromatic hydrocarbons (PAHs) has been clearly demonstrated; however, to our knowledge, the risk in contaminated systems has not been characterized. To address this question, a median lethal dose (LD50) for fluoranthene photoa...

  7. THE APPLICATION OF COMPUTATIONAL MOLECULAR METHODS TO UNDERSTAND THE HEALTH EFFECTS OF ENVIRONMENTAL CHEMICALS-POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    In evaluating the risk posed by chemicals introduced into the environment, information
    about their molecular mechanism of action provides a basis for extrapolating from the
    laboratory to the environment. Polycyclic aromatic hydrocarbons (PAH) are a large class
    of...

  8. IMPORTANCE OF BLACK CARBON IN DISTRIBUTION AND BIOACCUMULATION MODELS OF POLYCYCLIC AROMATIC HYDROCARBONS IN CONTAMINATED MARINE SEDIMENTS

    EPA Science Inventory

    The roles and relative importance of nonpyrogenic organic carbon (NPOC) and black carbon (BC) as binding phases of polycyclic aromatic hydrocarbons (PAHs) were assessed by their ability to estimate pore water concentrations and biological uptake in various marine sediments. Sedim...

  9. Development of a Relative Potency Factor (Rpf) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of polycyclic aromatic hydrocarbon (PAH) mixtures that when finalized will appear on the Integrated Risk Information System (IRIS) database. ...

  10. Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons.

    PubMed

    Trujillo-Rodríguez, María J; Nacham, Omprakash; Clark, Kevin D; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2016-08-31

    This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Determination of descriptors for polycyclic aromatic hydrocarbons and related compounds by chromatographic methods and liquid-liquid partition in totally organic biphasic systems.

    PubMed

    Ariyasena, Thiloka C; Poole, Colin F

    2014-09-26

    Retention factors on several columns and at various temperatures using gas chromatography and from reversed-phase liquid chromatography on a SunFire C18 column with various mobile phase compositions containing acetonitrile, methanol and tetrahydrofuran as strength adjusting solvents are combined with liquid-liquid partition coefficients in totally organic biphasic systems to calculate descriptors for 23 polycyclic aromatic hydrocarbons and eighteen related compounds of environmental interest. The use of a consistent protocol for the above measurements provides descriptors that are more self consistent for the estimation of physicochemical properties (octanol-water, air-octanol, air-water, aqueous solubility, and subcooled liquid vapor pressure). The descriptor in this report tend to have smaller values for the L and E descriptors and random differences in the B and S descriptors compared with literature sources. A simple atom fragment constant model is proposed for the estimation of descriptors from structure for polycyclic aromatic hydrocarbons. The new descriptors show no bias in the prediction of the air-water partition coefficient for polycyclic aromatic hydrocarbons unlike the literature values. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Determination of polycyclic aromatic hydrocarbons in roasted coffee

    PubMed Central

    JIMENEZ, ANGELICA; ADISA, AFOLABI; WOODHAM, CARA; SALEH, MAHMOUD

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are suspected to be carcinogenic and mutagenic. This study describes the presence of PAHs in light, medium and dark roasted coffee including instant and decaffeinated brands. Total PAHs concentration was related to the degree of roasting with light roasted coffee showing the least and dark roasted coffee showing the highest level. Both instant and decaffeinated coffee brand showed lower levels of PAHs. Naphthalene, acenaphthylene, pyrene and chrysene were the most abundant individual isomers. The concentrations ranged from 0 to 561 ng g−1 for naphthalene, 0 to 512 ng g−1 for acenaphthylene, 60 to 459 ng g−1 for pyrene and 56 to 371 ng g−1 for chrysene. Thus, roasting conditions should be controlled to avoid the formation of PAHs due to their suspected carcinogenic and mutagenic properties. PMID:25190557

  13. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR GROWTH TO SOOT -A REVIEW OF CHEMICAL REACTION PATHWAYS. (R824970)

    EPA Science Inventory

    The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...

  14. Polycyclic aromatic hydrocarbon molecules in astrophysics

    NASA Astrophysics Data System (ADS)

    Rastogi, Shantanu; Pathak, Amit; Maurya, Anju

    2013-06-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are responsible for the mid-infrared emission features. Their ubiquitous presence in almost all types of astrophysical environments and related variations in their spectral profilesmake them an important tool to understand the physics and chemistry of the interstellar medium. The observed spectrum is generally a composite superposition of all different types of PAHs possible in the region. In the era of space telescopes the spectral richness of the emission features has enhanced their importance as probe and also the need to understand the variations with respect to PAH size, type and ionic state. Quantum computational studies of PAHs have proved useful in elucidating the profile variations and put constraints on the possible types of PAHs in different environments. The study of PAHs has also significantly contributed to the problems of diffuse interstellar bands (DIBs), UV extinction and understanding the chemistry of the formation of complex organics in space. The review highlights the results of various computational models for the understanding of infrared emission features, the PAH-DIB relation, formation of prebiotics and possible impact in the understanding of far-infrared features.

  15. IMPACTS OF AGING ON IN VIVO AND IN VITRO MEASUREMENTS OF SOIL-BOUND POLYCYCLIC AROMATIC HYDROCARBON AVAILABILITY

    EPA Science Inventory

    Ingestion of contaminated soil is an exposure pathway at approximately one-half of the Superfund sites in the United States. This study was designed to evaluate the impacts of aging in soil on the availability of polycyclic aromatic hydrocarbons (PAHs). Two coal tar (CT)-amended ...

  16. CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS

    PubMed Central

    Rogoff, Martin H.

    1962-01-01

    Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381

  17. Application of sunflower stalk-carbon nitride nanosheets as a green sorbent in the solid-phase extraction of polycyclic aromatic hydrocarbons followed by high-performance liquid chromatography.

    PubMed

    Marzi Khosrowshahi, Elnaz; Razmi, Habib

    2018-02-08

    A green biocomposite of sunflower stalks and graphitic carbon nitride nanosheets has been applied as a solid-phase extraction adsorbent for sample preparation of five polycyclic aromatic hydrocarbons in different solutions using high-performance liquid chromatography with ultraviolet detection. Before the modification, sunflower stalks exhibited relatively low adsorption to the polycyclic aromatic hydrocarbons extraction. The modified sunflower stalks showed increased adsorption to the analytes extraction due to the increase in surface and existence of a π-π interaction between the analytes and graphitic carbon nitride nanosheets on the surface. Under the optimal conditions, the limits of detection and quantification for five polycyclic aromatic hydrocarbons compounds could reach 0.4-32 and 1.2-95 ng/L, respectively. The method accuracy was evaluated using recovery measurements in spiked real samples and good recoveries from 71 to 115% with relative standard deviations of <10% have been achieved. The developed method was successfully applied for polycyclic aromatic hydrocarbons determination in various samples-well water, tap water, soil, vegetable, and barbequed meat (kebab)-with analytes contents ranging from 0.065 to 13.3 μg/L. The prepared green composite as a new sorbent has some advantages including ease of preparation, low cost, and good reusability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. TRENDS OF POLYCYCLIC AROMATIC HYDROCARBON LEVELS AND MUTAGENICITY IN SANTIAGO'S INHALABLE AIRBORNE PARTICLES IN THE PERIOD 1992-1996.

    EPA Science Inventory

    Abstract

    Trends of polycyclic aromatic hydrocarbons (PAHs) for 1992-1996 (cold season) and their mutagenic activity were investigated in organic extracts from the Santiago. Chile. inhalable particles (PM10). The highest PAH concentrations were observed in 1992 and decline...

  19. Effects of root exudates on gel-beads/reeds combination remediation of high molecular weight polycyclic aromatic hydrocarbons.

    PubMed

    Tian, Weijun; Zhao, Jing; Zhou, Yuhang; Qiao, Kaili; Jin, Xin; Liu, Qing

    2017-01-01

    Changes in root exudates, including low molecular weight organic acids (LMWOAs), amino acids and sugars, in rhizosphere soils during the gel-beads/reeds combination remediation for high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) and the degree of the effects on HMW-PAH biodegradation were evaluated in this study. The results showed that the gel-beads/reeds combination remediation notably increased the removal rates of pyrene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene (65.0-68.9%, 60.0-68.5% and 85.2-85.9%, respectively). During the removal of HMW-PAHs, the LMWOAs, particularly maleic acid, enhanced the biodegradation of HMW-PAHs. Arginine and trehalose monitored in reed root exudates promoted the growth of plants and microorganisms and then improved the removal of HMW-PAHs, especially pyrene. However, the contribution of reed root exudates on degradation of 5- and 6-ring PAHs was minor. These results indicated that the utilization of root exudates was certainly not the only important trait for the removal of HMW-PAHs. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Geochemistry of polycyclic aromatic hydrocarbons in the bottom sediments of the eastern Arctic shelf

    NASA Astrophysics Data System (ADS)

    Petrova, V. I.; Batova, G. I.; Kursheva, A. V.; Litvinenko, I. V.; Savinov, V. M.; Savinova, T. N.

    2008-04-01

    Sources and pathways of supply of polycyclic aromatic hydrocarbons (PAH) in the surface sediments of the Laptev and East Siberian seas were identified based on an analysis of the lithological-geochemical characteristics and distribution of organic matter (OM). The distribution of organic carbon, humic acids, bitumoids, and hydrocarbons demonstrates the determining role of the riverine runoff in the formation of the recent sediments. The total average content of PAH in the sediments of this region approximates 37 ng/g, not exceeding 80 ng/g of dry sediment. The biogenic components of the PAH (alkylphenanthrenes, alkylchrysenes, perylene) dominate in the estuarine-shelf and coastal-shelf sediments enriched with plant detritus and significantly decrease in the pelagic zone. The anthropogenic influence is observed in sediments of the port of Tiksi, where the total content of PAH with dominant pyrogenic components is two orders of magnitude higher as compared with the background values in the study region.

  1. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons.

    PubMed

    Xia, Wenjie; Du, Zhifeng; Cui, Qingfeng; Dong, Hao; Wang, Fuyi; He, Panqing; Tang, YongChun

    2014-07-15

    Alkanes and polycyclic aromatic hydrocarbons (PAHs) have threatened the environment due to toxicity and poor bioavailability. Interest in degradation of these hazardous materials by biosurfactant-producing bacteria has been steadily increasing in recent years. In this work, a novel biosurfactant-producing Pseudomonas sp. WJ6 was isolated to degrade a wide range of n-alkanes and polycyclic aromatic hydrocarbons. Production of lipopeptide biosurfactant was observed in all biodegradable studies. These lipopeptides were purified and identified by C18 RP-HPLC system and electrospray ionization-mass spectrometry. Results of structural analysis showed that these lipopeptides generated from different hydrocarbons were classified to be surfactin, fengycin and lichenysin. Heavy-oil sludge washing experiments demonstrated that lipopeptides produced by Pseudomonas sp. WJ6 have 92.46% of heavy-oil washing efficiency. The obtained results indicate that this novel bacterial strain and its lipopeptides have great potentials in the environmental remediation and petroleum recovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Polycyclic aromatic hydrocarbons, tobacco smoke, and epigenetic remodeling in asthma

    PubMed Central

    Klingbeil, E. C.; Hew, K. M.; Nygaard, U. C.; Nadeau, K. C.

    2014-01-01

    Environmental determinants including aerosolized pollutants such as polycyclic aromatic hydrocarbons (PAHs) and tobacco smoke have been associated with exacerbation and increased incidence of asthma. The influence of aerosolized pollutants on the development of immune dysfunction in asthmatics has been suggested to be mediated through epigenetic remodeling. Genome accessibility and transcription are regulated primarily through DNA methylation, histone modification, and microRNA transcript silencing. Epigenetic remodeling has been shown in studies to be associated with Th2 polarization and associated cytokine and chemokine regulation in the development of asthma. This review will present evidence for the contribution of the aerosolized pollutants PAH and environmental tobacco smoke to epigenetic remodeling in asthma. PMID:24760221

  3. Failure of hydrogenation in protecting polycyclic aromatic hydrocarbons from fragmentation

    NASA Astrophysics Data System (ADS)

    Gatchell, M.; Stockett, M. H.; de Ruette, N.; Chen, T.; Giacomozzi, L.; Nascimento, R. F.; Wolf, M.; Anderson, E. K.; Delaunay, R.; Vizcaino, V.; Rousseau, P.; Adoui, L.; Huber, B. A.; Schmidt, H. T.; Zettergren, H.; Cederquist, H.

    2015-11-01

    A recent study of soft x-ray absorption in native and hydrogenated coronene cations, C24H12+m +m =0 -7 , led to the conclusion that additional hydrogen atoms protect (interstellar) polycyclic aromatic hydrocarbon (PAH) molecules from fragmentation [Reitsma et al., Phys. Rev. Lett. 113, 053002 (2014), 10.1103/PhysRevLett.113.053002]. The present experiment with collisions between fast (30-200 eV) He atoms and pyrene (C16H10+m + , m =0 , 6, and 16) and simulations without reference to the excitation method suggests the opposite. We find that the absolute carbon-backbone fragmentation cross section does not decrease but increases with the degree of hydrogenation for pyrene molecules.

  4. Seawater Polluted with Highly Concentrated Polycyclic Aromatic Hydrocarbons Suppresses Osteoblastic Activity in the Scales of Goldfish, Carassius auratus.

    PubMed

    Suzuki, Nobuo; Sato, Masayuki; Nassar, Hossam F; Abdel-Gawad, Fagr Kh; Bassem, Samah M; Yachiguchi, Koji; Tabuchi, Yoshiaki; Endo, Masato; Sekiguchi, Toshio; Urata, Makoto; Hattori, Atsuhiko; Mishima, Hiroyuki; Shimasaki, Youhei; Oshima, Yuji; Hong, Chun-Sang; Makino, Fumiya; Tang, Ning; Toriba, Akira; Hayakawa, Kazuichi

    2016-08-01

    We have developed an original in vitro bioassay using teleost scale, that has osteoclasts, osteoblasts, and bone matrix as each marker: alkaline phosphatase (ALP) for osteoblasts and tartrate-resistant acid phosphatase (TRAP) for osteoclasts. Using this scale in vitro bioassay, we examined the effects of seawater polluted with highly concentrated polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) on osteoblastic and osteoclastic activities in the present study. Polluted seawater was collected from two sites (the Alexandria site on the Mediterranean Sea and the Suez Canal site on the Red Sea). Total levels of PAHs in the seawater from the Alexandria and Suez Canal sites were 1364.59 and 992.56 ng/l, respectively. We were able to detect NPAHs in both seawater samples. Total levels of NPAHs were detected in the seawater of the Alexandria site (12.749 ng/l) and the Suez Canal site (3.914 ng/l). Each sample of polluted seawater was added to culture medium at dilution rates of 50, 100, and 500, and incubated with the goldfish scales for 6 hrs. Thereafter, ALP and TRAP activities were measured. ALP activity was significantly suppressed by both polluted seawater samples diluted at least 500 times, but TRAP activity did not change. In addition, mRNA expressions of osteoblastic markers (ALP, osteocalcin, and the receptor activator of the NF-κB ligand) decreased significantly, as did the ALP enzyme activity. In fact, ALP activity decreased on treatment with PAHs and NPAHs. We conclude that seawater polluted with highly concentrated PAHs and NPAHs influences bone metabolism in teleosts.

  5. Normal-phase liquid chromatography retention behavior of polycyclic aromatic sulfur heterocycles and alkyl-substituted polycyclic aromatic sulfur heterocycle isomers on an aminopropyl stationary phase.

    PubMed

    Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A

    2018-02-01

    Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.

  6. Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments

    USGS Publications Warehouse

    Chiou, C.T.; Mcgroddy, S.E.; Kile, D.E.

    1998-01-01

    The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM) and water (i.e., K(oc) values) are relatively invariant either for the 'clean' (uncontaminated) soils or for the clean sediments; however, the mean K(oc) values on the sediments are about twice the values on the soils. This disparity is similar to the earlier observation for other nonpolar solutes and reflects the compositional differences between soil and sediment organic matters. No significant differences in K(oc) are observed between a clean coastal marine sediment and freshwater sediments. The coastal sediments that are significantly impacted by organic contaminants exhibit higher K(oc) values. At given K(ow) values (octanol-water), the PAHs exhibit much higher K(oc) values than other relatively nonpolar solutes (e.g., chlorinated hydrocarbons). This effect is shown to result from the enhanced partition of PAHs to SOM rather than from lower K(ow) values of PAHs at given supercooled liquid solute solubilities in water. The enhanced partition of PAHs over other nonpolar solutes in SOM provides an account of the markedly different correlations between log K(oc) and log K(ow) for PAHs and for other nonpolar solutes. The improved partition of PAHs in SOM stems apparently from the enhanced compatibility of their cohesive energy densities with those of the aromatic components in SOM. The approximate aromatic fraction in soil/sediment organic matter has been assessed by solid-state 13C-NMR spectroscopy.The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM

  7. Does the concept of Clar's aromatic sextet work for dicationic forms of polycyclic aromatic hydrocarbons?--testing the model against charged systems in singlet and triplet states.

    PubMed

    Dominikowska, Justyna; Palusiak, Marcin

    2011-07-07

    The concept of Clar's π-electron aromatic sextet was tested against a set of polycyclic aromatic hydrocarbons in neutral and doubly charged forms. Systems containing different types of rings (in the context of Clar's concept) were chosen, including benzene, naphthalene, anthracene, phenanthrene and triphenylene. In the case of dicationic structures both singlet and triplet states were considered. It was found that for singlet state dicationic structures the concept of aromatic sextet could be applied and the local aromaticity could be discussed in the context of that model, whereas in the case of triplet state dicationic structures Clar's model rather failed. Different aromaticity indices based on various properties of molecular systems were applied for the purpose of the studies. The discussion about the interdependence between the values of different aromaticity indices applied to neutral and charged systems in singlet and triplet states is also included. This journal is © the Owner Societies 2011

  8. PHOTO-INDUCED POLYCYCLIC AROMATIC HYDROCARBON TOXIC POTENTIALS OF NEAR SHORE LARVAL FISH HABITAT IN THE GREAT LAKES, USA

    EPA Science Inventory

    Photo-induced toxicity (PIT) of polycyclic aromatic hydrocarbons (PAH) has been documented in laboratory studies for both invertebrate and vertebrate aquatic organisms. PIT has not been verified in field studies for larval fish to date. Filtered water samples and larval fish were...

  9. Polycyclic aromatic hydrocarbons in the bakery chain.

    PubMed

    Ciecierska, M; Obiedziński, M W

    2013-11-01

    The level of polycyclic aromatic hydrocarbons occurrence and the possibility of their formation in the bakery chain, its raw materials and final products, were examined. Experimental bread baking, with different baking temperatures, was performed in the Warsaw bakery, using cyclothermic deck ovens. PAHs determination was performed by high-pressure liquid chromatography with fluorescent and diode array detectors (HPLC-FLD/DAD) and confirmed by gas chromatography coupled with mass spectrometry (GC/MS). Total content of 19 PAHs in the grain, flour and bran varied from 1.07 to 3.65 μg/kg and, in bread, from 1.59 to 13.6 μg/kg depending on the part of bread and baking temperature. Based on the dough's contamination level and the influence of the baking temperature on the bread's PAHs content, it was confirmed that PAHs are formed during baking. Considering the results of the average dietary exposure to PAHs and the MOE (Margin of Exposure) analysis, it could be concluded that analysed bread and cereal products constitute little concern for consumer health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Photoacoustic spectroscopic studies of polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zaidi, Zahid H.; Kumar, Pardeep; Garg, R. K.

    1999-02-01

    Because of their involvement in environmental pollutants, in carcinogenic activity, plastics, pharmaceuticals, synthesis of some laser dyes and presence in interstellar space etc., Polycyclic aromatic hydrocarbons (PAHs) are important. As their structure and properties can be varied systematically, they form a beautiful class of molecules for experimental and quantum chemical investigations. These molecules are being studied for last several years by using conventional spectroscopy. In recent years, Photoacoustic (PA) spectroscopy has emerged as a new non-destructive technique with unique capability and sensitivity. The PA effect is the process of generation of acoustic waves in a sample resulting from the absorption of photons. This technique not only reveals non- radiative transitions but also provides information about forbidden singlet-triplet transitions which are not observed normally by the conventional spectroscopy. The present paper deals with the spectroscopic studies of some PAH molecules by PA spectroscopy in the region 250 - 400 nm. The CNDO/S-CI method is used to calculate the electronic transitions with the optimized geometries. A good agreement is found between the experimental and calculated results.

  11. Emissions of particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Fu Gui-shan Tunnel of Nanjing, China

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Hu, Wei; Zhong, Qin

    2013-04-01

    Real-world vehicle emission factors for PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and particle-phase polycyclic aromatic hydrocarbons (PAHs) from mixed vehicles were quantified in the Fu Gui-shan Tunnel of Nanjing during summer and winter of 2010. Concentrations of PM10 and sixteen particle phase polycyclic aromatic hydrocarbons (PAHs) in the entrance and exit of the tunnel were studied. The results showed that the four most abundant particular phase polycyclic aromatic hydrocarbons (PAHs) of motor vehicle were benzo[ghi]perylene, benzo[k]fluoranthene, benz[a]anthracene and benzo[a]pyrene. The emission factors for PM10 and particle-phase PAHs were 687 mg veh- 1 km- 1 and 18.853 mg veh- 1 km- 1 in summer, 714 mg veh- 1 km- 1 and 20.374 mg veh- 1 km- 1 in winter. Higher particle-phase PAH emission factors were found to be associated with a high proportion of diesel-fueled vehicles (DV). The estimated PM10 emission factor of gasoline-fueled vehicles (GV) was 513 mg veh- 1 km- 1 and the value for DV was 914 mg veh- 1 km- 1, while EFDV of particulate PAH (31.290 mg veh- 1 km- 1) was nearly 4 times higher than EFGV (9.310 mg veh- 1 km- 1). The five highest emission factors of diesel-fueled vehicles (DV) were benzo[ghi]perylene, benzo[k]fluoranthene, Indeno[1,2,3-cd]pyrene, benz[a]anthracene and benzo[a]pyrene, which was similarly found in the gasoline-fueled vehicles (GV). The sum of these five emission factors accounted for ~ 69% of the total particle-phase PAH of DV and ~ 67% of GV.

  12. Investigation of the combustion kinetics and polycyclic aromatic hydrocarbon emissions from polycaprolactone combustion.

    PubMed

    Chien, Y C; Yang, S H

    2013-01-01

    Polycaprolactone (PCL) is one of the most attractive biodegradable plastics that has been widely used in medicine and agriculture fields. Because of the large increase in biodegradable plastics usage, the production of waste biodegradable plastics will be increasing dramatically, producing a growing environmental problem. Generally, waste PCL is collected along with municipal solid wastes and then incinerated. This study investigates the combustion kinetics and emission factors of 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) in the PCL combustion. Experimentally, two reactions are involved in the PCL combustion process, possibly resulting in the emission of carbon dioxide, propanal, protonated caprolactone and very small amounts of PAH produced by incomplete combustion. The intermediate products may continuously be oxidized to form CO2. The emission factors for 16 US EPA priority PAHs are n.d. -2.95 microg/g, which are much lower than those of poly lactic acid and other plastics combustion. The conversion of PCL is 100%. Results from this work suggest that combustion is a good choice for the waste PCL disposal.

  13. New SERS Substrates For Polycyclic Aromatic Hydrocarbon (PAH) Detection: Towards Quantitative SERS Sensors For Environmental Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peron, O.; Laboratoire de Nanotechnologie et d'instrumentation Optique, Institut Charles Delaunay, FRE 2848, Universite de technologie de Troyes, 12 rue Marie Curie, 10010 Troyes; Rinnert, E.

    2010-08-06

    In the investigation of chemical pollutions, such as PAHs (Polycyclic Aromatic Hydrocarbons) at low concentration in aqueous medium, surface-enhanced Raman scattering (SERS) stands for an alternative to the inherent low cross-section of normal Raman scattering. Indeed, SERS is a very sensitive spectroscopic technique due to the excitation of the surface plasmon modes of the nanostructured metallic film.

  14. Webinar Presentation: Exposures to Polycyclic Aromatic Hydrocarbons and Childhood Growth Trajectories and Body Composition: Linkages to Disrupted Self-Regulatory Processes

    EPA Pesticide Factsheets

    This presentation, Exposures to Polycyclic Aromatic Hydrocarbons and Childhood Growth Trajectories and Body Composition: Linkages to Disrupted Self-Regulatory Processes, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Childhood Obesity

  15. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets.

    PubMed

    Yang, Xiaoyang; Liu, Shijie; Xu, Yisheng; Liu, Yu; Chen, Lijiang; Tang, Ning; Hayakawa, Kazuichi

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) are toxic pollutants mainly produced during fossil fuel combustion. Domestic coal stoves, which emit large amounts of PAHs and NPAHs, are widely used in the Chinese countryside. In this study, emission factors (Efs) for 13 PAH species and 21 NPAH species for four raw coal (three bituminous and one anthracite), one honeycomb briquette, and one crop residue pellet (peanut hulls) samples burned in a typical Chinese rural cooking stove were determined experimentally. The PAH and NPAH Efs for the six fuels were 3.15-49 mg/kg and 0.32-100 μg/kg, respectively. Peanut hulls had very high Efs for both PAHs and NPAHs, and honeycomb briquettes had the lowest Efs. 2-Nitropyrene and 2-nitrofluoranthene, which are NPAHs typically found in secondary organic aerosol, were detected in the emissions from some fuels, suggesting that chemical reactions may have occurred in the dilution tunnel between the flue gas leaving the stove and entering the sampler. The 1-nitropyrene to pyrene diagnostic ratios for coal and peanut hulls were 0.0001 ± 0.0001 and 0.0005, respectively. These were in the same order of magnitude as reference ratios for emissions during coal combustion. The 6-nitrobenzo[a]pyrene to benzo[a]pyrene ratios for the fuels were determined, and the ratios for coal and peanut hulls were 0.0010 ± 0.0001 and 0.0014, respectively. The calculated potential toxic risks indicated that peanut hull emissions were very toxic, especially in terms of NPAHs, compared with emissions from the other fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. LASER DESORPTION-IONIZATION OF POLYCYCLIC AROMATIC HYDROCARBONS FROM GLASS SURFACES WITH ION MOBILITY SPECTROMETRY ANALYSIS. (R826769)

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) were analyzed as adsorbates on borosilicate glass at levels from 40 pg (5.5 pg mm-2) to 7 small mu, Greekg (1 

  17. Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (Interagency Science Consultation Draft)

    EPA Science Inventory

    On February 26, 2010, the draft Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures document and the charge to external peer reviewers were released for external peer review and public comment. The draft document and t...

  18. Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang

    2014-05-21

    In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).

  19. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China.

    PubMed

    Zhang, Lifei; Dong, Liang; Ren, Lijun; Shi, Shuangxin; Zhou, Li; Zhang, Ting; Huang, Yeru

    2012-01-01

    The pollution from polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs) in the surface water of the rapidly urbanized Yangtze River Delta region was investigated. Fourteen surface water samples were collected in June 2010. Water samples were liquid-liquid extracted using methylene chloride and analyzed by gas chromatography-mass spectrometry. Concentrations of PAHs and PAEs ranged 12.9-638.1 ng/L and 61-28550 ng/L, respectively. Fluoranthene, naphthalene, pyrene, phenanthrene, di-2-ethylhexyl phthalate, and di-n-butyl phthalate were the most abundant compounds in the samples. The water samples were moderately polluted with benzo[a]pyrene according to China's environmental quality standard for surface water. The two highest concentrations of PAHs and PAEs occurred in samples from Taihu Lake, Wuxi City and the western section of Yangchenghu Lake. Potential sources of pollution at S7 were petroleum combustion and the plastics industry, and at Yangchenghu Lake were petroleum combustion and domestic waste. Pollution in samples from the Beijing-Hangzhou Grand Canal originated from diesel engines. There were no obvious sources of pollution for the other water samples. These results can be used as reference levels for future monitoring programs of pollution from PAHs and PAEs.

  20. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed Central

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-01-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007

  1. Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.

    PubMed

    Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J

    1995-10-01

    Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found.

  2. Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic.

    PubMed

    Liu, Lijing; Fokkink, Remco; Koelmans, Albert A

    2016-07-01

    Microplastic has become an emerging contaminant of global concern. Bulk plastic can degrade to form smaller particles down to the nanoscale (<100 nm), which are referred to as nanoplastics. Because of their high surface area, nanoplastic may bind hydrophobic chemicals very effectively, increasing their hazard when such nanoplastics are taken up by biota. The present study reports distribution coefficients for sorption of polycyclic aromatic hydrocarbons (PAHs) to 70 nm polystyrene in freshwater, and PAH adsorption isotherms spanning environmentally realistic aqueous concentrations of 10(-5)  μg/L to 1 μg/L. Nanopolystyrene aggregate state was assessed using dynamic light scattering. The adsorption isotherms were nonlinear, and the distribution coefficients at the lower ends of the isotherms were very high, with values up to 10(9) L/kg. The high and nonlinear sorption was explained from π-π interactions between the planar PAHs and the surface of the aromatic polymer polystyrene and was higher than for micrometer-sized polystyrene. Reduction of nanopolystyrene aggregate sizes had no significant effect on sorption, which suggests that the PAHs could reach the sorption sites on the pristine nanoparticles regardless of the aggregation state. Pre-extraction of the nanopolystyrene with C18 polydimethylsiloxane decreased sorption of PAHs, which could be explained by removal of the most hydrophobic fraction of the nanopolystyrene. Environ Toxicol Chem 2016;35:1650-1655. © 2015 SETAC. © 2015 SETAC.

  3. MEASUREMENT OF HIGH-MOLECULAR-WEIGHT POLYCYCLIC AROMATIC HYDROCARBONS IN SOILS BY PARTICLE BEAM HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) comprise a class of potentially hazardous compounds of concern to the U.S.EPA. The application of particle-beam (PB) liquid chromatography-mass spectrometry (LC-MS) to the measurement of high-molecular-weight PAHs was investigated. Instrume...

  4. Mid-Infrared Spectroscopy of Polycyclic Aromatic Nitrogen Heterocycles (PANHS) and their Ions

    NASA Technical Reports Server (NTRS)

    Mattioda, Andrew L.; Hudgin, Douglas; Bauschlicher, Charles W.; Alamandola, Louis J.

    2003-01-01

    In recent years, polycyclic aromatic nitrogen heterocycles (PANHs) have attracted a good deal of attention because of their potent carcinogenic and mutagenic properties, and their prevalence in our environment. Such species also play a prominent role in the chemistry of life up to and including the very nucleobases from which our DNA is constructed. Surprisingly, these compounds may even be common outside of our terrestrial environment. To wit, it is now widely accepted that polycyclic aromatic materials are abundant in space and represent a major reservoir of organic carbon in the interstellar medium and developing planetary systems. Given that nitrogen is the fourth most abundant chemically reactive element in space (surpassed only by hydrogen, carbon, and oxygen), it is entirely reasonable to suspect that PANHs may represent an important component of that organic reservoir. Motivated by their intrinsic merit and with special attention toward evaluating their exobiological significance, we have initiated a program to study the spectroscopic and chemical properties of P A " s under conditions relevant to extraterrestrial environments. Here we present the first results of that program-infrared spectroscopic measurements on a series of PANH"s in neutral and cationic forms, isolated in inert matrices at cryogenic temperatures.temperatures. The species studied include: 1 -, and 2-azabenz[a]anthracene, 1-, 2-, and 4- azachrysene, dibenz[a,h]acridine, and dibenz[a,J)acridine. The experimental measurements are also compared with theoretical spectra calculated using density functional theory. General spectroscopic trends observed in this series of compounds are discussed and the implications of these results for Astrophysics and Exobiology are considered.

  5. NMR shifts for polycyclic aromatic hydrocarbons from first-principles

    NASA Astrophysics Data System (ADS)

    Thonhauser, T.; Ceresoli, Davide; Marzari, Nicola

    We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the 1H and 13 shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.

  6. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1.

    PubMed

    Kumara, Manoj; Leon, Vladimir; De Sisto Materano, Angela; Ilzins, Olaf A; Galindo-Castro, Ivan; Fuenmayor, Sergio L

    2006-01-01

    We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm(-1) to 35.4 dN cm(-1) and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons.

  7. Determination of thiaarenes and polycyclic aromatic hydrocarbons in workplace air of an aluminum reduction plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, G.; Colmsjoe, A.; Oestman, C.

    1999-05-01

    Quantitation of a variety of tetra-, penta-, and hexacyclic aromatic sulfur heterocycles (thiaarenes) in workplace air of an aluminum reduction plant has been made by help of gas chromatography with atomic emission detection (GC-AED). Personal exposure to those thiaarenes and to polycyclic aromatic hydrocarbons depending on work categories has been evaluated. Summarized concentrations of the thiaarenes investigated have been found to be 0.4--19.0 {micro}g/m{sup 3}. When using sulfur selective AED, samples could be analyzed without a prior separation of the thiaarenes from the PAH. The present data indicate a contribution of thiaarenes to the overall toxicity of coal tar pitchmore » volatiles in this work environment.« less

  8. Direct spectroscopic evidence for ionized polycyclic aromatic hydrocarbons in the interstellar medium.

    PubMed

    Sloan, G C; Hayward, T L; Allamandola, L J; Bregman, J D; DeVito, B; Hudgins, D M

    1999-03-01

    Long-slit 8-13 micrometers spectroscopy of the nebula around NGC 1333 SVS 3 reveals spatial variations in the strength and shape of emission features that are probably produced by polycyclic aromatic hydrocarbons (PAHs). Close to SVS 3, the 11.2 micrometers feature develops an excess at approximately 10.8-11.0 micrometers and a feature appears at approximately 10 micrometers. These features disappear with increasing distance from the central source, and they show striking similarities to recent laboratory data of PAH cations, providing the first identification of emission features arising specifically from ionized PAHs in the interstellar medium.

  9. Polyaniline-coated cigarette filters as a solid-phase extraction sorbent for the extraction and enrichment of polycyclic aromatic hydrocarbon in water samples.

    PubMed

    Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya

    2016-06-01

    Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. REAL-TIME AND INTEGRATED MEASUREMENT OF POTENTIAL HUMAN EXPOSURE TO PARTICLE-BOUND POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) FROM AIRCRAFT EXHAUST

    EPA Science Inventory

    Real-time monitors and low-volume air samplers were used to measure the potential human exposure to airborne polycyclic aromatic hydrocarbon (PAH) concentrations during various flight-related and ground-support activities of C-130H aircraft at an Air National Guard base. Three...

  11. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid.more » Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.« less

  12. Absolute fragmentation cross sections in atom-molecule collisions: Scaling laws for non-statistical fragmentation of polycyclic aromatic hydrocarbon molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.; Gatchell, M.; Stockett, M. H.

    2014-06-14

    We present scaling laws for absolute cross sections for non-statistical fragmentation in collisions between Polycyclic Aromatic Hydrocarbons (PAH/PAH{sup +}) and hydrogen or helium atoms with kinetic energies ranging from 50 eV to 10 keV. Further, we calculate the total fragmentation cross sections (including statistical fragmentation) for 110 eV PAH/PAH{sup +} + He collisions, and show that they compare well with experimental results. We demonstrate that non-statistical fragmentation becomes dominant for large PAHs and that it yields highly reactive fragments forming strong covalent bonds with atoms (H and N) and molecules (C{sub 6}H{sub 5}). Thus nonstatistical fragmentation may be an effectivemore » initial step in the formation of, e.g., Polycyclic Aromatic Nitrogen Heterocycles (PANHs). This relates to recent discussions on the evolution of PAHNs in space and the reactivities of defect graphene structures.« less

  13. Hydroxypropyl cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimers as effective carbohydrate-solubilizers for polycyclic aromatic hydrocarbons.

    PubMed

    Choi, Jae Min; Jeong, Daham; Piao, Jinglan; Kim, Kyoungtea; Nguyen, Andrew Bao Loc; Kwon, Nak-Jung; Lee, Mi-Kyung; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho

    2015-01-12

    The removal of polycyclic aromatic hydrocarbons by soil washing using water is extremely difficult due to their intrinsic hydrophobic nature. In this study, the effective aqueous solubility enhancements of seven polycyclic aromatic hydrocarbons by chemically modified hydroxypropyl rhizobial cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimer have been investigated for the first time. In the presence of hydroxypropyl cyclic β-(1 → 2)-D-glucans, the solubility of benzo[a]pyrene is increased up to 38 fold of its native solubility. The solubility of pyrene and phenanthrene dramatically increased up to 160 and 359. Coronene, chrysene, perylene, and fluoranthene also show an increase of 11, 23, 23, and 97 fold, respectively, of enhanced solubility by complexation with synthetic epichlorohydrin β-cyclodextrin dimer. The physicochemical properties of the complex are characterized by Fourier-transform infrared spectra and differential scanning calorimetry. Utilizing a scanning electron microscopy, the morphological structures of native benzo[a]pyrene, pyrene, phenanthrene, coronene, chrysene, perylene, fluoranthene and their complex with novel carbohydrate-solubilizers are studied. These results elucidate that polycyclic aromatic hydrocarbons are able to form an efficient complex with hydroxypropyl cyclic β-(1 → 2)-D-glucans and β-cyclodextrin dimer, suggesting the potential usage of chemically modified novel carbohydrate-solubilizers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Theoretical Infrared Spectra for Polycyclic Aromatic Hydrocarbon Neutrals, Cations and Anions

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.

    1995-01-01

    Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of the neutrals and cations of thirteen polycyclic aromatic hydrocarbons (PAHs) up to the size of ovalene. Calculations are also carried out for a few PAH anions. The DFT harmonic frequencies, when uniformly scaled by the factor of 0.958 to account primarily for anharmonicity, agree with the matrix isolation fundamentals to within an average error of about 10 per centimeter. Electron correlation is found to significantly reduce the intensities of many of the cation harmonics, bringing them into much better agreement with the available experimental data. While the theoretical infrared spectra agree well with the experimental data for the neutral systems and for many of the cations, there are notable discrepancies with the experimental matrix isolation data for some PAH cations that are difficult to explain in terms of limitations in the calculations. In agreement with previous theoretical work, the present calculations show that the relative intensities for the astronomical unidentified infrared (UIR) bands agree reasonably well with those for a distribution of polycyclic aromatic hydrocarbon (PAH) cations, but not with a distribution of PAH neutrals. We also observe that the infrared spectra of highly symmetrical cations such as coronene agree much better with astronomical observations than do those of, for example, the polyacenes such as tetracene and pentacene. The total integrated intensities for the neutral species are found to increase linearly with size, while the total integrated intensities are much larger for the cations and scale more nearly quadratically with size. We conclude that emission from moderate-sized highly symmetric PAH cations such as coronene and larger could account for the UIR bands.

  15. Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation.

    PubMed

    Su, X M; Bamba, A M; Zhang, S; Zhang, Y G; Hashmi, M Z; Lin, H J; Ding, L X

    2018-04-01

    The bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated sites is not running smoothly, because of the lower activity of PAH-degrading bacteria in actual bioremediation applications. The phenomenon of "viable but nonculturable" (VBNC) state may be a main limiting factor for their poor biodegradation capabilities of PAHs. Due to their abilities of entering into the VBNC state, most of bacterial populations with PAH-degradation potential remain unculturable. Resuscitation of VBNC bacteria will enhance the degradation capability of indigenous bacteria which will eventually obtain their better capabilities in environmental bioremediation. Although evidences have been presented indicating that resuscitation of VBNC bacteria in polychlorinated biphenyl (PCB)-contaminated environments not only significantly enhanced PCB degradation, but also obtained novel highly efficient PCB-degrading bacteria, scanty information is available on the VBNC bacteria in PAH-contaminated sites. VBNC bacteria, as a vast majority of potential microbial resource could be the repository of novel highly efficient PAH-biodegraders. Therefore, studies need to be done on resuscitation of VBNC bacteria to overcome key bottlenecks in bioremediation of PAH-contaminated sites. This mini-review provides a new insight into the potential functions of VBNC bacteria in PAHs biodegradation. As the vast majority microbial resource, viable but nonculturable (VBNC) bacteria, which showed their potential functions in polycyclic aromatic hydrocarbons (PAHs) biodegradation, can be of great significance in environmental bioremediation. It is therefore important to resuscitate VBNC bacteria for their better capabilities. Meanwhile, preventing the indigenous functional community from entering into the VBNC state will also maintain the high activity of PAH-degrading bacteria in actual bioremediation applications. Undoubtedly, much more work needs to be done to reveal indigenous micro-organisms in the

  16. Evidence that Polycyclic Aromatic Hydrocarbons in Two Carbonaceous Chondrites Predate Parent-Body Formation

    NASA Technical Reports Server (NTRS)

    Plows, F. L.; Elsila, J. E.; Zare, R. N.; Buseck, P. R.

    2003-01-01

    Organic material in meteorites provides insight into the cosmochemistry of the early solar system. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende and Murchison carbonaceous chondrites was investigated using spatially resolved microprobe laser-desorption laser-ionization mass spectrometry. Sharp chemical gradients of PAHs are associated with specific meteorite features. The ratios of various PAH intensities relative to the smallest PAH, naphthalene, are nearly constant across the sample. These findings suggest a common origin for PAHs dating prior to or contemporary with the formation of the parent body, consistent with proposed interstellar formation mechanisms.

  17. INFLUENCE OF SOOT CARBON ON THE BIOACCULUMATION OF SEDIMENT-BOUND POLYCYCLIC AROMATIC HYDROCARBONS BY MARINE BENTHIC INVERTEBRATES: AN INTERSPECIES COMPARISON

    EPA Science Inventory

    The sorption of polycyclic aromatic hydrocarbons (PAHs) to soot carbon in marine sediments has been hypothesized to reduce PAH bioavailability. This hypothesis was tested for eight species of marine benthic invertebrates (four polychaete worms, Clymenella torquata, Nereis virens,...

  18. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Compounds and Their Ions. 7; Phenazine, a Dual Substituted Polycyclic Aromatic Nitrogen Heterocycle

    NASA Technical Reports Server (NTRS)

    Mattioda, A. L.; Hudgins, D. M.; Bauschlicher, C. W., Jr.; Allamandola, L. J.

    2004-01-01

    The matrix-isolation technique has been employed to measure the mid-infrared spectra of phenazine (C12H8N2), a dual substituted Polycyclic Aromatic Nitrogen Heterocycle (PANH), in the neutral, cationic and anionic forms. The experimentally measured band frequencies and intensities are tabulated and compared with their calculated values as well as those of the non-substituted parent molecule, anthracene. The theoretical band positions and intensities were calculated using both the 3-31 G as well as the larger 6-3lG* Basis Sets. A comparison of the results can be found in the tables. The spectroscopic properties of phenazine and its cation are similar to those observed in mono-substituted PANHs, with one exception. The presence of a second nitrogen atom results in an additional enhancement of the cation's total integrated intensity, for the 1500-1000 cm(sup -1) (6.7 to 10 micron) region, over that observed for a mono-substituted PANH cation. The significance of this enhancement and the astrobiological implications of these results are discussed.

  19. Serum adipocyte-fatty acid binding protein (FABP4) levels in women from Mexico exposed to polycyclic aromatic hydrocarbons (PAHs).

    PubMed

    Ochoa-Martínez, Ángeles C; Ruíz-Vera, Tania; Pruneda-Álvarez, Lucia G; González-Palomo, Ana K; Almendarez-Reyna, Claudia I; Pérez-Vázquez, Francisco J; Pérez-Maldonado, Iván N

    2017-01-01

    Recent studies indicate that exposure to polycyclic aromatic hydrocarbons (PAHs) is a very important risk factor for the development of cardiovascular diseases (CVDs). Correspondingly, adipocyte-fatty acid binding protein (FABP4, also known as aP2 and AFABP) has been proposed as a new, meaningful and useful biomarker to predict metabolic and cardiovascular diseases. Therefore, the aim of this study was to evaluate serum FABP4 levels in Mexican women exposed to PAHs. Urinary 1-hydroxypyrene ((1-OHP), exposure biomarker for PAHs) levels were quantified using a high-performance liquid chromatography (HPLC) technique, and serum FABP4 concentrations were analyzed using a commercially available ELISA kit. The mean urinary 1-OHP level found in women participating in this study was 1.30 ± 1.10 μmol/mol creatinine (2.45 ± 2.10 μg/g creatinine). Regarding serum FABP4 concentrations, the levels ranged from 3.80 to 62.5 ng/mL in the assessed population. Moreover, a significant association (p < 0.001) was found between urinary 1-OHP levels and serum FABP4 concentrations in women after adjusting for potential confounding variables. The presented data in this study can be considered only as a starting point for further studies. Then, in order to elucidate whether FABP4 represents a risk factor for CVD disease in humans exposed to air contaminants (such as PAHs), large epidemiological studies are necessary.

