Science.gov

Sample records for acids saturated fatty

  1. Saturated Free Fatty Acids Induce Cholangiocyte Lipoapoptosis

    PubMed Central

    Natarajan, Sathish Kumar; Ingham, Sally A.; Mohr, Ashley M.; Wehrkamp, Cody J.; Ray, Anuttoma; Roy, Sohini; Cazanave, Sophie C.; Phillippi, Mary Anne; Mott, Justin L.

    2015-01-01

    Recent studies have identified a cholestatic variant of nonalcoholic fatty liver disease (NAFLD) with portal inflammation and ductular reaction. Based on reports of biliary damage, as well as increased circulating free fatty acids (FFAs) in NAFLD, we hypothesized the involvement of cholangiocyte lipoapoptosis as a mechanism of cellular injury. Here, we demonstrate that the saturated FFAs palmitate and stearate induced robust and rapid cell death in cholangiocytes. Palmitate and stearate induced cholangiocyte lipoapoptosis in a concentration-dependent manner in multiple cholangiocyte-derived cell lines. The mechanism of lipoapoptosis relied on the activation of caspase 3/7 activity. There was also a significant up-regulation of the proapoptotic BH3-containing protein, PUMA. In addition, palmitate-induced cholangiocyte lipoapoptosis involved a time-dependent increase in the nuclear localization of forkhead family of transcription factor 3 (FoxO3). We show evidence for posttranslational modification of FoxO3, including early (6 hours) deacetylation and dephosphorylation that coincide with localization of FoxO3 in the nuclear compartment. By 16 hours, nuclear FoxO3 is both phosphorylated and acetylated. Knockdown studies confirmed that FoxO3 and its downstream target, PUMA, were critical for palmitate- and stearate-induced cholangiocyte lipoapoptosis. Interestingly, cultured cholangiocyte-derived cells did not accumulate appreciable amounts of neutral lipid upon FFA treatment. Conclusion Our data show that the saturated FFAs palmitate and stearate induced cholangiocyte lipoapoptosis by way of caspase activation, nuclear translocation of FoxO3, and increased proapoptotic PUMA expression. These results suggest that cholangiocyte injury may occur through lipoapoptosis in NAFLD and nonalcoholic steatohepatitis patients. PMID:24753158

  2. Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer: saturated versus unsaturated fatty acids.

    PubMed

    Inoue, T; Yanagihara, S; Misono, Y; Suzuki, M

    2001-02-01

    The effect of some fatty acids on the phase behavior of hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer was investigated with special interest in possible difference between saturated and unsaturated fatty acids. The phase behavior of hydrated DPPC bilayer was followed by a differential scanning calorimetry and a Fourier transform infrared spectroscopy. The addition of palmitic acid (PA) increased the bilayer phase transition temperature with the increase of the PA content in the mixture. In addition, DPPC molecules in gel phase bilayer became more rigid in the presence of PA compared with those in the absence of PA. This effect of PA on the phase behavior of hydrated DPPC bilayer is common to other saturated fatty acids, stearic acid, myristic acid, and also to unsaturated fatty acid with trans double bond, elaidic acid. Contrary to these fatty acids, oleic acid (OA), the unsaturated fatty acid with cis double bond in the acyl chain, exhibited quite different behavior. The effect of OA on the bilayer phase transition temperature was rather small, although a slight decrease in the temperature was appreciable. Furthermore, the IR spectral results demonstrated that the perturbing effect of OA on the gel phase bilayer of DPPC was quite small. These results mean that OA does not disturb the hydrated DPPC bilayer significantly. PMID:11269932

  3. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition

    PubMed Central

    Kishino, Shigenobu; Takeuchi, Michiki; Park, Si-Bum; Hirata, Akiko; Kitamura, Nahoko; Kunisawa, Jun; Kiyono, Hiroshi; Iwamoto, Ryo; Isobe, Yosuke; Arita, Makoto; Arai, Hiroyuki; Ueda, Kazumitsu; Shima, Jun; Takahashi, Satomi; Yokozeki, Kenzo; Shimizu, Sakayu; Ogawa, Jun

    2013-01-01

    In the representative gut bacterium Lactobacillus plantarum, we identified genes encoding the enzymes involved in a saturation metabolism of polyunsaturated fatty acids and revealed in detail the metabolic pathway that generates hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and partially saturated trans-fatty acids as intermediates. Furthermore, we observed these intermediates, especially hydroxy fatty acids, in host organs. Levels of hydroxy fatty acids were much higher in specific pathogen-free mice than in germ-free mice, indicating that these fatty acids are generated through polyunsaturated fatty acids metabolism of gastrointestinal microorganisms. These findings suggested that lipid metabolism by gastrointestinal microbes affects the health of the host by modifying fatty acid composition. PMID:24127592

  4. Saturated and trans-fatty acids in UK takeaway food.

    PubMed

    Davies, Ian Glynn; Blackham, Toni; Jaworowska, Agnieszka; Taylor, Catherine; Ashton, Matthew; Stevenson, Leonard

    2016-01-01

    The aim of the study was to analyze the saturated fatty acid (SFA) and trans-fatty acid (TFA) contents of popular takeaway foods in the UK (including English, pizza, Chinese, Indian and kebab cuisine). Samples of meals were analyzed by an accredited public analyst laboratory for SFA and TFA. The meals were highly variable for SFA and TFA. English and Pizza meals had the highest median amount of SFA with 35.7 g/meal; Kebab meals were high in TFA with up to 5.2 g/meal. When compared to UK dietary reference values, some meals exceeded SFA and TFA recommendations from just one meal. Takeaway food would be an obvious target to reduce SFA and TFA contents and increase the potential of meeting UK recommendations. Strategies such as reformulation and smaller takeaway portion sizes warrant investigation. PMID:26911372

  5. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  6. Saturated fatty acids are not off the hook.

