Sample records for acids potential role

  1. Experimental Studies on role of pH, potential and concentration of buffer solution for chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Suresha, B. L.; Sumantha, H. S.; Salman, K. Mohammed; Pramod, N. G.; Abhiram, J.

    2018-04-01

    The ionization potential is usually found to be less in acid and more in base. The experiment proves that the ionization potential increases on dilution of acid to base and reduces from base to acid. The potential can be tailored according to the desired properties based on our choice of acid or base. The experimental study establishes a direct relationship between pH and electric potential. This work provides theoretical insights on the need for a basic media of pH 10 in chemical thin film growth techniques called Chemical Bath Deposition Techniques.

  2. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition.

    PubMed

    Zhang, Xiang; Lin, Dan; Jiang, Rong; Li, Hongzhong; Wan, Jingyuan; Li, Hongyuan

    2016-07-01

    Metastasis, which frequently occurs in breast cancer, is the major cause of mortality; therefore, new treatment strategies are urgently needed. Ferulic acid, isolated from Ferula foetida, a perennial herb, has shown antineoplastic activity in various types of cancers, such as colon and lung cancer, and central nervous system tumors. However, its potential role in suppressing breast cancer metastasis has not been fully understood. In the present study, we evaluated the antitumor activity of ferulic acid in breast cancer cell line-based in vitro and in vivo models. We first showed that ferulic acid treatment resulted in decreased viability, increased apoptosis and suppression of metastatic potential in breast cancer cell line MDA-MB-231. Furthermore, it was demonstrated that the antitumor activity of ferulic acid and its role in suppressing metastasis were regulated by the reversal of epithelial-mesenchymal transition (EMT). Consistent with our findings in vitro, the antitumor potential of ferulic acid was also verified in an MDA-MB-231 xenograft mouse model where significantly decreased tumor volume, weight and increased apoptosis were observed. Taken together, these results indicate that ferulic acid may be used as an effective therapeutic agent against breast cancer.

  3. Electrophysiological characteristics of IB4-negative TRPV1-expressing muscle afferent DRG neurons.

    PubMed

    Lin, Yi-Wen; Chen, Chih-Cheng

    2015-01-01

    Muscle afferent neurons that express transient receptor potential vanilloid type I (TRPV1) are responsible for muscle pain associated with tissue acidosis. We have previously found that TRPV1 of isolectin B4 (IB4)-negative muscle nociceptors plays an important role in the acid-induced hyperalgesic priming and the development of chronic hyperalgesia in a mouse model of fibromyalgia. To understand the electrophysiological properties of the TRPV1-expressing muscle afferent neurons, we used whole-cell patch clamp recording to study the acid responsiveness and action potential (AP) configuration of capsaicin-sensitive neurons innervating to gastrocnemius muscle. Here we showed that IB4-negative TRPV1-expressing muscle afferent neurons are heterogeneous in terms of cell size, resting membrane potential, AP configuration, tetrodotoxin (TTX)-resistance, and acid-induced current (I acid), as well as capsaicin-induced current (I cap). TRPV1-expressing neurons were all acid-sensitive and could be divided into two acid-sensitive groups depending on an acid-induced sustained current (type I) or an acid-induced biphasic ASIC3-like current (type II). Type I TRPV1-expressing neurons were distinguishable from type II TRPV1-expressing neurons in AP overshoot, after-hyperpolarization duration, and all I acid parameters, but not in AP threshold, TTX-resistance, resting membrane potential, and I cap parameters. These differential biophysical properties of TRPV1-expressing neurons might partially annotate their different roles involved in the development and maintenance of chronic muscle pain.

  4. Role of intestinal microbiota in the generation of polyphenol derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization

    PubMed Central

    Wang, Dongjie; Ho, Lap; Faith, Jeremiah; Ono, Kenjiro; Janle, Elsa M.; Lachcik, Pamela J.; Cooper, Bruce R.; Jannasch, Amber H.; D’Arcy, Bruce R.; Williams, Barbara A.; Ferruzzi, Mario G.; Levine, Samara; Zhao, Wei; Dubner, Lauren; Pasinetti, Giulio M.

    2015-01-01

    Scope Grape seed polyphenol extract (GSPE) is receiving increasing attention for its potential preventative and therapeutic roles in Alzheimer’s disease (AD) and other age-related neurodegenerative disorders. The intestinal microbiota is known to actively convert many dietary polyphenols, including GSPE, to phenolic acids. There is limited information on the bioavailability and bioactivity of GSPE-derived phenolic acid in the brain. Methods and Results We orally administered GSPE to rats and investigated the bioavailability of 12 phenolic acids known to be generated by microbiota metabolism of anthocyanidins. GSPE treatment significantly increased the content of 2 of the phenolic acids in the brain: 3-hydroxybenzoic acid (3-HBA) and 3-(3′-hydroxyphenyl) propionic acid (3-HPP), resulting in the brain accumulations of the two phenolic acids at μM concentrations. We also provided evidence that 3-HBA and 3-HPP potently interfere with the assembly of β-amyloid (Aβ) peptides into neurotoxic Aβ aggregates that play key roles in AD pathogenesis. Conclusion Our observation suggests important contribution of the intestinal microbiota to the protective activities of GSPE (as well as other polyphenol preparations) in AD. Outcomes from our studies support future preclinical and clinical investigations exploring the potential contributions of the intestinal microbiota in protecting against the onset/progression of AD and other neurodegenerative conditions. PMID:25689033

  5. Role of chloride transport proteins in the vasorelaxant action of nitroprusside in isolated rat aorta.

    PubMed

    Valero, Marta; Pereboom, Désirée; Garay, Ricardo P; Alda, José Octavio

    2006-12-28

    Chloride ions play a key role in smooth muscle contraction, but little is known concerning their role in smooth muscle relaxation. Here we investigated the effect of chloride transport inhibitors on the vasorelaxant responses to nitroprusside in isolated and endothelium-denuded rat aorta, precontracted with phenylephrine 1 muM. Incubation of aortic rings in NO(3)(-) media strongly potentiated the vasorelaxant responses to nitroprusside. Bumetanide, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and acetazolamide strongly potentiated the vasorelaxant responses to nitroprusside (by 70-100%). EC(50) were 2.3+/-0.5 microM for bumetanide, 26+/-15 microM for DIDS and 510+/-118 microM for acetazolamide (n=6 for condition). Niflumic acid, a selective inhibitor of ClCa (calcium-activated chloride channels), potentiated nitroprusside relaxation to a similar extent as chloride transport inhibitors, in a non-additive manner. Zinc and nickel ions, both modestly potentiated nitroprusside vasorelaxation (by 20-30%). Cobaltum had negligible effect on nitroprusside vasorelaxation. CPA (p-chlorophenoxy-acetic acid), an inhibitor of volume-sensitive chloride channels (ClC), slightly potentiated nitroprusside vasorelaxation (by 15%), and the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel inhibitors CFTR(inh)172 (5-[(4-Carboxyphenyl)methylene]-2-thioxo-3-[(3-trifluoromethyl)phenyl-4-thiazolidinone), DPC (diphenylamine-2,2'-dicarboxylic acid) and glibenclamide were without significant effect. In conclusion, inhibition of chloride transport proteins strongly potentiates the vasorelaxant responses to nitroprusside in isolated rat aorta. This effect seems mediated by chloride depletion and inhibition of a chloride channel activated by both, calcium and cyclic GMP (cGMP).

  6. Mycolic acids: deciphering and targeting the Achilles' heel of the tubercle bacillus

    PubMed Central

    Nataraj, Vijayashankar; Varela, Cristian; Javid, Asma; Singh, Albel; Besra, Gurdyal S.

    2015-01-01

    Summary Mycolic acids are unique long chain fatty acids found in the lipid‐rich cell walls of mycobacteria including the tubercle bacillus M ycobacterium tuberculosis. Essential for viability and virulence, enzymes involved in the biosynthesis of mycolic acids represent novel targets for drug development. This is particularly relevant to the impact on global health given the rise of multidrug resistant and extensively drug resistant strains of M . tuberculosis. In this review, we discuss recent advances in our understanding of how mycolic acid are synthesised, especially the potential role of specialised fatty acid synthase complexes. Also, we examine the role of a recently reported mycolic acid transporter MmpL3 with reference to several reports of the targeting of this transporter by diverse compounds with anti‐M . tuberculosis activity. Additionally, we consider recent findings that place mycolic acid biosynthesis in the context of the cell biology of the bacterium, viz its localisation and co‐ordination with the bacterial cytoskeleton, and its role beyond maintaining cell envelope integrity. PMID:26135034

  7. Omega-6 fatty acid biomarkers and incident type 2 diabetes: Pooled analysis of individual-level data for 39740 adults from 20 prospective cohort studies

    USDA-ARS?s Scientific Manuscript database

    The metabolic effects of omega-6 polyunsaturated fatty acids (PUFAs) remain contentious, and little evidence is available regarding their potential role in primary prevention of type 2 diabetes. We aimed to assess the associations of linoleic acid and arachidonic acid biomarkers with incident type 2...

  8. Role of pH on the stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    Khokhar, M. I.; Beck, F. H.; Fontana, M. G.

    1973-01-01

    Stress corrosion cracking (SCC) experiments were conducted on Ti-8-1-1 wire specimens in hydrochloric and sulfuric acids of variable pH in order to determine the effect of pH on the susceptibility to cracking. The alloy exhibited increasing susceptibility with decreasing pH. By varying the applied potential, it was observed that susceptibility zones exist both in the cathodic and the anodic ranges. In the cathodic range, susceptibility also increased with decreasing applied potential. Corrosion potential-time data in hydrochloric acid (pH 1.7) and sulfuric acid (pH 1.7) indicate that chloride ions lower the corrosion potential of the specimen which, in turn, increases the susceptibility.

  9. Wheat bread enriched with green coffee - In vitro bioaccessibility and bioavailability of phenolics and antioxidant activity.

    PubMed

    Świeca, Michał; Gawlik-Dziki, Urszula; Dziki, Dariusz; Baraniak, Barbara

    2017-04-15

    The potential bioaccessibility and bioavailability of phenolics, caffeine and antioxidant activity of wheat bread enriched with green coffee were studied. Supplementation enhanced nutraceutical potential by improving phenolic content and lipid protecting capacity. The simulated-digestion-released phenolics (mainly caffeic acid, syringic acid and vanillic acid) from bread, also caused significant qualitative changes (chlorogenic acids were cleaved and significant amounts of caffeic acid and ferulic acid were determined). Compared to the control, for the bread with 1% and 5% of the functional component the contents of phenolics were 1.6 and 3.33 times higher. Also, an approximately 2.3-fold increase in antioxidant activity was found in bread containing 5% of the supplement. The compounds responsible for antioxidant potential have high bioaccessibility but poor bioavailability. The qualitative composition of the phenolic fraction has a key role in developing the antioxidant potential of bread; however, caffeine and synergism between antioxidants are also important considerations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Structure-activity relationships and mechanism of action of Eph-ephrin antagonists: interaction of cholanic acid with the EphA2 receptor

    PubMed Central

    Tognolini, Massimiliano; Incerti, Matteo; Mohamed, Iftiin Hassan; Giorgio, Carmine; Russo, Simonetta; Bruni, Renato; Lelli, Barbara; Bracci, Luisa; Noberini, Roberta; Pasquale, Elena B.; Barocelli, Elisabetta; Vicini, Paola; Mor, Marco

    2012-01-01

    The Eph–ephrin system, including the EphA2 receptor and the ephrin-A1 ligand, plays a critical role in tumor and vascular functions during carcinogenesis. We previously identified (3α,5β)-3-hydroxycholan-24-oic acid (lithocholic acid) as an Eph-ephrin antagonist able to inhibit EphA2 receptor activation and therefore potentially useful as a novel EphA2 receptor targeting agent. Here, we explore the structure-activity relationships of a focused set of lithocholic acid derivatives, based on molecular modelling investigation and displacement binding assays. Our exploration shows that while the 3-α-hydroxyl group of lithocholic acid has a negligible role in the recognition of the EphA2 receptor, its carboxylate group is critical for disrupting the binding of ephrin-A1 to the EphA2. As a result of our investigation, we identified (5β)-cholan-24-oic acid (cholanic acid) as a novel compound that competitively inhibits EphA2-ephrin-A1 interaction with higher potency than lithocholic acid. Surface plasmon resonance analysis indicates that cholanic acid binds specifically and reversibly to the ligand-binding domain of EphA2, with a steady-state dissociation constant (KD) in the low micromolar range. Furthermore, cholanic acid blocks the phosphorylation of EphA2 and cell retraction and rounding in PC3 prostate cancer cells, two effects that depend on EphA2 activation by the ephrin-A1 ligand. These findings suggest that cholanic acid can be used as a template structure to design effective EphA2 antagonists, with potential impact in the elucidation of the role played by this receptor in pathological conditions. PMID:22529030

  11. Regulation of Intestinal Epithelial Cells Properties and Functions by Amino Acids.

    PubMed

    Kong, Shanshan; Zhang, Yanhui H; Zhang, Weiqiang

    2018-01-01

    Intestinal epithelial cells (IECs) line the surface of intestinal epithelium, where they play important roles in the digestion of food, absorption of nutrients, and protection of the human body from microbial infections, and others. Dysfunction of IECs can cause diseases. The development, maintenance, and functions of IECs are strongly influenced by external nutrition, such as amino acids. Amino acids play important roles in regulating the properties and functions of IECs. In this article, we briefly reviewed the current understanding of the roles of amino acids in the regulation of IECs' properties and functions in physiological state, including in IECs homeostasis (differentiation, proliferation, and renewal), in intestinal epithelial barrier structure and functions, and in immune responses. We also summarized some important findings on the effects of amino acids supplementation (e.g., glutamine and arginine) in restoring IECs' and intestine functions in some diseased states. These findings will further our understanding of the important roles of amino acids in the homeostasis of IECs and could potentially help identify novel targets and reagents for the therapeutic interventions of diseases associated with dysfunctional IECs.

  12. Ascorbate as a Biosynthetic Precursor in Plants

    PubMed Central

    Debolt, Seth; Melino, Vanessa; Ford, Christopher M.

    2007-01-01

    Background and Aims l-Ascorbate (vitamin C) has well-documented roles in many aspects of redox control and anti-oxidant activity in plant cells. This Botanical Briefing highlights recent developments in another aspect of l-ascorbate metabolism: its function as a precursor for specific processes in the biosynthesis of organic acids. Scope The Briefing provides a summary of recent advances in our understanding of l-ascorbate metabolism, covering biosynthesis, translocation and functional aspects. The role of l-ascorbate as a biosynthetic precursor in the formation of oxalic acid, l-threonic acid and l-tartaric acid is described, and progress in elaborating the mechanisms of the formation of these acids is reviewed. The potential conflict between the two roles of l-ascorbate in plant cells, functional and biosynthetic, is highlighted. Conclusions Recent advances in the understanding of l-ascorbate catabolism and the formation of oxalic and l-tartaric acids provide compelling evidence for a major role of l-ascorbate in plant metabolism. Combined experimental approaches, using classic biochemical and emerging ‘omics’ technologies, have provided recent insight to previously under-investigated areas. PMID:17098753

  13. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    PubMed Central

    Liu, Jiajie; Ma, David W. L.

    2014-01-01

    Breast cancer (BC) is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA), are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA), however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research. PMID:25412153

  14. Biological functions of iduronic acid in chondroitin/dermatan sulfate

    PubMed Central

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-01-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler–Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease. PMID:23441919

  15. Role of bifidobacteria in the hydrolysis of chlorogenic acid

    PubMed Central

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-01-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  16. Role of bifidobacteria in the hydrolysis of chlorogenic acid.

    PubMed

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-02-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  17. Butyric acid – a well-known molecule revisited

    PubMed Central

    Banasiewicz, Tomasz; Rydzewska, Grażyna

    2017-01-01

    The properties of butyric acid, and the role it plays in the gastrointestinal tract, have been known for many years. However, the newest research shows that butyric acid still remains a molecule with a potential that has not as yet been fully exploited. The article provides an outline of relevant up-to-date knowledge about butyric acid, and presents the expert position on the clinical benefits of using butyric acid products in the therapy of gastrointestinal diseases. PMID:28702095

  18. Butyric acid - a well-known molecule revisited.

    PubMed

    Borycka-Kiciak, Katarzyna; Banasiewicz, Tomasz; Rydzewska, Grażyna

    2017-01-01

    The properties of butyric acid, and the role it plays in the gastrointestinal tract, have been known for many years. However, the newest research shows that butyric acid still remains a molecule with a potential that has not as yet been fully exploited. The article provides an outline of relevant up-to-date knowledge about butyric acid, and presents the expert position on the clinical benefits of using butyric acid products in the therapy of gastrointestinal diseases.

  19. The role of erosion, abrasion and attrition in tooth wear.

    PubMed

    Barbour, Michele E; Rees, Gareth D

    2006-01-01

    There is increasing clinical awareness of erosion of enamel and dentine by dietary acids and the consequent increased susceptibility to physical wear. Enamel erosion is characterized by acid-mediated surface softening that, if unchecked, will progress to irreversible loss of surface tissue, potentially exposing the underlying dentine. In comparison, dentine erosion is less well understood as the composition and microstructure are more heterogeneous. Factors which affect the erosive potential of a solution include pH, titratable acidity, common ion concentrations, and frequency and method of exposure. Abrasion and attrition are sources of physical wear and are commonly associated with tooth brushing and tooth-to-tooth contact, respectively. A combination of erosion and abrasion or attrition exacerbates wear; however, further research is required to understand the role of fluoride in protecting mineralized tissues from such processes. Abrasive wear may be seen in a wide range of patients, whereas attritive loss is usually seen in individuals with bruxism. Wear processes are implicated in the development of dentine hypersensitivity. Saliva confers the major protective function against wear due to its role in pellicle formation, buffering, acid clearance, and hard tissue remineralization. This review focuses on the physiochemical factors impacting tooth wear.

  20. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity.

    PubMed

    Clifford, Michael N; Jaganath, Indu B; Ludwig, Iziar A; Crozier, Alan

    2017-12-13

    Covering: 2000 up to late 2017This review is focussed upon the acyl-quinic acids, the most studied group within the ca. 400 chlorogenic acids so far reported. The acyl-quinic acids, the first of which was characterised in 1846, are a diverse group of plant-derived compounds produced principally through esterification of an hydroxycinnamic acid and 1l-(-)-quinic acid. Topics addressed in this review include the confusing nomenclature, quantification and characterisation by NMR and MS, biosynthesis and role in planta, and the occurrence of acyl-quinic acids in coffee, their transformation during roasting and delivery to the beverage. Coffee is the major human dietary source world-wide of acyl-quinic acids and consideration is given to their absorption and metabolism in the upper gastrointestinal tract, and the colon where the microbiota play a key role in the formation of catabolites. Evidence on the potential of the in vivo metabolites and catabolites of acyl-quinic acids to promote the consumer's health is evaluated.

  1. Significance of Nanoparticles and the Role of Amino Acids in Structuring Them-A Review.

    PubMed

    Kulandaisamy, Arockia Jayalatha; Rayappan, John Bosco Balaguru

    2018-08-01

    Nanoparticles has occupied an eminent place in our tech-facilitated society. The processes involved in synthesizing nanoparticles are important not only to find their applications, but also to make them eco-friendly. Attempts are being made to replace the use of harmful surfactants/reagents by amino acids, in the due course of nanoparticle synthesis. Especially in synthesizing the multifunctional metal and metal oxide nanoparticles the use of amino acids as surfactant/as catalyst, helps to obtain required size and shape. Amino acids have the inherent property in directing and assembling the superstructures. They have the tendency to act as a capping agent and their presence during the synthesis processes alters the synthesized particles' morphology. Review has been made to study the role of amino acids like histidine, lysine, arginine in structuring ZnO, FeO, Au and Ag nanoparticles. The change in their morphology that resulted due to the addition of amino acids has been compared. It is important to understand the role of amino acids in synthesizing the nanoparticles, and so it is more important to understand the internal energy variation of the same. To achieve this, the interaction between the bio (amino acids) and non-bio (metal and metal oxide) nanoparticles are to be discussed both experimentally and theoretically. At times the theoretical characterization, especially at low dimensions, help us to understand inter-particle interaction and intra-particle interaction by determining their chemical potential and Lennard-Jones potential. This review has been concluded with a model to characterize the precursor solution (amino acids and inorganic materials) by considering the Equation of State for liquids, which could also be extended to determine the structure factor of nanoparticles.

  2. Extracellular Vesicles: Role in Inflammatory Responses and Potential Uses in Vaccination in Cancer and Infectious Diseases.

    PubMed

    Campos, João Henrique; Soares, Rodrigo Pedro; Ribeiro, Kleber; Andrade, André Cronemberger; Batista, Wagner Luiz; Torrecilhas, Ana Claudia

    2015-01-01

    Almost all cells and organisms release membrane structures containing proteins, lipids, and nucleic acids called extracellular vesicles (EVs), which have a wide range of functions concerning intercellular communication and signaling events. Recently, the characterization and understanding of their biological role have become a main research area due to their potential role in vaccination, as biomarkers antigens, early diagnostic tools, and therapeutic applications. Here, we will overview the recent advances and studies of Evs shed by tumor cells, bacteria, parasites, and fungi, focusing on their inflammatory role and their potential use in vaccination and diagnostic of cancer and infectious diseases.

  3. Extracellular Vesicles: Role in Inflammatory Responses and Potential Uses in Vaccination in Cancer and Infectious Diseases

    PubMed Central

    Campos, João Henrique; Soares, Rodrigo Pedro; Ribeiro, Kleber; Cronemberger Andrade, André; Batista, Wagner Luiz; Torrecilhas, Ana Claudia

    2015-01-01

    Almost all cells and organisms release membrane structures containing proteins, lipids, and nucleic acids called extracellular vesicles (EVs), which have a wide range of functions concerning intercellular communication and signaling events. Recently, the characterization and understanding of their biological role have become a main research area due to their potential role in vaccination, as biomarkers antigens, early diagnostic tools, and therapeutic applications. Here, we will overview the recent advances and studies of Evs shed by tumor cells, bacteria, parasites, and fungi, focusing on their inflammatory role and their potential use in vaccination and diagnostic of cancer and infectious diseases. PMID:26380326

  4. Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation.

    PubMed

    Perry, S F; Shahsavarani, A; Georgalis, T; Bayaa, M; Furimsky, M; Thomas, S L Y

    2003-11-01

    In freshwater fishes, the gill and kidney are intricately involved in ionic and acid-base regulation owing to the presence of numerous ion channels, pumps, or exchangers. This review summarizes recent developments in branchial and renal ion transport physiology and presents several models that integrate epithelial ion and acid-base movements in freshwater fishes. At the gill, three cell types are potentially involved in ionic uptake: pavement cells, mitochondria-rich (MR) PNA(+) cells, and MR PNA(-) cells. The transfer of acidic or basic equivalents between the fish and its environment is accomplished largely by the gill and is appropriately regulated to correct acid-base imbalances. The kidney, while less important than the gill in overall acid or base excretion, has an essential role in regulating systemic acid-base balance by controlling HCO(3) (-) reabsorption from the filtrate. Copyright 2003 Wiley-Liss, Inc.

  5. [Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress].

    PubMed

    Wang, Jianfei; Shen, Qirong

    2006-11-01

    Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.

  6. Indoleamine 2,3 Dioxygenase as a Potential Therapeutic Target in Huntington's Disease.

    PubMed

    Mazarei, Gelareh; Leavitt, Blair R

    2015-01-01

    Within the past decade, there has been increasing interest in the role of tryptophan (Trp) metabolites and the kynurenine pathway (KP) in diseases of the brain such as Huntington's disease (HD). Evidence is accumulating to suggest that this pathway is imbalanced in neurologic disease states. The KP diverges into two branches that can lead to production of either neuroprotective or neurotoxic metabolites. In one branch, kynurenine (Kyn) produced as a result of tryptophan (Trp) catabolism is further metabolized to neurotoxic metabolites such as 3-hydroxykunurenine (3-HK) and quinolinic acid (QA). In the other branch, Kyn is converted to the neuroprotective metabolite kynurenic acid (KA). The enzyme Indoleamine 2,3 dioxygenase (IDO1) catalyzes the conversion of Trp into Kyn, the first and rate-limiting enzymatic step of the KP. This reaction takes place throughout the body in multiple cell types as a required step in the degradation of the essential amino acid Trp. Studies of IDO1 in brain have focused primarily on a potential role in depression, immune tolerance associated with brain tumours, and multiple sclerosis; however the role of this enzyme in neurodegenerative disease has garnered significant attention in recent years. This review will provide a summary of the current understanding of the role of IDO1 in Huntington's disease and will assess this enzyme as a potential therapeutic target for HD.

  7. Biological functions of iduronic acid in chondroitin/dermatan sulfate.

    PubMed

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-05-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease. © 2013 The Authors Journal compilation © 2013 FEBS.

  8. Role of topical tranexamic acid in the management of idiopathic anterior epistaxis in adult patients in the emergency department.

    PubMed

    Logan, Jill K; Pantle, Hardin

    2016-11-01

    The role of topical tranexamic acid in the management of anterior epistaxis in adult patients in the emergency department (ED) is examined. The use of alternative agents for the treatment of epistaxis before the use of nasal packing may be reasonable due to patient discomfort, potential complications, and the need for follow-up with a healthcare provider for packing removal. One such agent is tranexamic acid. Two published studies evaluated the off-label use of topical tranexamic acid for the treatment of epistaxis. The first trial compared the efficacy of a topical gel containing 10% tranexamic acid with a placebo gel containing glycerin for the treatment of epistaxis. The percentage of patients whose bleeding ceased within 30 minutes of the intervention did not significantly differ between the tranexamic acid and placebo groups (p = 0.16). The second trial compared the efficacy of cotton pledgets soaked in the i.v. formulation of tranexamic acid inserted into the bleeding naris with standard nasal packing therapy. Bleeding cessation occurred within 10 minutes in 71% of the tranexamic acid group versus 31.2% of the standard treatment group (odds ratio, 2.28; 95% confidence interval, 1.68-3.09; p < 0.001). Additional information is necessary to fully evaluate the role of topical tranexamic acid in treatment algorithms; however, the use of topical tranexamic acid may be beneficial in select populations. Topical tranexamic acid may have a role in the treatment of anterior epistaxis in select ED patients, though additional studies are needed to confirm its role in treatment algorithms. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  9. [Role of the blood bicarbonate buffer system in the mechanism of fish adaptation to different levels of carbonic acid in an aqueous medium].

    PubMed

    Romanenko, V D; Kotsar', N I

    1976-01-01

    The role of a bicarbonate buffer system of fish (Cyprinidae family) blood was studied in their organism addaptive reactions to different levels of CO2 in the aqueous medium. The fish is established to prossess rather effective for maintaining blood acid-base balance. It permits the fish to endure for a long time essential fluctuations of carbonic acid concentration in water. In prevention of possible development of carbonic acid acidosis an essential role belongs to formation of bicarbonates as a blood buffer system stablizing pH is shown to be significant for preventing possible development of acidosis. The adaptation potentialities of Cyprinidae family permit them to endure an increase of CO2 in water and are determined by the ability of their organism to formations of bicarbonate and their retaining in blood.

  10. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea

    PubMed Central

    Dieryckx, Cindy; Gaudin, Vanessa; Dupuy, Jean-William; Bonneu, Marc; Girard, Vincent; Job, Dominique

    2015-01-01

    Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873. PMID:26528317

  11. MmpL Genes Are Associated with Mycolic Acid Metabolism in Mycobacteria and Corynebacteria

    PubMed Central

    Varela, Cristian; Rittmann, Doris; Singh, Albel; Krumbach, Karin; Bhatt, Kiranmai; Eggeling, Lothar; Besra, Gurdyal S.; Bhatt, Apoorva

    2012-01-01

    Summary Mycolic acids are vital components of the cell wall of the tubercle bacillus Mycobacterium tuberculosis and are required for viability and virulence. While mycolic acid biosynthesis is studied extensively, components involved in mycolate transport remain unidentified. We investigated the role of large membrane proteins encoded by mmpL genes in mycolic acid transport in mycobacteria and the related corynebacteria. MmpL3 was found to be essential in mycobacteria and conditional depletion of MmpL3 in Mycobacterium smegmatis resulted in loss of cell wall mycolylation, and of the cell wall-associated glycolipid, trehalose dimycolate. In parallel, an accumulation of trehalose monomycolate (TMM) was observed, suggesting that mycolic acids were transported as TMM. In contrast to mycobacteria, we found redundancy in the role of two mmpL genes, in Corynebacterium glutamicum; a complete loss of trehalose-associated and cell wall bound corynomycolates was observed in an NCgl0228-NCgl2769 double mutant, but not in individual single mutants. Our studies highlight the role of mmpL genes in mycolic acid metabolism and identify potential new targets for anti-TB drug development. PMID:22520756

  12. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    PubMed

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  13. Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction

    PubMed Central

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S.; Collins, Samuel L.; Horton, Maureen R.

    2017-01-01

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction. PMID:28223293

  14. Endomorphins potentiate acid-sensing ion channel currents and enhance the lactic acid-mediated increase in arterial blood pressure: effects amplified in hindlimb ischaemia.

    PubMed

    Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor

    2017-12-01

    Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed in neurons pretreated with pertussis toxin, an uncoupler of G proteins and MOR. The endomorphin-mediated potentiation was a result of a leftward shift of the activation curve to higher pH values and a slight shift of the inactivation curve to lower pH values. Intra-arterial co-administration of lactic acid and E-2 led to a significantly greater pressor reflex than lactic acid alone in the presence of naloxone. Finally, E-2 effects were inhibited by pretreatment with the ASIC3 blocker APETx2 and enhanced by pretreatment with the ASIC1a blocker psalmotoxin-1. These findings have uncovered a novel role of endomorphins by which the opioids can enhance the lactic acid-mediated reflex increase in arterial pressure that is MOR stimulation-independent and APETx2-sensitive. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  15. Uric Acid and Antioxidant Effects of Wine

    PubMed Central

    Boban, Mladen; Modun, Darko

    2010-01-01

    The aim of this article is to review the role of uric acid in the context of antioxidant effects of wine and its potential implication to human health. We described and discussed the mechanisms of increase in plasma antioxidant capacity after consumption of moderate amounts of wine. Because this effect is largely contributed by acute elevation in plasma uric acid, we paid special attention to wine constituents and metabolic processes that are likely to be involved in uric acid elevation. PMID:20162741

  16. The role of an alginate suspension on pepsin and bile acids - key aggressors in the gastric refluxate. Does this have implications for the treatment of gastro-oesophageal reflux disease?

    PubMed

    Strugala, Vicki; Avis, Jeanine; Jolliffe, Ian G; Johnstone, Lesley M; Dettmar, Peter W

    2009-08-01

    During a reflux event the oesophagus is exposed to a heterogeneous mixture of gastric juice components. The role of non-acid components of the refluxate in causing damage to the oesophagus is now well established but no therapeutic option exists to address this. The role of Gaviscon Advance (GA), a raft-forming alginate suspension, in protecting the oesophagus from damage by pepsin and bile acids (aggressors) was investigated using a series of in-vitro models. GA was able to dose-dependently inhibit pepsin activity over and above the neutralisation effect of the formulation. This was evident against both protein and collagen substrates using two distinct colorimetric assays. GA was able to retard the diffusion of pepsin and multiple bile acids using a Franz cell model. Using the raft-forming mode of action GA was able to remove both pepsin and multiple bile acids from a simulated reflux event. There was capacity in the GA raft to accommodate aggressors from multiple reflux events. GA can specifically remove both pepsin and bile acids from the refluxate, limit their diffusion and affect enzymatic activity of pepsin. There is a role for GA to reduce the damaging potential of the refluxate and thus protect the oesophagus.

  17. Taurine-induced attenuation of MPP+ neurotoxicity in vitro: a possible role for the GABA(A) subclass of GABA receptors.

    PubMed

    O'Byrne, M B; Tipton, K F

    2000-05-01

    Taurine is a sulphur-containing beta-amino acid found in high (millimolar) concentrations in excitable tissues such as brain and heart. Its suggested roles include osmoregulator, thermoregulator, neuromodulator, and potential neurotransmitter. This amino acid has also been shown to be released in large concentrations during ischaemia and excitotoxin-induced neuronal damage. Here we report a protective effect of taurine against MPP(+)-induced neurotoxicity in coronal slices from rat brain. Significant protective effects were observed at taurine concentrations of 20 and 1 mM, suggesting a potential role for taurine in cases of neuronal insult. Studies with the synthetic taurine analogues taurine phosphonate, guanidinoethane sulphonate, and trimethyltaurine suggested the observed effect to be mediated via an extracellular mechanism. The use of GABA receptor ligands muscimol and bicuculline indicated the effect to be mediated through activation of GABA(A) receptors.

  18. Metabolism of lactic acid in fermented cucumbers by Lactobacillus buchneri and related species, potential spoilage organisms in reduced salt fermentations

    USDA-ARS?s Scientific Manuscript database

    Recent evidence suggests that Lactobacillus buchneri may play an important role in spoilage-associated secondary fermentation of cucumbers. Lactic acid degradation during fermented cucumber spoilage is influenced by sodium chloride (NaCl) concentration, pH, and presence of oxygen. Objectives were to...

  19. Combined effects of dietary polyunsaturated fatty acids and parasite exposure on eicosanoid-related gene expression in an invertebrate model.

    PubMed

    Schlotz, Nina; Roulin, Anne; Ebert, Dieter; Martin-Creuzburg, Dominik

    2016-11-01

    Eicosanoids derive from essential polyunsaturated fatty acids (PUFA) and play crucial roles in immunity, development, and reproduction. However, potential links between dietary PUFA supply and eicosanoid biosynthesis are poorly understood, especially in invertebrates. Using Daphnia magna and its bacterial parasite Pasteuria ramosa as model system, we studied the expression of genes coding for key enzymes in eicosanoid biosynthesis and of genes related to oogenesis in response to dietary arachidonic acid and eicosapentaenoic acid in parasite-exposed and non-exposed animals. Gene expression related to cyclooxygenase activity was especially responsive to the dietary PUFA supply and parasite challenge, indicating a role for prostanoid eicosanoids in immunity and reproduction. Vitellogenin gene expression was induced upon parasite exposure in all food treatments, suggesting infection-related interference with the host's reproductive system. Our findings highlight the potential of dietary PUFA to modulate the expression of key enzymes involved in eicosanoid biosynthesis and reproduction and thus underpin the idea that the dietary PUFA supply can influence invertebrate immune functions and host-parasite interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation

    PubMed Central

    Hsueh, Yi-Huang; Huang, Kai-Yao; Kunene, Sikhumbuzo Charles; Lee, Tzong-Yi

    2017-01-01

    Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production. PMID:29215550

  1. Role of tartaric and malic acids in wine oxidation.

    PubMed

    Danilewicz, John C

    2014-06-04

    Tartaric acid determines the reduction potential of the Fe(III)/Fe(II) redox couple. Therefore, it is proposed that it determines the ability of Fe to catalyze wine oxidation. The importance of tartaric acid was demonstrated by comparing the aerial oxidation of 4-methylcatechol (4-MeC) in model wine made up with tartaric and acetic acids at pH 3.6. Acetic acid, as a weaker Fe(III) ligand, should raise the reduction potential of the Fe couple. 4-MeC was oxidized in both systems, but the mechanisms were found to differ. Fe(II) readily reduced oxygen in tartrate model wine, but Fe(III) alone failed to oxidize the catechol, requiring sulfite assistance. In acetate model wine the reverse was found to operate. These observations should have broad application to model systems designed to study the oxidative process in foods and other beverages. Consideration should be given to the reduction potential of metal couples by the inclusion of appropriate ligands.

  2. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    PubMed

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  3. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    PubMed

    Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M

    2006-09-01

    The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.

  4. Effects of omega-3 and omega-6 fatty acids on IGF-I receptor signalling in colorectal cancer cells.

    PubMed

    Seti, Hila; Leikin-Frenkel, Alicia; Werner, Haim

    2009-07-01

    The insulin-like growth factor (IGF) system plays a critical role in normal growth and development as well as in malignant states. Most of the biological activities of the IGFs are mediated by the IGF-IR, which is over-expressed in most tumours and cancer cell lines. Fatty acids have critical roles in both systemic physiological processes (e.g. metabolism) and cellular events (e.g. proliferation, apoptosis, signal transduction, and gene expression). Alpha-linolenic acid (ALA) and linoleic acid (LA) are essential fatty acids of the omega-3 and omega-6 families, respectively. The aim of this study was to investigate the potential interactions between fatty acids and the IGF signal transduction pathways, and to evaluate the impact of this interplay on colon cancer cells survival and proliferation. Results of Western blot analyses revealed that ALA and LA enhanced the ligand-induced IGF-IR phosphorylation and, in addition, increased receptor phosphorylation in an IGF-I independent manner. Furthermore, fatty acid treatment led to phosphorylation of downstream signalling molecules, including Akt and Erk. In addition, FACS analysis and apoptosis measurements indicated that ALA and LA have a potential mitogenic effect on HCT116 cells, as reflected by the number of cells in S phase and by a reduction of PARP cleavage, implying a reduction in apoptotic activity. In summary, our results provide evidence that omega-3 and omega-6 fatty acids modulate IGF-I action in colon cancer cells.

  5. Iron overload causes osteoporosis in thalassemia major patients through interaction with transient receptor potential vanilloid type 1 (TRPV1) channels

    PubMed Central

    Rossi, Francesca; Perrotta, Silverio; Bellini, Giulia; Luongo, Livio; Tortora, Chiara; Siniscalco, Dario; Francese, Matteo; Torella, Marco; Nobili, Bruno; Di Marzo, Vincenzo; Maione, Sabatino

    2014-01-01

    The pathogenesis of bone resorption in β-thalassemia major is multifactorial and our understanding of the underlying molecular and cellular mechanisms remains incomplete. Considering the emerging importance of the endocannabinoid/endovanilloid system in bone metabolism, it may be instructive to examine a potential role for this system in the development of osteoporosis in patients with β-thalassemia major and its relationship with iron overload and iron chelation therapy. This study demonstrates that, in thalassemic-derived osteoclasts, tartrate-resistant acid phosphatase expression inversely correlates with femoral and lumbar bone mineral density, and directly correlates with ferritin levels and liver iron concentration. The vanilloid agonist resiniferatoxin dramatically reduces cathepsin K levels and osteoclast numbers in vitro, without affecting tartrate-resistant acid phosphatase expression. The iron chelators deferoxamine, deferiprone and deferasirox decrease both tartrate-resistant acid phosphatase and cathepsin K expression, as well as osteoclast activity. Taken together, these data show that transient receptor potential vanilloid type 1 activation/desensitization influences tartrate-resistant acid phosphatase expression and activity, and this effect is dependent on iron, suggesting a pivotal role for iron overload in the dysregulation of bone metabolism in patients with thalassemia major. Our applied pharmacology provides evidence for the potential of iron chelators to abrogate these effects by reducing osteoclast activity. Whether iron chelation therapy is capable of restoring bone health in humans requires further study, but the potential to provide dual benefits for patients with β-thalassemia major –preventing iron-overload and alleviating associated osteoporotic changes – is exciting. PMID:25216685

  6. MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria.

    PubMed

    Varela, Cristian; Rittmann, Doris; Singh, Albel; Krumbach, Karin; Bhatt, Kiranmai; Eggeling, Lothar; Besra, Gurdyal S; Bhatt, Apoorva

    2012-04-20

    Mycolic acids are vital components of the cell wall of the tubercle bacillus Mycobacterium tuberculosis and are required for viability and virulence. While mycolic acid biosynthesis is studied extensively, components involved in mycolate transport remain unidentified. We investigated the role of large membrane proteins encoded by mmpL genes in mycolic acid transport in mycobacteria and the related corynebacteria. MmpL3 was found to be essential in mycobacteria and conditional depletion of MmpL3 in Mycobacterium smegmatis resulted in loss of cell wall mycolylation, and of the cell wall-associated glycolipid, trehalose dimycolate. In parallel, an accumulation of trehalose monomycolate (TMM) was observed, suggesting that mycolic acids were transported as TMM. In contrast to mycobacteria, we found redundancy in the role of two mmpL genes, in Corynebacterium glutamicum; a complete loss of trehalose-associated and cell wall bound corynomycolates was observed in an NCgl0228-NCgl2769 double mutant, but not in individual single mutants. Our studies highlight the role of mmpL genes in mycolic acid metabolism and identify potential new targets for anti-TB drug development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe(III)-smectite under visible light.

    PubMed

    Jia, Hanzhong; Chen, Hongxia; Nulaji, Gulimire; Li, Xiyou; Wang, Chuanyi

    2015-11-01

    The photolysis of polycyclic aromatic hydrocarbons (PAHs) is potentially an important process for its transformation and fate on contaminated soil surfaces. In this study, phenanthrene is employed as a model to explore PAH photodegradation with the assistance of Fe(III)-smectite under visible-light while focusing on roles played by five low-molecular-weight organic acids (LMWOAs), i.e., malic acid, oxalic acid, citric acid, ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid. Our results show that oxalic acid is most effective in promoting the photodegradation of phenanthrene, while only a slight increase in the rate of phenanthrene photodegradation is observed in the presence of malic acid. Electron paramagnetic resonance experiments confirm the formation of CO2(-) radicals in the presence of malic and oxalic acid, which provides strong evidence for generating OH and subsequent photoreaction pathways. The presence of EDTA or nitrilotriacetic acid significantly inhibits both Fe(II) formation and phenanthrene photodegradation because these organic anions tend to chelate with Fe(III), leading to decreases in the electron-accepting potential of Fe(III)-smectite and a weakened interaction between phenanthrene and Fe(III)-smectite. These observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and demonstrate the potential for using some LMWOAs as additives for the remediation of contaminated soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Butyric acid in irritable bowel syndrome.

    PubMed

    Załęski, Andrzej; Banaszkiewicz, Aleksandra; Walkowiak, Jarosław

    2013-01-01

    Butyric acid (butanoic acid) belongs to a group of short-chain fatty acids and is thought to play several beneficial roles in the gastrointestinal tract. Butyric anion is easily absorbed by enteric cells and used as a main source of energy. Moreover, butyric acid is an important regulator of colonocyte proliferation and apoptosis, gastrointestinal tract motility and bacterial microflora composition in addition to its involvement in many other processes including immunoregulation and anti-inflammatory activity. The pathogenesis of irritable bowel syndrome (IBS), the most commonly diagnosed functional gastrointestinal condition, is complex, and its precise mechanisms are still unclear. This article describes the potential benefits of butyric acid in IBS.

  9. Biosynthetic studies on clavulanic acid: its biopathway and stereochemical course

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, S.S.

    A degradative analysis allowed determination of the stereochemistry at C-9 of clavulanic acid produced by Streptomyces clavuigerus. An over-all inversion of configuration from the C/sub 5/-unit precursor ornithine was observed. The diastereomeric (1R,2R)- and (1S,2R)-(1-/sup 3/H)-glycerols were separately synthesized and administered. Complementary results demonstrated an overall retention of configuration paralleling cysteine incorporation in the biosynthesis of penicillin. 3-Hydroxyornithine, a potential precursor to clavulanic acid, was prepared by a 1,3-dipolar addition of a nitrone and vinylglycine. However, 3-hydroxyornithine was not taken up by the organism and this possible intermediate could not be shown to be a specific precursor to clavulanic acid.more » (2-/sup 3/H)-L-Ornithine displays a preferential incorporation relative to D-ornithine. An epimerization by a one-base mechanism is suggested by the retention of half the tritium activity. ..beta..-Alanine, a potential precursor of the ..beta..-lactam segment was examined and shown not to play a direct role in the biosynthesis. Further, 3-hydroxypropionyl-ornithine, a parallel amide to the tripeptide intermediate in penicillin biosynthesis, was not incorporated into clavulanic acid. The role of 3-hydroxypropionate and glycerol were examined in both starch and triglyceride fermentation media.« less

  10. Molecular mechanisms behind the antimicrobial activity of hop iso-α-acids in Lactobacillus brevis.

    PubMed

    Schurr, Benjamin C; Hahne, Hannes; Kuster, Bernhard; Behr, Jürgen; Vogel, Rudi F

    2015-04-01

    The main bittering component in beer, hop iso-α-acids, have been characterised as weak acids, which act as ionophores impairing microbial cells' function under acidic conditions as present in beer. Besides medium pH, divalent cations play a central role regarding the efficacy of the antimicrobial effect. The iso-α-acids' non-bitter derivatives humulinic acids can be found in isomerised hop extracts and can be generated during hop storage. Therefore, they have been under investigation concerning their influence on beer sensory properties. This study sketches the molecular mechanism behind iso-α-acids' antimicrobial activity in Lactobacillus (L.) brevis regarding their ionophore activity versus the dependence of the inhibitory potential on manganese binding, and suggests humulinic acids as novel tasteless food preservatives. We designed and synthesised chemically modified iso-α-acids to enhance the basic understanding of the molecular mechanism of antimicrobial iso-α-acids. It could be observed that a manganese-binding dependent transmembrane redox reaction (oxidative stress) plays a crucial role in inhibition. Privation of an acidic hydroxyl group neither erased ionophore activity, nor did it entirely abolish antimicrobial activity. Humulinic acids proved to be highly inhibitory, even outperforming iso-α-acids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.

    PubMed

    Yadav, Shivani; Srivastava, Alok K; Singh, Dhanajay P; Arora, Dilip K

    2012-11-01

    Oxalic acid plays major role in the pathogenesis by Sclerotinia sclerotiorum; it lowers the pH of nearby environment and creates the favorable condition for the infection. In this study we examined the degradation of oxalic acid through oxalate oxidase and biocontrol of Sclerotinia sclerotiorum. A survey was conducted to collect the rhizospheric soil samples from Indo-Gangetic Plains of India to isolate the efficient fungal strains able to tolerate oxalic acid. A total of 120 fungal strains were isolated from root adhering soils of different vegetable crops. Out of 120 strains a total of 80 isolates were able to grow at 10 mM of oxalic acid whereas only 15 isolates were grow at 50 mM of oxalic acid concentration. Then we examined the antagonistic activity of the 15 isolates against Sclerotinia sclerotiorum. These strains potentially inhibit the growth of the test pathogen. A total of three potential strains and two standard cultures of fungi were tested for the oxalate oxidase activity. Strains S7 showed the maximum degradation of oxalic acid (23 %) after 60 min of incubation with fungal extract having oxalate oxidase activity. Microscopic observation and ITS (internally transcribed spacers) sequencing categorized the potential fungal strains into the Aspergillus, Fusarium and Trichoderma. Trichoderma sp. are well studied biocontrol agent and interestingly we also found the oxalate oxidase type activity in these strains which further strengthens the potentiality of these biocontrol agents.

  12. Identification and characterization of a novel PPARα-regulated and 7α-hydroxyl bile acid-preferring cytosolic sulfotransferase mL-STL (Sult2a8)[S

    PubMed Central

    Feng, Lu; Yuen, Yee-Lok; Xu, Jian; Liu, Xing; Chan, Martin Yan-Chun; Wang, Kai; Fong, Wing-Ping; Cheung, Wing-Tai; Lee, Susanna Sau-Tuen

    2017-01-01

    PPARα has been known to play a pivotal role in orchestrating lipid, glucose, and amino acid metabolism via transcriptional regulation of its target gene expression during energy deprivation. Recent evidence has also suggested that PPARα is involved in bile acid metabolism, but how PPARα modulates the homeostasis of bile acids during fasting is still not clear. In a mechanistic study aiming to dissect the spectrum of PPARα target genes involved in metabolic response to fasting, we identified a novel mouse gene (herein named mL-STL for mouse liver-sulfotransferase-like) that shared extensive homology with the Sult2a subfamily of a superfamily of cytosolic sulfotransferases, implying its potential function in sulfonation. The mL-STL gene expressed predominantly in liver in fed state, but PPARα was required to sustain its expression during fasting, suggesting a critical role of PPARα in regulating the mL-STL-mediated sulfonation during fasting. Functional studies using recombinant His-tagged mL-STL protein revealed its narrow sulfonating activities toward 7α-hydroxyl primary bile acids, including cholic acid, chenodeoxycholic acid, and α-muricholic acid, and thus suggesting that mL-STL may be the major hepatic bile acid sulfonating enzyme in mice. Together, these studies identified a novel PPARα-dependent gene and uncovered a new role of PPARα as being an essential regulator in bile acid biotransformation via sulfonation during fasting. PMID:28442498

  13. Does folic acid supplementation prevent or promote colorectal cancer? Results from model-based predictions.

    PubMed

    Luebeck, E Georg; Moolgavkar, Suresh H; Liu, Amy Y; Boynton, Alanna; Ulrich, Cornelia M

    2008-06-01

    Folate is essential for nucleotide synthesis, DNA replication, and methyl group supply. Low-folate status has been associated with increased risks of several cancer types, suggesting a chemopreventive role of folate. However, recent findings on giving folic acid to patients with a history of colorectal polyps raise concerns about the efficacy and safety of folate supplementation and the long-term health effects of folate fortification. Results suggest that undetected precursor lesions may progress under folic acid supplementation, consistent with the role of folate role in nucleotide synthesis and cell proliferation. To better understand the possible trade-offs between the protective effects due to decreased mutation rates and possibly concomitant detrimental effects due to increased cell proliferation of folic acid, we used a biologically based mathematical model of colorectal carcinogenesis. We predict changes in cancer risk based on timing of treatment start and the potential effect of folic acid on cell proliferation and mutation rates. Changes in colorectal cancer risk in response to folic acid supplementation are likely a complex function of treatment start, duration, and effect on cell proliferation and mutations rates. Predicted colorectal cancer incidence rates under supplementation are mostly higher than rates without folic acid supplementation unless supplementation is initiated early in life (before age 20 years). To the extent to which this model predicts reality, it indicates that the effect on cancer risk when starting folic acid supplementation late in life is small, yet mostly detrimental. Experimental studies are needed to provide direct evidence for this dual role of folate in colorectal cancer and to validate and improve the model predictions.

  14. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wychen, Stefanie; Ramirez, Kelsey; Laurens, Lieve M. L.

    2016-01-13

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  15. Targeting GPR120 and other fatty acid sensing GPCRs ameliorates insulin resistance and inflammatory diseases

    PubMed Central

    Talukdar, Saswata; Olefsky, Jerrold M; Osborn, Olivia

    2011-01-01

    The last decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of the G protein-coupled receptors. Free Fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease. PMID:21663979

  16. Loihichelins A-F, a Suite of Amphiphilic Siderophores Produced by the Marine Bacterium Halomonas LOB-5

    PubMed Central

    Homann, Vanessa V; Sandy, Moriah; Tincu, J. Andy; Templeton, Alexis S.; Tebo, Bradley M.; Butler, Alison

    2009-01-01

    A suite of amphiphilic siderophores, loihichelins A-F, were isolated from cultures of the marine bacterium Halomonas sp. LOB-5. This heterotrophic Mn(II)-oxidizing bacterium was recently isolated from the partially weathered surfaces of submarine glassy pillow basalts and associated hydrothermal flocs of iron oxides collected from the southern rift zone of Loihi Seamount east of Hawai’i. The loihichelins contain a hydrophilic head group consisting of an octapeptide comprised of D-threo-β-hydroxyaspartic acid, D-serine, L-glutamine, L-serine, L-N(δ)-acetyl-N(δ)-hydroxy ornithine, dehydroamino-2-butyric acid, D-serine and cyclic N(δ)-hydroxy-D-ornithine, appended by one of a series of fatty acids ranging from decanoic acid to tetradecanoic acid. The structure of loihichelin C was determined by a combination of amino acid and fatty acid analyses, tandem mass spectrometry and NMR spectroscopy. The structures of the other loihichelins were inferred from the amino acid and fatty acid analyses, and tandem mass spectrometry. The role of these siderophores in sequestering Fe(III) released during basaltic rock weathering, as well as their potential role in the promotion of Mn(II) and Fe(II) oxidation, is of considerable interest. PMID:19320498

  17. Effects of Prostacyclin, Indomethacin, and Heparin on Cerebral Blood Flow and Platelet Adhesion After Multifocal Ischemia of Canine Brain

    DTIC Science & Technology

    1988-06-01

    Hoff IT: Sodium 5-(3’-pyridinyl- methyl)benzoilzran-2-carboxylate (U-63557A) potentiates pro- tective effect of intravenrous eicosapentaenoic acid on...PAF.3- Hydroxy acids and PAP are pro- on the vascular endothelium.2 Although we were unable duced by platelets during aggregation and are potent to...Pickard JD: Role of prostaglandins and arachidonic acid derivatives in the coupling of cerebral blood flow to cerebral metabolism. J Cereb Blood Flow

  18. Galacto-oligosaccharides and Colorectal Cancer: Feeding our Intestinal Probiome

    PubMed Central

    Bruno-Barcena, Jose M.; Azcarate-Peril, M. Andrea

    2014-01-01

    Prebiotics are ingredients selectively fermented by the intestinal microbiota that promote changes in the microbial community structure and/or their metabolism, conferring health benefits to the host. Studies show that β (1–4) galacto-oligosaccharides [β (1–4) GOS], lactulose and fructo-oligosaccharides increase intestinal concentration of lactate and short chain fatty acids, and stool frequency and weight, and they decrease fecal concentration of secondary bile acids, fecal pH, and nitroreductase and β-glucuronidase activities suggesting a clear role in colorectal cancer (CRC) prevention. This review summarizes research on prebiotics bioassimilation, specifically β (1–4) GOS, and their potential role in CRC. We also evaluate research that show that the impact of prebiotics on host physiology can be direct or through modulation of the gut intestinal microbiome, specifically the probiome (autochtonous beneficial bacteria), we present studies on a potential role in CRC progression to finally describe the current state of β (1–4) GOS generation for industrial production. PMID:25584074

  19. Lipoic Acid Decreases the Viability of Breast Cancer Cells and Activity of PTP1B and SHP2.

    PubMed

    Kuban-Jankowska, Alicja; Gorska-Ponikowska, Magdalena; Wozniak, Michal

    2017-06-01

    Protein tyrosine phosphatases PTP1B and SHP2 are potential targets for anticancer therapy, because of the essential role they play in the development of tumors. PTP1B and SHP2 are overexpressed in breast cancer cells, thus inhibition of their activity can be potentially effective in breast cancer therapy. Lipoic acid has been previously reported to inhibit the proliferation of colon, breast and thyroid cancer cells. We investigated the effect of alpha-lipoic acid (ALA) and its reduced form of dihydrolipoic acid (DHLA) on the viability of MCF-7 cancer cells and on the enzymatic activity of PTP1B and SHP2 phosphatases. ALA and DHLA decrease the activity of PTP1B and SHP2, and have inhibitory effects on the viability and proliferation of breast cancer cells. ALA and DHLA can be considered as potential agents for the adjunctive treatment of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers.

    PubMed

    Davis, M E; Pun, S H; Bellocq, N C; Reineke, T M; Popielarski, S R; Mishra, S; Heidel, J D

    2004-01-01

    Non-viral (synthetic) nucleic acid delivery systems have the potential to provide for the practical application of nucleic acid-based therapeutics. We have designed and prepared a tunable, non-viral nucleic acid delivery system that self-assembles with nucleic acids and centers around a new class of polymeric materials; namely, linear, water-soluble cyclodextrin-containing polymers. The relationships between polymer structure and gene delivery are illustrated, and the roles of the cyclodextrin moieties for minimizing toxicity and forming inclusion complexes in the self-assembly processes are highlighted. This vehicle is the first example of a polymer-based gene delivery system formed entirely by self-assembly.

  1. An automatic on-line 2,2-diphenyl-1-picrylhydrazyl-high performance liquid chromatography method for high-throughput screening of antioxidants from natural products.

    PubMed

    Lu, Yanzhen; Wu, Nan; Fang, Yingtong; Shaheen, Nusrat; Wei, Yun

    2017-10-27

    Many natural products are rich in antioxidants which play an important role in preventing or postponing a variety of diseases, such as cardiovascular and inflammatory disease, diabetes as well as breast cancer. In this paper, an automatic on-line 2,2-diphenyl-1-picrylhydrazyl-high performance liquid chromatography (DPPH-HPLC) method was established for antioxidants screening with nine standards including organic acids (4-hydroxyphenylacetic acid, p-coumaric acid, ferulic acid, and benzoic acid), alkaloids (coptisine and berberine), and flavonoids (quercitrin, astragalin, and quercetin). The optimal concentration of DPPH was determined, and six potential antioxidants including 4-hydroxyphenylacetic acid, p-coumaric acid, ferulic acid, quercitrin, astragalin, and quercetin, and three non-antioxidants including benzoic acid, coptisine, and berberine, were successfully screened out and validated by conventional DPPH radical scavenging activity assay. The established method has been applied to the crude samples of Saccharum officinarum rinds, Coptis chinensis powders, and Malus pumila leaves, consecutively. Two potential antioxidant compounds from Saccharum officinarum rinds and five potential antioxidant compounds from Malus pumila eaves were rapidly screened out. Then these seven potential antioxidants were purified and identified as p-coumaric acid, ferulic acid, phloridzin, isoquercitrin, quercetin-3-xyloside, quercetin-3-arabinoside, and quercetin-3-rhamnoside using countercurrent chromatography combined with mass spectrometry and their antioxidant activities were further evaluated by conventional DPPH radical scavenging assay. The activity result was in accordance with that of the established method. This established method is cheap and automatic, and could be used as an efficient tool for high-throughput antioxidant screening from various complex natural products. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. N-3 Polyunsaturated Fatty Acids through the Lifespan: Implication for Psychopathology

    PubMed Central

    Pusceddu, Matteo M.; Kelly, Philip; Stanton, Catherine; Cryan, John F.

    2016-01-01

    Objective: The impact of lifetime dietary habits and their role in physical, mental, and social well-being has been the focus of considerable recent research. Omega-3 polyunsaturated fatty acids as a dietary constituent have been under the spotlight for decades. Omega-3 polyunsaturated fatty acids constitute key regulating factors of neurotransmission, neurogenesis, and neuroinflammation and are thereby fundamental for development, functioning, and aging of the CNS. Of note is the fact that these processes are altered in various psychiatric disorders, including attention deficit hyperactivity disorder, depression, and Alzheimer’s disease. Design: Relevant literature was identified through a search of MEDLINE via PubMed using the following words, “n-3 PUFAs,” “EPA,” and “DHA” in combination with “stress,” “cognition,” “ADHD,” “anxiety,” “depression,” “bipolar disorder,” “schizophrenia,” and “Alzheimer.” The principal focus was on the role of omega-3 polyunsaturated fatty acids throughout the lifespan and their implication for psychopathologies. Recommendations for future investigation on the potential clinical value of omega-3 polyunsaturated fatty acids were examined. Results: The inconsistent and inconclusive results from randomized clinical trials limits the usage of omega-3 polyunsaturated fatty acids in clinical practice. However, a body of literature demonstrates an inverse correlation between omega-3 polyunsaturated fatty acid levels and quality of life/ psychiatric diseases. Specifically, older healthy adults showing low habitual intake of omega-3 polyunsaturated fatty acids benefit most from consuming them, showing improved age-related cognitive decline. Conclusions: Although further studies are required, there is an exciting and growing body of research suggesting that omega-3 polyunsaturated fatty acids may have a potential clinical value in the prevention and treatment of psychopathologies. PMID:27608809

  3. Inactivation of thiol-dependent enzymes by hypothiocyanous acid: role of sulfenyl thiocyanate and sulfenic acid intermediates

    PubMed Central

    Barrett, Tessa J.; Pattison, David I.; Leonard, Stephen E.; Carroll, Kate S.; Davies, Michael J.; Hawkins, Clare L.

    2012-01-01

    Myeloperoxidase (MPO) forms reactive oxidants including hypochlorous and hypothiocyanous acids (HOCl and HOSCN) under inflammatory conditions. HOCl causes extensive tissue damage and plays a role in the progression of many inflammatory-based diseases. Although HOSCN is a major MPO oxidant, particularly in smokers, who have elevated plasma thiocyanate, the role of this oxidant in disease is poorly characterized. HOSCN induces cellular damage by targeting thiols. However, the specific targets and mechanisms involved in this process are not well defined. We show that exposure of macrophages to HOSCN results in the inactivation of intracellular enzymes, including creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In each case, the active-site thiol residue is particularly sensitive to oxidation, with evidence for reversible inactivation and the formation of sulfenyl thiocyanate and sulfenic acid intermediates, on treatment with HOSCN (less than fivefold molar excess). Experiments with DAz-2, a cell-permeable chemical trap for sulfenic acids, demonstrate that these intermediates are formed on many cellular proteins, including GAPDH and CK, in macrophages exposed to HOSCN. This is the first direct evidence for the formation of protein sulfenic acids in HOSCN-treated cells and highlights the potential of this oxidant to perturb redox signaling processes. PMID:22248862

  4. Proteomics-based approach identified differentially expressed proteins with potential roles in endometrial carcinoma.

    PubMed

    Li, Zhengyu; Min, Wenjiao; Huang, Canhua; Bai, Shujun; Tang, Minghai; Zhao, Xia

    2010-01-01

    We used proteomic approaches to identify altered expressed proteins in endometrial carcinoma, with the aim of discovering potential biomarkers or therapeutic targets for endometrial carcinoma. The global proteins extracted from endometrial carcinoma and normal endometrial tissues were separated by 2-dimensional electrophoresis and analyzed with PDQuest (Bio-Rad, Hercules, Calif) software. The differentially expressed spots were identified by mass spectrometry and searched against NCBInr protein database. Those proteins with potential roles were confirmed by Western blotting and immunohistochemical assays. Ninety-nine proteins were identified by mass spectrometry, and a cluster diagram analysis indicated that these proteins were involved in metabolism, cell transformation, protein folding, translation and modification, proliferation and apoptosis, signal transduction, cytoskeleton, and so on. In confirmatory immunoblotting and immunohistochemical analyses, overexpressions of epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A were also observed in endometrial carcinoma tissues, which were consistent with the proteomic results. Our results suggested that these identified proteins, including epidermal fatty acid-binding protein, calcyphosine, and cyclophilin A, might be of potential values in the studies of endometrial carcinogenesis or investigations of diagnostic biomarkers or treatment targets for endometrial carcinoma.

  5. Metabonomics and its role in amino acid nutrition research.

    PubMed

    He, Qinghua; Yin, Yulong; Zhao, Feng; Kong, Xiangfeng; Wu, Guoyao; Ren, Pingping

    2011-06-01

    Metabonomics combines metabolic profiling and multivariate data analysis to facilitate the high-throughput analysis of metabolites in biological samples. This technique has been developed as a powerful analytical tool and hence has found successful widespread applications in many areas of bioscience. Metabonomics has also become an important part of systems biology. As a sensitive and powerful method, metabonomics can quantitatively measure subtle dynamic perturbations of metabolic pathways in organisms due to changes in pathophysiological, nutritional, and epigenetic states. Therefore, metabonomics holds great promise to enhance our understanding of the complex relationship between amino acids and metabolism to define the roles for dietary amino acids in maintaining health and the development of disease. Such a technique also aids in the studies of functions, metabolic regulation, safety, and individualized requirements of amino acids. Here, we highlight the common workflow of metabonomics and some of the applications to amino acid nutrition research to illustrate the great potential of this exciting new frontier in bioscience.

  6. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future.

    PubMed

    Watanabe, Yasuhiro; Tatsuno, Ichiro

    2017-08-01

    Large-scale epidemiological studies on Greenlandic, Canadian and Alaskan Eskimos have examined the health benefits of omega-3 fatty acids consumed as part of the diet, and found statistically significant relative reduction in cardiovascular risk in people consuming omega-3 fatty acids. Areas covered: This article reviews studies on omega-3 fatty acids during the last 50 years, and identifies issues relevant to future studies on cardiovascular (CV) risk. Expert commentary: Although a meta-analysis of large-scale prospective cohort studies and randomized studies reported that fish and fish oil consumption reduced coronary heart disease-related mortality and sudden cardiac death, omega-3 fatty acids have not yet been shown to be effective in secondary prevention trials on patients with multiple cardiovascular disease (CVD) risk factors. The ongoing long-term CV interventional outcome studies investigate high-dose, prescription-strength omega-3 fatty acids. The results are expected to clarify the potential role of omega-3 fatty acids in reducing CV risk. The anti-inflammatory properties of omega-3 fatty acids are also important. Future clinical trials should also focus on the role of these anti-inflammatory mediators in human arteriosclerotic diseases as well as inflammatory diseases.

  7. FADS gene cluster polymorphisms: important modulators of fatty acid levels and their impact on atopic diseases.

    PubMed

    Lattka, Eva; Illig, Thomas; Heinrich, Joachim; Koletzko, Berthold

    2009-01-01

    Long-chain polyunsaturated fatty acids (LC-PUFAs) play an important role in several physiological processes and their concentration in phospholipids has been associated with several complex diseases, such as atopic disease. The level and composition of LC-PUFAs in the human body is highly dependent on their intake in the diet or on the intake of fatty acid precursors, which are endogenously elongated and desaturated to physiologically active LC-PUFAs. The most important enzymes in this reaction cascade are the Delta(5) and Delta(6) desaturase. Several studies in the last few years have revealed that single nucleotide polymorphisms (SNPs) in the 2 desaturase encoding genes (FADS1 and FADS2) are highly associated with the concentration of omega-6 and omega-3 fatty acids, showing that beside nutrition, genetic factors also play an important role in the regulation of LC-PUFAs. This review focuses on current knowledge of the impact of genetic polymorphisms on LC-PUFA metabolism and on their potential role in the development of atopic diseases. Copyright (c) 2009 S. Karger AG, Basel.

  8. Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation.

    PubMed

    Adeleke, Rasheed; Cloete, T E; Khasa, D P

    2012-03-01

    With one of the largest iron ore deposits in the world, South Africa is recognised to be among the top ten biggest exporters of iron ore. Increasing demand and consumption of this mineral triggered search for processing technologies, which can be utilised to "purify" the low-grade iron ore minerals that contain high levels of unwanted potassium (K) and phosphorus (P). This study investigated a potential biological method that can be further developed for the full biobeneficiation of low-grade iron ore minerals. Twenty-three bacterial strains that belong to Proteobacteria, Firmicutes, Bacteroidetes and Actinobateria were isolated from the iron ore minerals and identified with sequence homology and phylogenetic methods. The abilities of these isolates to lower the pH of the growth medium and solubilisation of tricalcium phosphate were used to screen them as potential mineral solubilisers. Eight isolates were successfully screened with this method and utilised in shake flask experiments using iron ore minerals as sources of K and P. The shake flask experiments revealed that all eight isolates have potentials to produce organic acids that aided the solubilisation of the iron ore minerals. In addition, all eight isolates produced high concentrations of gluconic acid followed by relatively lower concentrations of acetic, citric and propanoic acid. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analyses also indicated extracellular polymeric substances could play a role in mineral solubilisation.

  9. Development and application of a comparative fatty acid analysis method to investigate voriconazole-induced hepatotoxicity.

    PubMed

    Chen, Guan-yuan; Chiu, Huai-hsuan; Lin, Shu-wen; Tseng, Yufeng Jane; Tsai, Sung-jeng; Kuo, Ching-hua

    2015-01-01

    As fatty acids play an important role in biological regulation, the profiling of fatty acid expression has been used to discover various disease markers and to understand disease mechanisms. This study developed an effective and accurate comparative fatty acid analysis method using differential labeling to speed up the metabolic profiling of fatty acids. Fatty acids were derivatized with unlabeled (D0) or deuterated (D3) methanol, followed by GC-MS analysis. The comparative fatty acid analysis method was validated using a series of samples with different ratios of D0/D3-labeled fatty acid standards and with mouse liver extracts. Using a lipopolysaccharide (LPS)-treated mouse model, we found that the fatty acid profiles after LPS treatment were similar between the conventional single-sample analysis approach and the proposed comparative approach, with a Pearson's correlation coefficient of approximately 0.96. We applied the comparative method to investigate voriconazole-induced hepatotoxicity and revealed the toxicity mechanism as well as the potential of using fatty acids as toxicity markers. In conclusion, the comparative fatty acid profiling technique was determined to be fast and accurate and allowed the discovery of potential fatty acid biomarkers in a more economical and efficient manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Specific Amino Acids Affect Cardiovascular Diseases and Atherogenesis via Protection against Macrophage Foam Cell Formation: Review Article.