  20. Polycyclic aromatic hydrocarbon-DNA adducts in Beluga whales from the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, A.; Payne, J.F.; Fancey, L.L.

    1997-09-01

    The Arctic is still relatively pristine in nature, but it is also vulnerable to pollution because contaminants originating from midlatitudes are transported to the Arctic by atmospheric processes, ocean currents, and river. Recognition of this fact of Arctic vulnerability has resulted in a Declaration on the Protection of the Arctic Environment by eight Arctic countries. A manifest aim of this declaration is to develop an Arctic Monitoring and Assessment Program. We report here on the presence of measurable levels of polycyclic aromatic hydrocarbon-DNA adducts, including relatively high levels in Arctic beluga (Delphinapterus leucas). These results lend support to the valuemore » of developing biological assessment programs for Arctic wildlife. 15 refs., 1 tab.« less

  1. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves

    EPA Science Inventory

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...

  2. Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents.

    PubMed

    Xi, Zemin; Chen, Baoliang

    2014-04-01

    Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorption kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorption coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of

  3. Novel Palm Fatty Acid Functionalized Magnetite Nanoparticles for Magnetic Solid-Phase Extraction of Trace Polycyclic Aromatic Hydrocarbons from Environmental Samples.

    PubMed

    Rozi, Siti Khalijah Mahmad; Nodeh, Hamid Rashidi; Kamboh, Muhammad Afzal; Manan, Ninie Suhana Abdul; Mohamad, Sharifah

    2017-07-01

    A novel adsorbent, palm fatty acid coated magnetic Fe 3 O 4 nanoparticles (MNP-FA) was successfully synthesized with immobilization of the palm fatty acid onto the surface of MNPs. The successful synthesis of MNP-FA was further confirmed by X-Ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray spectroscopy (EDX) analyses and water contact angle (WCA) measurement. This newly synthesized MNP-FA was applied as magnetic solid phase extraction (MSPE) adsorbent for the enrichment of polycyclic aromatic hydrocarbons (PAHs), namely fluoranthene (FLT), pyrene (Pyr), chrysene (Cry) and benzo(a)pyrene (BaP) from environmental samples prior to High Performance Liquid Chromatography- Diode Array Detector (HPLC-DAD) analysis. The MSPE method was optimized by several parameters such as amount of sorbent, desorption solvent, volume of desorption solvent, extraction time, desorption time, pH and sample volume. Under the optimized conditions, MSPE method provided a low detection limit (LOD) for FLT, Pyr, Cry and BaP in the range of 0.01-0.05 ng mL -1 . The PAHs recoveries of the spiked leachate samples ranged from 98.5% to 113.8% with the RSDs (n = 5) ranging from 3.5% to 12.2%, while for the spiked sludge samples, the recoveries ranged from 81.1% to 119.3% with the RSDs (n = 5) ranging from 3.1% to 13.6%. The recyclability study revealed that MNP-FA has excellent reusability up to five times. Chromatrographic analysis demonstrated the suitability of MNP-FA as MSPE adsorbent for the efficient extraction of PAHs from environmental samples.

  4. Polycyclic Aromatic Hydrocarbons in Electrocautery Smoke during Peritonectomy Procedures

    PubMed Central

    Näslund Andréasson, Sara; Mahteme, Haile; Sahlberg, Bo; Anundi, Helena

    2012-01-01

    Objective. This study identified and quantified polycyclic aromatic hydrocarbons (PAHs) in electrocautery smoke during 40 peritonectomy procedures and investigated any correlations and/or differences between levels of PAHs and perioperative variables. Methods. PAHs were measured in personal and stationary sampling by 40 mm Millipore cassettes, for adsorption of both gaseous and particle-bound PAHs. Results. All 16 USEPA priority pollutant PAHs were detected during peritonectomy procedures, naphthalene being the most abundant. For the only two PAHs with Swedish occupational exposure limits (OELs), benzo[a]pyrene and naphthalene, limits were never exceeded. Amount of bleeding was the only perioperative variable that correlated with levels of PAHs. Conclusions. Low levels of PAHs were detected in electrocautery smoke during peritonectomy procedures, and an increased amount of bleeding correlated with higher levels of PAHs. For evaluation of long-term health effects, more studies are needed. PMID:22685482

  5. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    PubMed

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Urinary polycyclic aromatic hydrocarbon biomarkers and diabetes mellitus.

    PubMed

    Alshaarawy, Omayma; Zhu, Motao; Ducatman, Alan M; Conway, Baqiyyah; Andrew, Michael E

    2014-06-01

    The aim of the current study is to investigate the association of polycyclic aromatic hydrocarbons (PAHs), a group of environmental pollutants, with diabetes mellitus. Animal studies link PAHs to inflammation and subsequent development of diabetes mellitus. In addition, occupational studies suggest that exposure to other aromatic hydrocarbons such as dioxins may be associated with diabetes risk in humans. We examined participants from the merged National Health and Nutrition Examination Survey 2001-2002, 2003-2004 and 2005-2006. Exposures of interest were eight urinary monohydroxy-PAHs. Our outcome was diabetes mellitus defined as a glycohemoglobin level (HbA1c) ≥6.5%, a self-reported physician diagnosis of diabetes or use of oral hypoglycaemic medication or insulin. Analyses were adjusted for age, sex, body mass index, race, alcohol consumption, poverty-income ratio, total cholesterol and serum cotinine. We observed a positive association between urinary biomarkers of 1 and 2-hydroxynapthol, 2-hydroxyphenanthrene and summed low molecular weight (LMW) PAH biomarkers, and diabetes mellitus. Compared with participants with summed LMW PAH biomarkers in the lowest quartile, the multivariable-adjusted OR of diabetes mellitus among those in the highest quartile was 3.1 (95% CI 1.6 to 5.8). Urinary biomarkers of 1 and 2-hydroxynapthol, 2-hydroxyphenanthrene and summed LMW PAH biomarkers are associated with diabetes mellitus in US adults 20-65 years of age. The association of a one-time biomarker of PAH exposure has limitations commonly associated with cross-sectional studies, yet is consistent with experimental animal data and is worthy of additional consideration.

  7. Deuterium enrichment of polycyclic aromatic hydrocarbons by photochemically induced exchange with deuterium-rich cosmic ices

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.; Gillette, J. S.; Zare, R. N.

    2000-01-01

    The polycyclic aromatic hydrocarbon (PAH) coronene (C24H12) frozen in D2O ice in a ratio of less than 1 part in 500 rapidly exchanges its hydrogen atoms with the deuterium in the ice at interstellar temperatures and pressures when exposed to ultraviolet radiation. Exchange occurs via three different chemical processes: D atom addition, D atom exchange at oxidized edge sites, and D atom exchange at aromatic edge sites. Observed exchange rates for coronene (C24H12)-D2O and d12-coronene (C24D12)-H2O isotopic substitution experiments show that PAHs in interstellar ices could easily attain the D/H levels observed in meteorites. These results may have important consequences for the abundance of deuterium observed in aromatic materials in the interstellar medium and in meteorites. These exchange mechanisms produce deuteration in characteristic molecular locations on the PAHs that may distinguish them from previously postulated processes for D enrichment of PAHs.

  8. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-11-15

    Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad(®) 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC>unmodified bentonite>Arquad-bentonite). The MIOC variably increased the microbial count (10-43%) as well as activities (respiration 3-44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Polycyclic aromatic hydrocarbon analysis with the Mars organic analyzer microchip capillary electrophoresis system.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Scherer, James R; Mathies, Richard A

    2009-01-15

    The Mars Organic Analyzer (MOA), a portable microchip capillary electrophoresis (CE) instrument developed for sensitive amino acid analysis on Mars, is used to analyze laboratory standards and real-world samples for polycyclic aromatic hydrocarbons (PAHs). The microfabricated CE separation and analysis method for these hydrophobic analytes is optimized, resulting in a separation buffer consisting of 10 mM sulfobutylether-beta-cyclodextrin, 40 mM methyl-beta-cyclodextrin, 5 mM carbonate buffer at pH 10, 5 degrees C. A PAH standard consisting of seven PAHs found in extraterrestrial matter and two terrestrial PAHs is successfully baseline separated. Limits of detection for the components of the standard ranged from 2000 ppm to 6 ppb. Analysis of an environmental contamination standard from Lake Erie and of a hydrothermal vent chimney sample from the Guaymas Basin agreed with published composition. A Martian analogue sample from the Yungay Hills region of the Atacama Desert was analyzed and found to contain 9,10-diphenylanthracene, anthracene, anthanthrene, fluoranthene, perylene, and benzo[ghi]fluoranthene at ppm levels. This work establishes the viability of the MOA for detecting and analyzing PAHs in in situ planetary exploration.

  10. Separation and characterization of polycyclic aromatic hydrocarbons and alkylphenols in coal derived solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurtubise, R.J.; Allen, T.W.; Hussain, A.

    1981-03-29

    Dry-column chromatography with an aluminum oxide stationary phase and a n-hexane-ether (19:1) mobile phase was used to separate polycyclic aromatic hydrocarbons (PAH) by ring size. Prior to the dry-column chromatography step, the coal derived solvents were added to an acid treated silica gel column and eluted with chloroform. This step removed pyridine-type nitrogen heterocycles. After separation of the individual ring fractions, the fractions were further separated by either thin layer chromatography (TLC) or high performance liquid chromatography (HPLC). If TLC was used, then after separation fluorescence profiles of each PAH ring fraction distributed on 30%-acetylated cellulose chromatoplates were obtained withmore » a spectrodensitometer. Measurement of fluorescence peak heights gave an approximate measure of the amount of the 3-, 4-, 5-, and 6- ring PAH. For HPLC separation, the 3- and 4- ring PAH fractions obtained from the dry-column chromatography step were separated with a ..mu..-Bondapak C/sub 18/ column and methanol:water (65:35) mobile phase. The HPLC separated PAH were characterized by chromatographic correlation factors and corrected fluorescence excitation spectra. Alkylphenols were identified in coal recycle solvent sample following separation by HPLC.« less

  11. Optimization of multiwalled carbon nanotubes reinforced hollow-fiber solid-liquid-phase microextraction for the determination of polycyclic aromatic hydrocarbons in environmental water samples using experimental design.

    PubMed

    Hamedi, Raheleh; Hadjmohammadi, Mohammad Reza

    2017-09-01

    A novel design of hollow-fiber liquid-phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol-gel technique, was developed for the pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid- and liquid-phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2  = 0.99) in the range of 0.01-500 ng/mL and the limits of detection were in the range of 0.007-1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85-92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre-concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water.

    PubMed

    Muñoz, Jose; Navarro-Senent, Cristina; Crivillers, Nuria; Mas-Torrent, Marta

    2018-04-14

    Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L -1 ) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).

  13. Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium.

    PubMed

    Zhao, Baisuo; Wang, Hui; Li, Ruirui; Mao, Xinwei

    2010-05-01

    A polycyclic aromatic hydrocarbon-degrading marine bacterium, designated strain P-4(T), was isolated from oil-polluted saline soil in Xianhe, Shangdong Province, China. Strain P-4(T) was Gram-negative-staining with curved to spiral rod-shaped cells and grew optimally with 3-6 % (w/v) NaCl and at 30 degrees C. The predominant fatty acids were C(18 : 1)omega7c (35.0 %), C(16 : 0) (25.0 %), C(16 : 1)omega7c (17.9 %), C(14 : 0) (6.2 %) and C(17 : 0) cyclo (5.2 %). The major respiratory quinone was Q-9 and the genomic DNA G+C content was 61.2+/-1.0 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain P-4(T) belonged to the genus Thalassospira of the class Alphaproteobacteria. DNA-DNA hybridization with Thalassospira xiamenensis DSM 17429(T) showed relatedness of 36.0 %, and lower values were obtained with respect to other Thalassospira species. Based on physiological and biochemical tests and 16S rRNA gene sequence analysis as well as DNA-DNA relatedness, strain P-4(T) should be placed in the genus Thalassospira within a novel species. The name Thalassospira xianhensis sp. nov. is proposed, with P-4(T) (=CGMCC 1.6849(T) =JCM 14850(T)) as the type strain.

  14. Polycyclic Aromatic Hydrocarbons Content in Contaminated Forest Soils with Different Humus Types.

    PubMed

    Lasota, Jarosław; Błońska, Ewa

    2018-01-01

    The aim of the study was to determine polycyclic aromatic hydrocarbon (PAH) content in different forest humus types. The investigation was carried out in Chrzanów Forest District in southern Poland. Twenty research plots with different humus types (mor and mull) were selected. The samples for analysis were taken after litter horizons removing from a depth of 0-10 cm (from the Of- and Oh-horizon total or A-horizon). pH, organic carbon and total nitrogen content, base cations, acidity, and heavy metal content were determined. In the natural moisture state, the activity of dehydrogenase was determined. The study included the determination of PAH content. The conducted research confirms strong contamination of study soil by PAHs and heavy metals. Our experiment provided evidence that different forest humus types accumulate different PAH amounts. The highest content of PAHs and heavy metals was recorded in mor humus type. The content of PAHs in forest humus horizon depends on the content and quality of soil organic matter. Weaker degradation of hydrocarbons is associated with lower biological activity of soils. The mull humus type showed lower content of PAHs and at the same time the highest biological activity confirmed by high dehydrogenase activity.

  15. Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Hudgins, D. M.; Sandford, S. A.

    1999-01-01

    The infrared emission band spectrum associated with many different interstellar objects can be modeled successfully by using combined laboratory spectra of neutral and positively charged polycyclic aromatic hydrocarbons (PAHs). These model spectra, shown here for the first time, alleviate the principal spectroscopic criticisms previously leveled at the PAH hypothesis and demonstrate that mixtures of free molecular PAHs can indeed account for the overall appearance of the widespread interstellar infrared emission spectrum. Furthermore, these models give us insight into the structures, stabilities, abundances, and ionization balance of the interstellar PAH population. These, in turn, reflect conditions in the emission zones and shed light on the microscopic processes involved in the carbon nucleation, growth, and evolution in circumstellar shells and the interstellar medium.

  16. Synthesis of polycyclic aromatic hydrocarbon-protein conjugates for preparation and immunoassay of antibodies.

    PubMed

    Glushkov, Andrey N; Kostyanko, Mikhail V; Cherno, Sergey V; Vasilchenko, Ilya L

    2002-04-01

    The method is described dealing with the synthesis of conjugates protein-polycyclic aromatic hydrocarbons (PAHs), highly soluble in water, stable without special stabilizers and containing the minimum quantity of cross-linked products. The reaction of protein with PAH containing an aldehyde group, has been carried out in an alkaline solution, and stabilization of the conjugate has been achieved by reduction with sodium borohydride in the presence of a compound blocking the formation of an insoluble polymeric fraction. The efficiency of synthesized conjugates for the induction and immunoassay of Abs to PAH for benzo[a]pyrene is shown.

  17. Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2004-01-01

    In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system

  18. RELATING DAILY SOLAR ULTRAVIOLET RADIATION DOSE IN SALT MARSH-ASSOCIATED ESTUARINE SYSTEMS TO LABORATORY ASSESSMENTS OF PHOTOACTIVATED POLYCYCLIC AROMATIC HYDROCARBON TOXICITY

    EPA Science Inventory

    Estuaries of the southeastern United States not only serve an important nursery function but also are common repositories of polycyclic aromatic hydrocarbons (PAHs) derived from upland activities. Thus, these habitats may be at risk for PAHphototoxicity. To better characterize ...

  19. Glutathione S-transferase-encoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons.

    PubMed Central

    Lloyd-Jones, G; Lau, P C

    1997-01-01

    Homologs of the glutathione S-transferase (GST)-encoding gene were identified in a collection of aromatic hydrocarbon-degrading Sphingomonas spp. isolated from New Zealand, Antarctica, and the United States by using PCR primers designed from the GST-encoding gene of Sphingomonas paucimobilis EPA505. Sequence analysis of PCR fragments generated from these isolates and of the GST gene amplified from DNA extracted from polycyclic aromatic hydrocarbon (PAH)-contaminated soil revealed a high degree of conservation, which may make the GST-encoding gene a potentially useful marker for PAH-degrading bacteria. PMID:9251217

  20. Amperometric Immunosensors for screening of Polycyclic Aromatic Hydrocarbons in water

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Paschero, A.; Moore, E.

    2011-08-01

    An amperometric immunosensor with low limit detection was developed for the screening of polycyclic aromatic hydrocarbons (PAHs) in water. The system was based on detecting the specific substance using an immunological reaction by measuring the chemical responses to specific antibodies. An integrated biochip with a three electrode system was fabricated. Gold was used as the working electrode with platinum was used as the counter electrode. A modified Ag/AgCl reference electrode was employed to enhance the stability of the immunosensors. Indirect competition enzyme-linked immunosorbent assay (ELISA) was carried out within the electrode using alkaline phosphatase (AP) as the labelled-enzyme. The system shows acceptable reproducibility and good stability. The immunosensor exhibited a wide linear response to PAHs. A limit of detection for this sensor was in the range of 1 to 10 ng ml-1 in aqueous sample.

  1. Suspended particulate matter collection methods influence the quantification of polycyclic aromatic compounds in the river system.

    PubMed

    Abuhelou, Fayez; Mansuy-Huault, Laurence; Lorgeoux, Catherine; Catteloin, Delphine; Collin, Valéry; Bauer, Allan; Kanbar, Hussein Jaafar; Gley, Renaud; Manceau, Luc; Thomas, Fabien; Montargès-Pelletier, Emmanuelle

    2017-10-01

    In this study, we compared the influence of two different collection methods, filtration (FT) and continuous flow field centrifugation (CFC), on the concentration and the distribution of polycyclic aromatic compounds (PACs) in suspended particulate matter (SPM) occurring in river waters. SPM samples were collected simultaneously with FT and CFC from a river during six sampling campaigns over 2 years, covering different hydrological contexts. SPM samples were analyzed to determine the concentration of PACs including 16 polycyclic aromatic hydrocarbons (PAHs), 11 oxygenated PACs (O-PACs), and 5 nitrogen PACs (N-PACs). Results showed significant differences between the two separation methods. In half of the sampling campaigns, PAC concentrations differed from a factor 2 to 30 comparing FT and CFC-collected SPMs. The PAC distributions were also affected by the separation method. FT-collected SPM were enriched in 2-3 ring PACs whereas CFC-collected SPM had PAC distributions dominated by medium to high molecular weight compounds typical of combustion processes. This could be explained by distinct cut-off threshold of the two separation methods and strongly suggested the retention of colloidal and/or fine matter on glass-fiber filters particularly enriched in low molecular PACs. These differences between FT and CFC were not systematic but rather enhanced by high water flow rates.

  2. DEPENDENCY OF POLYCHLORINATED BIPHENYL AND POLYCYCLIC AROMATIC HYDROCARBON BIOACCUMULATION IN MYA ARENARIA ON BOTH WATER COLUMN AND SEDIMENT BED CHEMICAL ACTIVITIES

    EPA Science Inventory

    The bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) by the filter-feeding soft-shell clam Mya arenaria was evaluated at three sites near Boston (MA, USA) by assessing the chemical activities of those hydrophobic organic compounds (H...

  3. The Influence of Multiwalled Carbon Nanotubes on Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability and Toxicity to Soil Microbial Communities in Alfalfa Rhizosphere

    USDA-ARS?s Scientific Manuscript database

    Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...

  4. Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants....mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    A multi-class, multi-residue method for the analysis of 13 novel flame retardants, 18 representative pesticides, 14 polychlorinated biphenyl (PCB) congeners, 16 polycyclic aromatic hydrocarbons (PAHs), and 7 polybrominated diphenyl ether (PBDE) congeners in catfish muscle was developed and evaluated...

  5. Association of 16 priority polycyclic aromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention.

    PubMed

    Chen, Weixiao; Wang, Hui; Gao, Qian; Chen, Yin; Li, Senlin; Yang, Yu; Werner, David; Tao, Shu; Wang, Xilong

    2017-11-01

    To elucidate the environmental fate of polycyclic aromatic hydrocarbons (PAHs) once released into soil, sixteen humic acids (HAs) and one humin (HM) fractions were sequentially extracted from a peat soil, and sixteen priority PAHs in these humic substances (HSs) were analyzed. It was found that the total concentration of 16 PAHs (∑16PAHs) increased evidently from HA1 to HA16, and then dramatically reached the highest value in HM. The trend of ∑16PAHs in HAs relates to surface carbon and C-H/C-C contents, the bulk aliphatic carbon content and aliphaticity, as well as the condensation enhancement of carbon domains, which were derived from elemental composition, XPS, 13 C NMR, as well as thermal analyses. HM was identified to be the dominant sink of 16 PAHs retention in soil, due to its aliphatic carbon-rich chemical composition and the highly condensed physical makeup of its carbon domains. This study highlights the joint roles of the physical and chemical properties of HSs in retention of PAHs in soil and the associated mechanisms; the results are of significance for PAH-polluted soil risk assessment and remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Infrared spectroscopy of hydrated polycyclic aromatic hydrocarbon cations: naphthalene+-water.

    PubMed

    Chatterjee, Kuntal; Dopfer, Otto

    2017-12-13

    Polycyclic aromatic hydrocarbons (PAHs) are suggested to occur in interstellar media and ice grains. It is important to characterize hydrated PAHs and their cations to explore their stability in interstellar and biological media. Herein, the infrared photodissociation (IRPD) spectrum of the naphthalene + -H 2 O radical cation (Np + -H 2 O) recorded in the O-H and C-H stretch range is analysed by dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level to determine its structure and intermolecular bonding. Monohydration of Np + in its 2 A u ground electronic state leads to the formation of a bifurcated CHO ionic hydrogen bond (H-bond), in which the lone pairs of H 2 O bind to two adjacent CH proton donors of the two aromatic rings. The frequency-dependent branching ratios observed for IRPD of cold Np + -H 2 O-Ar clusters allows the estimation of the dissociation energy of Np + -H 2 O as D 0 ∼ 2800 ± 300 cm -1 . The monohydration motif of Np + differs qualitatively from that of the benzene cation in both structure and binding energy, indicating the strong influence of the multiple aromatic rings on the hydration of PAH + cations. This difference is rationalized by natural bond orbital analysis of the ionic H-bond motif. Comparison with neutral Np-H 2 O reveals the large change in structure and bond strength of the hydrated PAHs upon ionization. While neutral Np-H 2 O is stabilized by weak π H-bonds (OHπ, π-stacking), strong cation-dipole forces favour a planar bifurcated CHO ionic H-bond in Np + -H 2 O.

  7. Polycyclic aromatic hydrocarbons in soils and crops after irrigation of wastewater discharged from domestic sewage treatment plants.

    PubMed

    Chung, N J; Cho, J Y; Park, S W; Park, B J; Hwang, S A; Park, T I

    2008-08-01

    The effects of domestic wastewater application on the translocation and accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil and crops (rice, lettuce, and barley) were investigated by Wagner's pot experiment. In the soils and crops after domestic wastewater irrigation, high-molecular weight PAHs (5 to 6 ring) were not detected, but low-molecular weight PAHs (3 to 4 ring) were only detected at trace levels.

  8. Synthesis of extended polycyclic aromatic hydrocarbons by oxidative tandem spirocyclization and 1,2-aryl migration

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Xu, Zhanqiang; Si, Weili; Oniwa, Kazuaki; Bao, Ming; Yamamoto, Yoshinori; Jin, Tienan

    2017-04-01

    The extended polycyclic aromatic hydrocarbons (PAHs) have received significant interdisciplinary attention due to their semiconducting applications in diverse organic electronics as well as intriguing structural interests of well-defined graphene segments. Herein, a highly efficient oxidative spirocyclization and 1,2-aryl migration tandem synthetic method for the construction of extended polyaromatic hydrocarbons (PAHs) has been developed. The CuCl-catalyst/PhCO3 tBu or DDQ oxidation system in the presence of trifluoroacetic acid enables the selective single-electron oxidation to take place preferentially at the more electron-rich alkene moiety of o-biphenylyl-substituted methylenefluorenes, giving rise to the subsequent tandem process. A variety of structurally diverse extended PAHs including functionalized dibenzo[g,p]chrysenes, benzo[f]naphtho[1,2-s]picene, hexabenzo[a,c,fg,j,l,op]tetracene, tetrabenzo[a,c,f,m]phenanthro[9,10-k]tetraphene, tetrabenzo[a,c,f,k]phenanthro[9,10-m]tetraphene, tetrabenzo[a,c,f,o]phenanthro[9,10-m]picene and S-type helicene have been readily synthesized.

  9. DIFFUSIVE EXCHANGE OF GASEOUS POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS ACROSS THE AIR-WATER INTERFACE OF THE CHESAPEAKE BAY. (R825245)

    EPA Science Inventory

    Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...

  10. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  11. Variations in the 6.2 μm emission profile in starburst-dominated galaxies: a signature of polycyclic aromatic nitrogen heterocycles (PANHs)?

    NASA Astrophysics Data System (ADS)

    Canelo, Carla M.; Friaça, Amâncio C. S.; Sales, Dinalva A.; Pastoriza, Miriani G.; Ruschel-Dutra, Daniel

    2018-04-01

    Analyses of the polycyclic aromatic hydrocarbon (PAH) feature profiles, especially the 6.2 μm feature, could indicate the presence of nitrogen incorporated in their aromatic rings. In this work, 155 predominantly starburst-dominated galaxies (including H II regions and Seyferts, for example), extracted from the Spitzer/Infrared Spectrograph ATLAS project, have their 6.2 μm profiles fitted allowing their separation into the Peeters' A, B, and C classes. 67 per cent of these galaxies were classified as class A, 31 per cent were as class B, and 2 per cent as class C. Currently, class A sources, corresponding to a central wavelength near 6.22 μm, seem only to be explained by polycyclic aromatic nitrogen heterocycles (PANHs), whereas class B may represent a mix between PAHs and PANHs emissions or different PANH structures or ionization states. Therefore, these spectra suggest a significant presence of PANHs in the interstellar medium (ISM) of these galaxies that could be related to their starburst-dominated emission. These results also suggest that PANHs constitute another reservoir of nitrogen in the Universe, in addition to the nitrogen in the gas phase and ices of the ISM.

  12. Polygonal current models for polycyclic aromatic hydrocarbons and graphene sheets of various shapes.

    PubMed

    Pelloni, Stefano; Lazzeretti, Paolo

    2018-01-05

    Assuming that graphene is an "infinite alternant" polycyclic aromatic hydrocarbon resulting from tessellation of a surface by only six-membered carbon rings, planar fragments of various size and shape (hexagon, triangle, rectangle, and rhombus) have been considered to investigate their response to a magnetic field applied perpendicularly. Allowing for simple polygonal current models, the diatropicity of a series of polycyclic textures has been reliably determined by comparing quantitative indicators, the π-electron contribution to I B , the magnetic field-induced current susceptibility of the peripheral circuit, to ξ∥ and to σ∥(CM)=-NICS∥(CM), respectively the out-of-plane components of the magnetizability tensor and of the magnetic shielding tensor at the center of mass. Extended numerical tests and the analysis based on the polygonal model demonstrate that (i) ξ∥ and σ∥(CM) yield inadequate and sometimes erroneous measures of diatropicity, as they are heavily flawed by spurious geometrical factors, (ii) I B values computed by simple polygonal models are valid quantitative indicators of aromaticity on the magnetic criterion, preferable to others presently available, whenever current susceptibility cannot be calculated ab initio as a flux integral, (iii) the hexagonal shape is the most effective to maximize the strength of π-electron currents over the molecular perimeter, (iv) the edge current strength of triangular and rhombic graphene fragments is usually much smaller than that of hexagonal ones, (v) doping by boron and nitrogen nuclei can regulate and even inhibit peripheral ring currents, (vi) only for very large rectangular fragments can substantial current strengths be expected. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Emissions of polycyclic aromatic hydrocarbons (PAH) from open burning of biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, B.M.

    Emissions of polycyclic aromatic hydrocarbons (PAH) were measured during wind tunnel simulations of open burning for various types of biomass. The wind tunnel (Jenkins, et al., 1993) was used to simulate open fires spreading in opposition to the wind for cereal crop residues, and pile fires in agricultural and sylvicultural wood residues. Emission factors expressing the mass of pollutant species emitted per unit mass of dry fuel consumed were derived from mass balances conducted on each fire. Emission factors for primary pollutants and volatile organic species were similarly derived. Partitioning of PAH in the combustion products was investigated by determiningmore » mass fractions on particulate matter and in a downstream resin trap and other sampling train components. Yields of PAH are given for the major types of fuels and burning conditions.« less

  14. Destruction and survival of polycyclic aromatic hydrocarbons in active galaxies

    NASA Technical Reports Server (NTRS)

    Voit, G. M.

    1992-01-01

    Infrared spectra of dusty galactic environments often contain emission features attributed to polycyclic aromatic hydrocarbons or PAHs, which can be considered to be very small grains or very large molecules. Although IR spectra of starburst galaxies almost always show these emission features, similar spectra of active galaxies are usually featureless. Even in those active galaxies that do exhibit PAH emission, the PAHs still appear to be eradicated from the nuclear region. This dichotomy suggests that PAHs are destroyed by the intense hard radiation field from an AGN. Laboratory experiments show that certain PAHs are, in fact, so effectively destroyed by individual EUV and X-ray photons that they cannot survive even at kiloparsec distances from active nuclei. Regions within active galaxies that do show PAH emission must therefore be shielded from the central X-ray source by a substantial column density of X-ray absorbing gas.

  15. Polycyclic Aromatic Hydrocarbons and the Diffuse Interstellar Bands: a Survey

    NASA Technical Reports Server (NTRS)

    Salama, F.; Galazutdinov, G. A.; Krelowski, J.; Allamandola, L. J.; Musaev, F. A.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We discuss the proposal relating the origin of some of the diffuse interstellar bands (DIBs) to neutral and ionized polycyclic aromatic hydrocarbons (PAHs) present in interstellar clouds. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices, are compared with an extensive set of astronomical spectra of reddened, early type stars. From this comparison, it is concluded that PAN ions are good candidates to explain some of the DIBs. Unambiguous assignments are difficult, however, due to the shift in wavelengths and the band broadening induced in the laboratory spectra by the solid matrix. Definitive band assignments and, ultimately, the test of the of the proposal that PAH ions carry some of the DIB must await the availability of gas-phase measurements in the laboratory. The present assessment offers a guideline for future laboratory experiments by allowing the preselection of promising PAH molecules to be studied in jet expansions.

  16. Polycyclic aromatic hydrocarbons in frying oils and snacks.

    PubMed

    Purcaro, Giorgia; Navas, José A; Guardiola, Francesc; Conte, Lanfranco S; Moret, Sabrina

    2006-01-01

    The high incidence of lung cancer observed among Chinese women has been associated with exposure to fumes from cooking oil. Polycyclic aromatic hydrocarbons (PAHs) are a class of potentially mutagenic substances emitted from cooking oils heated at high temperatures. The objective of this study was to investigate whether deep frying with different oils under different conditions leads to the development of PAHs either in the oil or in the fried product (snacks). PAH analysis was carried out with solid-phase extraction followed by reverse-phase high-performance liquid chromatography and spectrofluorometric detection. Different oils were used to fry chips and extruded snacks in different industrial plants (continuous frying) at temperatures between 170 and 205 degrees C, and peanut oil was used to fry French fries and fish (discontinuous frying) at temperatures between 160 and 185 degrees C. No appreciable differences in PAH load was observed in the same oil before and after frying. Both before and after frying, the benzo[a]pyrene concentration in oils ranged from trace to 0.7 ppb. All the analyzed samples, including oils from fried snacks, had benzo[a]pyrene concentrations well below the 2 ppb limit recently proposed by the European Community.

  17. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.

    PubMed

    Ewa, Błaszczyk; Danuta, Mielżyńska-Švach

    2017-08-01

    Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.

  18. Source apportionment of polycyclic aromatic hydrocarbons in Louisiana

    NASA Astrophysics Data System (ADS)

    Han, F.; Zhang, H.

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) in the environment are of significant concern due to their high toxicity that may result in adverse health effects. PAHs measurements at the limited air quality monitoring stations alone are insufficient to gain a complete concept of ambient PAH levels. This study simulates the concentrations of PAHs in Louisiana and identifies the major emission sources. Speciation profiles for PAHs were prepared using data assembled from existing emission profile databases. The Sparse Matrix Operator Kernel Emission (SMOKE) model was used to generate the estimated gridded emissions of 16 priority PAH species directly associated with health risks. The estimated emissions were then applied to simulate ambient concentrations of PAHs in Louisiana for January, April, July and October 2011 using the Community Multiscale Air Quality (CMAQ) model (v5.0.1). Through the formation, transport and deposition of PAHs species, the concentrations of PAHs species in gas phase and particulate phase were obtained. The spatial and temporal variations were analyzed and contributions of both local and regional major sources were quantified. This study provides important information for the prevention and treatment of PAHs in Louisiana.

  19. WHY DOES 5-METHYL CHRYSENE INTERACT WITH DNA LIKE BOTH A PLANAR AND A NON-PLANAR POLYCYCLIC AROMATIC HYDROCARBON? QUANTUM MECHANICAL STUDIES

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons are a large class of anthropogenic chemicals found in the environment. Some class members are potent animal carcinogens while other similar class members show little carcinogenic activity. When considering a series of in vitro studies of the int...

  20. Combined effect of urinary monohydroxylated polycyclic aromatic hydrocarbons and impaired lung function on diabetes.

    PubMed

    Hou, Jian; Sun, Huizhen; Xiao, Lili; Zhou, Yun; Yin, Wenjun; Xu, Tian; Cheng, Juan; Chen, Weihong; Yuan, Jing

    2016-07-01

    Associations of type 2 diabetes with exposure to polycyclic aromatic hydrocarbons and reduced lung function have been reported. The aim of the present study was to investigate effect of reduced lung function and exposure to background PAHs on diabetes. A total of 2730 individuals were drawn from the Wuhan-Zhuhai (WHZH) Cohort Study (n=3053). Participants completed physical examination, measurement of lung function and urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs). Risk factors for type 2 diabetes were identified by multiple logistic regression analysis, and the presence of additive interaction between levels of urinary OH-PAHs and lower lung function was evaluated by calculation of the relative excess risk due to interaction (RERI) and attributable proportion due to interaction (AP). Urinary OH-PAHs levels was positively associated with type 2 diabetes among individuals with impaired lung function (p<0.05). Forced expiratory volume in one second (FEV1, odd ratio (OR): 0.664, 95% confidence interval (CI): 0.491-0.900) and forced vital capacity (FVC, OR: 0.693, 95% CI: 0.537-0.893) were negatively associated with diabetes among individuals. Additive interaction of higher urinary levels of OH-PAHs and lower FVC (RERI: 0.679, 95% CI: 0.120-1.238); AP: 0.427, 95% CI: 0.072-0.782) was associated with diabetes. Exposure to background PAHs was related to diabetes among individuals with lower lung function. Urinary levels of OH-PAHs and reduced lung function had an additive effect on diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review.

    PubMed

    Srogi, K

    2007-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds with two or more fused aromatic rings. They have a relatively low solubility in water, but are highly lipophilic. Most of the PAHs with low vapour pressure in the air are adsorbed on particles. When dissolved in water or adsorbed on particulate matter, PAHs can undergo photodecomposition when exposed to ultraviolet light from solar radiation. In the atmosphere, PAHs can react with pollutants such as ozone, nitrogen oxides and sulfur dioxide, yielding diones, nitro- and dinitro-PAHs, and sulfonic acids, respectively. PAHs may also be degraded by some microorganisms in the soil. PAHs are widespread environmental contaminants resulting from incomplete combustion of organic materials. The occurrence is largely a result of anthropogenic emissions such as fossil fuel-burning, motor vehicle, waste incinerator, oil refining, coke and asphalt production, and aluminum production, etc. PAHs have received increased attention in recent years in air pollution studies because some of these compounds are highly carcinogenic or mutagenic. Eight PAHs (Car-PAHs) typically considered as possible carcinogens are: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene (B(a)P), dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. In particular, benzo(a)pyrene has been identified as being highly carcinogenic. The US Environmental Protection Agency (EPA) has promulgated 16 unsubstituted PAHs (EPA-PAH) as priority pollutants. Thus, exposure assessments of PAHs in the developing world are important. The scope of this review will be to give an overview of PAH concentrations in various environmental samples and to discuss the advantages and limitations of applying these parameters in the assessment of environmental risks in ecosystems and human health. As it well known, there is an increasing trend to use the behavior of pollutants (i.e. bioaccumulation) as well

  2. Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility

    PubMed Central

    Chirima, George Johannes

    2016-01-01

    Restoration of polycyclic aromatic hydrocarbon- (PAH-) polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates' partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA) production. A total of 44 isolates were obtained and belong to the genera Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, Microbacterium, Ochrobactrum, Pseudomonas, Pseudoxanthomonas, Rhodococcus, and Stenotrophomonas. Data analysed by principal component analysis showed the Bacillus and Ochrobactrum isolates displayed outstanding IAA production. Generalized linear modelling statistical approaches were applied to evaluate the contribution of the four most represented genera (Pseudomonas, Acinetobacter, Arthrobacter, and Rhodococcus) to soil fertility. The Pseudomonas isolates were the most promising in all three soil fertility enhancement traits evaluated and all isolates showed potential for one or more of the attributes evaluated. These findings demonstrate a clear potential of the isolates to participate in restorative bioremediation of polluted soil, which will enhance sustainable agricultural production and environmental protection. PMID:27774456

  3. Analyses at High Spatial Resolution of Organic Molecules in Extraterrestrial Samples: Two-Step Laser Mass Spectrometry: Search for Polycyclic Aromatic Hydrocarbons in Antarctic Meteorite and Micrometeorite Samples

    NASA Technical Reports Server (NTRS)

    Zare, Richard N.

    1998-01-01

    Perhaps the best way to summarize the past three-year grant period is to cite the publications and present a brief synopsis of each: 1. "Indigenous Polycyclic Aromatic Hydrocarbon Molecules in Circumstellar Graphite Grains." Bulk C-12/C-13 isotope ratios observed in some graphite grains extracted from primitive meteorites point strongly to a circumstellar origin. By applying our technique of microprobe two-step laser desorption laser ionization mass spectrometry ((mu)L(sup 2)MS) to individual circumstellar graphite grains we have measured the C-12/C-13 isotope ratio of various polycyclic aromatic hydrocarbons (PAHS) found in these grains. 2. "Deuterium Enrichments in Cluster IDPS," Large enrichments in the D/H isotope ratios in IDPs likely arise from the preservation of presolar molecules. 3. "Evidence for thermalization of surface-disorder molecules at heating rates of 10(exp 8) K/s". A careful study of the ((mu)L(sup 2)MS) of aniline-d(sub 7) from a single-crystal surface (0001) of sapphire (al2O3) shows that all measured properties are consistent with a thermal mechanism for desorption. 4. "Search for past life on Mars; possible relic biogenic activity in Martian meteorite ALH 84001. The authors examined the Martian meteorite ALH 84001 and found several lines of evidence compatible with existence of past primitive (single-cell) life on early Mars. 5. "Microprobe two-step laser mass spectrometry as an analytical tool for meteorite samples". THis paper presents a comprehensive review of (mu)L(sup 2)MS and how this technique can be applied to meteoritic samples. 6. "Indigenous polycyclic aromatic hydrocarbons in circumstellar graphite grains from primitive meteorites". The C-12/C-13 isotope ratios were measured for PAHs in a total of 89 spherical graphite grains. 7. "Observation of indigenous polycyclic aromatic hydrocarbons in "Giant" carbonaceous antarctic micrometeorites." The (mu)L(sup 2)MS method was used to establish the nature and distribution of PAHs in

  4. Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri.

    PubMed

    Hernández-López, E Lorena; Perezgasga, Lucia; Huerta-Saquero, Alejandro; Mouriño-Pérez, Rosa; Vazquez-Duhalt, Rafael

    2016-06-01

    Neosartorya fischeri, an Aspergillaceae fungus, was evaluated in its capacity to transform high molecular weight polycyclic aromatics hydrocarbons (HMW-PAHs) and the recalcitrant fraction of petroleum, the asphaltenes. N. fischeri was able to grow in these compounds as sole carbon source. Coronene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene, together with the asphaltenes, were assayed for fungal biotransformation. The transformation of the asphaltenes and HMW-PAHs was confirmed by reverse-phase high-performance liquid chromatography (HPLC), nano-LC mass spectrometry, and IR spectrometry. The formation of hydroxy and ketones groups on the PAH molecules suggest a biotransformation mediated by monooxygenases such as cytochrome P450 system (CYP). A comparative microarray with the complete genome from N. fischeri showed three CYP monooxygenases and one flavin monooxygenase genes upregulated. These findings, together with the internalization of aromatic substrates into fungal cells and the microsomal transformation of HMW-PAHs, strongly support the role of CYPs in the oxidation of these recalcitrant compounds.

  5. Radiation Processing of Polycyclic Aromatic Hydrocarbons (PAHs) in Space: ICEE PoC

    NASA Technical Reports Server (NTRS)

    Mattioda, Andrew; Cruz-Diaz, Gustavo; Barnhardt, Michael; Ging, Andrew; Schneider, Todd; Vaughn, Jason; Quigley, Emmett; Phillips, Brandon

    2017-01-01

    Small Polycyclic Aromatic Hydrocarbon molecules or PAHs (<30 carbon atoms) have been identified in comets, meteorites, asteroids, and interplanetary dust particles in our Solar System, while PAHs in the Interstellar Medium (ISM) tend to be much larger, usually between 50 to 100 carbon atoms in size. The cause of the size disparity between PAHs found in the ISM and Solar System as well as their influence on Solar System organics is not yet understood. Two chemical evolutionary paths have been proposed to explain the inventory of solar system organics. In one the prebiotic material was formed from the radiation induced modification of large pre-solar carbon-bearing species (e.g. ISM PAHs). The second path suggests that Solar System prebiotic matter is the result of bottom-up synthesis from small reactive molecules after the Solar System was formed. In this second scenario very few ISM PAHs survived the harsh pre-solar radiation as aromatic structures. ICEE PoC (ICEE Proof of Concept) investigated factors impacting the chemical evolution of large PAHs irradiated under conditions similar to the proto-solar nebula. Likewise ICEE PoC will refine the technical parameters of the proposed ICEE (Institute for Carbon Evolution Experiment) laboratory.

  6. Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides.

    PubMed

    Sun, Yubing; Yang, Shubin; Zhao, Guixia; Wang, Qi; Wang, Xiangke

    2013-11-01

    Graphene has attracted increasing attention in multidisciplinary studies because of its unique physical and chemical properties. Herein, the adsorption of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene (NAP), anthracene (ANT), and pyrene (PYR), on reduced graphene oxides (rGOs) and graphene oxides (GOs) as a function of pH, humic acid (HA), and temperature were elucidated by means of a batch technique. For comparison, nonpolar and nonporous graphite were also employed in this study. The increasing of pH from 2 to 11 did not influence the adsorption of PAHs on rGOs, whereas the suppressed adsorption of NAP on rGOs was observed both in the presence of HA and under high-temperature conditions. Adsorption isotherms of PAHs on rGOs were in accordance with the Polanyi-Dubinin-Ashtahhov (PDA) model, providing evidence that pore filling and flat surface adsorption were involved. The saturated adsorbed capacities (in mmol g(-1)) of rGOs for PAHs calculated from the PDA model significantly decreased in the order of NAP>PYR>ANT, which was comparable to the results of theoretical calculations. The pore-filling mechanism dominates the adsorption of NAP on rGOs, but the adsorption mechanisms of ANT and PYR on rGOs are flat surface adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Monohydroxylated polycyclic aromatic hydrocarbons influence spicule formation in the early development of sea urchins (Hemicentrotus pulcherrimus).