    PubMed

    Dawczynski, C; Kleber, M E; März, W; Jahreis, G; Lorkowski, S

    2015-12-01

    A recent meta-analysis by Chowdhury et al. (2014) has disclaimed the association between coronary artery diseases and either circulating blood levels or the intake of total saturated fatty acids (SFA). Scrutiny revealed that two of the eight studies included in the meta-analysis focused on the proportion of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) and their impact on cardiovascular disease (CVD) risk. These odd-chain fatty acids are markers for milk or ruminant fat intake. Both studies indicated inverse associations between milk-fat intake and first-ever myocardial infarction. Neither of the two studies described the association between total circulating blood SFA on coronary outcomes. In contrast to the cardioprotective effects of dairy consumption, we expected that an elevated intake of palmitic acid (C16:0) and stearic acid (C18:0) de novo may raise CVD risk. Thus, it is of particular importance to differentiate the effects of individual circulating SFA on cardiovascular outcomes. Excluding the studies that evaluated the association of fatty acids from milk fat and cardiovascular outcomes revealed a positive association of total SFA blood levels and coronary outcome (RR 1.21, CI 1.04-1.40). Therefore, results obtained from studies of C15:0 and C17:0 cannot be mixed with results from studies of other SFA because of the opposite physiological effects of regular consumption of foods rich in C16:0 and C18:0 compared to high intake of milk or ruminant fat. In our opinion, it is vital to analyze the impact of individual SFA on CVD incidence in order to draw prudent conclusions. PMID:26626084

  7. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-12-01

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification. PMID:26517697

  8. Erythrocyte Saturated Fatty Acids and Systemic Inflammation in Adults

    PubMed Central

    Mu, Lin; Mukamal, Kenneth J.; Naqvi, Asghar Z.

    2014-01-01

    Objective The role of saturated fatty acids (SFAs) in chronic disease remains controversial; inflammation is one pathway by which SFAs influence the risk of chronic disease. We aim to investigate the associations between red blood cell (RBC) phospholipid SFAs and systemic inflammation. Methods As part of a randomized controlled trial, we measured RBC phospholipid FA composition among 55 generally healthy adults twice at three-month intervals. We estimated associations of RBC total SFAs and two major SFA subtypes, palmitic and stearic acids, with C-reactive protein (CRP), interleukin-6 (IL-6), white blood count (WBC), and a composite inflammation measure using generalized estimating equations in multivariable FA substitution models. Results Mean (±SD) SFA level across both visits was 45±3% of the total RBC FAs, mainly palmitic (21±1%) and stearic (17±3%) acids. In models adjusted for age, sex, race, smoking, BMI, statin use, aspirin use, transunsaturated FAs, and ω3FAs, SFAs were significantly associated with IL-6 (20% increase per 1 SD increment; 95% CI: 0.03%, 43%; P=0.05) and the composite inflammation measure (P=0.05) and marginally associated with CRP (34% increase; − 1%, 81%; P=0.06), but not associated with WBC. Stearic acid was positively associated with CRP (35% increase; 2%, 79%; P=0.04). Palmitic acid was marginally associated with the composite inflammation measure (P=0.06) and, upon additional ω6FA adjustment, significantly associated with IL-6 (15% increase; 0.4%, 27%; P=0.006). Conclusions RBC SFAs, which represent longer-term dietary intake, are positively associated with inflammation. In particular, palmitic acid was associated with IL-6, and stearic acid was associated with CRP after multivariable adjustment. PMID:25280420

  9. Aedes aegypti (Diptera: culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we systematically evaluated for the first time the biting deterrent effects of a series of saturated and unsaturated fatty acids against Aedes aegypti [yellow fever mosquito (Diptera: Culicidae)] using the K & D bioassay system (Klun et al 2005). The saturated fatty acids (C6:0 to C16...

  10. Distinctive roles of unsaturated and saturated fatty acids in hyperlipidemic pancreatitis

    PubMed Central

    Chang, Yu-Ting; Chang, Ming-Chu; Tung, Chien-Chih; Wei, Shu-Chen; Wong, Jau-Min

    2015-01-01

    AIM: To investigate how the saturated and unsaturated fatty acid composition influences the susceptibility of developing acute pancreatitis. METHODS: Primary pancreatic acinar cells were treated with low and high concentrations of different saturated and unsaturated fatty acids, and changes in the cytosolic Ca2+ signal and the expression of protein kinase C (PKC) were measured after treatment. RESULTS: Unsaturated fatty acids at high concentrations, including oleic acid, linoleic acid, palmitoleic acid, docosahexaenoic acid, and arachidonic acid, induced a persistent rise in cytosolic Ca2+ concentrations in acinar cells. Unsaturated fatty acids at low concentrations and saturated fatty acids, including palmitic acid, stearic acid, and triglycerides, at low and high concentrations were unable to induce a rise in Ca2+ concentrations in acinar cells. Unsaturated fatty acids at high concentrations but not saturated fatty acids induced intra-acinar cell trypsin activation and cell damage and increased PKC expression. CONCLUSION: At sufficiently high concentrations, unsaturated fatty acids were able to induce acinar cells injury and promote the development of pancreatitis. Unsaturated fatty acids may play a distinctive role in the pathogenesis of pancreatitis through the activation of PKC family members. PMID:26327761

  11. Obesogenic diets enriched in oleic acid vs saturated fatty acids differentially modify polyunsaturated fatty acid composition in liver and visceral adipose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging evidence indicates that the fatty acid composition of obesogenic diets impacts physiologic outcomes. Much attention is focused on the biologic effects of consuming monounsaturated fatty acids (MUFA) vs saturated fatty acids (SFA). We investigated the extent to which an obesogenic diet high ...

  12. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence.

    PubMed

    Aardema, Hilde; Vos, Peter L A M; Lolicato, Francesca; Roelen, Bernard A J; Knijn, Hiemke M; Vaandrager, Arie B; Helms, J Bernd; Gadella, Bart M

    2011-07-01

    Mobilization of fatty acids from adipose tissue during metabolic stress will increase the amount of free fatty acids in blood and follicular fluid and, thus, may affect oocyte quality. In this in vitro study, the three predominant fatty acids in follicular fluid (saturated palmitic and stearic acid and unsaturated oleic acid) were presented to maturing oocytes to test whether fatty acids can affect lipid storage of the oocyte and developmental competence postfertilization. Palmitic and stearic acid had a dose-dependent inhibitory effect on the amount of fat stored in lipid droplets and a concomitant detrimental effect on oocyte developmental competence. Oleic acid, in contrast, had the opposite effect, causing an increase of lipid storage in lipid droplets and an improvement of oocyte developmental competence. Remarkably, the adverse effects of palmitic and stearic acid could be counteracted by oleic acid. These results suggest that the ratio and amount of saturated and unsaturated fatty acid is relevant for lipid storage in the maturing oocyte and that this relates to the developmental competence of maturing oocytes. PMID:21311036