    PubMed

    Grajeda-Iglesias, Claudia; Aviram, Michael

    2018-06-20

    The strong relationship between cardiovascular diseases (CVD), atherosclerosis, and endogenous or exogenous lipids has been recognized for decades, underestimating the contribution of other dietary components, such as amino acids, to the initiation of the underlying inflammatory disease. Recently, specific amino acids have been associated with incident cardiovascular disorders, suggesting their significant role in the pathogenesis of CVD. Special attention has been paid to the group of branched-chain amino acids (BCAA), leucine, isoleucine, and valine, since their plasma values are frequently found in high concentrations in individuals with CVD risk. Nevertheless, dietary BCAA, leucine in particular, have been associated with improved indicators of atherosclerosis. Therefore, their potential role in the process of atherogenesis and concomitant CVD development remains unclear. Macrophages play pivotal roles in the development of atherosclerosis. They can accumulate high amounts of circulating lipids, through a process known as macrophage foam cell formation, and initiate the atherogenesis process. We have recently screened for anti- or pro-atherogenic amino acids in the macrophage model system. Our study showed that glycine, cysteine, alanine, leucine, glutamate, and glutamine significantly affected macrophage atherogenicity mainly through modulation of the cellular triglyceride metabolism. The anti-atherogenic properties of glycine and leucine, and the pro-atherogenic effects of glutamine, were also confirmed in vivo. Further investigation is warranted to define the role of these amino acids in atherosclerosis and CVD, which may serve as a basis for the development of anti-atherogenic nutritional and therapeutic approaches.

  11. Effects of dietary fatty acids and cholesterol excess on liver injury: A lipidomic approach.

    PubMed

    Serviddio, Gaetano; Bellanti, Francesco; Villani, Rosanna; Tamborra, Rosanna; Zerbinati, Chiara; Blonda, Maria; Ciacciarelli, Marco; Poli, Giuseppe; Vendemiale, Gianluigi; Iuliano, Luigi

    2016-10-01

    Lipid accumulation is the hallmark of Non-alcoholic Fatty Liver Disease (NAFLD) and has been suggested to play a role in promoting fatty liver inflammation. Previous findings indicate that during oxidative stress conditions excess cholesterol autoxidizes to oxysterols. To date, the role of oxysterols and their potential interaction with fatty acids accumulation in NASH pathogenesis remains little investigated. We used the nutritional model of high fatty acids (HFA), high cholesterol (HCh) or high fat and high cholesterol (HFA+FCh) diets and explored by a lipidomic approach, the blood and liver distribution of fatty acids and oxysterols in response to dietary manipulation. We observed that HFA or HCh diets induced fatty liver without inflammation, which was otherwise observed only after supplementation of HFA+HCh. Very interestingly, the combination model was associated with a specific oxysterol fingerprint. The present work provides a complete analysis of the change in lipids and oxysterols profile induced by different lipid dietary model and their association with histological alteration of the liver. This study allows the generation of interesting hypotheses on the role of interaction of lipid and cholesterol metabolites in the liver injury during NAFLD development and progression. Moreover, the changes in the concentration and quality of oxysterols induced by a combination diet suggest a novel potential pathogenic mechanism in the progression from simple steatosis to steatohepatitis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Fatty acid synthase inhibition in human breast cancer cells leads to malonyl-CoA-induced inhibition of fatty acid oxidation and cytotoxicity.

    PubMed

    Thupari, J N; Pinn, M L; Kuhajda, F P

    2001-07-13

    Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy. Copyright 2001 Academic Press.

  13. Extended fear conditioning reveals a role for both N-methyl-D-aspartic acid and non-N-methyl-D-aspartic acid receptors in the amygdala in the acquisition of conditioned fear.

    PubMed

    Pistell, P J; Falls, W A

    2008-09-09

    Pavlovian conditioning is a useful tool for elucidating the neural mechanisms involved with learning and memory, especially in regard to the stimuli associated with aversive events. The amygdala has been repeatedly implicated as playing a significant role in the acquisition and expression of fear. If the amygdala is critical for the acquisition of fear, then it should contribute to this processes regardless of the parameters used to induce or evaluate conditioned fear. A series of experiments using reversible inactivation techniques evaluated the role of the amygdala in the acquisition of conditioned fear when training was conducted over several days in rats. Fear-potentiated startle was used to evaluate the acquisition of conditioned fear. Pretraining infusions of N-methyl-d-aspartic acid (NMDA) or non-NMDA receptor antagonists alone into the amygdala interfered with the acquisition of fear early in training, but not later. Pretraining infusions of a cocktail consisting of both an NMDA and non-NMDA antagonist interfered with the acquisition of conditioned fear across all days of training. Taken together these results suggest the amygdala may potentially be critical for the acquisition of conditioned fear regardless of the parameters utilized.

  14. Interaction of Gut Microbiota with Bile Acid Metabolism and its Influence on Disease States

    PubMed Central

    Staley, Christopher; Weingarden, Alexa R.

    2016-01-01

    Primary bile acids serve important roles in cholesterol metabolism, lipid digestion, host-microbe interactions, and regulatory pathways in the human host. While most bile acids are reabsorbed and recycled via enterohepatic cycling, ~5% serve as substrates for bacterial biotransformation in the colon. Enzymes involved in various transformations have been characterized from cultured gut bacteria and reveal taxa-specific distribution. More recently, bioinformatic approaches have revealed greater diversity in isoforms of these enzymes, and the microbial species in which they are found. Thus, the functional roles played by the bile acid-transforming gut microbiota and the distribution of resulting secondary bile acids, in the bile acid pool, may be profoundly affected by microbial community structure and function. Bile acids and the composition of the bile acid pool have historically been hypothesized to be associated with several disease states, including recurrent Clostridium difficile infection, inflammatory bowel diseases, metabolic syndrome, and several cancers. Recently, however, emphasis has been placed on how microbial communities in the dysbiotic gut may alter the bile acid pool to potentially cause or mitigate disease onset. This review highlights the current understanding of the interactions between the gut microbial community, bile acid biotransformation, and disease states, and addresses future directions to better understand these complex associations. PMID:27888332

  15. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    PubMed Central

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  16. Global Profiling of Protein Lysine Malonylation in Escherichia coli Reveals Its Role in Energy Metabolism.

    PubMed

    Qian, Lili; Nie, Litong; Chen, Ming; Liu, Ping; Zhu, Jun; Zhai, Linhui; Tao, Sheng-Ce; Cheng, Zhongyi; Zhao, Yingming; Tan, Minjia

    2016-06-03

    Protein lysine malonylation is a recently identified post-translational modification (PTM), which is evolutionarily conserved from bacteria to mammals. Although analysis of lysine malonylome in mammalians suggested that this modification was related to energy metabolism, the substrates and biological roles of malonylation in prokaryotes are still poorly understood. In this study, we performed qualitative and quantitative analyses to globally identify lysine malonylation substrates in Escherichia coli. We identified 1745 malonylation sites in 594 proteins in E. coli, representing the first and largest malonylome data set in prokaryotes up to date. Bioinformatic analyses showed that lysine malonylation was significantly enriched in protein translation, energy metabolism pathways and fatty acid biosynthesis, implying the potential roles of protein malonylation in bacterial physiology. Quantitative proteomics by fatty acid synthase inhibition in both auxotrophic and prototrophic E. coli strains revealed that lysine malonylation is closely associated with E. coli fatty acid metabolism. Protein structural analysis and mutagenesis experiment suggested malonylation could impact enzymatic activity of citrate synthase, a key enzyme in citric acid (TCA) cycle. Further comparative analysis among lysine malonylome, succinylome and acetylome data showed that these three modifications could participate in some similar enriched metabolism pathways, but they could also possibly play distinct roles such as in fatty acid synthesis. These data expanded our knowledge of lysine malonylation in prokaryotes, providing a resource for functional study of lysine malonylation in bacteria.

  17. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases.

    PubMed

    Talukdar, Saswata; Olefsky, Jerrold M; Osborn, Olivia

    2011-09-01

    The past decade has seen great progress in the understanding of the molecular pharmacology, physiological function and therapeutic potential of G-protein-coupled receptors (GPCRs). Free fatty acids (FFAs) have been demonstrated to act as ligands of several GPCRs including GPR40, GPR43, GPR84, GPR119 and GPR120. We have recently shown that GPR120 acts as a physiological receptor of ω3 fatty acids in macrophages and adipocytes, which mediate potent anti-inflammatory and insulin sensitizing effects. The important role GPR120 plays in the control of inflammation raises the possibility that targeting this receptor could have therapeutic potential in many inflammatory diseases including obesity and type 2 diabetes. In this review paper, we discuss lipid-sensing GPCRs and highlight potential outcomes of targeting such receptors in ameliorating disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light.

    PubMed

    Sugahara, Haruna; Meinert, Cornelia; Nahon, Laurent; Jones, Nykola C; Hoffmann, Søren V; Hamase, Kenji; Takano, Yoshinori; Meierhenrich, Uwe J

    2018-07-01

    Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    PubMed

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  20. Potent anti-seizure effects of D-leucine

    PubMed Central

    Hartman, Adam L.; Santos, Polan; O’Riordan, Kenneth J.; Stafstrom, Carl E.; Hardwick, J. Marie

    2015-01-01

    There are no effective treatments for millions of patients with intractable epilepsy. High-fat ketogenic diets may provide significant clinical benefit but are challenging to implement. Low carbohydrate levels appear to be essential for the ketogenic diet to work, but the active ingredients in dietary interventions remain elusive, and a role for ketogenesis has been challenged. A potential antiseizure role of dietary protein or of individual amino acids in the ketogenic diet is understudied. We investigated the two exclusively ketogenic amino acids, L-leucine and L-lysine, and found that only L-leucine potently protects mice when administered prior to the onset of seizures induced by kainic acid injection, but not by inducing ketosis. Unexpectedly, the D-enantiomer of leucine, which is found in trace amounts in the brain, worked as well or better than L-leucine against both kainic acid and 6 Hz electroshock-induced seizures. However, unlike L-leucine, D-leucine potently terminated seizures even after the onset of seizure activity. Furthermore, D-leucine, but not L-leucine, reduced long-term potentiation but had no effect on basal synaptic transmission in vitro. In a screen of candidate neuronal receptors, D-leucine failed to compete for binding by cognate ligands, potentially suggesting a novel target. Even at low doses, D-leucine suppressed ongoing seizures at least as effectively as diazepam but without sedative effects. These studies raise the possibility that D-leucine may represent a new class of anti-seizure agents, and that D-leucine may have a previously unknown function in eukaryotes. PMID:26054437

  1. Intake of α-linolenic acid and other fatty acids in relation to the risk of bladder cancer: results from the New Hampshire case–control study

    PubMed Central

    Brinkman, Maree T.; Karagas, Margaret R.; Zens, Michael S.; Schned, Alan R.; Reulen, Raoul C.; Zeegers, Maurice P.

    2012-01-01

    The role of dietary fat in bladder cancer aetiology is currently unclear due to few studies, equivocal findings and a lack of information on important dietary fatty acids. The aim of the present study was to investigate the association between the intake of major dietary fats and fatty acids and the risk of bladder cancer. A case–control study was conducted in New Hampshire, USA. Dietary data were collected from 322 cases and 239 controls, and OR and 95 % CI were calculated using unconditional logistic regression. Adjustment was made for potential confounders: sex, age, smoking status, pack-years smoked, cholesterol and energy intake. Statistically significant reduced odds of bladder cancer were observed for high intakes (highest quartile v. lowest quartile) of α-linolenic acid (ALA) (OR 0.26, 95% CI 0.10, 0.65; P for trend=0.01) and vegetable fat (OR 0.39, 95% CI 0.18, 0.86; P for trend=0.03). Borderline statistically significant reduced odds were detected for polyunsaturated fat (OR 0.43, 95% CI 0.19, 0.98; P for trend=0.07) and linoleic acid (OR 0.43, 95% CI 0.19, 0.96; P for trend=0.06). These fats and fatty acids were highly correlated and following adjustment for each other, the only potential inverse association to remain was for ALA. The present findings suggest that ALA may have a protective role against developing bladder cancer; however, further investigation and replication in other epidemiological studies are required. Future research should focus on the type, source and quantities of different dietary fatty acids consumed. PMID:21736846

  2. Use of a Potential Probiotic, Lactobacillus plantarum L7, for the Preparation of a Rice-Based Fermented Beverage

    PubMed Central

    Giri, Sib Sankar; Sen, Shib Sankar; Saha, Subrata; Sukumaran, Venkatachalam; Park, Se Chang

    2018-01-01

    This study aimed to isolate potential probiotic lactic acid bacteria from a traditional rice-based fermented beverage “bhaati jaanr” and to evaluate their role during preparation of the beverage. Among various isolates, Lactobacillus plantarum strain L7 exhibited satisfactory in vitro probiotic characteristics such as acid resistance and bile tolerance, cell surface hydrophobicity, auto-aggregation, antibiotic susceptibility, and antimicrobial activities. Therefore, performance of L7 as a starter culture in rice fermentation was determined during a 6-day rice fermentation study. L. plantarum L7 decreased the pH, associated with an increase in total titratable acidity and organic acid production up to the 4th day of fermentation. The highest concentrations of succinic acid (0.37 mg/g), lactic acid (4.95 mg/g), and acetic acid (0.36 mg/g) were recorded on the 3rd, 4th, and 5th days of fermentation, respectively. Saccharifying (148.13 μg/min g−1) and liquefying (89.47 μg/min g−1) activities were the highest on days 3 and 2, respectively, and thereafter, they decreased. Phytase activity and the cleavage of free minerals (sodium, calcium, magnesium, manganese, and ferrous) increased up to days 3–4. The concentration of various accumulated malto-oligosaccharides (glucose, fructose, maltotriose, and maltoterose) was noted to be the maximum on days 4 and 5. Furthermore, gas chromatography-mass spectrometry analysis indicated the presence of various volatile compounds. The fermented material also exhibited 1,1-diphenyl-2-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity. Therefore, the probiotic, L. plantarum L7, has a significant role in the fermentation of this beverage and enhances its functional properties. PMID:29593702

  3. Uric acid and progression of chronic kidney disease.

    PubMed

    Weaver, Donald J

    2018-06-21

    The association between serum uric acid levels and human disease has garnered intense interest over the last decade including chronic kidney disease. Animal studies have provided evidence for a potential mechanistic role of uric acid in promoting progression of chronic kidney disease. Epidemiologic studies have also suggested an association between elevated serum uric acid levels and worsening renal function in the general population as well as in patients with chronic kidney disease. However, there is currently insufficient evidence to recommend the use of uric acid-lowering therapy to delay progression of chronic kidney disease in this patient population. Adequately powered, randomized, placebo-controlled trials are required to more precisely evaluate the risk and benefits of uric acid-lowering therapy in pediatric patients.

  4. Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery.

    PubMed

    Vancoillie, Gertjan; Hoogenboom, Richard

    2016-10-19

    Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials.

  5. The surface tension of aqueous solutions of some atmospheric water-soluble organic compounds

    NASA Astrophysics Data System (ADS)

    Tuckermann, Rudolf; Cammenga, Heiko K.

    The surface tensions of aqueous solutions of levoglucosan, 3-hydroxybutanoic acid, 3-hydroxybenzoic acid, azelaic acid, pinonic acid, and humic acid have been measured. These compounds are suggested as model substances for the water-soluble organic compounds (WSOC) in atmospheric aerosols and droplets which may play an important role in the aerosol cycle because of their surface-active potentials. The reductions in surface tension induced by single and mixed WSOC in aqueous solution of pure water is remarkable. However, the results of this investigation cannot explain the strong reduction in surface tension in real cloud and fog water samples at concentrations of WSOC below 1 mg/mL.

  6. Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery

    PubMed Central

    Vancoillie, Gertjan; Hoogenboom, Richard

    2016-01-01

    Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials. PMID:27775572

  7. A Substrate Pharmacophore for the Human Sodium Taurocholate Co-transporting Polypeptide

    PubMed Central

    Dong, Zhongqi; Ekins, Sean; Polli, James E.

    2014-01-01

    Human Sodium Taurocholate Co-transporting Polypeptide (NTCP) is the main bile acid uptake transporter in the liver with the capability to translocate xenobiotics. While its inhibitor requirements have been recently characterized, its substrate requirements have not. The objectives of this study were a) to elucidate NTCP substrate requirements using native bile acids and bile acid analogs, b) to develop the first pharmacophore for NTCP substrates and compare it with the inhibitor pharmacophores, and c) to identify additional NTCP novel substrates. Thus, 18 native bile acids and two bile acid conjugates were initially assessed for NTCP inhibition and/or uptake, which suggested a role of hydroxyl pattern and steric interaction in NTCP binding and translocation. A common feature pharmacophore for NTCP substrate uptake was developed, using 14 native bile acids and bile acid conjugates, yielding a model which featured three hydrophobes, one hydrogen bond donor, one negative ionizable feature and three excluded volumes. This model was used to search a database of FDA approved drugs and retrieved the majority of the known NTCP substrates. Among the retrieved drugs, irbesartan and losartan were identified as novel NTCP substrates, suggesting a potential role of NTCP in drug disposition. PMID:25448570

  8. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    PubMed Central

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea. PMID:20967185

  9. Rosacea, reactive oxygen species, and azelaic Acid.

    PubMed

    Jones, David A

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea.

  10. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective

    PubMed Central

    Ginsburg, Isaac; van Heerden, Peter Vernon; Koren, Erez

    2017-01-01

    This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders PMID:28203100

  11. Chemical and molecular factors in irritable bowel syndrome: current knowledge, challenges, and unanswered questions.

    PubMed

    Camilleri, Michael; Oduyebo, Ibironke; Halawi, Houssam

    2016-11-01

    Several chemical and molecular factors in the intestine are reported to be altered and to have a potentially significant role in irritable bowel syndrome (IBS), particularly in IBS with diarrhea. These include bile acids; short-chain fatty acids; mucosal barrier proteins; mast cell products such as histamine, proteases, and tryptase; enteroendocrine cell products; and mucosal mRNAs, proteins, and microRNAs. This article reviews the current knowledge and unanswered questions in the pathobiology of the chemical and molecular factors in IBS. Evidence continues to point to significant roles in pathogenesis of these chemical and molecular mechanisms, which may therefore constitute potential targets for future research and therapy. However, it is still necessary to address the interaction between these factors in the gut and to appraise how they may influence hypervigilance in the central nervous system in patients with IBS. Copyright © 2016 the American Physiological Society.

  12. Short chain fatty acids (butyric acid) and intestinal diseases

    PubMed

    Manrique Vergara, David; González Sánchez, María Eugenia

    2017-10-15

    Short chain fatty acids contain up to 6 carbon atoms. Among them, butyric acid stands out for its key role in pathologies with intestinal affectation. Butyric acid is the main energetic substrate of the colonocyte, it stimulates the absorption of sodium and water in the colon, and presents trophic action on the intestinal cells. To review the clinical use of formulations for the oral use of butyric acid. Review of published articles on oral supplementation with butyric acid in intestinal pathologies. The publications mainly deal with the use of oral butyric acid in pathologies involving inflammation and / or alterations of intestinal motility. Highlighting the clinical potential in inflammatory bowel diseases and irritable bowel syndrome. The use of oral supplementation with butyric acid is a promising strategy in pathologies such as inflammatory bowel diseases and irritable bowel syndrome. Bio-available butyric acid formulations with acceptable organoleptic characteristics are being advanced.

  13. In Vitro Modeling of Bile Acid Processing by the Human Fecal Microbiota.

    PubMed

    Martin, Glynn; Kolida, Sofia; Marchesi, Julian R; Want, Elizabeth; Sidaway, James E; Swann, Jonathan R

    2018-01-01

    Bile acids, the products of concerted host and gut bacterial metabolism, have important signaling functions within the mammalian metabolic system and a key role in digestion. Given the complexity of the mega-variate bacterial community residing in the gastrointestinal tract, studying associations between individual bacterial genera and bile acid processing remains a challenge. Here, we present a novel in vitro approach to determine the bacterial genera associated with the metabolism of different primary bile acids and their potential to contribute to inter-individual variation in this processing. Anaerobic, pH-controlled batch cultures were inoculated with human fecal microbiota and treated with individual conjugated primary bile acids (500 μg/ml) to serve as the sole substrate for 24 h. Samples were collected throughout the experiment (0, 5, 10, and 24 h) and the bacterial composition was determined by 16S rRNA gene sequencing and the bile acid signatures were characterized using a targeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) approach. Data fusion techniques were used to identify statistical bacterial-metabolic linkages. An increase in gut bacteria associated bile acids was observed over 24 h with variation in the rate of bile acid metabolism across the volunteers ( n = 7). Correlation analysis identified a significant association between the Gemmiger genus and the deconjugation of glycine conjugated bile acids while the deconjugation of taurocholic acid was associated with bacteria from the Eubacterium and Ruminococcus genera. A positive correlation between Dorea and deoxycholic acid production suggest a potential role for this genus in cholic acid dehydroxylation. A slower deconjugation of taurocholic acid was observed in individuals with a greater abundance of Parasutterella and Akkermansia . This work demonstrates the utility of integrating compositional (metataxonomics) and functional (metabonomics) systems biology approaches, coupled to in vitro model systems, to study the biochemical capabilities of bacteria within complex ecosystems. Characterizing the dynamic interactions between the gut microbiota and the bile acid pool enables a greater understanding of how variation in the gut microbiota influences host bile acid signatures, their associated functions and their implications for health.

  14. A comparative review of cutaneous pH.

    PubMed

    Matousek, Jennifer L; Campbell, Karen L

    2002-12-01

    This review describes the role of pH in cutaneous structure and function. We first describe the molecules that contribute to the acidity or alkalinity of the skin. Next, differences in cutaneous pH among species, among individuals of the same species and within individuals are described. The potential functions of cutaneous pH in normal and diseased skin are analysed. For example, cutaneous pH has a role in the selection and maintenance of the normal cutaneous microbiota. In addition, cutaneous acidity may protect the skin against infection by microbes. Finally, there is evidence that a cutaneous pH gradient activates pH-dependent enzymes involved in the process of keratinization.

  15. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    PubMed Central

    Cook, Donald N.; Kang, Hong Soon; Jetten, Anton M.

    2015-01-01

    In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated. PMID:26878025

  16. Negative modultors of excitatory amino acids in episodic and chronic migraine: preventing and reverting chronic migraine. Special lecture 7th INWIN Congress.

    PubMed

    Nicolodi, M; Sicuteri, F

    1998-01-01

    The mechanism capable of transforming episodic migraine into chronic migraine is attributed by the authors to hyperalgesia and related neuroplastic changes, chiefly long-term potentiation, due to the action of excitatory amino acids, chiefly the ones acting at N-methyl D-aspartate (NMDA) receptor. A preeminent role has been attributed to 'third hyperalgesia', a newly observed type of hyperalgesia which is inheritable and can act as a ground for the above-mentioned mechanism of 'chronicization' of migraine. The role of primary and secondary hyperalgesia in giving redundance to neuraxial abnormalities is also discussed. The fact that NMDA noncompetitive antagonist ketamine and gabapentin, inhibitor of the neuronal synthesis of L-glutamate, can cure chronic migraine, so far considered refractory to prophylactic therapies, gives indirect but evident support to the mechanism suggested above. The antinociceptive role of the above-mentioned negative modulators of excitatory amino acids and the possible interplay between ionotropic and metabotropic receptors are also taken into consideration.

  17. Probing Gallic Acid for Its Broad Spectrum Applications.

    PubMed

    Choubey, Sneha; Goyal, Soniya; Varughese, Lesley Rachel; Kumar, Vinod

    2018-03-29

    Gallic acid and its derivatives not only exhibit excellent antioxidant, anticarcinogenic, antimutagenic, antimicrobial properties but also provide protection to the cells against oxidative stress. Gallic acid (3, 4, 5-trihydroxybenzoic acid), a low molecular triphenolic compound has arised as an efficient apoptosis inducing agent. The antimicrobial and other biological properties of gallic acid and its derivatives seemed to be linked with the hydrolysis of ester linkage between gallic acid and polyols like tannins hydrolyzed after ripening of many edible fruits. Gallic acid serves a natural defense mechanism against microbial infections and modulation of immune-responses. The current review updates us with the diverse roles played by gallic acid, its antioxidant potential, action mechanism and more importantly the diverse array of applications in therapeutic and pharmaceutical area. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use.

    PubMed

    Wang, Mingxuan; Chen, Haiqin; Gu, Zhennan; Zhang, Hao; Chen, Wei; Chen, Yong Q

    2013-12-01

    The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.

  19. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    PubMed Central

    Balaban, Seher; Lee, Lisa S.; Schreuder, Mark; Hoy, Andrew J.

    2015-01-01

    Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression. PMID:25866768

  20. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome.

    PubMed

    Šponer, Jiří; Banáš, Pavel; Jurečka, Petr; Zgarbová, Marie; Kührová, Petra; Havrila, Marek; Krepl, Miroslav; Stadlbauer, Petr; Otyepka, Michal

    2014-05-15

    We present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry. Despite its limitations, we show that MD is a powerful technique for studying the structural dynamics of nucleic acids with a fast growing potential that substantially complements experimental results and aids their interpretation.

  1. α,β-Unsaturated monoterpene acid glucose esters: structural diversity, bioactivities and functional roles.

    PubMed

    Goodger, Jason Q D; Woodrow, Ian E

    2011-12-01

    The glycosylation of lipophilic small molecules produces many important plant secondary metabolites. The majority of these are O-glycosides with relatively fewer occurring as glucose esters of aromatic or aliphatic acids. In particular, monoterpene acid glucose esters have much lower structural diversity and distribution compared to monoterpene glycosides. Nevertheless, there have been over 20 monoterpene acid glucose esters described from trees in the genus Eucalyptus (Myrtaceae) in recent years, all based on oleuropeic acid, menthiafolic acid or both. Here we review all of the glucose esters containing these monoterpenoids identified in plants to date. Many of the compounds contain phenolic aglycones and all contain at least one α,β-unsaturated carbonyl, affording a number of important potential therapeutic reactivities such as anti-tumor promotion, carcinogenesis suppression, and anti-oxidant and anti-inflammatory activities. Additional properties such as cytotoxicity, bitterness, and repellency are suggestive of a role in plant defence, but we also discuss their localization to the exterior of foliar secretory cavity lumina, and suggest they may also protect secretory cells from toxic terpenes housed within these structures. Finally we discuss how the use of a recently developed protocol to isolate secretory cavities in a functional state could be used in conjunction with systems biology approaches to help characterize their biosynthesis and roles in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Can pleiotropic effects of eicosapentaenoic acid (EPA) impact residual cardiovascular risk?

    PubMed

    Nelson, John R; True, Wayne S; Le, Viet; Mason, R Preston

    2017-11-01

    Residual cardiovascular (CV) risk persists even in statin-treated patients with optimized low-density lipoprotein cholesterol (LDL-C) levels. Other pathways beyond cholesterol contribute to CV risk and the key to reducing residual risk may be addressing non-cholesterol risk factors through pleiotropic mechanisms. The purpose of this review is to examine the literature relating to the potential role of the omega-3 fatty acid eicosapentaenoic acid (EPA) in reducing residual CV risk. The literature shows that EPA can robustly lower plasma triglyceride (TG) levels without raising LDL-C levels and documents EPA to have a broad range of beneficial effects on the atherosclerotic pathway, including those on lipids, lipoproteins, inflammation, oxidation, phospholipid membranes, and the atherosclerotic plaque itself. Clinical imaging studies have consistently demonstrated that EPA decreases plaque vulnerability and prevents plaque progression. The evidence therefore points to a potential role for EPA to reduce residual CV risk. A large randomized study of statin-treated Japanese patients demonstrated that EPA ethyl ester reduced major coronary events by 19% (P = 0.011). However, while there has been significant benefit demonstrated in this and another Japanese CV outcomes study, the question as to whether EPA can play a role in reducing residual CV risk remains to be addressed in broader populations. The large, global, ongoing, randomized, placebo-controlled REDUCE-IT study of high-risk statin-treated patients with persistent hypertriglyceridemia is currently underway to investigate the potential of icosapent ethyl (high-purity prescription EPA ethyl ester) as an add-on therapy to reduce residual CV risk.

  3. Structure of Zebrafish IRBP Reveals Fatty Acid Binding

    PubMed Central

    Ghosh, Debashis; Haswell, Karen M.; Sprada, Molly; Gonzalez-Fernandez, Federico

    2015-01-01

    Interphotoreceptor retinoid-binding protein (IRBP) has a remarkable role in targeting and protecting all-trans and 11-cis retinol, and 11-cis retinal during the rod and cone visual cycles. Little is known about how the correct retinoid is efficiently delivered and removed from the correct cell at the required time. It has been proposed that different fatty composition at that the outer-segments and retinal-pigmented epithelium could have an important role is regulating the delivery and uptake of the visual cycle retinoids at the cell-interphotoreceptor-matrix interface. Although this suggests intriguing mechanisms for the role of local fatty acids in visual-cycle retinoid trafficking, nothing is known about the structural basis of IRBP-fatty acid interactions. Such regulation may be mediated through IRBP’s unusual repeating homologous modules, each containing about 300 amino acids. We have been investigating structure-function relationships of Zebrafish IRBP (zIRBP), which has only two tandem modules (z1 and z2), as a model for the more complex four-module mammalian IRBP’s. Here we report the first X-ray crystal structure of a teleost IRBP, and the only structure with a bound ligand. The X-ray structure of z1, determined at 1.90Å resolution, reveals a two-domain organization of the module (domains A and B). A deep hydrophobic pocket was identified within the N-terminal domain A. In fluorescence titrations assays, oleic acid displaced all-trans retinol from zIRBP. Our study, which provides the first structure of an IRBP with bound ligand, supports a potential role for fatty acids in regulating retinoid binding. PMID:26344741

  4. Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization.

    PubMed

    Das, Bidus Kanti; Roy, Arup; Koschorreck, Matthias; Mandal, Santi M; Wendt-Potthoff, Katrin; Bhattacharya, Jayanta

    2009-03-01

    Passive remediation of Acid Mine Drainage (AMD) is a popular technology under development in current research. Roles of algae and fungi, the natural residents of AMD and its attenuator are not emphasized adequately in the mine water research. Living symbiotically various species of algae and fungi effectively enrich the carbon sources that help to maintain the sulfate reducing bacterial (SRB) population in predominantly anaerobic environment. Algae produce anoxic zone for SRB action and help in biogenic alkalinity generation. While studies on algal population and actions are relatively available those on fungal population are limited. Fungi show capacity to absorb significant amount of metals in their cell wall, or by extracellular polysaccharide slime. This review tries to throw light on the roles of these two types of microorganisms and to document their activities in holistic form in the mine water environment. This work, inter alia, points out the potential and gap areas of likely future research before potential applications based on fungi and algae initiated AMD remediation can be made on sound understanding.

  5. Bile Acids in Neurodegenerative Disorders

    PubMed Central

    Ackerman, Hayley D.; Gerhard, Glenn S.

    2016-01-01

    Bile acids, a structurally related group of molecules derived from cholesterol, have a long history as therapeutic agents in medicine, from treatment for primarily ocular diseases in ancient Chinese medicine to modern day use as approved drugs for certain liver diseases. Despite evidence supporting a neuroprotective role in a diverse spectrum of age-related neurodegenerative disorders, including several small pilot clinical trials, little is known about their molecular mechanisms or their physiological roles in the nervous system. We review the data reported for their use as treatments for neurodegenerative diseases and their underlying molecular basis. While data from cellular and animal models and clinical trials support potential efficacy to treat a variety of neurodegenerative disorders, the relevant bile acids, their origin, and the precise molecular mechanism(s) by which they confer neuroprotection are not known delaying translation to the clinical setting. PMID:27920719

  6. Hyperuricemia, Type 2 Diabetes Mellitus, and Hypertension: an Emerging Association.

    PubMed

    Mortada, Ibrahim

    2017-09-01

    Uric acid is the final oxidation product of purine metabolism in circulation and has been associated with the occurrence of gout and kidney stones. Type 2 diabetes mellitus and hypertension are two important public health challenges, and both are linked to increased risk of cardiovascular events. Hyperuricemia has recently emerged as an independent risk factor in the development of type 2 diabetes mellitus and hypertension through several proposed mechanisms. Few clinical trials investigated the use of uric acid lowering agents in the management of these two disease entities; however, their results provided encouraging evidence to a potential role for these agents in fighting disease burden. Larger randomized controlled trials are therefore warranted to establish the role of uric acid as a promising target for novel therapeutic interventions in the management of type 2 diabetes mellitus and hypertension.

  7. Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition

    PubMed Central

    Dawson, Paul A.

    2011-01-01

    Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTα. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions. PMID:21103970

  8. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis

    PubMed Central

    Westfall, Corey S.; Sherp, Ashley M.; Zubieta, Chloe; Alvarez, Sophie; Schraft, Evelyn; Marcellin, Romain; Ramirez, Loren; Jez, Joseph M.

    2016-01-01

    In Arabidopsis thaliana, the acyl acid amido synthetase Gretchen Hagen 3.5 (AtGH3.5) conjugates both indole-3-acetic acid (IAA) and salicylic acid (SA) to modulate auxin and pathogen response pathways. To understand the molecular basis for the activity of AtGH3.5, we determined the X-ray crystal structure of the enzyme in complex with IAA and AMP. Biochemical analysis demonstrates that the substrate preference of AtGH3.5 is wider than originally described and includes the natural auxin phenylacetic acid (PAA) and the potential SA precursor benzoic acid (BA). Residues that determine IAA versus BA substrate preference were identified. The dual functionality of AtGH3.5 is unique to this enzyme although multiple IAA-conjugating GH3 proteins share nearly identical acyl acid binding sites. In planta analysis of IAA, PAA, SA, and BA and their respective aspartyl conjugates were determined in wild-type and overexpressing lines of A. thaliana. This study suggests that AtGH3.5 conjugates auxins (i.e., IAA and PAA) and benzoates (i.e., SA and BA) to mediate crosstalk between different metabolic pathways, broadening the potential roles for GH3 acyl acid amido synthetases in plants. PMID:27849615

  9. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics.

    PubMed

    Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing; Liu, Jun; Hu, Min; Li, Sheng-Jin; Kuang, Jia-Liang; Chain, Patrick S G; Huang, Li-Nan; Shu, Wen-Sheng

    2015-06-01

    High-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a 'divide and conquer' strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We report the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Our study demonstrates the potential of the 'divide and conquer' strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.

  10. Role of proline and GABA in sexual reproduction of angiosperms

    PubMed Central

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance. PMID:26388884

  11. Identification and profiling of conserved and novel microRNAs involved in oil and oleic acid production during embryogenesis in Carya cathayensis Sarg.

    PubMed

    Wang, Zhengjia; Huang, Ruiming; Sun, Zhichao; Zhang, Tong; Huang, Jianqin

    2017-05-01

    MicroRNAs (miRNAs) are important regulators of plant development and fruit formation. Mature embryos of hickory (Carya cathayensis Sarg.) nuts contain more than 70% oil (comprising 90% unsaturated fatty acids), along with a substantial amount of oleic acid. To understand the roles of miRNAs involved in oil and oleic acid production during hickory embryogenesis, three small RNA libraries from different stages of embryogenesis were constructed. Deep sequencing of these three libraries identified 95 conserved miRNAs with 19 miRNA*s, 7 novel miRNAs (as well as their corresponding miRNA*s), and 26 potentially novel miRNAs. The analysis identified 15 miRNAs involved in oil and oleic acid production that are differentially expressed during embryogenesis in hickory. Among them, nine miRNA sequences, including eight conserved and one novel, were confirmed by qRT-PCR. In addition, 145 target genes of the novel miRNAs were predicted using a bioinformatic approach. Our results provide a framework for better understanding the roles of miRNAs during embryogenesis in hickory.

  12. Quantum studies of deprotonated forms of malonic acid

    NASA Astrophysics Data System (ADS)

    Asciutto, Eliana; Lee, Jung Goo; Pedersen, Lee G.; Sagui, Celeste

    2004-03-01

    There have been numerous computational studies on carboxylic acids, specially in the simplest ones (formic and acetic acids). A considerable amount of these computations has been dedicated towards developing an understanding of proton transfer. In this work we study malonate as a model for γ-carboxyglutamic acid (Gla). Gla is a metal-binding amino acid whose synthesis is dependent upon vitamin K. Of the classes of proteins that contain Gla, the vitamin K-dependent blood coagulation and regulatory proteins have have been most thoroughly studied. The Gla domain in these proteins (generally consisting of 10-12 Gla residues) induces an structure that facilitates calcium-mediated interactions of the protein with membrane surfaces. In order to get a better understanding of this fundamental role of Gla at a quantum level, we study the role of intramolecular proton transfer in malonate in its divalent anionic form. The di-anion is particularly challenging. A correct description of the potential energy hypersurface is obtained only by application of large basis sets in conjunction with methods including high-level treatment of electron correlation effects.

  13. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells.

    PubMed

    Chu, Xi; Guo, Yusong; Xu, Bingyuan; Li, Wenya; Lin, Yue; Sun, Xiaorun; Ding, Chunhua; Zhang, Xuan

    2015-01-01

    Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG) channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells), and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV). Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea) or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively). Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities.

  14. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells

    PubMed Central

    Xu, Bingyuan; Li, Wenya; Lin, Yue; Sun, Xiaorun; Ding, Chunhua; Zhang, Xuan

    2015-01-01

    Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG) channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells), and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV). Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea) or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively). Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities. PMID:26625122

  15. Metabotropic glutamate receptors are required for the induction of long-term potentiation

    NASA Technical Reports Server (NTRS)

    Zheng, F.; Gallagher, J. P.

    1992-01-01

    Recent observations have led to the suggestion that the metabotropic glutamate receptor may play a role in the induction or maintenance of long-term potentiation (LTP). However, experimental evidence supporting a role for this receptor in the induction of LTP is still inconclusive and controversial. Here we report that, in rat dorsolateral septal nucleus (DLSN) neurons, which have the highest density of metabotropic receptors and show functional responses, the induction of LTP is not blocked by the NMDA receptor antagonist 2-amino-5-phosphonovalerate, but is blocked by two putative metabotropic glutamate receptor antagonists, L-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyrate. Furthermore, superfusion of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid, a selective metabotropic glutamate agonist, resulted in a long-lasting potentiation of synaptic transmission similar to that induced by tetanic stimuli. Our results demonstrated that activation of postsynaptic metabotropic receptors is both necessary and sufficient for the induction of LTP in the DLSN, and we suggest that such a mechanism may be important at other CNS synapses.

  16. MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid β-Oxidation.

    PubMed

    Makarewich, Catherine A; Baskin, Kedryn K; Munir, Amir Z; Bezprozvannaya, Svetlana; Sharma, Gaurav; Khemtong, Chalermchai; Shah, Akansha M; McAnally, John R; Malloy, Craig R; Szweda, Luke I; Bassel-Duby, Rhonda; Olson, Eric N

    2018-06-26

    Micropeptide regulator of β-oxidation (MOXI) is a conserved muscle-enriched protein encoded by an RNA transcript misannotated as non-coding. MOXI localizes to the inner mitochondrial membrane where it associates with the mitochondrial trifunctional protein, an enzyme complex that plays a critical role in fatty acid β-oxidation. Isolated heart and skeletal muscle mitochondria from MOXI knockout mice exhibit a diminished ability to metabolize fatty acids, while transgenic MOXI overexpression leads to enhanced β-oxidation. Additionally, hearts from MOXI knockout mice preferentially oxidize carbohydrates over fatty acids in an isolated perfused heart system compared to wild-type (WT) animals. MOXI knockout mice also exhibit a profound reduction in exercise capacity, highlighting the role of MOXI in metabolic control. The functional characterization of MOXI provides insight into the regulation of mitochondrial metabolism and energy homeostasis and underscores the regulatory potential of additional micropeptides that have yet to be identified. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Deletion of the pH sensor GPR4 decreases renal acid excretion.

    PubMed

    Sun, Xuming; Yang, Li V; Tiegs, Brian C; Arend, Lois J; McGraw, Dennis W; Penn, Raymond B; Petrovic, Snezana

    2010-10-01

    Proton receptors are G protein-coupled receptors that accept protons as ligands and function as pH sensors. One of the proton receptors, GPR4, is relatively abundant in the kidney, but its potential role in acid-base homeostasis is unknown. In this study, we examined the distribution of GPR4 in the kidney, its function in kidney epithelial cells, and the effects of its deletion on acid-base homeostasis. We observed GPR4 expression in the kidney cortex, in the outer and inner medulla, in isolated kidney collecting ducts, and in cultured outer and inner medullary collecting duct cells (mOMCD1 and mIMCD3). Cultured mOMCD1 cells exhibited pH-dependent accumulation of intracellular cAMP, characteristic of GPR4 activation; GPR4 knockdown attenuated this accumulation. In vivo, deletion of GPR4 decreased net acid secretion by the kidney and resulted in a nongap metabolic acidosis, indicating that GPR4 is required to maintain acid-base homeostasis. Collectively, these findings suggest that GPR4 is a pH sensor with an important role in regulating acid secretion in the kidney collecting duct.

  18. Melatonin protects against taurolithocholic-induced oxidative stress in rat liver.

    PubMed

    Fuentes-Broto, Lorena; Miana-Mena, Francisco J; Piedrafita, Eduardo; Berzosa, César; Martínez-Ballarín, Enrique; García-Gil, Francisco A; Reiter, Russel J; García, Joaquín J

    2010-08-01

    Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro-oxidative bile acid. Melatonin, a well-known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl(3) and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4-hydroxyalkenals (MDA + 4-HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4-HDA levels induced by TLC was inhibited by melatonin in a concentration-dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. Published 2010 Wiley-Liss, Inc.

  19. Corrosion Behavior of Titanium in Artificial Saliva by Lactic Acid

    PubMed Central

    Qu, Qing; Wang, Lei; Chen, Yajun; Li, Lei; He, Yue; Ding, Zhongtao

    2014-01-01

    As one of the main products produced by oral microorganisms, the role of lactic acid in the corrosion of titanium is very important. In this study, the corrosion behavior of titanium in artificial saliva with and without lactic acid were investigated by open-circuit potentials (OCPs), polarization curves and electrochemical impedance spectroscopy (EIS). OCP firstly increased with the amount of lactic acid from 0 to 3.2 g/L and then tended to decrease from 3.2 to 5.0 g/L. The corrosion of titanium was distinctly affected by lactic acid, and the corrosion rate increased with increasing the amount of lactic acid. At each concentration of lactic acid, the corrosion rate clearly increased with increasing the immersing time. Results of scanning electron microscopy (SEM) also indicated that lactic acid accelerated the pitting corrosion in artificial saliva. A probable mechanism was also proposed to explain the experimental results. PMID:28788143

  20. Analysis of five rice 4-coumarate:coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Haiyan; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070

    Highlights: ► 4CLs play important roles in both lignin and flavonoids biosynthesis. ► PA and FA are the two main substrates of 4CL (Os4CL1/3/4/5) for lignin biosynthesis. ► Os4CL2 is suggested for flavonoid formation in defense against UV radiation. -- Abstract: 4-Coumarate:coenzyme A ligase (4CL) catalyzes the conversion of hydroxycinnamates into corresponding CoA esters for biosynthesis of flavonoids and lignin. In this study, five members of the 4CL gene family from rice were cloned and analyzed. Recombinant 4CL data revealed that 4-coumaric acid and ferulic acid were the two main substrates of 4CL (Os4CL1/3/4/5) for monolignol biosynthesis in rice. Os4CL2more » was specifically expressed in the anther and was strongly activated by UV irradiation, suggesting its potential involvement in flavonoid formation. Moreover, bioinformatics analysis showed that the existence of valine residue at the substrate-binding pocket may mainly affect rice 4CL activities toward sinapic acid.« less

  1. Chytridiomycosis of Marine Diatoms-The Role of Stress Physiology and Resistance in Parasite-Host Recognition and Accumulation of Defense Molecules.

    PubMed

    Scholz, Bettina; Küpper, Frithjof C; Vyverman, Wim; Ólafsson, Halldór G; Karsten, Ulf

    2017-01-25

    Little is known about the role of chemotaxis in the location and attachment of chytrid zoospores to potential diatom hosts. Hypothesizing that environmental stress parameters affect parasite-host recognition, four chytrid-diatom tandem cultures ( Chytridium sp./ Navicula sp., Rhizophydium type I/ Nitzschia sp., Rhizophydium type IIa/ Rhizosolenia sp., Rhizophydium type IIb/ Chaetoceros sp.) were used to test the chemotaxis of chytrid zoospores and the presence of potential defense molecules in a non-contact-co-culturing approach. As potential triggers in the chemotaxis experiments, standards of eight carbohydrates, six amino acids, five fatty acids, and three compounds known as compatible solutes were used in individual and mixed solutions, respectively. In all tested cases, the whole-cell extracts of the light-stressed (continuous light exposure combined with 6 h UV radiation) hosts attracted the highest numbers of zoospores (86%), followed by the combined carbohydrate standard solution (76%), while all other compounds acted as weak triggers only. The results of the phytochemical screening, using biomass and supernatant extracts of susceptible and resistant host-diatom cultures, indicated in most of the tested extracts the presence of polyunsaturated fatty acids, phenols, and aldehydes, whereas the bioactivity screenings showed that the zoospores of the chytrid parasites were only significantly affected by the ethanolic supernatant extract of the resistant hosts.

  2. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  3. The Role of Shipyard Pollutants in Structuring Coral Reef Microbial Communities: Monitoring Environmental Change and the Potential Causes of Coral Disease

    DTIC Science & Technology

    2006-06-01

    with clade D 529 (Little et al., 2004). Furthermore Symbiodinium clade A has a high tendency for the 24 530 synthesis of mycosporine - like amino acids ...Evol. S. 34: 661-689. 639 Banaszak, A.T., T.C. LaJeunesse, and R.K. Trench. 2000. The synthesis of mycosporine - 640 like amino acids (MAAs) by cultured...strain PCC 6803) have to be used in order to synthesize cDNA. Those primers be due to the presence of amino acids available for consump- are likely to

  4. Phylogeny of Cyclic Nitramine-Degrading Psychrophilic Bacteria in Marine Sediment and Their Potential Role in the Natural Attenuation of Explosives

    DTIC Science & Technology

    2004-01-01

    frigidimarina sp. nov., novel antarctic species with the ability to produce eicosapentaenoic acid (20:5x3) and grow anaerobically by dissimilatory Fe(III...11,25,29]. NDAB and MEDINA were determined on an AnionSep Ice-Ion-310 Fast organic acids HPLC column (6.5 150 mm, Cobert associates chromatog- raphy...products, St-Louis, MI) at 225 nm and 35 C. The mobile phase was 1.73 mM sulfuric acid at a flow rate of 0.6 ml/min. The elution times of MEDINA and

  5. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine.

    PubMed

    Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein

    2013-02-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. Copyright © 2013 Mosby, Inc. All rights reserved.

  6. Bicarbonate availability for vocal fold epithelial defense to acidic challenge.

    PubMed

    Durkes, Abigail; Sivasankar, M Preeti

    2014-01-01

    Bicarbonate is critical for acid-base tissue homeostasis. In this study we investigated the role of bicarbonate ion transport in vocal fold epithelial defense to acid challenges. Acidic insults to the larynx are common in gastric reflux, carcinogenesis and metastasis, and acute inflammation. Ion transport was measured in viable porcine vocal fold epithelium. First, 18 vocal folds were exposed to either the carbonic anhydrase antagonist acetazolamide or to vehicle. Second, 32 vocal folds were exposed to either a control buffer or a bicarbonate-free buffer on their luminal or basolateral surface or both. Third, 32 vocal folds were challenged with acid in the presence of bicarbonate-free or control buffer. The vocal fold transepithelial resistance was greater than 300 Ω*cm(2), suggesting robust barrier integrity. Ion transport did not change after exposure to acetazolamide (p > 0.05). Exposure to bicarbonate-free buffer did not compromise vocal fold ion transport (p > 0.05). Ion transport increased after acid challenge. This increase approached statistical significance and was the greatest for the control buffer and for the bicarbonate-free buffer applied to the basolateral surface. Bicarbonate secretion may contribute to vocal fold defense against acid challenge. Our data offer a potential novel role for bicarbonate as a therapeutic agent to reduce pH abnormalities in the larynx and prevent associated pathological changes.

  7. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans

    PubMed Central

    Huang, Chao-Wei; Chien, Yi-Shan; Chen, Yu-Jen; Ajuwon, Kolapo M.; Mersmann, Harry M.; Ding, Shih-Torng

    2016-01-01

    The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities. PMID:27735847

  8. Induced oxidative stress management in wounds through phenolic acids engineered fibrous protein: An in vitro assessment using polymorphonuclear (PMN) cells.

    PubMed

    Thiruselvi, T; Thirupathi Kumara Raja, S; Shanuja, S K; Iswarya, S; Gnanamani, A

    2017-03-01

    The present study explores the preparation, characterization and the role of phenolic acid tethered fibrous protein in the management of induced oxidative stress studied under in vitro conditions. In brief, the biomaterial is prepared by engineering the fibrous protein with dihydroxy and trihydroxy phenolic acid moieties and subjected to characterization to ensure the tethering. The resultant biomaterial studied for its efficacy as a free radical scavenger using polymorphonuclear (PMN) cells with induced oxidative stress and also as an agent for cell migration using fibroblasts cells. Results revealed that induced oxidative stress in PMN cells after exposure to UVB radiation managed well with the prepared biomaterial by reducing the levels of superoxide anion, oxygen and hydroxyl radicals. Further, the protein and the phenolic acid interaction supports the cell migration as evidenced from the scratch assay. In conclusion, though phenolic acids are well known for their antimicrobial and antioxidant potential, indenting these acids directly to the wounds is not sensible, but tethering to protein explored the scavenging activity as expected. The present study infers that phenolic acid engineered protein has a significant role in managing the imbalance in the redox state prevailing in wounds and supports the healing at appreciable level. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Phosphatidic acid and neurotransmission

    PubMed Central

    Raben, Daniel M.; Barber, Casey N.

    2016-01-01

    Lipids play a vital role in the health and functioning of neurons and interest in the physiological role of neuronal lipids is certainly increasing. One neuronal function in which neuronal lipids appears to play key roles in neurotransmission. Our understanding of the role of lipids in the synaptic vesicle cycle and neurotransmitter release is becoming increasingly more important. Much of the initial research in this area has highlighted the major roles played by the phosphoinositides (PtdIns), diacylglycerol (DAG), and phosphatidic acid (PtdOH). Of these, PtdOH has not received as much attention as the other lipids although its role and metabolism appears to be extremely important. This lipid has been shown to play a role in modulating both exocytosis and endocytosis although its precise role in either process is not well defined. The currently evidence suggest this lipid likely participates in key processes by altering membrane architecture necessary for membrane fusion, mediating the penetration of membrane proteins, serving as a precursor for other important SV cycling lipids, or activating essential enzymes. In this review, we address the sources of PtdOH, the enzymes involved in its production, the regulation of these enzymes, and its potential roles in neurotransmission in the central nervous system. PMID:27671966

  10. Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects

    NASA Astrophysics Data System (ADS)

    Kaur, Parvinder; Satyanarayana, T.

    The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.

  11. The effect of albumin on podocytes: The role of the fatty acid moiety and the potential role of CD36 scavenger receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawluczyk, I.Z.A., E-mail: izap1@le.ac.uk; John Walls Renal Unit, Leicester General Hospital Leicester; Pervez, A.

    Evidence is emerging that podocytes are able to endocytose proteins such as albumin using kinetics consistent with a receptor-mediated process. To date the role of the fatty acid moiety on albumin uptake kinetics has not been delineated and the receptor responsible for uptake is yet to be identified. Albumin uptake studies were carried out on cultured human podocytes exposed to FITC-labelled human serum albumin either carrying fatty acids (HSA{sub +FA}) or depleted of them (HSA{sub −FA}). Receptor-mediated endocytosis of FITC-HSA{sub +FA} over 60 min was 5 times greater than that of FITC-HSA{sub −FA}. 24 h exposure of podocytes to albuminmore » up-regulated nephrin expression and induced the activation of caspase-3. These effects were more pronounced in response to HSA{sub −FA.} Individually, anti-CD36 antibodies had no effect upon endocytosis of FITC-HSA. However, a cocktail of 2 antibodies reduced uptake by nearly 50%. Albumin endocytosis was enhanced in the presence of the CD36 specific inhibitor sulfo-N-succinimidyl oleate (SSO) while knock-down of CD36 using CD36siRNA had no effect on uptake. These data suggest that receptor-mediated endocytosis of albumin by podocytes is regulated by the fatty acid moiety, although, some of the detrimental effects are induced independently of it. CD36 does not play a direct role in the uptake of albumin. - Highlights: • The fatty acid moiety is essential for receptor mediated endocytosis of albumin. • Fatty acid depleted albumin is more pathogenic to podocytes. • CD36 is not directly involved in albumin uptake by podocytes.« less

  12. Molecular cloning of Kazal-type proteinase inhibitor of the shrimp Fenneropenaeus chinensis.

    PubMed

    Kong, Hee Jeong; Cho, Hyun Kook; Park, Eun-Mi; Hong, Gyeong-Eun; Kim, Young-Ok; Nam, Bo-Hye; Kim, Woo-Jin; Lee, Sang-Jun; Han, Hyon Sob; Jang, In-Kwon; Lee, Chang Hoon; Cheong, Jaehun; Choi, Tae-Jin

    2009-01-01

    Proteinase inhibitors play important roles in host defence systems involving blood coagulation and pathogen digestion. We isolated and characterized a cDNA clone for a Kazal-type proteinase inhibitor (KPI) from a hemocyte cDNA library of the oriental white shrimp Fenneropenaeus chinensis. The KPI gene consists of three exons and two introns. KPI cDNA contains an open reading frame of 396 bp, a polyadenylation signal sequence AATAAA, and a poly (A) tail. KPI cDNA encodes a polypeptide of 131 amino acids with a putative signal peptide of 21 amino acids. The deduced amino acid sequence of KPI contains two homologous Kazal domains, each with six conserved cysteine residues. The mRNA of KPI is expressed in the hemocytes of healthy shrimp, and the higher expression of KPI transcript is observed in shrimp infected with the white spot syndrome virus (WSSV), suggesting a potential role for KPI in host defence mechanisms.

  13. A Comparative Study of Stabilizing Effect and Antioxidant Activity of Different Antioxidants on Levodopa-Loaded Liposomes.

    PubMed

    García Esteban, Elena; Cózar-Bernal, María José; Rabasco Álvarez, Antonio M; González-Rodríguez, María Luisa

    2018-06-11

    The aim of this study was to evaluate the stability of levodopa liposomes co-loaded with three different antioxidants (curcumin, ascorbic acid and superoxide dismutase (SOD)). For this purpose, multilamellar liposomes were prepared. Curcumin was added into the lipid bilayer while ascorbic acid and SOD were placed into the aqueous phase. The influence of preparation technique and surface charge were also investigated. Vesicles were characterized and free radical scavenging potential was determined. From stability study, ascorbic acid showed better stabilizing effect. These co-loaded liposomes also exhibited potential radical scavenging activity where ascorbic acid played a key role. From the study of different preparation techniques and charge, we concluded that cationic liposomes made by Thin Layer Evaporation following extrusion offered the best physicochemical and stability properties. A dual mechanism of these liposomes implies the chemical stabilization of levodopa (dose reduction) and the antioxidant effect, with a preventive effect on Parkinson´s disease.

  14. The role of amino acid profiles in diabetes risk assessment.

    PubMed

    Nagao, Kenji; Yamakado, Minoru

    2016-07-01

    The concentrations of plasma-free amino acids, such as branched-chain amino acids and aromatic amino acids, are associated with visceral obesity, insulin resistance, and the future development of diabetes and cardiovascular diseases. This review discusses recent progress in the early assessment of the risk of developing diabetes and the reversal of altered plasma-free amino acids through interventions. Additionally, recent developments that have increased the utility of amino acid profiling technology are also described. Plasma-free amino acid alterations in the early stage of lifestyle-related diseases are because of obesity and insulin resistance-related inflammation, and these alterations are reversed by appropriate (nutritional, drug, or surgical) interventions that improve insulin sensitivity. For clinical applications, procedures for measuring amino acids are being standardized and automated. Plasma-free amino acid profiles have potential as biomarkers for both assessing diabetes risk and monitoring the effects of strategies designed to lower that risk. In addition, the methodology for measuring amino acids has been refined, with the goal of routine clinical application.

  15. [Discover potential inhibitors of 5-LOX and LTA4H from Rhei Radix et Rhizoma, Notopterygii Rhizoma et Radix and Genitana Macrophyllae Radix based on molecular simulation methods].

    PubMed

    Gu, Yu; Zhang, Xu; Chen, Yan-Kun; Zhao, Bo-Wen; Zhang, Yan-Ling

    2017-12-01

    5-lipoxygenase (5-LOX) and leukotriene A4 hydrolase (LTA4H), as the major targets of 5-LOX branch in the arachidonic acid (AA) metabolic pathway, play an important role in the treatment of inflammation. Rhei Radix et Rhizoma, Notopterygii Rhizoma et Radix and Genitana Macrophyllae Radix have clear anti-inflammation activities. In this paper, the targets of 5-LOX and LTA4H were used as the research carrier, and Hiphop module in DS4.0 (Discovery studio) was used to construct ingredients database for preliminary screening of three traditional Chinese medicines based on target inhibitor pharmacophore, so as to obtain 5-LOX and LTA4H potential active ingredients. The ingredients obtained in initial pharmacophore screening were further screened by using CDOCKER module, and the screening rules were established based on the score of initial compound and the key amino acids to obtain 12 potential 5-LOX inhibitors and 7 potential LTA4H inhibitors. To be more specific, the potential 5-LOX inhibitors included 6 ingredients in Rhei Radix et Rhizoma, such as procyanidins B2-3,3'-O-double gallate and revandchinone 2; four ingredients in notopterygium, such as dodecanoic acid and so on. On the other hand, potential LTA4H inhibitors included revandchinone 1, revandchinone 4 in Rhei Radix et Rhizoma, tridecanoic acid, tetracosanoic acid and methyl eicosanoate in Notopterygii Rhizoma et Radix, montanic acid methyl ester and N-docosanoyl-O-aminobenzoate in Genitana Macrophyllae Radix and so on. The molecular simulation methods were highly efficient and time-saving to obtain the potential inhibitors of 5-LOX and LTA4H, which could provide assistance for discovering the chemical quality indicators of anti-inflammatory efficacy of three Chinese herbs, and may be helpful to promote the whole-process quality control of three Chinese herbs. Copyright© by the Chinese Pharmaceutical Association.

  16. Adsorption of phthalic acid and salicylic acid and their effect on exchangeable Al capacity of variable-charge soils.

    PubMed

    Li, Jiuyu; Xu, Renkou

    2007-02-01

    Low-molecular-weight (LMW) organic acids may be adsorbed by soils and the adsorption could affect their biodegradation and efficiency in many soil processes. In the present study, the adsorption of phthalic acid and salicylic acid and their effect on the exchangeable Al capacity of variable-charge soils were investigated. The results indicated that phthalic acid and salicylic acid were adsorbed by four variable-charge soils to some extent, oxisols showed a greater adsorption capacity for organic acids than ultisols, and the ability of the four variable-charge soils to adsorb the organic acids at different pH generally followed the order Kunming oxisol > Xuwen oxisol > Jinxian ultisol > Lechang ultisol, which was closely related to their content of free iron oxides and amorphous iron and aluminum oxides. The adsorption of organic acids induced a decrease in the zeta potentials of soils and oxides. Goethite has greater adsorption capacity for organic acid than Xuwen oxisol and the adsorption of organic acids resulted in a bigger decrease in the zeta potential of goethite suspensions. After free iron oxides were removed, less organic acid was adsorbed by Xuwen oxisol and no change was observed in zeta potential for the soil suspension after organic acid was added. The presence of phthalic acid increased the capacity of exchangeable Al and the increment in the four variable-charge soils also followed the order Kunming oxisol > Xuwen oxisol > Lechang ultisol and Jinxian ultisol. The presence of salicylic acid increased the capacity of exchangeable Al in Kunming oxisol, Xuwen oxisol, and Jinxian ultisol, but decreased it in Lechang ultisol due to less adsorption of the acid and formation of soluble Al-salicylate complexes in solution. After free iron oxides were removed, less effect of organic acid on exchangeable Al was observed for Xuwen oxisol, which further confirmed that the iron oxides played a significant role in organic acid adsorption and had a consequent effect on the capacity of exchangeable Al in variable-charge soils. Therefore, the higher the content of iron oxides, the greater the adsorption of organic acids by soils and the greater the increase in soil exchangeable Al induced by the organic acids.

  17. Synthesis and Characterization of a Hydrogel with Controllable Electroosmosis: A Potential Brain Tissue Surrogate for Electrokinetic Transport

    PubMed Central

    Faraji, Amir H.; Cui, Jonathan J.; Guy, Yifat; Li, Ling; Weber, Stephen G.

    2011-01-01

    Electroosmosis is the bulk fluid flow initiated by application of an electric field to an electrolyte solution in contact with immobile objects with a non-zero ζ-potential such as the surface of a porous medium. Electroosmosis may be used to assist analytical separations. Several gel-based systems with varying electroosmotic mobilities have been made in this context. A method was recently developed to determine the ζ-potential of organotypic hippocampal slice cultures (OHSC) as a representative model for normal brain tissue. The ζ-potential of the tissue is significant. However, determining the role of the ζ-potential in solute transport in tissue in an electric field is difficult because the tissue's ζ-potential cannot be altered. We hypothesized that mass transport properties, namely the ζ-potential and tortuosity, could be modulated by controlling the composition of a set of hydrogels. Thus, poly(acrylamide-co-acrylic acid) gels were prepared with three compositions (by monomer weight percent): acrylamide/acrylic acid 100/0, 90/10, and 75/25. The ζ-potentials of these gels at pH 7.4 are distinctly different, and in fact vary approximately linearly with the weight percent of acrylic acid. We discovered that the 25% acrylic acid gel is a respectable model for brain tissue, as its ζ-potential is comparable to the OHSC. This series of gels permits the experimental determination of the importance of electrokinetic properties in a particular experiment or protocol. Additionally, tortuosities were measured electrokinetically and by evaluating diffusion coefficients. Hydrogels with well-defined ζ-potential and tortuosity may find utility in biomaterials, analytical separations, and as a surrogate model for OHSC and living biological tissues. PMID:21905710

  18. Novel cinnamic acid/4-aminoquinoline conjugates bearing non-proteinogenic amino acids: towards the development of potential dual action antimalarials.

    PubMed

    Pérez, Bianca C; Teixeira, Cátia; Figueiras, Marta; Gut, Jiri; Rosenthal, Philip J; Gomes, José R B; Gomes, Paula

    2012-08-01

    A series of cinnamic acid/4-aminoquinoline conjugates conceived to link, through a proper retro-enantio dipeptide, a heterocyclic core known to prevent hemozoin formation, to a trans-cinnamic acid motif capable of inhibiting enzyme catalytic Cys residues, were synthesized as potential dual-action antimalarials. The effect of amino acid configuration and the absence of the dipeptide spacer were also assessed. The replacement of the D-amino acids by their natural L counterparts led to a decrease in both anti-plasmodial and falcipain-inhibitory activity, suggesting that the former are preferable. Molecules with such spacer were active against blood-stage Plasmodium falciparum, in vitro, and hemozoin formation, implying that the dipeptide has a key role in mediating these two activities. In turn, compounds without spacer were better falcipain-2 inhibitors, likely because these compounds are smaller and have their vinyl bonds in closer vicinity to the catalytic Cys, as suggested by molecular modeling calculations. These novel conjugates constitute promising leads for the development of new antiplasmodials targeted at blood-stage malaria parasites. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Roles of H2 uptake hydrogenases in Shigella flexneri acid tolerance

    PubMed Central

    McNorton, Mykeshia M.

    2012-01-01

    Hydrogenases play many roles in bacterial physiology, and use of H2 by the uptake-type enzymes of animal pathogens is of particular interest. Hydrogenases have never been studied in the pathogen Shigella, so targeted mutant strains were individually generated in the two Shigella flexneri H2-uptake enzymes (Hya and Hyb) and in the H2-evolving enzyme (Hyc) to address their roles. Under anaerobic fermentative conditions, a Hya mutant strain (hya) was unable to oxidize H2, while a Hyb mutant strain oxidized H2 like the wild-type. A hyc strain oxidized more exogenously added hydrogen than the parent. Fluorescence ratio imaging with dye JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide) showed that the parent strain generated a membrane potential 15 times greater than hya. The hya mutant was also by far the most acid-sensitive strain, being even more acid-sensitive than a mutant strain in the known acid-combating glutamate-dependent acid-resistance pathway (GDAR pathway). In severe acid-challenge experiments, the addition of glutamate to hya restored survivability, and this ability was attributed in part to the GDAR system (removes intracellular protons) by mutant strain (e.g. hya/gadBC double mutant) analyses. However, mutant strain phenotypes indicated that a larger portion of the glutamate-rescued acid tolerance was independent of GadBC. The acid tolerance of the hya strains was aided by adding chloride ions to the growth medium. The whole-cell Hya enzyme became more active upon acid exposure (20 min), based on assays of hyc. Indeed, the very high rates of Shigella H2 oxidation by Hya in acid can supply each cell with 2.4×108 protons min−1. Electrons generated from Hya-mediated H2 oxidation at the inner membrane likely counteract cytoplasmic positive charge stress, while abundant proton pools deposited periplasmically likely repel proton influx during severe acid stress. PMID:22628482

  20. Immunomodulatory and cellular anti-oxidant activities of caffeic, ferulic, and p-coumaric phenolic acids: a structure-activity relationship study.

    PubMed

    Kilani-Jaziri, Soumaya; Mokdad-Bzeouich, Imen; Krifa, Mounira; Nasr, Nouha; Ghedira, Kamel; Chekir-Ghedira, Leila

    2017-10-01

    Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses and to reduce damage to the human body. To determine whether phenolic compounds (caffeic, ferulic, and p-coumaric acids) have immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we evaluated their effect on splenocyte proliferation and lysosomal enzyme activity. We also investigated the activity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In addition, induction of the cellular antioxidant activity in splenocytes, macrophages, and red blood cells was determined by measuring the fluorescence of the DCF product. The study first results indicated that caffeic, ferulic, and p-coumaric acids significantly promote LPS-stimulated splenocyte proliferation, suggesting a potential activation of B cells, and enhanced humoral immune response in hosts treated by the tested natural products. Phenolic acids significantly enhanced the killing activity of isolated NK and CTL cells but had negligible effects on mitogen-induced proliferation of splenic T cells. We showed that caffeic acid enhances lysosomal enzyme activity in murine peritoneal macrophages, suggesting a potential role in activating such cells. Immunomodulatory activity was concomitant with the cellular antioxidant effect in macrophages and splenocytes of caffeic and ferulic acids. We conclude from this study that caffeic, ferulic, and p-coumaric acids exhibited an immunomodulatory effect which could be ascribed, in part, to their cytoprotective effect via their antioxidant capacity. Furthermore, these results suggest that these natural products could be potentially used to modulate immune cell functions in physiological and pathological conditions.

  1. Fluoxetine potentiation of omega-3 fatty acid antidepressant effect: evaluating pharmacokinetic and brain fatty acid-related aspects in rodents.