    PubMed

    Suzuki, Nobuo; Ogiso, Shouzo; Yachiguchi, Koji; Kawabe, Kimi; Makino, Fumiya; Toriba, Akira; Kiyomoto, Masato; Sekiguchi, Toshio; Tabuchi, Yoshiaki; Kondo, Takashi; Kitamura, Kei-ichiro; Hong, Chun-Sang; Srivastav, Ajai K; Oshima, Yuji; Hattori, Atsuhiko; Hayakawa, Kazuichi

    2015-05-01

    We previously demonstrated that monohydroxylated polycyclic aromatic hydrocarbons (OHPAHs), which are metabolites of polycyclic aromatic hydrocarbons (PAHs), act on calcified tissue and suppress osteoblastic and osteoclastic activity in the scales of teleost fish. The compounds may possibly influence other calcified tissues. Thus, the present study noted the calcified spicules in sea urchins and examined the effect of both PAHs and OHPAHs on spicule formation during the embryogenesis of sea urchins. After fertilization, benz[a]anthracene (BaA) and 4-hydroxybenz[a]anthracene (4-OHBaA) were added to seawater at concentrations of 10(-8) and 10(-7) M and kept at 18 °C. The influence of the compound was given at the time of the pluteus larva. At this stage, the length of the spicule was significantly suppressed by 4-OHBaA (10(-8) and 10(-7) M). BaA (10(-7) M) decreased the length of the spicule significantly, while the length did not change with BaA (10(-8) M). The expression of mRNAs (spicule matrix protein and transcription factors) in the 4-OHBaA (10(-7) M)-treated embryos was more strongly inhibited than were those in the BaA (10(-7) M)-treated embryos. This is the first study to demonstrate that OHPAHs suppress spicule formation in sea urchins. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Synthesis of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposites as an adsorbent for the fast determination of 16 priority polycyclic aromatic hydrocarbons in aqueous samples.

    PubMed

    Chen, Kun; Jin, Rongrong; Luo, Chen; Song, Guoxin; Hu, Yaoming; Cheng, Hefa

    2018-04-01

    A novel adsorbent made of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core-shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Influence of silicon defects on the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons: a theoretical study using thiophene + coronene as the simplest model.

    PubMed

    Galano, Annia

    2007-03-08

    Physisorption and chemisorption processes of thiophene on coronene and 2Si-coronene have been studied using density functional theory and MP2 methods. These systems have been chosen as the simplest models to describe the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons (PAHs). The calculated data suggest that the presence of silicon atoms in PAHs could favor their interaction with thiophene and similar compounds. Small stabilization energies have been found for several physisorbed complexes. The thiophene chemisorption on coronene seems very unlikely to occur, while that on 2Si-coronene leads to addition products which are very stable, with respect to the isolated reactants. These chemisorption processes were found to be exoergic (DeltaG < 0) in the gas phase and in the nonpolar liquid phase. The results reported in this work suggest that silicon defects on extended polycyclic aromatic hydrocarbons, such as graphite, soot, and large-diameter carbon nanotubes, could make them useful in the removal processes of aromatic sulfur compounds from oil hydrocarbons.

  10. Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons under Interstellar Conditions

    NASA Technical Reports Server (NTRS)

    Stone, Bradley M.

    1996-01-01

    The presence and importance of polycyclic aromatic hydrocarbons (PAHs, a large family of organic compounds containing carbon and hydrogen) in the interstellar medium has already been well established. The Astrochemistry Laboratory at NASA Ames Research Center (under the direction of Louis Allamandola and Scott Sandford) has been the center of pioneering work in performing spectroscopy on these molecules under simulated interstellar conditions, and consequently in the identification of these species in the interstellar medium by comparison to astronomically obtained spectra. My project this summer was twofold: (1) We planned on obtaining absorption spectra of a number of PAHs and their cations in cold (4K) Ne matrices. The purpose of these experiments was to increase the number of different PAHs for which laboratory spectra have been obtained under these simulated interstellar conditions; and (2) I was to continue the planning and design of a new laser facility that is being established in the Astrochemistry laboratory. The laser-based experimental set-up will greatly enhance our capability in examining this astrophysically important class of compounds.

  11. Polycyclic Aromatic Hydrocarbons in drinking water of Tehran, Iran

    PubMed Central

    2013-01-01

    Distribution and seasonal variation of sixteen priority polycyclic aromatic hydrocarbons (PAHs) were investigated in the drinking water of Tehran, the capital of Iran. Detected single and total PAHs concentrations were in the range of 2.01-38.96 and 32.45-733.10 ng/L, respectively, which were quite high compared to the values recorded in other areas of the world. The average occurrence of PAHs with high molecular weights was 79.55%; for example, chrysene occurred in 60.6% of the samples, with a maximum concentration of 438.96 ng/L. In addition, mean carcinogen to non-carcinogen PAHs ratio was 63.84. Although the concentration of benzo[a]pyrene, as an indicator of water pollution to PAHs, was lower than the guideline value proposed by World Health Organization (WHO) as well as that of Iranian National Drinking Water Standards for all of the samples, the obtained results indicated that carcinogen PAHs present in the drinking water of Tehran can cause threats to human health. PMID:24499505

  12. Determination of polycyclic aromatic hydrocarbons in fractions in asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-07-01

    An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. SEASONAL VARIATION OF THE PARTICLE SIZE DISTRIBUTION OF POLYCYCLIC AROMATIC HYDROCARBONS AND OF MAJOR AEROSOL SPECIES IN CLAREMONT, CALIFORNIA. (R827352C020)

    EPA Science Inventory

    As part of the Southern California Particle Center and Supersite (SCPCS) activities, we measured, during all seasons, particle size distributions of 12 priority pollutant polycyclic aromatic hydrocarbons (PAHs), concurrently with elemental carbon (EC), organic carbon (OC), sul...

  14. Characterization of polycyclic aromatic hydrocarbons and metals in ashes released from a forest fire

    NASA Astrophysics Data System (ADS)

    Campos, I.; Abrantes, N.; Pereira, P.; Vale, C.; Ferreira, A.; Keizer, J. J.

    2012-04-01

    Wildfires have become a permanent source of environmental and societal concerns. Whilst the impacts of wildfire on hydrological and erosion processes are well documented, the stocks and export of polycyclic aromatic hydrocarbons (PAHs) and heavy metals have received considerably less research attention. The ashes produced by wildfires, which include polluting substances such as PAHs and metals, are subject to transport processes by wind and especially by overland flow and water infiltrating into the soil and possibly reaching ground water bodies. In the framework of the FIRECNUTS project, we are studying the stocks of PAHs and selected metals in recently burnt forest stands in north-central Portugal, and their subsequent export by overland flow. The present work, however, will focus on the stocks in the ashes, both immediately after wildfire and three months later. These ashes were collected at two burnt slopes with contrasting forest types, i.e. a eucalypt and a maritime pine stand, the two pre-dominant forest types in the study region. The sixteen PAHs identified by US EPA as priority contaminants were analysed by gas chromatograph, after extraction and column clean up. The contents of vanadium (V), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) were analysed by inductively coupled plasma- mass spectrometry (ICP-MS), after an acid digestion, while mercury (Hg) was analysed by pyrolysis atomic absorption spectrometry with gold amalgamation. The total concentration of PAHs immediately after the wildfire ranged from 314 ng/g dry weight in the maritime pine stand to 597 ng/g dry weight in the eucalypt stand. Three months later, the total concentration has decreased with 33% in the pine stand but only half (16%) in the eucalypt stand. The composition the PAHs by ring size was dominated by three-rings PAHs. This was true for all samples. The concentrations of various metals differed for the two sampling

  15. Parking lot sealcoat: An unrecognized source of urban polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.; Bashara, T.J.; Wilson, J.T.; Johns, D.A.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous contaminant in urban environments. Although numerous sources of PAHs to urban runoff have been identified, their relative importance remains uncertain. We show that a previously unidentified source of urban PAHs, parking lot sealcoat, may dominate loading of PAHs to urban water bodies in the United States. Particles in runoff from parking lots with coal-tar emulsion sealcoat had mean concentrations of PAHs of 3500 mg/kg, 65 times higher than the mean concentration from unsealed asphalt and cement lots. Diagnostic ratios of individual PAHs indicating sources are similar for particles from coal-tar emulsion sealed lots and suspended sediment from four urban streams. Contaminant yields projected to the watershed scale for the four associated watersheds indicate that runoff from sealed parking lots could account for the majority of stream PAH loads.

  16. Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment

    NASA Astrophysics Data System (ADS)

    Prahl, Fredrick G.; Carpenter, Roy

    1983-06-01

    Polycyclic aromatic (PAH) and aliphatic hydrocarbon compositions, organic carbon, nitrogen and lignin contents were determined in whole, unfractionated sediment from the Washington continental shelf and in discrete sediment fractions separated by particle size and density. At least 20 to 25% of perylene and PAH derived from pyrolytic processes and 50% of the retene measured in whole sediment are contained within organic C- and lignin-rich panicles of density ≤ 1.9 g/cc. These particles, which include primarily vascular plant remains and bits of charcoal, comprise less than 1% of the total sediment weight. In contrast, a series of methylated phenanthrene homologs, possibly of fossil origin, are concentrated in some component of the more dense, lithic matrix of the sediment. Equilibrium models of PAH sorption/desorption from aqueous phase onto small particles of high surface area do not appear applicable to the behavior of the major PAH types identified in this aquatic environment.

  17. A COMPUTER DOCKING STUDY OF THE BINDING OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR METABOLITES TO THE LIGARD-BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous, anthropogenic chemicals found in the environment. In the present study, computational methods are used to evaluate their potential estrogenicity and the contribution chemicals in this class make to environmental e...

  18. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse.

    PubMed

    Kronenberg, Maria; Trably, Eric; Bernet, Nicolas; Patureau, Dominique

    2017-12-01

    Polycyclic aromatic hydrocarbons (PAHs) are hardly biodegradable carcinogenic organic compounds. Bioremediation is a commonly used method for treating PAH contaminated environments such as soils, sediment, water bodies and wastewater. However, bioremediation has various drawbacks including the low abundance, diversity and activity of indigenous hydrocarbon degrading bacteria, their slow growth rates and especially a limited bioavailability of PAHs in the aqueous phase. Addition of nutrients, electron acceptors or co-substrates to enhance indigenous microbial activity is costly and added chemicals often diffuse away from the target compound, thus pointing out an impasse for the bioremediation of PAHs. A promising solution is the adoption of bioelectrochemical systems. They guarantee a permanent electron supply and withdrawal for microorganisms, thereby circumventing the traditional shortcomings of bioremediation. These systems combine biological treatment with electrochemical oxidation/reduction by supplying an anode and a cathode that serve as an electron exchange facility for the biocatalyst. Here, recent achievements in polycyclic aromatic hydrocarbon removal using bioelectrochemical systems have been reviewed. This also concerns PAH precursors: total petroleum hydrocarbons and diesel. Removal performances of PAH biodegradation in bioelectrochemical systems are discussed, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs. The still scarcely available information on microbiological aspects of bioelectrochemical PAH removal is summarised here. This comprehensive review offers a better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems. In addition, future experimental setups are proposed in order to study syntrophic relationships between PAH

  19. Catalytic hydrogenation rate of polycyclic aromatic hydrocarbons in supercritical carbon dioxide containing polymer-stabilized palladium nanoparticles.

    PubMed

    Liao, Weisheng; Liu, Hsin-Wang; Chen, Hsing-Jung; Chang, Wen-Yen; Chiu, Kong-Hwa; Wai, Chien M

    2011-01-01

    Catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) with up to four fused benzene rings over high-density-polyethylene-stabilized palladium nanoparticles in supercritical carbon dioxide via in situ UV/Vis spectroscopy is presented. PAHs can be efficiently converted to saturated polycyclic hydrocarbons using this green technique under mild conditions at 20 MPa of CO₂ containing 1 MPa of H₂ at 40-50°C. Kinetic studies based on in situ UV/Vis spectra of the CO₂ phase reveal that the initial hydrogenation of a given PAH and the subsequent hydrogenations of its intermediates are pseudo-first-order. The hydrogenation rate of the latter is always much smaller than that of the former probably due to increasing steric hindrance introduced by the hydrogenated benzene rings of PAHs which impedes the adsorption process and hydrogen access to PAHs on catalyst surfaces. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Influence of Cadmium and Mercury on Activities of Ligninolytic Enzymes and Degradation of Polycyclic Aromatic Hydrocarbons by Pleurotus ostreatus in Soil

    PubMed Central

    Baldrian, Petr; in der Wiesche, Carsten; Gabriel, Jiří; Nerud, František; Zadražil, František

    2000-01-01

    The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited. PMID:10831426

  1. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

    PubMed

    Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina

    2016-08-15

    Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dynamics of two methanogenic microbiomes incubated in polycyclic aromatic hydrocarbons, naphthenic acids, and oil field produced water.

    PubMed

    Oko, Bonahis J; Tao, Yu; Stuckey, David C

    2017-01-01

    Oil field produced water (OFPW) is widely produced in large volumes around the world. Transforming the organic matter in OFPW into bioenergy, such as biomethane, is one promising way to sustainability. However, OFPW is difficult to biologically degrade because it contains complex compounds such as naphthenic acids (NAs), or polycyclic aromatic hydrocarbons (PAHs). Although active microbial communities have been found in many oil reservoirs, little is known about how an exotic microbiome, e.g. the one which originates from municipal wastewater treatment plants, would evolve when incubated with OFPW. In this study, we harvested methanogenic biomass from two sources: a full-scale anaerobic digester (AD) treating oil and gas processing wastewater (named O&G sludge), and from a full-scale AD reactor treating multiple fractions of municipal solid wastes (named MS, short for mixed sludge). Both were incubated in replicate microcosms fed with PAHs, NAs, or OFPW. The results showed that the PAHs, NAs, and OFPW feeds could rapidly alter the methanogenic microbiomes, even after 14 days, while the O&G sludge adapted faster than the mixed sludge in all the incubations. Two rarely reported microorganisms, a hydrogenotrophic methanogen Candidatus methanoregula and a saccharolytic fermenter Kosmotoga , were found to be prevalent in the PAHs and OFPW microcosms, and are likely to play an important role in the syntrophic degradation of PAHs and OFPW, cooperating with methanogens such as Methanoregula, Methanosarcina, or Methanobacterium . The dominant phyla varied in certain patterns during the incubations, depending on the biomass source, feed type, and variation in nutrients. The sludge that originated from the oil and gas processing wastewater treatment (O&G) reactor adapted faster than the one from municipal solid waste reactors, almost certainly because the O&G biomass had been "pre-selected" by the environment. This study reveals the importance of biomass selection for other

  3. First results from the oil sands passive air monitoring network for polycyclic aromatic compounds.

    PubMed

    Schuster, Jasmin K; Harner, Tom; Su, Ky; Mihele, Cristian; Eng, Anita

    2015-03-03

    Results are reported from an ongoing passive air monitoring study for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region in Alberta, Canada. Polyurethane foam (PUF) disk passive air samplers were deployed for consecutive 2-month periods from November 2010 to June 2012 at 17 sites. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, dibenzothiophene and its alkylated derivatives (DBTs). Relative to parent PAHs, alkylated PAHs and DBTs are enriched in bitumen and therefore considered to be petrogenic markers. Concentrations in air were in the range 0.03-210 ng/m(3), 0.15-230 ng/m(3) and 0.01-61 ng/m(3) for ∑PAHs, ∑alkylated PAHs and ΣDBTs, respectively. An exponential decline of the PAC concentrations in air with distance from mining areas and related petrogenic sources was observed. The most significant exponential declines were for the alkylated PAHs and DBTs and attributed to their association with mining-related emissions and near-source deposition, due to their lower volatility and greater association with depositing particles. Seasonal trends in concentrations in air for PACs were not observed for any of the compound classes. However, a forest fire episode during April to July 2011 resulted in greatly elevated PAH levels at all passive sampling locations. Alkylated PAHs and DBTs were not elevated during the forest fire period, supporting their association with petrogenic sources. Based on the results of this study, an "Athabasca PAC profile" is proposed as a potential source marker for the oil sands region. The profile is characterized by ∑PAHs/∑Alkylated PAHs = ∼0.2 and ∑PAHs/∑DBTs = ∼5.

  4. Use of constant wavelength synchronous spectrofluorimetry for identification of polycyclic aromatic hydrocarbons in air particulate samples

    NASA Astrophysics Data System (ADS)

    Sharma, Homdutt; Jain, V. K.; Khan, Zahid H.

    2013-05-01

    We have developed a simple, rapid, inexpensive method for the identification of fluoranthene (Flan), benz(a)anthracene (BaA), benzo(a)pyrene (BaP), benzo(k)fluoranthene (BkF), pyrene (Pyr), benz(ghi)perylene (BghiP) in suspended particulate matter in an urban environment of Delhi. Suspended particulate matter samples of 24 h duration were collected on glass fiber filter papers. Polycyclic aromatic hydrocarbons (PAHs) were extracted from the filter papers using dichloromethane (DCM) and hexane with ultrasonication method. Comparison of the characteristic emission of spectra of PAHs with standard spectra indicated the degree of condensation of aromatic compounds present in investigated mixtures. It was also possible to identify some individual compounds. However, this identification could be more effective with the use of the respective values of Δλ parameter for each particular component of the mixture.

  5. Polycyclic aromatic hydrocarbons in Bangladeshi vegetables and fruits.

    PubMed

    Hossain, M Amzad; Hoque, Mohammad Zahirul

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) occur as contaminants in different types of food predominantly from environmental pollution, food packaging and food processing and the levels found depend on the source of the contamination. PAHs emissions from automobile traffic and industry activities were shown to influence the PAHs levels and profiles in vegetables and fruits grown nearby. The present study was carried out to determine the levels of PAHs in samples of tomato, cabbage and apple, collected from six different places of urban and rural areas of plantation in Dhaka city. Eight PAHs listed in the priority pollutant of US Environment Protection Agency and regarded as carcinogens were analyzed in this study. The analytical method involved saponification with methanolic KOH, liquid-liquid extraction with cyclohexane, clean-up on silica gel column and determination by Gas chromatography and mass spectrometry. The mean levels of total PAHs were 9.50 μg/kg in tomato, 8.86 μg/kg in cabbage and 4.05 μg/kg in apple. Of the carcinogenic PAHs, benzo(a)anthracene was the most representative, being found in 89% of all samples analysed. Chrysene was not detected in any sample. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina.

    PubMed

    Ngabe, B; Bidleman, T F; Scott, G I

    2000-06-08

    Stormwater runoff was collected in urbanized areas of South Carolina to investigate the levels and sources of polycyclic aromatic hydrocarbons (PAHs). Mean concentrations of total PAHs in runoff (sum(PAHs), 14 compounds), determined by gas chromatography-mass spectrometry, were 5590 ng/l in the city of Columbia and 282 ng/l in the coastal community of Murrells Inlet. Lower concentrations were found in estuarine water at Murrells Inlet (mean = 35 ng/l) and at undeveloped North Inlet estuary (13 ng/l). The PAH profiles in Columbia and Murrells Inlet runoff were similar to those of atmospheric particulate matter and unlike those in used crankcase oil. Examination of the aliphatic fraction of Columbia runoff samples by gas chromatography with flame ionization detection showed patterns that were more similar to used crankcase oil than to urban aerosols.

  7. Parking lot sealcoat: an unrecognized source of urban polycyclic aromatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbara J. Mahler; Peter C. Van Metre; Thomas J. Bashara

    2005-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are a ubiquitous contaminant in urban environments. Although numerous sources of PAHs to urban runoff have been identified, their relative importance remains uncertain. The authors show that a previously unidentified source of urban PAHs, parking lot sealcoat, may dominate loading of PAHs to urban water bodies in the United States. Particles in runoff from parking lots with coal-tar emulsion sealcoat had mean concentrations of PAHs of 3500 mg/kg, 65 times higher than the mean concentration from unsealed asphalt and cement lots. Diagnostic ratios of individual PAHs indicating sources are similar for particles from coal-tar emulsion sealedmore » lots and suspended sediment from four urban streams. Contaminant yields projected to the watershed scale for the four associated watersheds indicate that runoff from sealed parking lots could account for the majority of stream PAH loads. 35 refs., 6 figs., 2 tabs.« less

  8. Synthesis of g-C3N4/Fe3O4 nanocomposites and application as a new sorbent for solid phase extraction of polycyclic aromatic hydrocarbons in water samples.

    PubMed

    Wang, Man; Cui, Shihai; Yang, Xiaodi; Bi, Wentao

    2015-01-01

    An easy preparation of g-C3N4/Fe3O4 nanocomposites by chemical co-precipitation has been demonstrated. The as-prepared materials were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The high affinity of g-C3N4 toward polycyclic aromatic hydrocarbons and the magnetic behavior of Fe3O4 were combined to provide an efficient and simple magnetic solid phase extraction (MSPE). The adsorption and desorption of polycyclic aromatic hydrocarbons on g-C3N4/Fe3O4 were examined. Different factors affecting the magnetic solid phase extraction of polycyclic aromatic hydrocarbons were assessed in terms of adsorption, desorption, and recovery. Under the optimized conditions, the proposed method showed good limits of detection (LOD, S/N=3) in the range of 0.05-0.1 ng mL(-1) and precision in the range of 1.8-5.3% (RSDs, n=3). This method was also successfully applied to the analysis of real water samples; good spiked recoveries over the range of 80.0-99.8% were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions.

    PubMed

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T

    2015-02-01

    The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  11. HIGH-RESOLUTION IR ABSORPTION SPECTROSCOPY OF POLYCYCLIC AROMATIC HYDROCARBONS: THE REALM OF ANHARMONICITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltseva, Elena; Buma, Wybren Jan; Petrignani, Annemieke

    2015-11-20

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3-μm CH stretching region of polycyclic aromatic hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (∼4 K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computationalmore » program SPECTRO, providing anharmonic predictions with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main bands that fall within 0.5% of the experimental frequencies. The implications for the aromatic infrared bands, specifically the 3-μm band, are discussed.« less

  12. Thalassospira tepidiphila sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater.

    PubMed

    Kodama, Yumiko; Stiknowati, Lies Indah; Ueki, Atsuko; Ueki, Katsuji; Watanabe, Kazuya

    2008-03-01

    A Gram-negative, mesophilic bacterial strain, designated 1-1B(T), which degrades polycyclic aromatic hydrocarbons, was isolated from petroleum-contaminated seawater during a bioremediation experiment. A 16S rRNA gene sequence analysis indicated that the isolate was affiliated with the genus Thalassospira in the Alphaproteobacteria; the sequence was found to be most similar to those of Thalassospira profundimaris WP0211(T) (99.8 %), Thalassospira xiamenensis M-5(T) (98.2 %) and Thalassospira lucentensis DSM 14000(T) (98.1 %). However, the levels of DNA-DNA relatedness between strain 1-1B(T) and these type strains were 50.7+/-17.2, 35.7+/-17.8 and 32.0+/-21.1 %, respectively. In addition, strain 1-1B(T) was found to be distinct from the other described species of the genus Thalassospira in terms of some taxonomically important traits, including DNA G+C content, optimum growth temperature, salinity tolerance, utilization of carbon sources and fatty acid composition. Furthermore, strain 1-1B(T) and T. profundimaris were also different with regard to motility and denitrification capacities. On the basis of physiological and DNA-DNA hybridization data, strain 1-1B(T) represents a novel species within the genus Thalassospira, for which the name Thalassospira tepidiphila sp. nov. is proposed. The type strain is 1-1B(T) (=JCM 14578(T) =DSM 18888(T)).

  13. Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater.

    PubMed

    Burmistrz, Piotr; Burmistrz, Michał

    2013-01-01

    The subject of examinations presented in this paper is the distribution of polycyclic aromatic hydrocarbons (PAHs) between solid and liquid phases in samples of raw wastewater and wastewater after treatment. The content of 16 PAHs according to the US EPA was determined in the samples of coke plant wastewater from the Zdzieszowice Coke Plant, Poland. The samples contained raw wastewater, wastewater after physico-chemical treatment as well as after biological treatment. The ΣPHA16 content varied between 255.050 μg L(-1) and 311.907 μg L(-1) in raw wastewater and between 0.940 and 4.465 μg L(-1) in wastewater after full treatment. Investigation of the distribution of PAHs showed that 71-84% of these compounds is adsorbed on the surface of suspended solids and 16-29% is dissolved in water. Distribution of individual PAHs and ΣPHA16 between solid phase and liquid phase was described with the use of statistically significant, linear equations. The calculated values of the partitioning coefficient Kp changed from 0.99 to 7.90 for naphthalene in samples containing mineral-organic suspension and acenaphthylene in samples with biological activated sludge, respectively.

  14. Groundwater contamination by polycyclic aromatic hydrocarbon due to diesel spill from a telecom base station in a Nigerian City: assessment of human health risk exposure.

    PubMed

    Ugochukwu, Uzochukwu Cornelius; Ochonogor, Alfred

    2018-03-26

    Diesel pollution of groundwater poses great threat to public health, mainly as a result of the constituent polycyclic aromatic hydrocarbons (PAHs). In this study, the human health risk exposure to polycyclic aromatic hydrocarbons (PAHs) in diesel contaminated groundwater used by several families at Ring Road, Jos, Nigeria (as caused by diesel spill from a telecom base station) was assessed. Prior to the groundwater being treated, the residents were using the water after scooping off the visible diesel sheen for purposes of cooking, washing, and bathing. Until this study, it is not clear whether the groundwater contamination had resulted in sub-chronic exposure of the residents using the water to polycyclic aromatic hydrocarbons (PAHs) to the extent of the PAHs posing a health risk. The diesel contaminated groundwater and uncontaminated nearby groundwater (control) were collected and analyzed for PAHs using gas chromatography-mass spectrometry (GC-MS). The dosage of the dermal and oral ingestion entry routes of PAHs was determined. The estimation of the non-carcinogenic health risk was via hazard quotients (HQ) and the associated hazard index (HI), while the estimation of the carcinogenic health risk was via lifetime cancer risks (LCR) and the associated risk index (RI). Obtained results indicate that the exposure of the residents to the PAHs may have made them susceptible to the risk of non-carcinogenic health effects of benzo(a)pyrene and the carcinogenic health effects of benzo(a)anthracene and benzo(a)pyrene.

  15. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons under anaerobic conditions: Overview of studies, proposed pathways and future perspectives.

    PubMed

    Nzila, Alexis

    2018-05-07

    The biodegradation of low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) (LWM-PAHs and HMW-PAHs, respectively) has been studied extensively under aerobic conditions. Molecular O 2 plays 2 critical roles in this biodegradation process. O 2 activates the aromatic rings through hydroxylation prior to ring opening and serves as a terminal electron acceptor (TEA). However, several microorganisms have devised ways of activating aromatic rings, leading to ring opening (and thus biodegradation) when TEAs other than O 2 are used (under anoxic conditions). These microorganisms belong to the sulfate-, nitrate-, and metal-ion-reducing bacteria and the methanogens. Although the anaerobic biodegradation of monocyclic aromatic hydrocarbons and LWM-PAH naphthalene have been studied, little information is available about the biodegradation of HMW-PAHs. This manuscript reviews studies of the anaerobic biodegradation of HMW-PAHs and identifies gaps that limit both our understanding and the efficiency of this biodegradation process. Strategies that can be employed to overcome these limitations are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Association of polycyclic aromatic hydrocarbons metabolites and risk of diabetes in coke oven workers.

    PubMed

    Yang, Liangle; Yan, Kai; Zeng, Dan; Lai, Xuefeng; Chen, Xuguang; Fang, Qin; Guo, Huan; Wu, Tangchun; Zhang, Xiaomin

    2017-04-01

    Elevated polycyclic aromatic hydrocarbons (PAHs) metabolites have recently been linked to increased risk of diabetes in the general population, but little is known about the risk of diabetes due to high pollution levels of PAHs exposure. We aimed to examine whether occupational exposure to PAHs would be one of the important risk factors for diabetes in the coke oven workers. A total of 1472 coke oven workers with complete data were qualified for the present study. We measured 12 urinary monohydroxy polycyclic aromatic hydrocarbons (OH-PAHs) by gas chromatography-mass spectrometry (GC-MS). Multiple logistic regression was used to evaluate the associations between urinary OH-PAHs and risk of diabetes, with adjustment for the potential confounders. We found that elevated urinary 4-hydroxyphenanthrene (4-OHPh) was significantly associated, in a dose-dependent manner, with increased risk of diabetes (P trend  = 0.003). Compared with individuals with 4-OHPh in the lowest quartile, the adjusted odds ratio (OR) of diabetes among those in the highest quartile was 2.80 (95% CI = 1.37-5.71). In stratified analysis, the association was more prominent in those who were smokers, overweight (BMI ≥24 kg/m 2 ), with longer working years (≥20 years) and worked at coke oven settings. In addition, high levels of 4-OHPh combined with longer working years or overweight had a joint effect on the risk of diabetes. Our data suggested that elevated 4-OHPh was dose-responsive associated with increased risk of diabetes in the coke oven workers. The risk assessment of diabetes related to occupational PAHs exposure should take working years and BMI into consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Application of semipermeable membrane devices for long-term monitoring of polycyclic aromatic hydrocarbons at various stages of drinking water treatment.

    PubMed

    Pogorzelec, Marta; Piekarska, Katarzyna

    2018-08-01

    The primary goal of the presented study was the investigation of occurrence and concentration of sixteen selected polycyclic aromatic hydrocarbons in samples from various stages of water treatment and verification of the applicability of semi-permeable membrane devices in the monitoring of drinking water. Another objective was to verify if weather seasons affect the concentration and complexity of PAHs. For these purposes, semipermeable membrane devices were installed in a surface water treatment plant located in Lower Silesia (Poland). Samples were collected monthly over a period of one year. To determine the effect of water treatment on PAH concentrations, four sampling sites were selected: raw water input, a stream of water in the pipe just before ozonation, treated water output and water after passing through the distribution system. After each month of sampling, SPMDs were exchanged for fresh ones and prepared for instrumental analysis. Concentrations of polycyclic aromatic hydrocarbons were determined by high-performance liquid chromatography (HPLC). The presented study indicates that semipermeable membrane devices can be an effective tool for the analysis of drinking water, in which organic micropollutants occur at very low concentrations. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Desorption and mobility mechanisms of co-existing polycyclic aromatic hydrocarbons and heavy metals in clays and clay minerals.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Grace, John R

    2018-05-15

    The effects of soil components such as clay minerals and as humic acids, as well as co-existing metals and polycyclic aromatic hydrocarbons, on desorption and mobility are examined. Three types of artificially blended clay and clay mineral mixtures (pure kaolinite, kaolinite + sand and kaolinite + sand + bentonite), each with different humic acid content, were tested for desorption and mobility of acenaphthene, fluorene and fluoranthene by three extracting solutions CaCl 2 (0.01 M) and EDTA (0.01M) with non-ionic surfactants (Tween 80 and Triton X100). Heavy metals (Ni, Pb and Zn) were also studied for desorption and mobility. The influence of co-present metals on simultaneous desorption and mobility of PAHs was investigated as well. The results showed that <10% of metals in the clay mineral mixtures were mobile. Combined EDTA and non-ionic solutions can enhance the desorption and mobility of PAHs to >80% in clay mineral mixtures containing no sand, while in the same soils containing ∼40% sand, the desorption exceeded 90%. Heavy metals, as well as increasing humic acids content in the clay mineral mixtures, decreased the desorption and mobility of PAHs, especially for soils containing no sand, and for fluoranthene compared with fluorene and acenaphthene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Modular, Metal-Catalyzed Cycloisomerization Approach to Angularly Fused Polycyclic Aromatic Hydrocarbons and Their Oxidized Derivatives

    PubMed Central

    Thomson, Paul F.; Parrish, Damon; Pradhan, Padmanava; Lakshman, Mahesh K.

    2015-01-01

    Palladium-catalyzed cross-coupling reactions of 2-bromobenzaldehyde and 6-bromo-2,3-dimethoxybenzaldehyde with 4-methyl-1-naphthaleneboronic acid and acenaphthene-5-boronic acid gave corresponding o-naphthyl benzaldehydes. Corey–Fuchs olefination followed by reaction with n-BuLi led to various 1-(2-ethynylphenyl)naphthalenes. Cycloisomerization of individual 1-(2-ethynylphenyl)naphthalenes to various benzo[c]phenanthrene (BcPh) analogues was accomplished smoothly with catalytic PtCl2 in PhMe. In the case of 4,5-dihydrobenzo[l]acephenanthrylene, oxidation with DDQ gave benzo[l]acephenanthrylene. The dimethoxy-substituted benzo[c]phenanthrenes were demethylated with BBr3 and oxidized to the ortho-quinones with PDC. Reduction of these quinones with NaBH4 in THF/EtOH in an oxygen atmosphere gave the respective dihydrodiols. Exposure of the dihydrodiols to N-bromoacetamide in THF-H2O led to bromohydrins that were cyclized with Amberlite IRA 400 HO− to yield the series 1 diol epoxides. Epoxidation of the dihydrodiols with mCPBA gave the isomeric series 2 diol epoxides. All of the hydrocarbons as well as the methoxy-substituted ones were crystallized and analyzed by X-ray crystallography, and these data are compared to other previously studied BcPh derivatives. The methodology described is highly modular and can be utilized for the synthesis of a wide variety of angularly fused polycyclic aromatic hydrocarbons and their putative metabolites and/or other derivatives. PMID:26196673

  20. Method for the simultaneous determination of monoaromatic and polycyclic aromatic hydrocarbons in industrial effluents using dispersive liquid-liquid microextraction with gas chromatography-mass spectrometry.

    PubMed

    Makoś, Patrycja; Fernandes, André; Boczkaj, Grzegorz

    2018-06-01

    We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1-84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping Sun; Panuwat Taerakul; Linda K. Weavers

    Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAHmore » concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.« less

  2. Measurement of polycyclic aromatic hydrocarbon (PAHs) in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Maechling, C. R.; Zare, R. N.; Swan, P. D.; Walker, R. M.

    1993-01-01

    We report here the first definitive measurements of specific organic molecules (polycyclic aromatic hydrocarbons (PAH's)) in interplanetary dust particles (IDP's). An improved version of the microbeam-two-step laser mass spectrometer was used for the analysis. Two IDP's gave similar mass spectra showing an abundance of PAH's. Control samples, including particles of probable terrestrial origin from the same stratospheric collector, gave either null results or quite different spectra. We conclude that the PAH's are probably indigenous to the IDP's and are not terrestrial contaminants. The instrument used to study the particles is a two-step laser mass spectrometer. Constituent neutral molecules of the sample are first desorbed with a pulsed infrared laser beam focussed to 40 micrometers. In the second step, PAH's in the desorbed plume are preferentially ionized by a pulsed UV laser beam. Resulting ions produced by resonant absorption are extracted into a reflectron time-of-flight mass spectrometer. This instrument has high spatial resolution, high ion transmission, unlimited mass range, and multichannel detection of all ion masses from a single laser shot.

  3. New insights into thermal decomposition of polycyclic aromatic hydrocarbon oxyradicals.

    PubMed

    Liu, Peng; Lin, He; Yang, Yang; Shao, Can; Gu, Chen; Huang, Zhen

    2014-12-04

    Thermal decompositions of polycyclic aromatic hydrocarbon (PAH) oxyradicals on various surface sites including five-membered ring, free-edge, zigzag, and armchair have been systematically investigated by using ab initio density functional theory B3LYP/6-311+G(d,p) basis set. The calculation based on Hückel theory indicates that PAHs (3H-cydopenta[a]anthracene oxyradical) with oxyradicals on a five-membered ring site have high chemical reactivity. The rate coefficients of PAH oxyradical decomposition were evaluated by using Rice-Ramsperger-Kassel-Marcus theory and solving the master equations in the temperature range of 1500-2500 K and the pressure range of 0.1-10 atm. The kinetic calculations revealed that the rate coefficients of PAH oxyradical decomposition are temperature-, pressure-, and surface site-dependent, and the oxyradical on a five-membered ring is easier to decompose than that on a six-membered ring. Four-membered rings were found in decomposition of the five-membered ring, and a new reaction channel of PAH evolution involving four-membered rings is recommended.

  4. [Comparison of polycyclic aromatic hydrocarbons (PAHS) contents in bakery products].

    PubMed

    Ciemniak, Artur; Witczak, Agata

    2010-01-01

    Polycyclic aromatic hydrocarbons are a group of well-known chemical carcinogens with a wide distribution in the environment and formed by the incomplete combustion of organic substances. PAHs have attracted most attention because of their carcinogenic potential. PAHs have been found as contaminants in different food categories such as dairy products, smoked and barbecued meat, vegetables, fruits, oils, coffee, tea, and cereals. Processing of food at high temperatures increases the amount of PAHs in the food Diet is the major source of human exposure to PAHs. The major dietary source of PAH are oils and fats, cereals products and vegetables. The aims of this study were to determine the content levels of 23 PAHs in various sorts of bread. The analytical procedure was based Soxhlet extraction with n--hexane and cleaned up in aflorisil cartridge. Chromatographic separation was performed using gas chromatography (HP 6890) coupled to mass spectrometry (HP 5973). The total concentration of PAHs was low end varied between 2.61 microg/kg to 43.4 microg/kg. Furthermore, the results revealed differences in concentrations of PAHs between rind and bread-crumb.

  5. Identifying risk sources of air contamination by polycyclic aromatic hydrocarbons.

    PubMed

    Huzlik, Jiri; Bozek, Frantisek; Pawelczyk, Adam; Licbinsky, Roman; Naplavova, Magdalena; Pondelicek, Michael

    2017-09-01

    This article is directed to determining concentrations of polycyclic aromatic hydrocarbons (PAHs), which are sorbed to solid particles in the air. Pollution sources were identified on the basis of the ratio of benzo[ghi]perylene (BghiPe) to benzo[a]pyrene (BaP). Because various important information is lost by determining the simple ratio of concentrations, least squares linear regression (classic ordinary least squares regression), reduced major axis, orthogonal regression, and Kendall-Theil robust diagnostics were utilized for identification. Statistical evaluation using all aforementioned methods demonstrated different ratios of the monitored PAHs in the intervals examined during warmer and colder periods. Analogous outputs were provided by comparing gradients of the emission factors acquired from the measured concentrations of BghiPe and BaP in motor vehicle exhaust gases. Based on these outputs, it was possible plausibly to state that the influence of burning organic fuels in heating stoves is prevalent in colder periods whereas in warmer periods transport was the exclusive source because other sources of PAH emissions were not found in the examined locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene.

    PubMed Central

    Schocken, M J; Gibson, D T

    1984-01-01

    A Beijerinckia sp. and a mutant strain, Beijerinckia sp. strain B8/36, were shown to cooxidize the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Both organisms oxidized acenaphthene to the same spectrum of metabolites, which included 1-acenaphthenol, 1-acenaphthenone, 1,2-acenaphthenediol, acenaphthenequinone, and a compound that was tentatively identified as 1,2-dihydroxyacenaphthylene. In contrast, acenaphthylene was oxidized to acenaphthenequinone and the compound tentatively identified as 1,2-dihydroxyacenaphthylene by the wild-type strain of Beijerinckia. Both of these products were also formed when the organism was incubated with synthetic cis-1,2-acenaphthenediol. A metabolite identified as cis-1,2-acenaphthenediol was formed from acenaphthylene by the mutant Beijerinckia sp. strain B8/36. Cell extracts prepared from the wild-type Beijerinckia strain contain a constitutive pyridine nucleotide-dependent dehydrogenase which can oxidize 1-acenaphthenol and 9-fluorenol. The results indicate that although acenaphthene and acenaphthylene are both oxidized to acenaphthenequinone, the pathways leading to the formation of this end product are different. PMID:6089663

  7. THE NASA AMES POLYCYCLIC AROMATIC HYDROCARBON INFRARED SPECTROSCOPIC DATABASE: THE COMPUTED SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauschlicher, C. W.; Ricca, A.; Boersma, C.

    The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling done at the NASA Ames Research Center to create a collection of PAH IR spectra relevant to test and refine the PAH hypothesis have been assembled into a spectroscopic database. This database now contains over 800 PAH spectra spanning 2-2000 {mu}m (5000-5 cm{sup -1}). These data are now available on the World Wide Web at www.astrochem.org/pahdb. This paper presents an overview of the computational spectra in the database and the tools developed to analyzemore » and interpret astronomical spectra using the database. A description of the online and offline user tools available on the Web site is also presented.« less

  8. Infrared frequencies and intensities for astrophysically important polycyclic aromatic hydrocarbon cations

    NASA Technical Reports Server (NTRS)

    Szczepanski, Jan; Vala, Martin

    1993-01-01

    Polycyclic aromatic hydrocarbons (PAHs) have been implicated as the carriers of the 'unidentified infrared' (UIR) emission bands observed from the interstellar medium. It has long been thought that these molecules, if present, probably exist as cations. In this paper we present infrared spectra of the cations of five moderate-sized PAHs. The PAH cations have been produced by low-energy electron impact and then trapped and stabilized in argon matrices at 12 K. To date, results have been obtained on naphthalene, anthracene, pyrene, perylene, and coronene. A common feature of the infrared spectra of all these cations is the very different intensity pattern of the ions compared to the neutral parents. Visible and (partial) infrared spectra of the coronene cation are also presented. It is shown that the out-of-plane CH bending mode shifts to a position very close to the UIR band at 11.3 microns. The astrophysical impact of these observations is discussed.

  9. Factors that influence the extraction of polycyclic aromatic hydrocarbons from coal

    USGS Publications Warehouse

    Xue, J.; Liu, Gaisheng; Niu, Z.; Chou, C.-L.; Qi, C.; Zheng, Lingyun; Zhang, H.

    2007-01-01

    Coal samples and carbonaceous mudstone were collected from the Huaibei coalfield, China, and experiments investigating the factors influencing the extraction of the sixteen US EPA (Environmental Protection Agency) priority polycyclic aromatic hydrocarbons (PAHs) were carried out. Different extraction times, solvents, and methods were used. Major interest was focused on finding optimum conditions for extracting the PAHs from coal. We conclude that (1) coal composition, including the H/C and O/C ratios, is an important factor for the distribution of PAHs in coals; (2) the total amount of EPA priority PAHs increases with increasing extraction time, 30 min being suitable for ultrasonic-assisted extraction and 24 h for Soxhlet extraction; (3) CS2 is effective in extracting low molecular weight PAHs, while CH2Cl2 is better for extracting high molecular weight PAHs (both are excellent extraction solvents vs hexane); (4) both Soxhlet and ultrasonic extraction showed a similar PAH concentration profile, but the ultrasonic method is less efficient. ?? 2007 American Chemical Society.

  10. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis.

    PubMed

    Gao, Meiqi; Wang, Yulong; Dong, Jie; Li, Fan; Xie, Kechang

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants. They have attracted considerable attention due to their severe potential carcinogenic, mutagenic and genotoxic effects on human health. In this study, five different rank coals from China were pyrolyzed using pyro-probe CDS 5250 and the release behavior of 16 PAHs under different pyrolysis conditions were studied by Gas Chromatography-Mass Spectrometer (GC-MS). The structural characteristics of the five coals were determined by Cross-Polarization/Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS (13)C NMR) spectroscopy, and then the factors influencing the formation of PAHs during coal pyrolysis were discussed together with the coal structural data. It was shown that the amount of PAHs generated during coal pyrolysis was largely related to coal rank and followed the order of medium metamorphic coal > low metamorphic coal > high metamorphic coal. The amount of total PAHs varied as the temperature was increased from 400 °C to 1200 °C, which showed a trend of first increasing and then decreasing, with the maximum value at 800 °C. Moreover, the species of PAHs released varied with pyrolysis temperatures. When the temperature was lower than 800 °C, the small ring PAHs were the most abundant, while the proportion of heavy rings increased at higher temperature. The results indicate that the formation of PAHs during coal pyrolysis depends on the structure of the coal. The species and amounts of PAHs generated during coal pyrolysis are closely related to the contents of protonated aromatic carbons and bridging ring junction aromatic carbons present in the coal structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Degradation of polycyclic aromatic hydrocarbons (PAHs) during Sphagnum litters decay.

    PubMed

    Wang, Zucheng; Liu, Shasha; Bu, Zhao-Jun; Wang, Shengzhong

    2018-04-28

    The dynamics of polycyclic aromatic hydrocarbon (PAH) degradation in Sphagnum litters and the decomposition of the litters were investigated. PAH concentration decreased to approximately half of the initial concentration as Sphagnum litters decayed. The initial PAH concentration was 489.2 ± 72.2 ng g -1 , and the concentration after 120 days of incubation was 233.0 ± 5.8 ng g -1 . The different PAH compositions changed concentrations at different times. The low-molecular-weight (LMW) and high-molecular-weight (HMW) PAHs started to be degraded after incubation and after 40 days of incubation, respectively. PAH concentrations in the Sphagnum litters correlated with the total organic carbon (TOC) content (p < 0.05), indicating that PAHs were associated with the TOC of the Sphagnum litters and were degraded as organic matter decayed. The positive relationship between LMW PAH concentration and the soluble carbohydrate content (p < 0.05) indicated that LMW PAHs and the readily decomposed organic carbon fractions were cometabolized, or that LMW PAHs were mainly absorbed by soluble carbohydrate. The weak negative correlation between fulvic acid (FA) and PAH concentrations (p < 0.1) indicated that FA may enhance PAH degradation. Redundancy analysis suggested that the contents of both soluble carbohydrate and cellulose significantly affected the changes in PAH concentrations (p < 0.05), and that FA content and C/N ratios may also contribute to the changes in PAH concentrations (p < 0.1). However, the polyphenol that was related to microbial activities was not associated with changes in PAH concentrations. These results suggested that litter quality is more important than microbial activities in PAH degradation in Sphagnum litters.