  13. Saturated fatty acids trigger TLR4-mediated inflammatory response.

    PubMed

    Rocha, D M; Caldas, A P; Oliveira, L L; Bressan, J; Hermsdorff, H H

    2016-01-01

    Toll-like receptors (TLR) mediate infection-induced inflammation and sterile inflammation by endogenous molecules. Among the TLR family, TLR4 is the best understood. However, while its downstream signaling pathways have been well defined, not all ligands of TLR4 are currently known. Current evidence suggests that saturated fatty acids (SFA) act as non-microbial TLR4 agonists, and trigger its inflammatory response. Thus, our present review provides a new perspective on the potential mechanism by which SFAs could modulate TLR4-induced inflammatory responses: (1) SFAs can be recognized by CD14-TLR4-MD2 complex and trigger inflammatory pathways, similar to lipopolysaccharide (LPS). (2) SFAs lead to modification of gut microbiota with an overproduction of LPS after a high-fat intake, enhancing this natural TLR4 ligand. (3) In addition, this metabolic endotoxemia leads to an oxidative stress thereby producing atherogenic lipids - oxLDL and oxidized phospholipids - which trigger CD36-TLR4-TLR6 inflammatory response. (4) Also, the high SFA consumption increases the lipemia and the mmLDL and oxLDL formation through oxidative modifications of LDL. The mmLDL, unlike oxLDL, is involved in activation of the CD14-TLR4-MD2 inflammatory pathway. Those molecules can induce TLR4 inflammatory response by MyD88-dependent and/or MyD88-independent pathways that, in turn, promotes the expression of proinflammatory transcript factors such as factor nuclear kappa B (NF-κB), which plays a crucial role in the induction of inflammatory mediators (cytokines, chemokines, or costimulatory molecules) implicated in the development and progression of many chronic diseases. PMID:26687466

  14. Selective microbial degradation of saturated methyl branched chain fatty acid isomers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three strains of Pseudomonas bacteria were screened for their capabilities of degrading chemically synthesized saturated branched-chain fatty acids (sbc-FAs). Mixtures of sbc-FAs with the methyl-branch located at various locales along the fatty acid were used as a carbon feedstock in shake-flask cu...

  15. Preparation of Saturated and Unsaturated Fatty Acid Hydrazides and Long Chain C-glycoside Ketohydrazones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method is described to prepare both saturated and unsaturated fatty acid acyl hydrazides using lipase as a catalyst. Hydrazides were generated from fatty acid methyl esters as well as directly from vegetable oils, and an organic co-solvent was not needed to maintain the integrity of the unsaturat...

  16. Monounsaturated, trans & saturated fatty acids and cognitive decline in women

    PubMed Central

    Naqvi, Asghar Z.; Harty, Brian; Mukamal, Kenneth J.; Stoddard, Anne M.; Vitolins, Mara; Dunn, Julie E.

    2011-01-01

    Objectives Prospectively assess effects of select dietary fats on cognitive decline Design Prospective observational; 3-year follow-up Setting Subjects recruited at Northwestern University who participated in Women's Health Initiative Observational Study or control group of Diet Modification arm. Participants 482 women ≥ 60 years Measurements We averaged dietary intake from a validated food frequency questionnaire (FFQ) administered twice (mean=2.7 years apart) before baseline cognitive assessment (mean=2.9 years after 2nd FFQ). Testing of memory, vision, executive function, language, and attention was performed at 2 time points, 3 years apart. We created a global Z-score for both time points by averaging all Z-scores for each participant and defined global cognitive change as the difference between follow-up and baseline Z-scores. Results Median intakes of saturated fats (SFA), trans-fats, (TFA), dietary cholesterol (DC) and monounsaturated fats (MUFA) were 18.53 g/d, 3.45 g/d, 0.201 g/d and 19.39 g/d, respectively. There were no associations between degree of cognitive decline and intakes of SFA (p=0.69), TFA (p=0.54) or DC (p=0.64) after adjusting for baseline cognition, total energy, age, education, reading ability, Apolipoprotein E (ε4) allele, BMI, estrogen and beta-blocker use, and intake of caffeine and other fatty acids. In contrast, compared with participants in the lowest quartile, MUFA intake was associated with lower cognitive decline in fully adjusted linear regression models, with decline of 0.21 + 0.05 SE in the lowest versus 0.05 + 0.05 SE in the highest quartiles (p=0.02). This effect of MUFA intake was primarily in the visual and memory domains (p=0.03 for both). Conclusion Higher intakes of SFA, TFA and DC in these women were not associated with cognitive decline, while MUFA intake was associated with less cognitive decline. PMID:21568955

  17. Growth of and mineral deposition in young rats fed saturated and unsaturated fatty acids

    SciTech Connect

    Magee, A.; D'Souza, D. John Hopkins Univ., Baltimore, MD )

    1991-03-15

    Male weanling rats were used in 4 week experiments to study effects of saturated and unsaturated fatty acids on growth and mineral deposition in several organs (bone, kidneys, liver, spleen, testes). Minerals evaluated were calcium, copper, iron, magnesium, manganese, phosphorus, and zinc, and levels of these minerals in tests diets were appropriate for growing rats. Two levels of dietary fat were used, and fatty acids included in the study were butyric/capronic, palmitic/stearic, oleic, and linoleic/linolenic acids. Decreased weight gains were observed in rats fed saturated fatty acids or 10% fat, while increases in weight gains were associated with increases in polyunsaturated/saturated (P/S) ratios. Copper, iron, or zinc levels tended to be higher in organs of rats fed saturated fatty acids. P/S ratios had no effect on copper or zinc deposition, but decreases in liver iron and increases in spleen iron were observed in rats fed the higher P/S ratios. Manganese levels were generally unaffected by fatty acid types, fat level, or P/S ratio, although liver manganese levels were higher in rats fed unsaturated fatty acids. Dietary fatty acids, fat level, or P/S ratios had no apparent effects on calcium, magnesium, phosphorus, or zinc deposition in femurs and tibias of rats.

  18. Saturated phosphatidic acids mediate saturated fatty acid–induced vascular calcification and lipotoxicity

    PubMed Central

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L.; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M.; Kuro-o, Makoto; Miyazaki, Makoto

    2015-01-01

    Recent evidence indicates that saturated fatty acid–induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification. PMID:26517697

  19. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes.