    PubMed

    Laino, Carlos Horacio; Garcia, Pilar; Podestá, María Fernanda; Höcht, Christian; Slobodianik, Nora; Reinés, Analía

    2014-10-01

    We previously reported that combined fluoxetine administration at antidepressant doses renders additive antidepressant effects, whereas non-antidepressant doses potentiate the omega-3 fatty acid antidepressant effect. In the present study, we aimed to evaluate putative pharmacokinetic and brain omega-3 fatty acid-related aspects for fluoxetine potentiation of omega-3 fatty acid antidepressant effect in rats. Coadministration of omega-3 fatty acids with a non-antidepressant dose of fluoxetine (1 mg/kg day) failed to affect both brain fluoxetine concentration and norfluoxetine plasma concentration profile. Fluoxetine plasma concentrations remained below the sensitivity limit of the detection method. Either antidepressant (10 mg/kg day) or non-antidepressant (1 mg/kg day) doses of fluoxetine in combination with omega-3 fatty acids increased hippocampal docosapentaenoic acid (DPA, 22:5 omega-3) levels. Although individual treatments had no effects on DPA concentration, DPA increase was higher when omega-3 were combined with the non-antidepressant dose of fluoxetine. Chronic DPA administration exerted antidepressant-like effects in the forced swimming test while increasing hippocampal docosahexaenoic (22:6 omega-3) and DPA levels. Our results suggest no pharmacokinetic interaction and reveal specific hippocampal DPA changes after fluoxetine and omega-3 combined treatments in our experimental conditions. The DPA role in the synergistic effect of fluoxetine and omega-3 combined treatments will be for sure the focus of future studies. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3316-3325, 2014. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Etomoxir-induced increase in UCP3 supports a role of uncoupling protein 3 as a mitochondrial fatty acid anion exporter.

    PubMed

    Schrauwen, Patrick; Hinderling, Vera; Hesselink, Matthijs K C; Schaart, Gert; Kornips, Esther; Saris, Wim H M; Westerterp-Plantenga, Margriet; Langhans, Wolfgang

    2002-10-01

    The physiological function of human uncoupling protein-3 is still unknown. Uncoupling protein-3 is increased during fasting and high-fat feeding. In these situations the availability of fatty acids to the mitochondria exceeds the capacity to metabolize fatty acids, suggesting a role for uncoupling protein-3 in handling of non-metabolizable fatty acids. To test the hypothesis that uncoupling protein-3 acts as a mitochondrial exporter of non-metabolizable fatty acids from the mitochondrial matrix, we gave human subjects Etomoxir (which blocks mitochondrial entry of fatty acids) or placebo in a cross-over design during a 36-h stay in a respiration chamber. Etomoxir inhibited 24-h fat oxidation and fat oxidation during exercise by approximately 14-19%. Surprisingly, uncoupling protein-3 content in human vastus lateralis muscle was markedly up-regulated within 36 h of Etomoxir administration. Up-regulation of uncoupling protein-3 was accompanied by lowered fasting blood glucose and increased translocation of glucose transporter-4. These data support the hypothesis that the physiological function of uncoupling protein-3 is to facilitate the outward transport of non-metabolizable fatty acids from the mitochondrial matrix and thus prevents mitochondria from the potential deleterious effects of high fatty acid levels. In addition our data show that up-regulation of uncoupling protein-3 can be beneficial in the treatment of type 2 diabetes.

  3. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-01-01

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process. PMID:26310911

  4. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes.

    PubMed

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-08-27

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process.

  5. Accessory cells in physiological lymphoid tissue from the intestine: an immunohistochemical study.

    PubMed

    Sarsfield, P; Rinne, A; Jones, D B; Johnson, P; Wright, D H

    1996-03-01

    We report a study of the organization of accessory cell populations, in normal mucosal lymphoid tissue from small intestine (8 cases), large intestine (6) and appendix (9) using a panel of monoclonal antibodies and polyclonal antisera in paraffin-embedded tissue. Two populations were identified in dome areas, one positive for acid cysteine proteinase inhibitor and HLA class II (WR18) only and the second positive for S-100 protein, CD68, and WR18 and negative for acid cysteine proteinase inhibitor and factor XIIIa. Superficial colonic mucosal and small intestinal villous tip macrophages stained positively with CD68 and WR18 only, while deeper cryptal and submucosal populations exhibited additional positivity for factor XIIIa, but both populations were negative for acid cysteine proteinase inhibitor and S-100 protein. Germinal centre macrophages were positive for CD68, WR18 and acid cysteine proteinase inhibitor and negative for factor XIIIa, and S-100 protein. T zone dendritic cells included a population which stained positively for S-100 protien, WR18 and were negative for factor XIIIa, CD68 and acid cysteine proteinase inhibitor, an immunophenotype typical of interdigitating dendritic reticulum cells. This distribution of phenotypically identifiable accessory cell subpopulations was apparent at all three sites examined. We suggest that the specialized subpopulations of dendritic cells staining for S-100 protein and for acid cysteine proteinase inhibitor which are restricted to the dome areas, may have a potential role in the transfer of antigen across the epithelium to the germinal centres, while factor XIIIa appears to identify a tissue macrophage population with a potential role in stromal modulation distant from direct antigen challenge.

  6. Mineralogical signatures of stone formation mechanisms.

    PubMed

    Gower, Laurie B; Amos, Fairland F; Khan, Saeed R

    2010-08-01

    The mechanisms involved in biomineralization are modulated through interactions with organic matrix. In the case of stone formation, the role of the organic macromolecules in the complex urinary environment is not clear, but the presence of mineralogical 'signatures' suggests that some aspects of stone formation may result from a non-classical crystallization process that is induced by acidic proteins. An amorphous precursor has been detected in many biologically controlled mineralization reactions, which is thought to be regulated by non-specific interactions between soluble acidic proteins and mineral ions. Using in vitro model systems, we find that a liquid-phase amorphous mineral precursor induced by acidic polypeptides can lead to crystal textures that resemble those found in Randall's plaque and kidney stones. This polymer-induced liquid-precursor process leads to agglomerates of coalesced mineral spherules, dense-packed spherulites with concentric laminations, mineral coatings and 'cements', and collagen-associated mineralization. Through the use of in vitro model systems, the mechanisms involved in the formation of these crystallographic features may be resolved, enhancing our understanding of the potential role(s) that proteins play in stone formation.

  7. Regulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals

    PubMed Central

    2017-01-01

    Modulation of posttranslational modifications (PTMs), such as protein acetylation, is considered a novel therapeutic strategy to combat the development and progression of cardiovascular diseases. Protein hyperacetylation is associated with the development of numerous cardiovascular diseases, including atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. In addition, decreased expression and activity of the deacetylases Sirt1, Sirt3, and Sirt6 have been linked to the development and progression of cardiac dysfunction. Several phytochemicals exert cardioprotective effects by regulating protein acetylation levels. These effects are mainly exerted via activation of Sirt1 and Sirt3 and inhibition of acetyltransferases. Numerous studies support a cardioprotective role for sirtuin activators (e.g., resveratrol), as well as other emerging modulators of protein acetylation, including curcumin, honokiol, oroxilyn A, quercetin, epigallocatechin-3-gallate, bakuchiol, tyrosol, and berberine. Studies also point to a cardioprotective role for various nonaromatic molecules, such as docosahexaenoic acid, alpha-lipoic acid, sulforaphane, and caffeic acid ethanolamide. Here, we review the vast evidence from the bench to the clinical setting for the potential cardioprotective roles of various phytochemicals in the modulation of sirtuin-mediated deacetylation. PMID:29234485

  8. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid.

    PubMed

    O'Shea, Eileen F; Cotter, Paul D; Stanton, Catherine; Ross, R Paul; Hill, Colin

    2012-01-16

    The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Intake of α-linolenic acid and other fatty acids in relation to the risk of bladder cancer: results from the New Hampshire case-control study.

    PubMed

    Brinkman, Maree T; Karagas, Margaret R; Zens, Michael S; Schned, Alan R; Reulen, Raoul C; Zeegers, Maurice P

    2011-10-01

    The role of dietary fat in bladder cancer aetiology is currently unclear due to few studies, equivocal findings and a lack of information on important dietary fatty acids. The aim of the present study was to investigate the association between the intake of major dietary fats and fatty acids and the risk of bladder cancer. A case-control study was conducted in New Hampshire, USA. Dietary data were collected from 322 cases and 239 controls, and OR and 95 % CI were calculated using unconditional logistic regression. Adjustment was made for potential confounders: sex, age, smoking status, pack-years smoked, cholesterol and energy intake. Statistically significant reduced odds of bladder cancer were observed for high intakes (highest quartile v. lowest quartile) of α-linolenic acid (ALA) (OR 0·26, 95 % CI 0·10, 0·65; P for trend = 0·01) and vegetable fat (OR 0·39, 95 % CI 0·18, 0·86; P for trend = 0·03). Borderline statistically significant reduced odds were detected for polyunsaturated fat (OR 0·43, 95 % CI 0·19, 0·98; P for trend = 0·07) and linoleic acid (OR 0·43, 95 % CI 0·19, 0·96; P for trend = 0·06). These fats and fatty acids were highly correlated and following adjustment for each other, the only potential inverse association to remain was for ALA. The present findings suggest that ALA may have a protective role against developing bladder cancer; however, further investigation and replication in other epidemiological studies are required. Future research should focus on the type, source and quantities of different dietary fatty acids consumed.

  10. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing

    Here we report that high-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a ‘divide and conquer’ strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We reportmore » the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Finally, our study demonstrates the potential of the ‘divide and conquer’ strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.« less

  11. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics

    DOE PAGES

    Hua, Zheng-Shuang; Han, Yu-Jiao; Chen, Lin-Xing; ...

    2014-11-07

    Here we report that high-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a ‘divide and conquer’ strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We reportmore » the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Finally, our study demonstrates the potential of the ‘divide and conquer’ strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.« less

  12. Gallic Acid Induces Apoptosis in Human Gastric Adenocarcinoma Cells.

    PubMed

    Tsai, Chung-Lin; Chiu, Ying-Ming; Ho, Tin-Yun; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Wu, Yi-Ying

    2018-04-01

    Gastric cancer is one of the most common malignant cancers with a poor prognosis and high mortality rate worldwide. Current treatment of gastric cancer includes surgery and chemotherapy as the main modalities, but the potentially severe side-effects of chemotherapy present a considerable challenge. Gallic acid is a trihydroxybenzoic acid found to exert an anticancer effect against a variety of cancer cells. The purpose of this study was to determine the anti-cancer activity of Galla chinensis and its main component gallic acid on human gastric adenocarcinoma cells. MTT assay and cell death ELISA were used to determine the apoptotic effect of Gallic Chinensis and gallic acid on human gastric adenocarcinoma cells. To determine the pathway and relevant components by which gallic acid-induced apoptosis is mediated through, cells were transfected with siRNA (Fas, FasL, DR5, p53) using Lipofectamine 2000. Reults: Gallic Chinensis and gallic acid induced apoptosis of human gastric adenocarcinoma cells. Gallic acid induced up-regulation of Fas, FasL, and DR5 expression in AGS cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced gallic acid-induced cell death. In addition, p53 was shown to be involved in gallic acid-mediated Fas, FasL, and DR5 expression as well as cell apoptosis in AGS cells. These results suggest that gallic acid has a potential role in the treatment of gastric cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor.

    PubMed

    Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A

    2016-08-01

    Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.

    PubMed

    Oh, Da Young; Lagakos, William S

    2011-07-01

    Chronic activation of inflammatory pathways mediates the pathogenesis of insulin resistance, and the macrophage/adipocyte nexus provides a key mechanism underlying decreased insulin sensitivity. Free fatty acids are important in the pathogenesis of insulin resistance, although their precise mechanisms of action have yet to be fully elucidated. Recently, a family of G-protein-coupled receptors has been identified that exhibits high affinity for fatty acids. This review summarizes recent findings on six of these receptors, their ligands, and their potential physiological functions in vivo. Upon activation, the free fatty acid receptors affect inflammation, glucose metabolism, and insulin sensitivity. Genetic deletion of GPR40 and GPR41, receptors for long-chain and short-chain fatty acids, respectively, results in resistance to diet-induced obesity. Deletion of GPR43 and GPR84 exacerbates inflammation, and deletion of the long-chain fatty acid receptors GPR119 and GPR120 reduces or is predicted to reduce glucose tolerance. These studies provide a new understanding of the general biology of gastric motility and also shed valuable insight into some potentially beneficial therapeutic targets. Furthermore, highly selective agonists or antagonists for the free fatty acid receptors have been developed and look promising for treating various metabolic diseases.

  15. Thermodynamics of sodium dodecyl sulphate-salicylic acid based micellar systems and their potential use in fruits postharvest.

    PubMed

    Cid, A; Morales, J; Mejuto, J C; Briz-Cid, N; Rial-Otero, R; Simal-Gándara, J

    2014-05-15

    Micellar systems have excellent food applications due to their capability to solubilise a large range of hydrophilic and hydrophobic substances. In this work, the mixed micelle formation between the ionic surfactant sodium dodecyl sulphate (SDS) and the phenolic acid salicylic acid have been studied at several temperatures in aqueous solution. The critical micelle concentration and the micellization degree were determined by conductometric techniques and the experimental data used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Salicylic acid helps the micellization of SDS, both by increasing the additive concentration at a constant temperature and by increasing temperature at a constant concentration of additive. The formation of micelles of SDS in the presence of salicylic acid was a thermodynamically spontaneous process, and is also entropically controlled. Salicylic acid plays the role of a stabilizer, and gives a pathway to control the three-dimensional water matrix structure. The driving force of the micellization process is provided by the hydrophobic interactions. The isostructural temperature was found to be 307.5 K for the mixed micellar system. This article explores the use of SDS-salicylic acid based micellar systems for their potential use in fruits postharvest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Insights into the mechanism and inhibition of fatty acid amide hydrolase from quantum mechanics/molecular mechanics (QM/MM) modelling.

    PubMed

    Lodola, Alessio; Mor, Marco; Sirirak, Jitnapa; Mulholland, Adrian J

    2009-04-01

    FAAH (fatty acid amide hydrolase) is a promising target for the treatment of several central nervous system and peripheral disorders. Combined QM/MM (quantum mechanics/molecular mechanics) calculations have elucidated the role of its unusual catalytic triad in the hydrolysis of oleamide and oleoylmethyl ester substrates, and have identified the productive inhibitor-binding orientation for the carbamoylating compound URB524. These are potentially crucial insights for designing new covalent inhibitors of this drug target.

  17. The Effect of Acid Deposition on Potentially Sensitive Soil-Plant Systems at Vandenberg AFB, California.

    DTIC Science & Technology

    1988-04-30

    and reproductive tissues 23 of cucumber (Cucumis sativus L.). New Phytol. 105, 139-147. 0! 8. KEELEY J. E. (1987) Role of fire in seed germination of...foliage due to acid application in cucumbers (Cucumis sativus L.) while Lee et. al. (1981) found a stimulation in the stems and leaves of sweet corn...natural additions of NCl from the reaction between sea salt and air pollutants, may be enhanced by bo further burdens of HC inputs such as those

  18. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com; Sane, Mukta Subhash; Gupta, Chanchal

    2011-03-15

    Doxorubicin, an anthracycline antibiotic, is widely used in the treatment of various solid tumors including breast cancer. However, its use is limited due to a variety of toxicities including cardiotoxicity. The present study aimed to evaluate the effect of tannic acid, a PARG/PARP inhibitor and an antioxidant, on doxorubicin-induced cardiotoxicity in H9c2 embryonic rat heart myoblasts and its anti-cancer activity in MDA-MB-231 human breast cancer cells as well as in DMBA-induced mammary tumor animals. Doxorubicin-induced cardiotoxicity was assessed by measurement of heart weight, plasma LDH level and histopathology. Bcl-2, Bax, PARP-1 and p53 expression were examined by western blotting. Ourmore » results show that tannic acid prevents activation of PARP-1, reduces Bax and increases Bcl-2 expression in H9c2 cells, thus, preventing doxorubicin-induced cell death. Further, it reduces the cell viability of MDA-MB-231 breast cancer cells, increases p53 expression in mammary tumors and shows maximum tumor volume reduction, suggesting that tannic acid potentiates the anti-cancer activity of doxorubicin. To the best of our knowledge, this is the first report which shows that tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity both in vitro (H9c2 and MDA-MB-231 cells) as well as in in vivo model of DMBA-induced mammary tumor animals.« less

  19. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae1[OPEN

    PubMed Central

    Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun

    2015-01-01

    Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. PMID:26265775

  20. Metabolism meets immunity: The role of free fatty acid receptors in the immune system.

    PubMed

    Alvarez-Curto, Elisa; Milligan, Graeme

    2016-08-15

    There are significant numbers of nutrient sensing G protein-coupled receptors (GPCRs) that can be found in cells of the immune system and in tissues that are involved in metabolic function, such as the pancreas or the intestinal epithelium. The family of free fatty acid receptors (FFAR1-4, GPR84), plus a few other metabolite sensing receptors (GPR109A, GPR91, GPR35) have been for this reason the focus of studies linking the effects of nutrients with immunological responses. A number of the beneficial anti-inflammatory effects credited to dietary fats such as omega-3 fatty acids are attributed to their actions on FFAR4.This might play an important protective role in the development of obesity, insulin resistance or asthma. The role of the short-chain fatty acids resulting from fermentation of fibre by the intestinal microbiota in regulating acute inflammatory responses is also discussed. Finally we assess the therapeutic potential of this family of receptors to treat pathologies where inflammation is a major factor such as type 2 diabetes, whether by the use of novel synthetic molecules or by the modulation of the individual's diet. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale*

    PubMed Central

    Agrawal, Bhavana; Czymmek, Kirk J.; Sparks, Donald L.; Bais, Harsh P.

    2013-01-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation. PMID:23322782

  2. Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale.

    PubMed

    Agrawal, Bhavana; Czymmek, Kirk J; Sparks, Donald L; Bais, Harsh P

    2013-03-08

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.

  3. Crucial Role of Postsynaptic Syntaxin 4 in Mediating Basal Neurotransmission and Synaptic Plasticity in Hippocampal CA1 Neurons.

    PubMed

    Bin, Na-Ryum; Ma, Ke; Harada, Hidekiyo; Tien, Chi-Wei; Bergin, Fiona; Sugita, Kyoko; Luyben, Thomas T; Narimatsu, Masahiro; Jia, Zhengping; Wrana, Jeffrey L; Monnier, Philippe P; Zhang, Liang; Okamoto, Kenichi; Sugita, Shuzo

    2018-06-05

    Trafficking of neurotransmitter receptors on postsynaptic membranes is critical for basal neurotransmission and synaptic plasticity, yet the underlying mechanisms remain elusive. Here, we investigated the role of syntaxin 4 in postsynaptic hippocampal CA1 neurons by analyzing conditional knockout (syntaxin 4 cKO) mice. We show that syntaxin 4 cKO resulted in reduction of basal neurotransmission without changes in paired-pulse ratios. Both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptor-mediated charge transfers were diminished. Patch-clamp experiments revealed that amplitudes, but not frequencies, of spontaneous excitatory postsynaptic currents are reduced. Syntaxin 4 knockout (KO) caused drastic reduction in expression of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptors in cultured hippocampal neurons. Furthermore, cKO caused defects in theta-burst stimulation induced long-term potentiation and spatial learning as assessed by a water maze task, indicating that synaptic plasticity was altered. Our data reveal a crucial role of syntaxin 4 in trafficking of ionotropic glutamate receptors that are essential for basal neurotransmission, synaptic plasticity, and spatial memory. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Three-Stream, Bicarbonate-Based Hemodialysis Solution Delivery System Revisited: With an Emphasis on Some Aspects of Acid-Base Principles.

    PubMed

    Lew, Susie Q; Kohn, Orly F; Cheng, Yuk-Lun; Kjellstrand, Carl M; Ing, Todd S

    2017-06-01

    Hemodialysis patients can acquire buffer base (i.e., bicarbonate and buffer base equivalents of certain organic anions) from the acid and base concentrates of a three-stream, dual-concentrate, bicarbonate-based, dialysis solution delivery machine. The differences between dialysis fluid concentrate systems containing acetic acid versus sodium diacetate in the amount of potential buffering power were reviewed. Any organic anion such as acetate, citrate, or lactate (unless when combined with hydrogen) delivered to the body has the potential of being converted to bicarbonate. The prescribing physician aware of the role that organic anions in the concentrates can play in providing buffering power to the final dialysis fluid, will have a better knowledge of the amount of bicarbonate and bicarbonate precursors delivered to the patient. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production

    PubMed Central

    Stemmler, Kevin; Massimi, Rebecca

    2016-01-01

    Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To address this problem, our study focused on isolating and characterizing microalgal strains from three municipal wastewater treatment systems (two activated sludge and one aerated-stabilization basin systems) for their potential use in biofuel feedstock production. Most of the 19 isolates from wastewater grew faster than two culture collection strains under mixotrophic conditions, particularly with glucose. The fastest growing wastewater strains included the genera Chlorella and Dictyochloris. The fastest growing microalgal strains were not necessarily the best lipid producers. Under photoautotrophic and mixotrophic growth conditions, single strains of Chlorella and Scenedesmus each produced the highest lipid yields, including those most relevant to biodiesel production. A comparison of axenic and non-axenic versions of wastewater strains showed a notable effect of commensal bacteria on fatty acid composition. Strains grown with bacteria tended to produce relatively equal proportions of saturated and unsaturated fatty acids, which is an ideal lipid blend for biodiesel production. These results not only show the potential for using microalgae isolated from wastewater for growth in wastewater-fed feedstock systems, but also the important role that commensal bacteria may have in impacting the fatty acid profiles of microalgal feedstock. PMID:26989618

  6. In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis

    PubMed Central

    Halter, David; Goulhen-Chollet, Florence; Gallien, Sébastien; Casiot, Corinne; Hamelin, Jérôme; Gilard, Françoise; Heintz, Dimitri; Schaeffer, Christine; Carapito, Christine; Van Dorsselaer, Alain; Tcherkez, Guillaume; Arsène-Ploetze, Florence; Bertin, Philippe N

    2012-01-01

    Euglena mutabilis is a photosynthetic protist found in acidic aquatic environments such as peat bogs, volcanic lakes and acid mine drainages (AMDs). Through its photosynthetic metabolism, this protist is supposed to have an important role in primary production in such oligotrophic ecosystems. Nevertheless, the exact contribution of E. mutabilis in organic matter synthesis remains unclear and no evidence of metabolite secretion by this protist has been established so far. Here we combined in situ proteo-metabolomic approaches to determine the nature of the metabolites accumulated by this protist or potentially secreted into an AMD. Our results revealed that the secreted metabolites are represented by a large number of amino acids, polyamine compounds, urea and some sugars but no fatty acids, suggesting a selective organic matter contribution in this ecosystem. Such a production may have a crucial impact on the bacterial community present on the study site, as it has been suggested previously that prokaryotes transport and recycle in situ most of the metabolites secreted by E. mutabilis. Consequently, this protist may have an indirect but important role in AMD ecosystems but also in other ecological niches often described as nitrogen-limited. PMID:22237547

  7. Evaluation of putative allelochemicals in rice root exudates for their role in the suppression of arrowhead root growth.

    PubMed

    Seal, Alexa N; Haig, Terry; Pratley, James E

    2004-08-01

    In previous studies, 15 putative allelopathic compounds detected in rice root exudates were quantified by GC/MS/MS. In this study, multiple regression analysis on these compounds determined that five selected phenolics, namely caffeic, p-hydroxybenzoic, vanillic, syringic, and p-coumaric acids, from rice exudates were best correlated with the observed allelopathic effect on arrowhead (Sagittaria montevidensis) root growth. Despite this positive association, determination of the phenolic acid dose-response curve established that the amount quantified in the exudates was much lower than the required threshold concentration for arrowhead inhibition. A similar dose-response curve resulted from a combination of all 15 quantified compounds. Significant differences between the amounts of trans-ferulic acid, abietic acid, and an indole also existed between allelopathic and non-allelopathic rice cultivars. The potential roles of these three compounds in rice allelopathy were examined by chemoassay. Overall, neither the addition of trans-ferulic acid nor 5-hydroxyindole-3-acetic acid to the phenolic mix significantly contributed to phytotoxicity, although at higher concentrations, trans-ferulic acid appeared to act antagonistically to the phytotoxic effects of the phenolic mix. The addition of abietic acid also decreased the inhibitory effect of the phenolic mix. These studies indicate that the compounds quantified are not directly responsible for the observed allelopathic response. It is possible that the amount of phenolic acids may be indirectly related to the chemicals finally responsible for the observed allelopathic effect.

  8. Retina and Omega-3

    PubMed Central

    Querques, Giuseppe; Forte, Raimondo; Souied, Eric H.

    2011-01-01

    Over the last decade, several epidemiological studies based on food frequency questionnaires suggest that omega-3 polyunsaturated fatty acids could have a protective role in reducing the onset and progression of retinal diseases. The retina has a high concentration of omega-3, particularly DHA, which optimizes fluidity of photoreceptor membranes, retinal integrity, and visual function. Furthermore, many studies demonstrated that DHA has a protective, for example antiapoptotic, role in the retina. From a nutritional point of view, it is known that western populations, particularly aged individuals, have a higher than optimal omega-6/omega-3 ratio and should enrich their diet with more fish consumption or have DHA supplementation. This paper underscores the potential beneficial effect of omega-3 fatty acids on retinal diseases. PMID:22175009

  9. Chemical basis for the phytotoxicity of N-aryl hydroxamic acids and acetanilide analogues.

    PubMed

    Bravo, Héctor R; Villarroel, Elisa; Copaja, Sylvia V; Argandoña, Victor H

    2008-01-01

    Germination inhibition activity of N-aryl hydroxamic acids and acetanilide analogues was measured on lettuce seeds (Lactuca sativa). Lipophilicity of the compounds was determined by HPLC. A correlation between lipophilicity values and percentage of germination inhibition was established. A model mechanism of action for auxin was used for analyzing the effect of the substituent at the alpha carbon atom (Ca) on the polarization of hydroxamic and amide functions in relation to the germination inhibition activity observed. Results suggest that the lipophilic and acidic properties play an important role in the phytotoxicity of the compounds. A test with the microalga Chlorella vulgaris was used to evaluate the potential herbicide activity of the hydroxamic acids and acetanilides.

  10. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically?

    PubMed

    Song, Cai; Shieh, Chu-Hsin; Wu, Yi-Shyuan; Kalueff, Allan; Gaikwad, Siddharth; Su, Kuan-Pin

    2016-04-01

    Omega-3 polyunsaturated fatty acids (n-3-PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may improve or prevent some psychiatric and neurodegenerative diseases in both experimental and clinical studies. As important membrane components, these PUFAs benefit brain health by modulating neuroimmune and apoptotic pathways, changing membrane function and/or competing with n-6 PUFAs, the precursors of inflammatory mediators. However, the exact role of each fatty acid in neuroimmune modulation and neurogenesis, the interaction between EPA and DHA, and the best EPA:DHA ratios for improving brain disorders, remain unclear. It is also unknown whether EPA, as a DHA precursor, acts directly or via DHA. Here, we discuss recent evidence of EPA and DHA effects in the treatment of major depression and Alzheimer's disease, as well as their potential synergistic action on anti-inflammatory, antioxidant and neurotrophic processes in the brain. We further analyze the cellular and molecular mechanisms by which EPA, DHA or their combination may benefit these diseases. We also outline the limitations of current studies and suggest new genetic models and novel approaches to overcome these limitations. Finally, we summarize future strategies for translational research in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Effects of lactic acid on astrocytes in primary culture.

    PubMed

    Norenberg, M D; Mozes, L W; Gregorios, J B; Norenberg, L O

    1987-03-01

    Excessive tissue lactic acidosis is considered to be detrimental to the central nervous system (CNS) and may adversely affect recovery from anoxia, ischemia, trauma and epilepsy. Since astrocytes are believed to play a role in pH regulation in the CNS, we studied the effect of this acid on primary astrocyte cultures. Cells exposed to lactic acid showed chromatin clumping, an increase of lipid and dense bodies, a loss of polyribosomal clusters, slightly increased cytoplasmic lucency, swollen mitochondria and tangled intermediate filaments. These alterations progressed with lower pH and longer exposure. Irreversible changes occurred one to two hours after exposure at pH 6; after 30 to 60 minutes (min) at pH 5.5 and after ten to 30 min at pH 5. Comparable results were obtained with the use of other weak acids indicating that the observed changes were due to increased hydrogen ion concentration rather than secondary to lactate per se. Additionally, various concentrations of lactic acid adjusted to identical pH produced similar morphologic alterations. Thus, while lactic acid caused marked and at times irreversible alterations in astrocytes, severe and prolonged acidosis was required to produce such injurious effects. This relative resistance of astrocytes to acidosis is in keeping with their potential role in pH regulation in brain.

  12. Ghrelin and cancer progression.

    PubMed

    Lin, Tsung-Chieh; Hsiao, Michael

    2017-08-01

    Ghrelin is a small peptide with 28 amino acids, and has been characterized as the ligand of the growth hormone secretagogue receptor (GHSR). In addition to its original function in stimulating pituitary growth hormone release, ghrelin is multifunctional and plays a role in the regulation of energy balance, gastric acid release, appetite, insulin secretion, gastric motility and the turnover of gastric and intestinal mucosa. The discovery of ghrelin and GHSR expression beyond normal tissues suggests its role other than physiological function. Emerging evidences have revealed ghrelin's function in regulating several processes related to cancer progression, especially in metastasis and proliferation. We further show the relative GHRL and GHSR expression in pan-cancers from The Cancer Genome Atlas (TCGA), suggesting the potential pathological role of the axis in cancers. This review focuses on ghrelin's biological function in cancer progression, and reveals its clinical significance especially the impact on cancer patient outcome. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Synthetic investigation of binary-ternary Cr(III)-hydroxycarboxylic acid-aromatic chelator systems. Structure-specific influence on adipogenic biomarkers linked to insulin mimesis.

    PubMed

    Tsave, O; Gabriel, C; Kafantari, M; Yavropoulou, M; Yovos, J G; Raptopoulou, C P; Psycharis, V; Terzis, A; Mateescu, C; Salifoglou, A

    2018-07-01

    In an attempt to understand the aqueous interactions of Cr(III) with low-molecular mass physiological ligands and examine its role as an adipogenic metallodrug agent in Diabetes mellitus II, the pH-specific synthesis in the binary-ternary Cr(III)-(HA = hydroxycarboxylic acid)-(N,N)-aromatic chelator (AC) (HA = 2-hydroxyethyl iminodiacetic acid/heidaH 2 , quinic acid; AC = 1,10-phenanthroline/phen) systems was pursued, leading to four new crystalline compounds. All materials were characterized by elemental analysis, UV-Visible, FT-IR, and ESI-MS spectroscopy, cyclic voltammetry, and X-Ray crystallography. Concurrently, the aqueous speciation of the binary Cr(III)-(2-hydroxyethyl iminodiacetic acid) system, complemented by ESI-MS, provided key-details of the species in solution correlating with the solid-state species. The structurally distinct Cr(III) soluble species were subsequently used in an in vitro investigation of their cytotoxic activity in 3T3-L1 fibroblast cultures. Compound 1 exhibited solubility, bioavailability, and atoxicity over a wide concentration range (0.1-100 μΜ) in contrast to 3, which was toxic. The adipogenic potential of 1 was subsequently investigated toward transformation of pre-adipocytes into mature adipocytes. Confirmation of that capacity relied on molecular biological techniques a) involving genes (glucose transporter type 4, peroxisome proliferator-activated receptor gamma, glucokinase, and adiponectin) serving as sensors of the transformation process, b) comparing the Cr(III)-adipogenicity potential to that of insulin, and c) exemplifying the ultimate maturity of adipocytes poised to catabolize glucose. The collective effort points out salient structural features in the coordination sphere of Cr(III) inducing adipogenic transformation relevant to combating hyperglycemia. The multiply targeted mechanistic insight into such a process exemplifies the role of well-defined Cr(III) complex forms as potential insulin-mimetic adipogenic agents in Diabetes mellitus II. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Rethinking the bile acid/gut microbiome axis in cancer

    PubMed Central

    Phelan, John P.; Reen, F. Jerry; Caparros-Martin, Jose A.; O'Connor, Rosemary; O'Gara, Fergal

    2017-01-01

    Dietary factors, probiotic agents, aging and antibiotics/medicines impact on gut microbiome composition leading to disturbances in localised microbial populations. The impact can be profound and underlies a plethora of human disorders, including the focus of this review; cancer. Compromised microbiome populations can alter bile acid signalling and produce distinct pathophysiological bile acid profiles. These in turn have been associated with cancer development and progression. Exposure to high levels of bile acids, combined with localised molecular/genome instability leads to the acquisition of bile mediated neoplastic alterations, generating apoptotic resistant proliferation phenotypes. However, in recent years, several studies have emerged advocating the therapeutic benefits of bile acid signalling in suppressing molecular and phenotypic hallmarks of cancer progression. These studies suggest that in some instances, bile acids may reduce cancer phenotypic effects, thereby limiting metastatic potential. In this review, we contextualise the current state of the art to propose that the bile acid/gut microbiome axis can influence cancer progression to the extent that classical in vitro cancer hallmarks of malignancy (cell invasion, cell migration, clonogenicity, and cell adhesion) are significantly reduced. We readily acknowledge the existence of a bile acid/gut microbiome axis in cancer initiation, however, in light of recent advances, we focus exclusively on the role of bile acids as potentially beneficial molecules in suppressing cancer progression. Finally, we theorise that suppressing aggressive malignant phenotypes through bile acid/gut microbiome axis modulation could uncover new and innovative disease management strategies for managing cancers in vulnerable cohorts. PMID:29383197

  15. Factors that reverse the persistent depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro.

    PubMed

    Yamamoto, S; Tanaka, E; Shoji, Y; Kudo, Y; Inokuchi, H; Higashi, H

    1997-08-01

    In CA1 pyramidal neurons in rat hippocampal tissue slices, superfusion with ischemia-simulating medium produced a rapid depolarization after 6 min of exposure. The membrane potential eventually reached 0 after 5 min (a persistent depolarization), even when oxygen and glucose were reintroduced. The role of various ions in the reversal of this persistent depolarization after reintroduction of oxygen and glucose was investigated. The peak of the persistent depolarization was decreased in solutions containing reduced Na+ or Ca2+ and in solutions containing Co2+ or Ni2+. In contrast, the depolarization was not affected by reduction of external K+ or Cl- or by addition of tetrodotoxin (TTX), flunarizine, or nifedipine. These results suggest that sustained Na+ and Ca2+ influxes produce the persistent depolarization. The membrane potential recovered after reintroduction of oxygen and glucose in low Ca2+, low Cl-, or K+-rich medium and in TTX- or tetraethylammonium-containing medium, but not in low Na+ or low K+ medium and in flunarizine- or nifedipine-containing medium. Either reduction in extracellular Ca2+ or addition of Co2+ was the most effective in promoting recovery from the persistent depolarization, suggesting that Ca2+ influx has a key role in causing the membrane dysfunction. The peak of the persistent depolarization was reduced by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), DL-2-amino-5-phosphonopentanoic acid (AP5), DL-amino-3-phosphonopropionic acid (AP3), or DL-amino-4-phosphonobutyric acid, suggesting that activation of non-N-methyl-D-aspartate (non-NMDA), NMDA, and metabotropic glutamate (Glu) receptors is involved in the generation and maintenance of the persistent depolarization. Among these Glu receptor antagonists, only CNQX or AP5 was able to reduce dose dependently the level of depolarization, suggesting that Ca2+ influx via both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate type II receptors and NMDA receptors contributes to the membrane dysfunction. trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) did not affect the peak potential of the persistent depolarization, but it dose-dependently restored the membrane potential. AP3 antagonized the protective action of t-ACPD. The membrane potential also recovered after reintroduction when the slice was pretreated by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, ryanodol 3-(1H-pyrrole-2-carboxylate), 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride, and procaine, suggesting that raised [Ca2+]i from Ca2+-induced Ca2+ release pool contributes to the membrane dysfunction. It, therefore, is concluded that raised [Ca2+]i has a dominant role in causing irreversible changes. The increase in [Ca2+]i during the persistent depolarization may be the result of Ca2+ entry via both a leaky membrane and Glu-activated receptor channels as well as Ca2+ released from internal stores.

  16. Role of β-catenin signaling in the anti-invasive effect of the omega-3 fatty acid DHA in human melanoma cells.

    PubMed

    Serini, Simona; Zinzi, Antonio; Ottes Vasconcelos, Renata; Fasano, Elena; Riillo, Maria Greca; Celleno, Leonardo; Trombino, Sonia; Cassano, Roberta; Calviello, Gabriella

    2016-11-01

    We previously found that docosahexaenoic acid (DHA), a dietary polyunsaturated fatty acid present at high level in fatty fish, inhibited cell growth and induced differentiation of melanoma cells in vitro by increasing nuclear β-catenin content. An anti-neoplastic role of nuclear β-catenin was suggested in melanoma, and related to the presence in the melanocyte lineage of the microphtalmia transcription factor (MITF), which interferes with the transcription of β-catenin/TCF/LEF pro-invasive target genes. In the present work we investigated if DHA could inhibit the invasive potential of melanoma cells, and if this effect could be related to DHA-induced alterations of the Wnt/β-catenin signaling, including changes in MITF expression. WM115 and WM266-4 human melanoma, and B16-F10 murine melanoma cell lines were used. Cell invasion was evaluated by Wound Healing and Matrigel transwell assays. Protein expression was analyzed by Western Blotting and β-catenin phosphorylation by immunoprecipitation. The role of MITF in the anti-invasive effect of DHA was analyzed by siRNA gene silencing. We found that DHA inhibited anchorage-independent cell growth, reduced their migration/invasion in vitro and down-regulated several Matrix Metalloproteinases (MMP: MMP-2, MT1-MMP and MMP-13), known to be involved in melanoma invasion. We related these effects to the β-catenin increased nuclear expression and PKA-dependent phosphorylation, as well as to the increased expression of MITF. The data obtained further support the potential role of dietary DHA as suppressor of melanoma progression to invasive malignancy through its ability to enhance MITF expression and PKA-dependent nuclear β-catenin phosphorylation. Copyright © 2016. Published by Elsevier Ireland Ltd.

  17. Developmental roles of tyrosine metabolism enzymes in the blood-sucking insect Rhodnius prolixus

    PubMed Central

    Oliveira, Pedro L.

    2017-01-01

    The phenylalanine/tyrosine degradation pathway is frequently described as a catabolic pathway that funnels aromatic amino acids into citric acid cycle intermediates. Previously, we demonstrated that the accumulation of tyrosine generated during the hydrolysis of blood meal proteins in Rhodnius prolixus is potentially toxic, a harmful outcome that is prevented by the action of the first two enzymes in the tyrosine degradation pathway. In this work, we further evaluated the relevance of all other enzymes involved in phenylalanine/tyrosine metabolism in the physiology of this insect. The knockdown of most of these enzymes produced a wide spectrum of distinct phenotypes associated with reproduction, development and nymph survival, demonstrating a highly pleiotropic role of tyrosine metabolism. The phenotypes obtained for two of these enzymes, homogentisate dioxygenase and fumarylacetoacetase, have never before been described in any arthropod. To our knowledge, this report is the first comprehensive gene-silencing analysis of an amino acid metabolism pathway in insects. Amino acid metabolism is exceptionally important in haematophagous arthropods due to their particular feeding behaviour. PMID:28469016

  18. Developmental roles of tyrosine metabolism enzymes in the blood-sucking insect Rhodnius prolixus.

    PubMed

    Sterkel, Marcos; Oliveira, Pedro L

    2017-05-17

    The phenylalanine/tyrosine degradation pathway is frequently described as a catabolic pathway that funnels aromatic amino acids into citric acid cycle intermediates. Previously, we demonstrated that the accumulation of tyrosine generated during the hydrolysis of blood meal proteins in Rhodnius prolixus is potentially toxic, a harmful outcome that is prevented by the action of the first two enzymes in the tyrosine degradation pathway. In this work, we further evaluated the relevance of all other enzymes involved in phenylalanine/tyrosine metabolism in the physiology of this insect. The knockdown of most of these enzymes produced a wide spectrum of distinct phenotypes associated with reproduction, development and nymph survival, demonstrating a highly pleiotropic role of tyrosine metabolism. The phenotypes obtained for two of these enzymes, homogentisate dioxygenase and fumarylacetoacetase, have never before been described in any arthropod. To our knowledge, this report is the first comprehensive gene-silencing analysis of an amino acid metabolism pathway in insects. Amino acid metabolism is exceptionally important in haematophagous arthropods due to their particular feeding behaviour. © 2017 The Author(s).

  19. α-Lipoic acid inhibits sevoflurane-induced neuronal apoptosis through PI3K/Akt signalling pathway.

    PubMed

    Ma, Rong; Wang, Xiang; Peng, Peipei; Xiong, Jingwei; Dong, Hongquan; Wang, Lixia; Ding, Zhengnian

    2016-01-01

    Sevoflurane is a widely used anaesthetic agent, including in anaesthesia of children and infants. Recent studies indicated that the general anaesthesia might cause the cell apoptosis in the brain. This issue raises the concerns about the neuronal toxicity induced by the application of anaesthetic agents, especially in the infants and young children. In this study, we used Morris water maze, western blotting and immunohistochemistry to elucidate the role of α-lipoic acid in the inhibition of neuronal apoptosis. We found that sevoflurane led to the long-term cognitive impairment in the young rats. This adverse effect may be caused by the neuronal death in the hippocampal region, mediated through PI3K/Akt signalling pathway. We also showed that α-lipoic acid offset the effect of sevoflurane on the neuronal apoptosis and cognitive dysfunction. This study elucidated the potential clinical role of α-lipoic acid, providing a promising way in the prevention and treatment of long-term cognitive impairment induced by sevoflurane general anesthesia. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes.

    PubMed

    Mamoon, Abulkhair; Subauste, Angela; Subauste, Maria C; Subauste, Jose

    2014-10-25

    Retinoic acid (RA) affects multiple aspects of development, embryogenesis and cell differentiation processes. The liver is a major organ that stores RA suggesting that retinoids play an important role in the function of hepatocytes. In our previous studies, we have demonstrated the involvement of small heterodimer partner (SHP) in RA-induced signaling in a non-transformed hepatic cell line AML 12. In the present study, we have identified several critical genes in lipid homeostasis (Apoa1, Apoa2 and ApoF) that are repressed by RA-treatment in a SHP dependent manner, in vitro and also in vivo with the use of the SHP null mice. In a similar manner, RA also represses several critical genes involved in bile acid metabolism (Cyp7a1, Cyp8b1, Mdr2, Bsep, Baat and Ntcp) via upregulation of SHP. Collectively our data suggest that SHP plays a major role in RA-induced potential changes in pathophysiology of metabolic disorders in the liver. Copyright © 2014. Published by Elsevier B.V.

  1. The impact of harmfulness information on citric acid induced cough and urge-to-cough.

    PubMed

    Janssens, Thomas; Brepoels, Sarah; Dupont, Lieven; Van den Bergh, Omer

    2015-04-01

    The cough reflex is an automatic protective reflex, which can be modulated by conscious effort or other forms of top-down control. In this experiment, we investigated whether information about harmfulness of a cough-inducing substance would augment cough reflex sensitivity and associated urge-to-cough. Healthy participants (N = 39) were randomized to receive information that they were to inhale a harmless substance (natural citric acid), or a potentially harmful substance (a potent agro-chemical acid). Using dosimeter-controlled inhalations, the dose of citric acid eliciting at least three coughs (C3) was determined. Next, participants received 4 blocks of randomized presentations of citric acid at the C3 dose, a sub-threshold dose of citric acid and saline control. C3 was reached for 27/39 participants, and C3 thresholds were not influenced by harmfulness information. During repeated citric acid presentations, framing the cough-inducing substance as a potentially harmful chemical resulted in a greater urge-to-cough compared to information framing it as natural citric acid (p < .01). The experimental manipulation did not influence cough frequencies. Our findings show that harmfulness information influences urge-to-cough, corroborating the role of cortical mechanisms in modulating the urge-to-cough and suggesting that cognitive manipulations may contribute to cough treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis.

    PubMed

    Wu, Xuefeng; Yao, Hongli; Liu, Qing; Zheng, Zhi; Cao, Lili; Mu, Dongdong; Wang, Hualin; Jiang, Shaotong; Li, Xingjiang

    2018-03-19

    The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14 ± 1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24 ± 1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.

  3. Bicarbonate Availability for Vocal Fold Epithelial Defense to Acidic Challenge

    PubMed Central

    Durkes, Abigail; Sivasankar, M. Preeti

    2014-01-01

    Objectives Bicarbonate is critical for acid-base tissue homeostasis. In this study we investigated the role of bicarbonate ion transport in vocal fold epithelial defense to acid challenges. Acidic insults to the larynx are common in gastric reflux, carcinogenesis and metastasis, and acute inflammation. Methods Ion transport was measured in viable, porcine vocal fold epithelium. First, 18 vocal folds were exposed to either the carbonic anhydrase antagonist acetazolamide or to vehicle. Second, 32 vocal folds were exposed to either a control buffer or a bicarbonate-free buffer on their luminal or basolateral surface or both. Third, vocal folds were challenged with acid in the presence of bicarbonate-free or control buffer. Results The vocal fold transepithelial resistance was greater than 300 Ω*cm2, suggesting robust barrier integrity. Ion transport did not change after exposure to acetazolamide (p > 0.05). Exposure to bicarbonate-free buffer did not compromise vocal fold ion transport (p > 0.05). Ion transport increased after acid challenge. This increase approached statistical significance and was the greatest for the control buffer and for the bicarbonate-free buffer applied to the basolateral surface. Conclusions Bicarbonate secretion may contribute to vocal fold defense against acid challenge. Our data offer a potential novel role for bicarbonate as a therapeutic agent to reduce pH abnormalities in the larynx and prevent associated pathological changes. PMID:24574427

  4. Identification of the pH sensor and activation by chemical modification of the ClC-2G Cl- channel.

    PubMed

    Stroffekova, K; Kupert, E Y; Malinowska, D H; Cuppoletti, J

    1998-10-01

    Rabbit and human ClC-2G Cl- channels are voltage sensitive and activated by protein kinase A and low extracellular pH. The objective of the present study was to investigate the mechanism involved in acid activation of the ClC-2G Cl- channel and to determine which amino acid residues play a role in this acid activation. Channel open probability (Po) at +/-80 mV holding potentials increased fourfold in a concentration-dependent manner with extracellular H+ concentration (that is, extracellular pH, pHtrans), with an apparent acidic dissociation constant of pH 4.95 +/- 0.27. 1-Ethyl-3(3-dimethylaminopropyl)carbodiimide-catalyzed amidation of the channel with glycine methyl ester increased Po threefold at pHtrans 7.4, at which the channel normally exhibits low Po. With extracellular pH reduction (protonation) or amidation, increased Po was due to a significant increase in open time constants and a significant decrease in closed time constants of the channel gating, and this effect was insensitive to applied voltage. With the use of site-directed mutagenesis, the extracellular region EELE (amino acids 416-419) was identified as the pH sensor and amino acid Glu-419 was found to play the key or predominant role in activation of the ClC-2G Cl- channel by extracellular acid.

  5. Uric acid stimulates proliferative pathways in vascular smooth muscle cells through the activation of p38 MAPK, p44/42 MAPK and PDGFRβ.

    PubMed

    Kırça, M; Oğuz, N; Çetin, A; Uzuner, F; Yeşilkaya, A

    2017-04-01

    Hyperuricemia and angiotensin II (Ang II) may have a pathogenetic role in the development of hypertension and atherosclerosis as well as cardiovascular disease (CVD) and its prognosis. The purpose of this study was to investigate whether uric acid can induce proliferative pathways of vascular smooth muscle cell (VSMC) that are thought to be responsible for the development of CVD. The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), p44/42 mitogen-activated protein kinase (p44/42 MAPK) and platelet-derived growth factor receptor β (PDGFRβ) was measured by Elisa and Western blot techniques to determine the activation of proliferative pathways in primary cultured VSMCs from rat aorta. Results demonstrated that uric acid can stimulate p38 MAPK, p44/42 MAPK and PDGFRβ phosphorylation in a time- and concentration-dependent manner. Furthermore, treatment of VSMCs with the angiotensin II type I receptor (AT1R) inhibitor losartan suppressed p38 MAPK and p44/42 MAPK induction by uric acid. The stimulatory effect of uric acid on p38 MAPK was higher compared to that of Ang II. The results of this study show for the first time that uric acid-induced PDGFRβ phosphorylation plays a crucial role in the development of CVDs and that elevated uric acid levels could be a potential therapeutical target in CVD patients.

  6. Phosphatidic acid and neurotransmission.

    PubMed

    Raben, Daniel M; Barber, Casey N

    2017-01-01

    Lipids play a vital role in the health and functioning of neurons and interest in the physiological role of neuronal lipids is certainly increasing. One neuronal function in which neuronal lipids appears to play key roles in neurotransmission. Our understanding of the role of lipids in the synaptic vesicle cycle and neurotransmitter release is becoming increasingly more important. Much of the initial research in this area has highlighted the major roles played by the phosphoinositides (PtdIns), diacylglycerol (DAG), and phosphatidic acid (PtdOH). Of these, PtdOH has not received as much attention as the other lipids although its role and metabolism appears to be extremely important. This lipid has been shown to play a role in modulating both exocytosis and endocytosis although its precise role in either process is not well defined. The currently evidence suggest this lipid likely participates in key processes by altering membrane architecture necessary for membrane fusion, mediating the penetration of membrane proteins, serving as a precursor for other important SV cycling lipids, or activating essential enzymes. In this review, we address the sources of PtdOH, the enzymes involved in its production, the regulation of these enzymes, and its potential roles in neurotransmission in the central nervous system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.

    PubMed

    Counihan, Jessica L; Duckering, Megan; Dalvie, Esha; Ku, Wan-Min; Bateman, Leslie A; Fisher, Karl J; Nomura, Daniel K

    2017-03-17

    Acetanilide herbicides are among the most widely used pesticides in the United States, but their toxicological potential and mechanisms remain poorly understood. Here, we have used chemoproteomic platforms to map proteome-wide cysteine reactivity of acetochlor (AC), the most widely used acetanilide herbicide, in vivo in mice. We show that AC directly reacts with >20 protein targets in vivo in mouse liver, including the catalytic cysteines of several thiolase enzymes involved in mitochondrial and peroxisomal fatty acid oxidation. We show that the fatty acids that are not oxidized, due to impaired fatty acid oxidation, are instead diverted into other lipid pathways, resulting in heightened free fatty acids, triglycerides, cholesteryl esters, and other lipid species in the liver. Our findings show the utility of chemoproteomic approaches for identifying novel mechanisms of toxicity associated with environmental chemicals like acetanilide herbicides.

  8. Modulation of hepatic steatosis by dietary fatty acids

    PubMed Central

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) describes a range of conditions caused by fat deposition within liver cells. Liver fat content reflects the equilibrium between several metabolic pathways involved in triglyceride synthesis and disposal, such as lipolysis in adipose tissue and de novo lipogenesis, triglyceride esterification, fatty acid oxidation and very-low-density lipoprotein synthesis/secretion in hepatic tissue. In particular, it has been demonstrated that hepatic de novo lipogenesis plays a significant role in NAFLD pathogenesis. It is widely known that the fatty acid composition of the diet influences hepatic lipogenesis along with other metabolic pathways. Therefore, dietary fat may not only be involved in the pathogenesis of hepatic steatosis, but may also prevent and/or reverse hepatic fat accumulation. In this review, major data from the literature about the role of some dietary fats as a potential cause of hepatic fat accumulation or as a potential treatment for NAFLD are described. Moreover, biochemical mechanisms responsible for an increase or decrease in hepatic lipid content are critically analyzed. It is noteworthy that both quantitative and qualitative aspects of dietary fat influence triglyceride deposition in the liver. A high-fat diet or the dietary administration of conjugated linoleic acids induced hepatic steatosis. In contrast, supplementation of the diet with krill oil or pine nut oil helped in the prevention and/or in the treatment of steatotic liver. Quite interesting is the “case” of olive oil, since several studies have often provided different and⁄or conflicting results in animal models. PMID:24587652

  9. Modulation of hepatic steatosis by dietary fatty acids.

    PubMed

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-02-21

    Non-alcoholic fatty liver disease (NAFLD) describes a range of conditions caused by fat deposition within liver cells. Liver fat content reflects the equilibrium between several metabolic pathways involved in triglyceride synthesis and disposal, such as lipolysis in adipose tissue and de novo lipogenesis, triglyceride esterification, fatty acid oxidation and very-low-density lipoprotein synthesis/secretion in hepatic tissue. In particular, it has been demonstrated that hepatic de novo lipogenesis plays a significant role in NAFLD pathogenesis. It is widely known that the fatty acid composition of the diet influences hepatic lipogenesis along with other metabolic pathways. Therefore, dietary fat may not only be involved in the pathogenesis of hepatic steatosis, but may also prevent and/or reverse hepatic fat accumulation. In this review, major data from the literature about the role of some dietary fats as a potential cause of hepatic fat accumulation or as a potential treatment for NAFLD are described. Moreover, biochemical mechanisms responsible for an increase or decrease in hepatic lipid content are critically analyzed. It is noteworthy that both quantitative and qualitative aspects of dietary fat influence triglyceride deposition in the liver. A high-fat diet or the dietary administration of conjugated linoleic acids induced hepatic steatosis. In contrast, supplementation of the diet with krill oil or pine nut oil helped in the prevention and/or in the treatment of steatotic liver. Quite interesting is the "case" of olive oil, since several studies have often provided different and/or conflicting results in animal models.

  10. Neuroprotective Effects of Ferruginol, Jatrophone, and Junicedric Acid Against Amyloid-β Injury in Hippocampal Neurons.

    PubMed

    Zolezzi, Juan M; Lindsay, Carolina B; Serrano, Felipe G; Ureta, Roxana C; Theoduloz, Cristina; Schmeda-Hirschmann, Guillermo; Inestrosa, Nibaldo C

    2018-01-01

    Soluble amyloid-β (Aβ) oligomers have been recognized as early neurotoxic intermediates with a key role in the synaptic dysfunction observed in Alzheimer's disease (AD). Aβ oligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. Additionally, the presence of Aβ oligomers is associated with imbalanced intracellular calcium levels and apoptosis in neurons. In this context, we evaluated the effects of three diterpenes (ferruginol, jatrophone, and junicedric acid) that are found in medicinal plants and have several forms of biological activity. The intracellular calcium levels in hippocampal neurons increased in the presence of ferruginol, jatrophone, and junicedric acid, a result that was consistent with the observed increase in CA1 synaptic transmission in mouse hippocampal slices. Additionally, assays using Aβ peptide demonstrated that diterpenes, particularly ferruginol, restore LTP and reduce apoptosis. Recovery of the Aβ oligomer-induced loss of the synaptic proteins PSD-95, synapsin, VGlut, and NMDA receptor subunit 2A was observed in mouse hippocampal slices treated with junicedric acid. This cascade of events may be associated with the regulation of kinases, e.g., protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaMKII), in addition to the activation of the canonical Wnt signaling pathway and could thus provide protection against Aβ oligomers, which trigger synaptic dysfunction. Our results suggest a potential neuroprotective role for diterpenes against the Aβ oligomers-induced neurodegenerative alterations, which make them interesting molecules to be further studied in the context of AD.

  11. Fuel trafficking in muscle—potential role of myoglobin/lipid binding

    USDA-ARS?s Scientific Manuscript database

    Myoglobin is one of the most abundant proteins in skeletal muscle (type 1, "slow twitch" fibers) and cardiomyocytes, and supports oxidative combustion of fuels. Myoglobin-abundant muscle types are adept at fatty acid oxidation, in contrast to "white" (type 2, "fast twitch") fibers that tend to rely ...

  12. Long-term trends in sulfur and reactive nitrogen deposition across the Northern Hemisphere and United States

    EPA Science Inventory

    A detailed understanding of the distribution and fate of atmospheric sulfur (SOx) and reactive nitrogen compounds (NOy and NHx) is desirable given their role in determining tropospheric acidic substances and particulate matter budgets and potential nutrient loading effects in sen...

  13. Effect of acid suppression therapy on gastroesophageal reflux and cough in idiopathic pulmonary fibrosis: an intervention study.

    PubMed

    Kilduff, Claire E; Counter, Melanie J; Thomas, Gareth A; Harrison, Nicholas K; Hope-Gill, Benjamin D

    2014-01-01

    Chronic cough affects more than 70 percent of patients with Idiopathic Pulmonary Fibrosis and causes significant morbidity. Gastroesophageal reflux is the cause of some cases of chronic cough; and also has a postulated role in the aetiology of Idiopathic Pulmonary Fibrosis. A high prevalence of acid; and more recently non-acid, reflux has been observed in Idiopathic Pulmonary Fibrosis cohorts. Therefore, gastroesophageal reflux may be implicated in the pathogenesis of cough in Idiopathic Pulmonary Fibrosis. Eighteen subjects with Idiopathic Pulmonary Fibrosis underwent 24-hour oesophageal impedance and cough count monitoring after the careful exclusion of causes of chronic cough other than gastroesophageal reflux. All 18 were then treated with high dose acid suppression therapies. Fourteen subjects underwent repeat 24-hour oesophageal impedance and cough count monitoring after eight weeks. Total reflux and acid reflux frequencies were within the normal range in the majority of this cohort. The frequencies of non-acid and proximal reflux events were above the normal range. Following high dose acid suppression therapy there was a significant decrease in the number of acid reflux events (p = 0.02), but an increase in the number of non-acid reflux events (p = 0.01). There was no change in cough frequency (p = 0.70). This study confirms that non-acid reflux is prevalent; and that proximal oesophageal reflux occurs in the majority, of subjects with Idiopathic Pulmonary Fibrosis. It is the first study to investigate the effect of acid suppression therapy on gastroesophageal reflux and cough in patients with Idiopathic Pulmonary Fibrosis. The observation that cough frequency does not improve despite verifiable reductions in oesophageal acid exposure challenges the role of acid reflux in Idiopathic Pulmonary Fibrosis associated cough. The finding that non-acid reflux is increased following the use of acid suppression therapies cautions against the widespread use of acid suppression in patients with Idiopathic Pulmonary Fibrosis given the potential role for non-acid reflux in the pathogenesis of cough and Idiopathic Pulmonary Fibrosis itself. The study was registered with the Cardiff and Vale University Local Health Board Research and Development Committee (09/CMC/4619) and the South East Wales Ethics Committee (09/WSE04/57).

  14. Effect of acid suppression therapy on gastroesophageal reflux and cough in idiopathic pulmonary fibrosis: an intervention study

    PubMed Central

    2014-01-01

    Background Chronic cough affects more than 70 percent of patients with Idiopathic Pulmonary Fibrosis and causes significant morbidity. Gastroesophageal reflux is the cause of some cases of chronic cough; and also has a postulated role in the aetiology of Idiopathic Pulmonary Fibrosis. A high prevalence of acid; and more recently non-acid, reflux has been observed in Idiopathic Pulmonary Fibrosis cohorts. Therefore, gastroesophageal reflux may be implicated in the pathogenesis of cough in Idiopathic Pulmonary Fibrosis. Methods Eighteen subjects with Idiopathic Pulmonary Fibrosis underwent 24-hour oesophageal impedance and cough count monitoring after the careful exclusion of causes of chronic cough other than gastroesophageal reflux. All 18 were then treated with high dose acid suppression therapies. Fourteen subjects underwent repeat 24-hour oesophageal impedance and cough count monitoring after eight weeks. Results Total reflux and acid reflux frequencies were within the normal range in the majority of this cohort. The frequencies of non-acid and proximal reflux events were above the normal range. Following high dose acid suppression therapy there was a significant decrease in the number of acid reflux events (p = 0.02), but an increase in the number of non-acid reflux events (p = 0.01). There was no change in cough frequency (p = 0.70). Conclusions This study confirms that non-acid reflux is prevalent; and that proximal oesophageal reflux occurs in the majority, of subjects with Idiopathic Pulmonary Fibrosis. It is the first study to investigate the effect of acid suppression therapy on gastroesophageal reflux and cough in patients with Idiopathic Pulmonary Fibrosis. The observation that cough frequency does not improve despite verifiable reductions in oesophageal acid exposure challenges the role of acid reflux in Idiopathic Pulmonary Fibrosis associated cough. The finding that non-acid reflux is increased following the use of acid suppression therapies cautions against the widespread use of acid suppression in patients with Idiopathic Pulmonary Fibrosis given the potential role for non-acid reflux in the pathogenesis of cough and Idiopathic Pulmonary Fibrosis itself. Study registration The study was registered with the Cardiff and Vale University Local Health Board Research and Development Committee (09/CMC/4619) and the South East Wales Ethics Committee (09/WSE04/57). PMID:24876887

  15. The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids

    PubMed Central

    Campanacci, Valérie; Bishop, Russell E.; Blangy, Stéphanie; Tegoni, Mariella; Cambillau, Christian

    2016-01-01

    Lipocalins, a widespread multifunctional family of small proteins (15–25 kDa) have been first described in eukaryotes and more recently in Gram-negative bacteria. Bacterial lipocalins belonging to class I are outer membrane lipoproteins, among which Blc from E. coli is the better studied. Blc is expressed under conditions of starvation and high osmolarity, conditions known to exert stress on the cell envelope. The structure of Blc that we have previously solved (V. Campanacci, D. Nurizzo, S. Spinelli, C. Valencia, M. Tegoni, C. Cambillau, FEBS Lett. 562 (2004) 183–188.) suggested its possible role in binding fatty acids or phospholipids. Both physiological and structural data on Blc, therefore, point to a role in storage or transport of lipids necessary for membrane maintenance. In order to further document this hypothesis for Blc function, we have performed binding studies using fluorescence quenching experiments. Our results indicate that dimeric Blc binds fatty acids and phospholipids in a micromolar Kd range. The crystal structure of Blc with vaccenic acid, an unsaturated C18 fatty acid, reveals that the binding site spans across the Blc dimer, opposite to its membrane anchored face. An exposed unfilled pocket seemingly suited to bind a polar group attached to the fatty acid prompted us to investigate lyso-phospholipids, which were found to bind in a nanomolar Kd range. We discuss these findings in terms of a potential role for Blc in the metabolism of lysophospholipids generated in the bacterial outer membrane. PMID:16920109

  16. Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis.

    PubMed

    Wellberg, Elizabeth A; Rudolph, Michael C; Lewis, Andrew S; Padilla-Just, Nuria; Jedlicka, Paul; Anderson, Steven M

    2014-12-04

    Spot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor progression, as rapidly proliferating cells have a heightened requirement for membrane phospholipids. Further, overexpression of FASN is sufficient to stimulate cell proliferation. While many studies have focused on the FASN enzyme in cancer biology, few studies have addressed the roles of proteins that modify FASN activity, such as S14. Tumor fatty acids were modulated using two mouse models, mouse mammary tumor virus (MMTV)-neu mice overexpressing S14 and MMTV-polyomavirus middle T antigen (PyMT) mice lacking S14, and associations between elevated or impaired fatty acid synthesis on tumor latency, growth, metastasis, and signaling pathways were investigated. We evaluated S14-dependent gene expression profiles in mouse tumors by microarray and used publicly available microarray datasets of human breast tumors. S14 overexpression in the MMTV-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls. Loss of S14 in the MMTV-PyMT model decreased FASN activity and the synthesis of medium-chain fatty acids but did not alter tumor latency. Impaired fatty acid synthesis was associated with reduced solid tumor cell proliferation, the formation of cystic lesions in some animals, and decreased phosphorylation of Src and protein kinase B (Akt). Analysis of gene expression in these mouse and human tumors revealed a relationship between S14 status and the expression of genes associated with luminal epithelial differentiation. This study demonstrates a potential role for S14 in regulating mammary tumor growth and fatty acid synthesis in vivo. Furthermore, these results suggest that modulating the amount of medium chain fatty acids, by changing the levels of S14, has the potential to impact malignant mammary tumor phenotypes.

  17. Polyunsaturated fatty acids in serum and homocysteine concentrations in Japanese men and women: a cross-sectional study.

    PubMed

    Kume, Ayami; Kurotani, Kayo; Sato, Masao; Ejima, Yuko; Pham, Ngoc Minh; Nanri, Akiko; Kuwahara, Keisuke; Mizoue, Tetsuya

    2013-06-10

    Supplementation studies have suggested a role of n-3 polyunsaturated fatty acids (PUFAs) in homocysteine metabolism, but the evidence is limited and inconsistent among studies that measured blood levels of n-3 and n-6 PUFAs. We examined the association between blood levels of PUFAs and homocysteine in Japanese men and women. The subjects were 496 employees (290 men and 206 women) of 2 municipal offices in Japan. Fatty acid composition in serum phospholipids and cholesterol ester (CE) was measured using gas-liquid chromatography. Multiple regression was used to calculate means of homocysteine concentrations according to PUFA tertile with adjustment for potential confounders. Serum homocysteine concentration decreased with increasing levels of total n-3 PUFA, eicosapentaenoic acid and docosahexaenoic acid (DHA) in serum phospholipids and CE with adjustment for age, sex and workplace. However, only DHA in serum phospholipids remained statistically significant after additional adjustment for other potential confounders including serum folate (P-trend = 0.04). N-6 PUFAs were not significantly associated with homocysteine concentrations. Higher proportion of DHA in serum phospholipids may be associated with lower homocysteine concentrations in Japanese men and women.

  18. Acid Gradient across Plasma Membrane Can Drive Phosphate Bond Synthesis in Cancer Cells: Acidic Tumor Milieu as a Potential Energy Source

    PubMed Central

    Dhar, Gautam; Sen, Suvajit; Chaudhuri, Gautam

    2015-01-01

    Aggressive cancers exhibit an efficient conversion of high amounts of glucose to lactate accompanied by acid secretion, a phenomenon popularly known as the Warburg effect. The acidic microenvironment and the alkaline cytosol create a proton-gradient (acid gradient) across the plasma membrane that represents proton-motive energy. Increasing experimental data from physiological relevant models suggest that acid gradient stimulates tumor proliferation, and can also support its energy needs. However, direct biochemical evidence linking extracellular acid gradient to generation of intracellular ATP are missing. In this work, we demonstrate that cancer cells can synthesize significant amounts of phosphate-bonds from phosphate in response to acid gradient across plasma membrane. The noted phenomenon exists in absence of glycolysis and mitochondrial ATP synthesis, and is unique to cancer. Biochemical assays using viable cancer cells, and purified plasma membrane vesicles utilizing radioactive phosphate, confirmed phosphate-bond synthesis from free phosphate (Pi), and also localization of this activity to the plasma membrane. In addition to ATP, predominant formation of pyrophosphate (PPi) from Pi was also observed when plasma membrane vesicles from cancer cells were subjected to trans-membrane acid gradient. Cancer cytosols were found capable of converting PPi to ATP, and also stimulate ATP synthesis from Pi from the vesicles. Acid gradient created through glucose metabolism by cancer cells, as observed in tumors, also proved critical for phosphate-bond synthesis. In brief, these observations reveal a role of acidic tumor milieu as a potential energy source and may offer a novel therapeutic target. PMID:25874623

  19. Small molecule inhibitors of human adipocyte fatty acid binding protein (FABP4).

    PubMed

    Zhang, Mingming; Zhu, Weiliang; Li, Yingxia

    2014-06-01

    Fatty acid binding protein 4 (FABP4) is expressed in adipocytes and macrophages, and modulates inflammatory and metabolic response. Studies in FABP4-deficient mice have shown that this lipid carrier has a significant role within the field of metabolic syndrome, inflammation and atherosclerosis; thus, its inhibition may open up new opportunities to develop novel therapeutic agents. A number of potent small molecule inhibitors of FABP4 have been identified and found to have the potential to prevent and treat metabolic diseases such as type-2 diabetes and atherosclerosis. Due to the ubiquity of endogenous fatty acids and the high intracellular concentration of FABP4, the inhibitors need to have significantly greater intrinsic potency than endogenous fatty acids. Furthermore, heart-type FABP (FABP3), which is expressed in both heart and skeletal muscle, is involved in active fatty acid metabolism where it transports fatty acids from the cell membrane to mitochondria for oxidation. However, FABP3 shares high overall sequence identity and similar 3D structure with FABP4, but has a potential problem with selectivity. In this review, we would like to analyze the main inhibitors that have appeared in the literature in the last decade, focusing on chemical structures, biological properties, selectivity and structure-activity relationships.