  12. Impact of using fishing boat fuel with high poly aromatic content on the emission of polycyclic aromatic hydrocarbons from the diesel engine

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Li, Hsing-Wang; Chen, Chung-Ban; Fang, Guor-Cheng; Tsai, Perng-Jy

    Because of the fishery subsidy policy, the fishing boat fuel oil (FBFO) exemption from commodity taxes, business taxes and air pollution control fees, resulted in the price of FBFO was ˜50% lower than premium diesel fuel (PDF) in Taiwan. It is estimated that ˜650,000 kL FBFO was illegally used by traveling diesel-vehicles (TDVs) with a heavy-duty diesel engine (HDDE), which accounted for ˜16.3% of the total diesel fuel consumed by TDVs. In this study, sulfur, poly aromatic and total-aromatic contents in both FBFO and PDF were measured and compared. Exhaust emissions of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies (BaP eq) from a HDDE under transient cycle testing for both FBFO and PDF were compared and discussed. Finally, the impact caused by the illegal use of FBFO on the air quality was examined. Results show that the mean sulfur-, poly aromatic and aromatic-contents in FBFO were 43.0, 3.89 and 1.04 times higher than that of PDF, respectively. Emission factors of total-PAHs and total-BaP eq obtained by utilizing FBFO were 51.5 and 0.235 mg L -1-Fuel, which were 3.41 and 5.82 times in magnitude higher than obtained by PDF, respectively. The estimated annual emissions of total-PAHs and total-BaP eq to the ambient environment due to the illegally used FBFO were 23.6 and 0.126 metric tons, respectively, which resulted in a 17.9% and a 25.0% increment of annual emissions from all mobile sources, respectively. These results indicated that the FBFO used illegally by TDVs had a significant impact on PAH emissions to the ambient environment.

  13. Rapid estimation of concentration of aromatic classes in middistillate fuels by high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.; Seng, G. T.

    1985-01-01

    An high performance liquid chromatography (HPLC) method to estimate four aromatic classes in middistillate fuels is presented. Average refractive indices are used in a correlation to obtain the concentrations of each of the aromatic classes from HPLC data. The aromatic class concentrations can be obtained in about 15 min when the concentration of the aromatic group is known. Seven fuels with a wide range of compositions were used to test the method. Relative errors in the concentration of the two major aromatic classes were not over 10 percent. Absolute errors of the minor classes were all less than 0.3 percent. The data show that errors in group-type analyses using sulfuric acid derived standards are greater for fuels containing high concentrations of polycyclic aromatics. Corrections are based on the change in refractive index of the aromatic fraction which can occur when sulfuric acid and the fuel react. These corrections improved both the precision and the accuracy of the group-type results.

  14. FT-IR spectroscopic studies of polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salisbury, D. W.; Allen, J. E., Jr.; Donn, B.; Moore, W. J.; Khanna, R. K.

    1990-01-01

    Proper assessment of the hypothesis which correlates polycyclic aromatic hydrocarbons (PAHs) with the unidentified infrared emission bands requires additional experimental laboratory data. In order to address this need, thermal infrared emission studies were performed on a subset of PAHs suggested to be of astrophysical importance. It was proposed that infrared emission from interstellar PAHs occurs following absorption of an ultraviolet photon. Since energy transfer to the ground electronic state can be rapid for a species in which intersystem crossing is negligible, the emission spectrum may be viewed as resulting from an equilibrium vibrational temperature (Leger and d'Hendecourt, 1987). This has been the basis for using infrared absorption spectra to calculate the corresponding emission spectra at various temperatures. These calculations were made using room temperature infrared absorption coefficients instead of those at the temperature of interest because of the latter's unavailability. The present studies are designed to address the differences between the calculated and experimental thermal emission spectra and to provide information which will be useful in future ultraviolet induced infrared fluorescence studies. The emission spectra have been obtained for temperatures up to 825K using an emission cell designed to mount against an external port of an FT-IR spectrometer. These spectra provide information concerning relative band intensities and peak positions which is unavailable from previous calculations.

  15. Determination and Distribution of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District, South Africa

    PubMed Central

    Edokpayi, Joshua N.; Odiyo, John O.; Popoola, Oluwaseun E.; Msagati, Titus A. M.

    2016-01-01

    Polycyclic aromatic hydrocarbons are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs (Polycyclic aromatic hydrocarbons) classified by the United State Environmental Protection Agency as priority pollutants in water and sediments of the Mvudi and Nzhelele Rivers. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using an ultrasonication method. The extracts were purified using an SPE technique and reconstituted in n-hexane before analyses with a gas chromatograph time of flight—mass spectrometer. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174–26.382 mg/L and 27.10–55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs found in both river water and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs. PMID:27043597

  16. Plasma asymmetric dimethylarginine (ADMA) levels in Mexican women exposed to polycyclic aromatic hydrocarbons (PAHs): A preliminary study.

    PubMed

    Pruneda-Alvarez, Lucía G; Ruíz-Vera, Tania; Ochoa-Martínez, Angeles C; Pérez-Vázquez, Francisco J; González Palomo, Ana K; Ilizaliturri-Hernández, Cesar A; Pérez-Maldonado, Iván N

    2016-12-01

    Recent studies indicate that exposure to environmental pollutants (as polycyclic aromatic hydrocarbons) is a very important risk factor for development of cardiovascular diseases (CVDs). Correspondingly, in recent times asymmetric dimethylarginine (ADMA) has been proposed as a new and meaningful biomarker predictor for the risk of CVDs. Therefore, the objective of this study was to evaluate plasma ADMA concentrations in Mexican women (n=155) exposed to polycyclic aromatic hydrocarbons (PAHs). Urinary 1-hydroxypyrene [(1-OHP), exposure biomarker for PAHs] levels were quantified using a high performance liquid chromatography (HPLC) technique and plasma ADMA concentrations were analyzed using a commercially available ELISA kit. Urinary 1-OHP levels in all women assessed ranged from

  17. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    EPA Pesticide Factsheets

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  18. Highly sensitive analysis of polycyclic aromatic hydrocarbons in environmental water with porous cellulose/zeolitic imidazolate framework-8 composite microspheres as a novel adsorbent coupled with high-performance liquid chromatography.

    PubMed

    Liang, Xiaotong; Liu, Shengquan; Zhu, Rong; Xiao, Lixia; Yao, Shouzhuo

    2016-07-01

    In this work, novel cellulose/zeolitic imidazolate frameworks-8 composite microspheres have been successfully fabricated and utilized as sorbent for environmental polycyclic aromatic hydrocarbons efficient extraction and sensitive analysis. The composite microspheres were synthesized through the in situ hydrothermal growth of zeolitic imidazolate frameworks-8 on cellulose matrix, and exhibited favorable hierarchical structure with chemical composition as assumed through scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, and Brunauer-Emmett-Teller surface areas characterization. A robust and highly efficient method was then successfully developed with as-prepared composite microspheres as novel solid-phase extraction sorbent with optimum extraction conditions, such as sorbent amount, sample volume, extraction time, desorption conditions, volume of organic modifier, and ionic strength. The method exhibited high sensitivity with low limit of detection down to 0.1-1.0 ng/L and satisfactory linearity with correlation coefficients ranging from 0.9988 to 0.9999, as well as good recoveries of 66.7-121.2% with relative standard deviations less than 10% for environmental polycyclic aromatic hydrocarbons analysis. Thus, our method was convenient and efficient for polycyclic aromatic hydrocarbons extraction and detection, potential for future environmental water samples analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. From biowaste to magnet-responsive materials for water remediation from polycyclic aromatic hydrocarbons.

    PubMed

    Nisticò, Roberto; Cesano, Federico; Franzoso, Flavia; Magnacca, Giuliana; Scarano, Domenica; Funes, Israel G; Carlos, Luciano; Parolo, Maria E

    2018-07-01

    Composted urban biowaste-derived substances (BBS-GC) are used as carbon sources for the preparation of carbon-coated magnet-sensitive nanoparticles obtained via co-precipitation method and the subsequent thermal treatment at 550 °C under nitrogen atmosphere. A multitechnique approach has been applied to investigate the morphology, magnetic properties, phase composition, thermal stability of the obtained magnet-sensitive materials. In particular, pyrolysis-induced modifications affecting the BBS-GC/carbon shell were highlighted. The adsorption capacity of such bio-derivative magnetic materials for the removal of hydrophobic contaminants such as polycyclic aromatic hydrocarbons was evaluated in order to verify their potential application in wastewater remediation process. The promising results suggest their use as a new generation of magnet-responsive easily-recoverable adsorbents for water purification treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Analysis of polycyclic aromatic hydrocarbons in sediment reference materials by microwave-assisted extraction.

    PubMed

    Shu, Y Y; Lao, R C; Chiu, C H; Turle, R

    2000-12-01

    The microwave-assisted extraction (MAE) of polycyclic aromatic hydrocarbons (PAHs) from harbor sediment reference material EC-1, marine sediment reference material HS-2 and PAH-spiked river bed soil was conducted. The extraction conditions for EC-1 were carried out at 70 degrees C and 100 degrees C under pressure in closed vessels with cyclohexane acetone (1:1), cyclohexane-water (3:1), hexane acetone (1:1), and hexane-water (3:1) for 10 min. A comparison between MAE and a 16-h Soxhlet extraction (SX) method showed that both techniques gave comparable results with certified values. MAE has advantages over the currently used Soxhlet technique due to a faster extraction time and lower quantity of solvent used. The consumption of organic solvent of the microwave method was less than one-tenth compared to Soxhlet.

  1. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING URINE SAMPLES FOR ANALYSIS OF HYDROXY POLYCYCLIC AROMATIC HYDROCARBONS, PENTACHLOROPHENOL AND 2,4-D (SOP-5.21)

    EPA Science Inventory

    The method for extracting and preparing urine samples for analysis of hydroxy-polycyclic aromatic hydrocarbons, pentachlorophenol and 2,4-D is summarized in this SOP. It covers the extraction, concentration and methylation of samples that are to be analyzed by gas chromatography/...

  2. Distribution and sources of polycyclic aromatic hydrocarbons and phthalic acid esters in water and surface sediment from the Three Gorges Reservoir.

    PubMed

    Lin, Li; Dong, Lei; Meng, Xiaoyang; Li, Qingyun; Huang, Zhuo; Li, Chao; Li, Rui; Yang, Wenjun; Crittenden, John

    2018-07-01

    After the impoundment of the Three Gorges Reservoir (TGR), the hydrological situation of the reservoir has changed greatly. The concentration and distribution of typical persistent organic pollutants in water and sediment have also changed accordingly. In this study, the concentration, distribution and potential sources of 16 polycyclic aromatic hydrocarbons (PAHs) and 6 phthalic acid esters (PAEs) during the water drawdown and impoundment periods were investigated in water and sediment from the TGR. According to our results, PAHs and PAEs showed temporal and spatial variations. The mean ΣPAH and ΣPAE concentrations in water and sediment were both higher during the water impoundment period than during the water drawdown period. The water samples from the main stream showed larger ΣPAH concentration fluctuations than those from tributaries. Both the PAH and PAE concentrations meet the Chinese national water environmental quality standard (GB 3838-2002). PAH monomers with 2-3 rings and 4 rings were dominant in water, and 4-ring and 5-6-ring PAHs were dominant in sediment. Di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) were the dominant PAE pollutants in the TGR. DBP and DEHP had the highest concentrations in water and sediment, respectively. The main source of PAHs in water from the TGR was petroleum and emissions from coal and biomass combustion, whereas the main sources of PAHs in sediments included coal and biomass combustion, petroleum, and petroleum combustion. The main source of PAEs in water was domestic waste, and the plastics and heavy chemical industries were the main sources of PAEs in sediment. Copyright © 2017. Published by Elsevier B.V.

  3. Leaching of polycyclic aromatic hydrocarbons from power plant lignite ash--influence of parameters important for environmental pollution.

    PubMed

    Pergal, Miodrag M; Relić, Dubravka; Tešić, Zivoslav Lj; Popović, Aleksandar R

    2014-03-01

    Nikola Tesla B power plant (TENT B), located at the Sava River, in Obrenovac, 50 km west from the Serbian's capital, Belgrade, is the second largest coal-fired power plant in the country, consisting of two blocks, each of 620 MW capacity. In order to investigate the threat polycyclic aromatic hydrocarbons (PAHs) from deposited coal ash, obtained by coal combustion in this power plant, can represent for the surrounding environment, samples of coal ash were submitted to extraction with river water used for transport of coal ash to the dump, as well as with water of different ionic strength and acidity. It was found that, out of 16 EPA priority PAHs, only naphthalene, acenaphthylene, fluorene, phenantrene, fluoranthene, and pyrene were found in measurable concentrations in the different extracts. Their combined concentration was around 0.1 μg/L, so they do not, in terms of leached concentrations, represent serious danger for the surrounding environment. In all cases of established (and leached) PAH compounds, changes of ionic strength, acidity, or the presence of organic compounds in river water may to some extent influence the leached concentrations. However, under the examined conditions, similar to those present in the environment, leached concentrations were not more than 50 % greater than the concentrations leached by distilled water. Therefore, water desorption is likely the most important mechanism responsible for leaching of PAH compounds from filter coal ash.

  4. Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles

    NASA Astrophysics Data System (ADS)

    Teixeira, Elba Calesso; Garcia, Karine Oliveira; Meincke, Larissa; Leal, Karen Alam

    2011-08-01

    The purpose of the present study was to evaluate six nitro-polycyclic aromatic hydrocarbons (NPAHs) in fine (< 2.5 μm) and coarse (2.5-10 μm) atmospheric particles in an urban and industrial area located in the Metropolitan Area of Porto Alegre (MAPA), RS, Brazil. The method used was of NPAHs isolation and derivatization, and subsequent gas chromatography by electron capture detection (CG/ECD). Results revealed a higher concentration of NPAHs, especially 3-nitrofluoranthene and 1-nitropyrene, in fine particles in the sampling sites studied within the MAPA. The diagnostic ratios calculated for PAHs and NPAHs identified the influence of heavy traffic, mainly of diesel emissions. The correlation of NPAHs with other pollutants (NO x, NO 2, NO and O 3) evidence the influence of vehicular emissions in the MAPA. The seasonal variation evidenced higher NPAHs concentrations in the fine particles during winter for most compounds studied.

  5. Characterization of polycyclic aromatic hydrocarbons and carbonyl compounds in diesel exhaust emissions.

    PubMed

    Mabilia, Rosanna; Cecinato, Angelo; Tomasi Scianò, Maria Concetta; Di Palo, Vincenzo; Possanzini, Massimiliano

    2004-01-01

    Exhaust emissions from a recent model heavy-duty diesel vehicle (city bus) in a chassis dynamometer were measured during a transient driving cycle. Particle-bound polycyclic aromatic hydrocarbons (PAHs) and gaseous carbonyls, substances that create health hazards and are, as yet, unregulated were collected, the former on filters and the latter on dinitrophenylhydrazine (DNPH)-coated silica cartridges and analysed by GC-MS and HPLC, respectively. PAH emission rates decreased with the number of benzene fused rings. They averaged 0.2 mg km(-1) for a total of 11 PAHs ranging from fluoranthene to benzo(ghi)perylene. Fluoranthene and pyrene accounted for 90% of total PAHs. The sum of emission rates of C1 approximately C6 carbonyls averaged 174 mg km(-1), even if formaldehyde alone represented approximately 70% of the total carbonyl mass, followed by acetaldehyde (13%). Results obtained were compared with emission data reported in previous studies.

  6. Distribution of polycyclic aromatic hydrocarbons in Datuo karst Tiankeng of South China.

    PubMed

    Theodore, Oramah I; Qi, Shihua; Kong, Xiangsheng; Liu, Huafeng; Li, Jun; Li, Jie; Wang, Xiangqing; Wang, Yinhui

    2008-10-01

    Levels of polycyclic aromatic hydrocarbons (PAHs) were measured in surface soils of Datuo karst Tiankeng (large sinkholes) in South China with the use of a gas chromatography-mass spectroscopy (GC-MS) system. This paper provides data on the levels and distribution of PAHs from the top to the bottom of the Datuo karst Tiankeng. The results showed that the sum of the 16 EPA priority PAHs from the sampled locations from top to bottom had a relative increment in PAHs concentration. summation operatorPAHs ranged from 16.93 ng/g to 68.07 ng/g with a mean concentration of 42.15 ng/g. The correlated results showed the bottom of the large sinkhole, which accounts for the higher concentrations, probably acts like a trap for the PAHs. Thus, the low evaporation rate at the bottom may play a key role in controlling the high concentration of PAHs at the bottom.

  7. Atypical kinetic behavior of chloroperoxidase-mediated oxidative halogenation of polycyclic aromatic hydrocarbons.

    PubMed

    Aburto, Jorge; Correa-Basurto, Jose; Torres, Eduardo

    2008-12-01

    We have identified an atypical kinetic behavior for the oxidative halogenation of several polycyclic aromatic hydrocarbons (PAHs) by chloroperoxidase (CPO) from Caldariomyces fumago. This behavior resembles the capacity of some members of the P450 family to simultaneously recognize several substrate molecules at their active sites. Indeed, fluorometric studies showed that PAHs exist in solution as monomers and pi-pi dimers that interact to different extents with CPO. The dissociation constants of dimerization were evaluated for every single PAH by spectrofluorometry. Furthermore, docking studies also suggest that CPO might recognize either one or two substrate molecules in its active site. The atypical sigmoidal kinetic behavior of CPO in the oxidative halogenation of PAHs is explained in terms of different kinetic models for non-heteroatomic PAHs (naphthalene, anthracene and pyrene). The results suggest that the actual substrate for CPO in this study was the pi-pi dimer for all evaluated PAHs.

  8. Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS, Brazil

    NASA Astrophysics Data System (ADS)

    Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana M.; Fachel, Jandyra Maria Guimarães; Leal, Karen Alam; Garcia, Karine de Oliveira; Wiegand, Flavio

    2012-11-01

    The purpose of the present study was to evaluate the polycyclic aromatic hydrocarbons (PAHs) in fine (PM2.5) and coarse particles (PM2.5-10) in an urban and industrial area in the Metropolitan Area of Porto Alegre (MAPA), Brazil. Sixteen U.S. Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) were measured. Filters containing ambient air particulate were extracted with dichloromethane using Soxhlet. Extracts were later analyzed, for determining PAH concentrations, using a gaseous chromatograph coupled with a mass spectrometer (GC-MS). The polycyclic aromatic hydrocarbons (PAHs) were more concentrated in PM2.5 with an average of 70% of total PAHs in the MAPA. The target PAH apportionment among the main emission sources was carried out by diagnostic PAH concentration ratios, and principal component analysis (PCA). PAHs with higher molecular weight showed higher percentages in the fine particles in the MAPA. Based on the diagnostic ratios and PCA analysis, it may be concluded that the major contribution of PAHs was from vehicular sources (diesel and gasoline), especially in the PM2.5 fraction, as well as coal and wood burning. The winter/summer ratio in the PM2.5 and PM2.5-10 fractions in the MAPA was 3.1 and 1.8, respectively, revealing the seasonal variation of PAHs in the two fractions. The estimated toxicity equivalent factor (TEF), used to assess the contribution of the carcinogenic potency, confirms a significant presence of the moderately active carcinogenic PAHs BaP and DahA in the samples collected in the MAPA.

  9. A metabolomics strategy to assess the combined toxicity of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs).

    PubMed

    Wang, Feidi; Zhang, Haijun; Geng, Ningbo; Ren, Xiaoqian; Zhang, Baoqin; Gong, Yufeng; Chen, Jiping

    2018-03-01

    The combined toxicity of mixed chemicals is usually evaluated according to several specific endpoints, and other potentially toxic effects are disregarded. In this study, we provided a metabolomics strategy to achieve a comprehensive understanding of toxicological interactions between mixed chemicals on metabolism. The metabolic changes were quantified by a pseudotargeted analysis, and the types of combined effects were quantitatively discriminated according to the calculation of metabolic effect level index (MELI). The metabolomics strategy was used to assess the combined effects of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs) on the metabolism of human hepatoma HepG2 cells. Our data suggested that exposure to a combination of PAHs and SCCPs at human internal exposure levels could result in an additive effect on the overall metabolism, whereas diverse joint effects were observed on various metabolic pathways. The combined exposure could induce a synergistic up-regulation of phospholipid metabolism, an additive up-regulation of fatty acid metabolism, an additive down-regulation of tricarboxylic acid cycle and glycolysis, and an antagonistic effect on purine metabolism. SCCPs in the mixture acted as the primary driver for the acceleration of phospholipid and fatty acid metabolism. Lipid metabolism disorder caused by exposure to a combination of PAHs and SCCPs should be an important concern for human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Aliphatic and polycyclic aromatic hydrocarbons characterisation of Coimbra and Oporto PM2.5 urban aerosol

    NASA Astrophysics Data System (ADS)

    Rocha, A. C.; Mirante, F.; Gonçalves, C.; Nunes, T.; Alves, C.; Evtyugina, M.; Kowacz, M.; Pio, C.; Rocha, C.; Vasconcelos, T.

    2009-04-01

    The concentration of organic pollutants in urban areas is mostly due to incomplete combustion from vehicles, industries and domestic heating. Some of these compounds, principally the aliphatic (ALIPH) and polycyclic aromatic hydrocarbons (PAHs) promote harmful effects in human health. The determination of the ALIPH and PAHs concentration levels and their possible emission sources are useful for air quality management and source apportionment studies. In order to estimate and compare the ambient concentrations and establish the main sources of these compounds, the fine fraction of the atmospheric particulate matter (PM2.5) was collected simultaneously in Oporto and Coimbra during summer and winter seasons using a high volume sampler. The organic compounds were extracted from the particulate matter, under reflux with dichloromethane and the total organic extract (TOE) was fractionated by flash chromatography using five different eluents with increasing polarity. The hydrocarbon fractions were analysed by gas chromatography/mass spectrometry (GC/MS). Here we present and discuss the qualitative and quantitative composition of the aliphatic and aromatic fractions present in PM2.5 samples from both cities. The homologous series of C14 to C34 n-alkanes, isoprenoid hydrocarbons (pristane and phytane), PAHs and some petroleum markers have been identified and quantified. With the purpose of identifying the possible sources, various molecular diagnostic ratios were calculated. The global carbon preference index (CPI) closer to the unity, the large concentration of the unresolved complex mixture (UCM) and the presence of PAHs indicate that motor vehicle exhaust was the main emission source of the aliphatic and polycyclic aromatic fractions of Oporto and Coimbra aerosol, especially in the first city. Also, the remarkable presence of petroleum biomarkers such, as hopanes, confirms the previous results. Concentration ratios between PAHs were calculated and used to assign emission

  11. Occupational exposure to Polycyclic Aromatic Hydrocarbons in wood dust

    NASA Astrophysics Data System (ADS)

    Huynh, C. K.; Schüpfer, P.; Boiteux, P.

    2009-02-01

    Sino-nasal cancer (SNC) represents approximately 3% of Oto-Rhino-Laryngology (ORL) cancers. Adenocarcinoma SNC is an acknowledged occupational disease affecting certain specialized workers such as joiners and cabinetmakers. The high proportion of woodworkers contracting a SNC, subjected to an estimated risk 50 to 100 times higher than that affecting the general population, has suggested various study paths to possible causes such as tannin in hardwood, formaldehyde in plywood and benzo(a)pyrene produced by wood when overheated by cutting tools. It is acknowledged that tannin does not cause cancer to workers exposed to tea dust. Apart from being an irritant, formaldehyde is also classified as carcinogenic. The path involving carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) emitted by overheated wood is attractive. In this study, we measured the particle size and PAHs content in dust emitted by the processing of wood in an experimental chamber, and in field situation. Quantification of 16 PAHs is carried out by capillary GC-ion trap Mass Spectrometric analysis (GC-MS). The materials tested are rough fir tree, oak, impregnated polyurethane (PU) oak. The wood dust contains carcinogenic PAHs at the level of μg.g-1 or ppm. During sanding operations, the PU varnish-impregnated wood produces 100 times more PAHs in dust than the unfinished wood.

  12. Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Cations

    NASA Technical Reports Server (NTRS)

    Hudgins, D. M.; Allamandola, L. J.

    1995-01-01

    Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common family of interstellar infrared emission bands. Here the near- and mid-infrared spectra of the cations of the five most thermodynamically favored PAHs up to coronene: phenanthrene, pyrene, benzo(e)pyrene, benzo-(ghi)perylene, and coronene, are presented to test this hypothesis. For those molecules that have been studied previously (pyrene, pyrene-d(sub 10), and coronene), band positions and relative intensities are in agreement. In all of these cases we report additional features. Absolute integrated absorbance values are given for the phenanthrene, perdeuteriophenanthrene, pyrene, benzo(ghi]perylene, and coronene cations. With the exception of coronene, the cation bands corresponding to the CC modes are typically 2-5 times more intense than those of the CH out-of-plane bending vibrations. For the cations, the CC stretching and CH in-plane bending modes give rise to bands that are an order of magnitude stronger than those of the neutral species, and the CH out-of-plane bends produce bands that are 5-20 times weaker than those of the neutral species. This behavior is similar to that found in most other PAH cations studied to date. The astronomical implications of these PAH cation spectra are also discussed.

  13. Atmospheric behaviors of particulate-bound polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in Beijing, China from 2004 to 2010

    NASA Astrophysics Data System (ADS)

    Tang, Ning; Suzuki, Genki; Morisaki, Hiroshi; Tokuda, Takahiro; Yang, Xiaoyang; Zhao, Lixia; Lin, Jinming; Kameda, Takayuki; Toriba, Akira; Hayakawa, Kazuichi

    2017-03-01

    Airborne particulates were collected at an urban site (site 1) from 2004 to 2010 and at a suburban site (site 2) in 2010 in Beijing. Nine polycyclic aromatic hydrocarbons (PAHs) and five nitropolycyclic aromatic hydrocarbons (NPAHs) in the airborne particulates were determined by HPLC with fluorescence and chemiluminescence detection, respectively. The concentrations of PAHs and NPAHs were higher in heating season than in non-heating season at the two sites. Both the concentrations of PAHs and NPAHs decreased in the non-heating season but only the concentrations of NPAHs decreased in heating season at site 1, from 2004 to 2010. These findings suggest that source control measures implemented by the city of Beijing helped to reduce air pollution in Beijing. The concentrations of PAHs increased at site 1 in 2010, possibly because of the transport of emissions from windward other areas, such as Shanxi province. Several diagnostic ratios of PAHs and NPAHs showed that the different sources contributed to Beijing's air pollution, although coal combustion was the main source in the heating season and vehicle emission was the main source in the non-heating season. An analysis of physical parameters at Beijing showed that high wind speed can remove atmospheric PAHs and NPAHs in the heating season and that high relative humidity can remove them in the non-heating season.

  14. Aromatic Amino Acids and Related Substances: Chemistry, Biology, Medicine, and Application

    USDA-ARS?s Scientific Manuscript database

    On the occasion of the "Transdisciplinary International Conference on Aromatic Amino Acids and Related Substances," the organizing committee honors and thanks the expert participants from many areas of aromatic amino acid (AAA)3 research. In this transdisciplinary meeting, "aromatic paradigms" were ...

  15. Role of Kekulé and Non-Kekulé Structures in the Radical Character of Alternant Polycyclic Aromatic Hydrocarbons: A TAO-DFT Study

    PubMed Central

    Yeh, Chia-Nan; Chai, Jeng-Da

    2016-01-01

    We investigate the role of Kekulé and non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons (PAHs) using thermally-assisted-occupation density functional theory (TAO-DFT), an efficient electronic structure method for the study of large ground-state systems with strong static correlation effects. Our results reveal that the studies of Kekulé and non-Kekulé structures qualitatively describe the radical character of alternant PAHs, which could be useful when electronic structure calculations are infeasible due to the expensive computational cost. In addition, our results support previous findings on the increase in radical character with increasing system size. For alternant PAHs with the same number of aromatic rings, the geometrical arrangements of aromatic rings are responsible for their radical character. PMID:27457289

  16. Polycyclic aromatic hydrocarbons in urban soil of Novi Sad, Serbia: occurrence and cancer risk assessment.

    PubMed

    Škrbić, Biljana D; Đurišić-Mladenović, Nataša; Tadić, Đorđe J; Cvejanov, Jelena Đ

    2017-07-01

    Contents of 16 polycyclic aromatic hydrocarbons were analyzed in 30 soil samples from 15 locations in Novi Sad, Serbia, assessing for the first time the corresponding health risks in the Serbian urban zone. Total concentrations were in the range of 22-2247 μg kg -1 , with a mean and median value of 363 and 200 μg kg -1 , respectively. Comparison with the relevant maximum allowed contents proposed by the Serbian government and with the Dutch target values implied that soils from the urban area of Novi Sad were "suitable as residential soils" and that no intervention would be needed if the current levels were retained. Seven diagnostic ratios were calculated, indicating the pyrogenic sources of PAHs as the dominant. Cancer risks in humans via accidental ingestion, inhalation of soil particles, and dermal contact with soil were estimated. Cancer risk for soil ingestion by children was the highest. The total lifetime carcinogenic risk as sum of individual cancer risks for seven carcinogenic polycyclic aromatic hydrocarbons was within the range 10 -4 to 10 -6 , indicating acceptable risks at 30 and 47% of sites for children and adults, respectively. However, for the rest of the samples, total lifetime cancer risk was >10 -4 indicating over the acceptable risk, even though the contents in soil were not of concern as the comparison with the environmental guidance previously showed. This could be explained by (a) the dominant concentrations of higher molecular weight compounds with 4 to 6 rings, among which there are compounds with higher toxicity equivalents, but also with (b) the extreme conditions used for the conservative risk assessment under maximal exposure frequency, exposure time, and ingestion rates.

  17. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.

    PubMed

    Zafra, German; Cortés-Espinosa, Diana V

    2015-12-01

    Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils.

  18. Use of antioxidant enzymes of clam Ruditapes philippinarum as biomarker to polycyclic aromatic hydrocarbon pollution

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Tang, Xuexi; Wang, Ying; Sui, Yadong; Xiao, Hui

    2016-03-01

    The typical organic pollutant polycyclic aromatic hydrocarbon (PAH) anthracene was selected as a contaminant to investigate its effects on the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the clam Ruditapes philippinarum. The results show that SOD, CAT and GSH-Px had diff erent induction and inhibition reactions to anthracene stress, and that three diff erent organs in R. philippinarum (visceral mass, muscle tissue and mantle) had diff erent sensitivities to anthracene stress. This study suggest that SOD activities of the visceral mass, CAT activitities of the mantle and the visceral mass, and GSH-Px activity of the muscle tissue could be used as sensitive indicators of anthracene stress in R. philippinarum.

  19. Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Burkhardt, Andrew M.; Kalenskii, Sergei; Shingledecker, Christopher N.; Remijan, Anthony J.; Herbst, Eric; McCarthy, Michael C.

    2018-01-01

    Polycyclic aromatic hydrocarbons and polycyclic aromatic nitrogen heterocycles are thought to be widespread throughout the universe, because these classes of molecules are probably responsible for the unidentified infrared bands, a set of emission features seen in numerous Galactic and extragalactic sources. Despite their expected ubiquity, astronomical identification of specific aromatic molecules has proven elusive. We present the discovery of benzonitrile (c-C6H5CN), one of the simplest nitrogen-bearing aromatic molecules, in the interstellar medium. We observed hyperfine-resolved transitions of benzonitrile in emission from the molecular cloud TMC-1. Simple aromatic molecules such as benzonitrile may be precursors for polycyclic aromatic hydrocarbon formation, providing a chemical link to the carriers of the unidentified infrared bands.

  20. Quasi-targeted analysis of hydroxylation-related metabolites of polycyclic aromatic hydrocarbons in human urine by liquid chromatography-mass spectrometry.

    PubMed

    Tang, Caiming; Tan, Jianhua; Fan, Ruifang; Zhao, Bo; Tang, Caixing; Ou, Weihui; Jin, Jiabin; Peng, Xianzhi

    2016-08-26

    Metabolite identification is crucial for revealing metabolic pathways and comprehensive potential toxicities of polycyclic aromatic hydrocarbons (PAHs) in human body. In this work, a quasi-targeted analysis strategy was proposed for metabolite identification of monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in human urine using liquid chromatography triple quadruple mass spectrometry (LC-QqQ-MS/MS) combined with liquid chromatography high resolution mass spectrometry (LC-HRMS). Potential metabolites of OH-PAHs were preliminarily screened out by LC-QqQ-MS/MS in association with filtering in a self-constructed information list of possible metabolites, followed by further identification and confirmation with LC-HRMS. The developed method can provide more reliable and systematic results compared with traditional untargeted analysis using LC-HRMS. In addition, data processing for LC-HRMS analysis were greatly simplified. This quasi-targeted analysis method was successfully applied to identifying phase I and phase II metabolites of OH-PAHs in human urine. Five metabolites of hydroxynaphthalene, seven of hydroxyfluorene, four of hydroxyphenanthrene, and three of hydroxypyrene were tentatively identified. Metabolic pathways of PAHs in human body were putatively revealed based on the identified metabolites. The experimental results will be valuable for investigating the metabolic processes of PAHs in human body, and the quasi-targeted analysis strategy can be expanded to the metabolite identification and profiling of other compounds in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Air-water partition coefficients for a suite of polycyclic aromatic and other C10 through C20 unsaturated hydrocarbons.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-09-18

    The air-water partition coefficients (Kaw) for 86 large polycyclic aromatic hydrocarbons and their unsaturated relatives were estimated using high-level G4(MP2) gas and aqueous phase calculations with the SMD, IEFPCM-UFF, and CPCM solvation models. An extensive method validation effort was undertaken which involved confirming that, via comparisons to experimental enthalpies of formation, gas-phase energies at the G4(MP2) level for the compounds of interest were at or near thermochemical accuracy. Investigations of the three solvation models using a range of neutral and ionic compounds suggested that while no clear preferential solvation model could be chosen in advance for accurate Kaw estimates of the target compounds, the employment of increasingly higher levels of theory would result in lower Kaw errors. Subsequent calculations on the polycyclic aromatic and unsaturated hydrocarbons at the G4(MP2) level revealed excellent agreement for the IEFPCM-UFF and CPCM models against limited available experimental data. The IEFPCM-UFF-G4(MP2) and CPCM-G4(MP2) solvation energy calculation approaches are anticipated to give Kaw estimates within typical experimental ranges, each having general Kaw errors of less than 0.5 log10 units. When applied to other large organic compounds, the method should allow development of a broad and reliable Kaw database for multimedia environmental modeling efforts on various contaminants.

  2. Molecular Spectroscopy in Astrophysics: The Case of Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincent, Donald L. (Technical Monitor)

    2000-01-01

    The role of molecular spectroscopy in astrophysics and astrochemistry is discussed in the context of the study of large, complex, carbon-bearing molecules, namely, Polycyclic Aromatic Hydrocarbons or PAHs. These molecular species are now thought to be widespread in the interstellar medium in their neutral and ionized forms. Identifying the carriers responsible for unidentified interstellar spectral bands will allow to derive important information on cosmic elemental abundances as well as information on the physical conditions (density, temperature) reigning in specific interstellar environments. These, in turn, are key elements for a correct understanding of the energetic mechanisms that govern the origin and the evolution of the interstellar medium. A multidisciplinary approach - combining astronomical observations with laboratory simulations and theoretical modeling - is required to address these complex issues. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices or seeded in a supersonic jet expansion, are discussed here and compared to the astronomical spectra of reddened, early type, stars. The electronic spectroscopy of PAHs in the ultraviolet, visible, and near-infrared domains is reviewed and an assessment of the potential contribution of PAHs to the interstellar extinction in the ultraviolet and in the visible is discussed.

  3. Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis

    PubMed Central

    Rao, P. S. S.; Kumar, Santosh

    2015-01-01

    High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers. PMID:26082767

  4. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.A.; Luthy, R.G.; Liu, Zhongbao

    1991-01-01

    Experimental data are presented on the enhanced apparent solubilities of naphthalene, phenanthrene, and pyrene resulting from solubilization in aqueous solutions of four commercial, nonionic surfactants: an alkyl polyoxyethylene (POE) type, two octylphenol POE types, and a nonylphenol POE type. Apparent solubilities of the polycyclic aromatic hydrocarbon (PAH) compounds in surfactant solutions were determined by radiolabeled techniques. Solubilization of each PAH compound commenced at the surfactant critical micelle concentration and was proportional to the concentration of surfactant in micelle form. The partitioning of organic compounds between surfactant micelles and aqueous solution is characterized by a mole fraction micelle-phase/aqueous-phase partition coefficient, K{submore » m}. Values of log K{sub m} for PAH compounds in surfactant solutions of this study range from 4.57 to 6.53. Log K{sub m} appears to be a linear function of log K{sub ow} for a given surfactant solution. A knowledge of partitioning in aqueous surfactant systems is a prerequisite to understanding mechanisms affecting the behavior of hydrophobic organic compounds in soil-water systems in which surfactants play a role in contaminant remediation or facilitated transport.« less

  5. Altering the Polymorphic Accessibility of Polycyclic Aromatic Hydrocarbons with Fluorination

    DOE PAGES

    Hiszpanski, Anna M.; Woll, Arthur R.; Kim, Bumjung; ...

    2017-04-25

    Here, substituting hydrogen with fluorine is an extensively employed strategy to improve the macroscopic properties of compounds for use in fields as diverse as pharmaceutics and optoelectronics. The role fluorine substitution plays on polymorphism—the ability of a compound to adopt more than one crystal structure—has not been previously studied. Yet, this understanding is important as different polymorphs of the same compound can result in drastically different bulk properties (e.g., solubility, absorptivity, and conductivity). Strategies to either promote or suppress the crystallization of particular polymorphs are thus desired. Here, we show that substituting hydrogen with fluorine affects the polymorphic behavior ofmore » contorted hexabenzocoronene (cHBC). A polycyclic aromatic hydrocarbon and molecular semiconductor, cHBC exhibits two polymorphs (i.e., P2 1/c crystal structure which we refer to as polymorph I and a triclinic crystal structure which we refer to as polymorph II) that are accessible through postdeposition processing of amorphous films. While the same two polymorphs remain accessible in fluorinated derivatives of cHBC, fluorination appears to favor the formation of polymorph I, with progressively smaller energy barrier for transformation from polymorph II to polymorph I with fluorination.« less

  6. Polycyclic aromatic hydrocarbons in Italian preserved food products in oil.

    PubMed

    Sannino, Anna

    2016-06-01

    A method based on gas chromatography/ tandem mass spectrometry was used to assess levels of 16 EU priority polycyclic aromatic hydrocarbons (PAHs) in 48 preserved food products in oil including foods such as vegetables in oil, fish in oil and oil-based sauces obtained from the Italian market. The benzo[a]pyrene concentrations ranged from <0.04 to 0.40 µg kg(-1), and 72.9% of the samples showed detectable levels of this compound. The highest contamination level was observed for chrysene with three additional PAHs (benzo[a]anthracene, benzo[b]fluoranthene and benzo[c]fluorene) giving mean values higher than the mean value for benzo[a]pyrene. Chrysene was detected in all the samples at concentrations ranging from 0.07 to 1.80 µg kg(-1) (median 0.31 µg kg(-1)). The contamination expressed as PAH4 (sum of benzo(a)pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene), for which the maximum tolerable limit has been set by Commission Regulation (EU) No. 835/2011, varied between 0.10 and 2.94 µg kg(-1).

  7. Altering the Polymorphic Accessibility of Polycyclic Aromatic Hydrocarbons with Fluorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiszpanski, Anna M.; Woll, Arthur R.; Kim, Bumjung

    Here, substituting hydrogen with fluorine is an extensively employed strategy to improve the macroscopic properties of compounds for use in fields as diverse as pharmaceutics and optoelectronics. The role fluorine substitution plays on polymorphism—the ability of a compound to adopt more than one crystal structure—has not been previously studied. Yet, this understanding is important as different polymorphs of the same compound can result in drastically different bulk properties (e.g., solubility, absorptivity, and conductivity). Strategies to either promote or suppress the crystallization of particular polymorphs are thus desired. Here, we show that substituting hydrogen with fluorine affects the polymorphic behavior ofmore » contorted hexabenzocoronene (cHBC). A polycyclic aromatic hydrocarbon and molecular semiconductor, cHBC exhibits two polymorphs (i.e., P2 1/c crystal structure which we refer to as polymorph I and a triclinic crystal structure which we refer to as polymorph II) that are accessible through postdeposition processing of amorphous films. While the same two polymorphs remain accessible in fluorinated derivatives of cHBC, fluorination appears to favor the formation of polymorph I, with progressively smaller energy barrier for transformation from polymorph II to polymorph I with fluorination.« less

  8. Airborne Dioxins, Furans and Polycyclic Aromatic Hydrocarbons Exposure to Military Personnel in Iraq

    PubMed Central

    Masiol, Mauro; Mallon, Timothy; Haines, Kevin M.; Utell, Mark J.; Hopke, Philip K.

    2016-01-01

    Objectives The objective was to use ambient polycyclic aromatic hydrocarbon (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) concentrations measured at Joint Base Balad in Iraq in 2007 to identify the sources of these species and their spatial patterns. Methods The ratios of the measured species were compared to literature data for likely emission sources. Using the multiple site measurements on specific days, contour maps have been drawn using inverse distance weighting (IDW). Results These analyses suggest multiple sources including the burn pit (primarily a source of PCDD/PCDFs), the transportation field (primarily as source of PAHs) and other sources of PAHs that include aircraft, space heating, and diesel power generation. Conclusions The nature and locations of the sources were identified. PCDD/PCDFs were emitted by the burn pit. Multiple PAH sources exist across the base. PMID:27501100

  9. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    PubMed

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  10. Phytoremediation of polycyclic aromatic hydrocarbons (PAH) by cv. Crioula: A Brazilian alfalfa cultivar.

    PubMed

    Alves, Wilber S; Manoel, Evelin A; Santos, Noemi S; Nunes, Rosane O; Domiciano, Giselli C; Soares, Marcia R

    2018-07-03

    This work aimed to evaluate the phytoremediation capacity of the alfalfa cultivar Crioula in soils contaminated with polycyclic aromatic hydrocarbons (PAHs), primary pollutants with mutagenic and carcinogenic potential. Alfalfa was grown from seed for 40 days on soil amended with anthracene, pyrene, and phenanthrene. Soil and plant tissue was collected for biometric assay, dry mass analysis, and PAH analysis by liquid chromatography. Increased total PAH concentration was associated with decreases in plant biomass, height, and internode length. The Crioula cultivar had a satisfactory phytoremediation effect, reducing total PAH concentration (300 ppm) in the experimental soil by 85% in 20 days, and by more than 95% in 40 days. The PAH showed a tendency to be removed in the temporal order: phenanthrene before pyrene before anthracene, and the removal ratio was influenced by the initial soil concentration of each PAH.

  11. Simultaneous removal of sulfur dioxide and polycyclic aromatic hydrocarbons from incineration flue gas using activated carbon fibers.

    PubMed

    Liu, Zhen-Shu; Li, Wen-Kai; Hung, Ming-Jui

    2014-09-01

    Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 degrees C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 degrees C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas. Implications: Simultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.

  12. Preparation of polydimethylsiloxane/beta-cyclodextrin/divinylbenzene coated "dumbbell-shaped" stir bar and its application to the analysis of polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur heterocycles compounds in lake water and soil by high performance liquid chromatography.