    PubMed

    Mei, Shuang; Ni, Hong-Min; Manley, Sharon; Bockus, Abigail; Kassel, Karen M; Luyendyk, James P; Copple, Bryan L; Ding, Wen-Xing

    2011-11-01

    Fatty acid-induced lipotoxicity plays a critical role in the pathogenesis of nonalcoholic liver disease. Saturated fatty acids and unsaturated fatty acids have differential effects on cell death and steatosis, but the mechanisms responsible for these differences are not known. Using cultured HepG2 cells and primary mouse hepatocytes, we found that unsaturated and saturated fatty acids differentially regulate autophagy and apoptosis. The unsaturated fatty acid, oleic acid, promoted the formation of triglyceride-enriched lipid droplets and induced autophagy but had a minimal effect on apoptosis. In contrast, the saturated fatty acid, palmitic acid, was poorly converted into triglyceride-enriched lipid droplets, suppressed autophagy, and significantly induced apoptosis. Subsequent studies revealed that palmitic acid-induced apoptosis suppressed autophagy by inducing caspase-dependent Beclin 1 cleavage, indicating cross-talk between apoptosis and autophagy. Moreover, our data suggest that the formation of triglyceride-enriched lipid droplets and induction of autophagy are protective mechanisms against fatty acid-induced lipotoxicity. In line with our in vitro findings, we found that high-fat diet-induced hepatic steatosis was associated with autophagy in the mouse liver. Potential modulation of autophagy may be a novel approach that has therapeutic benefits for obesity-induced steatosis and liver injury. PMID:21856859

  20. Kinase Signaling in Apoptosis Induced by Saturated Fatty Acids in Pancreatic β-Cells.

    PubMed

    Šrámek, Jan; Němcová-Fürstová, Vlasta; Kovář, Jan

    2016-01-01

    Pancreatic β-cell failure and death is considered to be one of the main factors responsible for type 2 diabetes. It is caused by, in addition to hyperglycemia, chronic exposure to increased concentrations of fatty acids, mainly saturated fatty acids. Molecular mechanisms of apoptosis induction by saturated fatty acids in β-cells are not completely clear. It has been proposed that kinase signaling could be involved, particularly, c-Jun N-terminal kinase (JNK), protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt kinases and their pathways. In this review, we discuss these kinases and their signaling pathways with respect to their possible role in apoptosis induction by saturated fatty acids in pancreatic β-cells. PMID:27626409

  1. Saturated fatty acids activate TLR-mediated pro-inflammatory signaling pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report (ATVB 11:1944, 2009) suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for conjugating f...

  2. SUNFLOWER GERMPLASM DIVERSITY FOR SEED OIL SATURATED FATTY ACID CONTENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary saturated fat has become an important concern of consumers in recent years, as studies have indicated that high levels of saturated fat consumption are correlated with increased risk of coronary heart disease. The purpose of the present study was to screen the USDA-ARS sunflower germplasm ac...

  3. DIFFERENTIAL EFFECTS OF SATURATED AND UNSATURATED FATTY ACID DIETS ON CARDIOMYOCYTE APOPTOSIS, ADIPOSE DISTRIBUTION, AND SERUM LEPTIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids are the primary fuel for the heart and are ligands for peroxisome proliferator-activated receptors (PPARs), which regulate the expression of genes encoding proteins involved in fatty acid metabolism. Saturated fatty acids, particularly palmitate, can be converted to the proapoptotic lipi...

  4. Saturated fatty-acids regulate retinoic acid signaling and suppress tumorigenesis by targeting fatty-acid-binding protein 5

    PubMed Central

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L.; Noy, Noa

    2015-01-01

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes, and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5 which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer. PMID:26592976

  5. Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5.

    PubMed

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L; Noy, Noa

    2015-01-01

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5, which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting the activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer. PMID:26592976

  6. Growth of group IV mycobacteria on medium containing various saturated and unsaturated fatty acids.

    PubMed Central

    Saito, H; Tomioka, H; Yoneyama, T

    1984-01-01

    Seventy-one strains of 15 species of rapidly growing mycobacteria were studied for their susceptibilities to fatty acids with 2 to 20 carbons by the agar dilution method at pH 7.0. Most mycobacteria other than potential pathogens (Mycobacterium fortuitum and Mycobacterium chelonei) were resistant to saturated fatty acids, except for lauric acid (C12:0) (MIC, 6.25 to 25 micrograms/ml) and capric acid (C10:0) (MIC, 50 to 100 micrograms#ml). M. fortuitum and M. chelonei were substantially insusceptible to these fatty acids. Unsaturated fatty acids with 16 to 20 carbons, except for C20:5, were highly toxic to group IV mycobacteria other than M. fortuitum, M. chelonei, Mycobacterium smegmatis, and Mycobacterium phlei, these being highly resistant to all the unsaturated acids, except for C16:1, C18:3, and C20:5. Introduction of double bonds to C16 to C20 fatty acids caused a marked increase in their activities that depended on the increase in the number of double bonds, at least up to three or four. M. fortuitum and M. chelonei were more resistant to the unsaturated fatty acids (particularly to C20:3 and C20:4) than the other group IV mycobacteria. PMID:6486760

  7. Improved synthesis and characterization of saturated branched-chain fatty acid isomers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of viable technologies for producing green products from renewable fats and oils is highly desirable since such materials can serve as replacements for non-renewable and poorly biodegradable petroleum-based products. Mixtures of saturated branched-chain fatty acid isomers (sbc-FAs),...

  8. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  9. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H; Shanklin, John

    2014-03-18

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  10. Synthesis of Saturated Long Chain Fatty Acids from Sodium Acetate-1-C14 by Mycoplasma1

    PubMed Central

    Pollack, J. D.; Tourtellotte, M. E.

    1967-01-01

    Three strains of Mycoplasma, M. laidlawii A and B, and Mycoplasma sp. A60549, were grown in broth containing sodium acetate-1-C14. The methyl esters of the phospholipid fatty acids of harvested radioactive cells were prepared and identified by comparison of their mobilities to known radioactive fatty acid methyl esters by use of a modified reversed-phase partition-thin layer chromatographic technique. No radioactive methyl oleate or methyl linoleate was detected. Compounds migrating as radioactive methyl myristate, stearate, palmitate, and, with less certainty, laurate and octanoate were detected. The qualitative findings for all three organisms appeared similar. M. laidlawii B synthesized a radioactive substance, presumably a saturated fatty acid detected as the methyl ester derivative, which migrated in a position intermediate to methyl myristate-1-C14 and methyl palmitate-1-C14. This work indicates that M. laidlawii A and B and Mycoplasma sp. A60549 are capable, in a complex medium containing fatty acids, of synthesizing saturated but not unsaturated fatty acids entirely or in part from acetate. Images PMID:6020566

  11. Differential Effects of a Saturated and a Monounsaturated Fatty Acid on MHC Class I Antigen Presentation

    PubMed Central

    Shaikh, S. R.; Mitchell, D.; Carroll, E.; Li, M.; Schneck, J.; Edidin, M.