  20. Identification of potential platelet alloantigens in the Equidae family by comparison of gene sequences encoding major platelet membrane glycoproteins.

    PubMed

    Boudreaux, Mary K; Humphries, Drew M

    2013-12-01

    Platelet alloantigens in horses may play an important role in the development of neonatal alloimmune thrombocytopenia (NAIT). The objective of this study was to evaluate genes encoding major platelet glycoproteins within the Equidae family in an effort to identify potential alloantigens. DNA was isolated from blood samples obtained from Equidae family members, including a Holsteiner-Oldenburg cross, a Quarter horse, a donkey, and a Plains zebra (Equus burchelli). Gene sequences encoding equine platelet membrane glycoproteins IIb, IIIa (integrin subunits αIIb and β3), Ia (integrin subunit α2), and Ibα were determined using PCR. Gene sequences were compared to the equine genome available on GenBank. Polymorphisms that would be predicted to result in amino acid changes on platelet surfaces were documented and compared with known alloantigenic sites documented on human platelets. Amino acid differences were predicted based on nucleotide sequences for all 4 genes. Nine differences were documented for αIIb, 5 differences were documented for β3, 7 differences were documented for α2, and 16 differences were documented for Ibα outside the macroglycopeptide region. This study represents the first effort at identifying potential platelet alloantigens in members of the Equidae Family based on evaluation of gene sequences. The data obtained form the groundwork for identifying potential platelet alloantigens involved in transfusion reactions and neonatal alloimmune thrombocytopenia (NAIT). More work is required to determine whether the predicted amino acid differences documented in this study play a role in alloimmunity, and whether other polymorphisms not detected in this study are present that may result in alloimmunity. © 2013 American Society for Veterinary Clinical Pathology.

  1. [Study of acetylsalicylic acid role in the potentiation of antiamnesic and neuroprotective properties of piracetam in rats with alloxan diabetes].

    PubMed

    Zhiliuk, V I; Levykh, A E; Mamchur, V I

    2013-01-01

    It has been established that prolonged alloxan-induced hyperglycemia in rats potentiates amnesic properties of scopolamine hydrobromide. It was characterized by shortening of the latent period by 44% (p<0,01) and by 47,7% (p<0,05) after 24 hours and on the 20th day of conditioned passive avoidance test. This effect was accompanied by increase in oxidative modification of proteins and nitric oxide synthesis in the cerebral cortex. Along with this, a significant enhancement of ADP- and collagen-induced platelet aggregation was observed. These processes may play the leading role in the development of cognitive deficit in diabetes. Meanwhile, co-administration of piracetam with acetylsalicylic acid was accompanied by an expressed antiamnetic potential - the reduction of early markers of proteins degradation (aldehydephenylhydrazones, APH) by 21,7% (p<0,05) and late markers of proteins degradation (ketonephenylhydrazones, KPH) by 23,8% (p<0,001) was noted. This combination was 15,7% (p<0,05) more active than piracetam according to the effect upon KPH. NO2-/NO3- level was also decreased by 30,3% (p<0,05) in comparison with alloxan-diabetic rats. The significant anti-platelet effect was observed: degree of collagen-induced platelet aggregation was reduced by 56,8% (p<0,01), ADP (5 μmol/l)-induced - by 31,7% (p<0,01), ADP (20 μmol/l)-induced - by 47,3% (p<0,01) as compared to the hyperglycemic rats. Such an increase in nootropic activity of piracetam may be assumed to be directly related to the ability of acetylsalicylic acid to improve microcirculation in the ischemic areas of the brain in diabetes and probably to its neuroprotective potential.

  2. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay.

    PubMed

    Qwele, K; Hugo, A; Oyedemi, S O; Moyo, B; Masika, P J; Muchenje, V

    2013-03-01

    The present study determined the chemical composition, fatty acid (FA) content and antioxidant capacity of meat from goats supplemented with Moringa oleifera leaves (MOL) or sunflower cake (SC) or grass hay (GH). The meat from goat supplemented with MOL had higher concentrations of total phenolic content (10.62±0.27 mg tannic acid equivalent E/g). The MOL significantly scavenged 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic-acid (ABTS) radical to 93.51±0.19% (93.51±0.19%) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical to 58.95±0.3% than other supplements. The antioxidative effect of MOL supplemented meat on catalase (CAT), reduced glutathione (GSH), superoxide dismutase (SOD) and lipid oxidation (LO) was significantly (P<0.05) higher than other meat from goat feed on grass hay or those supplemented with sunflower seed cake. The present study indicated that the anti-oxidative potential of MOL may play a role in improving meat quality (chemical composition, colour and lipid stability). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The potential relevance of docosahexaenoic acid and eicosapentaenoic acid to the etiopathogenesis of childhood neuropsychiatric disorders.

    PubMed

    Tesei, Alessandra; Crippa, Alessandro; Ceccarelli, Silvia Busti; Mauri, Maddalena; Molteni, Massimo; Agostoni, Carlo; Nobile, Maria

    2017-09-01

    Over the last 15 years, considerable interest has been given to the potential role of omega-3 polyunsaturated fatty acids (PUFAs) for understanding pathogenesis and treatment of neurodevelopmental and psychiatric disorders. This review aims to systematically investigate the scientific evidence supporting the hypothesis on the omega-3 PUFAs deficit as a risk factor shared by different pediatric neuropsychiatric disorders. Medline PubMed database was searched for studies examining blood docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) status in children with neuropsychiatric disorders. Forty-one published manuscripts were compatible with the search criteria. The majority of studies on attention-deficit/hyperactivity disorder (ADHD) and autism found a significant decrease in DHA levels in patients versus healthy controls. For the other conditions examined-depression, juvenile bipolar disorder, intellectual disabilities, learning difficulties, and eating disorders (EDs)-the literature was too limited to draw any stable conclusions. However, except EDs, findings in these conditions were in line with results from ADHD and autism studies. Results about EPA levels were too inconsistent to conclude that EPA could be associated with any of the conditions examined. Finally, correlational data provided, on one hand, evidence for a negative association between DHA and symptomatology, whereas on the other hand, evidence for a positive association between EPA and emotional well-being. Although the present review underlines the potential involvement of omega-3 PUFAs in the predisposition to childhood neuropsychiatric disorders, more observational and intervention studies across different diagnoses are needed, which should integrate the collection of baseline PUFA levels with their potential genetic and environmental influencing factors.

  4. Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus

    PubMed Central

    Gacek, Katarzyna; Bayer, Philipp E.; Bartkowiak-Broda, Iwona; Szala, Laurencja; Bocianowski, Jan; Edwards, David; Batley, Jacqueline

    2017-01-01

    Fatty acids and their composition in seeds determine oil value for nutritional or industrial purposes and also affect seed germination as well as seedling establishment. To better understand the genetic basis of seed fatty acid biosynthesis in oilseed rape (Brassica napus L.) we applied a genome-wide association study, using 91,205 single nucleotide polymorphisms (SNPs) characterized across a mapping population with high-resolution skim genotyping by sequencing (SkimGBS). We identified a cluster of loci on chromosome A05 associated with oleic and linoleic seed fatty acids. The delineated genomic region contained orthologs of the Arabidopsis thaliana genes known to play a role in regulation of seed fatty acid biosynthesis such as Fatty acyl-ACP thioesterase B (FATB) and Fatty Acid Desaturase (FAD5). This approach allowed us to identify potential functional genes regulating fatty acid composition in this important oil producing crop and demonstrates that this approach can be used as a powerful tool for dissecting complex traits for B. napus improvement programs. PMID:28163710

  5. Development of miracle medicines from sialic acids

    PubMed Central

    OGURA, Haruo

    2011-01-01

    Sialic acids are electronegatively charged C9-sugars and are considered to play important roles in higher animals and some microorganisms. Denoting their significance, understanding and exploiting the complexity of the sialic acids has been referred to as the “the third language of life”. In essence, “sialic acid derivatives possess a harmonious shape and good balance between two opposing hydrophilic and hydrophobic parts, meaning that they should display various kinds of potentially unique and possibly conflicting physiological activities (glycolipoids)”. Consequently, there are good omens that unprecedented ‘miracle’ medicines could be developed from sialic acid derivatives. In this review, the first problem, the preparation of sialic acids, is covered, the synthesis of sialic acid derivatives and confirmation of their structures obviously being of critical significance. In addition we needed to confirm their precise stereochemistry and a hydrolysis method has been developed for confirmation of the anomeric position. Several of the compounds have already demonstrated interesting bioactivity. PMID:21670567

  6. The Effects of 4-Hydroxybenzoic Acid Identified from Bamboo (Dendrocalamus asper) Shoots on Kv1.4 Channel

    PubMed Central

    Mohamad, Fatin H.; Wong, Jia Hui; Mohamad, Habsah; Ismail, Abdul Hadi; Mohamed Yusoff, Abdul Aziz; Osman, Hasnah; Wong, Kok Tong; Idris, Zamzuri; Abdullah, Jafri Malin

    2018-01-01

    Background Bamboo shoot has been used as a treatment for epilepsy in traditional Chinese medicine for generations to treat neuronal disorders such as convulsive, dizziness and headaches. 4-hydroxybenzoic acid (4-hba) is a non-flavonoid phenol found abundantly in Dendrocalamus asper shoots (bamboo), fruits (strawberries and apples) and flowers. Kv1.4 is a rapidly inactivating Shaker-related member of the voltage-gated potassium channels with two inactivation mechanisms; the fast N-type and slow C-type. It plays vital roles in repolarisation, hyperpolarisation and signaling the restoration of resting membrane potential through the regulation of the movement of K+ across the cellular membrane. Methods Chemical compounds from Dendrocalamus asper bamboo shoots were purified and identified as major palmitic acids mixed with other minor fatty acids, palmitic acid, 4-hydroxybenzaldehyde, lauric acid, 4-hydroxybenzoic acid and cholest-4-ene-3-one. The response of synthetic 4-hydroxybenzoic acid was tested on Kv1.4 potassium channel which was injected into viable oocytes that was extracted from Xenopus laevis. The current were detected by the two-microelectrode voltage clamp, holding potential starting from −80 mV with 20 mV step-up until +80 mV. Readings of treatments with 0.1% DMSO, 4-hba concentrations and K channel blockers were taken at +60 mV. The ratio of tail/peak amplitude is the index of the activity of the Kv1.4 channels with n ≥ 6 (number of oocytes tested). The decreases of the ratios of five different concentrations (1 μM, 10 μM, 100 μM, 1 mM and 2.5 mM) were compared with 0.1% DMSO as the control. Results All concentration showed statistically significant results with P < 0.05 except for 100 μM. The normalised current of the 4-hba concentrations were compared with potassium channel blockers (TEA and 4-AP) and all groups showed statistically significant results. This study also showed that time taken for each concentration to affect Kv1.4 does not play any significant roles. Conclusion 4-hydroxybenzoic acid was found to be able to enhance the inactivation of Kv1.4 by lowering the membrane potential so that the abnormal neuronal firing can be inhibited. With IC50 slightly higher than 10 μM, increasing concentrations (100 μM, 1 mM and 2.5 mM) had shown to exhibit toxicity effects. The best concentration from this study is 10 μM with Hill slope of 0.1799. PMID:29599640

  7. Applications for α-lactalbumin in human nutrition.

    PubMed

    Layman, Donald K; Lönnerdal, Bo; Fernstrom, John D

    2018-06-01

    α-Lactalbumin is a whey protein that constitutes approximately 22% of the proteins in human milk and approximately 3.5% of those in bovine milk. Within the mammary gland, α-lactalbumin plays a central role in milk production as part of the lactose synthase complex required for lactose formation, which drives milk volume. It is an important source of bioactive peptides and essential amino acids, including tryptophan, lysine, branched-chain amino acids, and sulfur-containing amino acids, all of which are crucial for infant nutrition. α-Lactalbumin contributes to infant development, and the commercial availability of α-lactalbumin allows infant formulas to be reformulated to have a reduced protein content. Likewise, because of its physical characteristics, which include water solubility and heat stability, α-lactalbumin has the potential to be added to food products as a supplemental protein. It also has potential as a nutritional supplement to support neurological function and sleep in adults, owing to its unique tryptophan content. Other components of α-lactalbumin that may have usefulness in nutritional supplements include the branched-chain amino acid leucine, which promotes protein accretion in skeletal muscle, and bioactive peptides, which possess prebiotic and antibacterial properties. This review describes the characteristics of α-lactalbumin and examines the potential applications of α-lactalbumin for human health.

  8. Applications for α-lactalbumin in human nutrition

    PubMed Central

    Lönnerdal, Bo; Fernstrom, John D

    2018-01-01

    Abstract α-Lactalbumin is a whey protein that constitutes approximately 22% of the proteins in human milk and approximately 3.5% of those in bovine milk. Within the mammary gland, α-lactalbumin plays a central role in milk production as part of the lactose synthase complex required for lactose formation, which drives milk volume. It is an important source of bioactive peptides and essential amino acids, including tryptophan, lysine, branched-chain amino acids, and sulfur-containing amino acids, all of which are crucial for infant nutrition. α-Lactalbumin contributes to infant development, and the commercial availability of α-lactalbumin allows infant formulas to be reformulated to have a reduced protein content. Likewise, because of its physical characteristics, which include water solubility and heat stability, α-lactalbumin has the potential to be added to food products as a supplemental protein. It also has potential as a nutritional supplement to support neurological function and sleep in adults, owing to its unique tryptophan content. Other components of α-lactalbumin that may have usefulness in nutritional supplements include the branched-chain amino acid leucine, which promotes protein accretion in skeletal muscle, and bioactive peptides, which possess prebiotic and antibacterial properties. This review describes the characteristics of α-lactalbumin and examines the potential applications of α-lactalbumin for human health. PMID:29617841

  9. Choline-Based Amino Acid ILs-Collagen Interaction: Enunciating Its Role in Stabilization/Destabilization Phenomena.

    PubMed

    Tarannum, Aafiya; Rao, J Raghava; Fathima, N Nishad

    2018-01-25

    Given the potential of productive interaction between choline-based amino acid ionic liquids (CAAILs) and collagen, we investigated the role of four CAAILs, viz., choline serinate, threoninate, lysinate, and phenylalaninate, and the changes mediated by them in the structure of collagen at different hierarchical orderings, that is, at molecular and fibrillar levels. The rheological, dielectric behavior and the secondary structural changes signify the alteration in the triple helical structure of collagen at higher concentrations of CAAILs. A marginal swelling and slight decrease in the thermal stability of rat tail tendon collagen fibers were observed for choline serinate and threoninate, albeit distortions in banding patterns were noticed for choline lysinate and phenylalaninate, suggesting chaotropicity of the ions at the fibrillar level. This signifies the changes in the hydrogen-bonding environment of collagen with increasing concentrations of CAAILs, which could be due to competitive hydrogen bonding between the carbonyl group of amino acid ionic liquids and the hydroxyl groups of collagen.

  10. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    PubMed

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  11. Reciprocal interactions between bile acids and gut microbiota in human liver diseases.

    PubMed

    Ikegami, Tadashi; Honda, Akira

    2018-01-01

    The gut microbiota (GM) play a central role in their host's metabolism of bile acids (BAs) by regulating deconjugation, dehydroxylation, dehydrogenation, and epimerization reactions to generate unconjugated free BAs and secondary BAs. These BAs generated by the GM are potent signaling molecules that interact with BA receptors, such as the farnesoid X receptor and Takeda G-protein-coupled receptor 5. Each BA has a differential affinity to these receptors; therefore, alterations in BA composition by GM could modify the intensity of receptor signaling. Bile acids also act as antimicrobial agents by damaging bacterial membranes and as detergents by altering intracellular macromolecular structures. Therefore, BAs and the GM reciprocally control each other's compositions. In this review, we discuss the latest findings on the mutual effects of BAs and GM on each other; we also describe their roles in the pathophysiology of liver disease progression and potential therapeutic applications of targeting this cross-talk. © 2017 The Japan Society of Hepatology.

  12. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes.

    PubMed

    Rochette, Luc; Ghibu, Steliana; Muresan, Adriana; Vergely, Catherine

    2015-12-01

    Diabetes is a chronic metabolic disease with a high prevalence worldwide. Diabetes and insulin resistance are associated with the development of cardiovascular and nervous diseases. The development of these disorders reflects complex pathological processes in which the oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS) plays a pivotal role. It is widely accepted that diabetes impairs endothelial nitric oxide synthase (eNOS) activity and increases the production of ROS, thus resulting in diminished NO bioavailability and increased oxidative stress. Alpha-lipoic acid (LA) possesses beneficial effects both in the prevention and in the treatment of diabetes. LA is a potent antioxidant with insulin-mimetic and anti-inflammatory activity. LA in the diet is quickly absorbed, transported to the intracellular compartments, and reduced to dihydrolipoic acid (DHLA) under the action of enzymes. LA, which plays an essential role in mitochondrial bioenergetic reactions, has drawn considerable attention as an antioxidant for use in managing diabetic complications such as retinopathy, neuropathy and other vascular diseases.

  13. A mechanism underlying the effects of polyunsaturated fatty acids on breast cancer

    PubMed Central

    ZHANG, HAO; ZHOU, LEI; SHI, WEI; SONG, NING; YU, KARU; GU, YUCHUN

    2012-01-01

    Breast cancer is the most frequent cancer in women. Evidence suggests that the polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) affect breast cancer proliferation, differentiation and prognosis. However, the mechanism still remains unclear. In this study, the expression of transient receptor potential canonical (TRPC)3 was detected throughout the cell cytoplasm and at the cell surface of MCF-7 cells. Ca2+ entry was induced in these cells via activated TRPC3 by either the diacylglycerol analogue (OAG) or by intracellular Ca2+ store depletion. TRPC-mediated Ca2+ entry was inhibited by PUFAs including arachidonic acid (AA) and linolenic acid (LA) but not saturated fatty acids. Overexpression of the PUFA degradation enzyme, cyclooxygenase 2 (COX2), enhanced capacitative Ca2+ entry. In addition, inhibition of COX2 reduced [Ca2+]i. Nevertheless, inhibition of TRPC reduced the cell cycle S phase and cell migration, implicating a functional role for TRP-mediated Ca2+ entry in cell proliferation and invasion. Exogenous PUFA as well as a TRPC3 antagonist consistently attenuated breast cancer cell proliferation and migration, suggesting a mechanism in which PUFA restrains the breast cancer partly via its inhibition of TRPC channels. Additionally, our results also suggest that TRPC3 appears as a new mediator of breast cancer cell migration/invasion and represents a potential target for a new class of anticancer agent. PMID:22692672

  14. Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  15. Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH.

    PubMed

    Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel

    2015-01-01

    High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of "oxalate plants." The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids.

  16. Bile Acid Metabolism in Liver Pathobiology

    PubMed Central

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  17. Taming dendritic cells with TIM-3: another immunosuppressive strategy used by tumors.

    PubMed

    Patel, Jaina; Bozeman, Erica N; Selvaraj, Periasamy

    2012-12-01

    Evaluation of: Chiba S, Baghdadi M, Akiba H et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat. Immunol. 13, 832-842 (2012). The identification of TIM-3 expression on tumor-associated dendritic cells (TADCs) provides insight into another aspect of tumor-mediated immunosuppression. The role of TIM-3 has been well characterized on tumor-infiltrating T cells; however, its role on TADCs was not previously known. The current paper demonstrated that TIM-3 was predominantly expressed by TADCs and its interaction with the nuclear protein HMGB1 suppressed nucleic acid-mediated activation of an effective antitumor immune response. The authors were able to show that TIM-3 interaction with HMGB1 prevented the localization of nucleic acids into endosomal vesicles. Furthermore, chemotherapy was found to be more effective in anti-TIM-3 monoclonal antibody-treated mice or mice depleted of all DCs, which indicated that a significant role is played by TADCs in inhibiting tumor regression. Taken together, these findings identify TIM-3 as a potential target for inducing antitumor immunity in conjunction with DNA vaccines and/or immunogenic chemotherapy in clinical settings.

  18. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae.

    PubMed

    Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun

    2015-09-01

    Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Glyceraldehyde and glycolaldehyde in interstellar ice analogues and the role of aldehydes in cosmochemical evolution

    NASA Astrophysics Data System (ADS)

    Meierhenrich, U.; de Marcellus, P.; Meinert, C.; Myrgorodska, I.; Nahon, L.; Buhse, T.; d'Hendecourt, L.

    2015-10-01

    Our understanding of the molecular origin of life is based on amino acids, ribose, and nucleobases that - after their selection by prebiotic processes - initiated the evolutionary assembly of catalytic and informational polymers, being proteins and ribonucleic acids. Following previous amino acid identifications in the room-temperature residues of simulated circumstellar/interstellar ices [1,2] we have searched for a different family of molecules of potential prebiotic interest. Using multidimensional gas chromatography coupled to time-of-flight mass spectrometry, we have detected ten aldehydes, including the sugar-related glycolaldehyde and glyceraldehyde - two species considered as key prebiotic intermediates in the first steps toward the synthesis of ribonucleotides in a planetary environment.

  20. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Aponte, Jose C.; Blackmond, Donna G.; Burton, Aaron S.; Dworkin, Jason P.; Glavin, Daniel P.

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplied by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large -enantiomeric excesses of some extraterrestrial protein amino acids (up to 60) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work.

  1. Overexpression of DYRK1A inhibits choline acetyltransferase induction by oleic acid in cellular models of Down syndrome.

    PubMed

    Hijazi, Maruan; Fillat, Cristina; Medina, José M; Velasco, Ana

    2013-01-01

    Histological brain studies of individuals with DS have revealed an aberrant formation of the cerebral cortex. Previous work from our laboratory has shown that oleic acid acts as a neurotrophic factor and induces neuronal differentiation. In order to characterize the effects of oleic acid in a cellular model of DS, immortalized cell lines derived from the cortex of trisomy Ts16 (CTb) and normal mice (CNh) were incubated in the absence or presence of oleic acid. Oleic acid increased choline acetyltransferase expression (ChAT), a marker of cholinergic differentiation in CNh cells. However, in trisomic cells (CTb line) oleic acid failed to increase ChAT expression. These results suggest that the overdose of specific genes in trisomic lines delays differentiation in the presence of oleic acid by inhibiting acetylcholine production mediated by ChAT. The dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1A (DYRK1A) gene is located on human chromosome 21 and encodes a proline-directed protein kinase. It has been proposed that DYRK1A plays a prominent role in several biological functions, leading to mental retardation in DS patients. Here we explored the potential role of DYRK1A in the modulation of ChAT expression in trisomic cells and in the signaling pathways of oleic acid. Down-regulation of DYRK1A by siRNA in trisomic CTb cells rescued ChAT expression up to levels similar to those of normal cells in the presence of oleic acid. In agreement with these results, oleic acid was unable to increase ChAT expression in neuronal cultures of transgenic mice overexpressing DYRK1A. In summary, our results highlight the role played by DYRK1A in brain development through the control of ChAT expression. In addition, the overexpression of DYRK1A in DS models prevented the neurotrophic effect of oleic acid, a fact that may account for mental retardation in DS patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The role of membrane cholesterol in determining bile acid cytotoxicity and cytoprotection of ursodeoxycholic acid

    PubMed Central

    Zhou, Yong; Doyen, Rand; Lichtenberger, Lenard M.

    2013-01-01

    In cholestatic liver diseases, the ability of hydrophobic bile acids to damage membranes of hepatocytes/ductal cells contributes to their cytotoxicity. However, ursodeoxycholic acid (UDC), a hydrophilic bile acid, is used to treat cholestasis because it protects membranes. It has been well established that bile acids associate with and solubilize free cholesterol (CHOL) contained within the lumen of the gallbladder because of their structural similarities. However, there is a lack of understanding of how membrane CHOL, which is a well-established membrane stabilizing agent, is involved in cytotoxicity of hydrophobic bile acids and the cytoprotective effect of UDC. We utilized phospholipid liposomes to examine the ability of membrane CHOL to influence toxicity of individual bile acids, such as UDC and the highly toxic sodium deoxycholate (SDC), as well as the cytoprotective mechanism of UDC against SDC-induced cytotoxicity by measuring membrane permeation and intramembrane dipole potential. The kinetics of bile acid solubilization of phosphatidylcholine liposomes containing various levels of CHOL was also characterized. It was found that the presence of CHOL in membranes significantly reduced the ability of bile acids to damage synthetic membranes. UDC effectively prevented damaging effects of SDC on synthetic membranes only in the presence of membrane CHOL, while UDC enhances the damaging effects of SDC in the absence of CHOL. This further demonstrates that the cytoprotective effects of UDC depend upon the level of CHOL in the lipid membrane. Thus, changes in cell membrane composition, such as CHOL content, potentially influence the efficacy of UDC as the primary drug used to treat cholestasis. PMID:19150330

  3. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  4. Potential for daily supplementation of n-3 fatty acids to reverse symptoms of dry eye in mice.

    PubMed

    Harauma, Akiko; Saito, Junpei; Watanabe, Yoshitake; Moriguchi, Toru

    2014-06-01

    The purpose of this study was to determine the change in tear volume, as a predominant symptom of dry eye syndrome, in dietary n-3 fatty acid deficient mice compared with n-3 fatty acid adequate mice. The tear volume in n-3 fatty acid deficient mice was significantly lower than that in n-3 fatty acid adequate mice. In addition, the concentration of n-3 fatty acid in the lacrimal and meibomian glands, which affects the production of tears, was markedly decreased compared with n-3 fatty acid adequate mice. However, the tear volume recovered almost completely after one week of continuous administration of fish oil containing EPA and DHA in n-3 fatty acid deficient mice. Also, the concentration of DHA in the meibomian gland of n-3 fatty acid deficient group recovered to approximately 80% more than that of n-3 fatty acid adequate group. These results suggested that dietary n-3 fatty acids deficiency showed reversible dry eye syndrome, and that n-3 fatty acids have an important role in the production of tears. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au

    NASA Astrophysics Data System (ADS)

    Dunwell, Marco; Yan, Yushan; Xu, Bingjun

    2016-08-01

    The potential dependent behavior of near-surface water on Au film electrodes in acidic and alkaline solutions is studied using a combination of attenuated total reflectance surface enhanced infrared spectroscopy and chronoamperometry. In acid, sharp νOH peaks appear at 3583 cm- 1 at high potentials attributed to non-H-bonded water coadsorbed in the hydration sphere of perchlorate near the electrode surface. Adsorbed hydronium bending mode at near 1680 cm- 1 is observed at low potentials in low pH solutions (1.4, 4.0, 6.8). At high pH (10.0, 12.3), a potential-dependent OH stretching band assigned to adsorbed hydroxide emerges from 3400-3506 cm- 1. The observation of adsorbed hydroxide, even on a weakly oxophilic metal such as Au, provides the framework for further studies of hydroxide adsorption on other electrodes to determine the role of adsorbed hydroxide on important reactions such as the hydrogen oxidation reaction.

  6. Chemical constituents of the genus Polygonatum and their role in medicinal treatment.

    PubMed

    Zhao, Xueying; Li, Ji

    2015-04-01

    Polygonatum is a famous traditional Chinese medicine that is widely used in China, Korea and Japan. In the last decade, constituents of the genus have been reported including steroidal saponins, flavones, alkaloids, lignins, amino acids and carbohydrates, some of which show biological properties such as antiviral and antitumor activity, variable effects on the immune system and anticoagulant activity. In addition, some findings provide novel evidence that Polygonatum species may contain potential anti-tumor and anti-viral proteins for possible medical application and large-scale pharmaceutical production. In this review, we focus on the updated research of the chemical constituents of Polygonatum including polysaccharides, steroidal saponins, flavonoids and lectins, and their potential therapeutic roles.

  7. Succinic acid production from cellobiose by Actinobacillus succinogenes.

    PubMed

    Jiang, Min; Xu, Rong; Xi, Yong-Lan; Zhang, Jiu-Hua; Dai, Wen-Yu; Wan, Yue-Jia; Chen, Ke-Quan; Wei, Ping

    2013-05-01

    In this study, cellobiose, a reducing disaccharide was used to produce succinic acid by Actinobacillus succinogenes NJ113. A final succinic acid concentration of 30.3g/l with a yield of 67.8% was achieved from an initial cellobiose concentration of 50 g/l via batch fermentation in anaerobic bottles. The cellobiose uptake mechanism was investigated and the results of enzyme assays revealed that the phosphoenolpyruvate phosphotransferase system (PEP-PTS) played an important role in the cellobiose uptake process. In batch fermentation with 18 g/l of cellobiose and 17 g/l of other sugars from sugarcane bagasse cellulose hydrolysates, a succinic acid concentration of 20.0 g/l was obtained, with a corresponding yield of 64.7%. This study found that cellobiose from incomplete hydrolysis of cellulose could be a potential carbon source for economical and efficient succinic acid production by A. succinogenes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Metabolite profiles and the risk of developing diabetes.

    PubMed

    Wang, Thomas J; Larson, Martin G; Vasan, Ramachandran S; Cheng, Susan; Rhee, Eugene P; McCabe, Elizabeth; Lewis, Gregory D; Fox, Caroline S; Jacques, Paul F; Fernandez, Céline; O'Donnell, Christopher J; Carr, Stephen A; Mootha, Vamsi K; Florez, Jose C; Souza, Amanda; Melander, Olle; Clish, Clary B; Gerszten, Robert E

    2011-04-01

    Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines and other polar metabolites were profiled in baseline specimens by liquid chromatography-tandem mass spectrometry (LC-MS). Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly significant associations with future diabetes: isoleucine, leucine, valine, tyrosine and phenylalanine. A combination of three amino acids predicted future diabetes (with a more than fivefold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential key role of amino acid metabolism early in the pathogenesis of diabetes and suggest that amino acid profiles could aid in diabetes risk assessment.

  9. Host-like carbohydrates promote bloodstream survival of Vibrio vulnificus in vivo.

    PubMed

    Lubin, Jean-Bernard; Lewis, Warren G; Gilbert, Nicole M; Weimer, Cory M; Almagro-Moreno, Salvador; Boyd, E Fidelma; Lewis, Amanda L

    2015-08-01

    Sialic acids are found on all vertebrate cell surfaces and are part of a larger class of molecules known as nonulosonic acids. Many bacterial pathogens synthesize related nine-carbon backbone sugars; however, the role(s) of these non-sialic acid molecules in host-pathogen interactions is poorly understood. Vibrio vulnificus is the leading cause of seafood-related death in the United States due to its ability to quickly access the host bloodstream, which it can accomplish through gastrointestinal or wound infection. However, little is known about how this organism persists systemically. Here we demonstrate that sialic acid-like molecules are present on the lipopolysaccharide of V. vulnificus, are required for full motility and biofilm formation, and also contribute to the organism's natural resistance to polymyxin B. Further experiments in a murine model of intravenous V. vulnificus infection demonstrated that expression of nonulosonic acids had a striking benefit for bacterial survival during bloodstream infection and dissemination to other tissues in vivo. In fact, levels of bacterial persistence in the blood corresponded to the overall levels of these molecules expressed by V. vulnificus isolates. Taken together, these results suggest that molecules similar to sialic acids evolved to facilitate the aquatic lifestyle of V. vulnificus but that their emergence also resulted in a gain of function with life-threatening potential in the human host. Copyright © 2015, Lubin et al.

  10. The role of pentacyclic triterpenoids in the allelopathic effects of Alstonia scholaris.

    PubMed

    Wang, Chao-Min; Chen, Hsiao-Ting; Li, Tsai-Chi; Weng, Jen-Hsien; Jhan, Yun-Lian; Lin, Shi-Xun; Chou, Chang-Hung

    2014-01-01

    Alstonia scholaris is a tropical evergreen tree native to South and Southeast Asia. Alstonia forests frequently lack understory species. However, potential mechanisms-particularly the allelochemicals involved-remain unclear. In the present study, we identified allelochemicals of A. scholaris, and clarified the role of allelopathic substances from A. scholaris in interactions with neighboring plants. We showed that the leaves, litter, and soil from A. scholaris inhibited growth of Bidens pilosa-a weed found growing abundantly near A. scholaris forests. The allelochemicals were identified as pentacyclic triterpenoids, including betulinic acid, oleanolic acid, and ursolic acid by using (1)H and (13)C-NMR spectroscopy. The half-maximal inhibitory concentration (IC50) for radicle growth of B. pilosa and Lactuca sativa ranged from 78.8 μM to 735.2 μM, and ursolic acid inhibited seed germination of B. pilosa. The triterpenoid concentrations in the leaves, litter, and soil were quantified with liquid chromatography-electrospray ionization/tandem mass spectrometry. Ursolic acid was present in forest soil at a concentration of 3,095 μg/g, i.e., exceeding the IC50. In the field, ursolic acid accumulated abundantly in the soil in A. scholaris forests, and suppressed weed growth during summer and winter. Our results indicate that A. scholaris pentacyclic triterpenoids influence the growth of neighboring weeds by inhibiting seed germination, radicle growth, and functioning of photosystem II.

  11. A Contemporary, Laboratory-Intensive Course on Messenger RNA Transcription and Processing

    ERIC Educational Resources Information Center

    Carson, Sue; Miller, Heather

    2012-01-01

    Messenger ribonucleic acid (mRNA) plays a pivotal role in the central dogma of molecular biology. Importantly, molecular events occurring during and after mRNA synthesis have the potential to create multiple proteins from one gene, leading to some of the remarkable protein diversity that genomes hold. The North Carolina State University…

  12. A role for bacterial urease in gut dysbiosis and Crohn’s disease

    PubMed Central

    Ni, Josephine; Shen, Ting-Chin David; Chen, Eric Z.; Bittinger, Kyle; Bailey, Aubrey; Roggiani, Manuela; Sirota-Madi, Alexandra; Friedman, Elliot S.; Chau, Lillian; Lin, Andrew; Nissim, Ilana; Scott, Justin; Lauder, Abigail; Hoffmann, Christian; Rivas, Gloriany; Albenberg, Lindsey; Baldassano, Robert N.; Braun, Jonathan; Xavier, Ramnik J.; Clish, Clary B.; Yudkoff, Marc; Li, Hongzhe; Goulian, Mark; Bushman, Frederic D.; Lewis, James D.; Wu, Gary D.

    2018-01-01

    Gut dysbiosis during inflammatory bowel disease involves alterations in the gut microbiota associated with inflammation of the host gut. We used a combination of shotgun metagenomic sequencing and metabolomics to analyze fecal samples from pediatric patients with Crohn’s disease and found an association between disease severity, gut dysbiosis, and bacterial production of free amino acids. Nitrogen flux studies using 15N in mice showed that activity of bacterial urease, an enzyme that releases ammonia by hydrolysis of host urea, led to the transfer of murine host-derived nitrogen to the gutmicrobiota where it was used for amino acid synthesis. Inoculation of a conventional murine host (pretreated with antibiotics and polyethylene glycol) with commensal Escherichia coli engineered to express urease led to dysbiosis of the gut microbiota, resulting in a predominance of Proteobacteria species. This was associated with a worsening of immune-mediated colitis in these animals. A potential role for altered urease expression and nitrogen flux in the development of gut dysbiosis suggests that bacterial urease may be a potential therapeutic target for inflammatory bowel diseases. PMID:29141885

  13. Probing molecular interactions of poly(styrene-co-maleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymer.

    PubMed

    Banerjee, Shubhadeep; Pal, Tapan K; Guha, Sujoy K

    2012-03-01

    To understand and maximize the therapeutic potential of poly(styrene-co-maleic acid) (SMA), a synthetic, pharmacologically-active co-polymer, its effect on conformation, phase behavior and stability of lipid matrix models of cell membranes were investigated. The modes of interaction between SMA and lipid molecules were also studied. While, attenuated total reflection-Fourier-transform infrared (ATR-FTIR) and static (31)P nuclear magnetic resonance (NMR) experiments detected SMA-induced conformational changes in the headgroup region, differential scanning calorimetry (DSC) studies revealed thermotropic phase behavior changes of the membranes. (1)H NMR results indicated weak immobilization of SMA within the bilayers. Molecular interpretation of the results indicated the role of hydrogen-bond formation and hydrophobic forces between SMA and zwitterionic phospholipid bilayers. The extent of membrane fluidization and generation of isotropic phases were affected by the surface charge of the liposomes, and hence suggested the role of electrostatic interactions between SMA and charged lipid headgroups. SMA was thus found to directly affect the structural integrity of model membranes. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Experimental Evidence of ω-3 Polyunsaturated Fatty Acid Modulation of Inflammatory Cytokines and Bioactive Lipid Mediators: Their Potential Role in Inflammatory, Neurodegenerative, and Neoplastic Diseases

    PubMed Central

    Calviello, Gabriella; Su, Hui-Min; Weylandt, Karsten H.; Fasano, Elena; Serini, Simona; Cittadini, Achille

    2013-01-01

    A large body of evidence has emerged over the past years to show the critical role played by inflammation in the pathogenesis of several diseases including some cardiovascular, neoplastic, and neurodegenerative diseases, previously not considered inflammation-related. The anti-inflammatory action of ω-3 polyunsaturated fatty acids (PUFAs), as well as their potential healthy effects against the development and progression of the same diseases, has been widely studied by our and others' laboratories. As a result, a rethinking is taking place on the possible mechanisms underlying the beneficial effects of ω-3 PUFAs against these disorders, and, in particular, on the influence that they may exert on the molecular pathways involved in inflammatory process, including the production of inflammatory cytokines and lipid mediators active in the resolving phase of inflammation. In the present review we will summarize and discuss the current knowledge regarding the modulating effects of ω-3 PUFAs on the production of inflammatory cytokines and proresolving or protective lipid mediators in the context of inflammatory, metabolic, neurodegenerative, and neoplastic diseases. PMID:23691510

  15. Biochemical Constituents and in Vitro Antioxidant and Anticholinesterase Potential of Seeds from Native Korean Persimmon Genotypes.

    PubMed

    Bilal, Saqib; Khan, Abdul Latif; Waqas, Muhammad; Shahzad, Raheem; Kim, Il-Doo; Lee, In-Jung; Shin, Dong-Hyun

    2016-07-08

    In the current study, the functional and biochemical potential of the seeds of four persimmon cultivars (PC1, PC2, PC3 and PC4) and their role against oxidative stress and acetylcholinesterase (AChE) inhibition were evaluated. In terms of biochemical compositions, free amino acids, fatty acids and organic acids analysis was performed. The free amino acids ranged from 2617.31 (PC2) to 3773.01 μg∙g(-1) dry weight (PC4). Oleic acid and linoleic acid were the principal fatty acids, which were significantly higher in PC4 and PC1, respectively. PC4 presented the highest amount of organic acid content (4212 mg∙kg(-1)), whereas PC2 presented the lowest (2498 mg∙kg(-1)). PC2 contained higher total phenolic content and flavonoid content, whereas PC3 had the lowest amount as compared to other cultivars. The in vitro DPPH, ABTS and superoxide anion radicals scavenging activity increased in a dose-dependent manner, whereas PC2 showed significantly higher scavenging activities as compared to PC1, PC2 and PC4 types. In the case of AChE inhibition, PC4 showed a moderate activity (67.34% ± 1.8%). In conclusion, the current findings reveal that the studied persimmon seeds cultivars are a source of bioactive natural antioxidants and AChE inhibitors. Such natural products could be employed in pharmaceutical and food industries, whilst can also be considered for the treatment of neurodegenerative diseases such as Alzheimer's.

  16. 4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic Acid (C75), an Inhibitor of Fatty-acid Synthase, Suppresses the Mitochondrial Fatty Acid Synthesis Pathway and Impairs Mitochondrial Function*

    PubMed Central

    Chen, Cong; Han, Xiao; Zou, Xuan; Li, Yuan; Yang, Liang; Cao, Ke; Xu, Jie; Long, Jiangang; Liu, Jiankang; Feng, Zhihui

    2014-01-01

    4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid (C75) is a synthetic fatty-acid synthase (FASN) inhibitor with potential therapeutic effects in several cancer models. Human mitochondrial β-ketoacyl-acyl carrier protein synthase (HsmtKAS) is a key enzyme in the newly discovered mitochondrial fatty acid synthesis pathway that can produce the substrate for lipoic acid (LA) synthesis. HsmtKAS shares conserved catalytic domains with FASN, which are responsible for binding to C75. In our study, we explored the possible effect of C75 on HsmtKAS and mitochondrial function. C75 treatment decreased LA content, impaired mitochondrial function, increased reactive oxygen species content, and reduced cell viability. HsmtKAS but not FASN knockdown had an effect that was similar to C75 treatment. In addition, an LA supplement efficiently inhibited C75-induced mitochondrial dysfunction and oxidative stress. Overexpression of HsmtKAS showed cellular protection against low dose C75 addition, whereas there was no protective effect upon high dose C75 addition. In summary, the mitochondrial fatty acid synthesis pathway has a vital role in mitochondrial function. Besides FASN, C75 might also inhibit HsmtKAS, thereby reducing LA production, impairing mitochondrial function, and potentially having toxic effects. LA supplements sufficiently ameliorated the toxicity of C75, showing that a combination of C75 and LA may be a reliable cancer treatment. PMID:24784139

  17. Metabolomic markers of fertility in bull seminal plasma

    PubMed Central

    Dinh, Thu; Kaya, Abdullah; Topper, Einko; Moura, Arlindo Alencar

    2018-01-01

    Metabolites play essential roles in biological systems, but detailed identities and significance of the seminal plasma metabolome related to bull fertility are still unknown. The objectives of this study were to determine the comprehensive metabolome of seminal plasma from Holstein bulls and to ascertain the potential of metabolites as biomarkers of bull fertility. The seminal plasma metabolome from 16 Holstein bulls with two fertility rates were determined by gas chromatography-mass spectrometry (GC-MS). Multivariate and univariate analyses of the data were performed, and the pathways associated with the seminal plasma metabolome were identified using bioinformatics approaches. Sixty-three metabolites were identified in the seminal plasma of all bulls. Fructose was the most abundant metabolite in the seminal fluid, followed for citric acid, lactic acid, urea and phosphoric acid. Androstenedione, 4-ketoglucose, D-xylofuranose, 2-oxoglutaric acid and erythronic acid represented the least predominant metabolites. Partial-Least Squares Discriminant Analysis (PLSDA) revealed a distinct separation between high and low fertility bulls. The metabolites with the greatest Variable Importance in Projection score (VIP > 2) were 2-oxoglutaric acid and fructose. Heat-map analysis, based on VIP score, and univariate analysis indicated that 2-oxoglutaric acid was less (P = 0.02); whereas fructose was greater (P = 0.02) in high fertility than in low fertility bulls. The current study is the first to describe the metabolome of bull seminal plasma using GC-MS and presented metabolites such as 2-oxoglutaric acid and fructose as potential biomarkers of bull fertility. PMID:29634739

  18. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−})more » mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.« less

  19. Uptake of algal carbon and the synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and 13C tracer experiments

    NASA Astrophysics Data System (ADS)

    Larkin, K. E.; Gooday, A. J.; Woulds, C.; Jeffreys, R.; Schwartz, M.; Cowie, G.; Whitcraft, C.; Levin, L.; Dick, J. R.; Pond, D. W.

    2014-01-01

    Foraminifera are an important component of benthic communities in oxygen depleted settings, where they potentially play a~significant role in the processing of organic matter. We tracked the uptake of a 13C-labeled algal food source into individual fatty acids in the benthic foraminiferal species, Uvigerina ex. gr. semiornata, from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan Margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was 13C-labeled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m and for 2.5 days duration, whilst a laboratory incubation used an oxystat system to maintain ambient dissolved oxygen concentrations. These shipboard experiments were terminated after 5 days. Uptake of diatoms was rapid, with high incorporation of diatom fatty acids into foraminifera after ~2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in~situ and laboratory-based experiments. These results indicate that U. ex. gr. semiornata rapidly ingested the diatom food source and that this foraminifera will play an important role in the short-term cycling of organic matter within this OMZ environment. The experiments also suggested that U. ex. gr. semiornata consumed non-labeled bacterial food items, particularly bacteria, and synthesised the polyunsaturated fatty acid 20:4(n-6) de novo. 20:4(n-6) is often abundant in benthic fauna yet its origins and function have remained unclear. This study demonstrates that U. ex. gr. semiornata is capable of de novo synthesis of this "essential fatty acid" and is potentially a major source of this dietary nutrient in benthic food webs.

  20. Caffeic acid and quercetin protect erythrocytes against the oxidative stress and the genotoxic effects of lambda-cyhalothrin in vitro.

    PubMed

    Abdallah, Fatma Ben; Fetoui, H; Fakhfakh, F; Keskes, L

    2012-01-01

    Lambda-cyhalothrin (LTC) is a synthetic pyrethroid with a broad spectrum of insecticidal and acaricidal activities used to control wide range of insect pests in a variety of applications. The aim of this study was to examine (i) the potency of LTC to induce oxidative stress response in rat erythrocytes in vitro and (ii) the role of caffeic acid (20 μM) and/or quercetin (10 μM) in preventing the cytotoxic effects. Erythrocytes were divided into four portions. The erythrocytes of the first portion were incubated for 4 h at 37°C with different concentrations (0, 50 and 100 μM) of LTC. The others portions were pretreated with caffeic acid and/or quercetin for 30 min prior to LTC incubation. Lipid peroxidation, protein oxidation, antioxidant enzyme activities and DNA damage were examined. LTC at different concentrations causes increased levels of lipid peroxidation, protein oxidation, DNA damage and decreased antioxidant enzyme activities. Combined caffeic acid and quercetin pretreatments significantly reduced the levels of lipid peroxidation markers, that is thiobarbituric acid reactive substance (TBARS), protein carbonyls (PCO) and decreased DNA damage in LTC portion. Further, combined caffeic acid and quercetin pretreatment maintain antioxidant enzyme activities and glutathione content near to normal values. These results suggest that LTC exerts its toxic effect by increasing lipid peroxidation, altering the antioxidant enzyme activities and DNA damage. Caffeic acid and quercetin pretreatments prevent the toxic effects of LTC, suggesting their role as a potential antioxidant.

  1. Method for distinctive estimation of stored acidity forms in acid mine wastes.

    PubMed

    Li, Jun; Kawashima, Nobuyuki; Fan, Rong; Schumann, Russell C; Gerson, Andrea R; Smart, Roger St C

    2014-10-07

    Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.

  2. Acid sphingomyelinase mediates human CD4+ T-cell signaling: potential roles in T-cell responses and diseases

    PubMed Central

    Bai, Aiping; Guo, Yuan

    2017-01-01

    Acid sphingomyelinase (ASM) is a lipid hydrolase. By generating ceramide, ASM had been reported to have an important role in regulating immune cell functions inclusive of macrophages, NK cells, and CD8+ T cells, whereas the role of ASM bioactivity in regulation of human CD4+ T-cell functions remained uncertain. Recent studies have provided novel findings in this field. Upon stimulation of CD3 and/or CD28, ASM-dependent ceramide signaling mediates intracellular downstream signal cascades of CD3 and CD28, and regulates CD4+ T-cell activation and proliferation. Meanwhile, CD39 and CD161 have direct interactions with ASM, which mediates downstream signals inclusive of STAT3 and mTOR and thus defines human Th17 cells. Intriguingly, ASM mediates Th1 responses, but negatively regulates Treg functions. In this review, we summarized the pivotal roles of ASM in regulation of human CD4+ T-cell activation and responses. ASM/sphingolipid signaling may be a novel target for the therapy of human autoimmune diseases. PMID:28749465

  3. Challenges of utilizing healthy fats in foods.

    PubMed

    Vieira, Samantha A; McClements, David Julian; Decker, Eric A

    2015-05-01

    Over the past few decades, the Dietary Guidelines for Americans has consistently recommended that consumers decrease consumption of saturated fatty acids due to the correlation of saturated fatty acid intake with coronary artery disease. This recommendation has not been easy to achieve because saturated fatty acids play an important role in the quality, shelf life, and acceptability of foods. This is because solid fats are critical to producing desirable textures (e.g., creaminess, lubrication, and melt-away properties) and are important in the structure of foods such as frozen desserts, baked goods, and confectionary products. In addition, replacement of saturated fats with unsaturated fats is limited by their susceptibility to oxidative rancidity, which decreases product shelf life, causes destruction of vitamins, and forms potentially toxic compounds. This article will discuss the fundamental chemical and physical properties in fats and how these properties affect food texture, structure, flavor, and susceptibility to degradation. The current sources of solid fats will be reviewed and potential replacements for solid fats will be discussed. © 2015 American Society for Nutrition.

  4. Challenges of Utilizing Healthy Fats in Foods123

    PubMed Central

    Vieira, Samantha A; McClements, David Julian; Decker, Eric A

    2015-01-01

    Over the past few decades, the Dietary Guidelines for Americans has consistently recommended that consumers decrease consumption of saturated fatty acids due to the correlation of saturated fatty acid intake with coronary artery disease. This recommendation has not been easy to achieve because saturated fatty acids play an important role in the quality, shelf life, and acceptability of foods. This is because solid fats are critical to producing desirable textures (e.g., creaminess, lubrication, and melt-away properties) and are important in the structure of foods such as frozen desserts, baked goods, and confectionary products. In addition, replacement of saturated fats with unsaturated fats is limited by their susceptibility to oxidative rancidity, which decreases product shelf life, causes destruction of vitamins, and forms potentially toxic compounds. This article will discuss the fundamental chemical and physical properties in fats and how these properties affect food texture, structure, flavor, and susceptibility to degradation. The current sources of solid fats will be reviewed and potential replacements for solid fats will be discussed. PMID:25979504

  5. Microbiological characterization and functionality of set-type yogurt fermented with potential prebiotic substrates Cudrania tricuspidata and Morus alba L. leaf extracts.

    PubMed

    Oh, Nam Su; Lee, Ji Young; Joung, Jae Yeon; Kim, Kyung Su; Shin, Yong Kook; Lee, Kwang-Won; Kim, Sae Hun; Oh, Sangnam; Kim, Younghoon

    2016-08-01

    The objective of this study was to investigate the effect of 2 plant leaf extracts on fermentation mechanisms and health-promoting activities and their potential as a nutraceutical prebiotics ingredient for application in dairy products. The individual active phenolic compounds in the plant extract-supplemented milk and yogurts were also identified. Compared with control fermentation, the plant extracts significantly increased the growth and acidification rate of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. In particular, plant extract components, including monosaccharides, formic acid, and hydroxycinnamic acid, such as neo-chlorogenic, chlorogenic, and caffeic acid, together play a stimulatory role and cause this beneficial effect on the growth of yogurt culture bacteria through fermentation. In addition, supplementation with the plant extracts enhanced antioxidant activities with increased total phenolic contents, especially the highest antioxidant activity was observed in yogurt supplemented with Cudrania tricuspidata leaf extract. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Methylmercury production in soil in the water-level-fluctuating zone of the Three Gorges Reservoir, China: The key role of low-molecular-weight organic acids.

    PubMed

    Yin, Deliang; Wang, Yongmin; Jiang, Tao; Qin, Caiqing; Xiang, Yuping; Chen, Qiuyu; Xue, Jinping; Wang, Dingyong

    2018-04-01

    As important parts of dissolved organic matter, low-molecular-weight organic acids (LMWOAs) typically play important roles in desorbing Hg(II) from the soil solid-phase, which may directly or indirectly impact methylmercury (MeHg) production. However, the mechanism of these processes remains unclear. To better understand the effects of LMWOAs on Hg methylation in the soil, a field study was conducted to investigate the distribution of LMWOAs and their relationship with soil MeHg in a seasonally inundated area in the Three Gorges Reservoir (TGR), China. Meanwhile, laboratory simulation experiments were performed to determine the potential mechanism of LMWOAs in Hg methylation. The field investigation detected considerable amounts of LMWOAs in soil, among which tartaric acid and oxalic acid were dominant components. Among which, tartaric acid and oxalic acid were dominant components. Also, a seasonally and spatially heterogeneous distribution of LMWOAs in soil was observed. Notably, a significant positive relationship was found between MeHg concentrations and LMWOA pools in soil (r = 0.969, p < .01), implying that LMWOAs could promote soil MeHg production. The simulation experiments confirmed that the MeHg levels in soil were largely elevated with the addition of LMWOAs, which occurred mainly in oxygen-deficient environment and was mediated by biotic factors. The soluble Hg-LMWOA complexes, which were formed by the enhanced desorption of Hg(II) from solid-phase, were mostly responsible for the elevated MeHg production in soil. Moreover, those LMWOAs with more carboxylic groups were believed to enhance the net production of MeHg. The generated MeHg in sediment could diffuse into the overlying water, which thus poses a potential threat to the aquatic food web. Therefore, the enhanced Hg methylation caused by LMWOAs should be given more attention, especially in a seasonally inundated ecosystem, where the MeHg exposure is usually related to fishery activities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An in vitro model to test relative antioxidant potential: Ultraviolet-induced lipid peroxidation in liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelle, E.; Maes, D.; Padulo, G.A.

    1990-12-01

    Since antioxidants have been shown to play a major role in preventing some of the effects of aging and photoaging in skin, it is important to study this phenomenon in a controlled manner. This was accomplished by developing a simple and reliable in vitro technique to assay antioxidant efficacy. Inhibition of peroxidation by antioxidants was used as a measure of relative antioxidant potential. Liposomes, high in polyunsaturated fatty acids (PUFA), were dispersed in buffer and irradiated with ultraviolet (UV) light. Irradiated liposomes exhibited a significantly higher amount of hydroperoxides than liposomes containing antioxidants in a dose- and concentration-dependent manner. Lipidmore » peroxidation was determined spectrophotometrically by an increase in thiobarbituric acid reacting substances. To further substantiate the production of lipid peroxides, gas chromatography was used to measure a decrease in PUFA substrate. In order of decreasing antioxidant effectiveness, the following results were found among lipophilic antioxidants: BHA greater than catechin greater than BHT greater than alpha-tocopherol greater than chlorogenic acid. Among hydrophilic antioxidants, ascorbic acid and dithiothreitol were effective while glutathione was ineffective. In addition, ascorbic acid was observed to act synergistically with alpha-tocopherol, which is in agreement with other published reports on the interaction of these two antioxidants. Although peroxyl radical scavengers seem to be at a selective advantage in this liposomal/UV system, these results demonstrate the validity of this technique as an assay for measuring an antioxidant's potential to inhibit UV-induced peroxidation.« less

  8. Morphological changes of porphine films on graphite by perchloric and phosphoric electrolytes. An electrochemical-AFM study

    NASA Astrophysics Data System (ADS)

    Yivlialin, Rossella; Penconi, Marta; Bussetti, Gianlorenzo; Biroli, Alessio Orbelli; Finazzi, Marco; Duò, Lamberto; Bossi, Alberto

    2018-06-01

    Organic molecules have been proposed as promising candidates for electrode protection in acidic electrolytes. The use of tetraphenyl-porphines (H2TPP) as graphite surface-protecting agents in sulphuric acid (H2SO4) is one of the newest. With the aim of unveiling the mechanism of such a protective effect, in this paper we test the stability of a H2TPP thin film immersed in perchloric and phosphoric acid solutions that differently interact with porphyrins. The protective role of H2TPP is tested in the electrochemical potential range where the pristine graphite undergoes an oxidation process that erodes the surface and eventually exfoliate the stratified crystal. The electrochemical analysis is performed in a three-electrode cell, while the surface morphology is monitored ex-situ and in-situ by atomic force microscopy. Electrospray mass analysis is also employed to investigate the presence of H2TPP fragments in the solution. We find that the organic film is not stable in perchloric solution, while it is stable and avoids graphite surface corrosion in phosphoric acid solution. These results provide a rationale for the role played by free-base porphines in graphite protection.

  9. Effects of dietary vitamin B6 supplementation on fillet fatty acid composition and fatty acid metabolism of rainbow trout fed vegetable oil based diets.

    PubMed

    Senadheera, Shyamalie D; Turchini, Giovanni M; Thanuthong, Thanongsak; Francis, David S

    2012-03-07

    Fish oil replacement in aquaculture feeds results in major modifications to the fatty acid makeup of cultured fish. Therefore, in vivo fatty acid biosynthesis has been a topic of considerable research interest. Evidence suggests that pyridoxine (vitamin B(6)) plays a role in fatty acid metabolism, and in particular, the biosynthesis of LC-PUFA has been demonstrated in mammals. However, there is little information on the effects of dietary pyridoxine availability in fish fed diets lacking LC-PUFA. This study demonstrates a relationship between dietary pyridoxine supplementation and fatty acid metabolism in rainbow trout. In particular, the dietary pyridoxine level was shown to modulate and positively stimulate the activity of the fatty acid elongase and Δ-6 and Δ-5 desaturase enzymes, deduced by the whole-body fatty acid balance method. This activity was insufficient to compensate for a diet lacking in LC-PUFA but does highlight potential strategies to maximize this activity in cultured fish, especially when fish oil is replaced with vegetable oils.

  10. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    PubMed

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cirrus cloud mimic surfaces in the laboratory: organic acids, bases and NOx heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Sodeau, J.; Oriordan, B.

    2003-04-01

    CIRRUS CLOUD MIMIC SURFACES IN THE LABORATORY:ORGANIC ACIDS, BASES AND NOX HETEROGENEOUS REACTIONS. B. ORiordan, J. Sodeau Department of Chemistry and Environment Research Institute, University College Cork, Ireland j.sodeau@ucc.ie /Fax: +353-21-4902680 There are a variety of biogenic and anthropogenic sources for the simple carboxylic acids to be found in the troposphere giving rise to levels as high as 45 ppb in certain urban areas. In this regard it is of note that ants of genus Formica produce some 10Tg of formic acid each year; some ten times that produced by industry. The expected sinks are those generally associated with tropospheric chemistry: the major routes studied, to date, being wet and dry deposition. No studies have been carried out hitherto on the role of water-ice surfaces in the atmospheric chemistry of carboxylic acids and the purpose of this paper is to indicate their potential function in the heterogeneous release of atmospheric species such as HONO. The deposition of formic acid on a water-ice surface was studied using FT-RAIR spectroscopy over a range of temperatures between 100 and 165K. In all cases ionization to the formate (and oxonium) ions was observed. The results were confirmed by TPD (Temperature Programmed Desorption) measurements, which indicated that two distinct surface species adsorb to the ice. Potential reactions between the formic acid/formate ion surface and nitrogen dioxide were subsequently investigated by FT-RAIRS. Co-deposition experiments showed that N2O3 and the NO+ ion (associated with water) were formed as products. A mechanism is proposed to explain these results, which involves direct reaction between the organic acid and nitrogen dioxide. Similar experiments involving acetic acid also indicate ionization on a water-ice surface. The results are put into the context of atmospheric chemistry potentially occuring on cirrus cloud surfaces.

  12. The role of charge and multiple faces of the CD8 alpha/alpha homodimer in binding to major histocompatibility complex class I molecules: support for a bivalent model.

    PubMed

    Giblin, P A; Leahy, D J; Mennone, J; Kavathas, P B

    1994-03-01

    The CD8 dimer interacts with the alpha 3 domain of major histocompatibility complex class I molecules through two immunoglobulin variable-like domains. In this study a crystal structure-informed mutational analysis has been performed to identify amino acids in the CD8 alpha/alpha homodimer that are likely to be involved in binding to class I. Several key residues are situated on the top face of the dimer within loops analogous to the complementarity-determining regions (CDRs) of immunoglobulin. In addition, other important amino acids are located in the A and B beta-strands on the sides of the dimer. The potential involvement of amino acids on both the top and the side faces of the molecule is consistent with a bivalent model for the interaction between a single CD8 alpha/alpha homodimer and two class I molecules and may have important implications for signal transduction in class I-expressing cells. This study also demonstrates a role for the positive surface potential of CD8 in class I binding and complements previous work demonstrating the importance of a negatively charged loop on the alpha 3 domain of class I for CD8 alpha/alpha-class I interaction. We propose a model whereby residues located on the CDR-like loops of the CD8 homodimer interact with the alpha 3 domain of MHC class I while amino acids on the side of the molecule containing the A and B beta-strands contact the alpha 2 domain of class I.

  13. Lysergic acid diethylamide and psilocybin for the management of patients with persistent pain: a potential role?

    PubMed

    Whelan, Andy; Johnson, Mark I

    2018-05-01

    Recently, there has been interest in lysergic acid diethylamide (LSD) and psilocybin for depression, anxiety and fear of death in terminal illness. The aim of this review is to discuss the potential use of LSD and psilocybin for patients with persistent pain. LSD and psilocybin are 5-hydroxytryptamine receptor agonists and may interact with nociceptive and antinociceptive processing. Tentative evidence from a systematic review suggests that LSD (7 studies, 323 participants) and psilocybin (3 studies, 92 participants) may be beneficial for depression and anxiety associated with distress in life-threatening diseases. LSD and psilocybin are generally safe if administered by a healthcare professional, although further investigations are needed to assess their utility for patients with persistent pain, especially associated with terminal illness.

  14. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Pettorossi, V E

    2000-01-01

    In rat brainstem slices, we investigated the role of nitric oxide in long-term potentiation induced in the ventral portion of the medial vestibular nuclei by high-frequency stimulation of the primary vestibular afferents. The nitric oxide scavenger [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide ] and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester were administered before and after induction of potentiation. Both drugs completely prevented long-term potentiation, whereas they did not impede the potentiation build-up, or affect the already established potentiation. These results demonstrate that the induction, but not the maintenance of vestibular long-term potentiation, depends on the synthesis and release into the extracellular medium of nitric oxide. In addition, we analysed the effect of the nitric oxide donor sodium nitroprusside on vestibular responses. Sodium nitroprusside induced long-term potentiation, as evidenced through the field potential enhancement and unit peak latency decrease. This potentiation was impeded by D, L-2-amino-5-phosphonopentanoic acid, and was reduced under blockade of synaptosomal platelet-activating factor receptors by ginkgolide B and group I metabotropic glutamate receptors by (R,S)-1-aminoindan-1, 5-dicarboxylic acid. When reduced, potentiation fully developed following the washout of antagonist, demonstrating an involvement of platelet-activating factor and group I metabotropic glutamate receptors in its full development. Potentiation induced by sodium nitroprusside was also associated with a decrease in the paired-pulse facilitation ratio, which persisted under ginkgolide B, indicating that nitric oxide increases glutamate release independently of platelet-activating factor-mediated presynaptic events. We suggest that nitric oxide, released after the activation of N-methyl-D-aspartate receptors, acts as a retrograde messenger leading to an enhancement of glutamate release to a sufficient level for triggering potentiation. Once the synaptic efficacy has changed, it becomes a long-lasting phenomenon only through a subsequent action of platelet-activating factor.

  15. Role of cholangiocyte bile Acid transporters in large bile duct injury after rat liver transplantation.

    PubMed

    Cheng, Long; Zhao, Lijin; Li, Dajiang; Liu, Zipei; Chen, Geng; Tian, Feng; Li, Xiaowu; Wang, Shuguang

    2010-07-27

    The pathogenesis of nonanastomotic strictures with a patent hepatic artery remains to be investigated. This study focuses on the role of cholangiocyte bile acid transporters in bile duct injury after liver transplantation. Sprague-Dawley rats were divided into three groups (n=20 for each): the sham-operated group (Sham), the transplant group with 1-hr donor liver cold preservation (CP-1h), and the transplant group with 12-hr donor liver cold preservation (CP-12h). Bile was collected for biochemical analysis. The histopathologic evaluation of bile duct injury was performed and the cholangiocyte bile acid transporters apical sodium-dependent bile acid transporter (ASBT), ileal lipid binding protein (ILBP), and Ostalpha/Ostbeta were investigated. RESULTS.: The immunohistochemical assay suggested that ASBT and ILBP were expressed exclusively on large bile duct epithelial cells, whereas Ostalpha and Ostbeta were expressed on both small and large bile ducts. Western blot and quantitative polymerase chain reaction analysis showed that the expression levels of these transporters dramatically decreased after transplantation. It took seven to 14 days for ILBP, Ostalpha, and Ostbeta to recover, whereas ASBT recovered within 3 days and even reached a peak above the normal level seven days after operation. In the CP-12h group, the ratios of the ASBT/ILBP, ASBT/Ostalpha and ASBT/Ostbeta expression levels were correlated with the injury severity scores of large but not small bile ducts. The results suggest that the unparallel alteration of cholangiocyte bile acid transporters may play a potential role in large bile duct injury after liver transplantation with prolonged donor liver preservation.

  16. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer

    PubMed Central

    Swierczynski, Julian; Hebanowska, Areta; Sledzinski, Tomasz

    2014-01-01

    There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation. PMID:24605027

  17. Mechanisms of Barrett’s esophagus (clinical): LES dysfunction, hiatal hernia, peristaltic defects

    PubMed Central

    Roman, Sabine; Kahrilas, Peter J

    2014-01-01

    Summary Barrett’s esophagus, with the potential to develop into esophageal adenocarcinoma (EAC), is a major complication of gastroesophageal reflux disease (GERD). However, about 50% of patients developing EAC had no known GERD beforehand. Hence, while GERD symptoms, esophagitis, and Barrett’s have a number of common determinants (esophagogastric junction (EGJ) incompetence, impaired esophageal clearance mechanisms, hiatus hernia) they also have some independent determinants. Further, although excess esophageal acid exposure plays a major role in the genesis of long-segment Barrett’s esophagus there is minimal evidence supporting this for short-segment Barrett’s. Hence, these may have unique pathophysiological features as well. Long-segment Barrett’s seems to share most, if not all, of the risk factors for esophagitis, particularly high-grade esophagitis. However, it is uncertain if EGJ function and acid clearance are more severely impaired in patients with long-segment Barrett’s compared to patients with high-grade esophagitis. With respect to short-segment Barrett’s, the acid pocket may play an important pathogenic role. Conceptually, extension of the acid pocket into the distal esophagus, also known as intra-sphincteric reflux, provides a mechanism or acid exposure of the distal esophageal mucosa without the occurrence of discrete reflux events, which are more likely to prompt reflux symptoms and lead to the development of esophagitis. Hence, intra-sphincteric reflux related to extension of the acid/no acid interface at the proximal margin of the acid pocket may be key in the development of short segment Barrett’s. However, currently this is still somewhat speculative and further studies are required to confirm this. PMID:25743453

  18. Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis.

    PubMed

    Shu, Longfei; Suter, Marc J-F; Laurila, Anssi; Räsänen, Katja

    2015-11-01

    Environmental stress, such as acidification, can challenge persistence of natural populations and act as a powerful evolutionary force at ecological time scales. The ecological and evolutionary responses of natural populations to environmental stress at early life-stages are often mediated via maternal effects. During early life-stages, maternal effects commonly arise from egg coats (the extracellular structures surrounding the embryo), but the role of egg coats has rarely been studied in the context of adaptation to environmental stress. Previous studies on the moor frog Rana arvalis found that the egg coat mediated adaptive divergence along an acidification gradient in embryonic acid stress tolerance. However, the exact mechanisms underlying these adaptive maternal effects remain unknown. Here, we investigated the role of water balance and charge state (zeta potential) of egg jelly coats in embryonic adaptation to acid stress in three populations of R. arvalis. We found that acidic pH causes severe water loss in the egg jelly coat, but that jelly coats from an acid-adapted population retained more water than jelly coats from populations not adapted to acidity. Moreover, embryonic acid tolerance (survival at pH 4.0) correlated with both water loss and charge state of the jelly, indicating that negatively charged glycans influence jelly water balance and contribute to embryonic adaptation to acidity. These results indicate that egg coats can harbor extensive intra-specific variation, probably facilitated in part via strong selection on water balance and glycosylation status of egg jelly coats. These findings shed light on the molecular mechanisms of environmental stress tolerance and adaptive maternal effects.