    PubMed

    Yu, Chunhe; Yao, Zhimin; Hu, Bin

    2009-05-08

    A "dumbbell-shaped" stir bar was proposed to prevent the friction loss of coating during the stirring process, and thus prolonged the lifetime of stir bars. The effects of the coating components, including polydimethylsiloxane (PDMS), beta-cyclodextrin (beta-CD) and divinylbenzene (DVB) were investigated according to an orthogonal experimental design, using three polycyclic aromatic hydrocarbons (PAHs) and four polycyclic aromatic sulfur heterocycles (PASHs) as model analytes. Four kinds of stir bars coated with PDMS, PDMS/beta-CD, PDMS/DVB and PDMS/beta-CD/DVB were prepared and their extraction efficiencies for the target compounds were compared. It was demonstrated that PDMS/beta-CD/DVB-coated stir bar showed the best affinity to the studied compounds. The preparation reproducibility of PDMS/beta-CD/DVB-coated stir bar ranged from 3.2% to 15.2% (n = 6) in one batch, and 5.2% to 13.4% (n = 6) among batches. The "dumbbell-shaped" stir bar could be used for about 40 times, which were 10 extractions more than a normal stir bar. The prepared PDMS/beta-CD/DVB-coated "dumbbell-shaped" stir bar was used for stir bar sorptive extraction (SBSE) of PAHs and PASHs and the desorbed solution was introduced into HPLC-UV for subsequent analysis. The limits of detection of the proposed method for seven target analytes ranged from 0.007 to 0.103 microg L(-1), the relative standard deviations were in the range of 6.3-12.9% (n = 6, c = 40 microg L(-1)), and the enrichment factors were 19-86. The proposed method was successfully applied to the analysis of seven target analytes in lake water and soil samples.

  13. Determination of polycyclic aromatic hydrocarbons in kerosene and bio-kerosene soot.

    PubMed

    Andrade-Eiroa, Auréa; Leroy, Valérie; Dagaut, Philippe; Bedjanian, Yuri

    2010-03-01

    Here we report a new, efficient and reliable analytical methodology for sensitive and selective quantification of Polycyclic Aromatic Hydrocarbons (PAHs) in soot samples. The methodology developed is based on ultrasonic extraction of the soot-bound PAHs into small volumes of acetonitrile, purification of the extracts through C(18) Solid Phase Extraction (SPE) cartridges and analysis by Reverse Phase Liquid Chromatography (RPLC) with UV and fluorimetric detection. For the first time, we report the convenience of adapting the SPE procedure to the nature of the soot samples. As a matter of fact, extracts containing high percentage of unpolar material are recommended to be cleaned with acetone, whereas extracts poor in unpolar compounds can be efficiently cleaned with methanol. The method was satisfactorily applied to kerosene and bio-kerosene soot from atmospheric open diffusion flames (pool fires) and premixed flames achieving Quantification and Detection limits in the range ng mg(-1) soot and recoveries about 90% for most of the PAHs studied. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Distribution of polycyclic aromatic hydrocarbons in urban stormwater in Queensland, Australia.

    PubMed

    Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A; Mostert, Maria M M

    2010-09-01

    This paper reports the distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in wash-off in urban stormwater in Gold Coast, Australia. Runoff samples collected from residential, industrial and commercial sites were separated into a dissolved fraction (<0.45 microm), and three particulate fractions (0.45-75 microm, 75-150 microm and >150 microm). Patterns in the distribution of PAHs in the fractions were investigated using Principal Component Analysis. Regardless of the land use and particle size fraction characteristics, the presence of organic carbon plays a dominant role in the distribution of PAHs. The PAHs concentrations were also found to decrease with rainfall duration. Generally, the 1- and 2-year average recurrence interval rainfall events were associated with the majority of the PAHs and the wash-off was a source limiting process. In the context of stormwater quality mitigation, targeting the initial part of the rainfall event is the most effective treatment strategy. The implications of the study results for urban stormwater quality management are also discussed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Mycelia promote active transport and spatial dispersion of polycyclic aromatic hydrocarbons.

    PubMed

    Furuno, Shoko; Foss, Susan; Wild, Ed; Jones, Kevin C; Semple, Kirk T; Harms, Hauke; Wick, Lukas Y

    2012-05-15

    To cope with heterogeneous subsurface environments mycelial microorganisms have developed a unique ramified growth form. By extending hyphae, they can obtain nutrients from remote places and transport them even through air gaps and in small pore spaces, repectively. To date, studies have been focusing on the role that networks play in the distribution of nutrients. Here, we investigated the role of mycelia for the translocation of nonessential substances, using polycyclic aromatic hydrocarbons (PAHs) as model compounds. We show that the hyphae of the mycelial soil oomycete Pythium ultimum function as active translocation vectors for a wide range of PAHs. Visualization by two-photon excitation microscopy (TPEM) demonstrated the uptake and accumulation of phenanthrene (PHE) in lipid vesicles and its active transport by cytoplasmic streaming of the hyphae ('hyphal pipelines'). In mycelial networks, contaminants were translocated over larger distances than by diffusion. Given their transport capacity and ubiquity, hyphae may substantially distribute remote hydrophobic contaminants in soil, thereby improving their bioavailability to bacterial degradation. Hyphal contaminant dispersal may provide an untapped potential for future bioremediation approaches.

  16. Determination and risk assessment of sixteen polycyclic aromatic hydrocarbons in vegetables.

    PubMed

    Li, Huidong; Zhu, Duanwei; Lu, Xiao; Du, Hongxia; Guan, Shuai; Chen, Zilei

    2018-01-28

    Polycyclic aromatic hydrocarbons (PAHs) are a group of organic environmental pollutants posing a potential risk to human health. This study was constructed to investigate the presence of 16 PAHs in six commonly consumed vegetables collected from the markets in Shandong, China by a quick, easy, cheap, effective, rugged, safe (QuEChERS)-based extraction method coupled with gas chromatography-mass spectrometry (GC-MS). Our results showed that the vegetables were polluted with PAHs at an alarming level, of which celery contained the highest total concentration of PAHs (Σ16 PAH), whereas cucumbers contained the lowest Σ16 PAH. Besides, the dietary exposure of PAHs was assessed in these vegetables based on the maximum Σ16 PAH. The results showed that the populations in Shandong were exposed to 23-213 ng/d of PAHs through these six vegetables, suggesting that vegetables are the major sources of PAHs in the diet. Hence, it is necessary to monitor the PAH levels in vegetables. Our study provides guidance for future legislative actions regarding PAH levels in vegetables in China.

  17. Surface microlayer enrichment of polycyclic aromatic hydrocarbons in lower Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, K.; Dickhut, R.M.

    1995-12-31

    Surface microlayer samples were collected with a rotating cylinder sampler in the York River and Elizabeth River tributaries of lower Chesapeake Bay every other month from May 1994 to June, 1995. Spatial and temporal variabilities were also investigated over an annual cycle as well as shorter periods (i.e. days). All the samples were analyzed for 17 polycyclic aromatic hydrocarbons, total suspended particulate matter (TSP), particular organic carbon (POC), total nitrogen(TN) and dissolved organic carbon (DOC), and selected samples for chlorophyll. TSP in the surface microlayer was 10 to 100 times higher than that in the related bulk water. Particle associatedmore » PAH concentrations were 20--50 times those in bulk surface water, whereas PAH concentrations in freely dissolved phase of the surface microlayer were 5--60 times higher than dissolved concentrations in the bulk water. Particulate PAH concentrations increase with TSP in the surface microlayer and dissolved PAH concentrations increase with DOC. Overall, surface microlayer characteristics were found to be significantly affected by hydrological and meteorological parameters.« less

  18. Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions.

    PubMed

    Delaunay, Rudy; Gatchell, Michael; Rousseau, Patrick; Domaracka, Alicja; Maclot, Sylvain; Wang, Yang; Stockett, Mark H; Chen, Tao; Adoui, Lamri; Alcamí, Manuel; Martín, Fernando; Zettergren, Henning; Cederquist, Henrik; Huber, Bernd A

    2015-05-07

    The present work combines experimental and theoretical studies of the collision between keV ion projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by ion collisions lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire collision process-from the ion impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturn's moon Titan.

  19. Comparative studies on lignin and polycyclic aromatic hydrocarbons degradation by basidiomycetes fungi.

    PubMed

    Arun, A; Eyini, M

    2011-09-01

    A total of 130 wild basidiomycetes fungi were collected and identified. The polycyclic aromatic hydrocarbons (PAHs) degradation by the potential Phellinus sp., Polyporus sulphureus (in liquid state fermentation (LSF), solid state fermentation (SSF), in soil) and lignin biodegradation were compared with those of a bacterial isolate and their corresponding cocultures. The PAHs degradation was higher in LSF and the efficiency of the organisms declined in SSF and in soil treatment. Phellinus sp. showed better degradation in SSF and in soil. Bacillus pumilus showed higher degradation in LSF. B. pumilus was seen to have lower lignin degradation than the fungal cultures and the cocultures could not enhance the degradation. Phellinus sp. which had higher PAHs and lignin degradation showed higher biosurfactant production than other organism. Manganese peroxidase (MnP) was the predominant enzyme in Phellinus sp. while lignin peroxidase (Lip) was predominant in P. sulphureus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Particulate polycyclic aromatic hydrocarbons (PAH) in the atmosphere of Bizerte city, Tunisia.

    PubMed

    Ben Hassine, S; Hammami, B; Ben Ameur, W; El Megdiche, Y; Barhoumi, B; Driss, M R

    2014-09-01

    The particle-phase concentrations of polycyclic aromatic hydrocarbons (PAH) were determined in 13 air samples collected in an urban area of Bizerte (Tunisia) during 2009-2010. Atmospheric particulate samples were extracted by ultrasonic bath and analyzed by high-performance liquid chromatography with fluorescence detection. PAH were found in all the analyzed air samples and the most abundant compounds were pyrene, fluoranthene, benzo[g,h,i]perylene, benzo[b]fluoranthene, chrysene and benzo[a]pyrene. ∑14-PAH concentrations ranging from 9.38 to 44.81 ng m(-3) with mean value of 25.39 ng m(-3). PAH diagnostic ratio source analysis revealed gasoline and diesel vehicular emissions as major sources. The mean total benzo[a]pyrene toxicity equivalent calculated for samples was 3.66 ng m(-3) and the mean contribution of the carcinogenic potency of benzo[a]pyrene was determined to be 55.8 %. Concentrations of particulate PAH in Bizerte city atmosphere were approximately eight times greater than sampled at a nearby rural site.

  1. A unifying picture of gas-phase formation and growth of PAH (Polycyclic Aromatic Hydrocarbons), soot, diamond and graphite

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1990-01-01

    A variety of seemingly different carbon formation processes -- polycyclic aromatic hydrocarbons and diamond in the interstellar medium, soot in hydrocarbon flames, graphite and diamond in plasma-assisted-chemical vapor deposition reactors -- may all have closely related underlying chemical reaction mechanisms. Two distinct mechanisms for gas-phase carbon growth are discussed. At high temperatures it proceeds via the formation of carbon clusters. At lower temperatures it follows a polymerization-type kinetic sequence of chemical reactions of acetylene addition to a radical, and reactivation of the resultant species through H-abstraction by a hydrogen atom.

  2. Effects of polycyclic aromatic compounds in fine particulate matter generated from household coal combustion on response to EGFR mutations in vitro.

    PubMed

    Ho, Kin-Fai; Chang, Chih-Cheng; Tian, Linwei; Chan, Chi-Sing; Musa Bandowe, Benjamin A; Lui, Ka-Hei; Lee, Kang-Yun; Chuang, Kai-Jen; Liu, Chien-Ying; Ning, Zhi; Chuang, Hsiao-Chi

    2016-11-01

    Induction of PM 2.5 -associated lung cancer in response to EGFR-tyrosine kinase inhibitors (EGFR-TKI) remains unclear. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM 2.5 ) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Human lung adenocarcinoma cells A549 (with wild-type EGFR) and HCC827 (with EGFR mutation) were exposed to the PM 2.5 , followed by treatment with EGFR-TKI. Two samples showed significant and dose-dependent reduction in the cell viability in A549. EGFR-TKI further demonstrated significantly decreased in cell viability in A549 after exposure to the coal emissions. Chrysene and triphenylene, dibenzo[a,h]anthracene, benzo[ghi]perylene, azaarenes and oxygenated polycyclic aromatic hydrocarbons (carbonyl-OPAHs) were all associated with EGFR-TKI-dependent reduced cell viability after 72-h exposure to the PM 2.5 . The findings suggest the coal emissions could influence the response of EGFR-TKI in lung cancer cells in Xuanwei. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Rapid determination of polycyclic aromatic hydrocarbons in rainwater by liquid-liquid microextraction and LC with core-shell particles column and fluorescence detection.

    PubMed

    Vinci, Giuliana; Antonelli, Marta L; Preti, Raffaella

    2013-02-01

    Liquid-liquid microextraction coupled to LC with fluorescence detection for the determination of Environmental Protection Agency's 16 priority pollutant polycyclic aromatic hydrocarbons in rainwater has been developed. The optimization of the extraction method has involved several parameters, including the comparison between an ultrasonic bath and a magnetic stirrer as extractant apparatus, the choice of the extractant solvent, and the optimization of the extraction time. Liquid-liquid microextraction gave good results in terms of recoveries (from 73.6 to 102.8% in rainwater) and repeatability, with a very simple procedure and low solvent consumption. The reported chromatographic method uses a Core-Shell technology column, with particle size <3 μm instead of classical 5-μm particles column. The resulting backpressure was below 300 bar, allowing the use of a conventional HPLC system rather than the more expensive ultrahigh performance LC (UHPLC). An average decrease of 59% in run time and 75% in eluent consumption has been obtained, compared to classical HPLC methods, keeping good separation, sensitivity, and repeatability. The proposed conditions were successfully applied to the determinations of polycyclic aromatic hydrocarbons in genuine rainwater samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. EXPLORING RELATIONSHIPS BETWEEN OUTDOOR AIR PARTICULATE-ASSOCIATED POLYCYCLIC AROMATIC HYDROCARBON AND PM2.5: A CASE STUDY OF BENZO(A)PYRENE IN CALIFORNIA METROPOLITAN REGIONS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) and particulate matter (PM) are co-pollutants emitted as by-products of combustion processes. Convincing evidence exists for PAHs as a primary toxic component of fine PM (PM2.5). Because PM2.5 is listed by the US EPA a...

  5. Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds

    PubMed Central

    Kameda, Takayuki; Azumi, Eri; Fukushima, Aki; Tang, Ning; Matsuki, Atsushi; Kamiya, Yuta; Toriba, Akira; Hayakawa, Kazuichi

    2016-01-01

    Atmospheric nitrated polycyclic aromatic hydrocarbons (NPAHs), which have been shown to have adverse health effects such as carcinogenicity, are formed in part through nitration reactions of their parent polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. However, little is known about heterogeneous nitration rates of PAHs by gaseous NO2 on natural mineral substrates, such as desert dust aerosols. Herein by employing kinetic experiments using a flow reactor and surface analysis by Fourier transform infrared spectroscopy with pyridine adsorption, we demonstrate that the reaction is accelerated on acidic surfaces of mineral dust, particularly on those of clay minerals. In support of this finding, we show that levels of ambient particle-associated NPAHs in Beijing, China, significantly increased during heavy dust storms. These results suggest that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere and that they enhance the toxicity of mineral dust aerosols in urban environments. PMID:27075250

  6. Source Identification of Polycyclic Aromatic Hydrocarbons by Diagnostic Ratios and Positive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Dvorska, A.; Jarkovsky, J.; Lammel, G.; Klanova, J.

    2009-04-01

    Although polycyclic aromatic hydrocarbons (PAHs) are also of natural origin, in many regions their environmental concentrations have strongly increased due to human activities. These semivolatile organic compounds are generally formed during incomplete combustion. Other sources include volatilization from unburned petroleum or tire abrasion in road traffic. Among all pollutants PAHs pose the highest human health hazard in Europe (WHO, 2003). A multivariate statistical method, positive matrix factorization (PMF; Paatero, 1997), and diagnostic ratios of individual PAHs (e.g. Yunker et al., 2002) are used for PAH source identification in central Europe. To minimise confounding factors such as differences in volatility, water solubility, adsorption etc., diagnostic ratios should be restricted to PAHs of similar molecular mass (Readman et al., 1987). Furthermore, different reactivities are limiting. Nevertheless, the application of PAH diagnostic ratios is often inconclusive, because substance patterns (profiles) have not been reported for all sources and ranges for various sources overlap. The complete profiles are made use of by statistical methods such as factor analysis, UNMIX and PMF (Tauler et al., 2006). However, these methods can be unreliable, because of incomplete knowledge of source profiles and the analysis' sensitivity to the data distribution. A unique 12-year data set of concentrations of PAHs (16 individual substances, 2 phases, weekly) in air, measured at the regional observatory Košetice, Czech Republic, is examined, together with shorter time series from Leipzig (urban background) and Schwartenberg (subalpine mountain background), Germany. Also, retene and coronene as specific source markers measured in Košetice from 2006 on are included into the analysis. An extensive literature search on PAH emission profiles was conducted. This data set was accomplished by measurements at sites in the Zlínsko region, Czech Republic, which are strongly dominated

  7. Analytical evaluation of BEA zeolite for the pre-concentration of polycyclic aromatic hydrocarbons and their subsequent chromatographic analysis in water samples.

    PubMed

    Wilson, Walter B; Costa, Andréia A; Wang, Huiyong; Dias, José A; Dias, Sílvia C L; Campiglia, Andres D

    2012-07-06

    The analytical performance of BEA - a commercial zeolite - is evaluated for the pre-concentration of fifteen Environmental Protection Agency - polycyclic aromatic hydrocarbons and their subsequent HPLC analysis in tap and lake water samples. The pre-concentration factors obtained with BEA have led to a method with excellent analytical figures of merit. One milliliter aliquots were sufficient to obtain excellent precision of measurements at the parts-per-trillion concentration level with relative standard deviations varying from 4.1% (dibenzo[a,h]anthracene) to 13.4% (pyrene). The limits of detection were excellent as well and varied between 1.1 (anthracene) and 49.9 ng L(-1) (indeno[1,2,3-cd]pyrene). The recovery values of all the studied compounds meet the criterion for regulated polycyclic aromatic hydrocarbons, which mandates relative standard deviations equal or lower than 25%. The small volume of organic solvents (100 μL per sample) and amount of BEA (2 mg per sample) makes sample pre-concentration environmentally friendly and cost effective. The extraction procedure is well suited for numerous samples as the small working volume (1 mL) facilitates the implementation of simultaneous sample extraction. These are attractive features when routine monitoring of numerous samples is contemplated. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Theoretical Study of the Electronic Spectra of a Polycyclic Aromatic Hydrocarbon, Naphthalene, and its Derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping; Salama, Farid; Loew, Gilda H.

    1993-01-01

    In order to preselect possible candidates for the origin of diffuse interstellar bands observed, semiempirical quantum mechanical method INDO/S was applied to the optical spectra of neutral, cationic, and anionic states of naphthalene and its hydrogen abstraction and addition derivatives. Comparison with experiment shows that the spectra of naphthalene and its ions were reliably predicted. The configuration interaction calculations with single-electron excitations provided reasonable excited state wavefunctions compared to ab initio calculations that included higher excitations. The degree of similarity of the predicted spectra of the hydrogen abstraction and derivatives to those of naphthalene and ions depends largely on the similarity of the it electron configurations. For the hydrogen addition derivatives, very little resemblance of the predicted spectra to naphthalene was found because of the disruption of the aromatic conjugation system. The relevance of these calculations to astrophysical issues is discussed within the context of these polycyclic aromatic hydrocarbon models. Comparing the calculated electronic energies to the Diffuse Interstellar Bands (DIBs), a list of possible candidates of naphthalene derivatives is established which provides selected candidates for a definitive test through laboratory studies.

  9. Estimation and characterization of polycyclic aromatic hydrocarbons from magnesium metallurgy facilities in China.

    PubMed

    Nie, Zhiqiang; Yang, Yufei; Tang, Zhenwu; Liu, Feng; Wang, Qi; Huang, Qifei

    2014-11-01

    Field monitoring was conducted to develop a polycyclic aromatic hydrocarbon (PAH) emission inventory for the magnesium (Mg) metallurgy industry in China. PAH emissions in stack gas and fly/bottom ash samples from different smelting units of a typical Mg smelter were measured and compared. Large variations of concentrations, congener patterns, and emission factors of PAHs during the oxidation and reduction stages in the Mg smelter were observed. The measured average emission factor (166,487 μg/t Mg) was significantly higher than those of other industrial sources. Annual emission from Mg metallurgy in 2012 in China was estimated at 116 kg (514 g BaPeq) for PAHs. The results of this study suggest that PAH emission from Mg industries should be considered by local government agencies. These data may be helpful for understanding PAH levels produced by the Mg industry and in developing a PAH inventory.

  10. Polycyclic aromatic hydrocarbon optical properties and contribution to the acceleration of stellar outflows

    NASA Technical Reports Server (NTRS)

    Cherchneff, Isabelle; Barker, John R.; Tielens, Alexander G. G. M.

    1991-01-01

    The optical constants of four polycyclic aromatic hydrocarbon (PAH) molecules (benzene, pyrene, pentacene, and coronene) are determined from their measured laboratory absorption spectra. The Planck mean of the radiation pressure cross section is computed for each molecule and for amorphous carbon (AC) grains, and semiempirically estimated for large PAH molecules up to 400 carbon atoms. Assuming that PAHs are present in carbon-rich stellar outflows, the radiation pressure forces acting on them are calculated and compared with the radiation forces on AC particles. The results show that PAHs possess very different optical properties from AC grains. Small PAHs may experience an 'inverse greenhouse' effect in the inner part of the envelope, as they decouple from the gas close to the photosphere. The radiation pressure force on PAHs is always much less than the force at work on AC grains, and PAH molecules do not affect significantly the dynamics of the outflow.

  11. Solid-state surface luminescence of polycyclic aromatic hydrocarbons adsorbed on cellulose diacetate matrices

    NASA Astrophysics Data System (ADS)

    Rogacheva, Svetlana M.; Shipovskaya, Anna B.; Volkova, Elena V.; Khurshudyan, Grachia N.; Suska-Malawska, Malgorzata; Gubina, Tamara I.

    2018-04-01

    The spectral-kinetic characteristics of luminescence of 17 polycyclic aromatic hydrocarbons (PAH) sorbed from a "water-organic solvent" medium on cellulose diacetate (CDA) matrices were studied. A significant increase in the fluorescence signal on the CDA matrix was observed for 13 PAHs in comparison with aqueous solutions. The highest detection sensitivity was found for pyrene, benzo(a)pyrene, and benzo(k)fluoranthene. The fluorescence spectra of two PAH indicator pairs (anthracene-phenanthrene and pyrene-fluoranthene) used to control toxicant emission sources were studied with the simultaneous presence of isomers in the analyte, depending on the excitation wavelength. For both isomer pairs, it has been found that the spectra of their solid-state luminescence overlap insignificantly, the characteristic peaks do not coincide and do not overlap, the sensitivities of detection are close to each other, which makes it possible to consider this technique as promising to control PAH contamination sources.

  12. Sperm quality and DNA integrity of coke oven workers exposed to polycyclic aromatic hydrocarbons.

    PubMed

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Chiu, Chien-Chih; Zhou, Guodong; Chou, Chon-Kit; Lin, Wen-Yi

    2016-11-18

    The objective of this study was to assess sperm quality and deoxyribonucleic acid (DNA) integrity of coke oven workers exposed to polycyclic aromatic hydrocarbons (PAHs) as compared to control subjects. The coke oven workers (N = 52) and administrative staff (N = 35) of a steel plant served as the exposed and control groups, respectively. Exposure to PAHs was assessed by measuring 1-hydroxypyren. Analysis of sperm quality (concentration, motility, vitality, and morphology) was performed simultaneously with sperm DNA integrity analysis, including DNA fragmentation, denaturation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). A questionnaire was conducted to collect demographic and potential confounding data. The coke oven workers had lower percentages of sperm motility, vitality and normal morphology than the control group, but the difference was not significant. For DNA integrity, the coke oven workers had significantly higher concentrations of bulky DNA adducts and 8-oxo-dGuo than the control subjects (p = 0.009 and p = 0.048, respectively). However, DNA fragmentation percentages did not significantly increase as compared to those in the subjects from the control group (p = 0.232). There was no correlation between sperm quality parameters and DNA integrity indicators. Occupational exposure of the coke oven workers to PAHs was associated with decreased sperm DNA integrity. Int J Occup Med Environ Health 2016;29(6):915-926. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  13. Identification of products formed during the heterogeneous nitration and ozonation of polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Cochran, Richard E.; Jeong, Haewoo; Haddadi, Shokouh; Fisseha Derseh, Rebeka; Gowan, Alexandra; Beránek, Josef; Kubátová, Alena

    2016-03-01

    The 3- and 4-ring polycyclic aromatic hydrocarbons (PAHs) are the most abundant of PAHs in air particulate matter (PM). Thus we have investigated heterogeneous oxidation of 3- and 4-ring PAHs in a small-scale flow reactor using quartz filter as a support. Four representative PAHs, anthracene, phenanthrene, pyrene, and fluoranthene, were exposed to either NO2, O3 or NO2+O3 (NO3/N2O5) with a goal to identify and attempt quantification of major product distribution. A combination of gas chromatography with mass spectrometry (GC-MS) with/without derivatization and liquid chromatography with high resolution MS (LC-HRMS) was used for identification. For the first time, a comprehensive characterization of a broad range of products enabled identifying ketone/diketone, aldehyde, hydroxyl, and carboxylic acid PAH derivatives. Exposure to NO3/N2O5 (formed by reacting NO2 with O3, a more powerful reactant than either O3 or NO2) produced additional compounds not observed with either oxidant alone. Multiple isomers of nitrofluoranthene and, for the first time, nitrophenanthrene were identified. In addition hydroxy-nitro-PAH derivatives were observed for the reaction of anthracene with NO3/N2O5. Monitoring of specific common ions such as those of 176 and 205 m/z attributed to carbonyl phenanthrene and deprotonated phenanthrene ions respectively was shown to be a useful tool for identification of multiple pyrene oxidation products.

  14. Evaluation of the phototoxicity of unsubstituted and alkylated polycyclic aromatic hydrocarbons to mysid shrimp (Americamysis bahia): Validation of predictive models.

    PubMed

    Finch, Bryson E; Marzooghi, Solmaz; Di Toro, Dominic M; Stubblefield, William A

    2017-08-01

    Crude oils are composed of an assortment of hydrocarbons, some of which are polycyclic aromatic hydrocarbons (PAHs). Polycyclic aromatic hydrocarbons are of particular interest due to their narcotic and potential phototoxic effects. Several studies have examined the phototoxicity of individual PAHs and fresh and weathered crude oils, and several models have been developed to predict PAH toxicity. Fingerprint analyses of oils have shown that PAHs in crude oils are predominantly alkylated. However, current models for estimating PAH phototoxicity assume toxic equivalence between unsubstituted (i.e., parent) and alkyl-substituted compounds. This approach may be incorrect if substantial differences in toxic potency exist between unsubstituted and substituted PAHs. The objective of the present study was to examine the narcotic and photo-enhanced toxicity of commercially available unsubstituted and alkylated PAHs to mysid shrimp (Americamysis bahia). Data were used to validate predictive models of phototoxicity based on the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap approach and to develop relative effect potencies. Results demonstrated that photo-enhanced toxicity increased with increasing methylation and that phototoxic PAH potencies vary significantly among unsubstituted compounds. Overall, predictive models based on the HOMO-LUMO gap were relatively accurate in predicting phototoxicity for unsubstituted PAHs but are limited to qualitative assessments. Environ Toxicol Chem 2017;36:2043-2049. © 2017 SETAC. © 2017 SETAC.

  15. Bioaccumulation of polycyclic aromatic hydrocarbons and survival of earthworms (Eisenia andrei) exposed to biochar amended soils.

    PubMed

    Malev, O; Contin, M; Licen, S; Barbieri, P; De Nobili, M

    2016-02-01

    Biochar has a charcoal polycyclic aromatic structure which allows its long half-life in soil, making it an ideal tool for C sequestration and for adsorption of organic pollutants, but at the same time raises concerns about possible adverse impacts on soil biota. Two biochars were tested under laboratory-controlled conditions on Eisenia andrei earthworms: a biochar produced at low temperature from wine tree cuttings (WTB) and a commercial low tar hardwood lump charcoal (HLB). The avoidance test (48-h exposure) showed that earthworms avoid biochar-treated soil with rates higher than 16 t ha(-1) for HLB and 64 t ha(-1) for WTB. After 42 days, toxic effects on earthworms were observed even at application rates (100 t ha(-1)) that are generally considered beneficial for most crops. The concentration of HLB and WTB required to kill half of earthworms' population (LC50; 95% confidence limits) in the synthetic OECD soil was 338 and 580 t ha(-1), respectively. Accumulation of polycyclic aromatic hydrocarbons (PAH) in earthworms exposed to the two biochar types at 100 t ha(-1) was tested in two soils of different texture. In biochar-treated soils, the average earthworm survival rates were about 64% in the sandy and 78% clay-loam soils. PAH accumulation was larger in the sandy soil and largest in soils amended with HLB. PAH with less than four rings were preferentially scavenged from the soil by biochars, and this behaviour may mask that of the more dangerous components (i.e. four to five rings), which are preferentially accumulated. Earthworms can accumulate PAH as a consequence of exposure to biochar-treated soils and transfer them along the food chain. Soil type and biochar quality are both relevant in determining PAH transfer.

  16. [Anti-B[a]PDE-DNA formation in lymphomonocytes of humans environmentally exposed to polycyclic aromatic hydrocarbons].

    PubMed

    Pavanello, S; Pulliero, A; Lai, A; Gaiardo, A; Mastrangelo, G; Clonfero, E

    2005-01-01

    [Anti-B[a]PDE-DNA formation in lymphomonocytes of humans environmentally exposed to polycyclic aromatic hydrocarbons] We are currently evaluating anti-benzo[a]pyrenediolepoxide-(B[a]PDE)-DNA adduct levels in lymphomonocytes of humans exposed to polycyclic aromatic hydrocarbons (PAHs) to validate this indicator of biologically effective dose in a surrogate tissue. The study protocol (October 2002-June 2005) implies: (a) a signed informed consent by each participant; (b) recruitment of 600 Padua municipal workers during visits at our outpatient clinic; (c) administration of a questionnaire regarding non occupational sources of PAH (B[a]P) exposure; (d) collection of blood (15 ml) and urine (200 ml) samples. Anti-B[a]PDE-DNA adduct levels in lymphomonocytes are detected by HPLC-fluorescence analysis. To date, 438 subjects have been examined (age range 20-62 years; 52% males). We found that: (i) anti-B[a]PDE-DNA adduct levels are significantly lower than those we previously found in coke-oven workers (N=95) occupationally exposed to high levels of PAHs (1.51 +/- 2.68 versus 4.07 +/- 3.78 anti-B[a]PDE-adduct/10(8) nucleotides, p < 0.001; 37% versus 97% positive subjects with > or =1 adduct/10(8) nucleotides; p < 0.001); (ii) smokers (23%) have significantly higher adduct levels than non smokers (p < 0.001); iii) non smokers who consume PAH-rich meals > or =52 times/year (142 subjects, 42%) have significantly increased adduct levels than those <52 times/year (p < 0.01). Dietary and smoking habits did not influence the occupationally-induced adduct levels in coke-oven workers. This is the first study that examines anti-B[a]PDE-DNA adduct levels in a large cohort showing that anti-B[a]PDE-DNA adducts can be detected in humans environmentally exposed to low doses of PAH (B[a]P and are modulated by smoke and dietary habits.

  17. Fluorescence Spectroscopy of Gas-phase Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Thomas, J. D.; Witt, A. N.

    2006-01-01

    The purpose of this investigation was to produce fluorescence spectra of polycyclic aromatic hydrocarbon (PAH) molecules in the gas-phase for comparison with blue luminescence (BL) emission observed in astrophysical sources Vijh et al. (2004, 2005a,b). The BL occurs roughly from 350 to 450 nm, with a sharp peak near 380 nm. PAHs with three to four rings, e.g. anthracene and pyrene, were found to produce luminescence in the appropriate spectral region, based on existing studies. Relatively few studies of the gas-phase fluorescence of PAHs exist; those that do exist have dealt primarily with the same samples commonly available for purchase such as pyrene and anthracene. In an attempt to understand the chemistry of the nebular environment we also obtained several nitrogen substituted PAHs from our colleagues at NASA Ames. In order to simulate the astrophysical environment we also took spectra by heating the PAHs in a flame. The flame environment counteracts the formation of eximers and permits the spectroscopy of free-flying neutral molecules. Experiments with coal tar demonstrate that fluorescence spectroscopy reveals primarily the presence of the smallest molecules, which are most abundant and which possess the highest fluorescence efficiencies. One gas-phase PAH that seems to fit the BL spectrum most closely is phenanthridine. In view of the results from the spectroscopy of coal tar, a compound containing a mixture of PAHs ranging from small to very large PAH molecules, we can not preclude the presence of larger PAHs in interstellar sources exhibiting BL.

  18. Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed, Lemna gibba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duxbury, C.L.; Dixon, D.G.; Greenberg, B.M.

    1997-08-01

    Light (particularly ultraviolet B) results in photomodification of polycyclic aromatic hydrocarbons (PAHs) to products with increased polarity and water solubility and enhanced toxicity relative to the parent compounds. The uptake and depuration kinetics of three representative PAHs, anthracene (ANT), phenanthrene (PHE), and benzo[a]pyrene (BAP), and their photomodified products were determined for Lemna gibba. The {sup 14}C-labeled PAHs were delivered to the plants in their aqueous growth medium either via a dimethylsulfoxide (DMSO) carrier or adsorbed directly to sand placed in the medium. Assimilation was carried out under simulated solar radiation (SSR) and in darkness. The potential sites of PAH actionmore » within the plants were defined by identifying the subcellular location of both intact and photomodified PAHs following assimilation. Lemna gibba had a high capacity for intact ANT, PHE, and BAP in the dark regardless of the two routes of delivery. Depuration was also rapid. Net assimilation of all three PAHs in the dark was always higher when the chemicals were delivered with DMSO than from sand, although first-order kinetics were apparent with both delivery systems. The relative levels of assimilation were PHE > ANT > BAP. Polycyclic aromatic hydrocarbons were rapidly assimilated under SSR, albeit net assimilation for both the intact and photomodified forms was generally lower under SSR compared with darkness. This was also reflected in the bioconcentration factors, which were highest in darkness for each PAH and dropped significantly under SSR and after photomodification. Both intact and photooxidized PAHs accumulated preferentially in the thylakoids and microsomes of L. gibba, suggesting these to be the subcellular compartments most at risk from PAH damage.« less

  19. A Soluble Dynamic Complex Strategy for the Solution-Processed Fabrication of Organic Thin-Film Transistors of a Boron-Containing Polycyclic Aromatic Hydrocarbon.

    PubMed

    Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro

    2016-09-19

    The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Exobiological Role of Interstellar Polycyclic Aromatic Hydrocarbons and Ices

    NASA Technical Reports Server (NTRS)

    Hudgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Before this time, the composition of interstellar dust was largely guessed-at, the presence of ices in interstellar clouds ignored, and the notion that large, gas phase, carbon rich molecules might be abundant and widespread throughout the interstellar medium (ISM) considered impossible. Today, the composition of dust in the ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. Shrouded within the protective confines of cold, opaque molecular clouds--the birthplace of stars and planets--these cold dust particles secrete mantles of mixed molecular ices whose compositions are also well constrained. Finally, amidst the molecular inventory of these ice mantles are likely to be found polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by the standards of interstellar chemistry, the telltale infrared spectral signature of which is now recognized throughout the Universe. In the first part of this talk, we will review the spectroscopic evidence that forms the basis for the currently accepted abundance and ubiquity of PANs in the ISM. We will then look at a few specific examples which illustrate how experimental and theoretical data can be applied to interpret the interstellar spectra and track how the PAN population evolves as it passes from its formation site in the circumstellar outflows of dying stars, through the various phases of the ISM, and into forniing planetary systems. Nevertheless, despite the fact that PANs likely represent the single largest molecular reservoir of organic carbon in evolving planetary systems, they are not what would be considered

  1. Magnetic nanoparticles-nylon 6 composite for the dispersive micro solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples.

    PubMed

    Reyes-Gallardo, Emilia M; Lucena, R; Cárdenas, S; Valcárcel, M

    2014-06-06

    In this article, the easy synthesis of magnetic nanoparticles-nylon 6 composite is presented, characterized and applied in the microextraction field. The one-step synthesis of the composite is performed by a solvent changeover playing with the different solubility of the polymeric network in formic acid and water. The new material has been characterized by different techniques including infrared spectroscopy, transmission and scanning microscopy. The extraction performance of the composite under a dispersive micro solid phase extraction format has been evaluated by determining four polycyclic aromatic hydrocarbons (benzo[b]fluoranthene, fluoranthene, indeno[1,2,3-cd]pyrene and phenanthrene) in water using ultra performance liquid chromatography (UPLC) combined with photo diode array detection. The developed methodology allows the determination of the analytes with limits of detection in the range from 0.05 μg/L (benzo[b]fluoranthene) to 0.58 μg/L (phenanthrene). The repeatability of the method was better than 6.9% at the limit of quantification level. The relative recoveries varied in the interval 80-111%. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fugacity analysis of polycyclic aromatic hydrocarbons between microplastics and seawater

    NASA Astrophysics Data System (ADS)

    Lee, Hwang; Chang, Sein; Kim, Seung-Kyu; Kwon, Jung-Hwan

    2017-03-01

    Recently, the accumulation of plastic debris in the marine environment has become a great concern worldwide. Although plastics are biologically and chemically inert, plastic debris has been suspected of causing adverse effects on ecosystems due to the increase in reactivity by size reduction and/or micropollutants associated with plastics. Because of the high sorption capacity of microplastics toward organic micropollutants, it is suspected that microplastics may play roles in the distribution and fate of micropollutants. In order to quantitatively evaluate the "net flow" of environmental contaminants in water-plastic-organism systems, a fugacity analysis was conducted using concentrations of polycyclic aromatic hydrocarbons (PAHs) in open oceans and in polyethylene as a representative material of plastic debris. Ratio of fugacity in polyethylene to that in seawater showed a decreasing trend with increasing partition coefficient between polyethylene and seawater (KPE/sw). This indicates that phase equilibrium between polyethylene and seawater is not attained for higher molecular weight PAHs. Disequilibrium of high molecular weight PAHs suggests that transfer from seawater to plastic debris is thermodynamically driven and the role of plastic debris as a vector to transfer them to living organisms would be minimal. However, additives may slowly migrate from plastics into the environment causing potentially serious effects on ecosystems.

  3. Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Becker, L.; Bunch, T. E.

    1997-01-01

    In this paper, we confirm our earlier observations of fullerenes (C60 and C70) in the Allende meteorite (Becker et al., 1994a, 1995). Fullerene C60 was also detected in two separate C-rich (approximately 0.5-1.0%) dark inclusions (Heymann et al., 1987) that were hand picked from the Allende sample. The amounts of C60 detected were approximately 5 and approximately 10 ppb, respectively, which is considerably less than what was detected in the Allende 15/21 sample (approximately 100 ppb; Becker et al., 1994a, 1995). This suggests that fullerenes are heterogeneously distributed in the meteorite. In addition, we present evidence for fulleranes, (C60Hx), detected in separate samples by laser desorption (reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The LDMS spectra for the Allende extracts were remarkably similar to the spectra generated for the synthetic fullerane mixtures. Several fullerane products were synthesized using a Rh catalyst (Becker et al., 1993a) and separated using high-performance liquid chromatography (HPLC). Polycyclic aromatic hydrocarbons (PAHs) were also observed ppm levels) that included benzofluoranthene and corannulene, a cup-shaped molecule that has been proposed as a precursor molecule to the formation of fullerenes in the gas phase (Pope et al., 1993).

  4. Assessment of Polycyclic Aromatic Hydrocarbon Contamination of Breeding Pools Utilized by the Puerto Rican Crested Toad, Peltophryne lemur

    PubMed Central

    Gjeltema, Jenessa; Stoskopf, Michael; Shea, Damian; De Voe, Ryan

    2012-01-01

    Habitat preservation and management may play an important role in the conservation of the Puerto Rican crested toad, Peltophryne lemur, due to this species' small geographic range and declining native wild population. Bioavailable water concentrations of Polycyclic Aromatic Hydrocarbon (PAH) contaminants within breeding pools at 3 sites were established using Passive Sampling Devices (PSDs) and gas chromatography-mass spectrometry (GC/MS). A more diverse population of PAH analytes were found in higher concentrations at the breeding site that allowed direct vehicular access, but calculated risk quotients indicated low risk to toad reproduction associated with the current PAH analyte levels. PMID:23762634

  5. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2017-04-01

    Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils requires a higher microbial viability and an increased PAH bioavailability. The clay/modified clay-modulated bacterial degradation could deliver a more efficient removal of PAHs in soils depending on the bioavailability of the compounds. In this study, we modified clay minerals (smectite and palygorskite) with mild acid (HCl) and alkali (NaOH) treatments (0.5-3 M), which increased the surface area and pore volume of the products, and removed the impurities without collapsing the crystalline structure of clay minerals. In soil incubation studies, supplements with the clay products increased bacterial growth in the order: 0.5 M HCl ≥ unmodified ≥ 0.5 M NaOH ≥ 3 M NaOH ≥ 3 M HCl for smectite, and 0.5 M HCl ≥ 3 M NaOH ≥ 0.5 M NaOH ≥ 3 M HCl ≥ unmodified for palygorskite. A 14 C-tracing study showed that the mild acid/alkali-treated clay products increased the PAH biodegradation (5-8%) in the order of 0.5 M HCl ≥ unmodified > 3 M NaOH ≥ 0.5 M NaOH for smectite, and 0.5 M HCl > 0.5 M NaOH ≥ unmodified ≥ 3 M NaOH for palygorskite. The biodegradation was correlated (r = 0.81) with the bioavailable fraction of PAHs and microbial growth as affected particularly by the 0.5 M HCl and 0.5 M NaOH-treated clay minerals. These results could be pivotal in developing a clay-modulated bioremediation technology for cleaning up PAH-contaminated soils and sediments in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Eggshell membrane-based biotemplating of mixed hemimicelle/admicelle as a solid-phase extraction adsorbent for carcinogenic polycyclic aromatic hydrocarbons.

    PubMed

    Wang, Weidong; Chen, Bo; Huang, Yuming

    2014-08-13

    A new solid-phase extraction (SPE) format was demonstrated, based on eggshell membrane (ESM) templating of the mixed hemimicelle/admicelle of linear alkylbenzenesulfonates (LAS) as an adsorbent for the enrichment of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in environmental aqueous samples. The LAS mixed hemimicelle/admicelle formation and SPE of the target PAHs were conducted simultaneously by adding the organic target and LAS through a column filled with 500 mg of ESM. The effect of various factors, including LAS concentration, solution pH, ionic strength, and humic acid concentration on the recoveries of PAHs were investigated and optimized. The results showed that LAS concentration and solution pH had obvious effect on extraction of PAHs, and the recoveries of PAHs compounds decreased in the presence of salt and humic acid. Under the optimized analytical conditions, the present method could respond down to 0.1-8.6 ng/L PAHs with a linear calibration ranging from 0.02 to 10 μg/L, showing a good PAHs enrichment ability with high sensitivity. The developed method was used satisfactorily for the detection of PAHs in environmental water samples. The mixed hemimicelle/admicelle adsorbent exhibited high extraction efficiency to PAHs and good selectivity with respect to natural organic matter and was advantageous over commercial C₁₈ adsorbent, for example, high extraction yield, high breakthrough volume, and easy regeneration.

  7. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in soils of Mayabeque, Cuba.

    PubMed

    Sosa, Dayana; Hilber, Isabel; Faure, Roberto; Bartolomé, Nora; Fonseca, Osvaldo; Keller, Armin; Schwab, Peter; Escobar, Arturo; Bucheli, Thomas D

    2017-05-01

    Cuba is a country in transition with a considerable potential for economic growth. Soils are recipients and integrators of chemical pollution, a frequent negative side effect of increasing industrial activities. Therefore, we established a soil monitoring network to monitor polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in soils of Mayabeque, a Cuban province southeast of Havana. Concentrations of the sum of the 16 US EPA PAHs and of the seven IRMM PCBs in soils from 39 locations ranged from 20 to 106 μg kg -1 and from 1.1 to 7.6 μg kg -1 , respectively. While such concentrations can be considered as low overall, they were in several cases correlated with the distance of sampling sites to presumed major emission sources, with some of the concomitantly investigated source diagnostic PAH ratios, and with black carbon content. The presented data adds to the limited information on soil pollution in the Caribbean region and serves as a reference time point before the onset of a possible further industrial development in Cuba. It also forms the basis to set up and adapt national environmental standards.

  8. Spatial Characterization of Polycyclic Aromatic Hydrocarbons in 2008 TC3 Samples

    NASA Astrophysics Data System (ADS)

    Sabbah, Hassan; Morrow, A.; Zare, R. N.; Jenniskens, P.