    2009-01-01

    Lipid overload, associated with metabolic disorders, occurs when fatty acids accumulate in non-adipose tissues. Cells of these tissues use major histocompatibility complex (MHC) class I molecules to present antigen to T cells in order to eliminate pathogens. As obesity is associated with impaired immune responses, we tested the hypothesis that the early stages of lipid overload with saturated fatty acids (SFA) alters MHC class I antigen presentation. Antigen presenting cells (APC) were treated with either the saturated palmitic acid (PA), abundant in the high fat Western diet, or the monounsaturated oleic acid (OA), a component of the Mediterranean diet. PA-treatment lowered APC lysis by activated cytotoxic T lymphocytes and inhibited APC ability to stimulate naïve T cells. Inhibition of immune responses with PA was due to a significant reduction in MHC class I surface expression, inhibition in the rate of APC–T-cell conjugation, and lowering of plasma membrane F-actin levels. OA-treatment had no effect on antigen presentation and upon exposure with PA, prevented the phenotypic effects of PA. OA-treatment conferred protection against changes in antigen presentation by accumulating fatty acids into triglyceride-rich lipid droplets of APC. Our findings establish for the first time a link between the early stages of lipid overload and antigen presentation and suggest that dietary SFA could impair immunity by affecting MHC I-mediated antigen presentation; this could be prevented, paradoxically, by accumulation of triglycerides rich in monounsaturated fatty acids. PMID:18533931

  12. Differential effects of a saturated and a monounsaturated fatty acid on MHC class I antigen presentation.

    PubMed

    Shaikh, S R; Mitchell, D; Carroll, E; Li, M; Schneck, J; Edidin, M

    2008-07-01

    Lipid overload, associated with metabolic disorders, occurs when fatty acids accumulate in non-adipose tissues. Cells of these tissues use major histocompatibility complex (MHC) class I molecules to present antigen to T cells in order to eliminate pathogens. As obesity is associated with impaired immune responses, we tested the hypothesis that the early stages of lipid overload with saturated fatty acids (SFA) alters MHC class I antigen presentation. Antigen presenting cells (APC) were treated with either the saturated palmitic acid (PA), abundant in the high fat Western diet, or the monounsaturated oleic acid (OA), a component of the Mediterranean diet. PA-treatment lowered APC lysis by activated cytotoxic T lymphocytes and inhibited APC ability to stimulate naïve T cells. Inhibition of immune responses with PA was due to a significant reduction in MHC class I surface expression, inhibition in the rate of APC-T-cell conjugation, and lowering of plasma membrane F-actin levels. OA-treatment had no effect on antigen presentation and upon exposure with PA, prevented the phenotypic effects of PA. OA-treatment conferred protection against changes in antigen presentation by accumulating fatty acids into triglyceride-rich lipid droplets of APC. Our findings establish for the first time a link between the early stages of lipid overload and antigen presentation and suggest that dietary SFA could impair immunity by affecting MHC I-mediated antigen presentation; this could be prevented, paradoxically, by accumulation of triglycerides rich in monounsaturated fatty acids. PMID:18533931

  13. Aedes aegypti (Diptera: Culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids.

    PubMed

    Ali, Abbas; Cantrell, Charles L; Bernier, Ulrich R; Duke, Stephen O; Schneider, John C; Agramonte, Natasha M; Khan, Ikhlas

    2012-11-01

    In this study we evaluated the biting deterrent effects of a series of saturated and unsaturated fatty acids against Aedes aegypti (L), yellow fever mosquito (Diptera: Culicidae) using the K & Dbioassay module system. Saturated (C6:0 to C16:0 and C18:0) and unsaturated fatty acids (C11:1 to C14:1, C16:1, C18:1, and C18:2) showed biting deterrence index (BDI) values significantly greater than ethanol, the negative control. Among the saturated fatty acids, mid chain length acids (C10:0 to C13:0) showed higher biting deterrence than short (C6:0 to C9:0) and long chain length acids (C14:0 to C18:0), except for C8:0 and C16:0 that were more active than the other short and long chain acids. The BDI values of mid chain length acids (C10:0 to C13:0) were not significantly less than N, N-diethyl-meta-toluamide (DEET), the positive control. Among the unsaturated fatty acids, C11:1 showed the highest activity (BDI = 1.05) and C18:2 had the lowest activity (BDI = 0.7). In C11:1, C12:1, and C14:1 BDI values were not significantly less than DEET. After the preliminary observations, residual activity bioassays were performed on C11:0, C12:0, C11:1, and C12:1 over a 24-h period. All the fatty acids (C11:0, C12:0, C11:1, and C12:1) and DEET showed significantly higher activity at all test intervals than the solvent control. At treatment and 1-h posttreatment, all fatty acids showed proportion not biting (PNB) values not significantly less than DEET. At 3-, 6-, and 12-h posttreatment, all fatty acids showed PNB values significantly greater than DEET. At 24-h posttreatment, only the PNB value for C12:0 was significantly higher than DEET. The dose-responses of C12:0 and DEET were determined at concentrations of 5-25 nmol/cm2. As in the residual activity bioassays, the PNB values for C12:0 and DEET at 25 nmol/cm(2) were not significantly different. However, at lower concentrations, the PNB values for C12:0 were significantly greater than DEET. These results clearly indicate that mid

  14. Uptake and incorporation of saturated and unsaturated fatty acids into macrophage lipids and their effect upon macrophage adhesion and phagocytosis.

    PubMed Central

    Calder, P C; Bond, J A; Harvey, D J; Gordon, S; Newsholme, E A

    1990-01-01

    Murine thioglycollate-elicited peritoneal macrophages were cultured in the presence of a variety of fatty acids added as complexes with bovine serum albumin. All fatty acids tested were taken up readily by the cells and both neutral and phospholipid fractions were enriched with the fatty acid provided in the medium. This generated a range of cells enriched in saturated, monounsaturated or polyunsaturated fatty acids, including n-3 acids of fish oil origin. Saturated fatty acid enrichment enhanced macrophage adhesion to both tissue culture plastic and bacterial plastic compared with enrichment with polyunsaturated fatty acids. Macrophages enriched with the saturated fatty acids myristate or palmitate showed decreases of 28% and 21% respectively in their ability to phagocytose unopsonized zymosan particles. Those enriched with polyunsaturated fatty acids showed 25-55% enhancement of phagocytic capacity. The greatest rate of uptake was with arachidonate-enriched cells. Phagocytic rate was highly correlated with the saturated/unsaturated fatty acid ratio, percentage of polyunsaturated fatty acid and index of unsaturation, except for macrophages enriched with fish-oil-derived fatty acids; they showed lower phagocytic activity than expected on the basis of their degree of unsaturation. These results suggest that membrane fluidity is important in determining macrophage adhesion and phagocytic activity. However, in the case of phagocytosis, this effect may be partially overcome if the cells are enriched with fish-oil-derived fatty acids. Thus it may be possible to modulate the activity of cells of the immune system, and so an immune response, by dietary lipid manipulation. PMID:2117922

  15. Inhibitory effects of several saturated fatty acids and their related fatty alcohols on the growth of Candida albicans.