  19. Mechanisms of Barrett's oesophagus (clinical): LOS dysfunction, hiatal hernia, peristaltic defects.

    PubMed

    Roman, Sabine; Kahrilas, Peter J

    2015-02-01

    Barrett's oesophagus, with the potential to develop into oesophageal adenocarcinoma (OAC), is a major complication of gastrooesophageal reflux disease (GORD). However, about 50% of patients developing OAC had no known GORD beforehand. Hence, while GORD symptoms, oesophagitis, and Barrett's have a number of common determinants (oesophagogastric junction (OGJ) incompetence, impaired oesophageal clearance mechanisms, hiatus hernia) they also have some independent determinants. Further, although excess oesophageal acid exposure plays a major role in the genesis of long-segment Barrett's oesophagus there is minimal evidence supporting this for short-segment Barrett's. Hence, these may have unique pathophysiological features as well. Long-segment Barrett's seems to share most, if not all, of the risk factors for oesophagitis, particularly high-grade oesophagitis. However, it is uncertain if OGJ function and acid clearance are more severely impaired in patients with long-segment Barrett's compared to patients with high-grade oesophagitis. With respect to short-segment Barrett's, the acid pocket may play an important pathogenic role. Conceptually, extension of the acid pocket into the distal oesophagus, also known as intra-sphincteric reflux, provides a mechanism or acid exposure of the distal osophageal mucosa without the occurrence of discrete reflux events, which are more likely to prompt reflux symptoms and lead to the development of oesophagitis. Hence, intra-sphincteric reflux related to extension of the acid/no acid interface at the proximal margin of the acid pocket may be key in the development of short segment Barrett's. However, currently this is still somewhat speculative and further studies are required to confirm this. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Dietary fatty acids and membrane protein function.

    PubMed

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  1. Mirrors in the PDB: left-handed alpha-turns guide design with D-amino acids.

    PubMed

    Annavarapu, Srinivas; Nanda, Vikas

    2009-09-22

    Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Propensities for amino acids to occur in contiguous alpha(L) helices correlate with published thermodynamic scales for incorporation of D-amino acids into alpha(R) helices. Two backbone rules for terminating a left-handed helix are found: an alpha(R) conformation is disfavored at the amino terminus, and a beta(R) conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to alpha(L) helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. By examining left-handed alpha-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed alpha-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.

  2. Mirrors in the PDB: left-handed α-turns guide design with D-amino acids

    PubMed Central

    Annavarapu, Srinivas; Nanda, Vikas

    2009-01-01

    Background Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Results Propensities for amino acids to occur in contiguous αL helices correlate with published thermodynamic scales for incorporation of D-amino acids into αR helices. Two backbone rules for terminating a left-handed helix are found: an αR conformation is disfavored at the amino terminus, and a βR conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to αL helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. Conclusion By examining left-handed α-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed α-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds. PMID:19772623

  3. Roles of tRNA in cell wall biosynthesis

    PubMed Central

    Dare, Kiley; Ibba, Michael

    2013-01-01

    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl-transfer ribonucleic acid (aa-tRNA) outside of translation. Although the two enzyme families responsible for cell wall modifications, aminoacyl-phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids to phosphatidylglycerol (PG) by aaPGSs neutralizes the lipid bilayer making the bacteria less susceptible to positively charged antimicrobial agents. Fem transferases utilize aa-tRNA to form peptide bridges that link strands of peptidoglycan. These bridges vary among the bacterial species in which they are present and play a role in resistance to antibiotics that target the cell wall. Additionally, the formation of truncated peptides results in shorter peptide bridges and loss of branched linkages which makes bacteria more susceptible to antimicrobials. A greater understanding of the structure and substrate specificity of this diverse enzymatic family is necessary to aid current efforts in designing potential bactericidal agents. These two enzyme families are linked only by the substrate with which they modify the cell wall, aa-tRNA; their structure, cell wall modification processes and the physiological changes they impart on the bacterium differ greatly. PMID:22262511

  4. Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila

    PubMed Central

    Seong, Keon Mook; Sun, Weilin; Clark, John M.; Pittendrigh, Barry R.

    2016-01-01

    The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R. PMID:27003579

  5. Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila.

    PubMed

    Seong, Keon Mook; Sun, Weilin; Clark, John M; Pittendrigh, Barry R

    2016-03-22

    The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R.

  6. Tauroursodeoxycholic acid increases neural stem cell pool and neuronal conversion by regulating mitochondria-cell cycle retrograde signaling

    PubMed Central

    Xavier, Joana M; Morgado, Ana L; Rodrigues, Cecília MP; Solá, Susana

    2014-01-01

    The low survival and differentiation rates of stem cells after either transplantation or neural injury have been a major concern of stem cell-based therapy. Thus, further understanding long-term survival and differentiation of stem cells may uncover new targets for discovery and development of novel therapeutic approaches. We have previously described the impact of mitochondrial apoptosis-related events in modulating neural stem cell (NSC) fate. In addition, the endogenous bile acid, tauroursodeoxycholic acid (TUDCA) was shown to be neuroprotective in several animal models of neurodegenerative disorders by acting as an anti-apoptotic and anti-oxidant molecule at the mitochondrial level. Here, we hypothesize that TUDCA might also play a role on NSC fate decision. We found that TUDCA prevents mitochondrial apoptotic events typical of early-stage mouse NSC differentiation, preserves mitochondrial integrity and function, while enhancing self-renewal potential and accelerating cell cycle exit of NSCs. Interestingly, TUDCA prevention of mitochondrial alterations interfered with NSC differentiation potential by favoring neuronal rather than astroglial conversion. Finally, inhibition of mitochondrial reactive oxygen species (mtROS) scavenger and adenosine triphosphate (ATP) synthase revealed that the effect of TUDCA is dependent on mtROS and ATP regulation levels. Collectively, these data underline the importance of mitochondrial stress control of NSC fate decision and support a new role for TUDCA in this process. PMID:25483094

  7. Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample.

    PubMed

    Illeghems, Koen; Weckx, Stefan; De Vuyst, Luc

    2015-09-01

    A high-resolution functional metagenomic analysis of a representative single sample of a Brazilian spontaneous cocoa bean fermentation process was carried out to gain insight into its bacterial community functioning. By reconstruction of microbial meta-pathways based on metagenomic data, the current knowledge about the metabolic capabilities of bacterial members involved in the cocoa bean fermentation ecosystem was extended. Functional meta-pathway analysis revealed the distribution of the metabolic pathways between the bacterial members involved. The metabolic capabilities of the lactic acid bacteria present were most associated with the heterolactic fermentation and citrate assimilation pathways. The role of Enterobacteriaceae in the conversion of substrates was shown through the use of the mixed-acid fermentation and methylglyoxal detoxification pathways. Furthermore, several other potential functional roles for Enterobacteriaceae were indicated, such as pectinolysis and citrate assimilation. Concerning acetic acid bacteria, metabolic pathways were partially reconstructed, in particular those related to responses toward stress, explaining their metabolic activities during cocoa bean fermentation processes. Further, the in-depth metagenomic analysis unveiled functionalities involved in bacterial competitiveness, such as the occurrence of CRISPRs and potential bacteriocin production. Finally, comparative analysis of the metagenomic data with bacterial genomes of cocoa bean fermentation isolates revealed the applicability of the selected strains as functional starter cultures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives.

    PubMed

    Amić, Ana; Marković, Zoran; Klein, Erik; Dimitrić Marković, Jasmina M; Milenković, Dejan

    2018-04-25

    The role of antiradical moieties (catechol, guaiacyl and carboxyl group) and molecular conformation in antioxidative potency of dihydrocaffeic acid (DHCA) and dihydroferulic acid (DHFA) was investigated by density functional theory (DFT) method. The thermodynamic preference of different reaction paths of double (2H + /2e - ) free radical scavenging mechanisms was estimated. Antiradical potency of DHCA and DHFA was compared with that exerted by their unsaturated analogs - caffeic acid (CA) and ferulic acid (FA). Cis/trans and anti-isomers of studied cinnamic acid derivatives may scavenge free radicals via double processes by involvement of catechol or guaiacyl moiety. Carboxyl group of syn-isomers may also participate in the inactivation of free radicals. Gibbs free energies of reactions with various free radicals indicate that syn-DHCA and syn-DHFA, colon catabolites that could be present in systemic circulation in low μM concentrations, have a potential to contribute to health benefits by direct free radical scavenging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fatty acid metabolism in breast cancer subtypes

    PubMed Central

    Monaco, Marie E.

    2017-01-01

    Dysregulation of fatty acid metabolism is recognized as a component of malignant transformation in many different cancers, including breast; yet the potential for targeting this pathway for prevention and/or treatment of cancer remains unrealized. Evidence indicates that proteins involved in both synthesis and oxidation of fatty acids play a pivotal role in the proliferation, migration and invasion of breast cancer cells. The following essay summarizes data implicating specific fatty acid metabolic enzymes in the genesis and progression of breast cancer, and further categorizes the relevance of specific metabolic pathways to individual intrinsic molecular subtypes of breast cancer. Based on mRNA expression data, the less aggressive luminal subtypes appear to rely on a balance between de novo fatty acid synthesis and oxidation as sources for both biomass and energy requirements, while basal-like, receptor negative subtypes overexpress genes involved in the utilization of exogenous fatty acids. With these differences in mind, treatments may need to be tailored to individual subtypes. PMID:28412757

  10. Transendothelial Transport and Its Role in Therapeutics

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review paper highlights role of BBB in endothelial transport of various substances into the brain. More specifically, permeability functions of BBB in transendothelial transport of various substances such as metabolic fuels, ethanol, amino acids, proteins, peptides, lipids, vitamins, neurotransmitters, monocarbxylic acids, gases, water, and minerals in the peripheral circulation and into the brain have been widely explained. In addition, roles of various receptors, ATP powered pumps, channels, and transporters in transport of vital molecules in maintenance of homeostasis and normal body functions have been described in detail. Major role of integral membrane proteins, carriers, or transporters in drug transport is highlighted. Both diffusion and carrier mediated transport mechanisms which facilitate molecular trafficking through transcellular route to maintain influx and outflux of important nutrients and metabolic substances are elucidated. Present review paper aims to emphasize role of important transport systems with their recent advancements in CNS protection mainly for providing a rapid clinical aid to patients. This review also suggests requirement of new well-designed therapeutic strategies mainly potential techniques, appropriate drug formulations, and new transport systems for quick, easy, and safe delivery of drugs across blood brain barrier to save the life of tumor and virus infected patients. PMID:27355037

  11. Taming dendritic cells with TIM-3: Another immunosuppressive strategy by tumors

    PubMed Central

    Patel, Jaina; Bozeman, Erica N.; Selvaraj, Periasamy

    2013-01-01

    The identification of TIM-3 expression on tumor associated dendritic cells (TADCs) provides insight into another aspect of tumor-mediated immunosuppression. The role of TIM-3 has been well characterized on tumor-infiltrating T cells, however its role on TADCs was not previously known. The current paper demonstrated that TIM-3 was predominantly expressed by TADCs and its interaction with the nuclear protein HMGB1 suppressed nucleic acid mediated activation of an effective antitumor immune response. The authors were able to show that TIM-3 interaction with HMGB1 prevented the localization of nucleic acids into endosomal vesicles. Furthermore, chemotherapy was found to be more effective in anti-TIM-3 mAb treated mice or mice depleted of all DCs which indicated that significant role played by TADCs inhibiting tumor regression. Taken together, these findings identify TIM-3 as a potential target for inducing antitumor immunity in conjunction with DNA vaccines and/or immunogenic chemotherapy in clinical settings. PMID:23240746

  12. Regulation of water, salinity, and cold stress responses by salicylic acid

    PubMed Central

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

  13. The In Vitro Effect of Acidic-Pepsin on Nuclear Factor KappaB Activation and Its Related Oncogenic Effect on Normal Human Hypopharyngeal Cells

    PubMed Central

    Sasaki, Clarence T.; Toman, Julia; Vageli, Dimitra

    2016-01-01

    Background Extra-esophageal carcinogenesis has been widely discussed in relation to the chronic effects of laryngopharyngeal reflux and most prominently with pepsin historically central to this discussion. With refluxate known to include gastric (pepsin) and duodenal (bile) fluids, we recently demonstrated the mechanistic role of NF-κB in mediating the preneoplastic effects of acidic-bile. However, the role of pepsin in promoting hypopharyngeal premalignant events remains historically unclear. Here, we investigate the in vitro effect of acidic-pepsin on the NF-κB oncogenic pathway to better define its potential role in hypopharyngeal neoplasia. Methods Human hypopharyngeal primary cells (HHPC) and keratinocytes (HHK) were repetitively exposed to physiologic pepsin concentrations (0.1 mg/ml) at pH 4.0, 5.0 and 7.0. Cellular localization of phospho-NF-κB and bcl-2 was determined using immunofluorescence and western blotting. NF-κB transcriptional activity was tested by luc reporter and qPCR. Analysis of DNA content of pepsin treated HHK and HHPC was performed using Fluorescence-activated-cell sorting assay. To explore a possible dose related effect, pepsin concentration was reduced from 0.1 to 0.05 and 0.01 mg/ml. Results At physiologic concentration, acidic-pepsin (0.1 mg/ml at pH 4.0) is lethal to most normal hypopharyngeal cells. However, in surviving cells, no NF-κB transcriptional activity is noted. Acidic-pepsin fails to activate the NF-κB or bcl-2, TNF-α, EGFR, STAT3, and wnt5α but increases the Tp53 mRNAs, in both HHPC and HHK. Weakly acidic-pepsin (pH 5.0) and neutral-pepsin (pH 7.0) induce mild activation of NF-κB with increase in TNF-α mRNAs, without oncogenic transcriptional activity. Lower concentrations of pepsin at varying pH do not produce NF-κB activity or transcriptional activation of the analyzed genes. Conclusion Our findings in vitro do not support the role of acidic-pepsin in NF-κB related hypopharyngeal carcinogenesis. PMID:27973541

  14. Functional TASK-3-Like Channels in Mitochondria of Aldosterone-Producing Zona Glomerulosa Cells.

    PubMed

    Yao, Junlan; McHedlishvili, David; McIntire, William E; Guagliardo, Nick A; Erisir, Alev; Coburn, Craig A; Santarelli, Vincent P; Bayliss, Douglas A; Barrett, Paula Q

    2017-08-01

    Ca 2+ drives aldosterone synthesis in the cytosolic and mitochondrial compartments of the adrenal zona glomerulosa cell. Membrane potential across each of these compartments regulates the amplitude of the Ca 2+ signal; yet, only plasma membrane ion channels and their role in regulating cell membrane potential have garnered investigative attention as pathological causes of human hyperaldosteronism. Previously, we reported that genetic deletion of TASK-3 channels (tandem pore domain acid-sensitive K + channels) from mice produces aldosterone excess in the absence of a change in the cell membrane potential of zona glomerulosa cells. Here, we report using yeast 2-hybrid, immunoprecipitation, and electron microscopic analyses that TASK-3 channels are resident in mitochondria, where they regulate mitochondrial morphology, mitochondrial membrane potential, and aldosterone production. This study provides proof of principle that mitochondrial K + channels, by modulating inner mitochondrial membrane morphology and mitochondrial membrane potential, have the ability to play a pathological role in aldosterone dysregulation in steroidogenic cells. © 2017 American Heart Association, Inc.

  15. Krill Oil for Cardiovascular Risk Prevention: Is It for Real?

    PubMed Central

    Backes, James M.; Howard, Patricia A.

    2014-01-01

    Omega-3 fatty acids play an important role in cardiovascular health. Although it is suggested that individuals obtain these nutrients through diet, many prefer to rely on supplements. Fish oil supplements are widely used, yet large capsule sizes and tolerability make them less than ideal. Recently, krill oil has emerged as a potential alternative for omega-3 supplementation. This article will discuss what is known about krill oil and its potential use in cardiovascular risk prevention. PMID:25477562

  16. Uric acid inhibition of dipeptidyl peptidase IV in vitro is dependent on the intracellular formation of triuret.

    PubMed

    Mohandas, Rajesh; Sautina, Laura; Beem, Elaine; Schuler, Anna; Chan, Wai-Yan; Domsic, John; McKenna, Robert; Johnson, Richard J; Segal, Mark S

    2014-08-01

    Uric acid affects endothelial and adipose cell function and has been linked to diseases such as hypertension, metabolic syndrome, and cardiovascular disease. Interestingly uric acid has been shown to increase endothelial progenitor cell (EPC) mobilization, a potential mechanism to repair endothelial injury. Since EPC mobilization is dependent on activity of the enzyme CD26/dipeptidyl peptidase (DPP)IV, we examined the effect uric acid will have on CD26/DPPIV activity. Uric acid inhibited the CD26/DPPIV associated with human umbilical vein endothelial cells but not human recombinant (hr) CD26/DPPIV. However, triuret, a product of uric acid and peroxynitrite, could inhibit cell associated and hrCD26/DPPIV. Increasing or decreasing intracellular peroxynitrite levels enhanced or decreased the ability of uric acid to inhibit cell associated CD26/DPPIV, respectively. Finally, protein modeling demonstrates how triuret can act as a small molecule inhibitor of CD26/DPPIV activity. This is the first time that uric acid or a uric acid reaction product has been shown to affect enzymatic activity and suggests a novel avenue of research in the role of uric acid in the development of clinically important diseases. Published by Elsevier Inc.

  17. Glucose enhances tilapia against Edwardsiella tarda infection through metabolome reprogramming.

    PubMed

    Zeng, Zao-hai; Du, Chao-Chao; Liu, Shi-Rao; Li, Hui; Peng, Xuan-Xian; Peng, Bo

    2017-02-01

    We have recently reported that the survival of tilapia, Oreochromis niloticus, during Edwardsiella tarda infection is tightly associated with their metabolome, where the survived O. niloticus has distinct metabolomic profile to dying O. niloticus. Glucose is the key metabolite to distinguish the survival- and dying-metabolome. More importantly, exogenous administration of glucose to the fish greatly enhances their survival for the infection, indicating the functional roles of glucose in metabolome repurposing, known as reprogramming metabolomics. However, the underlying information for the reprogramming is not yet available. Here, GC/MS based metabolomics is used to understand the mechanisms by which how exogenous glucose elevates O. niloticus, anti-infectious ability to E. tarda. Results showed that exogenous glucose promotes stearic acid and palmitic acid biosynthesis but attenuates TCA cycle to potentiate O. niloticus against bacterial infection, which is confirmed by the fact that exogenous stearic acid increases immune protection in O. niloticus against E. tarda infection in a manner of Mx protein. These results indicate that exogenous glucose reprograms O. niloticus anti-infective metabolome that characterizes elevation of stearic acid and palmitic acid and attenuation of the TCA cycle. Therefore, our results proposed a novel mechanism that glucose promotes unsaturated fatty acid biosynthesis to cope with infection, thereby highlighting a potential way of enhancing fish immunity in aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The Epidemiology of Uric Acid and Fructose

    PubMed Central

    Rho, Young Hee; Zhu, Yanyan; Choi, Hyon K.

    2011-01-01

    During the past few decades, the mean serum uric acid levels and the prevalence of hyperuricemia in the general population appear to have increased. Correspondingly, the prevalence and incidence of gout have doubled. Potential reasons behind these trends include the increasing prevalence of obesity and metabolic syndrome, western life-style factors, increased prevalence of medical conditions (e.g. renal conditions, hypertension, and cardiovascular disorders) and use of medications that increase uric acid levels (e.g. diuretics and low-dose aspirin). The substantial increase in sugar-sweetened soft drinks and associated fructose consumption has also coincided with the secular trend of hyperuricemia and gout. Recently, several large-scale epidemiologic studies have clarified a number of these long-suspected risk factors in relation with hyperuricemia and gout. Furthermore, recent studies have illuminated the substantial comorbidities of hyperuricemia and gout, particularly metabolic-cardiovascular-renal conditions. While many prospective studies have suggested an independent association between serum uric acid levels and the future risk of cardiovascular-metabolic morbidities and mortality, only a limited number of randomized clinical trials and observational studies have recently demonstrated that the use of allopurinol can be beneficial against these outcomes. As these data are scarce and the effects of allopurinol might not be limited to lowering serum uric acid levels, the potential causal role of uric acid on these outcomes remains to be clarified with further studies. PMID:22000647

  19. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method.

    PubMed

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-07-27

    The major objective of this work was to develop a green and facile process to prepare gallic acid-chitosan conjugate and comprehensively evaluate the physicochemical properties and biological activities of an as-prepared water-soluble chitosan derivative. A free-radical-induced grafting approach using an ascorbic acid-hydrogen peroxide redox pair was adopted. The obtained conjugate was characterized by Fourier transform infrared spectroscopy, UV-vis, X-ray diffraction, and pKa analysis. The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulphonic acid (ABTS), reducing power, and oxygen-radical antioxidant-capacity assays. The results showed that the mass ratio of gallic acid to chitosan played a vital role in determining the grafting degree and ζ potential of the conjugates, with the ratio of 0.5:1 being the optimal ratio that resulted in the highest grafting degree. The antioxidant assays demonstrated that conjugation significantly improved the antioxidant activities, being dramatically higher than that of free chitosan. It was notable that the DPPH- and ABTS-scavenging activities of conjugate at 0.4 mg/mL reached the same level as the free gallic acid at the equivalent concentration. Our study demonstrated a green and facile synthesis approach to preparing a novel water-soluble chitosan derivative that may have promising potentials in the food industry.

  20. The role of ExbD in periplasmic pH homeostasis in Helicobacter pylori

    PubMed Central

    Marcus, Elizabeth A.; Sachs, George; Scott, David R.

    2013-01-01

    Background Helicobacter pylori, a neutralophile, colonizes the acidic environment of the human stomach by employing acid acclimation mechanisms that regulate periplasmic and cytoplasmic pH. The regulation of urease activity is central to acid acclimation. Inactive urease apoenzyme, UreA/B, requires nickel for activation. Accessory proteins UreE, F, G and H are required for nickel insertion into apoenzyme. The ExbB/ExbD/TonB complex transfers energy from the inner to outer membrane, providing the driving force for nickel uptake. Therefore, the aim of this study was to determine the contribution of ExbD to pH homeostasis. Materials and Methods A nonpolar exbD knockout was constructed and survival, growth, urease activity, and membrane potential were determined in comparison to wildtype. Results Survival of the ΔexbD strain was significantly reduced at pH 3.0. Urease activity as a function of pH and UreI activation were similar to the wildtype strain, showing normal function of the proton-gated urea channel, UreI. The increase in total urease activity over time in acid seen in the wildtype strain was abolished in the ΔexbD strain, but recovered in the presence of supra-physiologic nickel concentrations, demonstrating that the effect of the ΔexbD mutant is due to loss of a necessary constant supply of nickel. In acid, ΔexbD also decreased its ability to maintain membrane potential and periplasmic buffering in the presence of urea. Conclusions ExbD is essential for maintenance of periplasmic buffering and membrane potential by transferring energy required for nickel uptake, making it a potential non-antibiotic target for H. pylori eradication. PMID:23600974

  1. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans.

    PubMed

    Fu, Nina; Wang, Suiliang; Zhang, Yuqian; Zhang, Caixia; Yang, Dongliang; Weng, Lixing; Zhao, Baomin; Wang, Lianhui

    2017-08-18

    Candida is an important opportunistic human fungal pathogen. The cis-2-dodecenoic acid (BDSF) showing in vitro activity of against C. albicans growth, germ-tube germination and biofilm formation has been a potential inhibitor for Candida and other fungi. In this study, facile synthetic strategies toward a novel family of BDSF analogue, 1-alkyl-1H-1,2,3-triazole-4-carboxylic acids (ATCs) was developed. The straightforward synthetic method including converting the commercial available alkyl bromide to alkyl azide, consequently with a typical click chemistry method, copper(II) sulfate and sodium ascorbate as catalyst in water to furnish ATCs with mild to good yields. According to antifungal assay, 1-decyl-4,5-dihydro-1H-1,2,3-triazole-4-carboxylic acid (5d) showed antifungal capability slightly better than BDSF. The 1,2,3-triazole unit played a crucial role for the bioactivity of ATCs was also confirmed when compared with two alkyl-aromatic carboxylic acids. Given its simplicity, high antifungal activity, and wide availability of compounds with halide atoms on the end part of the alkyl chains, the method can be extended to develop more excellent ATC drugs for accomplishing the challenges in future antifungal applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Yeast diversity of sourdoughs and associated metabolic properties and functionalities.

    PubMed

    De Vuyst, Luc; Harth, Henning; Van Kerrebroeck, Simon; Leroy, Frédéric

    2016-12-19

    Together with acidifying lactic acid bacteria, yeasts play a key role in the production process of sourdough, where they are either naturally present or added as a starter culture. Worldwide, a diversity of yeast species is encountered, with Saccharomyces cerevisiae, Candida humilis, Kazachstania exigua, Pichia kudriavzevii, Wickerhamomyces anomalus, and Torulaspora delbrueckii among the most common ones. Sourdough-adapted yeasts are able to withstand the stress conditions encountered during their growth, including nutrient starvation as well as the effects of acidic, oxidative, thermal, and osmotic stresses. From a technological point of view, their metabolism primarily contributes to the leavening and flavour of sourdough products. Besides ethanol and carbon dioxide, yeasts can produce metabolites that specifically affect flavour, such as organic acids, diacetyl, higher alcohols from branched-chain amino acids, and esters derived thereof. Additionally, several yeast strains possess functional properties that can potentially lead to nutritional and safety advantages. These properties encompass the production of vitamins, an improvement of the bioavailability of phenolic compounds, the dephosphorylation of phytic acid, the presence of probiotic potential, and the inhibition of fungi and their mycotoxin production. Strains of diverse species are new candidate functional starter cultures, offering opportunities beyond the conventional use of baker's yeast. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides

    PubMed Central

    Li, Hao; Anuwongcharoen, Nuttapat; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E. S.; Nantasenamat, Chanin

    2016-01-01

    Host defense peptides (HDPs) are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA) is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs. PMID:27376281

  4. Redox potential tuning by redox-inactive cations in nature's water oxidizing catalyst and synthetic analogues.

    PubMed

    Krewald, Vera; Neese, Frank; Pantazis, Dimitrios A

    2016-04-28

    The redox potential of synthetic oligonuclear transition metal complexes has been shown to correlate with the Lewis acidity of a redox-inactive cation connected to the redox-active transition metals of the cluster via oxo or hydroxo bridges. Such heterometallic clusters are important cofactors in many metalloenzymes, where it is speculated that the redox-inactive constituent ion of the cluster serves to optimize its redox potential for electron transfer or catalysis. A principal example is the oxygen-evolving complex in photosystem II of natural photosynthesis, a Mn4CaO5 cofactor that oxidizes water into dioxygen, protons and electrons. Calcium is critical for catalytic function, but its precise role is not yet established. In analogy to synthetic complexes it has been suggested that Ca(2+) fine-tunes the redox potential of the manganese cluster. Here we evaluate this hypothesis by computing the relative redox potentials of substituted derivatives of the oxygen-evolving complex with the cations Sr(2+), Gd(3+), Cd(2+), Zn(2+), Mg(2+), Sc(3+), Na(+) and Y(3+) for two sequential transitions of its catalytic cycle. The theoretical approach is validated with a series of experimentally well-characterized Mn3AO4 cubane complexes that are structural mimics of the enzymatic cluster. Our results reproduce perfectly the experimentally observed correlation between the redox potential and the Lewis acidities of redox-inactive cations for the synthetic complexes. However, it is conclusively demonstrated that this correlation does not hold for the oxygen evolving complex. In the enzyme the redox potential of the cluster only responds to the charge of the redox-inactive cations and remains otherwise insensitive to their precise identity, precluding redox-tuning of the metal cluster as a primary role for Ca(2+) in biological water oxidation.

  5. Metformin inhibition of neuroblastoma cell proliferation is differently modulated by cell differentiation induced by retinoic acid or overexpression of NDM29 non-coding RNA.

    PubMed

    Costa, Delfina; Gigoni, Arianna; Würth, Roberto; Cancedda, Ranieri; Florio, Tullio; Pagano, Aldo

    2014-01-01

    Metformin is a widely used oral hypoglycemizing agent recently proposed as potential anti-cancer drug. In this study we report the antiproliferative effect of metformin treatment in a high risk neuroblastoma cell model, focusing on possible effects associated to different levels of differentiation and/or tumor initiating potential. Antiproliferative and cytotoxic effects of metformin were tested in human SKNBE2 and SH-SY5Y neuroblastoma cell lines and in SKNBE2 cells in which differentiation is induced by retinoic acid treatment or stable overexpression of NDM29 non-coding RNA, both conditions characterized by a neuron-like differentiated phenotype. We found that metformin significantly inhibits the proliferation of NB cells, an effect that correlates with the inhibition of Akt, while AMPK activity resulted unchanged. Notably, metformin effects were modulated in a different ways by differentiating stimuli, being abolished after retinoic acid treatment but potentiated by overexpression of NDM29. These data suggest the efficacy of metformin as neuroblastoma anticancer agent, and support the requirement of further studies on the possible role of the differentiation status on the antiproliferative effects of this drug.

  6. Fermented fruits and vegetables of Asia: a potential source of probiotics.

    PubMed

    Swain, Manas Ranjan; Anandharaj, Marimuthu; Ray, Ramesh Chandra; Parveen Rani, Rizwana

    2014-01-01

    As world population increases, lactic acid fermentation is expected to become an important role in preserving fresh vegetables, fruits, and other food items for feeding humanity in developing countries. However, several fermented fruits and vegetables products (Sauerkraut, Kimchi, Gundruk, Khalpi, Sinki, etc.) have a long history in human nutrition from ancient ages and are associated with the several social aspects of different communities. Among the food items, fruits and vegetables are easily perishable commodities due to their high water activity and nutritive values. These conditions are more critical in tropical and subtropical countries which favour the growth of spoilage causing microorganisms. Lactic acid fermentation increases shelf life of fruits and vegetables and also enhances several beneficial properties, including nutritive value and flavours, and reduces toxicity. Fermented fruits and vegetables can be used as a potential source of probiotics as they harbour several lactic acid bacteria such as Lactobacillus plantarum, L. pentosus, L. brevis, L. acidophilus, L. fermentum, Leuconostoc fallax, and L. mesenteroides. As a whole, the traditionally fermented fruits and vegetables not only serve as food supplements but also attribute towards health benefits. This review aims to describe some important Asian fermented fruits and vegetables and their significance as a potential source of probiotics.

  7. The crucial protective role of glutathione against tienilic acid hepatotoxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishiya, Takayoshi; Mori, Kazuhiko; Hattori, Chiharu

    2008-10-15

    To investigate the hepatotoxic potential of tienilic acid in vivo, we administered a single oral dose of tienilic acid to Sprague-Dawley rats and performed general clinicopathological examinations and hepatic gene expression analysis using Affymetrix microarrays. No change in the serum transaminases was noted at up to 1000 mg/kg, although slight elevation of the serum bile acid and bilirubin, and very mild hepatotoxic changes in morphology were observed. In contrast to the marginal clinicopathological changes, marked upregulation of the genes involved in glutathione biosynthesis [glutathione synthetase and glutamate-cysteine ligase (Gcl)], oxidative stress response [heme oxygenase-1 and NAD(P)H dehydrogenase quinone 1] andmore » phase II drug metabolism (glutathione S-transferase and UDP glycosyltransferase 1A6) were noted after 3 or 6 h post-dosing. The hepatic reduced glutathione level decreased at 3-6 h, and then increased at 24 or 48 h, indicating that the upregulation of NF-E2-related factor 2 (Nrf2)-regulated gene and the late increase in hepatic glutathione are protective responses against the oxidative and/or electrophilic stresses caused by tienilic acid. In a subsequent experiment, tienilic acid in combination with L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of Gcl caused marked elevation of serum alanine aminotransferase (ALT) with extensive centrilobular hepatocyte necrosis, whereas BSO alone showed no hepatotoxicity. The elevation of ALT by this combination was observed at the same dose levels of tienilic acid as the upregulation of the Nrf2-regulated genes by tienilic acid alone. In conclusion, these results suggest that the impairment of glutathione biosynthesis may play a critical role in the development of tienilic acid hepatotoxicity through extensive oxidative and/or electrophilic stresses.« less

  8. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a substantial role in non-foodborne human, animal and avian diseases as well as human foodborne disease. Previously discovered C. perfringens bacteriophage lytic enzyme amino acid sequences were utilized to iden...

  9. Changing Atmospheric Acidity and the Oceanic Solubility of Nutrients

    NASA Astrophysics Data System (ADS)

    Baker, Alex; Sarin, Manmohan; Duce, Robert; Jickells, Tim; Kanakidou, Maria; Myriokefalitakis, Stelios; Ito, Akinori; Turner, David; Mahowald, Natalie; Middag, Rob; Guieu, Cecile; Gao, Yuan; Croot, Peter; Shelley, Rachel; Perron, Morgane

    2017-04-01

    The atmospheric deposition of nutrients to the ocean is known to play a significant role in the marine carbon cycle. The impact of such deposition is dependent on the identity of the nutrient in question (e.g., N, P, Fe, Co, Zn, Ni, Cd), the location of the deposition, and the bioavailability of the deposited nutrient. Bioavailability is largely governed by the chemical speciation of a nutrient and, in general, insoluble species are not bioavailable. For Fe and P (and perhaps the other nutrient trace metals) solubility increases during transport through the atmosphere. The causes of this increase are complex, but interactions of aerosol particles with acids appears to play a significant role. Emissions of acidic (SO2 and NOx) and alkaline (NH3) gases have increased significantly since the Industrial Revolution, with a net increase in atmospheric acidity. This implies that Fe and P solubility may also have increased over this time period, potentially resulting in increased marine productivity. More recently, pollution controls have decreased emissions of SO2 from some regions and further reductions in SO2 and NOx are likely in the future. Emissions of NH3 are much more difficult to control however, and are projected to stabilise or increase slightly to the end of this century. Future anthropogenic emissions are thus likely to change the acidity of the atmosphere downwind of major urban / industrial centres, with potential consequences for the supply of soluble nutrients to the ocean. To address these issues UN/GESAMP Working Group 38, The Atmospheric Input of Chemicals to the Ocean, is convening a workshop on this topic at the University of East Anglia in February, 2017. The goals of this workshop are to review and synthesize the current scientific information on the solubility of aerosol-associated key biogeochemical elements, the biogeochemical controls on aerosol solubility, and the pH sensitivity of those controls; to consider the likely changes in solubility of key species into the future and the potential biogeochemical consequences of such changes; and to identify the key future research needs to reduce uncertainties in predictive capability in this area. The results, conclusions, and recommendations of this workshop will be presented.

  10. Glyprolines exert protective and repair-promoting effects in the rat stomach: potential role of the cytokine GRO/CINC-1.

    PubMed

    Bakaeva, Z V; Sangadzhieva, A D; Tani, S; Myasoedov, N F; Andreeva, L A; Torshin, V I; Wallace, J L; Tanaka, T

    2016-04-01

    Glyprolines have been reported to exert protective effects in the stomach. In this study, we examined the potential effects of intranasal administration of Pro-Gly-Pro (PGP) and N-acetyl-Pro-Gly-Pro (AcPGP) on experimental gastric ulcer formation and healing. We also studied gastric release of the cytokine GRO/CINC-1, and its potential role in ulcer development and healing. Gastric ulcers were induced in rats by applying acetic acid to the serosa of the stomach. PGP and AcPGP were then administered at a dose of 3.7 μmol/kg once daily on either days 1 - 3 (ulcer formation) or days 4 - 6 (ulcer healing). Measurement of ulcer area and histological examination of gastric tissue were carried out on days 4 and 7 after application of acetic acid. In vitro studies involved addition of the glyprolines to cultured rat gastric epithelial cells with or without lipopolysaccharide. Reverse transcription PCR, real-time PCR and ELISA were used for cytokine analysis. PGP and AcPGP significantly reduced ulcer areas on the 4(th) day and accelerated the healing on the 7(th) day compared with the control. After acetic acid-induced ulceration, the expression of GRO/CINC-1 mRNA in gastric tissue was increased 9-fold versus the sham-operated group. Treatment with PGP or AcPGP both significantly suppressed the expression of GRO/CINC-1 mRNA in gastric tissue. However, the glyprolines did not alter LPS-induced mRNA expression or release of GRO/CINC-1 from cultured rat gastric epithelial cells, even though those cells were harvested from rats subjected to the ulcer-induction procedure. The results of this study show that intranasal administration of PGP and AcPGP significantly increased resistance against acetic acid-induced ulceration and accelerated healing in the rats. These effects may be due, at least in part, to their ability to reduce the acetic acid-induced GRO/CINC-1 expression and production in gastric tissue.

  11. The islet beta-cell: fuel responsive and vulnerable.

    PubMed

    Nolan, Christopher J; Prentki, Marc

    2008-10-01

    The pancreatic beta-cell senses blood nutrient levels and is modulated by neurohormonal signals so that it secretes insulin according to the need of the organism. Nutrient sensing involves marked metabolic activation, resulting in the production of coupling signals that promote insulin biosynthesis and secretion. The beta-cell's high capacity for nutrient sensing, however, necessitates reduced protection to nutrient toxicity. This potentially explains why in susceptible individuals, chronic fuel surfeit results in beta-cell failure and type 2 diabetes. Here we discuss recent insights into first, the biochemical basis of beta-cell signaling in response to glucose, amino acids and fatty acids, and second, beta-cell nutrient detoxification. We emphasize the emerging role of glycerolipid/fatty acid cycling in these processes.

  12. The Role of Omega-3 Fatty Acids in Developmental Psychopathology: A Systematic Review on Early Psychosis, Autism, and ADHD

    PubMed Central

    Nobile, Maria; Ciappolino, Valentina; Delvecchio, Giuseppe; Tesei, Alessandra; Turolo, Stefano; Crippa, Alessandro; Mazzocchi, Alessandra; Altamura, Carlo A.; Brambilla, Paolo

    2017-01-01

    In this systematic review, we will consider and debate studies that have explored the effects of ω-3 polyunsaturated fatty acids (PUFAs) in three major, and somehow related, developmental psychiatric disorders: Autism, Attention Deficit and Hyperactivity disorder and Psychosis. The impact of ω-3 PUFAs on clinical symptoms and, if possible, brain trajectory in children and adolescents suffering from these illnesses will be reviewed and discussed, considering the biological plausibility of the effects of omega-3 fatty acids, together with their potential perspectives in the field. Heterogeneity in study designs will be discussed in the light of differences in results and interpretation of studies carried out so far. PMID:29207548

  13. Microbial communities, processes and functions in acid mine drainage ecosystems.

    PubMed

    Chen, Lin-xing; Huang, Li-nan; Méndez-García, Celia; Kuang, Jia-liang; Hua, Zheng-shuang; Liu, Jun; Shu, Wen-sheng

    2016-04-01

    Acid mine drainage (AMD) is generated from the oxidative dissolution of metal sulfides when water and oxygen are available largely due to human mining activities. This process can be accelerated by indigenous microorganisms. In the last several decades, culture-dependent researches have uncovered and validated the roles of AMD microorganisms in metal sulfides oxidation and acid generation processes, and culture-independent studies have largely revealed the diversity and metabolic potentials and activities of AMD communities, leading towards a full understanding of the microbial diversity, functions and interactions in AMD ecosystems. This review describes the diversity of microorganisms and their functions in AMD ecosystems, and discusses their biotechnological applications in biomining and AMD bioremediation according to their capabilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A higher alkaline dietary load is associated with greater indexes of skeletal muscle mass in women.

    PubMed

    Welch, A A; MacGregor, A J; Skinner, J; Spector, T D; Moayyeri, A; Cassidy, A

    2013-06-01

    Conservation of muscle mass is important for fall and fracture prevention but further understanding of the causes of age-related muscle loss is required. This study found a more alkaline diet was positively associated with muscle mass in women suggesting a role for dietary acid-base load in muscle loss. Conservation of skeletal muscle is important for preventing falls and fractures but age-related loss of muscle mass occurs even in healthy individuals. However, the mild metabolic acidosis associated with an acidogenic dietary acid-base load could influence loss of muscle mass. We investigated the association between fat-free mass (FFM), percentage FFM (FFM%) and fat-free mass index (FFMI, weight/height²), measured using dual-energy X-ray absorptiometry in 2,689 women aged 18-79 years from the TwinsUK Study, and dietary acid-base load. Body composition was calculated according to quartile of potential renal acid load and adjusted for age, physical activity, misreporting and smoking habit (FFM, FFMI also for fat mass) and additionally with percentage protein. Fat-free mass was positively associated with a more alkalinogenic dietary load (comparing quartile 1 vs 4: FFM 0.79 kg P < 0.001, FFM% 1.06 % <0.001, FFMI 0.24 kg/m² P = 0.002), and with the ratio of fruits and vegetables to potential acidogenic foods. We observed a small but significant positive association between a more alkaline diet and muscle mass indexes in healthy women that was independent of age, physical activity and protein intake equating to a scale of effect between a fifth and one half of the observed relationship with 10 years of age. Although protein is important for maintenance of muscle mass, eating fruits and vegetables that supply adequate amounts of potassium and magnesium are also relevant. The results suggest a potential role for diet in the prevention of muscle loss.

  15. Age dependence of plasma phospholipid fatty acid levels: potential role of linoleic acid in the age-associated increase in docosahexaenoic acid and eicosapentaenoic acid concentrations.

    PubMed

    de Groot, Renate H M; van Boxtel, Martin P J; Schiepers, Olga J G; Hornstra, Gerard; Jolles, Jelle

    2009-10-01

    Limited information is available with respect to the association between age and the plasma phospholipid fatty acid profile. Therefore we investigated the association between plasma phospholipid fatty acid status and age after correction for sex, smoking, alcohol use, BMI and fish intake. Plasma phospholipid fatty acid composition was measured and information on fish intake and other potential covariates was collected in 234 participants of the Maastricht Aging Study. The participants were healthy individuals of both sexes with an age range between 36 and 88 years. Hierarchical linear regression analyses were applied to study the relationship between age and fatty acid concentrations. After correction for fish consumption and other relevant covariates, a significant positive relationship was observed between age of the subjects and their plasma phospholipid concentrations of DHA (22 : 6n-3, P = 0.006) and EPA (20 : 5n-3; P = 0.001). Age contributed 2.3 and 3.9 % to the amount of explained variance, respectively. The higher n-3 long-chain PUFA status at advanced age was confirmed by lower concentrations of their putative 'shortage marker' Osbond acid (ObA, 22 : 5n-6; P = 0.022 for the relationship with age after correction for covariates and fish intake, R2 0.022). Concentrations of linoleic acid (LA; 18 : 2n-6) were negatively associated with age (P < 0.001; R2 0.061). In conclusion, DHA and EPA concentrations appeared to be higher in older age groups, partly because of a higher fish intake and partly because of another age-associated mechanism, possibly involving the well-known competition with LA.

  16. Role of Nitrogen and Carbon Transport, Regulation, and Metabolism Genes for Saccharomyces cerevisiae Survival In Vivo†

    PubMed Central

    Kingsbury, Joanne M.; Goldstein, Alan L.; McCusker, John H.

    2006-01-01

    Saccharomyces cerevisiae is both an emerging opportunistic pathogen and a close relative of pathogenic Candida species. To better understand the ecology of fungal infection, we investigated the importance of pathways involved in uptake, metabolism, and biosynthesis of nitrogen and carbon compounds for survival of a clinical S. cerevisiae strain in a murine host. Potential nitrogen sources in vivo include ammonium, urea, and amino acids, while potential carbon sources include glucose, lactate, pyruvate, and fatty acids. Using mutants unable to either transport or utilize these compounds, we demonstrated that no individual nitrogen source was essential, while glucose was the most significant primary carbon source for yeast survival in vivo. Hydrolysis of the storage carbohydrate glycogen made a slight contribution for in vivo survival compared with a substantial requirement for trehalose hydrolysis. The ability to sense and respond to low glucose concentrations was also important for survival. In contrast, there was little or no requirement in vivo in this assay for any of the nitrogen-sensing pathways, nitrogen catabolite repression, the ammonium- or amino acid-sensing pathways, or general control. By using auxotrophic mutants, we found that some nitrogenous compounds (polyamines, methionine, and lysine) can be acquired from the host, while others (threonine, aromatic amino acids, isoleucine, and valine) must be synthesized by the pathogen. Our studies provide insights into the yeast-host environment interaction and identify potential antifungal drug targets. PMID:16682459

  17. Modulation of Acid-sensing Ion Channel 1a by Intracellular pH and Its Role in Ischemic Stroke.

    PubMed

    Li, Ming-Hua; Leng, Tian-Dong; Feng, Xue-Chao; Yang, Tao; Simon, Roger P; Xiong, Zhi-Gang

    2016-08-26

    An important contributor to brain ischemia is known to be extracellular acidosis, which activates acid-sensing ion channels (ASICs), a family of proton-gated sodium channels. Lines of evidence suggest that targeting ASICs may lead to novel therapeutic strategies for stroke. Investigations of the role of ASICs in ischemic brain injury have naturally focused on the role of extracellular pH in ASIC activation. By contrast, intracellular pH (pHi) has received little attention. This is a significant gap in our understanding because the ASIC response to extracellular pH is modulated by pHi, and activation of ASICs by extracellular protons is paradoxically enhanced by intracellular alkalosis. Our previous studies show that acidosis-induced cell injury in in vitro models is attenuated by intracellular acidification. However, whether pHi affects ischemic brain injury in vivo is completely unknown. Furthermore, whereas ASICs in native neurons are composed of different subunits characterized by distinct electrophysiological/pharmacological properties, the subunit-dependent modulation of ASIC activity by pHi has not been investigated. Using a combination of in vitro and in vivo ischemic brain injury models, electrophysiological, biochemical, and molecular biological approaches, we show that the intracellular alkalizing agent quinine potentiates, whereas the intracellular acidifying agent propionate inhibits, oxygen-glucose deprivation-induced cell injury in vitro and brain ischemia-induced infarct volume in vivo Moreover, we find that the potentiation of ASICs by quinine depends on the presence of the ASIC1a, ASIC2a subunits, but not ASIC1b, ASIC3 subunits. Furthermore, we have determined the amino acids in ASIC1a that are involved in the modulation of ASICs by pHi. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia.

    PubMed

    Brose, Stephen A; Golovko, Svetlana A; Golovko, Mikhail Y

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on [Formula: see text]/NAD + and [Formula: see text]/NADP + ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased [Formula: see text]/NAD + and [Formula: see text]/NADP + ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke.

  19. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia

    PubMed Central

    Brose, Stephen A.; Golovko, Svetlana A.; Golovko, Mikhail Y.

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on NADH2+/NAD+ and NADPH2+/NADP+ ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased NADH2+/NAD+ and NADPH2+/NADP+ ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke. PMID:27965531

  20. Erythrocyte polyunsaturated fatty acid composition is associated with depression and FADS genotype in Caucasians.

    PubMed

    Cribb, Lachlan; Murphy, Jenifer; Froud, Amy; Oliver, Georgina; Bousman, Chad A; Ng, Chee H; Sarris, Jerome

    2017-05-29

    Polyunsaturated fatty acids (PUFAs) play an important role in the pathophysiology of major depressive disorder (MDD), related, in part, to their role in inflammatory systems. The enzymes δ-5 and δ-6 desaturase are the rate-limiting steps in the metabolism of PUFAs and are encoded in the genes fatty acid desaturase (FADS) 1 and 2, respectively. Single nucleotide polymorphisms (SNPs) and haplotypes within the FADS gene cluster have been shown to influence PUFA composition. The objective of this study was to determine whether key omega-3 (n-3) and omega-6 (n-6) fatty acids may be associated with depression, and to explore the role of FADS genotype in PUFA variation. Four erythrocyte long chain (LC) fatty acids (linoleic acid [LA], α-linolenic acid [ALA], arachidonic acid [AA] and Eicosapentaenoic acid [EPA]), as well as six SNPs (rs174537, rs174547, rs174570, rs174575, rs498793 and rs3834458) within the FADS gene cluster were measured in a sample of 207 participants (154 with MDD versus 53 non-depressed controls). The precursor LC-PUFAs LA and ALA appeared to be negatively associated with depression (P < 0.001 and P < 0.01, respectively), while AA:LA (surrogate measure of desaturase activity) was positively associated with depression (P < 0.01). No significant differences were noted in erythrocyte EPA, AA or AA:EPA between groups. Minor alleles of each SNP (excluding rs498793) were associated with variation in desaturase activity and LA. Both rs174537 and rs174547 were associated with ALA. No genotype was associated with EPA or AA. Minor alleles of rs174537 and rs174547 were significantly associated with lower odds of MDD (although significance was lost after correction for multiple comparisons). Precursor LC-PUFAs, LA and ALA, appear to be associated with MDD and potentially modulated by genetic variation in the FADS gene cluster. These results provide support for the consideration of PUFA composition, diet and FADS genetic variation in the pathophysiology of MDD.

  1. Role of Matricellular Proteins in Disorders of the Central Nervous System.

    PubMed

    Jayakumar, A R; Apeksha, A; Norenberg, M D

    2017-03-01

    Matricellular proteins (MCPs) are actively expressed non-structural proteins present in the extracellular matrix, which rapidly turnover and possess regulatory roles, as well as mediate cell-cell interactions. MCPs characteristically contain binding sites for other extracellular proteins, cell surface receptors, growth factors, cytokines and proteases, that provide structural support for surrounding cells. MCPs are present in most organs, including brain, and play a major role in cell-cell interactions and tissue repair. Among the MCPs found in brain include thrombospondin-1/2, secreted protein acidic and rich in cysteine family (SPARC), including Hevin/SC1, Tenascin C and CYR61/Connective Tissue Growth Factor/Nov family of proteins, glypicans, galectins, plasminogen activator inhibitor (PAI-1), autotaxin, fibulin and perisostin. This review summarizes the potential role of MCPs in the pathogenesis of major neurological disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, ischemia, trauma, hepatic encephalopathy, Down's syndrome, autism, multiple sclerosis, brain neoplasms, Parkinson's disease and epilepsy. Potential therapeutic opportunities of MCP's for these disorders are also considered in this review.

  2. Terminal-group oxidation of retinol by mouse epidermis. Inhibition in vitro and in vivo.

    PubMed Central

    Connor, M J; Smit, M H

    1987-01-01

    Locally applied retinol is metabolized to retinoic acid in mouse epidermis in vivo. To characterize the oxidation system we investigated the ability of soluble extracts of hairless-mouse epidermis to convert retinol and retinal into retinoic acid. The extracts oxidized retinol to retinoic acid in two steps catalysed by two NAD+-dependent enzymes that were resolved on h.p.l.c. The first enzyme catalyses the reversible oxidation of retinol to retinal and is an alcohol dehydrogenase isoenzyme. The second enzyme oxidizes retinal to retinoic acid. Retinol oxidation by epidermal extracts was inhibited by the alcohol dehydrogenase inhibitor 4-methylpyrazole and by the polyene citral. The toxicity and relatively low potency at inhibiting the epidermal alcohol dehydrogenase isoenzyme curtailed the use of 4-methylpyrazole in vivo. However, citral significantly inhibited retinoic acid formation from retinol in the epidermis in vivo. The ability to inhibit the oxidation of retinol to retinoic acid in mouse epidermis provides a potential method to resolve the roles of retinol and retinoic acid in epithelial function. PMID:3663136

  3. The effects and potential mechanisms of folic acid on cognitive function: a comprehensive review.

    PubMed

    Enderami, Athena; Zarghami, Mehran; Darvishi-Khezri, Hadi

    2018-06-23

    Cognitive impairment and dementia are major neurocognitive disorders that cause a noticeable decline in cognitive abilities, including memory and thinking skills. The effectiveness of using folic acid as an adjuvant for management of neurocognitive disorders is not well-known. This paper explains the role of folic acid, including its usefulness, effectiveness, adverse side effects, and active mechanisms on cognitive functions of the elderly. In the current study, we reviewed clinical and experimental studies investigating the use of folic acid prior to November 2017, using PubMed, ISI Web of Knowledge, Science Direct, Scopus, Ovid, and Cochrane Library databases. A total of 142 articles were retrieved by electronic search. Based on the preset inclusion and exclusion criteria, a total of 36 articles were retrieved for full text analysis. According to data obtained from the review, it seems that folic acid supplementation may improve cognitive function by decreasing homocysteine (Hcy), vascular care, attenuating inflammatory status, modification of cerebral folic acid deficiency, and antioxidant responses. Specifically, people with high levels of Hcy have a better response to folic acid supplementation, which may arise from low serum folate concentration.

  4. White matter integrity in individuals at ultra-high risk for psychosis: a systematic review and discussion of the role of polyunsaturated fatty acids.

    PubMed

    Vijayakumar, Nandita; Bartholomeusz, Cali; Whitford, Thomas; Hermens, Daniel F; Nelson, Barnaby; Rice, Simon; Whittle, Sarah; Pantelis, Christos; McGorry, Patrick; Schäfer, Miriam R; Amminger, G Paul

    2016-08-11

    Schizophrenia is thought to be a neurodevelopmental disorder with pathophysiological processes beginning in the brain prior to the emergence of clinical symptoms. Recent evidence from neuroimaging studies using techniques such as diffusion tensor imaging has identified white matter abnormalities that are suggestive of disrupted brain myelination and neuronal connectivity. Identifying whether such effects exist in individuals at high risk for developing psychosis may help with prevention and early intervention strategies. In addition, there is preliminary evidence for a role of lipid biology in the onset of psychosis, along with well-established evidence of its role in myelination of white matter tracts. As such, this article synthesises the literature on polyunsaturated fatty acids (PUFAs) in myelination and schizophrenia, hypothesizing that white matter abnormalities may potentially mediate the relationship between PUFAs and schizophrenia. Diffusion tensor imaging studies were identified through a systematic search of existing literature. Studies examined white matter integrity in ultra-high risk (UHR) samples, as assessed using structured diagnostic interviews. Data was extracted and summarised as a narrative review. Twelve studies met inclusion criteria, and findings identified reduced fractional anisotropy and higher diffusivity. Although the exact location of abnormalities remains uncertain, fronto-temporal and fronto-limbic connections, including the superior longitudinal and uncinate fasiculus, cingulum, and corpus callosum appear to be implicated. Because of preliminary evidence suggesting lipid biology may be relevant for the onset of psychosis, a discussion is provided of the role of polyunsaturated fatty acids (PUFAs) in myelination and risk for psychosis. While the function of PUFAs in myelination is well-established, there is growing evidence of reduced PUFA concentration in UHR samples, highlighting the need for research to examine the relationship between PUFA and white matter integrity in high-risk samples and age-matched healthy controls. Such investigations will help to better understand the pathophysiology of the disorder, and potentially assist in the development of novel treatment and early intervention strategies.

  5. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis

    PubMed Central

    Zhang, Xiaoyan; Li, Sha; Zhou, Yunfeng; Su, Wen; Ruan, Xiongzhong; Wang, Bing; Zheng, Feng; Warner, Margaret; Gustafsson, Jan-Åke; Guan, Youfei

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by simple hepatic steatosis (SS), nonalcoholic steatohepatitis (NASH), hepatic fibrosis, and cirrhosis. Dysregulated fatty acid metabolism in the liver plays a critical role in the pathogenesis of NAFLD. Cytochrome P450 omega-hydroxylase 4A14 (CYP4A14) is a homolog of human CYP4A hydroxylase that catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid in mice. The goal of this study was to determine the role of CYP4A14 in the development and the progression of NAFLD. Here, we showed that hepatic CYP4A expression was up-regulated in the livers of patients and three murine models of NAFLD. Adenovirus-mediated overexpression of CYP4A14 in the livers of C57BL/6 mice resulted in a fatty liver phenotype with a significant increase in hepatic fatty acid translocase (FAT/CD36) expression. In contrast, CYP4A14 gene-deficient mice fed a high-fat diet or a methionine and choline-deficient (MCD) diet exhibited attenuated liver lipid accumulation and reduced hepatic FAT/CD36 expression. In addition, hepatic inflammation and fibrosis was markedly ameliorated in MCD diet-fed CYP4A14-deficient mice. Collectively, CYP4A14 plays an important role in the pathogenesis of both SS and NASH and may represent a potential therapeutic target for the treatment of NAFLD. PMID:28270609

  6. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    PubMed Central

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplified by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large l-enantiomeric excesses of some extraterrestrial protein amino acids (up to ∼60%) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work. PMID:27413780

  7. A Pharmacological Update of Ellagic Acid.

    PubMed

    Ríos, José-Luis; Giner, Rosa M; Marín, Marta; Recio, M Carmen

    2018-05-30

    Ellagic acid is a common metabolite present in many medicinal plants and vegetables. It is present either in free form or as part of more complex molecules (ellagitannins), which can be metabolized to liberate ellagic acid and several of its metabolites, including urolithins. While ellagic acid's antioxidant properties are doubtless responsible for many of its pharmacological activities, other mechanisms have also been implicated in its various effects, including its ability to reduce the lipidemic profile and lipid metabolism, alter pro-inflammatory mediators (tumor necrosis factor- α , interleukin-1 β , interleukin-6), and decrease the activity of nuclear factor- κ B while increasing nuclear factor erythroid 2-related factor 2 expression. These events play an important role in ellagic acid's anti-atherogenic, anti-inflammatory, and neuroprotective effects. Several of these activities, together with the effect of ellagic acid on insulin, glycogen, phosphatases, aldose reductase, sorbitol accumulation, advanced glycation end-product formation, and resistin secretion, may explain its effects on metabolic syndrome and diabetes. In addition, results from recent research have increased the interest in ellagic acid, both as a potential protective agent of the liver and skin and as a potential anticancer agent, due to the specific mechanisms affecting cell proliferation, apoptosis, DNA damage, and angiogenesis and its aforementioned anti-inflammatory properties. Taken together, these effects make ellagic acid a highly interesting compound that may contribute to different aspects of health; however, more studies are needed, especially on the compound's pharmacokinetic profile. In this review, we selected papers published from 2005 to the present. Georg Thieme Verlag KG Stuttgart · New York.

  8. Redox Signaling and CBF-Responsive Pathway Are Involved in Salicylic Acid-Improved Photosynthesis and Growth under Chilling Stress in Watermelon

    PubMed Central

    Cheng, Fei; Lu, Junyang; Gao, Min; Shi, Kai; Kong, Qiusheng; Huang, Yuan; Bie, Zhilong

    2016-01-01

    Salicylic acid (SA) plays an important role in plant response to abiotic stresses. This study investigated the potential role of SA in alleviating the adverse effects of chilling stress on photosynthesis and growth in watermelon (Citrullus lanatus). Chilling stress induced the simultaneous accumulation of free and conjugated SA in watermelon plants, and the chilling-induced SA production was attributed to the phenylalanine ammonia-lyase pathway. Applying SA at moderate concentrations induced chilling tolerance, whereas inhibition of SA biosynthesis by L-α-aminooxy-β-phenylpropionic acid (AOPP) increased the photooxidation of PS II under chilling stress in watermelon, resulting in reduced photosynthesis and growth. Chilling induced a transient increase in the ratios of reduced to oxidized glutathione and reduced ascorbate to dehydroascorbate. Then, the expression of antioxidant genes was upregulated, and the activities of antioxidant enzymes were enhanced. Furthermore, SA-induced chilling tolerance was associated with cellular glutathione and ascorbate homeostasis, which served as redox signals to regulate antioxidant metabolism under chilling stress. AOPP treatment stimulated the chilling-induced expression of cold-responsive genes, particularly via C-repeat binding factors CBF3 and CBF4. These results confirm the synergistic role of SA signaling and the CBF-dependent responsive pathway during chilling stress in watermelon. PMID:27777580

  9. Collecting Duct Intercalated Cell Function and Regulation

    PubMed Central

    Roy, Ankita; Al-bataineh, Mohammad M.

    2015-01-01

    Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule. PMID:25632105

  10. Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities

    PubMed Central

    Delplanque, Bernadette; Gibson, Robert; Koletzko, Berthold; Lapillonne, Alexandre; Strandvik, Birgitta

    2015-01-01

    Abstract Dietary lipids are key for infants to not only meet their high energy needs but also fulfill numerous metabolic and physiological functions critical to their growth, development, and health. The lipid composition of breast milk varies during lactation and according to the mother's diet, whereas the lipid composition of infant formulae varies according to the blend of different fat sources. This report compares the compositions of lipids in breast milk and infant formulae, and highlights the roles of dietary lipids in term and preterm infants and their potential biological and health effects. The major differences between breast milk and formulae lie in a variety of saturated fatty acids (such as palmitic acid, including its structural position) and unsaturated fatty acids (including arachidonic acid and docosahexaenoic acid), cholesterol, and complex lipids. The functional outcomes of these differences during infancy and for later child and adult life are still largely unknown, and some of them are discussed, but there is consensus that opportunities exist for improvements in the qualitative lipid supply to infants through the mother's diet or infant formulae. Furthermore, research is required in several areas, including the needs of term and preterm infants for long-chain polyunsaturated fatty acids, the sites of action and clinical effects of lipid mediators on immunity and inflammation, the role of lipids on metabolic, neurological, and immunological outcomes, and the mechanisms by which lipids act on short- and long-term health. PMID:25883056

  11. Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants.

    PubMed

    Zhu, Guangxu; Xiao, Huayun; Guo, Qingjun; Zhang, Zhongyi; Zhao, Jingjing; Yang, Dan

    2018-08-30

    Cadmium, a high toxic heavy metal, is one of the most serious contaminants in soil and a potential threat to plant growth and human health. Amino acid metabolism has the central role in heavy metal stress resistance of plants. In this paper, a pot experiment was carried out to study the effects of different concentrations of cadmium (0, 3, 6, 12, 30 mg kg -1 ) on the growth, Cd accumulation and amino acid metabolism in two Compositae plants (Ageratum conyzoides L. and Crassocephalum crepidioides). The results showed that under cadmium stress, C. crepidioides accumulated more Cd in its shoot and was tolerant to Cd, whereas its low Cd-accumulating relative, A. conyzoides, suffered reduced growth. The Cd content in the aerial part of C. crepidioides exceeded the threshold of Cd-hyperaccumulator. Furthermore, the bioaccumulation factor (BCF) and biological transfer factor (BTF) values for Cd in C. crepidioides were > 1. Thus, C. crepidioides can be regarded as Cd-hyperaccumulator. The comparison between both studied plants indicated that Cd stress resulted in a differential but coordinated response of amino acid levels, which are playing a significant role in plant adaptation to Cd stress. Glu, Gln, Asp, Asn, Gaba, Val and Ala dominated the major amino acids. Higher Cd tolerance and Cd accumulation in C. crepidioides was associated with greater accumulation of free amino acids, especially for Gln and Asn, in C. crepidioides than in A. conyzoides. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Two-pore channels at the intersection of endolysosomal membrane traffic

    PubMed Central

    Marchant, Jonathan S.; Patel, Sandip

    2016-01-01

    Two-pore channels (TPCs) are ancient members of the voltage-gated ion channel superfamily that localize to acidic organelles such as lysosomes. The TPC complex is the proposed target of the Ca2 +-mobilizing messenger NAADP, which releases Ca2 + from these acidic Ca2 + stores. Whereas details of TPC activation and native ion permeation remain unclear, a consensus has emerged around their function in regulating endolysosomal trafficking. This role is supported by recent proteomic data showing that TPCs interact with proteins controlling membrane organization and dynamics, including Rab GTPases and components of the fusion apparatus. Regulation of TPCs by PtdIns(3,5)P2 and/or NAADP (nicotinic acid adenine dinucleotide phosphate) together with their functional and physical association with Rab proteins provides a mechanism for coupling phosphoinositide and trafficking protein cues to local ion fluxes. Therefore, TPCs work at the regulatory cross-roads of (patho)physiological cues to co-ordinate and potentially deregulate traffic flow through the endolysosomal network. This review focuses on the native role of TPCs in trafficking and their emerging contributions to endolysosomal trafficking dysfunction. PMID:26009187

  13. Minimising toxicity of cadmium in plants--role of plant growth regulators.

    PubMed

    Asgher, Mohd; Khan, M Iqbal R; Anjum, Naser A; Khan, Nafees A

    2015-03-01

    A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.

  14. Interactive Roles of DNA Helicases and Translocases with the Single-Stranded DNA Binding Protein RPA in Nucleic Acid Metabolism.

    PubMed

    Awate, Sanket; Brosh, Robert M

    2017-06-08

    Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies.

  15. Interactive Roles of DNA Helicases and Translocases with the Single-Stranded DNA Binding Protein RPA in Nucleic Acid Metabolism

    PubMed Central

    Awate, Sanket; Brosh, Robert M.

    2017-01-01

    Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies. PMID:28594346

  16. The emergence and evolution of life in a "fatty acid world" based on quantum mechanics.

    PubMed

    Tamulis, Arvydas; Grigalavicius, Mantas

    2011-02-01

    Quantum mechanical based electron correlation interactions among molecules are the source of the weak hydrogen and Van der Waals bonds that are critical to the self-assembly of artificial fatty acid micelles. Life on Earth or elsewhere could have emerged in the form of self-reproducing photoactive fatty acid micelles, which gradually evolved into nucleotide-containing micelles due to the enhanced ability of nucleotide-coupled sensitizer molecules to absorb visible light. Comparison of the calculated absorption spectra of micelles with and without nucleotides confirmed this idea and supports the idea of the emergence and evolution of nucleotides in minimal cells of a so-called Fatty Acid World. Furthermore, the nucleotide-caused wavelength shift and broadening of the absorption pattern potentially gives these molecules an additional valuable role, other than a purely genetic one in the early stages of the development of life. From the information theory point of view, the nucleotide sequences in such micelles carry positional information providing better electron transport along the nucleotide-sensitizer chain and, in addition, providing complimentary copies of that information for the next generation. Nucleotide sequences, which in the first period of evolution of fatty acid molecules were useful just for better absorbance of the light in the longer wavelength region, later in the PNA or RNA World, took on the role of genetic information storage.

  17. GosB Inhibits Triacylglycerol Synthesis and Promotes Cell Survival in Mouse Mammary Epithelial Cells.

    PubMed

    Xu, Gaoxiao; Duan, Saixing; Hou, Jianye; Wei, Zhongxin; Zhao, Guangwei

    2017-01-01

    It has been demonstrated that the activator protein related transcription factor Finkel-Biskis-Jinkins murine osteosarcoma B (GosB) is involved in preadipocyte differentiation and triacylglycerol synthesis. However, the role of GosB in regulating the synthesis of milk fatty acid in mouse mammary glands remains unclear. This research uncovered potentially new roles of GosB in suppressing milk fatty acid synthesis. Results revealed that GosB had the highest expression in lung tissue and showed a higher expression level during nonlactation than during lactation. GosB inhibited the expression of fatty acid synthase (FASN) , stearoyl-CoA desaturase (SCD) , fatty acid binding protein 4 (FABP4) , diacylglycerol acyltransferase 1 (DGAT1) , perilipin 2 (PLIN2) , perilipin 3 (PLIN3) , and C/EBPα in mouse mammary gland epithelial cells (MEC). In addition, GosB reduced cellular triglyceride content and the accumulation of lipid droplets; in particular, GosB enhanced saturated fatty acid concentration (C16:0 and C18:0). The PPAR γ agonist, rosiglitazone (ROSI), promoted apoptosis and inhibited cell proliferation. GosB increased the expression of Bcl-2 and protected MEC from ROSI-induced apoptosis. Furthermore, MECs were protected from apoptosis through the GosB regulation of intracellular calcium concentrations. These findings suggest that GosB may regulate mammary epithelial cells milk fat synthesis and apoptosis via PPAR γ in mouse mammary glands.