    2009-09-01

    Hassan Sabbah1, Amy L. Morrow1, Richard N. Zare1 and Petrus Jenniskens2 1Stanford University, Stanford, California 94305, 2 SETI Institute, Carl Sagan Center, 515 North Whisman Road, Mountain View, California 94043, USA. In October 2006 a small asteroid (2-3 meters) was observed in outer space. On October 7, 2008, it entered the Earth's atmosphere creating a fireball over Northern Sudan. Some 280 meteorites were collected by the University of Khartoum. In order to explore the existence of organic materials, specifically polycyclic aromatic hydrocarbons (PAHs), we applied two-step laser desorption laser ionization mass spectrometry (L2MS) to some selected fragments. This technique consists of desorbing with a pulsed infrared laser beam the solid materials into a gaseous phase with no fragmentation followed by resonance enhanced multiphoton ionization to analyze the PAH content. L2MS was already applied to an array of extraterrestrial objects including interplanetary dust particles IDPs, carbonaceous chondrites and comet coma particles. Moreover, spatial resolution of PAHs in 2008 TC3 samples was achieved to explore the heterogeneity within individual fragments. The results of these studies and their contribution to understanding the formation of this asteroid will be discussed.

  9. Establishing generic remediation goals for the polycyclic aromatic hydrocarbons: critical issues.

    PubMed Central

    LaGoy, P K; Quirk, T C

    1994-01-01

    Polycyclic aromatic hydrocarbons (PAHs) were one of the first classes of compounds identified as carcinogens and are often chemicals of concern at hazardous waste sites. Remediation goals established by regulatory agencies for carcinogenic PAHs in soil are generally either risk based or based on the method detection limits. PAHs are products of incomplete combustion, are components of petroleum, and as such, are prevalent in the environment from both natural and anthropogenic sources. Background concentrations are often above risk- or detection limit-based criteria, and therefore these remediation goals are of limited practical use as target criteria. In addition, the approaches used to establish target criteria do not account for several factors that may produce over- or underestimates of risk associated with the PAHs. Because of the frequency with which these compounds are detected, it is imperative that reasonably achievable and practical remediation goals be established. This paper examines the various factors that contribute to over- and underestimates of risks associated with PAHs and presents an approach for establishing cleanup criteria that takes into account health risks, background concentrations, and achievability. Images p348-a PMID:7925174

  10. The Identification and Quantification of Oxygenated Polycyclic Aromatic Hydrocarbons in Dissolved Black Carbon (Biochar Leachate)

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Webb, C.; Zimmerman, A. R.; Bostick, K. W.; Wozniak, A. S.; Hatcher, P.

    2017-12-01

    The proposed benefits of biochar (residues of the incomplete combustion of biomass) as a carbon-negative soil amendment have led to its wide application in soils. However, recent studies have shown that the compounds in biochar may not be as refractory in the soil environment as previously assumed. For example, mobilization or transformation of the organic molecules in biochar via solubilization, may occur in nature. Such mobilization has the potential to alter biochar's potential to sequester carbon. Moreover, many of the leached molecules may be reactive, toxic and carcinogenic. In this study, we quantified two classes of such compounds, polycyclic aromatic hydrocarbons and oxygenated polycyclic aromatic hydrocarbons (PAHs and OPAHs, respectively) in the solids and leachates of an oak and grass biochar thermal series (pyrolyzed at 400, 525, 650 °C). We compare PAH and OPAH yields and concentrations as a function of the initial biochar feedstock as well as its pyrolysis temperature. Solid biochars yielded considerably higher amounts of total PAHs/OPAHs than the liquid extracts. Grass pyrolyzed at 400°C yielded 4,760 ng/g total PAHs/OPAHs per gram of solid biochar whereas oak pyrolyzed at 650°C contained 2,840 ng/g total PAHs/OPAHs per gram of solid biochar. Preliminary results for oak biochar indicate that solubilization of PAHs and OPAHs is greatest when pyrolyzed at 250 °C with concentrations of 1.64 ng/g total PAHs/OPAHs per gram of aqueous leachate. For grass, the greatest solubilization of PAHs/OPAHs occurs at pyrolysis temperatures of 400°C with 2.94 g/ng total PAHs/OPAHs per gram of aqueous leachate. These experiments will improve our understanding of the mobility of pyrogenic C in the environment and potential for pyrogenic C export from terrestrial systems and negative effects to aquatic ecosystems, and may result in new chemical markers for pyrogenic organic matter in environmental samples.

  11. Self-assembled electrical materials from contorted aromatics

    NASA Astrophysics Data System (ADS)

    Xiao, Shengxiong

    This thesis describes the design, synthesis, self-assembly and electrical properties of new types of contorted polycyclic aromatic hydrocarbons. These topologically interesting contorted aromatics show promising transistor characteristics as new building blocks for organic field-effect transistors (OFETs) at different length scales. In chapter 2, a class of pentacenes that are substituted along their long edges with aromatic rings were synthesized. Their solid-state assemblies were studied by X-ray crystallography. Their performance as thin film transistors (TFTs) and single crystal field effect transistors (SCFETs) were systematically evaluated. A structure-property relationship between these highly phenylated pentacenes was found. Chapter 3 explores the new concept of whether a non-planar aromatic core could yield efficacious electronic materials, as the ultimate success in the organic electronics will require a holistic approach to creating new building blocks. Synthesis, functionalization and assembly of a new type of contorted hexabenzocoronene (HBC) whose aromatic core is heavily distorted away from planarity due to the steric congestion around its proximal carbons were discussed. Structural studies by X-ray crystallography showed that these HBC molecules stack into columnar structures in the solid state, which are ideal for conduction. Chapter 4 describes that microscale liquid crystalline thin film OFETs of tetradodecyloxy HBC showed the best transistor properties of all discotic columnar materials. Chapter 5 details the fabrication and characterization of nanoscale single crystalline fiber OFETs of octadodecyloxyl HBC. In Chapter 6 we show that a molecular scale monolayer of HBC acid chlorides could be self-assembled on SiO2 insulating layer and could be organized laterally between the ends of 2 nm carbon nanotube gaps to form high quality FETs that act as environmental and chemical sensors. Chapter 7 details the enforced one-dimensional photoconductivity

  12. Atmospheric pressure solid analysis probe coupled to quadrupole-time of flight mass spectrometry as a tool for screening and semi-quantitative approach of polycyclic aromatic hydrocarbons, nitro-polycyclic aromatic hydrocarbons and oxo-polycyclic aromatic hydrocarbons in complex matrices.

    PubMed

    Carrizo, Daniel; Domeño, Celia; Nerín, Isabel; Alfaro, Pilar; Nerín, Cristina

    2015-01-01

    A new screening and semi-quantitative approach has been developed for direct analysis of polycyclic aromatic hydrocarbons (PAHs) and their nitro and oxo derivatives in environmental and biological matrices using atmospheric pressure solid analysis probe (ASAP) quadrupole-time of flight mass spectrometry (Q-TOF-MS). The instrumental parameters were optimized for the analysis of all these compounds, without previous sample treatment, in soil, motor oil, atmospheric particles (ashes) and biological samples such as urine and saliva of smokers and non-smokers. Ion source parameters in the MS were found to be the key parameters, with little variation within PAHs families. The optimized corona current was 4 µA, sample cone voltage 80 V for PAHs, nitro-PAHs and oxo-PAHs, while the desolvation temperatures varied from 300°C to 500°C. The analytical method performance was checked using a certified reference material. Two deuterated compounds were used as internal standards for semi-quantitative purposes together with the pure individual standard for each compound and the corresponding calibration plot. The compounds nitro PAH 9-nitroanthracene and oxo-PAH 1,4-naphthalenedione, were found in saliva and urine in a range below 1 µg/g while the range of PAHs in these samples was below 2 µg/g. Environmental samples provided higher concentration of all pollutants than urine and saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.

    PubMed

    Rubio-Clemente, Ainhoa; Torres-Palma, Ricardo A; Peñuela, Gustavo A

    2014-04-15

    Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking.

    PubMed

    Saito, E; Tanaka, N; Miyazaki, A; Tsuzaki, M

    2014-06-15

    The concentration and particle size distribution of 19 major polycyclic aromatic hydrocarbons (PAHs) emitted by thermal cooking were investigated. Corn, trout, beef, prawns, and pork were selected for grilling. The PAHs in the oil mist emitted when the food was grilled were collected according to particle size range and analysed by GC/MS. Much higher concentrations of PAHs were detected in the oil mist emitted by grilled pork, trout, and beef samples, which were rich in fat. The main components of the cooking exhaust were 3- and 4-ring PAHs, regardless of food type. The particle size distribution showed that almost all the PAHs were concentrated in particles with diameters of <0.43 μm. For pork, the toxic equivalent of benzo[a]pyrene accounted for 50% of the PAHs in particles with diameters of <0.43 μm. From these results, we estimated that >90% of the PAHs would reach the alveolar region of the lungs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Evaluation of heavy metals and polycyclic aromatic hydrocarbons in honeys from different origins.

    PubMed

    Corredera, Lourdes; Bayarri, Susana; Pérez-Arquillué, Consuelo; Lázaro, Regina; Molino, Francisco; Herrera, Antonio

    2014-03-01

    A survey of honey samples from different geographical and botanical origins, including some samples collected from a fire-affected area in Spain, was conducted to assess their content of heavy metals and polycyclic aromatic hydrocarbons (PAHs). The levels of the determined toxic elements (Pb, Cd, As, and Sn) were low and were in the range of those reported by other studies. In our work the total amount of heavy metals and Pb was higher in dark honeys than in pale honeys. In the collected samples, no detectable levels of the 15 PAHs studied were found. The obtained data served to assess the levels of heavy metals and PAHs in honey samples from different geographical and environmental origins and to contribute to the scarce data about pollutant content of this matrix. In light of these results, the analyzed samples do not pose any serious concern to human health, and the data obtained in this study could serve to contribute to the establishment of specific maximum limits for honey.

  16. Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment.

    PubMed

    Mishra, Nitika; Ayoko, Godwin A; Morawska, Lidia

    2016-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) represent a major class of toxic pollutants because of their carcinogenic and mutagenic characteristics. People living in urban areas are regularly exposed to PAHs because of abundance of their emission sources. Within this context, this study aimed to: (i) identify and quantify the levels of ambient PAHs in an urban environment; (ii) evaluate their toxicity; and (iii) identify their sources as well as the contribution of specific sources to measured concentrations. Sixteen PAHs were identified and quantified in air samples collected from Brisbane. Principal Component Analysis - Absolute Principal Component Scores (PCA-APCS) was used in order to conduct source apportionment of the measured PAHs. Vehicular emissions, natural gas combustion, petrol emissions and evaporative/unburned fuel were the sources identified; contributing 56%, 21%, 15% and 8% of the total PAHs emissions, respectively, all of which need to be considered for any pollution control measures implemented in urban areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Polycyclic aromatic hydrocarbon contamination in stormwater detention pond sediments in coastal South Carolina.

    PubMed

    Weinstein, John E; Crawford, Kevin D; Garner, Thomas R

    2010-03-01

    The purpose of this study was to characterize the polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of stormwater detention ponds in coastal South Carolina. Levels of the sum of PAH analytes were significantly higher in the sediments of commercial ponds compared to that of reference, golf course, low-density residential, and high-density residential ponds. Isomer ratio analysis suggested that the predominant source of PAHs were pyrogenic; however, many ponds had a PAH signature consistent with mixed uncombusted and combusted PAH sources. PAH levels in these sediments could be modeled using both pond drainage area and pond surface area. These results demonstrate that the sediment from most commercial ponds, and a few residential and golf course ponds, were moderately contaminated with PAHs. PAH levels in these contaminated ponds exceeded between 42% and 75% of the ecological screening values for individual PAH analytes established by US EPA Region IV, suggesting that they may pose a toxicological risk to wildlife.

  18. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND CARBONACEOUS SOLIDS IN GAS-PHASE CONDENSATION EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, C.; Huisken, F.; Henning, Th.

    2009-05-01

    Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs) that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile three to five ring systems. At condensation temperatures highermore » than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot asymptotic giant branch stars or Wolf-Rayet stars should be different and should have distinct spectral properties.« less

  19. Polycyclic aromatic hydrocarbons alter the structure of oceanic and oligotrophic microbial food webs.

    PubMed

    Cerezo, Maria Isabel; Agusti, Susana

    2015-12-30

    One way organic pollutants reach remote oceanic regions is by atmospheric transport. During the Malaspina-2010 expedition, across the Atlantic, Indian, and Pacific Oceans, we analyzed the polycyclic aromatic hydrocarbon (PAH) effects on oceanic microbial food webs. We performed perturbation experiments adding PAHs to classic dilution experiments. The phytoplankton growth rates were reduced by more than 5 times, being Prochlorococcus spp. the most affected. 62% of the experiments showed a reduction in the grazing rates due to the presence of PAHs. For the remaining experiments, grazing usually increased likely due to cascading effects. We identified changes in the slope of the relation between the growth rate and the dilution fraction induced by the pollutants, moving from no grazing to V-shape, or to negative slope, indicative of grazing increase by cascade effects and alterations of the grazers' activity structure. Our perturbation experiments indicate that PAHs could influence the structure oceanic food-webs structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A NOVEL METABOLIC ACTIVATION PATHWAY FOR POLYCYCLIC AROMATIC HYDROCARBONS: REACTIVE OXYGEN SPECIES-MEDIATED DNA DAMAGE AND MORPHOLOGICAL CELL TRANSFORMATION IN MOUSE EMBRYO CELLS BY K-REGION DIOL METABOLITES

    EPA Science Inventory

    Benzo[ a ]pyrene (BP) is a well-studied polycyclic aromatic hydrocarbon (P AH) .Many
    mechanisms have been suggested to explain its carcinogenic activity, yet many questions still
    remain. K-region dihydrodiols (diols) ofPAHs are common metabolites and some are genotoxic. W...

  1. Monitoring of polycyclic aromatic hydrocarbons on agricultural lands surrounding Tehran oil refinery.

    PubMed

    Bayat, J; Hashemi, S H; Khoshbakht, K; Deihimfard, R; Shahbazi, A; Momeni-Vesalian, R

    2015-07-01

    Soil samples at two depths were collected and analyzed to determine the concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), organic carbon, and soil pH. The Σ16PAHs were 0.13 to 3.92 mg kg(-1) at depth 1 and 0.21 to 50.32 mg kg(-1)at depth 2. The averages of the PAH compounds indicate that the area is contaminated with oil, and this pollution was greater at depth 2. Interpolation maps showed that the southern region, especially at depth 2, has been contaminated more by anthropogenic activity. The diagnostic ratios indicate several sources of pollution of the agricultural soil. A comparison of average PAHs and standard values revealed that higher molecular weight compounds in the topsoil (InP and BghiP) and subsoil (BaA, BkF, BaP, DBA, and BghiP) exceed standard values for farmland. The pH interpolation map for both depths showed that most of the area has alkaline soil from long-term irrigation with untreated urban wastewater.

  2. Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China.

    PubMed

    Wang, Chunhui; Zhou, Shenglu; Wu, Shaohua; Song, Jing; Shi, Yaxing; Li, Baojie; Chen, Hao

    2017-10-01

    The concentration, sources and environmental risks of polycyclic aromatic hydrocarbons (PAHs) in surface water in urban areas of Nanjing were investigated. The range of ∑ 16 PAHs concentration is between 4,076 and 29,455 ng/L, with a mean of 17,212 ng/L. The composition of PAHs indicated that 2- and 3-ring PAHs have the highest proportion in all PAHs, while the 5- and 6-ring PAHs were the least in proportion. By diagnostic ratio analysis, combustion and petroleum were a mixture input that contributed to the water PAH in urban areas of Nanjing. Positive matrix factorization quantitatively identified four factors, including coke oven, coal combustion, oil source, and vehicle emission, as the main sources. Toxic equivalency factors of BaP (BaP eq ) evaluate the environmental risks of PAHs and indicate the PAH concentration in surface water in urban areas of Nanjing had been polluted and might cause potential environmental risks. Therefore, the PAH contamination in surface water in urban areas of Nanjing should draw considerable attention.

  3. Epigenetic modulation of Chlorella (Chlorella vulgaris) on exposure to polycyclic aromatic hydrocarbons.

    PubMed

    Yang, Mihi; Youn, Je-In; Kim, Seung Joon; Park, Jong Y

    2015-11-01

    DNA methylation in promoter region can be a new chemopreventive marker against polycyclic aromatic hydrocarbons (PAHs). We performed a randomized, double blind and cross-over trial (N=12 healthy females) to evaluate chlorella (Chlorella vulgaris)-induced epigenetic modulation on exposure to PAHs. The subjects consumed 4 tablets of placebo or chlorella supplement (total chlorophyll ≈ 8.3mg/tablet) three times a day before meals for 2 weeks. When the subjects consumed chlorella, status of global hypermethylation (5-methylcytosine) was reduced, compared to placebo (p=0.04). However, DNA methylation at the DNMT1 or NQO1 was not modified by chlorella. We observed the reduced levels of urinary 1-hydroxypyrene (1-OHP), a typical metabolite of PAHs, by chlorella intake (p<0.1) and a positive association between chlorella-induced changes in global hypermethylation and urinary 1-OHP (p<0.01). Therefore, our study suggests chlorella works for PAH-detoxification through the epigenetic modulation, the interference of ADME of PAHs and the interaction of mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Diversity of organotrophic bacteria, activity of dehydrogenases and urease as well as seed germination and root growth Lepidium sativum, Sorghum saccharatum and Sinapis alba under the influence of polycyclic aromatic hydrocarbons.

    PubMed

    Lipińska, Aneta; Wyszkowska, Jadwiga; Kucharski, Jan

    2015-12-01

    Polycyclic aromatic hydrocarbons are organic compounds with highly toxic, carcinogenic, and mutagenic properties, which adversely affect the basic biological parameters of the soil, including the count of microorganisms, and the enzymatic activity. In addition to disturbances to the biological activity of the soil, PAHs may also exhibit toxic effects on plants. In view of the above, the study involved testing aimed at the determination of the effects of polycyclic aromatic hydrocarbons in a form of naphthalene, phenanthrene, anthracene and pyrene on the count, colony development (CD) index, ecophysiological (EP) diversity index of organotrophic bacteria, and the activity of soil dehydrogenases and soil urease. Moreover, an attempt was made to determine the soil's resistance based on the activity of the above-listed enzymes, and the effect of polycyclic aromatic hydrocarbons on seed germination and root growth was assessed by Lepidium sativum, Sorghum saccharatum, and Sinapis alba. In addition, the species of bacteria found in a soil subjected to strong pressure of polycyclic aromatic hydrocarbons were isolated. The experiment was performed in a laboratory on samples of loamy sand. Polycyclic aromatic hydrocarbons were introduced into the soil in an amount of 0, 1000, 2000, and 4000 mg kg(-1) of soil dry matter. Germination and growth of cress (L. sativum), white mustard (S. alba), and sweet sorghum (S. saccharatum) were determined using Phytotoxkit tests. It was found that the tested PAHs increased the average colony counts of organotrophic soil bacteria; pyrene did so to the greatest extent (2.2-fold relative to non-contaminated soil), phenanthrene to the smallest extent (1.4-fold relative to non-contaminated soil). None of the PAHs changed the value of the bacterial colony development (CD) index, while anthracene and pyrene increased the value of the eco-physiological (EP) diversity indicator. PAHs lowered the activity of the tested enzymes. The activity of

  5. DNA-damage effect of polycyclic aromatic hydrocarbons from urban area, evaluated in lung fibroblast cultures.

    PubMed

    Teixeira, Elba Calesso; Pra, Daniel; Idalgo, Daniele; Henriques, João Antonio Pêgas; Wiegand, Flavio

    2012-03-01

    This study was designed to biomonitor the effect of PAH extracts from urban areas on the DNA of lung cell cultures. The analyses of the polycyclic aromatic hydrocarbons (PAHs) were performed in atmospheric PM(2.5) and PM(10) collected at three sampling sites with heavy traffic located in the Metropolitan Area of Porto Alegre (MAPA) (Brazil). The concentrations of 16 major PAHs were determined according to EPA. Comet assay on V79 hamster lung cells was chosen for genotoxicity evaluation. Temperature, humidity, and wind speed were recorded. With regard to the damage index, higher levels were reported in the extract of particulate matter samples from the MAPA during the summer. High molecular weight compounds showed correlation with DNA damage frequency and their respective carcinogenicity. Copyright © 2011. Published by Elsevier Ltd.

  6. The C-H Stretching Features at 3.2--3.5 μm of Polycyclic Aromatic Hydrocarbons with Aliphatic Sidegroups

    NASA Astrophysics Data System (ADS)

    Yang, X. J.; Li, Aigen; Glaser, R.; Zhong, J. X.

    2016-07-01

    The so-called “unidentified” infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are ubiquitously seen in a wide variety of astrophysical regions. The UIE features are characteristic of the stretching and bending vibrations of aromatic hydrocarbon materials, e.g., polycyclic aromatic hydrocarbon (PAH) molecules. The 3.3 μm aromatic C-H stretching feature is often accompanied by a weaker feature at 3.4 μm. The latter is generally thought to result from the C-H stretch of aliphatic groups attached to the aromatic systems. The ratio of the observed intensity of the 3.3 μm aromatic C-H feature to that of the 3.4 μm aliphatic C-H feature allows one to estimate the aliphatic fraction of the UIE carriers, provided that the intrinsic oscillator strengths of the 3.3 μm aromatic C-H stretch ({A}3.3) and the 3.4 μm aliphatic C-H stretch ({A}3.4) are known. While previous studies on the aliphatic fraction of the UIE carriers were mostly based on the {A}3.4/{A}3.3 ratios derived from the mono-methyl derivatives of small PAH molecules, in this work we employ density functional theory to compute the infrared vibrational spectra of PAH molecules with a wide range of sidegroups including ethyl, propyl, butyl, and several unsaturated alkyl chains, as well as all the isomers of dimethyl-substituted pyrene. We find that, except for PAHs with unsaturated alkyl chains, the corresponding {A}3.4/{A}3.3 ratios are close to that of mono-methyl PAHs. This confirms the predominantly aromatic nature of the UIE carriers previously inferred from the {A}3.4/{A}3.3 ratio derived from mono-methyl PAHs.

  7. Reinforced microextraction of polycyclic aromatic hydrocarbons from polluted soil samples using an in-needle coated fiber with polypyrrole/graphene oxide nanocomposite.

    PubMed

    Behfar, Mina; Ghiasvand, Ali Reza; Yazdankhah, Fatemeh

    2017-07-01

    The surface of a stainless-steel wire was platinized using electrophoretic deposition method to create a high-surface-area with porous and cohesive substrate. The platinized fiber was coated by the polypyrrole/graphene oxide nanocomposite by electropolymerization and accommodated into a stainless-steel needle to fabricate an in-needle coated fiber. The developed setup was coupled to gas chromatography with flame ionization detection and applied to extract and determine polycyclic aromatic hydrocarbons (naphthalene, fluorene, phenanthrene, fluoranthene, and pyrene) in complicated solid matrices, along with reinforcement of the extraction by cooling the sorbent, using liquid carbon dioxide. To obtain the best extraction efficiency, the important experimental variables including extraction temperature and time, temperature of cooled sorbent, sampling flow rate, and desorption condition were studied. Under the optimal condition, limits of detection for five studied analytes were in the range of 0.2-0.8 pg/g. Linear dynamic ranges for the calibration curves were found to be in the range of 0.001-1000 ng/g. Relative standard deviations obtained for six replicated analyses of 1 ng/g of analytes were 4.9-13.5%. The reinforced in-needle coated fiber method was successfully applied for the analysis of polycyclic aromatic hydrocarbons in contaminated soil samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Magnetic Beads-based Bioelectrochemical Immunoassay of Polycyclic Aromatic Hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ying-Ying; Liu, Guodong; Wai, Chien M.

    2007-07-01

    A simple, rapid, and sensitive bioelectrochemical immunoassay method based on magnetic beads (MBs) has been developed to detect polycyclic aromatic hydrocarbons (PAHs). The principle of this bioassay is based on a direct competitive enzyme-linked immunosorbent assay using PAH-antibody-coated MBs and horseradish peroxidase (HRP)-labeled PAH (HRP-PAH). A magnetic process platform was used to mix and shake the samples during the immunoreactions and to separate free and unbound reagents after the liquid-phase competitive immunoreaction among PAH-antibody-coated MBs, PAH analyte, and HRP-PAH. After a complete immunoassay, the HRP tracers attached to MBs were transferred to a substrate solution containing 3, 3´, 5, 5´-more » tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2) for electrochemical detection. The voltammetric characteristics of the substrate were investigated, and the reduction peak current of TMB was used to quantify the concentration of PAH. The different parameters, including the amount of HRP-PAH conjugates, the enzyme catalytic reaction time, and the pH of the supporting electrolyte that governs the analytical performance of the immunoassay have been studied in detail and optimized. The detection limit of 50 pg mL-1 was obtained under optimum experimental conditions. The performance of this bioelectrochemical magnetic immunoassay was successfully evaluated with tap water spiked with PAHs, indicating that this convenient and sensitive technique offers great promise for decentralized environmental applications.« less

  9. Reptilian exposure to polycyclic aromatic hydrocarbons and associated effects.

    PubMed

    Zychowski, Gregory V; Godard-Codding, Céline A J

    2017-01-01

    Reptiles are an underrepresented taxon in ecotoxicological literature, and the means by which toxicants play a role in population declines are only partially understood. Among the contaminants of interest for reptiles are polycyclic aromatic hydrocarbons (PAHs), a class of organic compounds that is already a concern for numerous other taxa. The objectives of the present review are to summarize the existing literature on reptilian exposure to PAHs and synthesize general conclusions, to identify knowledge gaps within this niche of research, and to suggest future directions for research. Results confirm a relative scarcity of information on reptilian exposure to PAHs, although research continues to grow, particularly after significant contamination events. The orders Testudines and Squamata are better represented than the orders Crocodilia and Rhynchocephalia. For the taxonomic orders with relevant literature (all but Rhynchocephalia), some species are more frequently represented than others. Few studies establish solid cause-effect relationships after reptilian exposure to PAHs, and many more studies are suggestive of effect or increased risk of effect. Despite the scarcity of information in this area, researchers have already employed a wide variety of approaches to address PAH-related questions for reptiles, including molecular techniques, modeling, and field surveys. As more research is completed, a thoughtful interpretation of available and emerging data is necessary to make the most effective use of this information. Environ Toxicol Chem 2017;36:25-35. © 2016 SETAC. © 2016 SETAC.

  10. Polycyclic aromatic hydrocarbon ions and the diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1995-01-01

    Neutral naphthalene (C10H8), phenanthrene (C14H10), and pyrene (C16H10) absorb strongly in the ultraviolet and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these Polycyclic Aromatic Hydrocarbons (PAHs) absorb in the visible. C10H8(+) has 12 discrete absorption bands which fall between 6800 and 5000 A. The strongest band at 6741 A falls close to the weak 6742 A diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8(+) is responsible for some of the DIBs can be tested by searching for new DIBS at 6520, 6151, and 5965 A, other moderately strong naphthalene cation band positions. If C10H8(+) is indeed responsible for the 6742 A feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10(+) is dominated by a strong band at 4435 A in an Ar matrix and 4395 A in a Ne matrix, a position which falls very close to the strongest DIB, that at 4430 A. If C16H10(+), or a closely related pyrene-like ion is indeed responsible for the 4430 A feature, it accounts for 0.2% of the cosmic carbon. We also report an intense, very broad UV-to-visible continuum which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR.

  11. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hui; Energy Research Institute, University of Leeds, Leeds LS2 9JT; Wu, Chunfei, E-mail: c.wu@leeds.ac.uk

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. Themore » results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.« less

  12. Determination of particle-bound polycyclic aromatic hydrocarbons emitted from co-pelletization combustion of lignite and rubber wood sawdust

    NASA Astrophysics Data System (ADS)

    Kan, R.; Kaosol, T.; Tekasakul, P.; Tekasakul, S.

    2017-09-01

    Determination of particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) emitted from co-pelletization combustion of lignite and rubber wood sawdust in a horizontal tube furnace is investigated using High Performance Liquid Chromatography with coupled Diode Array and Fluorescence Detection (HPLC-DAD/FLD). The particle-bound PAHs based on the mass concentration and the toxicity degree are discussed in the different size ranges of the particulate matters from 0.07-11 μm. In the present study, the particle-bound PAHs are likely abundant in the fine particles. More than 70% of toxicity degree of PAHs falls into PM1.1 while more than 80% of mass concentration of PAHs falls into PM2.5. The addition of lignite amount in the co-pelletization results in the increasing concentration of either 4-6 aromatic ring PAHs or high molecular weight PAHs. The high contribution of 4-6 aromatic ring PAHs or high molecular weight PAHs in the fine particles should be paid much more attention because of high probability of human carcinogenic. Furthermore, the rubber wood sawdust pellets emit high mass concentration of PAHs whereas the lignite pellets emit high toxicity degree of PAHs. By co-pelletized rubber wood sawdust with lignite (50% lignite pellets) has significant effect to reduce the toxicity degree of PAHs by 70%.

  13. A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Abhijeet; Sander, Markus; Janardhanan, Vinod

    2010-03-15

    This paper presents a theoretical study on the physical interaction between polycyclic aromatic hydrocarbons (PAHs) and their clusters of different sizes in laminar premixed flames. Two models are employed for this study: a detailed PAH growth model, referred to as the kinetic Monte Carlo - aromatic site (KMC-ARS) model [Raj et al., Combust. Flame 156 (2009) 896-913]; and a multivariate PAH population balance model, referred to as the PAH - primary particle (PAH-PP) model. Both the models are solved by kinetic Monte Carlo methods. PAH mass spectra are generated using the PAH-PP model, and compared to the experimentally observed spectramore » for a laminar premixed ethylene flame. The position of the maxima of PAH dimers in the spectra and their concentrations are found to depend strongly on the collision efficiency of PAH coagulation. The variation in the collision efficiency with various flame and PAH parameters is studied to determine the factors on which it may depend. A correlation for the collision efficiency is proposed by comparing the computed and the observed spectra for an ethylene flame. With this correlation, a good agreement between the computed and the observed spectra for a number of laminar premixed ethylene flames is found. (author)« less

  14. Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Mitra, Siddhartha; Kimmel, David G.; Snyder, Jessica; Scalise, Kimberly; McGlaughon, Benjamin D.; Roman, Michael R.; Jahn, Ginger L.; Pierson, James J.; Brandt, Stephen B.; Montoya, Joseph P.; Rosenbauer, Robert J.; Lorenson, Thomas D.; Wong, Florence L.; Campbell, Pamela L.

    2012-01-01

    Mesozooplankton (>200 μm) collected in August and September of 2010 from the northern Gulf of Mexico show evidence of exposure to polycyclic aromatic hydrocarbons (PAHs). Multivariate statistical analysis revealed that distributions of PAHs extracted from mesozooplankton were related to the oil released from the ruptured British Petroleum Macondo-1 (M-1) well associated with the R/V Deepwater Horizon blowout. Mesozooplankton contained 0.03-97.9 ng g-1 of total PAHs and ratios of fluoranthene to fluoranthene + pyrene less than 0.44, indicating a liquid fossil fuel source. The distribution of PAHs isolated from mesozooplankton extracted in this study shows that the 2010 Deepwater Horizon spill may have contributed to contamination in the northern Gulf of Mexico ecosystem.

  15. [Sources analysis and contribution identification of polycyclic aromatic hydrocarbons in indoor and outdoor air of Hangzhou].

    PubMed

    Liu, Y; Zhu, L; Wang, J; Shen, X; Chen, X

    2001-11-01

    Twelve polycyclic aromatic hydrocarbons (PAHs) were measured in eight homes in Hangzhou during the summer and autumn in 1999. The sources of PAHs and the contributions of the sources to the total concentration of PAHs in the indoor air were identified by the combination of correlation analysis, factor analysis and multiple regression, and the equations between the concentrations of PAHs in indoor and outdoor air and factors were got. It was indicated that the factors of PAHs in the indoor air were domestic cuisine, the volatility of the mothball, cigarette smoke and heating, the waste gas from vehicles. In the smokers' home, cigarette smoke was the most important factor, and it contributed 25.8% of BaP to the indoor air of smokers' home.

  16. Photoionization of Benzene and Small Polycyclic Aromatic Hydrocarbons in Ultraviolet-Processed Astrophysical Ices: A Computational Study

    NASA Technical Reports Server (NTRS)

    Woon, D. E.; Park, J.-Y.

    2004-01-01

    We employed density functional theory (DFT) calculations to model the photoionization behavior of benzene and small polycyclic aromatic hydrocarbons when they are embedded in a matrix of water ice in order to investigate issues raised by recent experimental work by Gudipati and Allamandola. The ionization energies of benzene, naphthalene, anthracene, and pyrene were found to be lowered by 1.5-2.1 eV in water ice. Low-lying vertical electronic excitation energies were computed with time-dependent DFT for both neutral and ionized species and are found in both cases to be remarkably unaffected by the ice matrix. Chemical behavior in ultraviolet-photoprocessed ices is also discussed, with a focus on electron recombination and pathways leading to phenol and analogous products.

  17. Macondo-1 well oil-derived polycyclic aromatic hydrocarbons in mesozooplankton from the northern Gulf of Mexico

    USGS Publications Warehouse

    Mitra, Siddhartha; Kimmel, David G.; Snyder, Jessica; Scalise, Kimberly; McGlaughon, Benjamin D.; Roman, Michael R.; Jahn, Ginger L.; Pierson, James J.; Brandt, Stephen B.; Montoya, Joseph P.; Rosenbauer, Robert J.; Lorenson, T.D.; Wong, Florence L.; Campbell, Pamela L.

    2012-01-01

    Mesozooplankton (>200 μm) collected in August and September of 2010 from the northern Gulf of Mexico show evidence of exposure to polycyclic aromatic hydrocarbons (PAHs). Multivariate statistical analysis revealed that distributions of PAHs extracted from mesozooplankton were related to the oil released from the ruptured British Petroleum Macondo-1 (M-1) well associated with the R/VDeepwater Horizon blowout. Mesozooplankton contained 0.03–97.9 ng g−1 of total PAHs and ratios of fluoranthene to fluoranthene + pyrene less than 0.44, indicating a liquid fossil fuel source. The distribution of PAHs isolated from mesozooplankton extracted in this study shows that the 2010 Deepwater Horizon spill may have contributed to contamination in the northern Gulf of Mexico ecosystem.

  18. Optimization and validation of an extraction method for the analysis of polycyclic aromatic hydrocarbons in chocolate candies.

    PubMed

    Kumari, Rupender; Chaturvedi, Prashant; Ansari, Nasreen G; Murthy, Ramesh C; Patel, Devendra K

    2012-01-01

    Chocolate is a key ingredient in many foods such as milk shakes, candies, bars, cookies, and cereals. Chocolate candies are often consumed by mankind of all age groups. The presence of polycyclic aromatic hydrocarbons (PAHs) in chocolate candies may result in health risk to people. A rapid, precise, and economic extraction method was optimized and validated for the simultaneous determination of polycyclic aromatic hydrocarbons in chocolate candy by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GS-MS) as a confirmatory technique. The method was optimized by using different solvents for liquid-liquid extraction, varying volume of de-emulsifying agent, and quantity of silica gel used for purification. The HPLC separation of 16 PAHs was carried out by C-18 column with mobile phase composed of acetonitrile : water (70 : 30) in isocratic mode with runtime of 20 min. Limit of detection, limit of quantification (LOQ), and correlation coefficients were found in the range of 0.3 to 4 ng g⁻¹, 0.9 to 12 ng g⁻¹, and 0.9109 to 0.9952, respectively. The exploration of 25 local chocolate candy samples for the presence of PAHs showed the mean content of benzo[a]pyrene as 1.62 ng g⁻¹, which representing the need to evaluate effective measures to prevent more severe PAHs contamination in chocolate candies in future. Chocolate is one of the most favorite food items among people, especially children. Chocolate candies are often consumed by mankind of all age groups. Chocolate candies are often consumed by children in large quantities. The presence PAHs in chocolate candies may result in health risk to people. In the present study, a precise and cost effective rapid method was employed for the determination of PAHs, which can be employed for daily routine analysis of PAHs in chocolate products. © 2011 Institute of Food Technologists®

  19. Polycyclic Aromatic Hydrocarbon Far-infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Bauschlicher, C. W., Jr.; Ricca, A.; Mattioda, A. L.; Peeters, E.; Tielens, A. G. G. M.; Allamandola, L. J.

    2011-03-01

    The far-IR characteristics of astrophysically relevant polycyclic aromatic hydrocarbons (PAHs) averaging in size around 100 carbon atoms have been studied using the theoretical spectra in the NASA Ames PAH IR Spectroscopic Database. These spectra were calculated using density functional theory. Selections of PAH species are made, grouped together by common characteristics or trends, such as size, shape, charge, and composition, and their far-IR spectra compared. The out-of-plane modes involving the entire molecule are explored in detail, astronomical relevance is assessed, and an observing strategy is discussed. It is shown that PAHs produce richer far-IR spectra with increasing size. PAHs also produce richer far-IR spectra with increasing number of irregularities. However, series of irregular-shaped PAHs with the same compact core have common "Jumping-Jack" modes that "pile up" at specific frequencies in their average spectrum. For the PAHs studied here, around 100 carbon atoms in size, this band falls near 50 μm. PAH charge and nitrogen inclusion affect band intensities but have little effect on far-IR band positions. Detailed analysis of the two-dimensional, out-of-plane bending "drumhead" modes in the coronene and pyrene "families" and the one-dimensional, out-of-plane bending "bar" modes in the acene "family" show that these molecular vibrations can be treated as classical vibrating sheets and bars of graphene, respectively. The analysis also shows that the peak position of these modes is very sensitive to the area of the emitting PAH and does not depend on the particular geometry. Thus, these longest wavelength PAH bands could provide a unique handle on the size of the largest species in the interstellar PAH family. However, these bands are weak. Observing highly excited regions showing the mid-IR bands in which the emission from classical dust peaks at short wavelengths offers the best chance of detecting PAH emission in the far-IR. For these regions

  20. Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter

    NASA Astrophysics Data System (ADS)

    del Rosario Sienra, María; Rosazza, Nelson G.; Préndez, Margarita

    2005-06-01

    Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in Santiago de Chile city were evaluated to study particulate PAHs profiles during cold and spring weather periods. Urban atmospheric particulate matter PM10 was collected using High Volume PM10 samplers. Fifteen samples of 24 h during austral winter and 20 samples of 24 h during spring, 2000 were collected at two sampling sites (North-East and Central areas of the city) whose characteristics were representative of the prevailing conditions. Seventeen PAHs were quantified and total PAHs concentration ranged from 1.39 to 59.98 ng m -3, with a seasonal variation (winter vs. spring ratio) from 0.5 to 12.6 ng m -3. Molecular diagnostic ratios were used to characterize and identify PAHs emission sources such as combustion and biogenic emissions. Results showed that the major sources of respirable organic aerosol PM10 in Santiago are mobile and stationary ones.

  1. Coupled LC-GC techniques for the characterisation of polycyclic aromatic compounds in fuel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askey, S.A.; Holden, K.M.L.; Bartle, K.D.

    1995-12-31

    Exposure to polycyclic aromatic compounds (PAC) has long been identified as of considerable environmental concern. Originating from both natural and anthropogenic sources, many PAC exhibit significant carcinogenic and mutagenic properties. Multi-dimensional chromatographic techniques which provide separation by virtue of chemical class (group-type) or by molecular mass greatly simplifies the analysis of inherently complex fuel materials. In this study, on-line LC-GC techniques in which high resolution gas chromatography (HPLC) have been investigated. Comprehensive characterisation of fuel feedstocks and post-pyrolysis and combustion products was achieved by coupling LC-GC to low resolution ion trap mass spectrometry (ITD-MS) and atomic emission detection (AED). Themore » identification of PAC in diesel and coal materials, as well as urban air and diesel exhaust particulate extracts has provided valuable insight into the source, formation and distribution of such compounds pre- and post processing.« less

  2. Polycyclic aromatic hydrocarbon levels and risk assessment for food from service facilities in Korea.

    PubMed

    Park, Shin-Woong; Jeong, Jun-Hyun; Her, Jae-Young; Kim, Mina K; Lee, Kwang-Geun

    2017-06-01

    In this study, levels of benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene (BaP), dibenzo[a,h]anthracene, benzo[g,h,i]perylene and indeno[1,2,3-c,d]pyrene in 412 food items collected from food service facilities in Korea were analysed. The concentrations of the eight polycyclic aromatic hydrocarbons (PAHs) ranged 0.13-0.48 μg/kg. The concentrations of benzo[a]pyrene in all food samples were <1 μg/kg, which is the lowest maximum limit in foods regulated by European Union legislation. PAH contents were employed to conduct exposure and risk assessment. The chronic daily intake of PAHs from 412 food samples was 5.48 × 10 -6 -4.70 ×x 10 -4  µg-TEQ BaP /kg/day with margins of exposure of 1.04 × 10 9 -1.16 × 10 11 .

  3. Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Kim, Hyun Ho; Kang, Boseok; Suk, Ji Won; Li, Nannan; Kim, Kwang S; Ruoff, Rodney S; Lee, Wi Hyoung; Cho, Kilwon

    2015-05-26

    Pentacene (C22H14), a polycyclic aromatic hydrocarbon, was used as both supporting and sacrificing layers for the clean and doping-free graphene transfer. After successful transfer of graphene to a target substrate, the pentacene layer was physically removed from the graphene surface by using intercalating organic solvent. This solvent-mediated removal of pentacene from graphene surface was investigated by both theoretical calculation and experimental studies with various solvents. The uses of pentacene and appropriate intercalation solvent enabled graphene transfer without forming a residue from the supporting layer. Such residues tend to cause charged impurity scattering and unintentional graphene doping effects. As a result, this clean graphene exhibited extremely homogeneous surface potential profiles over a large area. A field-effect transistor fabricated using this graphene displayed a high hole (electron) mobility of 8050 cm(2)/V·s (9940 cm(2)/V·s) with a nearly zero Dirac point voltage.

  4. Formation of H{sub 2} from internally heated polycyclic aromatic hydrocarbons: Excitation energy dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T., E-mail: tao.chen@fysik.su.se, E-mail: henning@fysik.su.se; Gatchell, M.; Stockett, M. H.

    2015-04-14

    We have investigated the effectiveness of molecular hydrogen (H{sub 2}) formation from Polycyclic Aromatic Hydrocarbons (PAHs) which are internally heated by collisions with keV ions. The present and earlier experimental results are analyzed in view of molecular structure calculations and a simple collision model. We estimate that H{sub 2} formation becomes important for internal PAH temperatures exceeding about 2200 K, regardless of the PAH size and the excitation agent. This suggests that keV ions may effectively induce such reactions, while they are unlikely due to, e.g., absorption of single photons with energies below the Lyman limit. The present analysis alsomore » suggests that H{sub 2} emission is correlated with multi-fragmentation processes, which means that the [PAH-2H]{sup +} peak intensities in the mass spectra may not be used for estimating H{sub 2}-formation rates.« less

  5. Spatial distribution and trends in trace elements, polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls in Lake Worth sediment, Fort Worth, Texas

    USGS Publications Warehouse

    Harwell, Glenn Richard; Van Metre, Peter C.; Wilson, Jennifer T.; Mahler, Barbara J.

    2003-01-01

    In spring 2000, the Texas Department of Health issued a fish consumption advisory for Lake Worth in Fort Worth, Texas, because of elevated concentrations of polychlorinated biphenyls (PCBs) in fish. In response to the advisory and in cooperation with the U.S. Air Force, the U.S. Geological Survey collected 21 surficial sediment samples and three gravity core sediment samples to assess the spatial distribution and historical trends of selected hydrophobic contaminants, including PCBs, and to determine, to the extent possible, sources of hydrophobic contaminants to Lake Worth. Compared to reference (background) concentrations in the upper lake, elevated PCB concentrations were detected in the surficial sediment samples collected in Woods Inlet, which receives surface runoff from Air Force facilities and urban areas. Gravity cores from Woods Inlet and from the main part of the lake near the dam indicate that the concentrations of PCBs were three to five times higher in the 1960s than in 2000. A regression method was used to normalize sediment concentrations of trace elements for natural variations and to distinguish natural and anthropogenic contributions to sediments. Concentrations of several trace elements—cadmium, chromium, copper, lead, and zinc—were elevated in sediments in Woods Inlet, along the shoreline of Air Force facilities, and in the main lake near the dam. Concentrations of these five trace elements have decreased since 1970. Polycyclic aromatic hydrocarbons also were elevated in the same areas of the lake. Concentrations of total polycyclic aromatic hydrocarbons, normalized with organic carbon, were mostly stable in the upper lake but steadily increased near the dam, except for small decreases since 1980. The Woods Inlet gravity core showed the largest increase of the three core sites beginning about 1940; total polycyclic aromatic hydrocarbon concentrations in post-1940 sediments from the core showed three apparent peaks about 1960, 1984, and 2000

  6. Identification and Quantification of Six-Ring C26H16 Cata-Condensed Polycyclic Aromatic Hydrocarbons in a Complex Mixture of Polycyclic Aromatic Hydrocarbons from Coal Tar

    PubMed Central

    Oña-Ruales, Jorge O.; Sharma, Arun K.; Wise, Stephen A.