    PubMed

    Hayama, Kazumi; Takahashi, Miki; Yui, Satoru; Abe, Shigeru

    2015-12-01

    We examined the effect of 5 saturated fatty acids and their related alcohols on the growth of Candida albicans. The inhibitory effects of these compounds against the yeast and hyphal growth forms of C. albicans were examined using the modified NCCLS method and crystal violet staining, respectively. Among these compounds, capric acid inhibited both types of growth at the lowest concentration. The IC(80), i.e., the concentration at which the compounds reduced the growth of C. albicans by 80% in comparison with the growth of control cells, of capric acid for the hyphal growth of this fungus, which is indispensable for its mucosal invasion, was 16.7 μM. These fatty acids, including capric acid, have an unpleasant smell, which may limit their therapeutic use. To test them at reduced concentrations, the combined effect of these fatty acids and oligonol, a depolymerized polyphenol, was evaluated in vitro. These combinations showed potent synergistic inhibition of hyphal growth [fractional inhibitory concentration (FIC) index = 0.319]. Our results demonstrated that capric acid combined with oligonol could be used as an effective anti-Candida compound. It may be a candidate prophylactic or therapeutic tool against mucosal Candida infection. PMID:26781922

  16. Evaluation of radiological data of some saturated fatty acids using gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Kore, Prashant S.; Pawar, Pravina P.; Palani Selvam, T.

    2016-02-01

    Radiological parameters such as mass attenuation coefficients (μm), total attenuation cross section (σtot), molar extinction coefficient (ε), mass energy absorption coefficient (μen/ρ) and effective electronic cross section (σt, el) of saturated fatty acids, namely butyric acid (C4H8O2), caproic acid (C6H12O2), enanthic acid (C7H14O2), caprylic acid (C8H16O2), pelargonic acid (C9H18O2) and valeric acid (C5H10O2) were measured using NaI(Tl)-based gamma spectrometry. Radioactive sources used in the study are 57Co, 133Ba, 137Cs, 54Mn, 60Co and 22Na. Gamma ray transmission method in a narrow beam good geometry set up was used in the study. The measured data were compared against Win-XCOM-based data. The agreement is within 1%.

  17. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.

    PubMed

    Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young

    2016-08-15

    Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses. PMID:27085899

  18. Features of separation on polymeric reversed phase for two classes of higher saturated fatty acids esters

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Lapshova, M. S.; Zakharenko, E. V.; Deineka, L. A.

    2013-11-01

    The principles of sorption on polymeric reversed phase (PRP) YMS C30 for members of the two classes of esters formed by higher saturated fatty acids, i.e., lutein diesters ( I) and triacylglycerols ( II), are investigated. It is shown that the logarithm of the retention factor increases nonlinearly with an increase of the length of the acid radical, although the retention on PRP is higher in the case of I and lower in the case of II, compared to their retention on traditional monomeric reversed phase (MRP) Kromasil-100 5C18; however, the equivalence of the contributions to the retention of I that correspond to an identical change in acids, does not depend on the length of the hydrocarbon radical of the second acid. It is noted that the Van't Hoff plot for PRP contains a curve break, indicating a change in the retention mechanism upon a rise in temperature.

  19. 40 CFR 180.1284 - Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Ammonium salts of higher fatty acids... Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the requirement of a tolerance. Ammonium salts of C8-C18 saturated and C8-C12 unsaturated higher fatty acids...

  20. 40 CFR 180.1284 - Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ammonium salts of higher fatty acids... Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the requirement of a tolerance. Ammonium salts of C8-C18 saturated and C8-C12 unsaturated higher fatty acids...

  1. Reducing saturated fatty acids in Arabidopsis seeds by expression of a Caenorhabditis elegans 16:0-specific desaturase.

    PubMed

    Fahy, Deirdre; Scheer, Barbara; Wallis, James G; Browse, John

    2013-05-01

    Plant oilseeds are a major source of nutritional oils. Their fatty acid composition, especially the proportion of saturated and unsaturated fatty acids, has important effects on human health. Because intake of saturated fats is correlated with the incidence of cardiovascular disease and diabetes, a goal of metabolic engineering is to develop oils low in saturated fatty acids. Palmitic acid (16:0) is the most abundant saturated fatty acid in the seeds of many oilseed crops and in Arabidopsis thaliana. We expressed FAT-5, a membrane-bound desaturase cloned from Caenorhabditis elegans, in Arabidopsis using a strong seed-specific promoter. The FAT-5 enzyme is highly specific to 16:0 as substrate, converting it to 16:1∆9; expression of fat-5 reduced the 16:0 content of the seed by two-thirds. Decreased 16:0 and elevated 16:1 levels were evident both in the storage and membrane lipids of seeds. Regiochemical analysis of phosphatidylcholine showed that 16:1 was distributed at both positions on the glycerolipid backbone, unlike 16:0, which is predominately found at the sn-1 position. Seeds from a plant line homozygous for FAT-5 expression were comparable to wild type with respect to seed set and germination, while oil content and weight were somewhat reduced. These experiments demonstrate that targeted heterologous expression of a desaturase in oilseeds can reduce the level of saturated fatty acids in the oil, significantly improving its nutritional value. PMID:23279079

  2. The effects of changing dairy intake on trans and saturated fatty acid levels- results from a randomized controlled study