  18. Docking analysis of gallic acid derivatives as HIV-1 protease inhibitors.

    PubMed

    Singh, Anjali; Pal, Tapan Kumar

    2015-01-01

    HIV-1 Protease (HIV-1 PR) enzymes are essential for accurate assembly and maturation of infectious HIV retroviruses. The significant role of HIV-1 protease in viral replication has made it a potential drug target. In the recent past, phytochemical Gallic Acid (GA) derivatives have been screened for protease inhibitor activity. The present work aims to design and evaluate potential GA-based HIV-1 PR phytoinhibitors by docking approach. The ligands were prepared by ChemDraw and docking was performed in HEX software. In this present study, one of the GA analogues (GA4) emerged as a potent drug candidate for HIV-1 PR inhibition, and docking results showed it to be comparable with anti-HIV drugs, darunavir and amprenavir. The GA4 derivative provided a lead for designing more effective HIV-1 PR inhibitors.

  19. Therapeutic Applications of Rose Hips from Different Rosa Species.

    PubMed

    Mármol, Inés; Sánchez-de-Diego, Cristina; Jiménez-Moreno, Nerea; Ancín-Azpilicueta, Carmen; Rodríguez-Yoldi, María Jesús

    2017-05-25

    Rosa species, rose hips, are widespread wild plants that have been traditionally used as medicinal compounds for the treatment of a wide variety of diseases. The therapeutic potential of these plants is based on its antioxidant effects caused by or associated with its phytochemical composition, which includes ascorbic acid, phenolic compounds and healthy fatty acids among others. Over the last few years, medicinal interest in rose hips has increased as a consequence of recent research that has studied its potential application as a treatment for several diseases including skin disorders, hepatotoxicity, renal disturbances, diarrhoea, inflammatory disorders, arthritis, diabetes, hyperlipidaemia, obesity and cancer. In this review, the role of different species of Rosa in the prevention of treatment of various disorders related to oxidative stress, is examined, focusing on new therapeutic approaches from a molecular point of view.

  20. Therapeutic Applications of Rose Hips from Different Rosa Species

    PubMed Central

    Mármol, Inés; Sánchez-de-Diego, Cristina; Jiménez-Moreno, Nerea; Ancín-Azpilicueta, Carmen; Rodríguez-Yoldi, María Jesús

    2017-01-01

    Rosa species, rose hips, are widespread wild plants that have been traditionally used as medicinal compounds for the treatment of a wide variety of diseases. The therapeutic potential of these plants is based on its antioxidant effects caused by or associated with its phytochemical composition, which includes ascorbic acid, phenolic compounds and healthy fatty acids among others. Over the last few years, medicinal interest in rose hips has increased as a consequence of recent research that has studied its potential application as a treatment for several diseases including skin disorders, hepatotoxicity, renal disturbances, diarrhoea, inflammatory disorders, arthritis, diabetes, hyperlipidaemia, obesity and cancer. In this review, the role of different species of Rosa in the prevention of treatment of various disorders related to oxidative stress, is examined, focusing on new therapeutic approaches from a molecular point of view. PMID:28587101

  1. Arabidopsis GLUTATHIONE REDUCTASE1 Plays a Crucial Role in Leaf Responses to Intracellular Hydrogen Peroxide and in Ensuring Appropriate Gene Expression through Both Salicylic Acid and Jasmonic Acid Signaling Pathways1[C][W][OA

    PubMed Central

    Mhamdi, Amna; Hager, Jutta; Chaouch, Sejir; Queval, Guillaume; Han, Yi; Taconnat, Ludivine; Saindrenan, Patrick; Gouia, Houda; Issakidis-Bourguet, Emmanuelle; Renou, Jean-Pierre; Noctor, Graham

    2010-01-01

    Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H2O2) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H2O2 signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H2O2. Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H2O2-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H2O2 availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system. PMID:20488891

  2. Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways.

    PubMed

    Mhamdi, Amna; Hager, Jutta; Chaouch, Sejir; Queval, Guillaume; Han, Yi; Taconnat, Ludivine; Saindrenan, Patrick; Gouia, Houda; Issakidis-Bourguet, Emmanuelle; Renou, Jean-Pierre; Noctor, Graham

    2010-07-01

    Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H(2)O(2)) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H(2)O(2) signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H(2)O(2). Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H(2)O(2)-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H(2)O(2) availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system.

  3. Predominant Acidilobus-Like Populations from Geothermal Environments in Yellowstone National Park Exhibit Similar Metabolic Potential in Different Hypoxic Microbial Communities

    PubMed Central

    Jay, Z. J.; Rusch, D. B.; Tringe, S. G.; Bailey, C.; Jennings, R. M.

    2014-01-01

    High-temperature (>70°C) ecosystems in Yellowstone National Park (YNP) provide an unparalleled opportunity to study chemotrophic archaea and their role in microbial community structure and function under highly constrained geochemical conditions. Acidilobus spp. (order Desulfurococcales) comprise one of the dominant phylotypes in hypoxic geothermal sulfur sediment and Fe(III)-oxide environments along with members of the Thermoproteales and Sulfolobales. Consequently, the primary goals of the current study were to analyze and compare replicate de novo sequence assemblies of Acidilobus-like populations from four different mildly acidic (pH 3.3 to 6.1) high-temperature (72°C to 82°C) environments and to identify metabolic pathways and/or protein-encoding genes that provide a detailed foundation of the potential functional role of these populations in situ. De novo assemblies of the highly similar Acidilobus-like populations (>99% 16S rRNA gene identity) represent near-complete consensus genomes based on an inventory of single-copy genes, deduced metabolic potential, and assembly statistics generated across sites. Functional analysis of coding sequences and confirmation of gene transcription by Acidilobus-like populations provide evidence that they are primarily chemoorganoheterotrophs, generating acetyl coenzyme A (acetyl-CoA) via the degradation of carbohydrates, lipids, and proteins, and auxotrophic with respect to several external vitamins, cofactors, and metabolites. No obvious pathways or protein-encoding genes responsible for the dissimilatory reduction of sulfur were identified. The presence of a formate dehydrogenase (Fdh) and other protein-encoding genes involved in mixed-acid fermentation supports the hypothesis that Acidilobus spp. function as degraders of complex organic constituents in high-temperature, mildly acidic, hypoxic geothermal systems. PMID:24162572

  4. Effects of simulated acid rain on soil fauna community composition and their ecological niches.

    PubMed

    Wei, Hui; Liu, Wen; Zhang, Jiaen; Qin, Zhong

    2017-01-01

    Acid rain is one of the severest environmental issues globally. Relative to other global changes (e.g., warming, elevated atmospheric [CO 2 ], and nitrogen deposition), however, acid rain has received less attention than its due. Soil fauna play important roles in multiple ecological processes, but how soil fauna community responds to acid rain remains less studied. This microcosm experiment was conducted using latosol with simulated acid rain (SAR) manipulations to observe potential changes in soil fauna community under acid rain stress. Four pH levels, i.e., pH 2.5, 3.5, 4.5, and 5.5, and a neutral control of pH 7.0 were set according to the current pH condition and acidification trend of precipitation in southern China. As expected, we observed that the SAR treatments induced changes in soil fauna community composition and their ecological niches in the tested soil; the treatment effects tended to increase as acidity increased. This could be attributable to the environmental stresses (such as acidity, porosity and oxygen supply) induced by the SAR treatments. In addition to direct acidity effect, we propose that potential changes in permeability and movability of water and oxygen in soils induced by acid rain could also give rise to the observed shifts in soil fauna community composition. These are most likely indirect pathways of acid rain to affect belowground community. Moreover, we found that nematodes, the dominating soil fauna group in this study, moved downwards to mitigate the stress of acid rain. This is probably detrimental to soil fauna in the long term, due to the relatively severer soil conditions in the deep than surface soil layer. Our results suggest that acid rain could change soil fauna community and the vertical distribution of soil fauna groups, consequently changing the underground ecosystem functions such as organic matter decomposition and greenhouse gas emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Molecular and Enantiomeric Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2003-01-01

    Carbonaceous meteorites are relatively enriched in carbon. Much of this carbon is in the form of soluble organic compounds. The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry. Their content of organic compounds has led to an initial understanding of early solar system organic chemistry as well as what compounds may have played a role in the origin of life (Cronin and Chang, 1993). Reported compounds include: amino acids, amides, carboxylic acids, sulfonic acids, and polyols. This talk will focus on the molecular and enantiomeric analysis of individual meteoritic compounds: polyol acids; and a newly identified class of meteorite compounds, keto acids, i.e., acetoacetic acid, levulinic acid, etc. Keto acids (including pyruvic) are critically important in all contemporary organisms. They are key intermediates in metabolism and processes such as the citric acid cycle. Using gas chromatography-mass spectrometry we identified individual meteoritic keto acids after derivatization to one or more of the following forms: isopropyl ester (ISP), trimethyIsiIy1 (TMS), tert-butyldimethylsilyl (BDMS). Ongoing analyses will determine if, in addition to certain amino acids from Murchison (Cronin and Pizzarello, 1997), other potentially important prebiotic compounds also contain enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life.

  6. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases

    PubMed Central

    Canani, Roberto Berni; Costanzo, Margherita Di; Leone, Ludovica; Pedata, Monica; Meli, Rosaria; Calignano, Antonio

    2011-01-01

    The multiple beneficial effects on human health of the short-chain fatty acid butyrate, synthesized from non-absorbed carbohydrate by colonic microbiota, are well documented. At the intestinal level, butyrate plays a regulatory role on the transepithelial fluid transport, ameliorates mucosal inflammation and oxidative status, reinforces the epithelial defense barrier, and modulates visceral sensitivity and intestinal motility. In addition, a growing number of studies have stressed the role of butyrate in the prevention and inhibition of colorectal cancer. At the extraintestinal level, butyrate exerts potentially useful effects on many conditions, including hemoglobinopathies, genetic metabolic diseases, hypercholesterolemia, insulin resistance, and ischemic stroke. The mechanisms of action of butyrate are different; many of these are related to its potent regulatory effects on gene expression. These data suggest a wide spectrum of positive effects exerted by butyrate, with a high potential for a therapeutic use in human medicine. PMID:21472114

  7. Dietary fatty acids linking postprandial metabolic response and chronic diseases.

    PubMed

    Ortega, Almudena; Varela, Lourdes M; Bermudez, Beatriz; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G

    2012-01-01

    Chronic diseases are by far one of the main causes of mortality in the world. One of the current global recommendations to counteract disability and premature death resulting from chronic diseases is to decrease the consumption of energy-dense high-fat diets, particularly those rich in saturated fatty acids (SFA). The most effective replacement for SFA in terms of risk factor outcomes for chronic disease are polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). The biochemical basis for healthy benefits of such a dietary pattern has been widely evaluated under fasting conditions. However, the increasing amount of data available from multiple studies suggest that the postprandial state, i.e., "the period that comprises and follows a meal", plays an important, yet underappreciated, role in the genesis of numerous pathological conditions. In this review, the potential of MUFA, PUFA, and SFA to postprandially affect selected metabolic abnormalities related to chronic diseases is discussed.

  8. Metabolomics reveals metabolic biomarkers of Crohn's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, J.K.; Willing, B.; Lucio, M.

    The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonicmore » acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.« less

  9. Contact sex pheromone components of the cowpea weevil, Callosobruchus maculatus.

    PubMed

    Nojima, Satoshi; Shimomura, Kenji; Honda, Hiroshi; Yamamoto, Izuru; Ohsawa, Kanju

    2007-05-01

    The cowpea weevil, Callosobruchus maculatus, is a major pest of stored pulses. Females of this species produce a contact sex pheromone that elicits copulation behavior in males. Pheromone was extracted from filter-paper shelters taken from cages that housed females. Crude ether extract stimulated copulation in male C. maculatus. Initial fractionation showed behavioral activity in acidic and neutral fractions. Furthermore, bioassay-guided fractionation and gas chromatography-mass spectroscopy (GC-MS) analysis of active fractions revealed that the active components of the acidic fraction were 2,6-dimethyloctane-1,8-dioic acid and nonanedioic acid. These components along with the hydrocarbon fraction, a mixture of C(27)-C(35) straight chain and methyl branched hydrocarbons, had a synergistic effect on the behavior of males. Glass dummies treated with an authentic pheromone blend induced copulation behavior in males. The potential roles of the contact sex pheromone of C. maculatus are discussed.

  10. Omega 3 and omega 6 fatty acids in human and animal health: an African perspective.

    PubMed

    Dunbar, B S; Bosire, R V; Deckelbaum, R J

    2014-12-01

    Lipids are essential for plant and animal development, growth and nutrition and play critical roles in health and reproduction. The dramatic increase in the human population has put increasing pressure on human food sources, especially of those sources of food which contain adequate levels of polyunsaturated fatty acids (PUFAs) and more importantly, sources of food which have favorable ratios of the n-3 (18-carbon, α-linolenic acid, ALA) to n-6 (18-carbon linoleic acid, LA) PUFAs. Recent studies have demonstrated the beneficial effects of the n-3 PUFAs in diets as well as potentially negative effects of excessive levels of n-6 PUFAs in diets. This review discusses these human health issues relating to changes in diets based on environmental and industrial changes as well as strategies in East Africa for improving lipid composition of food using indigenous sources. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors

    PubMed Central

    Pal Choudhuri, Shreoshi; Delay, Rona J.; Delay, Eugene R.

    2015-01-01

    Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex. PMID:26110622

  12. Interactions of aqueous amino acids and proteins with the (110) surface of ZnS in molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, Grzegorz; Cieplak, Marek

    2014-03-07

    The growing usage of nanoparticles of zinc sulfide as quantum dots and biosensors calls for a theoretical assessment of interactions of ZnS with biomolecules. We employ the molecular-dynamics-based umbrella sampling method to determine potentials of mean force for 20 single amino acids near the ZnS (110) surface in aqueous solutions. We find that five amino acids do not bind at all and the binding energy of the remaining amino acids does not exceed 4.3 kJ/mol. Such energies are comparable to those found for ZnO (and to hydrogen bonds in proteins) but the nature of the specificity is different. Cysteine canmore » bind with ZnS in a covalent way, e.g., by forming the disulfide bond with S in the solid. If this effect is included within a model incorporating the Morse potential, then the potential well becomes much deeper—the binding energy is close to 98 kJ/mol. We then consider tryptophan cage, a protein of 20 residues, and characterize its events of adsorption to ZnS. We demonstrate the relevance of interactions between the amino acids in the selection of optimal adsorbed conformations and recognize the key role of cysteine in generation of lasting adsorption. We show that ZnS is more hydrophobic than ZnO and that the density profile of water is quite different than that forming near ZnO—it has only a minor articulation into layers. Furthermore, the first layer of water is disordered and mobile.« less

  13. Activation of Sirt1/FXR Signaling Pathway Attenuates Triptolide-Induced Hepatotoxicity in Rats.

    PubMed

    Yang, Jing; Sun, Lixin; Wang, Lu; Hassan, Hozeifa M; Wang, Xuan; Hylemon, Phillip B; Wang, Tao; Zhou, Huiping; Zhang, Luyong; Jiang, Zhenzhou

    2017-01-01

    Triptolide (TP), a diterpenoid isolated from Tripterygium wilfordii Hook F, has an excellent pharmacological profile of immunosuppression and anti-tumor activities, but its clinical applications are severely restricted due to its severe and cumulative toxicities. The farnesoid X receptor (FXR) is the master bile acid nuclear receptor and plays an important role in maintaining hepatic metabolism homeostasis. Hepatic Sirtuin (Sirt1) is a key regulator of the FXR signaling pathway and hepatic metabolism homeostasis. The aims of this study were to determine whether Sirt1/FXR signaling pathway plays a critical role in TP-induced hepatotoxicity. Our study revealed that the intragastric administration of TP (400 μg/kg body weight) for 28 consecutive days increased bile acid accumulation, suppressed hepatic gluconeogenesis in rats. The expression of bile acid transporter BSEP was significantly reduced and cholesterol 7α-hydroxylase (CYP7A1) was markedly increased in the TP-treated group, whereas the genes responsible for hepatic gluconeogenesis were suppressed in the TP-treated group. TP also modulated the FXR and Sirt1 by decreasing its expression both in vitro and in vivo . The Sirt1 agonist SRT1720 and the FXR agonist obeticholic acid (OCA) were used both in vivo and in vitro . The remarkable liver damage induced by TP was attenuated by treatment with either SRT1720 or OCA, as reflected by decreased levels of serum total bile acids and alkaline phosphatase and increased glucose levels. Meanwhile, SRT1720 significantly alleviated TP-induced FXR suppression and FXR-targets involved in hepatic lipid and glucose metabolism. Based on these results, we conclude that Sirt1/FXR inactivation plays a critical role in TP-induced hepatotoxicity. Moreover, Sirt1/FXR axis represents a novel therapeutic target that could potentially ameliorate TP-induced hepatotoxicity.

  14. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents.

    PubMed

    Wang, Hao; Gill, Charles J; Lee, Sang H; Mann, Paul; Zuck, Paul; Meredith, Timothy C; Murgolo, Nicholas; She, Xinwei; Kales, Susan; Liang, Lianzhu; Liu, Jenny; Wu, Jin; Santa Maria, John; Su, Jing; Pan, Jianping; Hailey, Judy; Mcguinness, Debra; Tan, Christopher M; Flattery, Amy; Walker, Suzanne; Black, Todd; Roemer, Terry

    2013-02-21

    Innovative strategies are needed to combat drug resistance associated with methicillin-resistant Staphylococcus aureus (MRSA). Here, we investigate the potential of wall teichoic acid (WTA) biosynthesis inhibitors as combination agents to restore β-lactam efficacy against MRSA. Performing a whole-cell pathway-based screen, we identified a series of WTA inhibitors (WTAIs) targeting the WTA transporter protein, TarG. Whole-genome sequencing of WTAI-resistant isolates across two methicillin-resistant Staphylococci spp. revealed TarG as their common target, as well as a broad assortment of drug-resistant bypass mutants mapping to earlier steps of WTA biosynthesis. Extensive in vitro microbiological analysis and animal infection studies provide strong genetic and pharmacological evidence of the potential effectiveness of WTAIs as anti-MRSA β-lactam combination agents. This work also highlights the emerging role of whole-genome sequencing in antibiotic mode-of-action and resistance studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. [Mechanoelectric potentials in synthetic hydrogels: possible relation to cytoskeleton].

    PubMed

    Shkliar, T F; Safronov, A P; Toropova, O A; Pollack, G N; Bliakhman, F A

    2010-01-01

    Mechanical and electrical properties of a synthetic polyelectrolyte hydrogel considered as a model of the cytoskeletal gel were studied. Hydrogels were synthesized from polymethacrylic acid by radical polymerization in aqueous solution. The electrical charge was introduced into the gel network by partial neutralization of monomer acids with magnesium (hydro)oxides. Through the use of a motor, triangular longitudinal (axial) deformations were applied to gel samples. Simultaneously, the electrochemical (Donnan) potential of the gel was measured using conventional microelectrodes. We found that: (1) the Young modulus of the gel was 0.53 kPa; (2) at a given deformation velocity, the extent of gel deformation closely correlates with the gel potential; and (3) at the same level of gel deformation, the lower the deformation velocity, the higher the relative change of gel potential. These findings show a striking similarity to the data obtained in living cells, particularly in cardiac myocytes. A hypothesis involving the deformation-induced solvent migration from the gel to the surrounding solution is considered. It is concluded that the physicochemical features of the cytoskeletal gel may play a role in determining the mechanoelectric properties of excited cells.

  16. Aluminium Uptake and Translocation in Al Hyperaccumulator Rumex obtusifolius Is Affected by Low-Molecular-Weight Organic Acids Content and Soil pH

    PubMed Central

    Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel

    2015-01-01

    Background and Aims High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. Methods We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Results Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of “oxalate plants.” The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. Conclusions In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids. PMID:25880431

  17. Role of keto acids and reduced-oxygen-scavenging enzymes in the growth of Legionella species.

    PubMed Central

    Pine, L; Hoffman, P S; Malcolm, G B; Benson, R F; Franzus, M J

    1986-01-01

    Keto acids and reduced-oxygen-scavenging enzymes were examined for their roles in supporting the growth of Legionella species and for their potential reactions between the chemical components of the media. When grown in an experimental ACES (2-[(2-amino-2-oxoethyl)-amino] ethanesulfonic acid)-buffered chemically defined (ABCD) broth, the presence of keto acids shortened the lag periods, increased the rates of growth, and gave maximum cell yields. In addition, keto acids affected the specific activities of reduced-oxygen-scavenging enzymes determined during growth. The specific activities of superoxide dismutase of Legionella pneumophila (Knoxville) and L. dumoffii (TEX-KL) were increased three- to eightfold, while that of L. bozemanii (WIGA) was not affected. All strains appeared to be equally sensitive to the effects of superoxide anion (O2-) generated by light-activated riboflavin, and all were equally protected by the presence of keto acids in the ABCD broth. Production of trace amounts of acetate and succinate in pyruvate- and alpha-ketoglutarate-containing media exposed to light suggested that hydrogen peroxide was formed. Pyruvate and alpha-ketoglutarate were products of growth on amino acids, and there was no quantitative evidence that these keto acids were metabolized when they were added to the medium. The rate of cysteine oxidation in ABCD broth was increased by the presence of ferric ion or by exposure to light or by both, and keto acids reduced the rate of this oxidation. ACES buffer was a substrate for the production of O2- in the presence of light, and the combined addition of Fe2+ ions, cysteine, and either keto acid to the medium strongly inhibited the production of O2-. Thus, keto acids inhibited the rate of cysteine oxidation, they stimulated rapid growth by an unknown process, and, in combination with added Fe2+ ions and cysteine, they reversed the toxic effects of light by inhibiting O2- production. PMID:3009529

  18. Profiling of Amino Acids and Their Derivatives Biogenic Amines Before and After Antipsychotic Treatment in First-Episode Psychosis.

    PubMed

    Leppik, Liisa; Kriisa, Kärt; Koido, Kati; Koch, Kadri; Kajalaid, Kärolin; Haring, Liina; Vasar, Eero; Zilmer, Mihkel

    2018-01-01

    Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N -methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.

  19. Presynaptic pH and vesicle fusion in Drosophila larvae neurones.

    PubMed

    Caldwell, Lesley; Harries, Peter; Sydlik, Sebastian; Schwiening, Christof J

    2013-11-01

    Both intracellular pH (pHi) and synaptic cleft pH change during neuronal activity yet little is known about how these pH shifts might affect synaptic transmission by influencing vesicle fusion. To address this we imaged pH- and Ca(2+) -sensitive fluorescent indicators (HPTS, Oregon green) in boutons at neuromuscular junctions. Electrical stimulation of motor nerves evoked presynaptic Ca(2+) i rises and pHi falls (∼0.1 pH units) followed by recovery of both Ca(2+) i and pHi. The plasma-membrane calcium ATPase (PMCA) inhibitor, 5(6)-carboxyeosin diacetate, slowed both the calcium recovery and the acidification. To investigate a possible calcium-independent role for the pHi shifts in modulating vesicle fusion we recorded post-synaptic miniature end-plate potential (mEPP) and current (mEPC) frequency in Ca(2+) -free solution. Acidification by propionate superfusion, NH(4)(+) withdrawal, or the inhibition of acid extrusion on the Na(+)/H(+) exchanger (NHE) induced a rise in miniature frequency. Furthermore, the inhibition of acid extrusion enhanced the rise induced by propionate addition and NH(4)(+) removal. In the presence of NH(4)(+), 10 out of 23 cells showed, after a delay, one or more rises in miniature frequency. These findings suggest that Ca(2+) -dependent pHi shifts, caused by the PMCA and regulated by NHE, may stimulate vesicle release. Furthermore, in the presence of membrane permeant buffers, exocytosed acid or its equivalents may enhance release through positive feedback. This hitherto neglected pH signalling, and the potential feedback role of vesicular acid, could explain some important neuronal excitability changes associated with altered pH and its buffering. Copyright © 2013 Wiley Periodicals, Inc.

  20. An investigation about the structures, thermodynamics and kinetics of the formic acid involved molecular clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Jiang, Shuai; Liu, Yi-Rong; Wen, Hui; Feng, Ya-Juan; Huang, Teng; Huang, Wei

    2018-05-01

    Despite the very important role of atmospheric aerosol nucleation in climate change and air quality, the detailed aerosol nucleation mechanism is still unclear. Here we investigated the formic acid (FA) involved multicomponent nucleation molecular clusters including sulfuric acid (SA), dimethylamine (DMA) and water (W) through a quantum chemical method. The thermodynamics and kinetics analysis was based on the global minima given by Basin-Hopping (BH) algorithm coupled with Density Functional Theory (DFT) and subsequent benchmarked calculations. Then the interaction analysis based on ElectroStatic Potential (ESP), Topological and Atomic Charges analysis was made to characterize the binding features of the clusters. The results show that FA binds weakly with the other molecules in the cluster while W binds more weakly. Further kinetic analysis about the time evolution of the clusters show that even though the formic acid's weak interaction with other nucleation precursors, its effect on sulfuric acid dimer steady state concentration cannot be neglected due to its high concentration in the atmosphere.

  1. Impact of expressing p-coumaryl transferase in Medicago sativa L. on cell wall chemistry and digestibility

    USDA-ARS?s Scientific Manuscript database

    The addition of p-coumaric acid (pCA) to lignin molecules is frequently found in members of the grass family. The role of this addition is not clearly understood, but is thought to potentially aid in the formation of syringyl type lignin. This is because the incorporation is as a conjugate of pCA es...

  2. A Partial Exploration of the Potential Energy Surfaces of SCN and HSCN: Implications for the Enzyme-Mediated Detoxification of Cyanide

    DTIC Science & Technology

    2009-01-01

    its role in toxicology , Tox. Sci. 78 (2004) 185–188. [6] (a) B.H. Sorbo, Crystalline rhodanese. I. Purification and physicochemical exam- ination, Acta...the devel- opment of quantitative structure–activity relationships ( QSARs ). pKa-values of phenols and aromatic and aliphatic carboxylic acids, Chemosphere 19 (1989) 1595.

  3. Perspective: The potential role of essential amino acids and the mechanistic target of rapamycin complex 1 (mTORC1) pathway in the pathogenesis of child stunting

    USDA-ARS?s Scientific Manuscript database

    Stunting is the best summary measure of chronic malnutrition in children. Approximately one-quarter of children under age 5 worldwide are stunted. Lipid-based or micronutrient supplementation has little to no impact in reducing stunting, which suggests that other critical dietary nutrients are missi...

  4. Mechanical properties of moso bamboo treated with chemical agents

    Treesearch

    Benhua Fei; Zhijia Liu; Zehui Jiang; Zhiyong Cai

    2013-01-01

    Bamboo is a type of biomass material and has great potential as a bioenergy resource for the future in China. Surface chemical and thermal–mechanical behavior play an important role in the manufacturing process of bamboo composites and pellets. In this study, moso bamboo was treated by sodium hydrate solution and acetic acid solution. Surface chemical and dynamic...

  5. Acylcarnitines--old actors auditioning for new roles in metabolic physiology.

    PubMed

    McCoin, Colin S; Knotts, Trina A; Adams, Sean H

    2015-10-01

    Perturbations in metabolic pathways can cause substantial increases in plasma and tissue concentrations of long-chain acylcarnitines (LCACs). For example, the levels of LCACs and other acylcarnitines rise in the blood and muscle during exercise, as changes in tissue pools of acyl-coenzyme A reflect accelerated fuel flux that is incompletely coupled to mitochondrial energy demand and capacity of the tricarboxylic acid cycle. This natural ebb and flow of acylcarnitine generation and accumulation contrasts with that of inherited fatty acid oxidation disorders (FAODs), cardiac ischaemia or type 2 diabetes mellitus. These conditions are characterized by very high (FAODs, ischaemia) or modestly increased (type 2 diabetes mellitus) tissue and blood levels of LCACs. Although specific plasma concentrations of LCACs and chain-lengths are widely used as diagnostic markers of FAODs, research into the potential effects of excessive LCAC accumulation or the roles of acylcarnitines as physiological modulators of cell metabolism is lacking. Nevertheless, a growing body of evidence has highlighted possible effects of LCACs on disparate aspects of pathophysiology, such as cardiac ischaemia outcomes, insulin sensitivity and inflammation. This Review, therefore, aims to provide a theoretical framework for the potential consequences of tissue build-up of LCACs among individuals with metabolic disorders.

  6. Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor.

    PubMed

    Suzuki, Masakatsu; Takaishi, Sachiko; Nagasaki, Miyuki; Onozawa, Yoshiko; Iino, Ikue; Maeda, Hiroaki; Komai, Tomoaki; Oda, Tomiichiro

    2013-04-12

    G protein-coupled receptor 84 (GPR84) is a putative receptor for medium-chain fatty acids (MCFAs), whose pathophysiological roles have not yet been clarified. Here, we show that GPR84 was activated by MCFAs with the hydroxyl group at the 2- or 3-position more effectively than nonhydroxylated MCFAs. We also identified a surrogate agonist, 6-n-octylaminouracil (6-OAU), for GPR84. These potential ligands and the surrogate agonist, 6-OAU, stimulated [(35)S]GTP binding and accumulated phosphoinositides in a GPR84-dependent manner. The surrogate agonist, 6-OAU, internalized GPR84-EGFP from the cell surface. Both the potential ligands and 6-OAU elicited chemotaxis of human polymorphonuclear leukocytes (PMNs) and macrophages and amplified LPS-stimulated production of the proinflammatory cytokine IL-8 from PMNs and TNFα from macrophages. Furthermore, the intravenous injection of 6-OAU raised the blood CXCL1 level in rats, and the inoculation of 6-OAU into the rat air pouch accumulated PMNs and macrophages in the site. Our results indicate a proinflammatory role of GPR84, suggesting that the receptor may be a novel target to treat chronic low grade inflammation associated-disease.

  7. Medium-chain Fatty Acid-sensing Receptor, GPR84, Is a Proinflammatory Receptor

    PubMed Central

    Suzuki, Masakatsu; Takaishi, Sachiko; Nagasaki, Miyuki; Onozawa, Yoshiko; Iino, Ikue; Maeda, Hiroaki; Komai, Tomoaki; Oda, Tomiichiro

    2013-01-01

    G protein-coupled receptor 84 (GPR84) is a putative receptor for medium-chain fatty acids (MCFAs), whose pathophysiological roles have not yet been clarified. Here, we show that GPR84 was activated by MCFAs with the hydroxyl group at the 2- or 3-position more effectively than nonhydroxylated MCFAs. We also identified a surrogate agonist, 6-n-octylaminouracil (6-OAU), for GPR84. These potential ligands and the surrogate agonist, 6-OAU, stimulated [35S]GTP binding and accumulated phosphoinositides in a GPR84-dependent manner. The surrogate agonist, 6-OAU, internalized GPR84-EGFP from the cell surface. Both the potential ligands and 6-OAU elicited chemotaxis of human polymorphonuclear leukocytes (PMNs) and macrophages and amplified LPS-stimulated production of the proinflammatory cytokine IL-8 from PMNs and TNFα from macrophages. Furthermore, the intravenous injection of 6-OAU raised the blood CXCL1 level in rats, and the inoculation of 6-OAU into the rat air pouch accumulated PMNs and macrophages in the site. Our results indicate a proinflammatory role of GPR84, suggesting that the receptor may be a novel target to treat chronic low grade inflammation associated-disease. PMID:23449982

  8. Small RNA-seq analysis in response to methyl jasmonate and abscisic acid treatment in Persicaria minor.

    PubMed

    Nazaruddin, Nazaruddin; Samad, Abdul Fatah A; Sajad, Muhammad; Jani, Jaeyres; Zainal, Zamri; Ismail, Ismanizan

    2017-06-01

    Persicaria minor (Kesum) is an important medicinal plant with high level of secondary metabolite contents, especially, terpenoids and flavonoids. Previous studies have revealed that application of exogenous phytohormone could increase secondary metabolite contents of the plant. MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in various biological processes. In order to explore the possible role of miRNA in the regulation of these phytohormones signaling pathway and uncovering their potential correlation, we, for the first time, have generated the smallRNA library of Kesum plant. The library was developed in response to methyl jasmonate (MJ) and abscisic acid (ABA) treatment by using next-generation sequencing technology. Raw reads have been deposited to SRA database with the accession numbers, SRX2655642 and SRX2655643 (MJ-treated), SRXSRX2655644 and SRX2655645 (ABA-treated) and SRX2655646and SRX2655647 (Control).

  9. Anti-obesity effects of gut microbiota are associated with lactic acid bacteria.

    PubMed

    Tsai, Yueh-Ting; Cheng, Po-Ching; Pan, Tzu-Ming

    2014-01-01

    The prevalence of obesity is rapidly becoming endemic in industrialized countries and continues to increase in developing countries worldwide. Obesity predisposes people to an increased risk of developing metabolic syndrome. Recent studies have described an association between obesity and certain gut microbiota, suggesting that gut microbiota might play a critical role in the development of obesity. Although probiotics have many beneficial health effects in humans and animals, attention has only recently been drawn to manipulating the gut microbiota, such as lactic acid bacteria (LAB), to influence the development of obesity. In this review, we first describe the causes of obesity, including the genetic and environmental factors. We then describe the relationship between the gut microbiota and obesity, and the mechanisms by which the gut microbiota influence energy metabolism and inflammation in obesity. Lastly, we focus on the potential role of LAB in mediating the effects of the gut microbiota in the development of obesity.

  10. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    PubMed

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.

  11. Anti-inflammatory and anti-oxidative effects of alpha-lipoic acid in experimentally induced acute otitis media.

    PubMed

    Tatar, A; Korkmaz, M; Yayla, M; Gozeler, M S; Mutlu, V; Halici, Z; Uslu, H; Korkmaz, H; Selli, J

    2016-07-01

    To investigate the anti-inflammatory, anti-oxidative and tissue protective effects, as well as the potential therapeutic role, of alpha-lipoic acid in experimentally induced acute otitis media. Twenty-five guinea pigs were assigned to one of five groups: a control (non-otitis) group, and otitis-induced groups treated with saline, penicillin G, alpha-lipoic acid, or alpha-lipoic acid plus penicillin G. Tissue samples were histologically analysed, and oxidative parameters in tissue samples were measured and compared between groups. The epithelial integrity was better preserved, and histological signs of inflammation and secretory metaplasia were decreased, in all groups compared to the saline treated otitis group. In the alpha-lipoic acid plus penicillin G treated otitis group, epithelial integrity was well preserved and histological findings of inflammation were significantly decreased compared to the saline, penicillin G and alpha-lipoic acid treated otitis groups. The most favourable oxidative parameters were observed in the control group, followed by the alpha-lipoic acid plus penicillin G treated otitis group. Alpha-lipoic acid, with its antioxidant, anti-inflammatory and tissue protective properties, may decrease the clinical sequelae and morbidity associated with acute otitis media.

  12. Free fatty acid receptors and their role in regulation of energy metabolism.

    PubMed

    Hara, Takafumi; Kimura, Ikuo; Inoue, Daisuke; Ichimura, Atsuhiko; Hirasawa, Akira

    2013-01-01

    The free fatty acid receptor (FFAR) is a G protein-coupled receptor (GPCR) activated by free fatty acids (FFAs), which play important roles not only as essential nutritional components but also as signaling molecules in numerous physiological processes. In the last decade, FFARs have been identified by the GPCR deorphanization strategy derived from the human genome database. To date, several FFARs have been identified and characterized as critical components in various physiological processes. FFARs are categorized according to the chain length of FFA ligands that activate each FFAR; FFA2 and FFA3 are activated by short chain FFAs, GPR84 is activated by medium-chain FFAs, whereas FFA1 and GPR120 are activated by medium- or long-chain FFAs. FFARs appear to act as physiological sensors for food-derived FFAs and digestion products in the gastrointestinal tract. Moreover, they are considered to be involved in the regulation of energy metabolism mediated by the secretion of insulin and incretin hormones and by the regulation of the sympathetic nerve systems, taste preferences, and inflammatory responses related to insulin resistance. Therefore, because FFARs can be considered to play important roles in physiological processes and various pathophysiological processes, FFARs have been targeted in therapeutic strategies for the treatment of metabolic disorders including type 2 diabetes and metabolic syndrome. In this review, we present a summary of recent progress regarding the understanding of their physiological roles in the regulation of energy metabolism and their potential as therapeutic targets.

  13. PRGF exerts a cytoprotective role in zoledronic acid-treated oral cells.

    PubMed

    Anitua, Eduardo; Zalduendo, Mar; Troya, María; Orive, Gorka

    2016-04-01

    Bisphosphonates-related osteonecrosis of the jaw (BRONJ) is a common problem in patients undergoing long-term administration of highly potent nitrogen-containing bisphosphonates (N-BPs). This pathology occurs via bone and soft tissue mechanism. Zoledronic acid (ZA) is the most potent intravenous N-BP used to prevent bone loss in patients with bone dysfunction. The objective of this in vitro study was to evaluate the role of different ZA concentrations on the cells from human oral cavity, as well as the potential of plasma rich in growth factors (PRGF) to overcome the negative effects of this BP. Primary human gingival fibroblasts and primary human alveolar osteoblasts were used. Cell proliferation was evaluated by means of a fluorescence-based method. A colorimetric assay to detect DNA fragmentation undergoing apoptosis was used to determine cell death, and the expression of both NF-κB and pNF-κB were quantified by Western blot analysis. ZA had a cytotoxic effect on both human gingival fibroblasts and human alveolar osteoblasts. This BP inhibits cell proliferation, stimulates apoptosis, and induces inflammation. However, the addition of PRGF suppresses all these negative effects of the ZA. PRGF shows a cytoprotective role against the negative effects of ZA on primary oral cells. At present, there is no definitive treatment for bisphosphonates-related osteonecrosis of the jaw (BRONJ), being mainly palliatives. Our results revealed that PRGF has a cytoprotective role in cells exposed to zoledronic acid, thus providing a reliable adjunctive therapy for the treatment of BRONJ pathology.

  14. Comparative transcriptome analysis to investigate the potential role of miRNAs in milk protein/fat quality.

    PubMed

    Wang, Xuehui; Zhang, Li; Jin, Jing; Xia, Anting; Wang, Chunmei; Cui, Yingjun; Qu, Bo; Li, Qingzhang; Sheng, Chunyan

    2018-04-19

    miRNAs play an important role in the processes of cell differentiation, biological development, and physiology. Here we investigated the molecular mechanisms regulating milk secretion and quality in dairy cows via transcriptome analyses of mammary gland tissues from dairy cows during the high-protein/high-fat, low-protein/low-fat or dry periods. To characterize the important roles of miRNAs and mRNAs in milk quality and to elucidate their regulatory networks in relation to milk secretion and quality, an integrated analysis was performed. A total of 25 core miRNAs were found to be differentially expressed (DE) during lactation compared to non-lactation, and these miRNAs were involved in epithelial cell terminal differentiation and mammary gland development. In addition, comprehensive analysis of mRNA and miRNA expression between high-protein/high-fat group and low-protein/low-fat groups indicated that, 38 miRNAs and 944 mRNAs were differentially expressed between them. Furthermore, 38 DE miRNAs putatively negatively regulated 253 DE mRNAs. The putative genes (253 DE mRNAs) were enriched in lipid biosynthetic process and amino acid transmembrane transporter activity. Moreover, putative DE genes were significantly enriched in fatty acid (FA) metabolism, biosynthesis of amino acids, synthesis and degradation of ketone bodies and biosynthesis of unsaturated FAs. Our results suggest that DE miRNAs might play roles as regulators of milk quality and milk secretion during mammary gland differentiation.

  15. Molecular characterization of elongase of very long-chain fatty acids 6 (elovl6) genes in Misgurnus anguillicaudatus and their potential roles in adaptation to cold temperature.

    PubMed

    Chen, Jingwen; Cui, Yun; Yan, Jie; Jiang, Jimin; Cao, Xiaojuan; Gao, Jian

    2018-08-05

    Elongase of very long-chain fatty acids 6 (ELOVL6) is a rate-limiting enzyme catalyzing elongation of saturated and monounsaturated long-chain fatty acid. Although functional characteristics of Elovl6 have been demonstrated in mammal, the role of elovl6 in fish remains unclear. In this study, we firstly cloned three isoforms of elovl6 (elovl6a, elovl6b and elovl6-like) from loach (Misgurnus anguillicaudatus). Molecular characterizations of the three elovl6 isoforms in loach and their expressions of early life stages and different tissues were then determined. We also functionally characterized the three elovl6 isoforms using heterologous expression in baker's yeast. Results obtained here showed the three elovl6 proteins in loach can elongate C16:0 and C16:1 to C18:0 and C18:1, respectively. At last, to confirm the role of three loach elovl6 isoforms for elongation of fatty acids in adaption to cold stress, differences in skin histological structures, body fatty acid compositions, expressions of four hepatic lipogenesis or lipolysis related genes, and expressions of the three elovl6 isoforms and their related gene uncoupling protein 1 (ucp1) in different tissues were investigated in the loach reared in two different water temperatures (28 °C and 4 °C) for ten days. Cold stress increased ratios of C18/C16 and C20:5n-3/C18:3n-3 in loach body, and induced expressions of hepatic acyl-CoA delta-9 desaturase 1 (scd1), sterol-regulator element-binding protein 1 (srebp1), carnitine palmitoyltransferase 1 (cpt1) and fatty acid synthase (fas). Meanwhile, significant differences were found in expressions of the three elovl6 isoforms in different tissues between 28 °C and 4 °C groups. Overall, this study suggests that the three elovl6 isoforms in loach have ability to elongate C16 to C18, and elovl6 proteins in loach may play a role in adaptation to cold stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. 227 Views of RNA: Is RNA Unique in Its Chemical Isomer Space?

    PubMed Central

    Meringer, Markus; Goodwin, Jay

    2015-01-01

    Abstract Ribonucleic acid (RNA) is one of the two nucleic acids used by extant biochemistry and plays a central role as the intermediary carrier of genetic information in transcription and translation. If RNA was involved in the origin of life, it should have a facile prebiotic synthesis. A wide variety of such syntheses have been explored. However, to date no one-pot reaction has been shown capable of yielding RNA monomers from likely prebiotically abundant starting materials, though this does not rule out the possibility that simpler, more easily prebiotically accessible nucleic acids may have preceded RNA. Given structural constraints, such as the ability to form complementary base pairs and a linear covalent polymer, a variety of structural isomers of RNA could potentially function as genetic platforms. By using structure-generation software, all the potential structural isomers of the ribosides (BC5H9O4, where B is nucleobase), as well as a set of simpler minimal analogues derived from them, that can potentially serve as monomeric building blocks of nucleic acid–like molecules are enumerated. Molecules are selected based on their likely stability under biochemically relevant conditions (e.g., moderate pH and temperature) and the presence of at least two functional groups allowing the monomers to be incorporated into linear polymers. The resulting structures are then evaluated by using molecular descriptors typically applied in quantitative structure–property relationship (QSPR) studies and predicted physicochemical properties. Several databases have been queried to determine whether any of the computed isomers had been synthesized previously. Very few of the molecules that emerge from this structure set have been previously described. We conclude that ribonucleosides may have competed with a multitude of alternative structures whose potential proto-biochemical roles and abiotic syntheses remain to be explored. Key Words: Evolution—Chemical evolution—Exobiology—Prebiotic chemistry—RNA world. Astrobiology 15, 538–558. PMID:26200431

  17. Megalin and cubilin expression in gallbladder epithelium and regulation by bile acids.

    PubMed

    Erranz, Benjamín; Miquel, Juan Francisco; Argraves, W Scott; Barth, Jeremy L; Pimentel, Fernando; Marzolo, María-Paz

    2004-12-01

    Cholesterol crystal formation in the gallbladder is a key step in gallstone pathogenesis. Gallbladder epithelial cells might prevent luminal gallstone formation through a poorly understood cholesterol absorption process. Genetic studies in mice have highlighted potential gallstone susceptibility alleles, Lith genes, which include the gene for megalin. Megalin, in conjunction with the large peripheral membrane protein cubilin, mediates the endocytosis of numerous ligands, including HDL/apolipoprotein A-I (apoA-I). Although the bile contains apoA-I and several cholesterol-binding megalin ligands, the expression of megalin and cubilin in the gallbladder has not been investigated. Here, we show that both proteins are expressed by human and mouse gallbladder epithelia. In vitro studies using a megalin-expressing cell line showed that lithocholic acid strongly inhibits and cholic and chenodeoxycholic acids increase megalin expression. The effects of bile acids (BAs) were also demonstrated in vivo, analyzing gallbladder levels of megalin and cubilin from mice fed with different BAs. The BA effects could be mediated by the farnesoid X receptor, expressed in the gallbladder. Megalin protein was also strongly increased after feeding a lithogenic diet. These results indicate a physiological role for megalin and cubilin in the gallbladder and provide support for a role for megalin in gallstone pathogenesis.

  18. Pdr18 is involved in yeast response to acetic acid stress counteracting the decrease of plasma membrane ergosterol content and order.

    PubMed

    Godinho, Cláudia P; Prata, Catarina S; Pinto, Sandra N; Cardoso, Carlos; Bandarra, Narcisa M; Fernandes, Fábio; Sá-Correia, Isabel

    2018-05-18

    Saccharomyces cerevisiae has the ability to become less sensitive to a broad range of chemically and functionally unrelated cytotoxic compounds. Among multistress resistance mechanisms is the one mediated by plasma membrane efflux pump proteins belonging to the ABC superfamily, questionably proposed to enhance the kinetics of extrusion of all these compounds. This study provides new insights into the biological role and impact in yeast response to acetic acid stress of the multistress resistance determinant Pdr18 proposed to mediate ergosterol incorporation in plasma membrane. The described coordinated activation of the transcription of PDR18 and of several ergosterol biosynthetic genes (ERG2-4, ERG6, ERG24) during the period of adaptation to acetic acid inhibited growth provides further support to the involvement of Pdr18 in yeast response to maintain plasma membrane ergosterol content in stressed cells. Pdr18 role in ergosterol homeostasis helps the cell to counteract acetic acid-induced decrease of plasma membrane lipid order, increase of the non-specific membrane permeability and decrease of transmembrane electrochemical potential. Collectively, our results support the notion that Pdr18-mediated multistress resistance is closely linked to the status of plasma membrane lipid environment related with ergosterol content and the associated plasma membrane properties.

  19. Exogenous Melatonin Mitigates Acid Rain Stress to Tomato Plants through Modulation of Leaf Ultrastructure, Photosynthesis and Antioxidant Potential.

    PubMed

    Debnath, Biswojit; Hussain, Mubasher; Irshad, Muhammad; Mitra, Sangeeta; Li, Min; Liu, Shuang; Qiu, Dongliang

    2018-02-11

    Acid rain (AR) is a serious global environmental issue causing physio-morphological changes in plants. Melatonin, as an indoleamine molecule, has been known to mediate many physiological processes in plants under different kinds of environmental stress. However, the role of melatonin in acid rain stress tolerance remains inexpressible. This study investigated the possible role of melatonin on different physiological responses involving reactive oxygen species (ROS) metabolism in tomato plants under simulated acid rain (SAR) stress. SAR stress caused the inhibition of growth, damaged the grana lamella of the chloroplast, photosynthesis, and increased accumulation of ROS and lipid peroxidation in tomato plants. To cope the detrimental effect of SAR stress, plants under SAR condition had increased both enzymatic and nonenzymatic antioxidant substances compared with control plants. But such an increase in the antioxidant activities were incapable of inhibiting the destructive effect of SAR stress. Meanwhile, melatonin treatment increased SAR-stress tolerance by repairing the grana lamella of the chloroplast, improving photosynthesis and antioxidant activities compared with those in SAR-stressed plants. However, these possible effects of melatonin are dependent on concentration. Moreover, our study suggests that 100-μM melatonin treatment improved the SAR-stress tolerance by increasing photosynthesis and ROS scavenging antioxidant activities in tomato plants.

  20. Bioactivation of carboxylic acid compounds by UDP-Glucuronosyltransferases to DNA-damaging intermediates: role of glycoxidation and oxidative stress in genotoxicity.

    PubMed

    Sallustio, Benedetta C; Degraaf, Yvette C; Weekley, Josephine S; Burcham, Philip C

    2006-05-01

    Nonenzymatic modification of proteins by acyl glucuronides is well documented; however, little is known about their potential to damage DNA. We have previously reported that clofibric acid undergoes glucuronidation-dependent bioactivation to DNA-damaging species in cultured mouse hepatocytes. The aim of this study was to investigate the mechanisms underlying such DNA damage, and to screen chemically diverse carboxylic acid drugs for their DNA-damaging potential in glucuronidation proficient murine hepatocytes. Cells were incubated with each aglycone for 18 h, followed by assessment of compound cytotoxicity using the MTT assay and evaluation of DNA damage using the Comet assay. Relative cytotoxic potencies were ketoprofen > diclofenac, benoxaprofen, nafenopin > gemfibrozil, probenecid > bezafibrate > clofibric acid. At a noncytotoxic (0.1 mM) concentration, only benoxaprofen, nafenopin, clofibric acid, and probenecid significantly increased Comet moments (P < 0.05 Kruskal-Wallis). Clofibric acid and probenecid exhibited the greatest DNA-damaging potency, producing significant DNA damage at 0.01 mM concentrations. The two drugs produced maximal increases in Comet moment of 4.51 x and 2.57 x control, respectively. The glucuronidation inhibitor borneol (1 mM) abolished the induction of DNA damage by 0.5 mM concentrations of clofibric acid and probenecid. In an in vitro cell-free system, clofibric acid glucuronide was 10 x more potent than glucuronic acid in causing DNA strand-nicking, although both compounds showed similar rates of autoxidation to generate hydroxyl radicals. In cultured hepatocytes, the glycation inhibitor, aminoguanidine, and the iron chelator, desferrioxamine mesylate, inhibited DNA damage by clofibric acid, whereas the free radical scavengers Trolox and butylated hydroxytoluene, and the superoxide dismutase mimetic bis-3,5-diisopropylsalicylate had no effect. In conclusion, clinically relevant concentrations of two structurally unrelated carboxylic acids, probenecid and clofibric acid, induced DNA damage in isolated hepatocytes via glucuronidation- dependent pathways. These findings suggest acyl glucuronides are able to access and damage nuclear DNA via iron-catalyzed glycation/glycoxidative processes.

  1. Role of folate in nonalcoholic fatty liver disease.

    PubMed

    Sid, Victoria; Siow, Yaw L; O, Karmin

    2017-10-01

    Nonalcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver conditions that are characterized by steatosis, inflammation, fibrosis, and liver injury. The global prevalence of NAFLD is rapidly increasing in proportion to the rising incidence of obesity and type 2 diabetes. Because NAFLD is a multifaceted disorder with many underlying metabolic abnormalities, currently, there is no pharmacological agent that is therapeutically approved for the treatment of this disease. Folate is a water-soluble B vitamin that plays an essential role in one-carbon transfer reactions involved in nucleic acid biosynthesis, methylation reactions, and sulfur-containing amino acid metabolism. The liver is the primary organ responsible for storage and metabolism of folates. Low serum folate levels have been observed in patients with obesity and diabetes. It has been reported that a low level of endogenous folates in rodents perturbs folate-dependent one-carbon metabolism, and may be associated with development of metabolic diseases such as NAFLD. This review highlights the biological role of folate in the progression of NAFLD and its associated metabolic complications including obesity and type 2 diabetes. Understanding the role of folate in metabolic disease may position this vitamin as a potential therapeutic for NAFLD.

  2. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid

    PubMed Central

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel

    2016-01-01

    Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee. PMID:27399778

  3. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid.

    PubMed

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel

    2016-07-08

    Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee.

  4. Effect of essential amino acids on enteroids: Methionine deprivation suppresses proliferation and affects differentiation in enteroid stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Yuki; Iwatsuki, Ken; Hanyu, Hikaru

    We investigated the effects of essential amino acids on intestinal stem cell proliferation and differentiation using murine small intestinal organoids (enteroids) from the jejunum. By selectively removing individual essential amino acids from culture medium, we found that 24 h of methionine (Met) deprivation markedly suppressed cell proliferation in enteroids. This effect was rescued when enteroids cultured in Met deprivation media for 12 h were transferred to complete medium, suggesting that Met plays an important role in enteroid cell proliferation. In addition, mRNA levels of the stem cell marker leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) decreased in enteroids grown in Met deprivationmore » conditions. Consistent with this observation, Met deprivation also attenuated Lgr5-EGFP fluorescence intensity in enteroids. In contrast, Met deprivation enhanced mRNA levels of the enteroendocrine cell marker chromogranin A (ChgA) and markers of K cells, enterochromaffin cells, goblet cells, and Paneth cells. Immunofluorescence experiments demonstrated that Met deprivation led to an increase in the number of ChgA-positive cells. These results suggest that Met deprivation suppresses stem cell proliferation, thereby promoting differentiation. In conclusion, Met is an important nutrient in the maintenance of intestinal stem cells and Met deprivation potentially affects cell differentiation. - Highlights: • Met influences the proliferation of enteroids. • Met plays a crucial role in the maintenance of stem cells. • Met deprivation potentially promotes differentiation into secretory cells.« less

  5. Prospective role of ascorbic acid (vitamin C) in attenuating hexavalent chromium-induced functional and cellular damage in rat thyroid.

    PubMed

    Qureshi, Irfan Zia; Mahmood, Tariq

    2010-07-01

    Occupational exposure to toxic heavy metals may render industrial workers with thyroid-related problems. Here, we examined the role of ascorbic acid (vitamin C) against hexavalent chromium Cr (VI)-induced damage in rat thyroid gland. Potassium dichromate (K2Cr2O7) and ascorbic acid doses were 60 microg and 120 mg kg(-1) body wt (intraperitoneally [i.p.]) respectively. Treatment regimens were group I rats, saline treated control; group II, only K2Cr2O7; group III, ascorbic acid 1 hour prior K2Cr2O7; group IV, simultaneous doses of ascorbic acid and K2Cr2O7, and group V, a combined premix dose of ascorbic acid and K2 Cr2O7 (2:1 ratio). Blood samples were taken before dosing the animals and 48 hours post exposure to determine the serum thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) concentrations. Toward end of experiment, rats were sacrificed and thyroid glands were processed to evaluate the extent of cellular insult. Results showed significantly increased TSH and decreased FT3 and FT4 concentrations in groups II, III and IV rats as compared to control levels (p < 0.05). In contrast, in group V rats, serum TSH, FT3 and FT4 concentrations neared control concentrations. Histopathologically, protective effect of ascorbic acid was found in group V rats only, where thyroid gland structure neared control thyroid except the follicular size that was decreased (p < 0.05). Follicular density was no different from control. Basal laminae were intact, interfollicular spaces were normal. Colloid retraction and/or reabsorption were reduced maximally. Epithelial cell height was no different from control; epithelial follicular index increased only 1.3 fold, whereas nuclear-cytoplasmic (N/C) ratio was decreased by 14% only. The study indicates that the ascorbic acid may have the potential to protect thyroid gland from chromium toxicity; however, the study warrants further in-depth experimentation to precisely elucidate this role.

  6. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA

    PubMed Central

    Dyall, Simon C.

    2015-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties and represent a potential treatment for a variety of neurodegenerative and neurological disorders. However, traditionally there has been a lack of discrimination between the different omega-3 PUFAs and effects have been broadly accredited to the series as a whole. Evidence for unique effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and more recently docosapentaenoic acid (DPA) is growing. For example, beneficial effects in mood disorders have more consistently been reported in clinical trials using EPA; whereas, with neurodegenerative conditions such as Alzheimer’s disease, the focus has been on DHA. DHA is quantitatively the most important omega-3 PUFA in the brain, and consequently the most studied, whereas the availability of high purity DPA preparations has been extremely limited until recently, limiting research into its effects. However, there is now a growing body of evidence indicating both independent and shared effects of EPA, DPA and DHA. The purpose of this review is to highlight how a detailed understanding of these effects is essential to improving understanding of their therapeutic potential. The review begins with an overview of omega-3 PUFA biochemistry and metabolism, with particular focus on the central nervous system (CNS), where DHA has unique and indispensable roles in neuronal membranes with levels preserved by multiple mechanisms. This is followed by a review of the different enzyme-derived anti-inflammatory mediators produced from EPA, DPA and DHA. Lastly, the relative protective effects of EPA, DPA and DHA in normal brain aging and the most common neurodegenerative disorders are discussed. With a greater understanding of the individual roles of EPA, DPA and DHA in brain health and repair it is hoped that appropriate dietary recommendations can be established and therapeutic interventions can be more targeted and refined. PMID:25954194

  7. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA.

    PubMed

    Dyall, Simon C

    2015-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties and represent a potential treatment for a variety of neurodegenerative and neurological disorders. However, traditionally there has been a lack of discrimination between the different omega-3 PUFAs and effects have been broadly accredited to the series as a whole. Evidence for unique effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and more recently docosapentaenoic acid (DPA) is growing. For example, beneficial effects in mood disorders have more consistently been reported in clinical trials using EPA; whereas, with neurodegenerative conditions such as Alzheimer's disease, the focus has been on DHA. DHA is quantitatively the most important omega-3 PUFA in the brain, and consequently the most studied, whereas the availability of high purity DPA preparations has been extremely limited until recently, limiting research into its effects. However, there is now a growing body of evidence indicating both independent and shared effects of EPA, DPA and DHA. The purpose of this review is to highlight how a detailed understanding of these effects is essential to improving understanding of their therapeutic potential. The review begins with an overview of omega-3 PUFA biochemistry and metabolism, with particular focus on the central nervous system (CNS), where DHA has unique and indispensable roles in neuronal membranes with levels preserved by multiple mechanisms. This is followed by a review of the different enzyme-derived anti-inflammatory mediators produced from EPA, DPA and DHA. Lastly, the relative protective effects of EPA, DPA and DHA in normal brain aging and the most common neurodegenerative disorders are discussed. With a greater understanding of the individual roles of EPA, DPA and DHA in brain health and repair it is hoped that appropriate dietary recommendations can be established and therapeutic interventions can be more targeted and refined.

  8. Greasing the Wheels of Managing Overweight and Obesity with Omega-3 Fatty Acids

    PubMed Central

    Golub, N; Geba, D; Mousa, SA; Williams, G; Block, RC

    2011-01-01

    The epidemic of overweight and obesity around the world and in the US is a major public health challenge, with 1.5 billion overweight and obese adults worldwide, and 68% of US adults and 31% of US children and adolescents overweight or obese. Obesity leads to serious health consequences, including an increased risk of type 2 diabetes mellitus and heart disease. Current preventive and medical treatments include lifestyle modification, medication, and bariatric surgery in extreme cases; however, they are either not very efficacious or are very expensive. Obesity is a complex condition involving the dysregulation of several organ systems and molecular pathways, including adipose tissue, the pancreas, the gastrointestinal tract, and the CNS. The role of the CNS in obesity is receiving more attention as obesity rates rise and treatments continue to fail. While the role of the hypothalamus in regulation of appetite and food intake has long been recognized, the roles of the CNS reward systems are beginning to be examined as the role of environmental influences on energy balance are explored. Omega-3 polyunsaturated fatty acids are essential nutrients that play a beneficial role in several disease processes due to their anti-inflammatory effects, modulation of lipids, and effects on the CNS. Omega-3 fatty acids, specifically EPA and DHA, have shown promising preliminary results in animal and human studies in the prevention and treatment of obesity. Given their effects on many of the pathways involved in obesity, and specifically in the endocannabinoid and mesocorticolimbic pathways, we hypothesize that EPA and DHA supplementation in populations can reduce the reward associated with food, thereby reduce appetite and food intake, and ultimately contribute to the prevention or reduction of obesity. If these fatty acids do harbor such potential, their supplementation in many parts of the world may hold great promise in reducing the global burden of obesity. PMID:21981905

  9. Antagonist effects of veratric acid against UVB-induced cell damages.

    PubMed

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon

    2013-05-10

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  10. Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway

    PubMed Central

    Elmasri, Harun; Ghelfi, Elisa; Yu, Chen-wei; Traphagen, Samantha; Cernadas, Manuela; Cao, Haiming; Shi, Guo-Ping; Plutzky, Jorge; Sahin, Mustafa; Hotamisligil, Gokhan; Cataltepe, Sule

    2013-01-01

    Fatty acid binding protein 4 (FABP4) plays an important role in regulation of glucose and lipid homeostasis as well as inflammation through its actions in adipocytes and macrophages. FABP4 is also expressed in a subset of endothelial cells, but its role in this cell type is not known. We found that FABP4-deficient human umbilical vein endothelial cells (HUVECs) demonstrate a markedly increased susceptibility to apoptosis as well as decreased migration and capillary network formation. Aortic rings from FABP4−/− mice demonstrated decreased angiogenic sprouting, which was recovered by reconstitution of FABP4. FABP4 was strongly regulated by mTORC1 and inhibited by Rapamycin. FABP4 modulated activation of several important signaling pathways in HUVECs, including downregulation of P38, eNOS, and stem cell factor (SCF)/c-kit signaling. Of these, the SCF/c-kit pathway was found to have a major role in attenuated angiogenic activity of FABP4-deficient ECs as provision of exogenous SCF resulted in a significant recovery in cell proliferation, survival, morphogenesis, and aortic ring sprouting. These data unravel a novel pro-angiogenic role for endothelial cell-FABP4 and suggest that it could be exploited as a potential target for diseases associated with pathological angiogenesis. PMID:22562362

  11. Contemporary Issues Surrounding Folic Acid Fortification Initiatives

    PubMed Central

    Choi, Jeong-Hwa; Yates, Zoe; Veysey, Martin; Heo, Young-Ran; Lucock, Mark

    2014-01-01

    The impact of folate on health and disease, particularly pregnancy complications and congenital malformations, has been extensively studied. Mandatory folic acid fortification therefore has been implemented in multiple countries, resulting in a reduction in the occurrence of neural tube defects. However, emerging evidence suggests increased folate intake may also be associated with unexpected adverse effects. This literature review focuses on contemporary issues of concern, and possible underlying mechanisms as well as giving consideration the future direction of mandatory folic acid fortification. Folate fortification has been associated with the presence of unmetabolized folic acid (PteGlu) in blood, masking of vitamin B12 deficiency, increased dosage for anti-cancer medication, photo-catalysis of PteGlu leading to potential genotoxicity, and a role in the pathoaetiology of colorectal cancer. Increased folate intake has also been associated with twin birth and insulin resistance in offspring, and altered epigenetic mechanisms of inheritance. Although limited data exists to elucidate potential mechanisms underlying these issues, elevated blood folate level due to the excess use of PteGlu without consideration of an individual’s specific phenotypic traits (e.g. genetic background and undiagnosed disease) may be relevant. Additionally, the accumulation of unmetabolized PteGlu may lead to inhibition of dihydrofolate reductase and other enzymes. Concerns notwithstanding, folic acid fortification has achieved enormous advances in public health. It therefore seems prudent to target and carefully monitor high risk groups, and to conduct well focused further research to better understand and to minimize any risk of mandatory folic acid fortification. PMID:25580388

  12. Ascorbic Acid-A Potential Oxidant Scavenger and Its Role in Plant Development and Abiotic Stress Tolerance

    PubMed Central

    Akram, Nudrat A.; Shafiq, Fahad; Ashraf, Muhammad

    2017-01-01

    Over-production of reactive oxygen species (ROS) in plants under stress conditions is a common phenomenon. Plants tend to counter this problem through their ability to synthesize ROS neutralizing substances including non-enzymatic and enzymatic antioxidants. In this context, ascorbic acid (AsA) is one of the universal non-enzymatic antioxidants having substantial potential of not only scavenging ROS, but also modulating a number of fundamental functions in plants both under stress and non-stress conditions. In the present review, the role of AsA, its biosynthesis, and cross-talk with different hormones have been discussed comprehensively. Furthermore, the possible involvement of AsA-hormone crosstalk in the regulation of several key physiological and biochemical processes like seed germination, photosynthesis, floral induction, fruit expansion, ROS regulation and senescence has also been described. A simplified and schematic AsA biosynthetic pathway has been drawn, which reflects key intermediates involved therein. This could pave the way for future research to elucidate the modulation of plant AsA biosynthesis and subsequent responses to environmental stresses. Apart from discussing the role of different ascorbate peroxidase isoforms, the comparative role of two key enzymes, ascorbate peroxidase (APX) and ascorbate oxidase (AO) involved in AsA metabolism in plant cell apoplast is also discussed particularly focusing on oxidative stress perception and amplification. Limited progress has been made so far in terms of developing transgenics which could over-produce AsA. The prospects of generation of transgenics overexpressing AsA related genes and exogenous application of AsA have been discussed at length in the review. PMID:28491070

  13. Raman Spectroscopic Analysis Reveals Abnormal Fatty Acid Composition in Tumor Micro- and Macroenvironments in Human Breast and Rat Mammary Cancer.

    PubMed

    You, Sixian; Tu, Haohua; Zhao, Youbo; Liu, Yuan; Chaney, Eric J; Marjanovic, Marina; Boppart, Stephen A

    2016-09-06

    Fatty acids play essential roles in the growth and metastasis of cancer cells. To facilitate their avid growth and proliferation, cancer cells not only alter the fatty acid synthesis and metabolism intracellularly and extracellularly, but also in the macroenvironment via direct or indirect pathways. We report here, using Raman micro-spectroscopy, that an increase in the production of polyunsaturated fatty acids (PUFAs) was identified in both cancerous and normal appearing breast tissue obtained from breast cancer patients and tumor-bearing rats. By minimizing confounding effects from mixed chemicals and optimizing the signal-to-noise ratio of Raman spectra, we observed a large-scale transition from monounsaturated fatty acids to PUFAs in the tumor while only a small subset of fatty acids transitioned to PUFAs in the tumor micro- and macroenvironment. These data have important implications for further clarifying the macroenvironmental effect of cancer progression and provide new potential approaches for characterizing the tumor micro- and macroenvironment of breast cancer in both pre-clinical animal studies and clinical applications.

  14. Raman Spectroscopic Analysis Reveals Abnormal Fatty Acid Composition in Tumor Micro- and Macroenvironments in Human Breast and Rat Mammary Cancer

    PubMed Central

    You, Sixian; Tu, Haohua; Zhao, Youbo; Liu, Yuan; Chaney, Eric J.; Marjanovic, Marina; Boppart, Stephen A.

    2016-01-01

    Fatty acids play essential roles in the growth and metastasis of cancer cells. To facilitate their avid growth and proliferation, cancer cells not only alter the fatty acid synthesis and metabolism intracellularly and extracellularly, but also in the macroenvironment via direct or indirect pathways. We report here, using Raman micro-spectroscopy, that an increase in the production of polyunsaturated fatty acids (PUFAs) was identified in both cancerous and normal appearing breast tissue obtained from breast cancer patients and tumor-bearing rats. By minimizing confounding effects from mixed chemicals and optimizing the signal-to-noise ratio of Raman spectra, we observed a large-scale transition from monounsaturated fatty acids to PUFAs in the tumor while only a small subset of fatty acids transitioned to PUFAs in the tumor micro- and macroenvironment. These data have important implications for further clarifying the macroenvironmental effect of cancer progression and provide new potential approaches for characterizing the tumor micro- and macroenvironment of breast cancer in both pre-clinical animal studies and clinical applications. PMID:27596041

  15. Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus.

    PubMed

    Kumari, U; Nigam, A K; Mitial, S; Mitial, A K

    2011-07-01

    The skin mucus of Rita rita and Channa punctatus was investigated to explore the possibilities of its antibacterial properties. Skin mucus was extracted in acidic solvents (0.1% trifluoroacetic acid and 3% acetic acid) and in triple distilled water (aqueous medium). The antibacterial activity of the mucus extracts was analyzed, using disc diffusion method, against five strains of bacteria--the Gram-positive Staphylococcus aureus and Micrococcus luteus; and the Gram negative Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi. In both Rita rita and Channa punctatus, the skin mucus extracted in acidic solvents as well as in aqueous medium show antibacterial activity against Staphylococcus aureus and Micrococcus luteus. Nevertheless, the activity is higher in acidic solvents than that in aqueous medium. The acidic mucus extracts of Rita rita, show antibacterial activity against Salmonella typhi as well. The results suggest that fish skin mucus have bactericidal properties and thus play important role in the protection of fish against the invasion of pathogens. Fish skin mucus could thus be regarded as a potential source of novel antibacterial components.