    2015-01-01

    We applied a combination of normal-phase liquid chromatography (NPLC) with ultraviolet-visible spectroscopy and gas chromatography with mass spectrometry (GC/MS) for the fractionation, identification, and quantification of six ring C26H16 cata-condensed polycyclic aromatic hydrocarbons, PAHs, in the Standard Reference Material 1597a, Complex Mixture of PAHs from Coal Tar. For the characterization analysis, we calculated the GC retention indices of 17 C26H16 PAH authentic reference standards using the Rxi-PAH and DB-5 GC columns. Then, we used NPLC with ultraviolet-visible spectroscopy to isolate the fractions containing the C26H16 PAHs, and subsequently, we used GC/MS to establish the identity and quantity of the C26H16 PAHs using authentic reference standards. Following this procedure, 12 C26H16 cata-condensed PAHs benzo[c]pentaphene, dibenzo[f,k]tetraphene, benzo[h]pentaphene, dibenzo[a,l]tetracene, dibenzo[c,k]tetraphene, naphtho[2,3-c]tetraphene, dibenzo[a,c]tetracene, benzo[b]picene, dibenzo[a,j]tetracene, naphtho[2,1-a]tetracene, dibenzo[c,p]chrysene, and dibenzo[a,f]tetraphene were identified and quantified for the first time, and benzo[c]picene was quantified for the first time in an environmental combustion sample. PMID:26449848

  7. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231.

    PubMed

    Ivshina, Irina; Kostina, Ludmila; Krivoruchko, Anastasiya; Kuyukina, Maria; Peshkur, Tatyana; Anderson, Peter; Cunningham, Colin

    2016-07-15

    Removal of polycyclic aromatic hydrocarbons (PAHs) in soil using biosurfactants (BS) produced by Rhodococcus ruber IEGM 231 was studied in soil columns spiked with model mixtures of major petroleum constituents. A crystalline mixture of single PAHs (0.63g/kg), a crystalline mixture of PAHs (0.63g/kg) and polycyclic aromatic sulfur heterocycles (PASHs), and an artificially synthesized non-aqueous phase liquid (NAPL) containing PAHs (3.00g/kg) dissolved in alkanes C10-C19 were used for spiking. Percentage of PAH removal with BS varied from 16 to 69%. Washing activities of BS were 2.5 times greater than those of synthetic surfactant Tween 60 in NAPL-spiked soil and similar to Tween 60 in crystalline-spiked soil. At the same time, amounts of removed PAHs were equal and consisted of 0.3-0.5g/kg dry soil regardless the chemical pattern of a model mixture of petroleum hydrocarbons and heterocycles used for spiking. UV spectra for soil before and after BS treatment were obtained and their applicability for differentiated analysis of PAH and PASH concentration changes in remediated soil was shown. The ratios A254nm/A288nm revealed that BS increased biotreatability of PAH-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Activity of selected aromatic amino acids in biological systems.

    PubMed

    Krzyściak, Wirginia

    2011-01-01

    Besides the structural function in proteins, aromatic amino acids are precursors of many important biological compounds essential for normal functioning of the human organism. Many of these compounds may be used as markers for identification of specific pathological states. Comprehensive knowledge about the metabolism of aromatic amino acids and mechanisms of action of their metabolites made it possible to develop effective treatments for many disorders. However, it should not be forgotten that in some pathological conditions, these compounds could not only be involved in the pathogenesis of many disease entities but could also be used as an important tool in prediction of many diseases. This paper contains a review of published literature on aromatic amino acids in the context of physiological processes of the human body and chosen social disorders, such as cancers; psychiatric disorders: depression, anxiety states, schizophrenia, bipolar affective disorders; neurodegenerative, and cardiovascular diseases; chronic kidney insufficiency or diabetes.

  9. Biomonitoring of polycyclic aromatic compounds in the urine of mining workers occupationally exposed to diesel exhaust.

    PubMed

    Seidel, Albrecht; Dahmann, Dirk; Krekeler, Horst; Jacob, Juergen

    2002-02-01

    Diesel exhaust is considered a probable human carcinogen by the IARC. Biomonitoring of workers occupationally exposed to diesel exhaust was performed to determine their internal burden of diesel associated aromatic compounds. Personal air sampling also allowed to determine the exposure of the miners at their work place towards several polycyclic aromatic hydrocarbons (PAH) and nitro-arenes, the latter of which are thought to be specific constituents of diesel exhaust. For biomonitoring the urine of 18 underground salt miners was collected during and after their shift for 24-hours. half of the 18 miners were smokers. The urinary levels of 1-hydroxypyrene and hydroxylated phenanthrene metabolites were determined as biomarkers of PAH exposure, whereas urinary levels of some aromatic amines were chosen to monitor exposure towards specific nitro-arenes from diesel exhaust like 1-nitropyrene and 3-nitrobenzanthrone and to monitor the human burden by these compounds from inhaled cigarette smoke. Non-smoking workers exposed to diesel exhaust excrete an average level of about 4 micrograms phenanthrene metabolites, whereas the urinary levels in smokers were up to 3-fold higher. In summary the results indicate that (i) diesel exposure led to an increase of PAH metabolism in the workers examined, most probably by an induction of cytochrome P450 (ii) smokers could be identified in accordance with earlier studies by their increased ratio of phenanthrene metabolites derived from 1,2- and 3,4-oxidation and their higher amounts of excreted 1-naphthylamine, and (iii) the excreted amounts of aromatic amines found as metabolites of the nitro-arenes were about 5- to 10-fold higher as one might expect from the levels determined by personal air sampling at the workplace of the individuals.

  10. Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion*

    PubMed Central

    He, Tao; Gershenson, Anne; Eyles, Stephen J.; Lee, Yan-Jiun; Liu, Wenshe R.; Wang, Jiangyun; Gao, Jianmin; Roberts, Mary F.

    2015-01-01

    Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins. PMID:26092728

  11. Historical polycyclic aromatic and petrogenic hydrocarbon loading in Northern Central Gulf of Mexico shelf sediments.

    PubMed

    Overton, E B; Ashton, B M; Miles, M S

    2004-10-01

    The distribution of selected hydrocarbons within ten dated sediment cores taken from the Mississippi River Bight off coastal Louisiana suggests a chronic contaminant loading from several sources including the river itself, oil and gas exploration in the central Gulf of Mexico (GOM) shelf area, and natural geologic hydrocarbon seeps. Data were grouped as either total polycyclic aromatic hydrocarbons (PAH's), which were indicative of pyrogenic PAH's; or estimated total hopanes (indicative of petrogenic hydrocarbons). The total PAH concentrations and estimated total hopanes begin increasing above background levels (approximately 200 ng g(-1)) after the 1950s. The distribution of these hydrocarbons and hopanes within the dated sediment cores suggests that the Mississippi River is a regional source of pyrogenic PAH's, and that the hopanes are from natural geologic hydrocarbon seeps, oil and gas exploration in the GOM, or both.

  12. Boron nitride nanotubes as novel sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Zhao, Rusong; Zhi, Chunyi; Wu, Chiman Lawrence

    2014-09-01

    Boron nitride nanotube (BNNT) is a novel material that shows potential ability in capturing organic pollutants. In this study, BNNTs fixed on a stainless steel fiber by a sol-gel technique were used as sorbent for solid-phase microextraction. Five polycyclic aromatic hydrocarbons with different numbers of aromatic rings were selected as target analysts. Gas chromatography coupled with tandem mass spectrometry was used for detection and quantitative determination. Under optimized conditions, the experimental results show a wide range of linearity (1 to 1,000 ng L(-1)), less than 10.1 % repeatability of relative standard deviation, and low detection limits (0.08 to 0.39 ng L(-1)). In addition, the fabricated fiber offered good thermal and chemical stability. The proposed method was successfully applied for the analysis of real water samples, and satisfactory results were obtained with relative recoveries ranging from 80.2 to 116.8 %. The results demonstrated that BNNTs could be used as sorbent for the analysis of environmental pollutants at trace levels.

  13. Emissions of Polycyclic Aromatic Hydrocarbons from Natural Gas Extraction into Air.

    PubMed

    Paulik, L Blair; Donald, Carey E; Smith, Brian W; Tidwell, Lane G; Hobbie, Kevin A; Kincl, Laurel; Haynes, Erin N; Anderson, Kim A

    2016-07-19

    Natural gas extraction, often referred to as "fracking", has increased rapidly in the United States in recent years. To address potential health impacts, passive air samplers were deployed in a rural community heavily affected by the natural gas boom. Samplers were analyzed for 62 polycyclic aromatic hydrocarbons (PAHs). Results were grouped based on distance from each sampler to the nearest active well. Levels of benzo[a]pyrene, phenanthrene, and carcinogenic potency of PAH mixtures were highest when samplers were closest to active wells. PAH levels closest to natural gas activity were comparable to levels previously reported in rural areas in winter. Sourcing ratios indicated that PAHs were predominantly petrogenic, suggesting that PAH levels were influenced by direct releases from the earth. Quantitative human health risk assessment estimated the excess lifetime cancer risks associated with exposure to the measured PAHs. At sites closest to active wells, the risk estimated for maximum residential exposure was 0.04 in a million, which is below the U.S. Environmental Protection Agency's acceptable risk level. Overall, risk estimates decreased 30% when comparing results from samplers closest to active wells to those farthest from them. This work suggests that natural gas extraction is contributing PAHs to the air, at levels that would not be expected to increase cancer risk.

  14. Theoretical modeling of the infrared fluorescence from interstellar polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Tielens, A. G. G. M.; Allamandola, L. J.

    1993-01-01

    We have modeled the family of interstellar IR emission bands at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 microns by calculating the fluorescence from a size distribution of interstellar polycyclic aromatic hydrocarbons (PAHs) embedded in the radiation field of a hot star. It is found that the various emission bands are dominated by distinctly different PAHs, from molecules with much less than about 80 C atoms for the 3.3 micron feature, to molecules with 10 exp 2-10 exp 5 C atoms for the emission in the IRAS 12 and 25 micron bands. We quantitatively describe the influence on the emergent spectrum of various PAH properties such as the molecular structure, the amount of dehydrogenation, the intrinsic strength of the IR active modes, and the size distribution. Comparing our model results to the emission spectrum from the Orion Bar region, we conclude that interstellar PAHs are likely fully, or almost fully, hydrogenated. Moreover, it is found that the intrinsic strengths of the 6.2 and 7.7 micron C-C stretching modes, and the 8.6 micron C-H in-plane bending mode are 2-6 times larger than measured for neutral PAHs in the laboratory.

  15. Particulate-bound polycyclic aromatic hydrocarbon sources and determinants in residential homes.

    PubMed

    Cattaneo, Andrea; Fermo, Paola; Urso, Patrizia; Perrone, Maria Grazia; Piazzalunga, Andrea; Tarlassi, Jessica; Carrer, Paolo; Cavallo, Domenico Maria

    2016-11-01

    Human exposure to polycyclic aromatic hydrocarbons (PAHs) in indoor environments can be particularly relevant because people spend most of their time inside buildings, especially in homes. This study aimed to investigate the most important particle-bound PAH sources and exposure determinants in PM 2.5 samples collected in 19 homes located in northern Italy. Complementary information about ion content in PM 10 was also collected in 12 of these homes. Three methods were used for the identification of PAH sources and determinants: diagnostic ratios with principal component and hierarchical cluster analyses (PCA and HCA), chemical mass balance (CMB) and linear mixed models (LMMs). This combined and tiered approach allowed the infiltration of outdoor PAHs into indoor environments to be identified as the most important source in winter, with a relevant role played by biomass burning and traffic exhausts to be identified as a general source of PAHs in both seasons. Tobacco smoke exhibited an important impact on PAH levels in smokers' homes, whereas in the whole sample, cooking food and natural gas sources played a minor or negligible role. Nitrate, sulfate and ammonium were the main inorganic constituents of indoor PM 10 owing to the secondary formation of ammonium sulfates and nitrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Multi-source apportionment of polycyclic aromatic hydrocarbons using simultaneous linear equations

    NASA Astrophysics Data System (ADS)

    Marinaite, Irina; Semenov, Mikhail

    2014-05-01

    A new approach to identify multiple sources of polycyclic aromatic hydrocarbons (PAHs) and to evaluate the source contributions to atmospheric deposition of particulate PAHs is proposed. The approach is based on differences in concentrations of sums of PAHs with the same molecular weight among the sources. The data on PAHs accumulation in snow as well as the source profiles were used for calculations. Contributions of aluminum production plant, oil-fired central heating boilers, and residential wood and coal combustion were calculated using the linear mixing models. The concentrations of PAH pairs such as Benzo[b]fluorantene + Benzo[k]fluorantene and Benzo[g,h,i]perylene + Indeno[1,2,3-c,d]pyrene normalized to Benzo[a]antracene + Chrysene were used as tracers in mixing equations. The results obtained using ratios of sums of PAHs were compared with those obtained using molecular diagnostic ratios such as Benzo[a]antracene/Chrysene and Benzo[g,h,i]perylene/Indeno[1,2,3-c,d]pyrene. It was shown that the results obtained using diagnostic ratios as tracers are less reliable than results obtained using ratios of sums of PAHs. Funding was provided by Siberian Branch of Russian Academy of Sciences grant No. 8 (2012-2014).

  17. DISSOCIATIVE PHOTOIONIZATION OF POLYCYCLIC AROMATIC HYDROCARBON MOLECULES CARRYING AN ETHYNYL GROUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouillé, G.; Krasnokutski, S. A.; Fulvio, D.

    The life cycle of the population of interstellar polycyclic aromatic hydrocarbon (PAH) molecules depends partly on the photostability of the individual species. We have studied the dissociative photoionization of two ethynyl-substituted PAH species, namely, 9-ethynylphenanthrene and 1-ethynylpyrene. Their adiabatic ionization energy and the appearance energy of fragment ions have been measured with the photoelectron photoion coincidence spectroscopy technique. The adiabatic ionization energy has been found at 7.84 ± 0.02 eV for 9-ethynylphenanthrene and at 7.41 ± 0.02 eV for 1-ethynylpyrene. These values are similar to those determined for the corresponding non-substituted PAH molecules phenanthrene and pyrene. The appearance energy ofmore » the fragment ion indicative of the loss of a H atom following photoionization is also similar for either ethynyl-substituted PAH molecule and its non-substituted counterpart. The measurements are used to estimate the critical energy for the loss of a H atom by the PAH cations and the stability of ethynyl-substituted PAH molecules upon photoionization. We conclude that these PAH derivatives are as photostable as the non-substituted species in H i regions. If present in the interstellar medium, they may play an important role in the growth of interstellar PAH molecules.« less

  18. In vivo metabolism and genotoxic effects of nitrated polycyclic aromatic hydrocarbons.

    PubMed

    Möller, L

    1994-10-01

    During incomplete combustion of organic matter, nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), are formed in a reaction that is catalyzed by a low pH. 2-Nitrofluorene (NF), a marker for nitro-PAHs, is metabolized in vivo by two different routes. After inhalation, potent mutagenic metabolites, hydroxylated nitrofluorenes (OH-NFs), are formed. The metabolites are distributed by systemic circulation. After oral administration, NF is reduced to the corresponding amine, a reaction mediated by the intestinal microflora. This metabolite is acetylated to 2-acetylaminofluorene (AAF), a potent carcinogen. Further ring-hydroxylation of AAF leads to detoxification and excretion. Induction of cytochrome P450s affects the metabolism, and more OH-NFs are formed. As a consequence, more mutagenic metabolites are found in the circulation. OH-NFs are excreted in the bile as, in terms of mutagenicity, totally harmless glucuronide conjugates. When these conjugates are excreted via the bile, intestinal beta-glucuronidase can liberate direct-acting mutagens in the intestine. Thus, inhalation of NF can lead to formation of potent mutagens in the intestine. NF is a direct-acting mutagen in bacterial assays and an initiator and promoter of the carcinogenic process, and gives rise to DNA adduct formation in laboratory animals.

  19. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.

    PubMed

    Wang, Jun; Chen, Zaiming; Chen, Baoliang

    2014-05-06

    The adsorption of naphthalene, phenanthrene, and pyrene onto graphene (GNS) and graphene oxide (GO) nanosheets was investigated to probe the potential adsorptive sites and molecular mechanisms. The microstructure and morphology of GNS and GO were characterized by elemental analysis, XPS, FTIR, Raman, SEM, and TEM. Graphene displayed high affinity to the polycyclic aromatic hydrocarbons (PAHs), whereas GO adsorption was significantly reduced after oxygen-containing groups were attached to GNS surfaces. An unexpected peak was found in the curve of adsorption coefficients (Kd) with the PAH equilibrium concentrations. The hydrophobic properties and molecular sizes of the PAHs affected the adsorption of G and GO. The high affinities of the PAHs to GNS are dominated by π-π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS surfaces. In contrast, the adsorptive sites of GO changed to the carboxyl groups attaching to the edges of GO because the groove regions disappeared and the polar nanosheet surfaces limited the π-π interactions. The TEM and SEM images initially revealed that after loading with PAH, the conformation and aggregation of GNS and GO nanosheets dramatically changed, which explained the observations that the potential adsorption sites of GNS and GO were unusually altered during the adsorption process.

  20. Polycyclic Aromatic Hydrocarbons and digestive tract cancers - a perspective

    PubMed Central

    Diggs, Deacqunita L.; Huderson, Ashley C.; Harris, Kelly L.; Myers, Jeremy N.; Banks, Leah D.; Rekhadevi, Perumalla V.; Niaz, Mohammad S.; Ramesh, Aramandla

    2011-01-01

    Cancers of the colon are most common in the Western world. In majority of these cases, there is no familial history and sporadic gene damage seems to play an important role in the development of tumors in the colon. Studies have shown that environmental factors, especially diet, play an important role in susceptibility to GI tract cancers. Consequently, environmental chemicals that contaminate food or diet during its preparation becomes important in the development of GI cancers. Polycyclic aromatic hydrocarbons (PAHs) are one such family of ubiquitous environmental toxicants. These pollutants enter the human body through consumption of contaminated food, drinking water, inhalation of cigarette smoke, automobile exhausts, and contaminated air from occupational settings. Among these pathways, dietary intake of PAHs constitutes a major source of exposure in humans. Although many reviews and books on PAHs and their ability to cause toxicity and breast or lung cancer have been published, aspects on contribution of diet, smoking and other factors towards development of digestive tract cancers and strategies to assess risk from exposure to PAHs have received much less attention. This review, therefore, focuses on dietary intake of PAHs in humans, animal models, and cell cultures used for GI cancer studies along with epidemiological findings. Bioavailability and biotransformation processes, which influence the disposition of PAHs in body and the underlying causative mechanisms of GI cancers, are also discussed. The existing data gaps and scope for future studies is also emphasized. This information is expected to stimulate research on mechanisms of sporadic GI cancers caused by exposure to environmental carcinogens. PMID:22107166

  1. Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Han; Telesco, Charles M.; Pantin, Eric

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m commonly ascribed to the C–H and C–C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μ m in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. Thismore » poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.« less

  2. Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguiera gymnorrhiza.

    PubMed

    Naidoo, Gonasageran; Naidoo, Krishnaveni

    2016-12-15

    The uptake of polycyclic aromatic hydrocarbons and their cellular effects were investigated in the mangrove Bruguiera gymnorrhiza. Seedlings were subjected to sediment oiling for three weeks. In the oiled treatment, the ƩPAHs was higher in roots (99%) than in leaves (1%). In roots, PAHs included phenanthrene (55%), acenaphthene (13%), fluorine (12%) and anthracene (8%). In leaves, PAHs possessed two to three rings and included acenaphthene (35%), naphthalene (33%), fluorine (18%) and phenanthrene (14%). In the roots, oil caused disorganization of cells in the root cap, meristem and conducting tissue. Oil contaminated cells were distorted and possessed large and irregularly shaped vacuoles. Ultrastructural changes included loss of cell contents and fragmentation of the nucleus and mitochondrion. In the leaves, oil caused dilation and distortion of chloroplasts and disintegration of grana and lamellae. Oil targets critical organelles such as nuclei, chloroplasts and mitochondria which are responsible for cell vitality and energy transformation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Telesco, Charles M.; Hoang, Thiem; Li, Aigen; Pantin, Eric; Wright, Christopher M.; Li, Dan; Barnes, Peter

    2017-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm commonly ascribed to the C-H and C-C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μm in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. This poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.

  4. Effect of beer marinades on formation of polycyclic aromatic hydrocarbons in charcoal-grilled pork.

    PubMed

    Viegas, Olga; Yebra-Pimentel, Iria; Martínez-Carballo, Elena; Simal-Gandara, Jesus; Ferreira, Isabel M P L V O

    2014-03-26

    The effect of marinating meat with Pilsner beer, nonalcoholic Pilsner beer, and Black beer (coded respectively PB, P0B, and BB) on the formation of polycyclic aromatic hydrocarbons (PAHs) in charcoal-grilled pork was evaluated and compared with the formation of these compounds in unmarinated meat. Antiradical activity of marinades (DPPH assay) was assayed. BB exhibited the strongest scavenging activity (68.0%), followed by P0B (36.5%) and PB (29.5%). Control and marinated meat samples contained the eight PAHs named PAH8 by the EFSA and classified as suitable indicators for carcinogenic potency of PAHs in food. BB showed the highest inhibitory effect in the formation of PAH8 (53%), followed by P0B (25%) and PB (13%). The inhibitory effect of beer marinades on PAH8 increased with the increase of their radical-scavenging activity. BB marinade was the most efficient on reduction of PAH formation, providing a proper mitigation strategy.

  5. [Feasibility of using laser-induced fluorescence to detect directly polycyclic aromatic hydrocarbons in soil].

    PubMed

    Yang, Ren-Jie; Shang, Li-Ping; Bao, Zhen-Bo; He, Jun; Deng, Hu; Liu, Yu-Le

    2011-08-01

    Abstract In the present paper, a technique of laser-induced fluorescence(LIF)for direct assay of polycyclic aromatic hydrocarbons(PAH) in soil was put forward. The research objective of this article is anthracene. The possibility of using LIF spectra to detect directly anthracene in soil was studied. Anthracene was detected in soil by AvaSpec-3648 Fiber Optic Spectrometer of thermoelectric refrigeration. The authors drew a conclusion that in the range of certain anthracene concentration(0.000 005-0.001 g x g(-1)), the intensity of LIF fluorescence is linear with anthracene concentration in soil, with a regression coefficient of 0. 929. This showed that direct assay of anthracene in soil was feasible by laser-induced fluorescence. The study is important to developing a new analytical technique of quantitative fluorescence detector which can be applied to the analysis of PAH in soil without pretreatment, and is significant to realization of real-time, in-line, in-situ measurement of PAH in soil.

  6. Characterization of polycyclic aromatic hydrocarbons in soil close to secondary copper and aluminum smelters.

    PubMed

    Hu, Jicheng; Wu, Jing; Zha, Xiaoshuo; Yang, Chen; Hua, Ying; Wang, Ying; Jin, Jun

    2017-04-01

    A total of 35 surface soil samples around two secondary copper smelters and one secondary aluminum smelter were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs). The concentrations of PAHs were highest when the soil sample sites were closest to the secondary copper smelters. And, a level gradient of PAHs was observed in soil samples according to the distance from two secondary copper smelters, respectively. The results suggested that PAH concentrations in surrounding soils may be influenced by secondary copper smelters investigated, whereas no such gradient was observed in soils around the secondary aluminum smelter. Further analysis revealed that PAH patterns in soil samples also showed some difference between secondary copper and aluminum smelter, which may be attributed to the difference in their fuel and smelting process. PAH patterns and diagnostic ratios indicated that biomass burning may be also an important source of PAHs in the surrounding soil in addition to the emissions from the plants investigated.

  7. Dissociation of polycyclic aromatic hydrocarbons: molecular dynamics studies

    NASA Astrophysics Data System (ADS)

    Simon, A.; Rapacioli, M.; Rouaut, G.; Trinquier, G.; Gadéa, F. X.

    2017-03-01

    We present dynamical studies of the dissociation of polycyclic aromatic hydrocarbon (PAH) radical cations in their ground electronic states with significant internal energy. Molecular dynamics simulations are performed, the electronic structure being described on-the-fly at the self-consistent-charge density functional-based tight binding (SCC-DFTB) level of theory. The SCC-DFTB approach is first benchmarked against DFT results. Extensive simulations are achieved for naphthalene , pyrene and coronene at several energies. Such studies enable one to derive significant trends on branching ratios, kinetics, structures and hints on the formation mechanism of the ejected neutral fragments. In particular, dependence of branching ratios on PAH size and energy were retrieved. The losses of H and C2H2 (recognized as the ethyne molecule) were identified as major dissociation channels. The H/C2H2 ratio was found to increase with PAH size and to decrease with energy. For , which is the most interesting PAH from the astrophysical point of view, the loss of H was found as the quasi-only channel for an internal energy of 30 eV. Overall, in line with experimental trends, decreasing the internal energy or increasing the PAH size will favour the hydrogen loss channels with respect to carbonaceous fragments. This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  8. Polycyclic Aromatic Hydrocarbon Emission Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Shannon, M. J.; Peeters, E.; Cami, J.; Blommaert, J. A. D. L.

    2018-03-01

    We examine polycyclic aromatic hydrocarbon (PAH), dust, and atomic/molecular emission toward the Galactic bulge using Spitzer Space Telescope observations of four fields: C32, C35, OGLE, and NGC 6522. These fields are approximately centered on (l, b) = (0.°0, 1.°0), (0.°0, ‑1.°0), (0.°4, ‑2.°4), and (1.°0, ‑3.°8), respectively. Far-infrared photometric observations complement the Spitzer/IRS spectroscopic data and are used to construct spectral energy distributions. We find that the dust and PAH emission are exceptionally similar between C32 and C35 overall, in part explained due to their locations—they reside on or near boundaries of a 7 Myr old Galactic outflow event and are partly shock-heated. Within the C32 and C35 fields, we identify a region of elevated Hα emission that is coincident with elevated fine-structure and [O IV] line emission and weak PAH feature strengths. We are likely tracing a transition zone of the outflow into the nascent environment. PAH abundances in these fields are slightly depressed relative to typical ISM values. In the OGLE and NGC 6522 fields, we observe weak features on a continuum dominated by zodiacal dust. SED fitting indicates that thermal dust grains in C32 and C35 have temperatures comparable to those of diffuse, high-latitude cirrus clouds. Little variability is detected in the PAH properties between C32 and C35, indicating that a stable population of PAHs dominates the overall spectral appearance. In fact, their PAH features are exceptionally similar to that of the M82 superwind, emphasizing that we are probing a local Galactic wind environment.

  9. Simulation of polycyclic aromatic hydrocarbons transport in multimedia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.; Chu, C.J.

    1999-07-01

    Many studies have indicated that the threat from toxic air pollutants such as VOCs comes not through inhalation by humans while the pollutants are in a gaseous state but through absorption when the pollutants are in a solid state such as in an aerosol or particulate form. Pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs) usually exist in a semi-volatile state. To assess the risk of the PAHs, one needs to estimate the dose of the pollutants to which a human would be exposed through various pathways. In this study, the authors modified a Spatial Multimedia Compartmental Model (SMCM) originally developedmore » by UCLA Professor Cohen to predict the PAHs distribution among multimedia such as air, water, soil and sediment in the Taipei metropolitan area. Three PAHs were considered in this study. They are Benzo(a)pyrene, Pyrene and Chrysene. When PAHs are emitted into atmosphere, physical and chemical mechanisms may redistribute the PAHs among multimedia. Five cases of PAHs distribution in multimedia were simulated: (1) PAHs distribution in a dry condition, (2) PAHs distribution when there are different dry deposition velocities, (3) PAHs distribution under a single rainfall event, (4) PAHs distribution when there are different soil properties, (5) PAHs distribution under a random rainfall case. The simulation results are concluded: (1) In the dry case, the PAHs accumulate mostly in soil and air compartments, (2) Different dry depositing velocities will affect the PAHs distribution among compartments. (3) Different soil properties affect the PAHs concentration in the soil and sediment compartments, (4) The soil PAHs concentrations usually increase for those PAHs with a high solid/gas ratio. (5) The random rainfall only affects the PAHs concentration in the soil.« less

  10. Chronic toxicity of selected polycyclic aromatic hydrocarbons to algae and crustaceans using passive dosing.

    PubMed

    Bragin, Gail E; Parkerton, Thomas F; Redman, Aaron D; Letinksi, Daniel J; Butler, Josh D; Paumen, Miriam Leon; Sutherland, Cary A; Knarr, Tricia M; Comber, Mike; den Haan, Klaas

    2016-12-01

    Because of the large number of possible aromatic hydrocarbon structures, predictive toxicity models are needed to support substance hazard and risk assessments. Calibration and evaluation of such models requires toxicity data with well-defined exposures. The present study has applied a passive dosing method to generate reliable chronic effects data for 8 polycyclic aromatic hydrocarbons (PAHs) on the green algae Pseudokirchneriella subcapitata and the crustacean Ceriodaphnia dubia. The observed toxicity of these substances on algal growth rate and neonate production were then compared with available literature toxicity data for these species, as well as target lipid model and chemical activity-based model predictions. The use of passive dosing provided well-controlled exposures that yielded more consistent data sets than attained by past literature studies. Results from the present study, which were designed to exclude the complicating influence of ultraviolet light, were found to be well described by both target lipid model and chemical activity effect models. The present study also found that the lack of chronic effects for high molecular weight PAHs was consistent with the limited chemical activity that could be achieved for these compounds in the aqueous test media. Findings from this analysis highlight that variability in past literature toxicity data for PAHs may be complicated by both poorly controlled exposures and photochemical processes that can modulate both exposure and toxicity. Environ Toxicol Chem 2016;35:2948-2957. © 2016 SETAC. © 2016 SETAC.

  11. Forming a Two-Ring Polycyclic Aromatic Hydrocarbon without a Benzene Intermediate: the Reaction of Propargyl with Acetylene

    NASA Astrophysics Data System (ADS)

    Osborn, David; Savee, John; Selby, Talitha; Welz, Oliver; Taatjes, Craig

    The reaction of acetylene (HCCH) with a resonance-stabilized free radical is a commonly invoked mechanism for the generation of polycyclic aromatic hydrocarbons (PAH), which are likely precursors of soot particles in combustion. In this work, we examine the sequential addition of acetylene to the propargyl radical (H2CCCH) at temperatures of 800 and 1000 K. Using time-resolved multiplexed photoionization mass spectrometry with tunable ionizing radiation, we identified the isomeric forms of the C5H5 and C7H7 intermediates in this reaction sequence, and confirmed that the final C9H8 product is the two-ring aromatic compound indene. We identified two different resonance-stabilized C5H5 intermediates, with different temperature dependencies. Furthermore, the C7H7 intermediate is the tropyl radical (c-C7H7) , not the benzyl radical (C6H5CH2) , as is usually assumed in combustion environments. These experimental results are in general agreement with the latest electronic structure / master equation results of da Silva et al. This work shows a pathway for PAH formation that bypasses benzene / benzyl intermediates.

  12. Prenatal Polycyclic Aromatic Hydrocarbon, Adiposity, Peroxisome Proliferator-Activated Receptor (PPAR) γ Methylation in Offspring, Grand-Offspring Mice

    PubMed Central

    Yan, Zhonghai; Zhang, Hanjie; Maher, Christina; Arteaga-Solis, Emilio; Champagne, Frances A.; Wu, Licheng; McDonald, Jacob D.; Yan, Beizhan; Schwartz, Gary J.; Miller, Rachel L.

    2014-01-01

    Rationale Greater levels of prenatal exposure to polycyclic aromatic hydrocarbon (PAH) have been associated with childhood obesity in epidemiological studies. However, the underlying mechanisms are unclear. Objectives We hypothesized that prenatal PAH over-exposure during gestation would lead to weight gain and increased fat mass in offspring and grand-offspring mice. Further, we hypothesized that altered adipose gene expression and DNA methylation in genes important to adipocyte differentiation would be affected. Materials and Methods Pregnant dams were exposed to a nebulized PAH mixture versus negative control aerosol 5 days a week, for 3 weeks. Body weight was recorded from postnatal day (PND) 21 through PND60. Body composition, adipose cell size, gene expression of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding proteins (C/EBP) α, cyclooxygenase (Cox)-2, fatty acid synthase (FAS) and adiponectin, and DNA methylation of PPAR γ, were assayed in both the offspring and grand-offspring adipose tissue. Findings Offspring of dams exposed to greater PAH during gestation had increased weight, fat mass, as well as higher gene expression of PPAR γ, C/EBP α, Cox2, FAS and adiponectin and lower DNA methylation of PPAR γ. Similar differences in phenotype and DNA methylation extended through the grand-offspring mice. Conclusions Greater prenatal PAH exposure was associated with increased weight, fat mass, adipose gene expression and epigenetic changes in progeny. PMID:25347678

  13. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3-micrometers Region: Role of Periphery

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2017-01-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3-micrometers absorption band. To this purpose we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 per cm range. The experimental spectra are compared with standard harmonic calculations, and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3-micrometers region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive dataset of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly-condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3-micrometers band, and on features such as the two-component emission character of this band and the 3-micrometers emission plateau.

  14. Ionization of Polycyclic Aromatic Hydrocarbon Molecules around the Herbig Ae/be ENVIRONMENT*

    NASA Astrophysics Data System (ADS)

    Sakon, Itsuki; Onaka, Takashi; Okamoto, Yoshiko K.; Kataza, Hirokazu; Kaneda, Hidehiro; Honda, Mitsuhiko

    We present the results of mid-infrared N-band spectroscopy of the Herbig Ae/Be system MWC1080 using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on board the 8 m Subaru Telescope. The MWC1080 has a geometry such that the diffuse nebulous structures surround the central Herbig B0 type star. We focus on the properties of polycyclic aromatic hydrocarbons (PAHs) and PAH-like species, which are thought to be the carriers of the unidentified infrared (UIR) bands in such environments. A series of UIR bands at 8.6, 11.0, 11.2, and 12.7 μm is detected throughout the system and we find a clear increase in the UIR 11.0 μm/11.2 μm ratio in the vicinity of the central star. Since the UIR 11.0 μm feature is attributed to a solo-CH out-of-plane wagging mode of cationic PAHs while the UIR 11.2 μm feature to a solo-CH out-of-plane bending mode of neutral PAHs, the large 11.0 μm/11.2 μm ratio directly indicates a promotion of the ionization of PAHs near the central star.

  15. EU marker polycyclic aromatic hydrocarbons in food supplements: analytical approach and occurrence

    PubMed Central

    Zelinkova, Zuzana; Wenzl, Thomas

    2015-01-01

    Several food supplements comprising botanical, oil and bee products collected from retail markets in different countries were tested for the occurrence of 4 EU marker Polycyclic aromatic hydrocarbons (PAHs; benz[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene). A robust GC/MS-based stable-isotope dilution method was used taking into account the differences in the type of matrices. The accuracy of the results was assessed by implementing several quality control tools. Sixty-eight samples of 94 analysed products exceeded the level of 0.5 μg/kg for the sum of the four EU marker PAHs (ΣPAH4). Benzo[a]pyrene exceeded the limit of quantification in 49 samples. The PAH with the highest abundance in all products was chrysene. On average, propolis extracts and other bee products showed relatively high levels of ΣPAH4 (mean 188.2 μg/kg), whereas the contamination levels of fish oil supplements were very low or mostly undetectable. Considerably high ΣPAH4 amounts found in some samples could remarkably increase the daily exposure of consumers to PAHs, demonstrating the need for continuous monitoring of ΣPAH4 in food supplements. PMID:26467752

  16. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere.

    PubMed

    Singh, Kunwar P; Malik, Amrita; Kumar, Ranjan; Saxena, Puneet; Sinha, Sarita

    2008-01-01

    This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19-97% of various PAHs, vehicular emissions 0-70%, diesel based sources 0-81% and other miscellaneous sources 0-20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.

  17. Ion-polycyclic aromatic hydrocarbon collisions: kinetic energy releases for specific fragmentation channels

    NASA Astrophysics Data System (ADS)

    Reitsma, G.; Zettergren, H.; Boschman, L.; Bodewits, E.; Hoekstra, R.; Schlathölter, T.

    2013-12-01

    We report on 30 keV He2 + collisions with naphthalene (C10H8) molecules, which leads to very extensive fragmentation. To unravel such complex fragmentation patterns, we designed and constructed an experimental setup, which allows for the determination of the full momentum vector by measuring charged collision products in coincidence in a recoil ion momentum spectrometer type of detection scheme. The determination of fragment kinetic energies is found to be considerably more accurate than for the case of mere coincidence time-of-flight spectrometers. In fission reactions involving two cationic fragments, typically kinetic energy releases of 2-3 eV are observed. The results are interpreted by means of density functional theory calculations of the reverse barriers. It is concluded that naphthalene fragmentation by collisions with keV ions clearly is much more violent than the corresponding photofragmentation with energetic photons. The ion-induced naphthalene fragmentation provides a feedstock of various small hydrocarbonic species of different charge states and kinetic energy, which could influence several molecule formation processes in the cold interstellar medium and facilitates growth of small hydrocarbon species on pre-existing polycyclic aromatic hydrocarbons.

  18. A source study of atmospheric polycyclic aromatic hydrocarbons in Shenzhen, South China.

    PubMed

    Liu, Guoqing; Tong, Yongpeng; Luong, John H T; Zhang, Hong; Sun, Huibin

    2010-04-01

    Air pollution has become a serious problem in the Pearl River Delta, South China, particularly in winter due to the local micrometeorology. In this study, atmospheric polycyclic aromatic hydrocarbons (PAHs) were monitored weekly in Shenzhen during the winter of 2006. Results indicated that the detected PAHs were mainly of vapor phase compounds with phenanthrene dominant. The average vapor phase and particle phase PAHs concentration in Shenzhen was 101.3 and 26.7 ng m( - 3), respectively. Meteorological conditions showed great effect on PAH concentrations. The higher PAHs concentrations observed during haze episode might result from the accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. The sources of PAHs in the air were estimated by principal component analysis in combination with diagnostic ratios. Vehicle exhaust was the major PAHs source in Shenzhen, accounting for 50.0% of the total PAHs emissions, whereas coal combustion and solid waste incineration contributed to 29.4% and 20.6% of the total PAHs concentration, respectively. The results clearly indicated that the increasing solid waste incinerators have become a new important PAHs source in this region.

  19. Ambient cure polyimide foams prepared from aromatic polyisocyanates, aromatic polycarboxylic compounds, furfuryl alcohol, and a strong inorganic acid

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Riccitiello, Salvatore R. (Inventor); Hamermesh, Charles L. (Inventor)

    1980-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, e.g., pyromellitic dianhydride, with an aromatic polyisocyanate, e.g., polymethylene polyphenylisocyanate (PAPI) in the presence of an inorganic acid and a lower molecular weight alcohol, e.g., dilute sulfuric acid or phosphoric acid and furfuryl alcohol. The exothermic reaction between the acid and the alcohol provides the heat necessary for the other reactants to polymerize without the application of any external heat. Such mixtures, therefore, are ideally suited for in situ foam formation, especially where the application of heat is not practical or possible.

  20. Visible and Near-Infrared Spectroscopy Analysis of a Polycyclic Aromatic Hydrocarbon in Soils

    PubMed Central

    Okparanma, Reuben N.; Mouazen, Abdul M.

    2013-01-01

    Visible and near-infrared (VisNIR) spectroscopy is becoming recognised by soil scientists as a rapid and cost-effective measurement method for hydrocarbons in petroleum-contaminated soils. This study investigated the potential application of VisNIR spectroscopy (350–2500 nm) for the prediction of phenanthrene, a polycyclic aromatic hydrocarbon (PAH), in soils. A total of 150 diesel-contaminated soil samples were used in the investigation. Partial least-squares (PLS) regression analysis with full cross-validation was used to develop models to predict the PAH compound. Results showed that the PAH compound was predicted well with residual prediction deviation of 2.0–2.32, root-mean-square error of prediction of 0.21–0.25 mg kg−1, and coefficient of determination (r 2) of 0.75–0.83. The mechanism of prediction was attributed to covariation of the PAH with clay and soil organic carbon. Overall, the results demonstrated that the methodology may be used for predicting phenanthrene in soils utilizing the interrelationship between clay and soil organic carbon. PMID:24453798

  1. Aqueous photodegradation and toxicity of the polycyclic aromatic hydrocarbons fluorene, dibenzofuran and dibenzothiophene

    PubMed Central

    Shemer, Hilla; Linden, Karl G.

    2007-01-01

    Decay kinetics resulting from the application of UV and UV/H2O2 to the polycyclic aromatic hydrocarbons (PAHs) fluorene, dibenzofuran and dibenzothiophene was studied. Batch experiments were conducted with both low pressure monochromatic (253.7 nm) and medium pressure polychromatic (200–300 nm) UV sources alone or in the presence of up to 25 mg/L hydrogen peroxide, in a quasi-collimated beam apparatus. Degradation of all three PAHs, by both UV and UV/H2O2, exhibited pseudo-first order reaction kinetics and low quantum yields ranging from 1.4×10−3 to 1.8×10−2 mol/E using both UV lamps. Toxicity testing using a bioluminesence inhibition bioassay was correlated to the decay in concentration of the PAHs as analyzed analytically using HPLC. Results demonstrated that treatment efficacy of oxidative PAH degradation measured by following the decay of the target compound is best complemented by also evaluating the toxicity of the treated water due to byproduct formation concerns. PMID:17217979

  2. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils.

    PubMed

    Nishimura, Chiya; Horii, Yuichi; Tanaka, Shuhei; Asante, Kwadwo Ansong; Ballesteros, Florencio; Viet, Pham Hung; Itai, Takaaki; Takigami, Hidetaka; Tanabe, Shinsuke; Fujimori, Takashi

    2017-06-01

    We conducted this study to assess the occurrence, profiles, and toxicity of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and brominated polycyclic aromatic hydrocarbons (Br-PAHs) in e-waste open burning soils (EOBS). In this study, concentrations of 15 PAHs, 26 Cl-PAHs and 14 Br-PAHs were analyzed in EOBS samples. We found that e-waste open burning is an important emission source of Cl-PAHs and Br-PAHs as well as PAHs. Concentrations of total Cl-PAHs and Br-PAHs in e-waste open burning soil samples ranged from 21 to 2800 ng/g and from 5.8 to 520 ng/g, respectively. Compared with previous studies, the mean of total Cl-PAH concentrations of the EOBS samples in this study was higher than that of electronic shredder waste, that of bottom ash, and comparable to fly ash from waste incinerators in Korea and Japan. The mean of total Br-PAH concentrations of the EOBS samples was generally three to four orders of magnitude higher than those in incinerator bottom ash and comparable to incinerator fly ash, although the number of Br-PAH congeners measured differed among studies. We also found that the Cl-PAH and Br-PAH profiles were similar among all e-waste open burning soil samples but differed from those in waste incinerator fly ash. The profiles and principal component analysis results suggested a unique mechanism of Cl-PAH and Br-PAH formation in EOBS. In addition, the Cl-PAHs and Br-PAHs showed high toxicities equivalent to PCDD/Fs measured in same EOBS samples when calculated based on their relative potencies to benzo[a]pyrene. Along with chlorinated and brominated dioxins and PAHs, Cl-PAHs and Br-PAHs are important environmental pollutants to investigate in EOBS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Atmospheric deposition of polycyclic aromatic compounds and associated sources in an urban and a rural area of Chongqing, China.