    PubMed Central

    2014-01-01

    Background Dairy food is an important natural source of saturated and trans fatty acids in the human diet. This study evaluates the effect of dietary advice to change dairy food intake on plasma fatty acid levels known to be present in milk in healthy volunteers. Methods Twenty one samples of whole fat dairy milk were analyzed for fatty acids levels. Changes in levels of plasma phospholipid levels were evaluated in 180 healthy volunteers randomized to increase, not change or reduce dairy intake for one month. Fatty acids were measured by gas chromatography–mass spectrometry and levels are normalized to d-4 alanine. Results The long chain fatty acids palmitic (13.4%), stearic (16.7%) and myristic (18.9%) acid were most common saturated fats in milk. Four trans fatty acids constituted 3.7% of the total milk fat content. Increased dairy food intake by 3.0 (± 1.2) serves/ day for 1 month was associated with small increases in plasma levels of myristic (+0.05, 95% confidence level-0.08 to 0.13, p = 0.07), pentadecanoic (+0.014, 95% confidence level -0.016 to 0.048, p = 0.02) and margaric acid (+0.02, -0.03 to 0.05, p = 0.03). There was no significant change in plasma levels of 4 saturated, 4 trans and 10 unsaturated fatty acids. Decreasing dairy food intake by 2.5 (± 1.2) serves per day was not associated with change in levels of any plasma fatty acid levels. Conclusion Dietary advice to change dairy food has a minor effect on plasma fatty acid levels. Trial registration ACTRN12612000574842. PMID:24708591

  3. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Lawson, Marcus A.; Chiu, Gabriel S.; Blevins, Neil A.; Kwakwa, Kristin A.; Freund, Gregory G.

    2014-01-01

    Objectives Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that lasts beyond an acute elevation in plasma FFAs. Methods Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 hrs after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. Results In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hrs after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24 hrs after palmitic acid treatment. Conclusions Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. PMID:25016520

  4. Studies on saturated and trans fatty acids composition of few commercial brands of biscuits sold in Indian market.

    PubMed

    Amrutha Kala, A L

    2014-11-01

    Saturated fat and trans fat consumption is linked to cardiovascular disease. Considering the health implications of saturated and trans fats investigation was undertaken with the objective to study the fat compositions in biscuits sold in Indian market. These commercial biscuits were analysed for saturated and trans fatty acids using capillary GC. The results of analysis of 46 biscuit samples showed that the total fat content ranged from 9.5 to 25.0 g/100 g of biscuits. The fatty acid profile showed that, saturated fat content in biscuits ranged from 5.1 to 18.7 g/100 g. The overall range of total trans fat content was found to be 0.1 to 3.2 g/100 g biscuit and cis monounsaturated fatty acid content varied from 0.9 to 8.6 g/100 g of biscuits. The low-level trans fatty acid was mainly by dienes and trienes where as high-level trans was from monoenes of C18. Polyunsaturated fatty acids in biscuits ranged from 0.2 to 3.5 g/100 g. Biscuits of same brand on repeat analysis over a period of one year showed little variation in fat, saturated and trans fat content. PMID:26396357

  5. Comparative Adsorption of Saturated and Unsaturated Fatty Acids at the Iron Oxide/Oil Interface.

    PubMed

    Wood, Mary H; Casford, M T; Steitz, R; Zarbakhsh, A; Welbourn, R J L; Clarke, Stuart M

    2016-01-19

    A detailed comparison of the adsorption behavior of long straight chain saturated and unsaturated fatty acids at the iron oxide/oil interface has been considered using a combination of surface study techniques. Both depletion isotherms and polarized neutron reflectometry (PNR) show that the extent of adsorption decreases as the number of double bonds in the alkyl chains increases. Sum frequency generation spectroscopic measurements demonstrate that there is also an increase in chain disorder within the adsorbed layer as the unsaturation increases. However, for the unsaturated analogues, a decrease in peak intensity is seen for the double bond peak upon heating, which is thought to arise from isomerization in the surface-bound layer. The PNR study of oleic acid adsorption indicates chemisorbed monolayer adsorption, with a further diffuse reversible adsorbed layer formed at higher concentrations. PMID:26707597

  6. Temperature-Sensitive Mutants of Escherichia coli Requiring Saturated and Unsaturated Fatty Acids for Growth: Isolation and Properties

    PubMed Central

    Harder, Mark E.; Beacham, Ifor R.; Cronan, John E.; Beacham, Kathryn; Honegger, Joy L.; Silbert, David F.

    1972-01-01

    A procedure is described for selection of temperature-sensitive mutants affecting fatty-acid synthesis based upon radiation suicide of wild-type organisms by tritiated acetate selectively incorporated into fatty acids. At 37°, two of the mutants extensively incorporate fatty-acid supplements provided in the medium, and grow for extended periods only when a trans-unsaturated or a combination of saturated and cis-unsaturated fatty acids is available. In vivo fatty-acid synthesis, measured by [14C]acetate incorporation, is temperature-sensitive in these strains relative to protein synthesis and other non-lipid macromolecular syntheses using acetate. The biochemical nature of these mutations has not been identified. PMID:4564200

  7. Differential effect of saturated and polyunsaturated fatty acids on hepatic glucose metabolism in humans.

    PubMed

    Clore, John N; Stillman, Julie S; Li, Jing; O'Keefe, Stephen J D; Levy, James R

    2004-08-01

    Prolonged infusions of lipid and heparin that achieve high physiological free fatty acid (FFA) concentrations inhibit hepatic (and peripheral) insulin sensitivity in humans. These infusions are composed largely of polyunsaturated fatty acids (PUFA; linoleic and linolenic). It is not known whether fatty acid composition per se affects hepatic glucose metabolism in humans. To address this issue, we examined the impact of enteral infusions of either palm oil (48% palmitic, 35% oleic, and 8% linoleic acids) or safflower oil (6% palmitic, 12% oleic, 74% linoleic acids) in 14 obese nondiabetic subjects. (2)H(2)O was administered to determine the contribution of gluconeogenesis to endogenous glucose production (EGP), and a primed continuous infusion of [6,6-(2)H]glucose was administered to assess glucose appearance. As a result of the lipid infusions, plasma FFA concentrations increased significantly in both the palm oil (507.5 +/- 47.4 to 939.3 +/- 61.3 micromol/l, P < 0.01) and safflower oil (588.2.0 +/- 43.0 to 857.8 +/- 68.7 micromol/l, P < 0.01) groups after 4 h. EGP was similar at baseline (12.4 +/- 1.8 vs. 11.2 +/- 1.0 micromol x kg FFM(-1) x min(-1)). During a somatostatin-insulin clamp, the glucose infusion rate was significantly lower (AUC glucose infusion rate 195.8 +/- 50.7 vs. 377.8 +/- 38.0 micromol/kg FFM, P < 0.01), and rates of EGP were significantly higher (10.7 +/- 1.4 vs. 6.5 +/- 1.5 micromol x kg FFM(-1) x min(-1), P < 0.01) after palm oil compared with safflower oil, respectively. Baseline rates of gluconeogenesis and glycogenolysis were also similar. However, after lipid infusion, rates of glycogenolysis were suppressed by safflower oil but not by palm oil. Thus these studies demonstrate, for the first time in humans, a differential effect of saturated fatty acids and PUFA on hepatic glucose metabolism. PMID:15082421

  8. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds.