  16. Molecular cloning, expression analysis, and potential food intake attenuation effect of peptide YY in grass carp (Ctenopharyngodon idellus).

    PubMed

    Chen, Yong; Shen, Yubang; Pandit, Narayan Prasad; Fu, Jianjun; Li, Da; Li, Jiale

    2013-06-15

    The peptide YY (PYY) is a 36 amino acid peptide involved in the food intake control in vertebrates. We have cloned and characterized a PYY gene from grass carp Ctenopharyngodon idellus. The full-length cDNA encodes a precursor protein of grass carp PYY (gcPYY) that consists of a putative 28-amino acid signal peptide, a 36-amino acid mature peptide, an amidation-proteolytic site, and a 30-amino acid carboxy-terminal extension. The gcPYY gene is comprised of 4 exons interspaced by 3 introns as seen in PYYs from other species. Amino acid alignment and gene structure comparison indicate that the structure of PYY is well preserved throughout vertebrate phylogeny. The tissue distribution and postprandial changes in gcPYY mRNA expression were evaluated by real-time PCR, which showed that the gcPYY is expressed abundantly in the central nervous system, with significantly increased expression following a single meal. During embryogenesis, the presence of gcPYY mRNA was detected in early developing embryos, and high expression levels were observed when most larvae completed their switch from endogenous nourishment to exogenous feeding. Reduced food intake by juveniles during a single meal after giving perpheral injection of gcPYY1-36 suggests a potentially important role of PYY in the food intake attenuation in grass carp. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. An In Silico study of TiO2 nanoparticles interaction with twenty standard amino acids in aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Shengtang; Meng, Xuan-Yu; Perez-Aguilar, Jose Manuel; Zhou, Ruhong

    2016-11-01

    Titanium dioxide (TiO2) is probably one of the most widely used nanomaterials, and its extensive exposure may result in potentially adverse biological effects. Yet, the underlying mechanisms of interaction involving TiO2 NPs and macromolecules, e.g., proteins, are still not well understood. Here, we perform all-atom molecular dynamics simulations to investigate the interactions between TiO2 NPs and the twenty standard amino acids in aqueous solution exploiting a newly developed TiO2 force field. We found that charged amino acids play a dominant role during the process of binding to the TiO2 surface, with both basic and acidic residues overwhelmingly preferred over the non-charged counterparts. By calculating the Potential Mean Force, we showed that Arg is prone to direct binding onto the NP surface, while Lys needs to overcome a ~2 kT free energy barrier. On the other hand, acidic residues tend to form “water bridges” between their sidechains and TiO2 surface, thus displaying an indirect binding. Moreover, the overall preferred positions and configurations of different residues are highly dependent on properties of the first and second solvation water. These molecular insights learned from this work might help with a better understanding of the interactions between biomolecules and nanomaterials.

  18. Radiotherapy improves serum fatty acids and lipid profile in breast cancer.

    PubMed

    Shaikh, Sana; Channa, Naseem Aslam; Talpur, Farha Naz; Younis, Muhammad; Tabassum, Naila

    2017-05-18

    Breast cancer is a disease with diverse clinical symptoms, molecular profiles, and its nature to response its therapeutic treatments. Radiotherapy (RT), along with surgery and chemotherapy is a part of treatment in breast cancer. The aim of present study was to investigate pre and post treatment effects of radiotherapy in serum fatty acids and its lipids profile in patients with breast cancer. In this comparative as well as follow up study, Serum fatty acids were performed by gas chromatography to investigate fatty acids and Microlab for analysis of lipid profile. Among serum free and total fatty acids the major saturated fatty acids (SFAs) in serum lipids of breast cancer patients (pre and post treated) were stearic acid (18:0) and palmitic acid (16:0). These fatty acids contributed about 35-50% of total fatty acids. The decreased concentrations of linoleic acid (C18:2) and arachidonic acid (C20:4) with a lower ratio of C18:2/C18:1 was found in pretreated breast cancer patients as compared to controls. The n-3/n-6 ratio of breast cancer patients was decreased before treatment but it was 35% increased after treatment. In addition, plasma activity of D6 desaturase was increased in the breast cancer patients, while the activity of D5 desaturase was decreased. Increased levels of SFAs, monounsaturated fatty acids (MUFAs) and decreased polyunsaturated fatty acids (PUFAs) levels in breast cancer patients (pre and post treated) as compared to controls. Serum total cholesterol (TC) (224.4 mg/dL) and low density lipoprotein cholesterol (LDL-C) (142.9 mg/dL) were significantly increased in pretreated breast cancer patients but after the radiotherapy treatment, the TC (150.2 mg/dL) and LDL-C (89.8 mg/dL) were decreased. It seems that RT would have played a potential role in the treatment of BC. After RT the serum levels of PUFAs, TC, and LDL-C are improved. Our study reinforces the important role of RT in the management of BC. The level of PUFAs, TC, and LDL-C can be used as the biomarkers for early diagnosis in individuals with risk of breast cancer.

  19. Effect of Humic Acids and pesticides on Agricultural Soil Structure and Stability and Its Implication on Soil Quality

    NASA Astrophysics Data System (ADS)

    Gaonkar, O. D.; Nambi, I. M.; G, S. K.

    2016-12-01

    The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid, organophosphate pesticides and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids and pesticides. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment lead to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding the soil aggregation and the interactions at soil solid-liquid interface.

  20. Comparative study on anti-oxidant and anti-inflammatory activities of Caesalpinia crista and Centella asiatica leaf extracts

    PubMed Central

    Ramesh, B. N.; Girish, T. K.; Raghavendra, R. H.; Naidu, K. Akhilender; Rao, U. J. S. Prasada; Rao, K. S.

    2014-01-01

    Background: Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer's disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. Objective: The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. Materials and Methods: Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm) using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs) were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. Results: Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory) in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. Conclusions: Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer's disease. PMID:24741275

  1. Effect of Omega-3 Polyunsaturated Fatty Acid Supplementation in Patients with Atrial Fibrillation.

    PubMed

    Kumar, Sanjay; Qu, Sarah; Kassotis, John T

    2012-01-01

    Atrial fibrillation (AF) is the most common sustained atrial arrhythmia conferring a higher morbidity and mortality. Despite the increasing incidence of AF; available therapies are far from perfect. Dietary fish oils, containing omega 3 fatty acids, also called polyunsaturated fatty acid [PUFA] have demonstrated beneficial electrophysiological, autonomic and anti-inflammatory effects on both atrial and ventricular tissue. Multiple clinical trials, focusing on various subsets of patients with AF, have studied the role of PUFA and their potential role in reducing the incidence of this common arrhythmia. While PUFA appears to have a beneficial effect in the primary prevention of AF in the elderly with structural heart disease, this benefit has not been universally observed. In the secondary prevention of AF, PUFA seems to have a greater impact in the reducing AF in patients with paroxysmal or persistent AF, stages of AF associated with less atrial fibrosis and negative structural remodeling. However, AF suppression has not been consistently demonstrated in clinical trials. In patients undergoing heart surgery, increasing PUFA intake has yielded mixed results in terms of AF prevention post-operatively; however, increased PUFA has been associated with a reduction in hospital stay. Therefore recommending the use of PUFA for the purpose of AF reduction remains controversial. This is in part attributable to the complexity of AF. Other conflicting variables include: heterogeneous patient populations studied; variable dosing; duration of follow-up; comorbidities; and, concomitant pharmacotherapy. This review article reviews in detail available basic and clinical research studies of fish oil in the treatment of AF, and its role in the treatment of this common disorder. AF=Atrial fibrillation, CHS=Cardiovascular Health Study,CABG=Coronary artery bypass surgery, d=Day, DHA=Docosahexaenoic acid, EPA=Eicosapentaenoic acid, ERP= Effective refractory period, g=Gram, PAF= Paroxysmal atrial fibrillation, PeAF= Persistent atrial fibrillation PUFA= Polyunsaturated fatty acid.

  2. Fatty Acids Regulate Germline Sex Determination through ACS-4-Dependent Myristoylation.

    PubMed

    Tang, Hongyun; Han, Min

    2017-04-20

    Fat metabolism has been linked to fertility and reproductive adaptation in animals and humans, and environmental sex determination potentially plays a role in the process. To investigate the impact of fatty acids (FA) on sex determination and reproductive development, we examined and observed an impact of FA synthesis and mobilization by lipolysis in somatic tissues on oocyte fate in Caenorhabditis elegans. The subsequent genetic analysis identified ACS-4, an acyl-CoA synthetase and its FA-CoA product, as key germline factors that mediate the role of FA in promoting oocyte fate through protein myristoylation. Further tests indicated that ACS-4-dependent protein myristoylation perceives and translates the FA level into regulatory cues that modulate the activities of MPK-1/MAPK and key factors in the germline sex-determination pathway. These findings, including a similar role of ACS-4 in a male/female species, uncover a likely conserved mechanism by which FA, an environmental factor, regulates sex determination and reproductive development. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Dynamin-dependent amino acid endocytosis activates mechanistic target of rapamycin complex 1 (mTORC1).

    PubMed

    Shibutani, Shusaku; Okazaki, Hana; Iwata, Hiroyuki

    2017-11-03

    The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis and potential target for modifying cellular metabolism in various conditions, including cancer and aging. mTORC1 activity is tightly regulated by the availability of extracellular amino acids, and previous studies have revealed that amino acids in the extracellular fluid are transported to the lysosomal lumen. There, amino acids induce recruitment of cytoplasmic mTORC1 to the lysosome by the Rag GTPases, followed by mTORC1 activation by the small GTPase Ras homolog enriched in brain (Rheb). However, how the extracellular amino acids reach the lysosomal lumen and activate mTORC1 remains unclear. Here, we show that amino acid uptake by dynamin-dependent endocytosis plays a critical role in mTORC1 activation. We found that mTORC1 is inactivated when endocytosis is inhibited by overexpression of a dominant-negative form of dynamin 2 or by pharmacological inhibition of dynamin or clathrin. Consistently, the recruitment of mTORC1 to the lysosome was suppressed by the dynamin inhibition. The activity and lysosomal recruitment of mTORC1 were rescued by increasing intracellular amino acids via cycloheximide exposure or by Rag overexpression, indicating that amino acid deprivation is the main cause of mTORC1 inactivation via the dynamin inhibition. We further show that endocytosis inhibition does not induce autophagy even though mTORC1 inactivation is known to strongly induce autophagy. These findings open new perspectives for the use of endocytosis inhibitors as potential agents that can effectively inhibit nutrient utilization and shut down the upstream signals that activate mTORC1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Role of ion channels and subcellular Ca2+ signaling in arachidonic acid-induced dilation of pressurized retinal arterioles.

    PubMed

    Kur, Joanna; McGahon, Mary K; Fernández, Jose A; Scholfield, C Norman; McGeown, J Graham; Curtis, Tim M

    2014-05-02

    To investigate the mechanisms responsible for the dilatation of rat retinal arterioles in response to arachidonic acid (AA). Changes in the diameter of isolated, pressurized rat retinal arterioles were measured in the presence of AA alone and following pre-incubation with pharmacologic agents inhibiting Ca(2+) sparks and oscillations and K(+) channels. Subcellular Ca(2+) signals were recorded in arteriolar myocytes using Fluo-4-based confocal imaging. The effects of AA on membrane currents of retinal arteriolar myocytes were studied using whole-cell perforated patch clamp recording. Arachidonic acid dilated pressurized retinal arterioles under conditions of myogenic tone. Eicosatetraynoic acid (ETYA) exerted a similar effect, but unlike AA, its effects were rapidly reversible. Arachidonic acid-induced dilation was associated with an inhibition of subcellular Ca(2+) signals. Interventions known to block Ca(2+) sparks and oscillations in retinal arterioles caused dilatation and inhibited AA-induced vasodilator responses. Arachidonic acid accelerated the rate of inactivation of the A-type Kv current and the voltage dependence of inactivation was shifted to more negative membrane potentials. It also enhanced voltage-activated and spontaneous large-conductance calcium-activated K(+) (BK) currents, but only at positive membrane potentials. Pharmacologic inhibition of A-type Kv and BK currents failed to block AA-induced vasodilator responses. Arachidonic acid suppressed L-type Ca(2+) currents. These results suggest that AA induces retinal arteriolar vasodilation by inhibiting subcellular Ca(2+)-signaling activity in retinal arteriolar myocytes, most likely through a mechanism involving the inhibition of L-type Ca(2+)-channel activity. Arachidonic acid actions on K(+) currents are inconsistent with a model in which K(+) channels contribute to the vasodilator effects of AA.

  5. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing*

    PubMed Central

    Huang, Wu-yang; Zhang, Hong-cheng; Liu, Wen-xu; Li, Chun-yang

    2012-01-01

    Berries are a good source of natural antioxidants. In the present study, the total antioxidant capacity and phenolic composition of three berry fruits (blueberry, blackberry, and strawberry) cultivated in Nanjing were investigated. Blueberry, with a Trolox equivalent antioxidant capacity (TEAC) value of 14.98 mmol Trolox/100 g dry weight (DW), exhibited the strongest total antioxidant capacity using both the 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. Blueberry also had the highest total phenolic content (TPC, 9.44 mg gallic acid/g DW), total flavonoid content (TFC, 36.08 mg rutin/g DW), and total anthocyanidin content (TAC, 24.38 mg catechin/g DW). A preliminary analysis using high performance liquid chromatography (HPLC) showed that the blueberry, blackberry, and strawberry samples tested contained a range of phenolic acids (including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, ellagic acid, and cinnamic acid) and various types of flavonoids (flavone: luteolin; flavonols: rutin, myricetin, quercetrin, and quercetin; flavanols: gallocatechin, epigallocatechin, catechin, and catechin gallate; anthocyanidins: malvidin-3-galactoside, malvidin-3-glucoside, and cyanidin). In particular, the blueberries had high levels of proanthocyanidins and anthocyanidins, which might be responsible for their strong antioxidant activities. These results indicate a potential market role for berries (especially blueberries) as a functional food ingredient or nutraceutical. PMID:22302422

  6. Do fatty acids affect fetal programming?

    PubMed

    Kabaran, Seray; Besler, H Tanju

    2015-08-13

    In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.

  7. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application

    PubMed Central

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  8. Egg sialoglycans increase intracellular pH and potentiate the acrosome reaction of sea urchin sperm.

    PubMed

    Hirohashi, Noritaka; Vacquier, Victor D

    2002-03-08

    Sea urchin egg jelly (EJ) triggers sperm acrosome reaction (AR), an exocytotic event required for membrane fusion of the gametes. Purified fucose sulfate polymer (FSP) in EJ is one inducer of the AR. Binding of FSP to its receptor regulates opening of two distinct calcium channels and also elevates intracellular pH (pH(i)). EJ also contains sialic acid-rich glycans (sialoglycans (SG)) that were isolated by beta-elimination followed by DEAE chromatography. In the presence of limiting amounts of FSP, the SG fraction markedly potentiates the AR; however, by itself SG has no activity. The SG fraction increases the pH(i) of sperm without increasing intracellular Ca(2+). The SG-induced increase in pH(i) is not blocked by nifedipine or high K(+), whereas the FSP-induced pH(i) increase is sensitive to both these agents. Treatment of the SG fraction with neuraminidase or mild metaperiodate that specifically cleaves the glycerol side chain of sialic acid abolishes the AR potentiation and ability of SG to elevate pH(i). These data are the first to show that there are at least two pathways to induce sperm pH(i) increase and that egg surface sialic acid plays a role in triggering the sperm AR.

  9. Fermented Fruits and Vegetables of Asia: A Potential Source of Probiotics

    PubMed Central

    Ray, Ramesh Chandra

    2014-01-01

    As world population increases, lactic acid fermentation is expected to become an important role in preserving fresh vegetables, fruits, and other food items for feeding humanity in developing countries. However, several fermented fruits and vegetables products (Sauerkraut, Kimchi, Gundruk, Khalpi, Sinki, etc.) have a long history in human nutrition from ancient ages and are associated with the several social aspects of different communities. Among the food items, fruits and vegetables are easily perishable commodities due to their high water activity and nutritive values. These conditions are more critical in tropical and subtropical countries which favour the growth of spoilage causing microorganisms. Lactic acid fermentation increases shelf life of fruits and vegetables and also enhances several beneficial properties, including nutritive value and flavours, and reduces toxicity. Fermented fruits and vegetables can be used as a potential source of probiotics as they harbour several lactic acid bacteria such as Lactobacillus plantarum, L. pentosus, L. brevis, L. acidophilus, L. fermentum, Leuconostoc fallax, and L. mesenteroides. As a whole, the traditionally fermented fruits and vegetables not only serve as food supplements but also attribute towards health benefits. This review aims to describe some important Asian fermented fruits and vegetables and their significance as a potential source of probiotics. PMID:25343046

  10. Role of salicylic acid in resistance to cadmium stress in plants.

    PubMed

    Liu, Zhouping; Ding, Yanfei; Wang, Feijuan; Ye, Yaoyao; Zhu, Cheng

    2016-04-01

    We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity. Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.

  11. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    PubMed

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.

  12. Folate and DNA Methylation: A Review of Molecular Mechanisms and the Evidence for Folate's Role2

    PubMed Central

    Yang, Thomas P.; Berry, Robert J; Bailey, Lynn B.

    2012-01-01

    ABSTRACT DNA methylation is an epigenetic modification critical to normal genome regulation and development. The vitamin folate is a key source of the one carbon group used to methylate DNA. Because normal mammalian development is dependent on DNA methylation, there is enormous interest in assessing the potential for changes in folate intake to modulate DNA methylation both as a biomarker for folate status and as a mechanistic link to developmental disorders and chronic diseases including cancer. This review highlights the role of DNA methylation in normal genome function, how it can be altered, and the evidence of the role of folate/folic acid in these processes. PMID:22332098

  13. Potential roles for uncoupling proteins in HIV lipodystrophy.

    PubMed

    Nolan, David; Pace, Craig

    2004-07-01

    The 'HIV lipodystrophy syndrome' consists of several distinct components, including lipoatrophy (pathological subcutaneous fat loss), lipohypertrophy (abdominal/visceral adiposity), and metabolic complications including insulin resistance and dyslipidemia. Lipoatrophy appears to represent an adipose tissue-specific form of mitochondrial toxicity associated strongly with stavudine NRTI therapy, whilst the 'metabolic syndrome' phenotype is associated with HIV protease inhibitor therapy. In this context, the role of uncoupling proteins (UCPs) in modulating resting energy expenditure in response to elevated fatty acid flux associated with the 'metabolic syndrome' is supported by clinical data as well as findings of elevated adipose tissue UCP expression. The role of UCPs in this syndrome therefore exemplifies the multifactorial nature of these antiretroviral therapy complications.

  14. Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays.

    PubMed

    Zhang, Lin; Veres-Schalnat, Tracey A; Somogyi, Arpad; Pemberton, Jeanne E; Maier, Raina M

    2012-12-01

    Rhamnolipids have multiple potential applications as "green" surfactants for industry, remediation, and medicine. As a result, they have been intensively investigated to add to our understanding of their biosynthesis and improve yields. Several studies have noted that the addition of a fatty acid cosubstrate increases rhamnolipid yields, but a metabolic explanation has not been offered, partly because biosynthesis studies to date have used sugar or sugar derivatives as the carbon source. The objective of this study was to investigate the role of fatty acid cosubstrates in improving rhamnolipid biosynthesis. A combination of stable isotope tracing and gene expression assays was used to identify lipid precursors and potential lipid metabolic pathways used in rhamnolipid synthesis when fatty acid cosubstrates are present. To this end, we compared the rhamnolipids produced and their yields using either glucose alone or glucose and octadecanoic acid-d(35) as cosubstrates. Using a combination of sugar and fatty acids, the rhamnolipid yield was significantly higher (i.e., doubled) than when glucose was used alone. Two patterns of deuterium incorporation (either 1 or 15 deuterium atoms) in a single Rha-C(10) lipid chain were observed for octadecanoic acid-d(35) treatment, indicating that in the presence of a fatty acid cosubstrate, both de novo fatty acid synthesis and β-oxidation are used to provide lipid precursors for rhamnolipids. Gene expression assays showed a 200- to 600-fold increase in the expression of rhlA and rhlB rhamnolipid biosynthesis genes and a more modest increase of 3- to 4-fold of the fadA β-oxidation pathway gene when octadecanoic acid was present. Taken together, these results suggest that the simultaneous use of de novo fatty acid synthesis and β-oxidation pathways allows for higher production of lipid precursors, resulting in increased rhamnolipid yields.

  15. The Critical Role of Arabidopsis Electron-Transfer Flavoprotein:Ubiquinone Oxidoreductase during Dark-Induced StarvationW⃞

    PubMed Central

    Ishizaki, Kimitsune; Larson, Tony R.; Schauer, Nicolas; Fernie, Alisdair R.; Graham, Ian A.; Leaver, Christopher J.

    2005-01-01

    In mammals, electron-transfer flavoprotein:ubiquinone oxidoreductase (ETFQO) and electron-transfer flavoprotein (ETF) are functionally associated, and ETF accepts electrons from at least nine mitochondrial matrix flavoprotein dehydrogenases and transfers them to ubiquinone in the inner mitochondrial membrane. In addition, the mammalian ETF/ETFQO system plays a key role in β-oxidation of fatty acids and catabolism of amino acids and choline. By contrast, nothing is known of the function of ETF and ETFQO in plants. Sequence analysis of the unique Arabidopsis thaliana homologue of ETFQO revealed high similarity to the mammalian ETFQO protein. Moreover, green fluorescent protein cellular localization experiments suggested a mitochondrial location for this protein. RNA gel blot analysis revealed that Arabidopsis ETFQO transcripts accumulated in long-term dark-treated leaves. Analysis of three independent insertional mutants of Arabidopsis ETFQO revealed a dramatic reduction in their ability to withstand extended darkness, resulting in senescence and death within 10 d after transfer, whereas wild-type plants remained viable for at least 15 d. Metabolite profiling of dark-treated leaves of the wild type and mutants revealed a dramatic decline in sugar levels. In contrast with the wild type, the mutants demonstrated a significant accumulation of several amino acids, an intermediate of Leu catabolism, and, strikingly, high-level accumulation of phytanoyl-CoA. These data demonstrate the involvement of a mitochondrial protein, ETFQO, in the catabolism of Leu and potentially of other amino acids in higher plants and also imply a novel role for this protein in the chlorophyll degradation pathway activated during dark-induced senescence and sugar starvation. PMID:16055629

  16. Adenosine receptor activation potentiates phosphoinositide hydrolysis and arachidonic acid release in DDT1-MF2 cells: putative interrelations.

    PubMed

    Schachter, J B; Yasuda, R P; Wolfe, B B

    1995-09-01

    Studies were undertaken in an effort to discern possible mechanisms by which the A1 adenosine receptor agonist cyclopentyladenosine (CPA) enhances the norepinephrine-stimulated (NE-stimulated) hydrolysis of phosphoinositides in DDT1-MF2 cells. Measurements of arachidonic acid release revealed similar behaviours to those observed in measurements of phosphoinositide hydrolysis. In the presence of NE, both second messenger responses were potentiated by the addition of CPA, whereas in the absence of NE, CPA had little or no effect on either second messenger. The stimulation and potentiation of both second messenger responses were enhanced in the presence of extracellular calcium, and in each case these effects were persistent over time. For either second messenger system the stimulation by NE and the potentiation by CPA appeared to utilize separate mechanisms as evidenced by the fact that the potentiations by CPA were selectively antagonized by a cAMP analogue or by pertussis toxin, whereas the stimulations by NE were essentially unaffected by these agents. Inhibition of phospholipase A2 (PLA2) also blocked the potentiation of PLC by CPA, without affecting NE-stimulated phosphoinositide hydrolysis. Furthermore, in the presence of CPA, the exogenous administration of PLA2 was found to stimulate phosphoinositide hydrolysis in these cells. These data are consistent with a hypothesis whereby the apparent potentiation of NE-stimulated phosphoinositide hydrolysis by CPA is actually due to the stimulation by CPA of a second pathway of phospholipase C activity which is additive to that of NE. The activation of PLC and PLA2 by NE produces phospholipid products which may play a permissive role in the pathway coupling adenosine A1 receptors to these phospholipases. The formation of lysophosphatidic acid is suggested as one possible mediator of this permissive effect.

  17. Discovery of Novel Wall Teichoic Acid Inhibitors as Effective anti-MRSA β-lactam Combination Agents

    PubMed Central

    Wang, Hao; Gill, Charles J.; Lee, Sang H.; Mann, Paul; Zuck, Paul; Meredith, Timothy C.; Murgolo, Nicholas; She, Xinwei; Kales, Susan; Liang, Lianzhu; Liu, Jenny; Wu, Jin; Maria, John Santa; Su, Jing; Pan, Jianping; Hailey, Judy; Mcguinness, Debra; Tan, Christopher M.; Flattery, Amy; Walker, Suzanne; Black, Todd; Roemer, Terry

    2013-01-01

    Summary Innovative strategies are needed to combat drug resistance associated with methicillin-resistant Staphylococcus aureus (MRSA). Here, we investigate the potential of wall teichoic acid (WTA) biosynthesis inhibitors as combination agents to restore β-lactam efficacy against MRSA. Performing a whole cell pathway-based screen we identified a series of WTA inhibitors (WTAIs) targeting the WTA transporter protein, TarG. Whole genome sequencing of WTAI resistant isolates across two methicillin-resistant Staphylococci spp. revealed TarG as their common target, as well as a broad assortment of drug resistant bypass mutants mapping to earlier steps of WTA biosynthesis. Extensive in vitro microbiological analysis and animal infection studies provide strong genetic and pharmacological evidence of the potential effectiveness of WTAIs as anti-MRSA β-lactam combination agents. This work also highlights the emerging role of whole genome sequencing in antibiotic mode-of-action and resistance studies. PMID:23438756

  18. The Conformational Landscape of L-Threonine Matrix Isolation Infrared and {AB-INITIO Studies

    NASA Astrophysics Data System (ADS)

    Dubey, Pankaj; Mukhopadhyay, Anamika; Viswanathan, K. S.

    2017-06-01

    Amino acids, containing hydroxy side chains such as L-threonine and tyrosine play an important role in molecular recognition, such as in the docking of propofol, which is a commonly used anaesthetic. A rich conformational landscape of these amino acids makes them interesting candidates in the study of intra and intermolecular interactions. In this work, the conformational landscape of L-threonine was studied, as it can be expected to serve as a basis for understanding structure and functions of polypeptides and other biomolecules. The matrix isolation technique (MI) coupled with a high temperature effusive molecular beam (EMB) nozzle was used to trap conformers of amino acid, which were then characterized using FTIR spectroscopy. The usefulness of MI-EMB-FTIR spectroscopy is that it can trap structures corresponding to the local minima along with the global minimum and hence allows for a better exploration of the potential energy surface. A major challenge in conformational analysis of amino acids using matrix isolation FTIR arises from its non-volatile nature. A home built heating system which was mounted close to the cryotip, was used to evaporate the non-volatile amino acids. Our infrared spectra show that three conformations were trapped in the matrix. Experimental results were supported by {ab-initio calculations performed using the CCSD(T), MP2 and M06-2X methods together with 6-311++G(d,p) and aug/cc-pVDZ basis sets. The side chains of the amino acids appeared to have an influence on the preferential stabilisation of a particular backbone structure of amino acids. Factors such as entropy, anomeric effect and intramolecular H-bonding were also found to play an important role in determining conformal preferences, which will be discussed.

  19. Decreased glucagon responsiveness by bile acids: a role for protein kinase Calpha and glucagon receptor phosphorylation.

    PubMed

    Ikegami, Tadashi; Krilov, Lada; Meng, Jianping; Patel, Bhumika; Chapin-Kennedy, Kelli; Bouscarel, Bernard

    2006-11-01

    Dihydroxy bile acids like chenodeoxycholic acid (CDCA) induce heterologous glucagon receptor desensitization. We previously demonstrated that protein kinase C (PKC) was activated by certain bile acids and mediated the CDCA-induced decrease in glucagon responsiveness. The aim of the present study was to explore the role of PKC in the phosphorylation and desensitization of the glucagon receptor by CDCA. Desensitization was evaluated by measuring adenylyl cyclase activity. Receptor phosphorylation was assayed by metabolic labeling with [gamma-(32)P] ATP. Protein kinase C (PKC) translocation and activation was visualized by fluorescence microscopy. CDCA decreased cAMP production induced by glucagon in a dose-dependent manner without affecting cAMP synthesis through stimulation of either stimulatory GTP-binding protein (Gs) by NaF or adenylyl cyclase by forskolin. The CDCA-induced inhibition of adenylyl cyclase activity was potentiated by the phosphatase inhibitor, okadaic acid. The desensitizing effect of CDCA was bile acid-specific and was significantly reduced in the presence of PKC inhibitors and after PKC down-regulation by phorbol 12-myristate 13-acetate. CDCA increased glucagon receptor phosphorylation more than 3-fold at concentrations as low as 25 mum. Furthermore, CDCA significantly stimulated human recombinant PKCalpha autophosphorylation in vitro, as well as PKCalpha translocation to the plasma membrane and phosphorylation in vivo at concentrations as low as 25 mum. CDCA also stimulated PKCdelta translocation to the perinuclear region. Activated PKCalpha, PKCzeta, and to a lesser extent, PKCdelta, phosphorylated the glucagon receptor in vitro. This study demonstrates that certain bile acids, such as CDCA, stimulate phosphorylation and heterologous desensitization of the glucagon receptor, involving at least PKCalpha activation.

  20. Dendritic Cells: A Spot on Sialic Acid

    PubMed Central

    Crespo, Hélio J.; Lau, Joseph T. Y.; Videira, Paula A.

    2013-01-01

    Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host–host and host-pathogen interactions occur. The role of glycan epitopes in cell–cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how glycans and their changes contribute to the overall immune response remains poorly defined. Sialic acids are unique sugars that usually occupy the terminal position of the glycan chains and may be modified by external factors, such as pathogens, or upon specific physiological cellular events. At cell surface, sialic acid-modified structures form the key fundamental determinants for a number of receptors with known involvement in cellular adhesiveness and cell trafficking, such as the Selectins and the Siglec families of carbohydrate recognizing receptors. Dendritic cells (DCs) preside over the transition from innate to the adaptive immune repertoires, and no other cell has such relevant role in antigen screening, uptake, and its presentation to lymphocytes, ultimately triggering the adaptive immune response. Interestingly, sialic acid-modified structures are involved in all DC functions, such as antigen uptake, DC migration, and capacity to prime T cell responses. Sialic acid content changes along DC differentiation and activation and, while, not yet fully understood, these changes have important implications in DC functions. This review focuses on the developmental regulation of DC surface sialic acids and how manipulation of DC surface sialic acids can affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming. The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies. PMID:24409183

  1. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks.

    PubMed

    Schneider, K D; van Straaten, P; de Orduña, R Mira; Glasauer, S; Trevors, J; Fallow, D; Smith, P S

    2010-01-01

    Phosphorus deficiencies are limiting crop production in agricultural soils worldwide. Locally available sources of raw phosphate rock (PR) are being recognized for their potential role in soil fertility improvement. Phosphorus bioavailability is essential for the efficiency of PRs and can be increased by acid treatments. The utilization of organic acid producing micro-organisms, notably Aspergillus niger, presents a sustainable alternative to the use of strong inorganic acids, but acid production of A. niger strongly depends on the mineral content of the growth media. This study compared the phosphorus mobilization efficiency of two biological treatments, namely addition of acidic cell-free supernatants from A. niger cultivations to PRs and the direct cultivation of A. niger with PRs. The results show that addition of PR to cultivations leads to significant differences in the profile of organic acids produced by A. niger. Additions of PR, especially igneous rocks containing high amounts of iron and manganese, lead to reduced citric acid concentrations. In spite of these differences, phosphorus mobilization was similar between treatments, suggesting that the simpler direct cultivation method was not inferior. In addition to citric acid, it is suggested that oxalic acid contributes to PR solubilization in direct cultivations with A. niger, which would benefit farmers in developing countries where conventional fertilizers are not adequately accessible.

  2. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  3. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    PubMed Central

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  4. Nutritional Composition Changes During Tempeh Gembus Processing

    NASA Astrophysics Data System (ADS)

    Nazaretha Sandessy Damanik, Ruth; Yanti Winda Pratiwi, Dwi; Widyastuti, Nurmasari; Rustanti, Ninik; Anjani, Gemala; Nur Afifah, Diana

    2018-02-01

    This paper was aimed to analyze nutritional composition during tempeh gembus processing. Processing of tempeh gembus may cause an increase or decrease in its nutritional value such as amino acids, fatty acids, vitamins, and minerals. Regardless, tempeh gembus may still be potentially beneficial to help fulfill nutrient needs. This was a descriptive study with three samples: soybeans, tofu residue, and tempeh gembus. Soybeans used were varieties of Grobogan, Central Java. Minerals identified in all three samples include sodium, calcium, potassium, phospor, and iron. Soybeans, tofu residue, and tempeh gembus each contain 34.12%, 5.40%, and 4.80% of amino acids. Saturated fatty acids were the lowest in soybeans (12.01%), marginally surpassed by tofu residue (12.41%) and tempeh gembus (12.55%). Total levels of monounsaturated fatty acids were also found in a similar pattern (34.1%, 36.5%, 36.7% respectively). In contrast, soybeans had significantly more polyunsaturated fatty acids than other samples, containing up to 43.6% in comparison with 38.29% in tofu residue and 30.18% in tempeh gembus. Overall, the nutritional profile of soybeans was generally better than tofu residue and tempeh gembus. However, fermentation process may play a role in enchancing the fatty acid profile.

  5. Bile acids: regulation of apoptosis by ursodeoxycholic acid

    PubMed Central

    Amaral, Joana D.; Viana, Ricardo J. S.; Ramalho, Rita M.; Steer, Clifford J.; Rodrigues, Cecília M. P.

    2009-01-01

    Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases. PMID:19417220

  6. Bile acids: regulation of apoptosis by ursodeoxycholic acid.

    PubMed

    Amaral, Joana D; Viana, Ricardo J S; Ramalho, Rita M; Steer, Clifford J; Rodrigues, Cecília M P

    2009-09-01

    Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.

  7. Amino acids production focusing on fermentation technologies - A review.

    PubMed

    D'Este, Martina; Alvarado-Morales, Merlin; Angelidaki, Irini

    Amino acids are attractive and promising biochemicals with market capacity requirements constantly increasing. Their applicability ranges from animal feed additives, flavour enhancers and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. This review gives an overview of the processes applied for amino acids production and points out the main advantages and disadvantages of each. Due to the advances made in the genetic engineering techniques, the biotechnological processes, and in particular the fermentation with the aid of strains such as Corynebacterium glutamicum or Escherichia coli, play a significant role in the industrial production of amino acids. Despite the numerous advantages of the fermentative amino acids production, the process still needs significant improvements leading to increased productivity and reduction of the production costs. Although the production processes of amino acids have been extensively investigated in previous studies, a comprehensive overview of the developments in bioprocess technology has not been reported yet. This review states the importance of the fermentation process for industrial amino acids production, underlining the strengths and the weaknesses of the process. Moreover, the potential of innovative approaches utilizing macro and microalgae or bacteria are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Amino group of salicylic acid exhibits enhanced inhibitory potential against insulin amyloid fibrillation with protective aptitude toward amyloid induced cytotoxicity.

    PubMed

    Zaman, Masihuz; Khan, Mohsin Vahid; Zakariya, Syed Mohammad; Nusrat, Saima; Meeran, Syed Mustapha; Alam, Parvez; Ajmal, Mohammad Rehan; Wahiduzzaman, Wahiduzzaman; Shahein, Yasser E; Abouelella, Amira M; Khan, Rizwan Hasan

    2018-05-01

    Protein misfolding and aggregation lead to amyloid generation that in turn may induce cell membrane disruption and leads to cell apoptosis. In an effort to prevent or treat amyloidogenesis, large number of studies has been paying attention on breakthrough of amyloid inhibitors. In the present work, we aim to access the effect of two drugs, that is, acetylsalicylic acid and 5-amino salicylic acid on insulin amyloids by using various biophysical, imaging, cell viability assay, and computational approaches. We established that both drugs reduce the turbidity, light scattering and fluorescence intensity of amyloid indicator dye thioflavin T. Premixing of drugs with insulin inhibited the nucleation phase and inhibitory potential was boosted by increasing the concentration of the drug. Moreover, addition of drugs at the studied concentrations attenuated the insulin fibril induced cytotoxicity in breast cancer cell line MDA-MB-231. Our results highlight the amino group of salicylic acid exhibited enhanced inhibitory effects on insulin fibrillation in comparison to acetyl group. It may be due to presence of amino group that helps it to prolong the nucleation phase with strong binding as well as disruption of aromatic and hydrophobic stacking that plays a key role in amyloid progression. © 2017 Wiley Periodicals, Inc.

  9. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production.

    PubMed

    Maia, Margarida R G; Fonseca, António J M; Oliveira, Hugo M; Mendonça, Carla; Cabrita, Ana R J

    2016-08-30

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions.

  10. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production

    PubMed Central

    Maia, Margarida R. G.; Fonseca, António J. M.; Oliveira, Hugo M.; Mendonça, Carla; Cabrita, Ana R. J.

    2016-01-01

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions. PMID:27572486

  11. Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions

    PubMed Central

    Kim, Yoona; Keogh, Jennifer B.

    2017-01-01

    Epidemiological and clinical studies have indicated that nut consumption could be a healthy dietary strategy to prevent and treat type 2 diabetes (T2DM) and related cardiovascular disease (CVD). The objective of this review is to examine the potential mechanisms of action of nuts addressing effects on glycemic control, weight management, energy balance, appetite, gut microbiota modification, lipid metabolism, oxidative stress, inflammation, endothelial function and blood pressure with a focus on data from both animal and human studies. The favourable effects of nuts could be explained by the unique nutrient composition and bioactive compounds in nuts. Unsaturated fatty acids (monounsaturated fatty acids and polyunsaturated fatty acids) present in nuts may play a role in glucose control and appetite suppression. Fiber and polyphenols in nuts may also have an anti-diabetic effect by altering gut microbiota. Nuts lower serum cholesterol by reduced cholesterol absorption, inhibition of HMG-CoA reductase and increased bile acid production by stimulation of 7-α hydroxylase. Arginine and magnesium improve inflammation, oxidative stress, endothelial function and blood pressure. In conclusion, nuts contain compounds that favourably influence glucose homeostasis, weight control and vascular health. Further investigations are required to identify the most important mechanisms by which nuts decrease the risk of T2DM and CVD. PMID:29165404

  12. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer.

    PubMed

    Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin

    2015-03-20

    The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids.

  13. The Protective Effects of Extra Virgin Olive Oil on Immune-mediated Inflammatory Responses.

    PubMed

    Casas, Rosa; Estruch, Ramon; Sacanella, Emilio

    2018-01-01

    The increasing interest in the Mediterranean diet (MeDiet) hinges on the relevant role it plays in inflammatory diseases. Several clinical, epidemiological and experimental evidences suggest that consumption of the MeDiet reduces the incidence of certain pathologies related to oxidative stress, chronic inflammation and immune system diseases such as cancer, atherosclerosis and cardiovascular disease (CVD). These reductions can be partially attributed to extra virgin olive oil (EVOO) consumption which has been described as a key bioactive food because of its high nutritional quality and its particular composition of fatty acids, vitamins and polyphenols. Indeed, the beneficial effects of EVOO have been linked to its fatty acid composition, which is very rich in monounsaturated fatty acids (MUFA), and has moderate saturated and polyunsaturated fatty acids (PUFA). The current knowledge available on the beneficial effects of EVOO and its phenolic compounds, specifically its biological properties and antioxidant capacity against immune-mediated inflammatory responses (atherosclerosis, rheumatoid arthritis, diabetes, obesity, cancer, inflammatory bowel disease or neurodegenerative disease, among others) in addition to its potential clinical applications. The increasing body of studies carried out provides compelling evidence that olive polyphenols are potential candidates to combat chronic inflammatory states. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Bioavailability and potential uses of vegetarian sources of omega-3 fatty acids: a review of the literature.

    PubMed

    Lane, Katie; Derbyshire, Emma; Li, Weili; Brennan, Charles

    2014-01-01

    Presently alpha-linolenic acid (ALA) is the most widely used vegetarian LC3PUFA, but only marginal amounts are converted into eicosapentaenoic (EPA) and docosahexaenoic acid (DHA); both of which are strongly related to human health. Currently, fish oils represent the most prominent dietary sources of EPA and DHA; however, these are unsuitable for vegetarians. Alternative sources include flaxseed, echium, walnut, and algal oil but their conversion to EPA and DHA must be considered. The present systematic review sets out to collate information from intervention studies examining the bioavailability of alternative vegetarian long chain omega-3 (n-3) polyunsaturated fatty acids (LC3PUFA) sources. Ten key papers published over the last 10 years were identified with seven intervention studies reporting that ALA from nut and seed oils was not converted to DHA at all. Three studies showed that ingestion of micro-algae oil led to significant increases in blood erythrocyte and plasma DHA. Further work is now needed to identify optimal doses of alternative vegetarian LC3PUFAs and how these can be integrated within daily diets. The potential role of algal oils appears to be particularly promising and an area in which further research is warranted.

  15. Estrogen treatment of acetic acid burns to the vagina, cervix, and perineum: a case report and review of the literature.

    PubMed

    Ching, Jessica A; Kuykendall, Lauren V; Troy, Jared S; Smith, David J

    2014-01-01

    In colposcopic evaluation of the cervix, acetic acid of 3 to 5% is commonly used for identification of preneoplastic and neoplastic cells. Acetic acid is a known caustic substance and has the potential to cause irritation and chemical burns when there is sufficient concentration or duration of contact. The authors present a unique case of a woman who inadvertently received undiluted acetic acid during a routine colposcopy, resulting in significant chemical burns of the vagina, cervix, and perineum. Her burns were treated with topical estrogen cream of 1 g twice daily applied directly to the wounds. The burn wounds were fully healed within 8 weeks without complication or additional treatment. At 6 months after the injury, the patient was allowed to engage in sexual activity, and vaginal dilation and pelvic floor therapy were initiated. At 12 months postinjury, her only symptomatic scarring at the left vaginal wall continues to improve. Thus, topical estrogen treatment of 1 g applied twice daily should be continued until burn scar maturation is complete and treatment improvement plateaus in cases of burns to the vagina, cervix, and perineum. This case is further clinical evidence of estrogen's positive effect on wound healing and its potential role in burn treatment.

  16. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer

    NASA Astrophysics Data System (ADS)

    Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin

    2015-03-01

    The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids.

  17. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer

    PubMed Central

    Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin

    2015-01-01

    The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids. PMID:25791573

  18. Salicylic acid, a plant defense hormone, is specifically secreted by a molluscan herbivore.

    PubMed

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.

  19. Salicylic Acid, a Plant Defense Hormone, Is Specifically Secreted by a Molluscan Herbivore

    PubMed Central

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T.; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding. PMID:24466122

  20. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production

    NASA Astrophysics Data System (ADS)

    Maia, Margarida R. G.; Fonseca, António J. M.; Oliveira, Hugo M.; Mendonça, Carla; Cabrita, Ana R. J.

    2016-08-01

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions.

  1. Critical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury.

    PubMed

    Llacuna, Laura; Marí, Montserrat; Garcia-Ruiz, Carmen; Fernandez-Checa, José C; Morales, Albert

    2006-09-01

    The molecular mechanisms of hepatic ischemia/reperfusion (I/R) damage are incompletely understood. We investigated the role of ceramide in a murine model of warm hepatic I/R injury. This sphingolipid induces cell death and participates in tumor necrosis factor (TNF) signaling. Hepatic ceramide levels transiently increased after the reperfusion phase of the ischemic liver in mice, because of an early activation of acidic sphingomyelinase (ASMase) followed by acid ceramidase stimulation. In vivo administration of an ASMase inhibitor, imipramine, or ASMase knockdown by siRNA decreased ceramide generation during I/R, and attenuated serum ALT levels, hepatocellular necrosis, cytochrome c release, and caspase-3 activation. ASMase-induced ceramide generation activated JNK resulting in BimL phosphorylation and translocation to mitochondria, as the inhibition of ASMase by imipramine prevented these events. In contrast, blockade of ceramide catabolism by N-oleyolethanolamine (NOE), a ceramidase inhibitor, enhanced ceramide levels and potentiated I/R injury compared with vehicle-treated mice. Pentoxifylline treatment prevented TNF upregulation and ASMase activation. Furthermore, 9 of 11 mice treated with imipramine survived 7 days after total liver ischemia, compared with 4 of 12 vehicle-treated mice, whereas 8 of 8 NOE-treated mice died within 2 days of total liver ischemia. In conclusion, ceramide generated from ASMase plays a key role in I/R-induced liver damage, and its modulation may be of therapeutic relevance.

  2. Evaluation of the potential of soil remediation by direct multi-channel pulsed corona discharge in soil.

    PubMed

    Wang, Tie Cheng; Qu, Guangzhou; Li, Jie; Liang, Dongli

    2014-01-15

    A novel approach, named multi-channel pulsed corona discharge in soil, was developed for remediating organic pollutants contaminated soil, with p-nitrophenol (PNP) as the model pollutant. The feasibility of PNP degradation in soil was explored by evaluating effects of pulse discharge voltage, air flow rate and soil moisture on PNP degradation. Based on roles of chemically active species and evolution of degradation intermediates, PNP degradation processes were discussed. Experimental results showed that about 89.4% of PNP was smoothly degraded within 60min of discharge treatment at pulse discharge voltage 27kV, soil moisture 5% and air flow rate 0.8Lmin(-1), and the degradation process fitted the first-order kinetic model. Increasing pulse discharge voltage was found to be favorable for PNP degradation, but not for energy yield. There existed appropriate air flow rate and soil moisture for obtaining gratifying PNP degradation efficacy. Roles of radical scavenger and measurement of active species suggested that ozone, H2O2, and OH radicals played very important roles in PNP degradation. CN bond in PNP molecule was cleaved, and the main intermediate products such as hydroquinone, benzoquinone, catechol, phenol, acetic acid, formic acid, oxalic acid, NO2(-) and NO3(-) were identified. Possible pathway of PNP degradation in soil in such a system was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Heart-type fatty acid-binding protein in cardiovascular disease: A systemic review.

    PubMed

    Otaki, Yoichiro; Watanabe, Tetsu; Kubota, Isao

    2017-11-01

    Fatty acid-binding proteins, whose clinical applications have been studied, are a family of proteins that reflect tissue injury. Heart-type fatty acid-binding protein (H-FABP) is a marker of ongoing myocardial damage and useful for early diagnosis of acute myocardial infarction (AMI). In the past decade, compared to other cardiac enzymes, H-FABP has shown more promise as an early detection marker for AMI. However, the role of H-FABP is being re-examined due to recent refinement in the search for newer biomarkers, and greater understanding of the role of high-sensitivity troponin. We discuss the current role of H-FABP as an early marker for AMI in the era of high sensitive troponin. H-FABP is highlighted as a prognostic marker for a broad spectrum of fatal diseases, viz., AMI, heart failure, arrhythmia, and pulmonary embolism that could be associated with poor clinical outcomes. Because the cut-off value of what constitutes an abnormal H-FABP potentially differs for each cardiovascular event and depends on the clinical setting, an optimal cut-off value has not been clearly established. Of note, several factors such as age, gender, and cardiovascular risk factors, which affect H-FABP levels need to be considered in this context. In this review, we discuss the clinical applications of H-FABP as a prognostic marker in various clinical settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.

    PubMed

    Chow, Monica D; Lee, Yi-Horng; Guo, Grace L

    2017-08-01

    Nonalcoholic fatty liver disease is growing in prevalence worldwide. It is marked by the presence of macrosteatosis on liver histology but is often clinically asymptomatic. However, it can progress into nonalcoholic steatohepatitis which is a more severe form of liver disease characterized by inflammation and fibrosis. Further progression leads to cirrhosis, which predisposes patients to hepatocellular carcinoma or liver failure. The mechanism by which simple steatosis progresses to steatohepatitis is not entirely clear. However, multiple pathways have been proposed. A common link amongst many of these pathways is disruption of the homeostasis of bile acids. Other than aiding in the absorption of lipids and lipid-soluble vitamins, bile acids act as ligands. For example, they bind to farnesoid X receptor, which is critically involved in many of the pathways responsible for maintaining bile acid, glucose, and lipid homeostasis. Alterations to these pathways can lead to dysregulation of energy balance and increased inflammation and fibrosis. Repeated insults over time may be the key to development of steatohepatitis. For this reason, current drug therapies target aspects of these pathways to try to reduce and halt inflammation and fibrosis. This review will focus on the role of bile acids in these various pathways and how changes in these pathways may result in steatohepatitis. While there is no approved pharmaceutical treatment for either hepatic steatosis or steatohepatitis, this review will also touch upon the multitude of potential therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Multiple Carbohydrate Binding Specificities of Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    Teneberg, Susann

    Persistent colonization of the human stomach by Helicobacter pylori is a risk factor for the development of peptic ulcer disease and gastric cancer. Adhesion of microbes to the target tissue is an important determinant for successful initiation, establishment and maintenance of infection, and a variety of different candidate carbohydrate receptors for H. pylori have been identified. Here the different the binding specifities, and their potential role in adhesion to human gastric epithelium are described. Finally, recent findings on the roles of sialic acid binding SabA adhesin in interactions with human neutrophils and erythrocytes are discussed.

  6. Gamma-butyrolactone and furan signaling systems in Streptomyces.

    PubMed

    Sidda, John D; Corre, Christophe

    2012-01-01

    Streptomyces bacteria produce different classes of diffusible signaling molecules that trigger secondary metabolite production and/or morphological development within the cell population. The biosynthesis of gamma-butyrolactones (GBLs) and 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids (AHFCAs) signaling molecules is related and involves an essential AfsA-like butenolide synthase. This chapter first describes the catalytic role of AfsA-like enzyme then provides details about methods for the discovery and characterization of potentially novel signaling molecules. In section 4, one approach for establishing the biological role of these signaling molecules is presented. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Mead acid (20:3n-9) and n-3 polyunsaturated fatty acids are not associated with risk of posterior longitudinal ligament ossification: results of a case-control study.

    PubMed

    Hamazaki, Kei; Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Hamazaki, Tomohito; Kimura, Tomoatsu

    2015-05-01

    Ossification of the posterior longitudinal ligament (OPLL) involves the replacement of ligamentous tissue with ectopic bone. Although genetics and heritability appear to be involved in the development of OPLL, its pathogenesis remains to be elucidated. Given previous findings that 5,8,11-eicosatrienoic acid [20:3n-9, Mead acid (MA)] has depressive effects on osteoblastic activity and anti-angiogenic effects, and that n-3 polyunsaturated fatty acids (PUFAs) have a preventive effect on heterotopic ossification, we hypothesized that both fatty acids would be involved in OPLL development. To examine the biological significance of these and other fatty acids in OPLL, we conducted this case-control study involving 106 patients with cervical OPLL and 109 age matched controls. Fatty acid composition was determined from plasma samples by gas chromatography. Associations between fatty acid levels and incident OPLL were evaluated by logistic regression. Contrary to our expectations, we found no significant differences between patients and controls in the levels of MA or n-3 PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid). Logistic regression analysis did not reveal any associations with OPLL risk for MA or n-3 PUFAs. In conclusion, no potential role was found for MA or n-3 PUFAs in ectopic bone formation in the spinal canal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Ionic complexation as a non-covalent approach for the design of folate anchored rifampicin Gantrez nanoparticles.

    PubMed

    Date, Praveen V; Patel, Mitesh D; Majee, Sharmila B; Samad, Abdul; Devarajan, Padma V

    2013-05-01

    The present study discloses the design of folate anchored Rifampicin-Poly methylvinylether maleic anhydride copolymer (Gantrez AN-119, Gantrez) nanoparticles (RFMGzFa) by ionic complexation. Folic acid was anchored to the preformed drug loaded nanoparticles. Folic acid was anchored in different concentration by simply varying the amount of folic acid added during preparation. RFMGzFa nanoparticles were prepared by emulsion solvent diffusion method. Gantrez AN-119 rapidly hydrolyzes in aqueous medium releasing carboxylic acid groups, to create an acidic environment. This facilitates protonation and subsequent ionic complexation of folic acid with the carboxylic groups, to enable anchoring. FTIR spectra confirmed this interaction. Infrared imaging revealed distribution of folic acid across the nanoparticle surface. Nanoparticles were obtained in the size range 350-450 nm with RFM loading of 12-14% w/w. Zeta potential confirmed colloidal stability. TEM/SEM revealed spherical morphology. RFMGzFa nanoparticles exhibited sustained release of RFM and folic acid. Folic acid showed sustained release upto 12 h, which was ion exchange mediated. A 480% enhancement in RFM uptake with RFMGzFa nanoparticles compared to 300% with RFMGz nanoparticles in-vitro, in human macrophage cell line U-937, suggested the role of folic acid in folate receptor mediated uptake. Ionic complexation represents a simple non-covalent approach for anchoring folic acid on polymeric nanoparticles of Gantrez.

  9. Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress

    PubMed Central

    Aardema, Hilde; van Tol, Helena T. A.; Wubbolts, Richard W.; Brouwers, Jos F. H. M.; Gadella, Bart M.; Roelen, Bernard A. J.

    2017-01-01

    Abstract Metabolic rich and poor conditions are both characterized by elevated free fatty acid levels and have been associated with impaired female fertility. In particular, saturated free fatty acids have a dose-dependent negative impact on oocyte developmental competence, while monounsaturated free fatty acids appear less harmful. Cumulus cells seem to protect the oocyte against free fatty acids, and the aim of this study was to determine the mechanism behind this protection In particular, the role of the enzyme stearoyl-CoA desaturase (SCD) that converts saturated into monounsaturated fatty acids was investigated. SCD gene and protein were abundantly expressed in cumulus cells, but expression was low in oocytes. The level of SCD protein expression in cumulus cells did not change when COCs were exposed to saturated stearic acid during maturation. SCD inhibition in the presence of stearic acid significantly reduced the developmental competence of oocytes and increased the incidence of apoptosis in cumulus cells. The esterified oleic/stearic acid ratio of the neutral lipid fraction in cumulus cells decreased in the presence of SCD inhibitors when COCs were exposed to saturated free fatty acids during maturation, indicating the SCD-specific conversion of saturated fatty acids under noninhibiting conditions. The observation that cumulus cells can desaturate the potentially toxic stearic acid into oleic acid via SCD activity provides a mechanistic insight into how the cumulus cells protect the oocyte against toxicity by saturated fatty acid. PMID:28486699

  10. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    USDA-ARS?s Scientific Manuscript database

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  11. Diversity of compounds in femoral secretions of Galápagos iguanas (genera: Amblyrhynchus and Conolophus), and their potential role in sexual communication in lek-mating marine iguanas (Amblyrhynchus cristatus).

    PubMed

    Ibáñez, Alejandro; Menke, Markus; Quezada, Galo; Jiménez-Uzcátegui, Gustavo; Schulz, Stefan; Steinfartz, Sebastian

    2017-01-01

    Chemical signals are widely used in the animal kingdom, enabling communication in various social contexts, including mate selection and the establishment of dominance. Femoral glands, which produce and release waxy secretions into the environment, are organs of central importance in lizard chemical communication. The Galápagos marine iguana ( Amblyrhynchus cristatus ) is a squamate reptile with a lek-mating system. Although the lekking behaviour of marine iguanas has been well-studied, their potential for sexual communication via chemical cues has not yet been investigated. Here we describe the diversity of the lipophilic fraction of males' femoral gland secretions among 11 island populations of marine iguanas, and compare it with the composition of its sister species, the Galápagos land iguana ( Conolophus subcristatus ). We also conducted behavioural observations in marine iguana territorial males in order to explore the possible function of these substances in the context of male dominance in leks. Femoral secretions were analysed by gas chromatography coupled to mass spectrometry (GC-MS), and chromatography with a flame ionisation detector (GC-FID) in order to characterise the lipophilic composition. To understand the potential role of femoral secretions in marine iguana intraspecific communication, territorial males were sampled for their femoral glands and monitored to record their head bob rate-a territorial display behaviour in males-as well as the number of females present in their leks. We found that the gland secretions were composed of ten saturated and unsaturated carboxylic acids ranging in chain length between C 16 and C 24 , as well as three sterols. Cholesterol was the main compound found. Intriguingly, land iguanas have a higher diversity of lipophilic compounds, with structural group of lipids (i.e. aldehydes) entirely absent in marine iguanas; overall the chemical signals of both species were strongly differentiated. Lipid profiles also differed among populations of marine iguanas from different islands, with some islands demonstrating a high diversity of lipophilic compounds (i.e. full spectra of compounds), and others lacking one or more compounds. Among the compounds most frequently found missing were 11- and 13-eicosenoic acids. Gland secretions of males with a better body condition and with a higher dominance status (i.e. those accompanied by females and with higher head bob display) were proportionately richer in C 20 -unsaturated fatty acids (11-eicosenoic acid). Land and marine iguanas strongly diverged in their chemical composition of the femoral glands likely due to ecological differences between both species. Despite that marine iguana populations varied in their femoral gland composition that was not related to their genetic structure. Our results indicated that 11-eicosenoic acid may play an important role in intraspecific chemical communication in marine iguanas.

  12. Glutamic acid as anticancer agent: An overview

    PubMed Central

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952

  13. Glutamic acid as anticancer agent: An overview.

    PubMed

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  14. 18ß-glycyrrhetinic acid derivative promotes proliferation, migration and aquaporin-3 expression in human dermal fibroblasts.

    PubMed

    Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin

    2017-01-01

    Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects.

  15. Comparison between conjugated linoleic acid and essential fatty acids in preventing oxidative stress in bovine mammary epithelial cells.

    PubMed

    Basiricò, L; Morera, P; Dipasquale, D; Tröscher, A; Bernabucci, U

    2017-03-01

    Some in vitro and in vivo studies have demonstrated protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation. However, only a few and conflicting studies have been conducted showing the antioxidant potential of essential fatty acids. The objectives of the study were to compare the effects of CLA to other essential fatty acids on the thiol redox status of bovine mammary epithelia cells (BME-UV1) and their protective role against oxidative damage on the mammary gland by an in vitro study. The BME-UV1 cells were treated with complete medium containing 50 μM of cis-9,trans-11 CLA, trans-10,cis-12 CLA, α-linolenic acid, γ-linolenic acid, and linoleic acid. To assess the cellular antioxidant response, glutathione, NADPH, and γ-glutamyl-cysteine ligase activity were measured 48 h after addition of fatty acids (FA). Intracellular reactive oxygen species and malondialdehyde production were also assessed in cells supplemented with FA. Reactive oxygen species production after 3 h of H 2 O 2 exposure was assessed to evaluate and to compare the potential protection of different FA against H 2 O 2 -induced oxidative stress. All FA treatments induced an intracellular GSH increase, matched by high concentrations of NADPH and an increase of γ-glutamyl-cysteine ligase activity. Cells supplemented with FA showed a reduction in intracellular malondialdehyde levels. In particular, CLA isomers and linoleic acid supplementation showed a better antioxidant cellular response against oxidative damage induced by H 2 O 2 compared with other FA. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  16. A three-dimensional interpenetrating electrode of reduced graphene oxide for selective detection of dopamine.

    PubMed

    Yu, Xiaowen; Sheng, Kaixuan; Shi, Gaoquan

    2014-09-21

    Electrochemical detection of dopamine plays an important role in medical diagnosis. In this paper, we report a three-dimensional (3D) interpenetrating graphene electrode fabricated by electrochemical reduction of graphene oxide for selective detection of dopamine. This electrochemically reduced graphene oxide (ErGO) electrode was used directly without further functionalization or blending with other functional materials. This electrode can efficiently lower the oxidation potential of ascorbic acid; thus, it is able to selectively detect dopamine in the presence of ascorbic acid and uric acid. The ErGO-based biosensor exhibited a linear response towards dopamine in the concentration range of 0.1-10 μM with a low detection limit of 0.1 μM. Furthermore, this electrode has good reproducibility and environmental stability, and can be used to analyse real samples.

  17. Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.

    PubMed

    Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori

    2016-10-11

    The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an S N 1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.

  18. Long-Term Intake of Uncaria rhynchophylla Reduces S100B and RAGE Protein Levels in Kainic Acid-Induced Epileptic Seizures Rats

    PubMed Central

    Tang, Nou-Ying; Ho, Tin-Yun; Chen, Chao-Hsiang

    2017-01-01

    Epileptic seizures are crucial clinical manifestations of recurrent neuronal discharges in the brain. An imbalance between the excitatory and inhibitory neuronal discharges causes brain damage and cell loss. Herbal medicines offer alternative treatment options for epilepsy because of their low cost and few side effects. We established a rat epilepsy model by injecting kainic acid (KA, 12 mg/kg, i.p.) and subsequently investigated the effect of Uncaria rhynchophylla (UR) and its underlying mechanisms. Electroencephalogram and epileptic behaviors revealed that the KA injection induced epileptic seizures. Following KA injection, S100B levels increased in the hippocampus. This phenomenon was attenuated by the oral administration of UR and valproic acid (VA, 250 mg/kg). Both drugs significantly reversed receptor potentiation for advanced glycation end product proteins. Rats with KA-induced epilepsy exhibited no increase in the expression of metabotropic glutamate receptor 3, monocyte chemoattractant protein 1, and chemokine receptor type 2, which play a role in inflammation. Our results provide novel and detailed mechanisms, explaining the role of UR in KA-induced epileptic seizures in hippocampal CA1 neurons. PMID:28386293

  19. Design and Synthesis of Waterborne Polyurethanes.

    PubMed

    Kang, Soo-Young; Ji, Zhaoxia; Tseng, Ling-Fang; Turner, Sara A; Villanueva, Dinara A; Johnson, Rhiannon; Albano, Ariana; Langer, Robert

    2018-05-01

    Waterborne polyurethanes (WBPUs) have attracted increasing attention in a wide range of industrial applications because of their versatile properties as well as ecofriendly nature. Although extensive research has been carried out on WBPU synthesis, the roles of some of the key synthesis components remain unclear. In this study, through systematically controlling and fine tuning the precursor compositions and reaction conditions, over 300 WBPUs are synthesized. This research enables the roles of several key components that govern WBPU physicochemical properties and ultimately the potential WBPU applications to be identified. Using hair styling as an example, it is demonstrated that only the WBPUs with an optimal range of properties (e.g., Young's modulus >150 MPa, elongation at break: 15-300%, moisture uptake <10%) can achieve strong styling performance. To further improve the natural-feel sensory benefits in the final styling products, a number of fatty acids with different carbon chain lengths or unsaturation levels are incorporated into WBPUs. Among the ten fatty acids studied, linoleic acid is identified as the most preferred additive. Both in vitro and in vivo testing demonstrate that WBPUs with optimal properties are promising materials for developing strong, long-lasting styling products with natural feel. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family

    PubMed Central

    González-Muñoz, Eliécer; Avendaño-Vázquez, Aida-Odette; Montes, Ricardo A. Chávez; de Folter, Stefan; Andrés-Hernández, Liliana; Abreu-Goodger, Cei; Sawers, Ruairidh J. H.

    2015-01-01

    Purple acid phosphatases (PAPs) play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73) reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members. PMID:26042133

  1. Long-Term Intake of Uncaria rhynchophylla Reduces S100B and RAGE Protein Levels in Kainic Acid-Induced Epileptic Seizures Rats.

    PubMed

    Tang, Nou-Ying; Lin, Yi-Wen; Ho, Tin-Yun; Cheng, Chin-Yi; Chen, Chao-Hsiang; Hsieh, Ching-Liang

    2017-01-01

    Epileptic seizures are crucial clinical manifestations of recurrent neuronal discharges in the brain. An imbalance between the excitatory and inhibitory neuronal discharges causes brain damage and cell loss. Herbal medicines offer alternative treatment options for epilepsy because of their low cost and few side effects. We established a rat epilepsy model by injecting kainic acid (KA, 12 mg/kg, i.p.) and subsequently investigated the effect of Uncaria rhynchophylla (UR) and its underlying mechanisms. Electroencephalogram and epileptic behaviors revealed that the KA injection induced epileptic seizures. Following KA injection, S100B levels increased in the hippocampus. This phenomenon was attenuated by the oral administration of UR and valproic acid (VA, 250 mg/kg). Both drugs significantly reversed receptor potentiation for advanced glycation end product proteins. Rats with KA-induced epilepsy exhibited no increase in the expression of metabotropic glutamate receptor 3, monocyte chemoattractant protein 1, and chemokine receptor type 2, which play a role in inflammation. Our results provide novel and detailed mechanisms, explaining the role of UR in KA-induced epileptic seizures in hippocampal CA1 neurons.

  2. What is the evidence for a role for diet and nutrition in osteoarthritis?

    PubMed Central

    Thomas, Sally; Browne, Heather; Rayman, Margaret P

    2018-01-01

    Abstract As current treatment options in OA are very limited, OA patients would benefit greatly from some ability to self-manage their condition. Since diet may potentially affect OA, we reviewed the literature on the relationship between nutrition and OA risk or progression, aiming to provide guidance for clinicians. For overweight/obese patients, weight reduction, ideally incorporating exercise, is paramount. The association between metabolic syndrome, type-2 diabetes and OA risk or progression may partly explain the apparent benefit of dietary-lipid modification resulting from increased consumption of long-chain omega-3 fatty-acids from oily fish/fish oil supplements. A strong association between OA and raised serum cholesterol together with clinical effects in statin users suggests a potential benefit of reduction of cholesterol by dietary means. Patients should ensure that they meet the recommended intakes for micronutrients such as vitamin K, which has a role in bone/cartilage mineralization. Evidence for a role of vitamin D supplementation in OA is unconvincing. PMID:29684218

  3. Natural abiotic formation of oxalic acid in soils: results from aromatic model compounds and soil samples.

    PubMed

    Studenroth, Sabine; Huber, Stefan G; Kotte, Karsten; Schöler, Heinz F

    2013-02-05

    Oxalic acid is the smallest dicarboxylic acid and plays an important role in soil processes (e.g., mineral weathering and metal detoxification in plants). We have first proven its abiotic formation in soils and investigated natural abiotic degradation processes based on the oxidation of soil organic matter, enhanced by Fe(3+) and H(2)O(2) as hydroxyl radical suppliers. Experiments with the model compound catechol and further hydroxylated benzenes were performed to examine a common degradation pathway and to presume a general formation mechanism of oxalic acid. Two soil samples were tested for the release of oxalic acid and the potential effects of various soil parameters on oxalic acid formation. Additionally, the soil samples were treated with different soil sterilization methods to prove the oxalic acid formation under abiotic soil conditions. Different series of model experiments were conducted to determine a range of factors including Fe(3+), H(2)O(2), reaction time, pH, and chloride concentration on oxalic acid formation. Under certain conditions, catechol is degraded up to 65.6% to oxalic acid referring to carbon. In serial experiments with two soil samples, oxalic acid was produced, and the obtained results are suggestive of an abiotic degradation process. In conclusion, Fenton-like conditions with low Fe(3+) concentrations and an excess of H(2)O(2) as well as acidic conditions were required for an optimal oxalic acid formation. The presence of chloride reduced oxalic acid formation.

  4. Role of Monocarboxylate Transporters in Drug Delivery to the Brain

    PubMed Central

    Vijay, Nisha; Morris, Marilyn E.