    PubMed

    Tian, Mi; Yang, FuMo; Chen, SheJun; Wang, HuanBo; Chen, Yang; Zhang, LiuYi; Zhang, LeiMing; Xiang, Li; Qiao, BaoQing

    2017-11-01

    Monthly bulk (dry + wet) deposition samples were collected at an urban and a rural site in Chongqing, southwestern China during May 2014 to April 2015 for analyzing the contents of parent polycyclic aromatic hydrocarbons (PPAHs) and three types of substituted PAHs (SPAHs) including oxygenated PAHs (OPAHs), nitrated PAHs (NPAHs) and methyl PAHs (MPAHs). Annual average (±standard deviation) deposition fluxes of ΣPPAHs, ΣOPAHs, and ΣMPAHs were 536 ± 216; 221 ± 118, and 131 ± 41.9 ng/m 2 /d, respectively, in the urban area, and 347 ± 185, 160 ± 112, and 85.2 ± 32.0 ng/m 2 /d, respectively in the rural area. Deposition of ΣNPAHs (6.01 ± 3.93 and 3.91 ± 4.84 ng/m 2 /d) were about two orders of magnitude lower than those of ΣPPAHs. In the urban area, temporal variations of PPAHs and MPAHs fluxes were positively correlated with particle deposition, while the trends of OPAHs and NPAHs were probably controlled by secondary formation. In the rural area, SPAHs and PPAHs deposition fluxes had similar temporal trends but differed from particle deposition. High relative humidity in Chongqing likely played an important role in facilitating the partitioning of OPAHs to atmospheric aerosols and resulting in the relatively high OPAHs level in winter. Principle component analysis identified secondary formation (21.7%) and combustion emission (52.7%) as two important contributors to polycyclic aromatic compounds (PACs) deposition fluxes in urban area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Variations in the 3 micron spectrum across the Orion Bar: polycyclic aromatic hydrocarbons and related molecules

    NASA Technical Reports Server (NTRS)

    Sloan, G. C.; Bregman, J. D.; Geballe, T. R.; Allamandola, L. J.; Woodward, C. E.

    1997-01-01

    Long-slit spectra across the Orion Bar reveal significant differences in the spatial behavior of the components of the 3 microns polycyclic aromatic hydrocarbon (PAH) spectrum. The strong PAH band at 3.29 microns generally decreases exponentially with distance from the ionization front into the molecular cloud (scale height approximately 12"), although excesses appear approximately 10" and 20" behind the ionization front, close to layers of H2 and CO emission, respectively. The 3.40 microns PAH feature separates into two components with very different spatial distributions. The main component (at 3.395 microns), along with the 3.51 microns band and the PAH plateau (3.3-3.6 microns), shows excess emission approximately 10" and approximately 20" behind the ionization front, stronger than the excesses in the 3.29 microns band. The extra component of the 3.40 microns band, which peaks at approximately 3.405 microns, has a spatial distribution very similar to the H2 emission. Aromatic C-H stretches in PAHs most likely produce the 3.29 microns feature. Aliphatic C-H stretches in either attached methyl side-groups or superhydrogenated PAHs, or perhaps both, could produce the complicated spectral and spatial structure at 3.40 microns.

  5. Batch and Flow Photochemical Benzannulations Based on the Reaction of Ynamides and Diazo Ketones. Application to the Synthesis of Polycyclic Aromatic and Heteroaromatic Compounds

    PubMed Central

    Willumstad, Thomas P.; Haze, Olesya; Mak, Xiao Yin; Lam, Tin Yiu; Wang, Yu-Pu; Danheiser*, Rick L.

    2013-01-01

    Highly substituted polycyclic aromatic and heteroaromatic compounds are produced via a two-stage tandem benzannulation/cyclization strategy. The initial benzannulation step proceeds via a pericyclic cascade mechanism triggered by thermal or photochemical Wolff rearrangement of a diazo ketone. The photochemical process can be performed using a continuous flow reactor which facilitates carrying out reactions on a large scale and minimizes the time required for photolysis. Carbomethoxy ynamides as well as more ketenophilic bissilyl ynamines and N-sulfonyl and N-phosphoryl ynamides serve as the reaction partner in the benzannulation step. In the second stage of the strategy, RCM generates benzofused nitrogen heterocycles, and various heterocyclization processes furnish highly substituted and polycyclic indoles of types that were not available by using the previous cyclobutenone-based version of the tandem strategy. PMID:24116731

  6. Normal-phase liquid chromatography retention behavior of polycyclic aromatic hydrocarbon and their methyl-substituted derivatives on an aminopropyl stationary phase.

    PubMed

    Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A

    2017-09-01

    Retention indices for 124 polycyclic aromatic hydrocarbons (PAHs) and 62 methyl-substituted (Me-) PAHs were determined using normal-phase liquid chromatography (NPLC) on a aminopropyl (NH 2 ) stationary phase. PAH retention behavior on the NH 2 phase is correlated to the total number of aromatic carbons in the PAH structure. Within an isomer group, non-planar isomers generally elute earlier than planar isomers. MePAHs generally elute slightly later but in the same region as the parent PAHs. Correlations between PAH retention behavior on the NH 2 phase and PAH thickness (T) values were investigated to determine the influence of non-planarity for isomeric PAHs with four to seven aromatic rings. Correlation coefficients ranged from r = 0.19 (five-ring peri-condensed molecular mass (MM) 252 Da) to r = -0.99 (five-ring cata-condensed MM 278 Da). In the case of the smaller PAHs (MM ≤ 252 Da), most of the PAHs had a planar structure and provided a low correlation. In the case of larger PAHs (MM ≥ 278 Da), nonplanarity had a significant influence on the retention behavior and good correlation between retention and T was obtained for the MM 278 Da, MM 302 Da, MM 328 Da, and MM 378 Da isomer sets. Graphical abstract NPLC separation of the three-, four-, five-, and six-ring PAH isomers with different number of aromatic carbon atoms and degrees of non-planarity (Thickness, T). The inserted figure plots the number of aromatic carbon atoms vs. the log I value for the 124 parent PAHs.

  7. The aromatic amino acids biosynthetic pathway: A core platform for products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lievense, J.C.; Frost, J.W.

    The aromatic amino acids biosynthetic pathway is viewed conventionally and primarily as the source of the amino acids L-tyrosine, L-phenylalanine. The authors have recognized the expanded role of the pathway as the major source of aromatic raw materials on earth. With the development of metabolic engineering approaches, it is now possible to biosynthesize a wide variety of aromatic compounds from inexpensive, clean, abundant, renewable sugars using fermentation methods. Examples of already and soon-to-be commercialized biosynthesis of such compounds are described. The long-term prospects are also assessed.

  8. From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to the Origin of Life

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis

    2004-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, abundances, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the presolar nebula, the materials frozen into the interstellar/precometary ices are photoprocessed by ultraviolet light and produce more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex materials on the early

  9. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium

    EPA Science Inventory

    The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance li...

  10. Polycyclic aromatic hydrocarbons associated with airborne particulate matter at a Pathumthani location, 40 km north of Bangkok, Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oanh, N.T.K.; Reutergardh, L.B.; Dung, N.T.

    Total suspended particulate matter in ambient air was sampled by high volume samplers at four sites at the Asian Institute of Technology campus, west of the Phahonyothin Road, Phathumthani Province, 40 km North of Bangkok, Thailand. The concentrations of 18 polycyclic aromatic hydrocarbons (PAHs), were measured by gas liquid chromatography with flame ionization and/or liquid solid chromatography with fluorescence detection. The PAH profile with relatively high concentrations of benzo(ghi)perylene and coronene, decreasing with the distance from the road, suggested a substantial contribution from the traffic. The concentrations in the core of the campus were compatible to those reported for residentialmore » areas in Bangkok, but higher than some western metropolitan areas.« less

  11. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes.

    PubMed

    Shih, Yu-Jen; Binh, Nguyen Thanh; Chen, Chiu-Wen; Chen, Chih-Feng; Dong, Cheng-Di

    2016-05-01

    Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101 (Cr) modified zero valent iron nano-particles.

    PubMed

    Zhou, Qingxiang; Lei, Man; Wu, Yalin; Yuan, Yongyong

    2017-03-03

    Metal-organic framework material has been paid more attention because of its good physical and chemical properties. Nanoscale zero valent iron is also in the center of concern recently. Combination of their merits will give impressive results. Present study firstly synthesized a new magnetic nanomaterial nano-scale zero valent iron-functionalized metal-organic framworks MIL-101 (Fe@MIL-101) by co-precipitation method. The morphology and structure of the as-prepared Fe@MIL-101 were characterized by transmission electron microscopy and X-ray diffraction, etc. The experimental results showed that Fe@MIL-101 earned good adsorption ability to polycyclic aromatic hydrocarbons. The limits of detection of developed magnetic solid phase extraction were all below 0.064μgL -1 and precision can be expressed as relative standard deviation (RSD, %) and which was better than 4.4% (n=6). The real water analysis indicated that the spiked recoveries were satisfied, and Fe@MIL-101 earned excellent reusability. All these demonstrated that Fe@MIL-101 exhibited excellent adsorption capability to polycyclic aromatic hydrocarbons and would be a good adsorbent for development of new monitoring methods for environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Succession of Phenotypic, Genotypic, and Metabolic Community Characteristics during In Vitro Bioslurry Treatment of Polycyclic Aromatic Hydrocarbon-Contaminated Sediments

    PubMed Central

    Ringelberg, David B.; Talley, Jeffrey W.; Perkins, Edward J.; Tucker, Samuel G.; Luthy, Richard G.; Bouwer, Edward J.; Fredrickson, Herbert L.

    2001-01-01

    Dredged harbor sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) was removed from the Milwaukee Confined Disposal Facility and examined for in situ biodegradative capacity. Molecular techniques were used to determine the successional characteristics of the indigenous microbiota during a 4-month bioslurry evaluation. Ester-linked phospholipid fatty acids (PLFA), multiplex PCR of targeted genes, and radiorespirometry techniques were used to define in situ microbial phenotypic, genotypic, and metabolic responses, respectively. Soxhlet extractions revealed a loss in total PAH concentrations of 52%. Individual PAHs showed reductions as great as 75% (i.e., acenapthene and fluorene). Rates of 14C-PAH mineralization (percent/day) were greatest for phenanthrene, followed by pyrene and then chrysene. There was no mineralization capacity for benzo[a]pyrene. Ester-linked phospholipid fatty acid analysis revealed a threefold increase in total microbial biomass and a dynamic microbial community composition that showed a strong correlation with observed changes in the PAH chemistry (canonical r2 of 0.999). Nucleic acid analyses showed copies of genes encoding PAH-degrading enzymes (extradiol dioxygenases, hydroxylases, and meta-cleavage enzymes) to increase by as much as 4 orders of magnitude. Shifts in gene copy numbers showed strong correlations with shifts in specific subsets of the extant microbial community. Specifically, declines in the concentrations of three-ring PAH moieties (i.e., phenanthrene) correlated with PLFA indicative of certain gram-negative bacteria (i.e., Rhodococcus spp. and/or actinomycetes) and genes encoding for naphthalene-, biphenyl-, and catechol-2,3-dioxygenase degradative enzymes. The results of this study suggest that the intrinsic biodegradative potential of an environmental site can be derived from the polyphasic characterization of the in situ microbial community. PMID:11282603

  14. Evaluation of 1-hydroxypyrene as a biological marker of industrial exposure to polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Calderon, Francisco M.

    1993-03-01

    One hundred twenty-two workers (sixteen from a coke production plant and 106 from a graphite electrode manufacturing plant) agreed to participate in this study evaluating the relationship between exposure to polycyclic aromatic hydrocarbons (PAHs) and urinary excretion of 1-hydroxypyrene (1-HOP), the main metabolite of pyrene. The results show that the concentration of pyrene in air is highly correlated with total PAHs (r equals 0.83, P < 0.0001). The correlation coefficient between pyrene in air and 1-HOP is (r equals 0.69, P < 0.0001) and between 1-HOP and total PAHs is (r equals 0.77, P < 0.0001). The biological half life of the 1-HOP was determined (18 hrs) and the noninterference of smoking habits in relation to 1-HOP urinary excretion was established, concluding that 1-HOP is a suitable bioindicator of the occupational exposure to PAHs.

  15. 1-hydroxypyrene as a biomarker of occupational exposure to polycyclic aromatic hydrocarbons (PAH) in boilermakers.

    PubMed

    Mukherjee, Sutapa; Rodrigues, Ema; Weker, Robert; Palmer, Lyle J; Christiani, David C

    2002-12-01

    A repeated measures short-term prospective study was performed in boilermakers to determine occupational polycyclic aromatic hydrocarbon (PAH) exposure using the biomarker, 1-hydroxypyrene (1-OHP). Two work sites were studied; an apprentice school (metal fume exposure) and a boiler overhaul (residual oil fly ash [ROFA] and metal fume exposure). Pre- and postshift urine samples (n = 241; 41 male subjects) were analyzed for cotinine and 1-OHP. Descriptive statistics and generalized estimating equations were calculated. At the apprentice school cross-shift 1-OHP levels did not significantly differ. At the overhaul 1-OHP levels increased during the week in smokers and nonsmokers; in nonsmokers the 1-OHP level increased significantly postshift compared to preshift. In conclusion this study suggests that boilermakers exposed to occupational particulates are exposed to PAH. The urinary 1-OHP level may be a useful biomarker of PAH exposure in boilermakers exposed to ROFA, particularly in nonsmokers.

  16. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall.

    PubMed

    Zhang, Wei; Zhang, Shucai; Wan, Chao; Yue, Dapan; Ye, Youbin; Wang, Xuejun

    2008-06-01

    Diagnostic ratios and multivariate analysis were utilized to apportion polycyclic aromatic hydrocarbon (PAH) sources for road runoff, road dust, rain and canopy throughfall based on samples collected in an urban area of Beijing, China. Three sampling sites representing vehicle lane, bicycle lane and branch road were selected. For road runoff and road dust, vehicular emission and coal combustion were identified as major sources, and the source contributions varied among the sampling sites. For rain, three principal components were apportioned representing coal/oil combustion (54%), vehicular emission (34%) and coking (12%). For canopy throughfall, vehicular emission (56%), coal combustion (30%) and oil combustion (14%) were identified as major sources. Overall, the PAH's source for road runoff mainly reflected that for road dust. Despite site-specific sources, the findings at the study area provided a general picture of PAHs sources for the road runoff system in urban area of Beijing.

  17. Polycyclic aromatic hydrocarbon pollution in the surface water and sediments of Chabahar Bay, Oman Sea.

    PubMed

    Agah, Homira; Mehdinia, Ali; Bastami, Kazem Darvish; Rahmanpour, Shirin

    2017-02-15

    In the present study, the concentrations and distribution of 16 polycyclic aromatic hydrocarbons (PAHs) in the water and surface sediments from the Chabahar Bay, Oman Sea, were investigated in May (premonsoon) and December (postmonsoon) 2012. The concentrations of PAHs in the surface water samples ranged from 1.7 to 2.8ngl -1 and from 0.04 to 59.6ngl -1 in pre- and postmonsoon, respectively. In general, the PAH levels of the water samples from Chabahar Bay were higher in postmonsoon than in premonsoon (p<0.05). The concentrations of PAHs in the sediment samples varied from undetectable levels to 92.8ngg -1 d.w. in both seasons. The seasonal comparison of the results in sediment samples showed that the overall concentration of PAH compounds was higher in the postmonsoon season (p<0.05). Copyright © 2016. Published by Elsevier Ltd.

  18. Bacterial Degradation of Aromatic Compounds

    PubMed Central

    Seo, Jong-Su; Keum, Young-Soo; Li, Qing X.

    2009-01-01

    Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms. PMID:19440284

  19. Contamination of Tea and Tea Infusion with Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Zachara, Alicja; Gałkowska, Dorota; Juszczak, Lesław

    2017-01-01

    The aim of this work was to validate the method of determination of polycyclic aromatic hydrocarbons (PAHs), i.e., benzo(a)pyrene and sum of benzo(a)pyrene, benz(a)anthracene, benzo(b)fluoranthene and chrysene in different types of tea, as well as to assess the transfer of these contaminants from tea to tea infusion. The research materials were popular types of black, green, red and white tea. Quantitative and qualitative determination of PAHs was performed by High Performance Liquid Chromatography with fluorimetric detection (HPLC-FLD). The samples were prepared by QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) technique followed by cleaning-up by dispersion solid-phase extraction (d-SPE). Values of limit of detection and limit of quantification obtained in the validation of the method were lower than the respective maximum values given in Commission Regulation (EU) No. 836/2011. The level of contamination of popular teas commercially available on the Polish market with PAHs is similar to that of teas available in other countries, with a very large variation in the concentration of each of the compounds. The highest benzo(a)pyrene and Σ4PAHs contents (209 ± 42 μg/kg and 756 ± 151 μg/kg, respectively) were found for black tea leaves. The transfer of Σ4PAHs from black tea to tea infusions was 0.48%, while it was 1.55–1.72% for red, white and green teas. PMID:29283369

  20. Polycyclic Aromatic Hydrocarbon Sources and Trapping within Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Wallace, H. W., IV; Sanchez, N. P.; Flynn, J. H., III; Lefer, B. L.; Bottenus, C. L. H.; VanReken, T. M.; Griffin, R. J.

    2017-12-01

    As part of the BEETEX field study, which occurred from Feburary 7 to 27, 2015, a mobile air quality laboratory was stationed near a major refinery proximate to the Houston Ship Channel to characterize the chemical nature and sources of atmospheric particulate matter (PM) using a high-resolution time-of-flight mass spectrometer. Positive matrix factorization (PMF) was performed on the organic signal of the aerosol mass spectra, resulting in five factors totaling an average of 4.1 μg/m3 of organic aerosol: hydrocarbon-like (0.67 μg/m3), cooking (0.35 μg/m3), biomass burning (1.14 μg/m3), low-volatility oxidized (1.15 μg/m3), and semi-volatile oxidized (0.78 μg/m3). As part of this study, two techniques to quantify particulate polycyclic aromatic hydrocarbons (PAHs) were compared: one capable of quantifying non-refractory molecular ion PAHs and the other sensitive only to surface bound PAHs. Together with PMF model results on the non-refractory organic PM data, we show that particulate PAHs likely are trapped inside secondary organic aerosol (SOA) as it deposits onto particles and that the two major sources of PAHs in the area are from biomass burning and use of internal combustion engines. Because this SOA may prevent particle-phase consumption of the PAH material, these results have important implications for long-range transport of particulate PAHs.

  1. Isotopic exchange of hydrogen in aromatic amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pshenichnikova, A.B.; Karnaukhova, E.N.; Mitsner, B.I.

    The kinetics of the isotopic replacement of hydrogen in the aromatic amino acids L-tryptophan, L-tyrosine, and L-phenylalanine in solutions of deuterochloric and deuterosulfuric acids in deuterium oxide were investigated by PMR spectroscopy. The reactions were shown to be of first orders with respect both to the concentration of the substrate and to the activity of the deuterium ion. The isotopic effects of hydrogen and the values of the activation energy of H-D exchange in different positions of the aromatic ring in tryptophan and tyrosine were determined. The effect of properties of the medium on the rate of the isotopic exchangemore » of hydrogen is discussed. 17 refs., 2 figs., 2 tabs.« less

  2. Comment on: Negative ions, molecular electron affinity and orbital structure of cata-condensed polycyclic aromatic hydrocarbons by Rustem V. Khatymov, Mars V. Muftakhov and Pavel V. Shchukin.

    PubMed

    Chen, Edward S; Chen, Edward C M

    2018-02-15

    The anion mass spectral lifetimes for several aromatic hydrocarbons reported in the subject article were related to significantly different electron affinities. The different values are rationalized using negative ion mass spectral data. Electron affinities for polycyclic aromatic hydrocarbons are reported from the temperature dependence of unpublished electron capture detector data. These are compared with published values and the largest values are assigned to the ground state. The ground state adiabatic electron affinities: (eV) pentacene, 1.41 (3); tetracene, 1.058 (5); benz(a)pyrene, 0.82 (4); benz(a) anthracene, 0.69 (2) anthracene, 0.68 (2); and pyrene, 0.59 (1) are used to assign excited state adiabatic electron affinities: (eV) tetracene: 0.88 (4); anthracene 0.53 (1); pyrene, 0.41 (1); benz(a)anthracene, 0.39 (10); chrysene, 0.32 (1); and phenanthrene, 0.12 (2) and ground state adiabatic electron affinities: (eV) dibenz(a,j)anthracene, 0.69 (3); dibenz(a,h)anthracene, 0.68 (3); benz(e)pyrene, 0.60 (3); and picene, 0.59 (3) from experimental data. The lifetime of benz(a)pyrene is predicted to be larger than 150 μs and for benzo(c)phenanthrene and picene about 40 μs, from ground state adiabatic electron affinities. The assignments of adiabatic electron affinities of aromatic hydrocarbons determined from electron capture detector and mass spectrometric data to ground and excited states are supported by constant electronegativities. A set of consistent ground state adiabatic electron affinities for 15 polycyclic aromatic hydrocarbons is related to lifetimes from the subject article. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Development and certification of a coal fly ash certified reference material for selected polycyclic aromatic hydrocarbons.

    PubMed

    Cao, X; Xu, X; Cui, W; Xi, Z

    2001-08-01

    The development and certification of a coal fly ash certified reference material (CRM) for polycyclic aromatic hydrocarbons (PAH) is described; this is the first natural matrix CRM for organic environmental analysis in China. The homogeneity and stability of this material have been tested by HPLC. The concentrations of several PAH were determined by use of two independent, different methods--solvent extraction-HPLC analysis with UV detection coupled with fluorescence detection (FLD) and solvent extraction, isolation with a silica column, and GC analysis with flame ionization detection (FID). Five certified values were determined: phenanthrene 7.1 +/- 2.6 microg g(-1), anthracene 2.0 +/- 0.8 microg g(-1), fluoranthene 7.4 +/- 1.9 microg g(-1), pyrene 7 +/- 2 microg g(-1), and benzo[a]pyrene 1.3 +/- 0.3 microg g(-1). Reference values for several other PAH are also suggested.

  4. Polycyclic aromatic hydrocarbons affect survival and development of common snapping turtle (Chelydra serpentina) embryos and hatchlings.

    PubMed

    Van Meter, Robin J; Spotila, James R; Avery, Harold W

    2006-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds found in the John Heinz National Wildlife Refuge in Philadelphia, Pennsylvania. We assessed the impact of PAHs and crude oil on snapping turtle development and behavior by exposing snapping turtle eggs from the Refuge and from three clean reference sites to individual PAHs or a crude oil mixture at stage 9 of embryonic development. Exposure to PAHs had a significant effect on survival rates in embryos from one clean reference site, but not in embryos from the other sites. There was a positive linear relationship between level of exposure to PAHs and severity of deformities in embryos collected from two of the clean reference sites. Neither righting response nor upper temperature tolerance (critical thermal maximum, CTM) of snapping turtle hatchlings with no or minor deformities was significantly affected by exposure to PAHs.

  5. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric dustfall from the industrial corridor in Hubei Province, Central China.

    PubMed

    Zhang, Jiaquan; Qu, Chengkai; Qi, Shihua; Cao, Junji; Zhan, Changlin; Xing, Xinli; Xiao, Yulun; Zheng, Jingru; Xiao, Wensheng

    2015-10-01

    Thirty atmospheric dustfall samples collected from an industrial corridor in Hubei Province, central China, were analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) to investigate their concentrations, spatial distributions, sources, and health risks. Total PAH concentrations (ΣPAHs) ranged from 1.72 to 13.17 µg/g and averaged 4.91 µg/g. High molecular weight (4-5 rings) PAHs averaged 59.67% of the ΣPAHs. Individual PAH concentrations were not significantly correlated with total organic carbon, possibly due to the semi-continuous inputs from anthropogenic sources. Source identification studies suggest that the PAHs were mainly from motor vehicles and biomass/coal combustion. The incremental lifetime cancer risks associated with exposure to PAHs in the dustfall ranged from 10(-4) to 10(-6); these indicate potentially serious carcinogenic risks for exposed populations in the industrial corridor.

  6. Metal-organic framework based in-syringe solid-phase extraction for the on-site sampling of polycyclic aromatic hydrocarbons from environmental water samples.

    PubMed

    Zhang, Xiaoqiong; Wang, Peiyi; Han, Qiang; Li, Hengzhen; Wang, Tong; Ding, Mingyu

    2018-04-01

    In-syringe solid-phase extraction is a promising sample pretreatment method for the on-site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in-syringe solid-phase extraction device using metal-organic frameworks as the adsorbent was fabricated for the on-site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self-made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal-organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self-made device for on-site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal-organic frameworks in sample preparation and demonstrate the great potential of in-syringe solid-phase extraction for the on-site sampling of trace contaminants in environmental waters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tracing Star Formation Around Quasars With Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Bilton, Lawrence Edward

    2016-09-01

    The feedback processes linking quasar activity to galaxy stellar mass growth are not well understood. If star formation is closely causally linked to black hole accretion, one may expect star formation confined to nuclear regions rather than extended over several kpc scales. Since Polycyclic Aromatic Hydrocarbon (PAH) emission features are widely used as tracers of stellar formation, it is, therefore, possible to use PAH emission detected around QSOs to help resolve this question. PAH data from a sample of 63 QSOs procured from the Spitzer Space Telescope’s Infrared Spectrograph (IRS) is used, employing the Spectroscopic Modelling Analysis and Reduction Tool’s (SMART) Advanced Optimal (AdOpt) extraction routines. A composite spectrum was also produced to help determine the average conditions and compositions of star forming regions. It is found, from our high redshift (>1) sample of QSOs, there is a marginally significant extended star formation on average of 34 scales. At low redshift, the median extension after deconvolving the instrumental point spread function is 3.2 , potentially showing evolutionary variations in star formation activity. However, limitations of the spatial resolving power constrain the ability to make any absolute conclusive remarks. It is also found that the QSO/AGN composite has more neutral PAHs than the starbursting and the main sequence galaxies, consistent with the AGN having no contribution to heating the PAH emission, and also consistent with the average PAH emission found on scales (i.e. not confined to the nuclear regions). A tentative detection of water vapour emission from the gravitationally lensed Einstein Cross quasar, QSO J2237+0305, is also presented suggesting a strong molecular outflow possibly driven by the active nucleus.

  8. Polycyclic Aromatic Hydrocarbons in Residential Dust: Sources of Variability

    PubMed Central

    Metayer, Catherine; Petreas, Myrto; Does, Monique; Buffler, Patricia A.; Rappaport, Stephen M.

    2013-01-01

    Background: There is interest in using residential dust to estimate human exposure to environmental contaminants. Objectives: We aimed to characterize the sources of variability for polycyclic aromatic hydrocarbons (PAHs) in residential dust and provide guidance for investigators who plan to use residential dust to assess exposure to PAHs. Methods: We collected repeat dust samples from 293 households in the Northern California Childhood Leukemia Study during two sampling rounds (from 2001 through 2007 and during 2010) using household vacuum cleaners, and measured 12 PAHs using gas chromatography–mass spectrometry. We used a random- and a mixed-effects model for each PAH to apportion observed variance into four components and to identify sources of variability. Results: Median concentrations for individual PAHs ranged from 10 to 190 ng/g of dust. For each PAH, total variance was apportioned into regional variability (1–9%), intraregional between-household variability (24–48%), within-household variability over time (41–57%), and within-sample analytical variability (2–33%). Regional differences in PAH dust levels were associated with estimated ambient air concentrations of PAH. Intraregional differences between households were associated with the residential construction date and the smoking habits of residents. For some PAHs, a decreasing time trend explained a modest fraction of the within-household variability; however, most of the within-household variability was unaccounted for by our mixed-effects models. Within-household differences between sampling rounds were largest when the interval between dust sample collections was at least 6 years in duration. Conclusions: Our findings indicate that it may be feasible to use residential dust for retrospective assessment of PAH exposures in studies of health effects. PMID:23461863

  9. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?

    PubMed Central

    Samburova, Vera; Zielinska, Barbara; Khlystov, Andrey

    2017-01-01

    Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑88BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑16EPABaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑88BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate. PMID:29051449

  10. Ambient polycyclic aromatic hydrocarbons and pulmonary function in children

    PubMed Central

    Padula, Amy M.; Balmes, John R.; Eisen, Ellen A.; Mann, Jennifer; Noth, Elizabeth M.; Lurmann, Frederick W.; Pratt, Boriana; Tager, Ira B.; Nadeau, Kari; Hammond, S. Katharine

    2014-01-01

    Few studies have examined the relationship between ambient polycyclic aromatic hydrocarbons (PAHs) and pulmonary function in children. Major sources include vehicular emissions, home heating, wildland fires, agricultural burning, and power plants. PAHs are an important component of fine particulate matter that has been linked to respiratory health. This cross-sectional study examines the relationship between estimated individual exposures to the sum of PAHs with 4, 5, or 6 rings (PAH456) and pulmonary function tests (forced expiratory volume in one second (FEV1) and forced expiratory flow between 25% and 75% of vital capacity) in asthmatic and non-asthmatic children. We applied land-use regression to estimate individual exposures to ambient PAHs for averaging periods ranging from 1 week to 1 year. We used linear regression to estimate the relationship between exposure to PAH456 with pre- and postbronchodilator pulmonary function tests in children in Fresno, California (N =297). Among non-asthmatics, there was a statistically significant association between PAH456 during the previous 3 months, 6 months, and 1 year and postbronchodilator FEV1. The magnitude of the association increased with the length of the averaging period ranging from 60 to 110 ml decrease in FEV1 for each 1 ng/m3 increase in PAH456. There were no associations with PAH456 observed among asthmatic children. We identified an association between annual PAHs and chronic pulmonary function in children without asthma. Additional studies are needed to further explore the association between exposure to PAHs and pulmonary function, especially with regard to differential effects between asthmatic and non-asthmatic children. PMID:24938508

  11. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity?

    PubMed

    Samburova, Vera; Zielinska, Barbara; Khlystov, Andrey

    2017-08-15

    Estimation of carcinogenic potency based on analysis of 16 polycyclic aromatic hydrocarbons (PAHs) ranked by U.S. Environmental Protection Agency (EPA) is the most popular approach within scientific and environmental air quality management communities. The majority of PAH monitoring projects have been focused on particle-bound PAHs, ignoring the contribution of gas-phase PAHs to the toxicity of PAH mixtures in air samples. In this study, we analyzed the results of 13 projects in which 88 PAHs in both gas and particle phases were collected from different sources (biomass burning, mining operation, and vehicle emissions), as well as in urban air. The aim was to investigate whether 16 particle-bound U.S. EPA priority PAHs adequately represented health risks of inhalation exposure to atmospheric PAH mixtures. PAH concentrations were converted to benzo(a)pyrene-equivalent (BaPeq) toxicity using the toxic equivalency factor (TEF) approach. TEFs of PAH compounds for which such data is not available were estimated using TEFs of close isomers. Total BaPeq toxicities (∑ 88 BaPeq) of gas- and particle-phase PAHs were compared with BaPeq toxicities calculated for the 16 particle-phase EPA PAH (∑ 16EPA BaPeq). The results showed that 16 EPA particle-bound PAHs underrepresented the carcinogenic potency on average by 85.6% relative to the total (gas and particle) BaPeq toxicity of 88 PAHs. Gas-phase PAHs, like methylnaphthalenes, may contribute up to 30% of ∑ 88 BaPeq. Accounting for other individual non-EPA PAHs (i.e., benzo(e)pyrene) and gas-phase PAHs (i.e., naphthalene, 1- and 2-methylnaphthalene) will make the risk assessment of PAH-containing air samples significantly more accurate.

  12. [Occurrence and Removal of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Typical Wastewater Treatment Plants in Beijing].

    PubMed

    Qiao, Meng; Qi, Wei-xiao; Zhao, Xu; Liu, Hui-juan; Qu, Jiu-hui

    2016-04-15

    Substituted polycyclic aromatic hydrocarbons (SPAHs) can be emitted to the environment not only through the incomplete combustion, but also through the transformation from parent polycyclic aromatic hydrocarbons (PAHs) by photo chemical and biological processes. The toxicities of some SPAHs are higher than their corresponding PAHs. Samples were collected from the wastewater treatment plants in Beijing. Three types of SPAHs, including oxy-PAHs (OPAHs), methyl-PAHs (MPAHs) and nitro-PAHs (NPAHs), as well as 16 PAHs were analyzed, in order to study the occurrence and behavior of these compounds during the wastewater biological treatment process. MPAHs, OPAHs and PAHs were detected in the influent and effluent, but no NPAHs. The concentrations of PAHs in the influent in both the aquatic and particulate phases ranged from 1.94 to 4.34 µg · L⁻¹, and SPAHs from 1.16 to 2.20 µg · L⁻¹. The concentrations of PAHs in the effluent were between 0.77 and 0.98 µg · L⁻¹, and SPAHs from 0.39 to 0.45 µg · L⁻¹. The concentrations of the MPAHs were lower than their corresponding PAHs, while OPAHs were higher. The removal efficiencies of all the compounds ranged from 53% to 83%. PAHs and SPAHs were mainly removed by adsorption and biodegradation during the activated sludge treatment processes. Some OPAHs could be transformed from PAHs, and could be accumulated. The PAHs were mainly originated from incomplete combustion of wood and coal, and some from combustion of petroleum, while only a little from the discharge of petroleum. The concentrations of PAHs and SPAHs in the effluent were higher in autumn than summer and winter. Most of the SPAHs and PAHs were discharged to the agriculture area through the river-water irrigation, which might pose potential risk to the humans. As a result, it is necessary to upgrade the wastewater treatment process to improve the removal efficiency of PAHs and SPAHs.

  13. Distribution of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and organochlorinated pollutants in deep-sea sediments of the Southern Cretan margin, Eastern Mediterranean Sea: a baseline assessment.

    PubMed

    Mandalakis, Manolis; Polymenakou, Paraskevi N; Tselepides, Anastasios; Lampadariou, Nikolaos

    2014-07-01

    Deep sediments from the southern Cretan margin were analyzed to establish baseline levels for various types of organic pollutants before the anticipated intensification of anthropogenic activities. The total concentration of aliphatic hydrocarbons (ΣAH:326-3758ngg(-1), dry weight) was similar to those reported for deep sediments of the western Mediterranean Sea, while considerably lower levels were measured for polycyclic aromatic hydrocarbons (ΣPAH:9-60ngg(-1)). Source-diagnostic ratios suggested that the aliphatic hydrocarbons in sediments were mainly of terrestrial biogenic origin, while polycyclic aromatic hydrocarbons stemmed from the deposition of long-range transported combustion aerosols. Among the organochlorinated compounds analyzed, β-hexachlorocyclohexane (β-HCH:222-7052pgg(-1)), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT:37-2236pgg(-1)) and polychlorinated biphenyls (ΣPCB:38-1182pgg(-1)) showed the highest abundance in sediments. The presence of HCHs and PCBs was attributed to historical inputs that have undergone extensive weathering, whereas an ongoing fresh input was suggested for p,p'-DDT. Multiple linear regression analysis revealed that the levels of the various pollutants in sediments were controlled by different factors, but with organic carbon content playing a prominent role in most cases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: Quantification, statistical analysis and mechanisms of formation.

    PubMed

    Llamas, Alberto; Al-Lal, Ana-María; García-Martínez, María-Jesús; Ortega, Marcelo F; Llamas, Juan F; Lapuerta, Magín; Canoira, Laureano

    2017-05-15

    Polycyclic Aromatic Hydrocarbons (PAHs) are pollutants of concern due to their carcinogenic and mutagenic activity. Their emissions are mainly related with the combustion or pyrolysis of the organic matter, such as in fossil fuels combustion. It is important to characterize PAHs in the combustions of biofuels due to their increasing importance in the actual energetic setting. There is a lot of research focused in PAHs emission due to the combustion in diesel engines; but only few of them have analyzed the effect of raw material and type of alcohol used in the transesterification process. Different raw materials (i.e. animal fat, palm, rapeseed, linseed, peanut, coconut, and soybean oils) have been used for obtaining FAME and FAEE. A method for measuring PAHs generated during combustion in a bomb calorimeter has been developed. Combustion was made at different oxygen pressures and the samples were taken from the bomb after each combustion. Samples were extracted and the PAHs amounts formed during combustion were analyzed by GC-MS. This research shows the statistical relationships among the 16 PAHs of concern, biodiesel composition and oxygen pressure during combustion. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Trends in polycyclic aromatic hydrocarbon concentrations in the great lakes atmosphere.

    PubMed

    Sun, Ping; Blanchard, Pierrette; Brice, Kenneth A; Hites, Ronald A

    2006-10-15

    Atmospheric polycyclic aromatic hydrocarbon (PAHs) concentrations were measured in both the vapor and particle phases at seven sites near the Great Lakes as a part of the Integrated Atmospheric Deposition Network. Lower molecular weight PAHs, including fluorene, phenanthrene, fluoranthrene, and pyrene, were dominant in the vapor phase, and higher molecular weight PAHs, including chrysene, benzo[a]pyrene, and coronene, were dominant in the particle phase. The highest PAH concentrations in both the vapor and particle phases were observed in Chicago followed by the semiurban site at Sturgeon Point, NY. The spatial difference of PAH concentrations can be explained by the local population density. Long-term decreasing trends of most PAH concentrations were observed in both the vapor and particle phases at Chicago, with half-lives ranging from 3-10 years in the vapor phase and 5-15 years in the particle phase. At Eagle Harbor, Sleeping Bear Dunes, and Sturgeon Point, total PAH concentrations in the vapor phase showed significant, but slow, long-term decreasing trends. At the Sturgeon Point site, which was impacted by a nearby city, particle-phase PAH concentrations also declined. However, most particle-phase PAH concentrations did not show significant long-term decreasing trends at the remote sites. Seasonal trends were also observed for particle-phase PAH concentrations, which were higher in the winter and lower in the summer.

  16. Biomarkers of polycyclic aromatic hydrocarbon exposure in European coke oven workers.

    PubMed

    Talaska, Glenn; Thoroman, Jeff; Schuman, Brenda; Käfferlein, Heiko Udo

    2014-12-01

    Biomonitoring is an excellent method for capturing the results of all exposures, regardless of route. Coke oven workers include certain groups that have the potential for high exposure to polycyclic aromatic hydrocarbons (PAH) and other materials. Biomarkers of exposure to these agents include PAH metabolites as markers of internal dose and carcinogen-DNA adducts as measure of effective dose. The purpose of this study was to determine the levels of these biomarkers in persons with different job duties in a modern coke oven plant. We report that the mean levels of 1-hydroxypyrene (1HP) and carcinogen DNA adducts in the exfoliated urothelial cells of coke oven workers are increased the closer a group of workers is to the ovens and highest in the top oven workers with average 1HP level of 11.6 μg/l and 22 adducts per 10(9) unadducted nucleotides. Both 1HP and carcinogen DNA adduct levels increased in supervisors, area workers, side oven workers, top and side oven workers, and top oven workers, respectively. These data are the first to demonstrate an increase in target organ genotoxicity in coke oven workers and a relationship with other biomarkers. Future studies will determine the identity of the DNA adducts, their correlation with 1HP levels and the relationship between levels in individual workers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Occupational Exposure to Polycyclic Aromatic Hydrocarbons in Polish Coke Plant Workers.

    PubMed

    Zając, Joanna; Gomółka, Ewa; Maziarz, Barbara; Szot, Wojciech

    2016-11-01

    Assessment of occupational exposure to polycyclic aromatic hydrocarbons (PAHs) is an urgent and important task to prevent workers' illnesses. 1-Hydroxypyrene is one of the most commonly used biomarkers. The presented study assessed exposure to PAHs molecules among 619 individuals, men working in coke plant. Average number of years spent on working posts in exposition to PAHs was 31.5 years with standard deviation = 5.3. About 35% were smokers with 14.7 cigarettes per day. For each individual, 1-hydroxypyrene concentration in urine samples was measured. Urine 1-hydroxypyrene concentration correlated with air PAHs concentration. Difference between smokers and non-smokers was statistically significant. The median value for post-shift samples was 1.3 µg g -1 and for pre-shift sample concentration reached 0.3 µg g -1 Maximal assessed concentration was 7.6 µg g -1 among pre-shift samples and 27.8 µg g -1 among post-shift samples. The most exposed working posts were coke oven workers and coal derivatives production workers. Results obtained in presented study are relatively low in comparison to other countries or other Polish results but for further improvement a regular measurement of any PAHs' biomarker should be included to standard periodic health examinations for coke plant workers. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  18. Evaluation of ginkgo as a biomonitor of airborne polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Murakami, Michio; Abe, Maho; Kakumoto, Yoriko; Kawano, Hiromi; Fukasawa, Hiroko; Saha, Mahua; Takada, Hideshige

    2012-07-01

    The utility of ginkgo leaves as biomonitors of airborne polycyclic aromatic hydrocarbons (PAHs) was evaluated. We investigated PAH concentrations among tree species, the effect of variations in leaf position in a tree, tissue distributions, correlations between ginkgo leaves and air, and seasonal variations. Among the five species examined (Ginkgo biloba L., Zelkova serrata Makino, Liriodendron tulipifera L., Prunus yedoensis Matsum, and Magnolia kobus DC.), ginkgo accumulated the greatest amount of PAHs from roadside air. Most PAHs (˜80%) were accumulated in the wax fraction, and most of the remainder (17%) penetrated the inner tissues of the leaves. PAH concentrations in ginkgo leaves decreased with increasing height and distance from the road, reflecting the derivation of PAHs from vehicle emissions. Seasonal time-series sampling showed that PAH concentrations in ginkgo leaves increased with time, attributable to the effects of temperature and accumulation through long-term exposure. Concentrations in ginkgo leaves collected from various roads showed a strong and significant correlation with those in air collected by a high-volume air sampler (r2 = 0.68, P < 0.01). Ginkgo leaf data clearly showed a dramatic decrease in the ratio of low-molecular-weight (LMW) PAHs to high-molecular-weight PAHs from 2001 or 2002 to 2006, indicating that on-road diesel emission regulations effectively reduced LMW PAH concentrations in air.

  19. Extraction of sediment-associated polycyclic aromatic hydrocarbons with granular activated carbon.

    PubMed

    Rakowska, M I; Kupryianchyk, D; Grotenhuis, T; Rijnaarts, H H M; Koelmans, A A

    2013-02-01

    Addition of activated carbon (AC) to sediments has been proposed as a method to reduce ecotoxicological risks of sediment-bound contaminants. The present study explores the effectiveness of granular AC (GAC) in extracting polycyclic aromatic hydrocarbon (PAH) from highly contaminated sediments. Four candidate GAC materials were screened in terms of PAH extraction efficiency using single-step 24-h GAC extractions, with traditional 24-h Tenax extraction as a reference. Subsequently, sorption of native PAHs to the best performing GAC 1240W (0.45-1.70 mm) was studied for sediment only and for GAC-sediment mixtures at different GAC-sediment weight ratios, using 76-µm polyoxymethylene (POM) passive samplers. Granular AC sorption parameters for PAHs were determined by subtracting the contribution of PAH sorption to sediment from PAH sorption to the GAC-sediment mixture. It appears that the binding of PAHs and the effectiveness of GAC to reduce sediment porewater concentrations were highly dependent on the GAC-sediment mixing ratio and hydrophobicity of the PAH. Despite the considerable fouling of GAC by organic matter and oil, 50 to 90% of the most available PAH was extracted by the GAC during a 28-d contact time, at a dose as low as 4%, which also is a feasible dose in field-scale applications aimed at cleaning the sediment by GAC addition and removal. Copyright © 2012 SETAC.

  20. Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia.

    PubMed

    Alghamdi, Mansour A; Alam, Mohammed S; Yin, Jianxin; Stark, Christopher; Jang, Eunhwa; Harrison, Roy M; Shamy, Magdy; Khoder, Mamdouh I; Shabbaj, Ibrahim I

    2015-02-15

    Measurements of 14 polycyclic aromatic hydrocarbons (PAH) have been made in Jeddah, Saudi Arabia, with a view to establishing the concentrations in this major city, and quantifying the contributions of major sources. Particulate and vapour forms have been sampled and analysed separately. The concentrations are compared to measurements from other sites in the Middle Eastern region and are towards the lower end of the range, being far lower than concentrations reported from Riyadh (Saudi Arabia), Assiut (Egypt) and Tehran (Iran) but broadly similar to those measured in Damascus (Syria) and higher than those measured in Kuwait. The partitioning between vapour and particle phases is similar to that in data from Egypt and China, but with many compounds showing a higher particle-associated percentage than in Birmingham (UK) possibly reflecting a higher concentration of airborne particulate matter in the former countries. Concentrations in Jeddah were significantly higher at a site close to the oil refinery and a site close to a major ring road than at a suburban site to the north of the city. Application of positive matrix factorisation to the pooled data elicited three factors accounting respectively for 17%, 33% and 50% of the measured sum of PAH and these are interpreted as arising from gasoline vehicles, industrial sources, particularly the oil refinery, and to diesel/fuel oil combustion. Copyright © 2014 Elsevier B.V. All rights reserved.