    2014-01-01

    Monocarboxylate transporters (MCTs) are known to mediate the transport of short chain monocarboxylates such as lactate, pyruvate and butyrate. Currently, fourteen members of this transporter family have been identified by sequence homology, of which only the first four members (MCT1- MCT4) have been shown to mediate the proton-linked transport of monocarboxylates. Another transporter family involved in the transport of endogenous monocarboxylates is the sodium coupled MCTs (SMCTs). These act as a symporter and are dependent on a sodium gradient for their functional activity. MCT1 is the predominant transporter among the MCT isoforms and is present in almost all tissues including kidney, intestine, liver, heart, skeletal muscle and brain. The various isoforms differ in terms of their substrate specificity and tissue localization. Due to the expression of these transporters in the kidney, intestine, and brain, they may play an important role in influencing drug disposition. Apart from endogenous short chain monocarboxylates, they also mediate the transport of exogenous drugs such as salicylic acid, valproic acid, and simvastatin acid. The influence of MCTs on drug pharmacokinetics has been extensively studied for γ-hydroxybutyrate (GHB) including distribution of this drug of abuse into the brain and the results will be summarized in this review. The physiological role of these transporters in the brain and their specific cellular localization within the brain will also be discussed. This review will also focus on utilization of MCTs as potential targets for drug delivery into the brain including their role in the treatment of malignant brain tumors. PMID:23789956

  5. Peptide Conjugates of Benzene Carboxylic Acids as Agonists and Antagonists of Amylin Aggregation.

    PubMed

    Profit, Adam A; Vedad, Jayson; Desamero, Ruel Z B

    2017-02-15

    Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37 residue peptide hormone that is stored and co-secreted with insulin. hIAPP plays a pivotal role in type 2 diabetes and is the major component of amyloid deposits found in the pancreas of patients afflicted with the disease. The self-assembly of hIAPP and the formation of amyloid is linked to the death of insulin producing β-cells. Recent findings suggest that soluble hIAPP oligomers are the cytotoxic species responsible for β-cell loss whereas amyloid fibrils themselves may indeed be innocuous. Potential avenues of therapeutic intervention include the development of compounds that prevent hIAPP self-assembly as well as those that reduce or eliminate lag time and rapidly accelerate the formation of amyloid fibrils. Both of these approaches minimize temporal exposure to soluble cytotoxic hIAPP oligomers. Toward this end our laboratory has pursued an electrostatic repulsion approach to the development of potential inhibitors and modulators of hIAPP self-assembly. Peptide conjugates were constructed in which benzene carboxylic acids of varying charge were employed as electrostatic disrupting elements and appended to the N-terminal of the hIAPP 22-29 (NFGAILSS) self-recognition sequence. The self-assembly kinetics of conjugates were characterized by turbidity measurements and the structure of aggregates probed by Raman and CD spectroscopy while the morphology was assessed using transmission electron microscopy. Several benzene carboxylic acid peptide conjugates failed to self-assemble and some were found to inhibit the aggregation of full-length amylin while others served to enhance the rate of amyloid formation and/or increase the yield of amyloid produced. Studies reveal that the geometric display of free carboxylates on the benzene ring of the conjugates plays an important role in the activity of conjugates. In addition, a number of free benzene carboxylic acids were found to modulate amylin self-assembly on their own. The results of these investigations confirm the viability of the electrostatic repulsion approach to the modulation of amyloid formation and may aid the design and development of potential therapeutic agents.

  6. Uptake of algal carbon and the likely synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera) within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and 13C tracer experiments

    NASA Astrophysics Data System (ADS)

    Larkin, K. E.; Gooday, A. J.; Woulds, C.; Jeffreys, R. M.; Schwartz, M.; Cowie, G.; Whitcraft, C.; Levin, L.; Dick, J. R.; Pond, D. W.

    2014-07-01

    Foraminifera are an important component of benthic communities in oxygen-depleted settings, where they potentially play a significant role in the processing of organic matter. We tracked the uptake of a 13C-labelled algal food source into individual fatty acids in the benthic foraminiferal species Uvigerina ex. gr. semiornata from the Arabian Sea oxygen minimum zone (OMZ). The tracer experiments were conducted on the Pakistan margin during the late/post monsoon period (August-October 2003). A monoculture of the diatom Thalassiosira weisflogii was 13C-labelled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m water depth and for 2.5 days in duration. Shipboard laboratory incubations of cores collected at 140 m incorporated an oxystat system to maintain ambient dissolved oxygen concentrations and were terminated after 5 days. Uptake of diatoms was rapid, with a high incorporation of diatom fatty acids into foraminifera after ~ 2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in situ and laboratory-based experiments. These results indicate that

  7. Olfactory receptor Olfr544 responding to azelaic acid regulates glucagon secretion in α-cells of mouse pancreatic islets.

    PubMed

    Kang, NaNa; Bahk, Young Yil; Lee, NaHye; Jae, YoonGyu; Cho, Yoon Hee; Ku, Cheol Ryong; Byun, Youngjoo; Lee, Eun Jig; Kim, Min-Soo; Koo, JaeHyung

    2015-05-08

    Olfactory receptors (ORs) are extensively expressed in olfactory as well as non-olfactory tissues. Although many OR transcripts are expressed in non-olfactory tissues, only a few studies demonstrate the functional role of ORs. Here, we verified that mouse pancreatic α-cells express potential OR-mediated downstream effectors. Moreover, high levels of mRNA for the olfactory receptors Olfr543, Olfr544, Olfr545, and Olfr1349 were expressed in α-cells as assessed using RNA-sequencing, microarray, and quantitative real-time RT-PCR analyses. Treatment with dicarboxylic acids (azelaic acid and sebacic acid) increased intracellular Ca(2+) mobilization in pancreatic α-cells. The azelaic acid-induced Ca(2+) response as well as glucagon secretion was concentration- and time-dependent manner. Olfr544 was expressed in α-cells, and the EC50 value of azelaic acid to Olfr544 was 19.97 μM, whereas Olfr545 did not respond to azelaic acid. Our findings demonstrate that Olfr544 responds to azelaic acid to regulate glucagon secretion through Ca(2+) mobilization in α-cells of the mouse pancreatic islets, suggesting that Olfr544 may be an important therapeutic target for metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Insulin activation of plasma non-esterified fatty acid uptake in metabolic syndrome

    PubMed Central

    Ramos-Roman, Maria A.; Lapidot, Smadar A.; Phair, Robert D.; Parks, Elizabeth J.

    2012-01-01

    Objectives Insulin control of fatty acid metabolism has long been deemed dominated by suppression of adipose lipolysis. This study’s goal was to test the hypothesis that this single role of insulin is insufficient to explain observed fatty acid dynamics. Methods and Results Fatty acid kinetics were measured during a meal-tolerance test and insulin sensitivity assessed by IVGTT in overweight human subjects (n=15, BMI 35.8 ± 7.1 kg/m2). Non-steady state tracer kinetic models were formulated and tested using ProcessDB© software. Suppression of adipose release alone could not account for NEFA concentration changes postprandially, but when combined with insulin activation of fatty acid uptake was consistent with the NEFA data. The observed insulin Km for NEFA uptake was inversely correlated with both insulin sensitivity of glucose uptake (IVGTT Si) (r=−0.626, P=0.01), and whole body fat oxidation after the meal (r=−0.538, P=0.05). Conclusions These results support insulin regulation of fatty acid turnover by both release and uptake mechanisms. Activation of fatty acid uptake is consistent with the human data, has mechanistic precedent in cell culture, and highlights a new potential target for therapies aimed at improving the control of fatty acid metabolism in insulin-resistant disease states. PMID:22723441

  9. Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of branched-chain amino acids.

    PubMed

    Ji, L L; Miller, R H; Nagle, F J; Lardy, H A; Stratman, F W

    1987-08-01

    The influence of endurance training and an acute bout of exercise on plasma concentrations of free amino acids and the intermediates of branched-chain amino acid (BCAA) metabolism were investigated in the rat. Training did not affect the plasma amino acid levels in the resting state. Plasma concentrations of alanine (Ala), aspartic acid (Asp), asparagine (Asn), arginine (Arg), histidine (His), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), phenylalanine (Phe), proline (Pro), serine (Ser), threonine (Thr), and valine (Val) were significantly lower, whereas glutamate (Glu), glycine (Gly), ornithine (Orn), tryptophan (Trp), tyrosine (Tyr), creatinine, urea, and ammonia levels were unchanged, after one hour of treadmill running in the trained rats. Plasma concentration of glutamine (Glu), the branched-chain keto acids (BCKA) and short-chain acyl carnitines were elevated with exercise. Ratios of plasma BCAA/BCKA were dramatically lowered by exercise in the trained rats. A decrease in plasma-free carnitine levels was also observed. These data suggest that amino acid metabolism is enhanced by exercise even in the trained state. BCAA may only be partially metabolized within muscle and some of their carbon skeletons are released into the circulation in forms of BCKA and short-chain acyl carnitines.

  10. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    PubMed

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  11. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.

    PubMed

    Kulkarni, Asmita; Dangat, Kamini; Kale, Anvita; Sable, Pratiksha; Chavan-Gautam, Preeti; Joshi, Sadhana

    2011-03-10

    Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B(12) are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA) levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B(12) deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B(12) deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B(12) lowers plasma and placental DHA levels (p<0.05) and reduces global DNA methylation levels (p<0.05). When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.

  12. Superoxide Triggers an Acid Burst in Saccharomyces cerevisiae to Condition the Environment of Glucose-starved Cells*

    PubMed Central

    Baron, J. Allen; Laws, Kaitlin M.; Chen, Janice S.; Culotta, Valeria C.

    2013-01-01

    Although yeast cells grown in abundant glucose tend to acidify their extracellular environment, they raise the pH of the environment when starved for glucose or when grown strictly with non-fermentable carbon sources. Following prolonged periods in this alkaline phase, Saccharomyces cerevisiae cells will switch to producing acid. The mechanisms and rationale for this “acid burst” were unknown. Herein we provide strong evidence for the role of mitochondrial superoxide in initiating the acid burst. Yeast mutants lacking the mitochondrial matrix superoxide dismutase (SOD2) enzyme, but not the cytosolic Cu,Zn-SOD1 enzyme, exhibited marked acceleration in production of acid on non-fermentable carbon sources. Acid production is also dramatically enhanced by the superoxide-producing agent, paraquat. Conversely, the acid burst is eliminated by boosting cellular levels of Mn-antioxidant mimics of SOD. We demonstrate that the acid burst is dependent on the mitochondrial aldehyde dehydrogenase Ald4p. Our data are consistent with a model in which mitochondrial superoxide damage to Fe-S enzymes in the tricarboxylic acid (TCA) cycle leads to acetate buildup by Ald4p. The resultant expulsion of acetate into the extracellular environment can provide a new carbon source to glucose-starved cells and enhance growth of yeast. By triggering production of organic acids, mitochondrial superoxide has the potential to promote cell population growth under nutrient depravation stress. PMID:23281478

  13. The potential role of natural tumor promoters in marine turtle fibropapillomatosis

    USGS Publications Warehouse

    Landsberg, Jan H.; Balazs, G.H.; Steidinger, K.A.; Baden, D.G.; Work, Thierry M.; Russel, D.J.

    1999-01-01

    Fibropapillomatosis (FP) in green turtles Chelonia mydas is a debilitating, neoplastic disease that has reached worldwide epizootic levels. The etiology of FP is unknown but has been linked to oncogenic viruses. Toxic benthic dinoflagellates (Prorocentrum spp.) are not typically considered tumorigenic agents, yet they have a worldwide distribution and produce a tumor promoter, okadaic acid (OA). Prorocentrum spp. are epiphytic on macroalgae and seagrasses that are normal components of green turtle diets. Here we show that green turtles in the Hawaiian Islands consume Prorocentrum and that high-risk FP areas are associated with areas where P. lima and P. concavum are both highly prevalent and abundant. The presence of presumptive OA in the tissues of Hawaiian green turtles further suggests exposure and a potential role for this tumor promoter in the etiology of FP.

  14. Synthesis of nonionic-anionic colloidal systems based on alkaline and ammonium β-nonylphenol polyethyleneoxy (n = 3-20) propionates/dodecylbenzenesulfonates with prospects for food hygiene

    PubMed Central

    2012-01-01

    Background The main objective of this work was to obtain a binary system of surface-active components (nonionic soap – alkaline and/or ammonium dodecylbenzenesulfonate) with potential competences in food hygiene, by accessing a scheme of classical reactions (cyanoethylation, total acid hydrolysis and stoichiometric neutralization with inorganic alkaline and/or organic ammonium bases) adapted to heterogeneously polyethoxylated nonylphenols (n = 3-20). In the processing system mentioned, dodecylbenzenesulfonic acid, initially the acid catalyst for the exhaustive hydrolysis of β-nonylphenolpolyethyleneoxy (n = 3-20) propionitriles, becomes together with the nonionic soap formed the second surface-active component of the binary system. Results In the reaction scheme adopted the influence of the main operating (duration, temperature, molar ratio of reagents) and structural parameters (degree of oligomerization of the polyoxyethylene chain) on the processing yields for the synthetic steps was followed. The favorable role of the polyoxyethylene chain size is remarked, through its specific conformation and its alkaline cations sequestration competences on the yields of cyanoethylation, but also the beneficial influence of phase-transfer catalysts in the total acid hydrolysis step. The chemical stability of dodecylbenzenesulfonic acid (DBSH) at the temperature and strongly acidic pH of the reaction environment is confirmed. The controlled change of the amount of DBSH in the final binary system will later confer it potential colloidal competences in food hygiene receipts. Conclusions The preliminary synthetic tests performed confirmed the prospect of obtaining a broad range of useful colloidal competences in various food hygiene scenarios. PMID:22958389

  15. Kynurenine pathway metabolism following prenatal KMO inhibition and in Mecp2+/- mice, using liquid chromatography-tandem mass spectrometry.

    PubMed

    Forrest, Caroline M; Kennedy, Peter G E; Rodgers, Jean; Dalton, R Neil; Turner, Charles; Darlington, L Gail; Cobb, Stuart R; Stone, Trevor W

    2016-11-01

    To quantify the full range of tryptophan metabolites along the kynurenine pathway, a liquid chromatography - tandem mass spectrometry method was developed and used to analyse brain extracts of rodents treated with the kynurenine-3-mono-oxygenase (KMO) inhibitor Ro61-8048 during pregnancy. There were significant increases in the levels of kynurenine, kynurenic acid, anthranilic acid and 3-hydroxy-kynurenine (3-HK) in the maternal brain after 5 h but not 24 h, while the embryos exhibited high levels of kynurenine, kynurenic acid and anthranilic acid after 5 h which were maintained at 24 h post-treatment. At 24 h there was also a strong trend to an increase in quinolinic acid levels (P = 0.055). No significant changes were observed in any of the other kynurenine metabolites. The results confirm the marked increase in the accumulation of some neuroactive kynurenines when KMO is inhibited, and re-emphasise the potential importance of changes in anthranilic acid. The prolonged duration of metabolite accumulation in the embryo brains indicates a trapping of compounds within the embryonic CNS independently of maternal levels. When brains were examined from young mice heterozygous for the meCP2 gene - a potential model for Rett syndrome - no differences were noted from control mice, suggesting that the proposed roles for kynurenines in autism spectrum disorder are not relevant to Rett syndrome, supporting its recognition as a distinct, independent, condition. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Intensified Vegetation Water Use due to Soil Calcium Leaching under Acid Deposition

    NASA Astrophysics Data System (ADS)

    Lanning, M.; Wang, L.; Scanlon, T. M.; Vadeboncoeur, M. A.; Adams, M. B.; Epstein, H. E.; Druckenbrod, D.

    2017-12-01

    Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. Nitrate and sulfate deposition from fossil fuel burning has caused significant soil acidification, leading to the leaching of soil base cations. From a physiological perspective, plants require various soil cations as signaling and regulatory ions as well as integral parts of structural molecules; a depletion of soil cations can cause reduced productivity and abnormal responses to environmental change. A deficiency in calcium could also potentially prolong stomatal opening, leading to increased transpiration until enough calcium had been acquired to stimulate stomatal closure. Based on the plant physiology and the nature of acidic deposition, we hypothesize that depletion of the soil calcium supply, induced by acid deposition, would intensify vegetation water use at the watershed scale. We tested this hypothesis by analyzing a long-term and unique data set (1989-2012) of soil lysimeter data along with stream flow and evapotranspiration data at the Fernow Experimental Forest. We show that depletion of soil calcium by acid deposition can intensify vegetation water use ( 10% increase in evapotranspiration and depletion in soil water) for the first time. These results are critical to understanding future water availability, biogeochemical cycles, and surficial energy flux and may help reduce uncertainties in terrestrial biosphere models.

  17. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    PubMed

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. Published by Elsevier Ltd.

  18. Role of liver fatty acid binding protein in hepatocellular injury: effect of CrPic treatment.

    PubMed

    Fan, Weijiang; Chen, Kun; Zheng, Guoqiang; Wang, Wenhang; Teng, Anguo; Liu, Anjun; Ming, Dongfeng; Yan, Peng

    2013-07-01

    This study was designed to investigate the molecular mechanisms of chromium picolinate (CrPic, Fig. 1) hepatoprotective activity from alloxan-induced hepatic injury. Diabetes is induced by alloxan-treatment concurrently with the hepatic injury in mice. In this study, we investigate the protective effect of CrPic treatment in hepatic injury and the signal role of liver fatty acid binding protein in early hepatocellular injury diagnostics. In this study, alanine aminotransferase (ALT; EC 2.6.1.2) and aspartate aminotransferase (AST; EC 2.6.1.1) levels in the alloxan group were higher 71% and 50%, respectively, than those of the control group (ALT: 14.51±0.74; AST: 22.60±0.69). The AST and ALT levels in CrPic group were of minimal difference compared to the control groups. Here, CrPic exhibited amelioration alloxan induced oxidative stress in mouse livers. A significant increase in liver fatty acid-binding protein (L-FABP) was observed, which indicates increased fatty acid utilization in liver tissue [1]. In this study, the mRNA levels of L-FABP increased in both the control (1.1 fold) and CrPic (0.78 fold) groups compared the alloxan group. These findings suggest that hepatic injury may be prevented by CrPic, and is a potential target for use in the treatment of early hepatic injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats.

    PubMed

    Chowdhury, Sayantani; Ghosh, Sumit; Rashid, Kahkashan; Sil, Parames C

    2016-11-01

    The cardiomyocytes are one of the major sources of hyperglycemia induced ROS generation. The present study focuses on the ameliorative role of ferulic acid in combating cardiac complications in diabetic rats. Induction of diabetes by STZ in male Wistar rats (at a dose of 50 mg kg -1  body wt, i.p.) reduced body weight and plasma insulin level, enhanced blood glucose, disturbed the intra-cellular antioxidant machineries and disintegrated the normal radiation pattern of cardiac muscle fibers. Induction of ER stress (up-regulation in the levels of CHOP, GRP78, eIF2α signaling, increased calpain-1 expression), caspase-3 activation, PARP cleavage and DNA fragmentation were evidenced from immunoblot analyses and DNA fragmentation assay. However, ferulic acid administration, (at a dose of 50 mg kg -1  body wt, orally for eight weeks) in post-hyperglycemia could reverse such adverse effects. Also, the molecule increased GLUT-4 translocation to the cardiac membrane by enhanced phosphorylation of PI3Kinase, AKT and inactivation of GSK-3β thereby altering the hyperglycemic condition in the cardiac tissue of diabetic rats. Therefore, as a potential therapeutic, ferulic acid, exhibiting antioxidant and hypoglycemic effects, may hold promise in circumventing stress mediated diabetic cardiomyopathy in rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Potential applications of fish oils rich in omega-3 polyunsaturated fatty acids in the management of gastrointestinal cancer.

    PubMed

    Eltweri, A M; Thomas, A L; Metcalfe, M; Calder, P C; Dennison, A R; Bowrey, D J

    2017-02-01

    Despite advances in chemotherapeutic agents and surgical approaches for its management, gastrointestinal cancer still accounts for 27% of new cancer cases and 35% of cancer related mortality worldwide. Omega-3 polyunsaturated fatty acids (PUFAs) specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti-inflammatory and anticancer activities and are used as immuno-nutrients. A literature search was conducted to identify primary research reporting on applications of the omega-3 PUFAs in gastrointestinal cancer. Reported laboratory studies indicate a clear role for omega-3 PUFAs in preventing cancer development at various stages including cancer cell proliferation, survival, angiogenesis, inflammation and metastasis. In clinical settings, omega-3 PUFAs have been reported to improve the immune response, maintain lean body mass, improve quality of life and improve overall survival in patients with colorectal and pancreatic cancer. In contrast to other GI cancers, there is a strong connection between inflammation and oesophageal cancer. Little work has been done exploring the role for omega-3 PUFAs in oesophageal cancer prevention and management. The authors are conducting a clinical trial investigating the use of parenteral omega-3 PUFAs supplementary to the standard of care (epirubicin, oxaliplatin and capecitabine palliative chemotherapy) in patients with advanced oesophagogastric cancer as a promising new therapeutic approach. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  1. The Role of Docosahexaenoic Acid (DHA) in the Control of Obesity and Metabolic Derangements in Breast Cancer.

    PubMed

    Molfino, Alessio; Amabile, Maria Ida; Monti, Massimo; Arcieri, Stefano; Rossi Fanelli, Filippo; Muscaritoli, Maurizio

    2016-04-05

    Obesity represents a major under-recognized preventable risk factor for cancer development and recurrence, including breast cancer (BC). Healthy diet and correct lifestyle play crucial role for the treatment of obesity and for the prevention of BC. Obesity is significantly prevalent in western countries and it contributes to almost 50% of BC in older women. Mechanisms underlying obesity, such as inflammation and insulin resistance, are also involved in BC development. Fatty acids are among the most extensively studied dietary factors, whose changes appear to be closely related with BC risk. Alterations of specific ω-3 polyunsaturated fatty acids (PUFAs), particularly low basal docosahexaenoic acid (DHA) levels, appear to be important in increasing cancer risk and its relapse, influencing its progression and prognosis and affecting the response to treatments. On the other hand, DHA supplementation increases the response to anticancer therapies and reduces the undesired side effects of anticancer therapies. Experimental and clinical evidence shows that higher fish consumption or intake of DHA reduces BC cell growth and its relapse risk. Controversy exists on the potential anticancer effects of marine ω-3 PUFAs and especially DHA, and larger clinical trials appear mandatory to clarify these aspects. The present review article is aimed at exploring the capacity of DHA in controlling obesity-related inflammation and in reducing insulin resistance in BC development, progression, and response to therapies.

  2. Formation of Methylamine and Ethylamine in Extraterrestrial Ices and Their Role as Fundamental Building Blocks of Proteinogenic α -amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Förstel, Marko; Bergantini, Alexandre; Maksyutenko, Pavlo

    The –CH–NH{sub 2} moiety represents the fundamental building block of all proteinogenic amino acids, with the cyclic amino acid proline being a special case (–CH–NH– in proline). Exploiting a chemical retrosynthesis, we reveal that methylamine (CH{sub 3}NH{sub 2}) and/or ethylamine (CH{sub 3}CH{sub 2}NH{sub 2}) are essential precursors in the formation of each proteinogenic amino acid. In the present study we elucidate the abiotic formation of methylamine and ethylamine from ammonia (NH{sub 3}) and methane (CH{sub 4}) ices exposed to secondary electrons generated by energetic cosmic radiation in cometary and interstellar model ices. Our experiments show that methylamine and ethylamine aremore » crucial reaction products in irradiated ices composed of ammonia and methane. Using isotopic substitution studies we further obtain valuable information on the specific reaction pathways toward methylamine. The very recent identification of methylamine and ethylamine together with glycine in the coma of 67P/Churyumov–Gerasimenko underlines their potential to the extraterrestrial formation of amino acids.« less

  3. Structure and properties of moisture-resistant konjac glucomannan films coated with shellac/stearic acid coating.

    PubMed

    Wei, Xueqin; Pang, Jie; Zhang, Changfeng; Yu, Chengcheng; Chen, Han; Xie, Bingqing

    2015-03-15

    A series of moisture-resistant konjac glucomannan films were prepared by coating shellac/stearic acid emulsion on deacetylated konjac glucomannan films (dKGM). The effect of stearic acid content on structure and properties of the coated films were investigated by field emission scanning electron microscopy (FE SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet spectroscopy (UV), water vapor permeability (WVP), water uptake, water contact angle, and tensile testing. The results revealed that shellac in the coating adhered intimately to the surface of dKGM film, and provided a substrate for the dispersion of stearic acid which played an important role in enhancement of the moisture barrier properties and mechanical properties of the coated films. The WVP of the coated films decreased from 2.63×10(-11) to 0.37×10(-11)g/(msPa) and the water contact angle increased from 68° to 101.2° when stearic acid content increased from 0wt% to 40wt%, showing the potential applications in food preservation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Review article: potential mechanisms of action of rifaximin in the management of hepatic encephalopathy and other complications of cirrhosis.

    PubMed

    Bajaj, J S

    2016-01-01

    Progressive gut milieu (microbiota) changes occur in patients with cirrhosis and are associated with complications [e.g. hepatic encephalopathy (HE)]. To examine the role of rifaximin in the management of HE and other complications of cirrhosis, including potential mechanisms of action and the need for future studies. A literature search was conducted using the keywords 'rifaximin', 'hepatic encephalopathy', 'ascites', 'variceal bleeding', 'peritonitis', 'portal hypertension', 'portopulmonary hypertension' and 'hepatorenal syndrome'. The nonsystemic agent rifaximin reduces the risk of HE recurrence and HE-related hospitalisations in cirrhosis. In patients with cirrhosis, rifaximin modulates the bacterial composition of the gut microbiota without a consistent effect on overall faecal microbiota composition. However, rifaximin can impact the function or activities of the gut microbiota. For example, rifaximin significantly increased serum levels of long-chain fatty acids and carbohydrate metabolism intermediates in patients with minimal HE. Rifaximin also favourably affects serum proinflammatory cytokine and faecal secondary bile acid levels. The gut microenvironment and associated microbiota play an important role in the pathogenesis of HE and other cirrhosis-related complications. Rifaximin's clinical activity may be attributed to effects on metabolic function of the gut microbiota, rather than a change in the relative bacterial abundance. © 2015 John Wiley & Sons Ltd.

  5. Postprandial dietary fatty acids exert divergent inflammatory responses in retinal-pigmented epithelium cells.

    PubMed

    Montserrat-de la Paz, Sergio; Naranjo, M Carmen; Bermudez, Beatriz; Lopez, Sergio; Moreda, Wenceslao; Abia, Rocio; Muriana, Francisco J G

    2016-03-01

    Postprandial triglyceride-rich lipoproteins (TRLs) lead to a complex series of events that are potentially oxidative and inflammatory. The main goal of this study was to characterize the influence of postprandial TRLs with different fatty acid compositions (mainly SFAs, MUFAs or MUFAs plus omega-3 PUFAs) on oxidative and inflammatory markers in RPE cells, which play a pivotal role in age-related macular degeneration (AMD). Compared to TRL-SFAs, TRL-MUFAs and TRL-MUFAs plus omega-3 PUFAs decreased the production of ROS and nitrite, and the gene expression and secretion of IL-1β, IL-6, TNF-α, IFNγ and VEGF. For the first time we show that postprandial TRLs are metabolic entities able to induce RPE oxidative stress and inflammation in a fatty acid-dependent manner, TRL-SFAs ⋙ TRL-MUFAs = TRL-MUFAs plus omega-3 PUFAs. These exciting findings open new opportunities for developing novel nutritional strategies with olive oil as the principal dietary source of oleic acid to prevent the development and progression of AMD.

  6. Synthesis and properties of platinum on multiwall carbon nanotube modified by chitosan

    NASA Astrophysics Data System (ADS)

    Fikriyyah, A. K.; Chaldun, E. R.; Indriyati

    2018-03-01

    Platinum nanoparticles on multiwall carbon nanotubes (Pt/MWCNT) play an important role in fuel cell to convert the chemical energy from a fuel into electricity. In this study, Pt/MWCNT electrocatalysts were prepared by chemical reduction of the metal salts in chitosan as the support. Firstly, commercial MWCNTs were functionalized by oxidative process using a mixture of nitric acid and sulfuric acid. Then, functionalized MWCNTs were mixed with chitosan-acetic acid solution to conduct grafting reaction with NH2 groups in chitosan by solution polymerization method. Platinum nanoparticles were loaded onto the surface of the MWCNTs after hexachloroplatinic acid was reduced by sodium hydroxide solution. The result showed that Pt was attached on MWCNT based on analysis from EDS, XRD, and UV Vis Spectroscopy. UV Vis analysis indicates the plasmon absorbance band of Pt nanoparticles in Pt/MWCNT, while XRD analysis confirmed the size of Pt particle in nanometer. This elucidates the potential procedure to synthesize Pt/MWCNT using chitosan.

  7. Evidence that Speciation of Oxovanadium Complexes does not Solely Account for Inhibition of Leishmania Acid Phosphatases

    NASA Astrophysics Data System (ADS)

    Dorsey, Benjamin M.; McLauchlan, Craig C.; Jones, Marjorie A.

    2018-04-01

    Leishmaniasis is an endemic disease affecting a diverse spectra of populations, with 1.6 million new cases reported each year. Current treatment options are costly and have harsh side effects. New therapeutic options that have been previously identified, but still underappreciated as potential pharmaceutical targets, are Leishmania secreted acid phosphatases (SAP). These acid phosphatases, which are reported to play a role in the survival of the parasite in the sand fly vector, and in homing to the host macrophage, are inhibited by orthovanadate and decavanadate. Here, we use L. tarentolae to further evaluate these inhibitors. Using enzyme assays, and UV-visible spectroscopy, we investigate which oxovanadium starting material (orthovanadate or decavanadate) is a better inhibitor of L. tarentolae secreted acid phosphatase activity in vitro at the same total moles of vanadium. Considering speciation and total vanadium concentration, decavanadate is a consistently better inhibitor of SAP in our conditions, especially at low substrate:inhibitor ratios.

  8. Production and chemical composition of two dehydrated fermented dairy products based on cow or goat milk.

    PubMed

    Moreno-Fernández, Jorge; Díaz-Castro, Javier; Alférez, Maria J M; Hijano, Silvia; Nestares, Teresa; López-Aliaga, Inmaculada

    2016-02-01

    The aim of this study was to identify the differences between the main macro and micronutrients including proteins, fat, minerals and vitamins in cow and goat dehydrated fermented milks. Fermented goat milk had higher protein and lower ash content. All amino acids (except for Ala), were higher in fermented goat milk than in fermented cow milk. Except for the values of C11:0, C13:0, C16:0, C18:0, C20:5, C22:5 and the total quantity of saturated and monounsaturated fatty acids, all the other fatty acid studied were significantly different in both fermented milks. Ca, Mg, Zn, Fe, Cu and Se were higher in fermented goat milk. Fermented goat milk had lower amounts of folic acid, vitamin E and C, and higher values of vitamin A, D3, B6 and B12. The current study demonstrates the better nutritional characteristics of fermented goat milk, suggesting a potential role of this dairy product as a high nutritional value food.

  9. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    PubMed

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: Novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules

    PubMed Central

    Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.

    2011-01-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  11. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    PubMed

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evidence That Speciation of Oxovanadium Complexes Does Not Solely Account for Inhibition of Leishmania Acid Phosphatases

    PubMed Central

    Dorsey, Benjamin M.; McLauchlan, Craig C.; Jones, Marjorie A.

    2018-01-01

    Leishmaniasis is an endemic disease affecting a diverse spectra of populations, with 1.6 million new cases reported each year. Current treatment options are costly and have harsh side effects. New therapeutic options that have been previously identified, but still underappreciated as potential pharmaceutical targets, are Leishmania secreted acid phosphatases (SAP). These acid phosphatases, which are reported to play a role in the survival of the parasite in the sand fly vector, and in homing to the host macrophage, are inhibited by orthovanadate and decavanadate. Here, we use L. tarentolae to further evaluate these inhibitors. Using enzyme assays, and UV-visible spectroscopy, we investigate which oxovanadium starting material (orthovanadate or decavanadate) is a better inhibitor of L. tarentolae secreted acid phosphatase activity in vitro at the same total moles of vanadium. Considering speciation and total vanadium concentration, decavanadate is a consistently better inhibitor of SAP in our conditions, especially at low substrate:inhibitor ratios. PMID:29707535

  13. The effect of uric acid on outdoor copper and bronze.

    PubMed

    Bernardi, E; Bowden, D J; Brimblecombe, P; Kenneally, H; Morselli, L

    2009-03-15

    Bird droppings are often quoted as a decay agent for outdoor goods, in particular buildings and statues. Undoubtedly, they represent one of the major causes of aesthetic damage on outdoor materials, but the real chemical damage they are able to induce, in particular on metals, is not so well studied. This work focused on the short term role of uric acid, the main constituent of bird urine, with respect to copper, which make such an important contribution to architectural elements of buildings and outdoor sculpture. Preliminary results of laboratory tests and analyses on real exposed samples showed that uric acid chemically affects copper and bronzes: the surface of the metal is modified and copper urates formed. Also natural patina, formed on statues and roof, react with uric acid, even if it seems to afford some protection toward bird droppings. In general, experimental results confirm that the potential chemical damage by bird droppings is significant when considering external cultural heritage such as statues, metal monuments and buildings with historic copper roofs.

  14. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans

    PubMed Central

    Wei, Chia-Cheng; Yen, Pei-Ling; Chang, Shang-Tzen; Cheng, Pei-Ling; Lo, Yi-Chen; Liao, Vivian Hsiu-Chuan

    2016-01-01

    Background Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans. Principal Findings The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%). Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans. Conclusions This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods. PMID:27275864

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiba, T.; Fisher, S.K.; Park, J.

    The potential role of inositol phospholipid turnover in mediating acid secretion was examined in a preparation enriched for isolated canine gastric parietal cells. The stimulatory effects of carbamoylcholine (carbachol) and gastrin on parietal cell uptake of ({sup 14}C)aminopyrine were linked to dose- and time-dependent selective reduction in cellular phosphatidylinositol content, although the specific fatty acid composition of the phosphoinositides was not altered. Analysis of ({sup 3}H)inositol phosphates accumulated in cells prelabeled with ({sup 3}H)inositol revealed an increase in labeled inositol trisphosphate by 5 min of incubation with either carbachol or gastrin. Furthermore, after preincubation of parietal cells in medium containingmore » ({sup 32}P)orthophosphate, the two secretagogues elicited a time-dependent decrease in {sup 32}P labeling of phosphatidylinositol 4,5-bisphosphate and concomitant increase in labeling of phosphatidic acid. These data demonstrate that the acid secretagogue actions of carbachol and gastrin are correlated with turnover of cellular inositol phospholipids in a preparation consisting predominantly of parietal cells.« less

  16. Beyond DNA binding - a review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers

    PubMed Central

    2011-01-01

    This is an in-depth review of the history of quinacrine as well as its pharmacokinetic properties and established record of safety as an FDA-approved drug. The potential uses of quinacrine as an anti-cancer agent are discussed with particular attention to its actions on nuclear proteins, the arachidonic acid pathway, and multi-drug resistance, as well as its actions on signaling proteins in the cytoplasm. In particular, quinacrine's role on the NF-κB, p53, and AKT pathways are summarized. PMID:21569639

  17. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.

    PubMed

    Angelico, Ruggero; Ceglie, Andrea; He, Ji-Zheng; Liu, Yu-Rong; Palumbo, Giuseppe; Colombo, Claudio

    2014-03-01

    Humic acids (HA) have a colloidal character whose size and negative charge are strictly dependent on surface functional groups. They are able to complex large amount of poorly ordered iron (hydr)oxides in soil as a function of pH and other environmental conditions. Accordingly, with the present study we intend to assess the colloidal properties of Fe(II) coprecipitated with humic acids (HA) and their effect on Fe hydroxide crystallinity under abiotic oxidation and order of addition of both Fe(II) and HA. TEM, XRD and DRS experiments showed that Fe-HA consisted of Ferrihydrite with important structural variations. DLS data of Fe-HA at acidic pH showed a bimodal size distribution, while at very low pH a slow aggregation process was observed. Electrophoretic zeta-potential measurements revealed a negative surface charge for Fe-HA macromolecules, providing a strong electrostatic barrier against aggregation. Under alkaline conditions HA chains swelled, which resulted in an enhanced stabilization of the colloid particles. The increasing of zeta potential and size of the Fe-HA macromolecules, reflects a linear dependence of both with pH. The increase in the size and negative charge of the Fe-HA precipitate seems to be more affected by the ionization of the phenolic acid groups, than by the carboxylic acid groups. The main cause of negative charge generation of Fe/HA is due to increased dissociation of phenolic groups in more expanded structure. The increased net negative surface potential induced by coprecipitation with Ferrihydrite and the correspondent changes in configuration of the HA could trigger the inter-particle aggregation with the formation of new negative surface. The Fe-HA coprecipitation can reduce electrosteric repulsive forces, which in turn may inhibit the aggregation process at different pH. Therefore, coprecipitation of Ferrihydrite would be expected to play an important role in the carbon stabilization and persistence not only in organic soils, but also in waters containing dissolved organic matter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Investigation into the antioxidant and antidiabetic potential of Moringa stenopetala: identification of the active principles.

    PubMed

    Habtemariam, Solomon

    2015-03-01

    The fresh leaves of Moringa stenopetala (family, Moringaceae) are commonly eaten as cabbage while dried leaves are used as nutritional supplement and for treating a variety of disease conditions including diabetes. The present investigation into the therapeutic potential of the leaves and seeds of the plant revealed no inhibitory effect against α-glucosidase enzyme up to the concentration of 200 μg/mL but the leaves extract displayed potent DPPH (1,1-diphenyl-2- picrylhydrazyl) radical scavenging effect (IC50, 59.5 ± 4.1 μg/mL). An activity directed fractionation and isolation procedure resulted in the identification of the major antioxidant compound as rutin and minor active component, neochlorogenic acid. Both the crude extract (0.8-200 μg/mL) and rutin (0.8-200 μM) but not neochlorogenic acid displayed a concentration-dependent protection of human pancreatic β-cells (1.4E7 cells) from oxidant-induced cell death. The identification of these compounds along with their potential role in the nutritional and medicinal significance of the plant is discussed.

  19. Hydrotropism: how roots search for water.

    PubMed

    Dietrich, Daniela

    2018-05-19

    Fresh water is an increasingly scarce resource for agriculture. Plant roots mediate water uptake from the soil and have developed a number of adaptive traits such as hydrotropism to aid water foraging. Hydrotropism modifies root growth to respond to a water potential gradient in soil and grow towards areas with a higher moisture content. Abscisic acid (ABA) and a small number of genes, including those encoding ABA signal transducers, MIZ2/GNOM, and the hydrotropism-specific MIZ1, are known to be necessary for the response in Arabidopsis thaliana, whereas the role of auxin in hydrotropism appears to vary depending on the plant species. This review will describe recent progress characterizing the hormonal regulation of hydrotropism. Recent advances in identifying the sites of hydrotropic perception and response, together with its interaction with gravitropism, will also be discussed. Finally, I will describe putative mechanisms for perception of the water potential gradient and a potential role for hydrotropism in acclimatizing plants to drought conditions.

  20. Contribution of Sialic Acid to the Voltage Dependence of Sodium Channel Gating

    PubMed Central

    Bennett, Eric; Urcan, Mary S.; Tinkle, Sally S.; Koszowski, Adam G.; Levinson, Simon R.

    1997-01-01

    A potential role for sialic acid in the voltage-dependent gating of rat skeletal muscle sodium channels (rSkM1) was investigated using Chinese hamster ovary (CHO) cells stably transfected with rSkM1. Changes in the voltage dependence of channel gating were observed after enzymatic (neuraminidase) removal of sialic acid from cells expressing rSkM1 and through the expression of rSkM1 in a sialylation-deficient cell line (lec2). The steady-state half-activation voltages (Va) of channels under each condition of reduced sialylation were ∼10 mV more depolarized than control channels. The voltage dependence of the time constants of channel activation and inactivation were also shifted in the same direction and by a similar magnitude. In addition, recombinant deletion of likely glycosylation sites from the rSkM1 sequence resulted in mutant channels that gated at voltages up to 10 mV more positive than wild-type channels. Thus three independent means of reducing channel sialylation show very similar effects on the voltage dependence of channel gating. Finally, steady-state activation voltages for channels subjected to reduced sialylation conditions were much less sensitive to the effects of external calcium than those measured under control conditions, indicating that sialic acid directly contributes to the negative surface potential. These results are consistent with an electrostatic mechanism by which external, negatively charged sialic acid residues on rSkM1 alter the electric field sensed by channel gating elements. PMID:9089440

  1. Development of cost-effective media to increase the economic potential for larger-scale bioproduction of natural food additives by Lactobacillus rhamnosus , Debaryomyces hansenii , and Aspergillus niger.

    PubMed

    Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Domínguez, José Manuel

    2009-11-11

    Yeast extract (YE) is the most common nitrogen source in a variety of bioprocesses in spite of the high cost. Therefore, the use of YE in culture media is one of the major technical hurdles to be overcome for the development of low-cost fermentation routes, making the search for alternative-cheaper nitrogen sources particularly desired. The aim of the current study is to develop cost-effective media based on corn steep liquor (CSL) and locally available vinasses in order to increase the economic potential for larger-scale bioproduction. Three microorganisms were evaluated: Lactobacillus rhamnosus , Debaryomyces hansenii , and Aspergillus niger . The amino acid profile and protein concentration was relevant for the xylitol and citric acid production by D. hansenii and A. niger , respectively. Metals also played an important role for citric acid production, meanwhile, D. hansenii showed a strong dependence with the initial amount of Mg(2+). Under the best conditions, 28.8 g lactic acid/L (Q(LA) = 0.800 g/L.h, Y(LA/S) = 0.95 g/g), 35.3 g xylitol/L (Q(xylitol) = 0.380 g/L.h, Y(xylitol/S) = 0.69 g/g), and 13.9 g citric acid/L (Q(CA) = 0.146 g/L.h, Y(CA/S) = 0.63 g/g) were obtained. The economic efficiency (E(p/euro)) parameter identify vinasses as a lower cost and more effective nutrient source in comparison to CSL.

  2. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  3. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway.

    PubMed

    Su, Ke; Wang, Chun-Fang; Zhang, Ying; Cai, Yu-Jie; Zhang, Yan-Yan; Zhao, Qian

    2016-08-01

    Cervical cancer has been the fourth most common cancer killing many women across the world. Carnosic acid (CA), as a phenolic diterpene, has been suggested to against cancer, exerting protective effects associated with inflammatory cytokines. It is aimed to demonstrate the therapeutic role of carnosic acid against cervical cancer and indicate its underlying molecular mechanisms. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was performed to assess the possible anti-proliferative effects of carnosic acid. And also, colony formation was used to further estimate carnosic acid's ability in suppressing cervical cancer cells proliferation. Flow cytometry assays were performed here to indicate the alterations of cervical cancer cells cycle and the development of apoptosis. Western blot assays and RT-PCR were also applied to clarify the apoptosis-associated signaling pathways affected by reactive oxygen species (ROS) generation. And immunofluorescence was used to detect ROS-positive cells. In vivo experiments, CaSki xenograft model samples of nude mice were involved to further elucidate the effects of carnosic acid. In our results, we found that carnosic acid exerted anti-tumor ability in vitro supported by up-regulation of apoptosis and ROS production in cervical cancer cells. Also, acceleration of ROS led to the phospharylation of (c-Jun N-terminal kinase (JNK) and its-related signals, as well as activation of Endoplasmic Reticulum (ER) stress, promoting the progression of apoptosis via stimulating Caspase3 expression. The development and growth of xenograft tumors in nude mice were found to be inhibited by the administration of carnosic acid for five weeks. And the suppressed role of carnosic acid in proliferation of cervical cancer cells and apoptosis of nude mice with tumor tissues were observed in our study. Taken together, our data indicated that carnosic acid resulted in apoptosis both in vitro and vivo experiments via promoting ROS and activating JNK signaling pathways in human cervical cancer cells, which supplied a potential therapy for the application of carnosic acid in clinical treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Effects of metabotropic glutamate receptor block on the synaptic transmission and plasticity in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Malfagia, C; Pettorossi, V E

    1998-11-01

    In rat brainstem slices, we investigated the possible role of metabotropic glutamate receptors in modulating the synaptic transmission within the medial vestibular nuclei, under basal and plasticity inducing conditions. We analysed the effect of the metabotropic glutamate receptor antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine on the amplitude of the field potentials and latency of unitary potentials evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation, and on the induction and maintenance of long-term potentiation, after high-frequency stimulation. Two effects were observed, consisting of a slight increase of the field potentials and reduction of unit latency during the drug infusion, and a further long-lasting development of these modifications after the drug wash-out. The long-term effect depended on N-methyl-D-aspartate receptor activation, as D,L-2-amino-5-phosphonopentanoic acid prevented its development. We suggest that (R,S)-alpha-methyl-4carboxyphenylglycine enhances the vestibular responses and induces N-methyl-D-aspartate-dependent long-term potentiation by increasing glutamate release, through the block of presynaptic metabotropic glutamate receptors which actively inhibit it. The block of these receptors was indirectly supported by the fact that the agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid reduced the vestibular responses and blocked the induction of long-term potentiation by high-frequency stimulation. The simultaneous block of metabotropic glutamate receptors facilitating synaptic plasticity, impedes the full expression of the long-term effect throughout the (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The involvement of such a facilitatory mechanism in the potentiation is supported by its reversible reduction following a second (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The drug also reduced the expression of potentiation induced by high-frequency stimulation. Conversely the electrical long-term potentiation was still induced, but it was occluded by the previous drug potentiation. We conclude that metabotropic glutamate receptors play a dual functional role in the medial vestibular nuclei, consisting in the inhibition of glutamate release under basal conditions, and the facilitation of N-methyl-D-aspartate-dependent plasticity phenomena.

  5. Amyloidosis in alkaptonuria.

    PubMed

    Millucci, Lia; Braconi, Daniela; Bernardini, Giulia; Lupetti, Pietro; Rovensky, Josef; Ranganath, Lakshminaryan; Santucci, Annalisa

    2015-09-01

    Alkaptonuria (AKU) is an ultra-rare inborn error of metabolism developed from the lack of homogentisic acid oxidase activity, causing homogentisic acid (HGA) accumulation that produces an HGA-melanin ochronotic pigment, of hitherto unknown composition. Besides the accumulation of HGA, the potential role and presence of unidentified proteins has been hypothesized as additional causal factors involved in ochronotic pigment deposition. Evidence has been provided on the presence of serum amyloid A (SAA) in several AKU tissues, which allowed classifying AKU as a novel secondary amyloidosis. In this paper, we will briefly review all direct and indirect lines of evidence related to the presence of amyloidosis in AKU. We also report the first data on abnormal SAA serum levels in a cohort of AKU patients.

  6. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration.

    PubMed

    Jeong, Jae Young; Hong, Eun-Hye; Lee, Song Yi; Lee, Jae-Young; Song, Jae-Hyoung; Ko, Seung-Hak; Shim, Jae-Seong; Choe, Sunghwa; Kim, Dae-Duk; Ko, Hyun-Jeong; Cho, Hyun-Jong

    2017-04-15

    (3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface of HACE-AMPB/MB NPs (in the aqueous milieu) may react with the sialic acid over-expressed in cancer cells and intramolecular B‒O bond can be formed. This phenylboronic acid-sialic acid interaction may provide additional tumor targeting and penetration potentials together with an enhanced permeability and retention (EPR) effect (passive tumor targeting) and HA-CD44 receptor interaction (active tumor targeting). Developed HACE-AMPB NP may be one of promising nanocarriers for the imaging and therapy of CD44 receptor-expressed cancers. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  8. Neurosteroid modulation of neuronal excitability and synaptic transmission in the rat medial vestibular nuclei.

    PubMed

    Grassi, Silvarosa; Frondaroli, Adele; Dieni, Cristina; Dutia, Mayank B; Pettorossi, Vito E

    2007-07-01

    In rat brainstem slices, we investigated the influence of the neurosteroids tetrahydrodeoxycorticosterone (THDOC) and allopregnanolone (ALLO) on the synaptically driven and spontaneous activity of vestibular neurons, by analysing their effects on the amplitude of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation and on the spontaneous firing rate of MVN neurons. Furthermore, the interaction with gamma-aminobutyric acid (GABA) and glutamate receptors was analysed by using specific antagonists for GABA(A) (bicuculline), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/ kainate [2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulphonamide disodium salt (NBQX)], N-methyl-D-aspartate (NMDA) [D-(-)-2-amino-5-phosphonopentanoic acid (AP-5)] and group I metabotropic glutamate receptors (mGlu-I) [(R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA)] receptors. THDOC and ALLO evoked two opposite long-lasting effects, consisting of either a potentiation or a reduction of field potential and firing rate, which showed early and late components, occurring in conjunction or separately after neurosteroid application. The depressions depended on GABA(A) receptors, as they were abolished by bicuculline, while early potentiation involved glutamate AMPA/kainate receptors, as NBQX markedly reduced the incidence of early firing rate enhancement and, in the case of ALLO, even provoked depression. This suggests that THDOC and ALLO enhance the GABA(A) inhibitory influence on the MVN neurons and facilitate the AMPA/kainate facilitatory one. Conversely, a late potentiation effect, which was still induced after glutamate and GABA(A) receptor blockade, might involve a different mechanism. We conclude that the modulation of neuronal activity in the MVN by THDOC and ALLO, through their actions on GABA(A) and AMPA/kainate receptors, may have a physiological role in regulating the vestibular system function under normal conditions and during the stress response that accompanies many forms of vestibular dysfunction.

  9. Immediate erosive potential of cola drinks and orange juices.

    PubMed

    Jensdottir, T; Holbrook, P; Nauntofte, B; Buchwald, C; Bardow, A

    2006-03-01

    Little is known about the erosive potential of soft drinks within the first minutes of exposure to teeth, and about the potentially protective role of salivary proteins. We hypothesized that the erosive potential is determined primarily by pH and decreases in the presence of salivary proteins. To investigate this, we first added uncoated hydroxyapatite crystals and, second, salivary-protein-coated hydroxyapatite crystals to 20 commercially available cola drinks and orange juices simultaneously, with pH recordings every 15 sec for 3 min. The amount of apatite lost per liter of soft drink per sec was calculated from titratable acidity values to each pH obtained by crystal addition. The erosive potential within the first minutes of exposure was determined solely by the pH of the drink, and the erosive potential was ten-fold higher in cola drinks compared with juices. However, salivary proteins reduced the erosive potential of cola drinks by up to 50%.

  10. Cyclin A2 and CDK2 as Novel Targets of Aspirin and Salicylic acid: a Potential Role in Cancer Prevention

    PubMed Central

    Dachineni, Rakesh; Ai, Guoqiang; Kumar, D. Ramesh; Sadhu, Satya S.; Tummala, Hemachand; Bhat, G. Jayarama

    2015-01-01

    Data emerging from the past 10 years have consolidated the rationale for investigating the use of aspirin as a chemopreventive agent; however, the mechanisms leading to its anti-cancer effects are still being elucidated. We hypothesized that aspirin’s chemopreventive actions may involve cell cycle regulation through modulation of the levels or activity of cyclin A2/cyclin dependent kinase-2 (CDK2). In this study, HT-29 and other diverse panel of cancer cells were used to demonstrate that both aspirin and its primary metabolite, salicylic acid, decreased cyclin A2 (CCNA2) and CDK2 protein and mRNA levels. The down regulatory effect of either drugs on cyclin A2 levels was prevented by pretreatment with lactacystin, an inhibitor of proteasomes, suggesting the involvement of 26S proteasomes. In-vitro kinase assays showed that lysates from cells treated with salicylic acid had lower levels of CDK2 activity. Importantly, three independent experiments revealed that salicylic acid directly binds to CDK2. Firstly, inclusion of salicylic acid in naïve cell lysates, or in recombinant CDK2 preparations, increased the ability of the anti-CDK2 antibody to immunoprecipitate CDK2, suggesting that salicylic acid may directly bind and alter its conformation. Secondly, in 8-anilino-1-naphthalene-sulfonate (ANS)-CDK2 fluorescence assays, pre-incubation of CDK2 with salicylic acid, dose-dependently quenched the fluorescence due to ANS. Thirdly, computational analysis using molecular docking studies identified Asp145 and Lys33 as the potential sites of salicylic acid interactions with CDK2. These results demonstrate that aspirin and salicylic acid down-regulate cyclin A2/CDK2 proteins in multiple cancer cell lines, suggesting a novel target and mechanism of action in chemoprevention. Implications Biochemical and structural studies indicate that the anti-proliferative actions of aspirin are mediated through cyclin A2/CDK2. PMID:26685215

  11. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats

    PubMed Central

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as “junk” sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping the interaction networks of the human proteome, and define proteome-wide knowledge that may guide the informed biological exploration of the role of AARs in protein interactions. PMID:26734058

  12. Oral feeding with polyunsaturated fatty acids fosters hematopoiesis and thrombopoiesis in healthy and bone marrow-transplanted mice.

    PubMed

    Limbkar, Kedar; Dhenge, Ankita; Jadhav, Dipesh D; Thulasiram, Hirekodathakallu V; Kale, Vaijayanti; Limaye, Lalita

    2017-09-01

    Hematopoietic stem cells play the vital role of maintaining appropriate levels of cells in blood. Therefore, regulation of their fate is essential for their effective therapeutic use. Here we report the role of polyunsaturated fatty acids (PUFAs) in regulating hematopoiesis which has not been explored well so far. Mice were fed daily for 10 days with n-6/n-3 PUFAs, viz. linoleic acid (LA), arachidonic acid (AA), alpha-linolenic acid and docosahexanoic acid (DHA) in four separate test groups with phosphate-buffered saline fed mice as control set. The bone marrow cells of PUFA-fed mice showed a significantly higher hematopoiesis as assessed using side population, Lin-Sca-1 + ckit+, colony-forming unit (CFU), long-term culture, CFU-spleen assay and engraftment potential as compared to the control set. Thrombopoiesis was also stimulated in PUFA-fed mice. A combination of DHA and AA was found to be more effective than when either was fed individually. Higher incorporation of PUFAs as well as products of their metabolism was observed in the bone marrow cells of PUFA-fed mice. A stimulation of the Wnt, CXCR4 and Notch1 pathways was observed in PUFA-fed mice. The clinical relevance of this study was evident when bone marrow-transplanted recipient mice, which were fed with PUFAs, showed higher engraftment of donor cells, suggesting that the bone marrow microenvironment may also be stimulated by feeding with PUFAs. These data indicate that oral administration of PUFAs in mice stimulates hematopoiesis and thrombopoiesis and could serve as a valuable supplemental therapy in situations of hematopoietic failure. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape.

    PubMed

    Ioriatti, Claudio; Guzzon, Raffaele; Anfora, Gianfranco; Ghidoni, Franca; Mazzoni, Valerio; Villegas, Tomas Roman; Dalton, Daniel T; Walton, Vaughn M

    2018-02-09

    This research aimed to more clearly describe the interactions of Drosophila suzukii (Matsumura; Diptera: Drosophilidae) with microorganisms that may contribute to spoilage or quality loss of wine grapes during harvest. Experiments were conducted in controlled laboratory experiments and under field conditions to determine these effects. Laboratory trials determined the role of insect contact and oviposition to vector spoilage bacteria onto wine grapes. In the field, the roles of key organoleptic parameters in grape fruit ripening were assessed to determine their relative contribution to oviposition potential as fruit ripened. Finally, field trials determined the relationships of egg and larval infestation to sour rot levels. Non-ovipositional trials indicated elevated levels of microbiota when D. suzukii was present. D. suzukii oviposition exponentially increased the concentration of acetic acid bacteria. Both incised and sound berries showed a significant increase in concentrations of acetic acid bacteria exposed to D. suzukii. Volatile acidity was higher in treatments infested with D. suzukii. Fruit with only eggs did not develop a significant increase of volatile acidity. Larva-infested grape berries in 9.5% of samples developed higher volatile acidity after 14 d. Sound grape berries were less susceptible to the development of microbiota associated with sour rot and spoilage. D. suzukii oviposition and larval development increase risk of spoilage bacteria vectored by D. suzukii adults. Acetic acid bacteria induced fermentation and produced several volatile compounds contributing to spoilage. Spoilage bacteria may create a positive feedback loop that attracts both D. suzukii and other drosophilids, which may contribute to additional spoilage. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition

    PubMed Central

    Bergeron, Karen; Julien, Pierre; Davis, Teresa A.; Myre, Alexandre; Thivierge, M. Carole

    2009-01-01

    This study investigated the role of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFAs) of muscle phospholipids in the regulation of neonatal metabolism. Twenty-eight piglets were weaned at 2 days of age and raised on one of two milk formulas that consisted of either a control formula supplying 0% or a formula containing 3.5% LCn-3PUFAs until 10 or 28 days of age. There was a developmental decline in the insulin sensitivity of amino acid disposal in control pigs during the first month of life, with a slope of −2.24 μmol·kg−1·h−1 (P = 0.01) per unit of insulin increment, as assessed using hyperinsulinemic-euglycemic-euaminoacidemic clamps. LCn-3PUFA feeding blunted this developmental decline, resulting in differing insulin sensitivities (P < 0.001). When protein metabolism was assessed under parenteral feeding-induced hyperinsulinemia, LCn-3PUFAs reduced by 16% whole body oxidative losses of amino acids (from 238 to 231 μmol·kg−1·h−1; P = 0.06), allowing 41% more amino acids to accrete into body proteins (from 90 to 127 μmol·kg−1·h−1; P = 0.06). The fractional synthetic rate of muscle mixed proteins remained unaltered by the LCn-3PUFA feeding. However, LCn-3PUFAs retarded a developmental increase in the essential-to-nonessential amino acid ratio of the muscle intracellular free pool (P = 0.05). Overall, alterations in metabolism were concomitant with a preferential incorporation of LCn-3PUFAs into muscle total membrane phospholipids (P < 0.001), in contrast to intramuscular triglycerides. These results underscore the potential role of LCn-3PUFAs as regulators of different aspects of protein metabolism in the neonate. PMID:17673528

  15. Rescue of Hypovitaminosis A Induces Non-Amyloidogenic Amyloid Precursor Protein (APP) Processing.

    PubMed

    Reinhardt, Sven; Grimm, Marcus O W; Stahlmann, Christoph; Hartmann, Tobias; Shudo, Koichi; Tomita, Taisuke; Endres, Kristina

    2016-01-01

    Retinoic acid, the bioactive metabolite of beta-carotene or vitamin A, plays a pleiotropic, multifunctional role in vertebrate development. Studies in rodents revealed that a diet deficient in vitamin A results in a complex neonatal syndrome (the VAD syndrome), manifested in many organs. In humans, the function of retinoic acid (RA) extends into adulthood, where it has important roles in fertility, vision, and suppression of neoplastic growth. In recent years, it has also been suggested that retinoic acid might potentially act as a therapeutically relevant drug in attenuating or even preventing neurodegenerative diseases such as Alzheimer's disease (AD). Here, we report that VAD leads to an increase in A-beta peptide levels while only minor effects were observed on expression levels of the amyloid precursor protein (APP) processing proteinases in wild type mice. In line with these findings, rescue of hypovitaminosis reduced A-beta amount to baseline and induced sApp-alpha secretion in combination with an increase of alpha-secretase Adam10. By comparing retinoic acid treatment starting from a full nutrition status and a "VAD" situation in human neuroblastoma cells, we show that while intensities of differential gene expression were higher in replenished cells, a large overlap in AD-related, regulated genes was observed. Our data suggest that hypovitaminosis A can contribute to onset or progression of AD by increasing synthesis of A-beta peptides and that several AD-related genes such as ADAM10 or BDNF are regulated by retinoic acid. We suggest that dietary supplementation with retinoic acid derivatives is likely to have a beneficial effect on AD-pathology in individuals with hypovitaminosis and patients with normal vitamin A status.

  16. 4-Phenylbutyric Acid Reveals Good Beneficial Effects on Vital Organ Function via Anti-Endoplasmic Reticulum Stress in Septic Rats.

    PubMed

    Liu, Liangming; Wu, Huiling; Zang, JiaTao; Yang, Guangming; Zhu, Yu; Wu, Yue; Chen, Xiangyun; Lan, Dan; Li, Tao

    2016-08-01

    Sepsis and septic shock are the common complications in ICUs. Vital organ function disorder contributes a critical role in high mortality after severe sepsis or septic shock, in which endoplasmic reticulum stress plays an important role. Whether anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to sepsis and the underlying mechanisms are not known. Laboratory investigation. State Key Laboratory of Trauma, Burns and Combined Injury. Sprague-Dawley rats. Using cecal ligation and puncture-induced septic shock rats, lipopolysaccharide-treated vascular smooth muscle cells, and cardiomyocytes, effects of 4-phenylbutyric acid on vital organ function and the relationship with endoplasmic reticulum stress and endoplasmic reticulum stress-mediated inflammation, apoptosis, and oxidative stress were observed. Conventional treatment, including fluid resuscitation, vasopressin, and antibiotic, only slightly improved the hemodynamic variable, such as mean arterial blood pressure and cardiac output, and slightly improved the vital organ function and the animal survival of septic shock rats. Supplementation of 4-phenylbutyric acid (5 mg/kg; anti-endoplasmic reticulum stress), especially administered at early stage, significantly improved the hemodynamic variables, vital organ function, such as liver, renal, and intestinal barrier function, and animal survival in septic shock rats. 4-Phenylbutyric acid application inhibited the endoplasmic reticulum stress and endoplasmic reticulum stress-related proteins, such as CCAAT/enhancer-binding protein homologous protein in vital organs, such as heart and superior mesenteric artery after severe sepsis. Further studies showed that 4-phenylbutyric acid inhibited endoplasmic reticulum stress-mediated cytokine release, apoptosis, and oxidative stress via inhibition of nuclear factor-κB, caspase-3 and caspase-9, and increasing glutathione peroxidase and superoxide dismutase expression, respectively. Anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to septic shock. This beneficial effect of 4-phenylbutyric acid is closely related to the inhibition of endoplasmic reticulum stress-mediated oxidative stress, apoptosis, and cytokine release. This finding provides a potential therapeutic measure for clinical critical conditions, such as severe sepsis.

  17. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter.

    PubMed

    Xu, Baile; Liu, Fei; Brookes, Philip C; Xu, Jianming

    2018-09-01

    Microplastics have a great potential to sorb organic pollutants from the adjacent environment. In this study, the sorption of tetracycline, a polar and ionizable antibiotic, on three types of microplastics (polyethylene (PE), polypropylene (PP) and polystyrene (PS)) were investigated in batch sorption experiments. The sorption isotherms were well fitted by the Langmuir model, indicating that not only hydrophobic interactions but also other interactions (e.g. electrostatic interactions) played important roles in the sorption process. PS had the maximum sorption capacity, following the order PS > PP > PE, which can be attributed to polar interactions and π-π interactions. The sorption of tetracycline on microplastics was significantly influenced by pH, with sorption capacity increasing gradually, peaking at pH 6.0 and then decreasing, likely due to the influence of tetracycline speciation with the change of pH. Fulvic acid was selected as representative dissolved organic matter (DOM) to examine the effect on sorption. The increasing concentration of fulvic acid inhibited the sorption of tetracycline on three microplastics, decreasing them by more than 90% at the fulvic acid concentration of 20 mg/L, which implied a greater affinity of tetracycline to fulvic acid than to microplastics. Increasing salinity from 0.05 to 3.5% had negligible effects on the sorption of tetracycline on the three microplastics. Our results highlight the importance of pH and DOM on the sorption of tetracycline on microplastics, and suggest the relatively minor role of microplastics in the fate and transport of tetracycline in the aquatic environment in the presence of DOM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. AP-1 Inhibition by SR 11302 Protects Human Hepatoma HepG2 Cells from Bile Acid-Induced Cytotoxicity by Restoring the NOS-3 Expression

    PubMed Central

    González-Rubio, Sandra; Linares, Clara I.; Aguilar-Melero, Patricia; Rodríguez-Perálvarez, Manuel; Montero-Álvarez, José L.

    2016-01-01

    The harmful effects of bile acid accumulation occurring during cholestatic liver diseases have been associated with oxidative stress increase and endothelial nitric oxide synthase (NOS-3) expression decrease in liver cells. We have previously reported that glycochenodeoxycholic acid (GCDCA) down-regulates gene expression by increasing SP1 binding to the NOS-3 promoter in an oxidative stress dependent manner. In the present study, we aimed to investigate the role of transcription factor (TF) AP-1 on the NOS-3 deregulation during GCDCA-induced cholestasis. The cytotoxic response to GCDCA was characterized by 1) the increased expression and activation of TFs cJun and c-Fos; 2) a higher binding capability of these at position -666 of the NOS-3 promoter; 3) a decrease of the transcriptional activity of the promoter and the expression and activity of NOS-3; and 4) the expression increase of cyclin D1. Specific inhibition of AP-1 by the retinoid SR 11302 counteracted the cytotoxic effects induced by GCDCA while promoting NOS-3 expression recovery and cyclin D1 reduction. NOS activity inhibition by L-NAME inhibited the protective effect of SR 11302. Inducible NOS isoform was no detected in this experimental model of cholestasis. Our data provide direct evidence for the involvement of AP-1 in the NOS-3 expression regulation during cholestasis and define a critical role for NOS-3 in regulating the expression of cyclin D1 during the cell damage induced by bile acids. AP-1 appears as a potential therapeutic target in cholestatic liver diseases given its role as a transcriptional repressor of NOS-3. PMID:27490694

  19. Red palm oil: nutritional, physiological and therapeutic roles in improving human wellbeing and quality of life.

    PubMed

    Oguntibeju, O O; Esterhuyse, A J; Truter, E J

    2009-01-01

    The link between dietary fats and cardiovascular disease has created a growing interest in dietary red palm oil research. Also, the link between nutrition and health, oxidative stress and the severity or progression of disease has stimulated further interest in the potential role of red palm oil (a natural antioxidant product) to improve oxidative status by reducing oxidative stress in patients with cardiovascular disease, cancer and other chronic diseases. In spite of its level of saturated fatty acid content (50%), red palm oil has not been found to promote atherosclerosis and/or arterial thrombosis. This is probably due to the ratio of its saturated fatty acid to unsaturated fatty acid content and its high concentration of antioxidants such as beta-carotene, tocotrienols, tocopherols and vitamin E. It has also been reported that the consumption of red palm oil reduces the level of endogenous cholesterol, and this seems to be due to the presence of the tocotrienols and the peculiar isomeric position of its fatty acids. The benefits of red palm oil to health include a reduction in the risk of arterial thrombosis and/or atherosclerosis, inhibition of endogenous cholesterol biosynthesis, platelet aggregation, a reduction in oxidative stress and a reduction in blood pressure. It has also been shown that dietary red palm oil, taken in moderation in animals and humans, promotes the efficient utilisation of nutrients, activates hepatic drug metabolising enzymes, facilitates the haemoglobinisation of red blood cells and improves immune function. This review provides a comprehensive overview of the nutritional, physiological and biochemical roles of red palm oil in improving wellbeing and quality of life.

  20. Scientific Evidence of Rice By-Products for Cancer Prevention: Chemopreventive Properties of Waste Products from Rice Milling on Carcinogenesis In Vitro and In Vivo

    PubMed Central

    Tan, Bee Ling

    2017-01-01

    Cancer is a significant global health concern affecting men and women worldwide. Although current chemopreventive drugs could inhibit the growth of cancer cells, they exert many adverse side effects. Dietary factor plays a crucial role in the management of cancers and has drawn the attention of researchers to be used as an option to combat this disease. Both in vitro and in vivo studies showed that rice and its by-products display encouraging results in the prevention of this disease. The mechanism of anticancer effect is suggested partly through potentiation of bioactive compounds like vitamin E, phytic acid, γ-aminobutyric acid (GABA), γ-oryzanol, and phenolics. Nevertheless, the bioactivity of rice and its by-products is still incompletely understood. In this review, we present the findings from a preclinical study both in in vitro and in animal experiments on the promising role of rice by-products with focus on cancer prevention. PMID:28210630

Top