    PubMed

    Kim, Hae Jin; Silva, Jillian E; Iskandarov, Umidjon; Andersson, Mariette; Cahoon, Rebecca E; Mockaitis, Keithanne; Cahoon, Edgar B

    2015-12-01

    Lysophosphatidic acid acyltransferase (LPAT) catalyzes acylation of the sn-2 position on lysophosphatidic acid by an acyl CoA substrate to produce the phosphatidic acid precursor of polar glycerolipids and triacylglycerols (TAGs). In the case of TAGs, this reaction is typically catalyzed by an LPAT2 from microsomal LPAT class A that has high specificity for C18 fatty acids containing Δ9 unsaturation. Because of this specificity, the occurrence of saturated fatty acids in the TAG sn-2 position is infrequent in seed oils. To identify LPATs with variant substrate specificities, deep transcriptomic mining was performed on seeds of two Cuphea species producing TAGs that are highly enriched in saturated C8 and C10 fatty acids. From these analyses, cDNAs for seven previously unreported LPATs were identified, including cDNAs from Cuphea viscosissima (CvLPAT2) and Cuphea avigera var. pulcherrima (CpuLPAT2a) encoding microsomal, seed-specific class A LPAT2s and a cDNA from C. avigera var. pulcherrima (CpuLPATB) encoding a microsomal, seed-specific LPAT from the bacterial-type class B. The activities of these enzymes were characterized in Camelina sativa by seed-specific co-expression with cDNAs for various Cuphea FatB acyl-acyl carrier protein thioesterases (FatB) that produce a variety of saturated medium-chain fatty acids. CvLPAT2 and CpuLPAT2a expression resulted in accumulation of 10:0 fatty acids in the Camelina sativa TAG sn-2 position, indicating a 10:0 CoA specificity that has not been previously described for plant LPATs. CpuLPATB expression generated TAGs with 14:0 at the sn-2 position, but not 10:0. Identification of these LPATs provides tools for understanding the structural basis of LPAT substrate specificity and for generating altered oil functionalities. PMID:26505880

  9. Self-Assembly of Bilayer Vesicles Made of Saturated Long Chain Fatty Acids.

    PubMed

    Douliez, Jean-Paul; Houssou, Bérénice Houinsou; Fameau, A-Laure; Navailles, Laurence; Nallet, Frédéric; Grélard, Axelle; Dufourc, Erick J; Gaillard, Cédric

    2016-01-19

    Saturated long chain fatty acids (sLCFA, e.g., C14:0, C16:0, and C18:0) are potentially the greenest and cheapest surfactants naturally available. However, because aqueous sodium soaps of sLCFA are known to crystallize, the self-assembly of stable bilayer vesicles has not been reported yet. Here, by using such soaps in combination with guanidine hydrochloride (GuHCl), which has been shown recently to prevent crystallization, we were capable of producing stable bilayer vesicles made of sLCFA. The phase diagrams were established for a variety of systems showing that vesicles can form in a broad range of composition and pH. Both solid state NMR and small-angle neutron scattering allowed demonstrating that in such vesicles sLCFA are arranged in a bilayer structure which exhibits similar dynamic and structural properties as those of phospholipid membranes. We expect these vesicles to be of interest as model systems of protocells and minimal cells but also for various applications since fatty acids are potentially substitutes to phospholipids, synthetic surfactants, and polymers. PMID:26700689

  10. Topical and vapor toxicity of saturated fatty acids to the German cockroach (Dictyoptera: Blattellidae).

    PubMed

    Sims, Steven R; Balusu, Rammohan R; Ngumbi, Esther N; Appel, Arthur G

    2014-04-01

    Topical and fumigant toxicity of saturated aliphatic fatty acids with chain lengths of C1 through C14 were determined against the German cockroach, Blattella germanica (L.). In the C1 to C11 series, topical toxicity (LD50 in milligram per adult male) ranged from 0.145 (C1) to 0.322 mg (C2). Toxicity declined dramatically with C12 and C14 acids whose LD50 values could not be calculated. The relative fumigation toxicity (LC50 in microliter per liter) of C1 through C5 acids was positively correlated with topical toxicity with values ranging from 6.159 (C3) to 12.302 microl/liter (C2). Fumigant toxicity decreased sharply with C6 (LC50 = 37.691 microl/liter) and there was no mortality of cockroaches exposed to vapors from C7 to C14 acids. The low fumigant toxicity of the C6 to C11 acids was correlated with their relatively low vapor pressure, but differences in diffusion of the vapors into the spiracles and subsequent passage to the target sites may have also been involved. PMID:24772558

  11. Acquisition and biosynthesis of saturated and unsaturated fatty acids by trypanosomatids.

    PubMed

    Uttaro, Antonio D

    2014-08-01

    As components of phospholipids and glycosylphosphatidylinositol anchors, fatty acids are responsible for forming the core of biological membranes and the correct localization of proteins within membranes. They also contribute to anchoring proteins by direct acylation of specific amino acids. Fatty acids can be used as energy sources and serve as signaling molecules or precursors for their synthesis. All these processes highlight the important role of fatty acids in cell physiology, justifying the diverse strategies for their acquisition evolved by different organisms. This review describes several recent findings in the salvage and biosynthesis of fatty acids by parasitic protists belonging to the class Kinetoplastea. They include two biosynthetic routes, the mitochondrial one and a peculiar membrane-associated pathway, the synthesis of polyunsaturated fatty acids, and the scavenging of lysophospholipids and lipoproteins from host plasma. These different processes are also explored as putative targets for chemotherapy. PMID:24726787

  12. The Effect of Saturated Fatty Acids on Methanogenesis and Cell Viability of Methanobrevibacter ruminantium

    PubMed Central

    Zhou, Xuan; Meile, Leo; Kreuzer, Michael; Zeitz, Johanna O.

    2013-01-01

    Saturated fatty acids (SFAs) are known to suppress ruminal methanogenesis, but the underlying mechanisms are not well known. In the present study, inhibition of methane formation, cell membrane permeability (potassium efflux), and survival rate (LIVE/DEAD staining) of pure ruminal Methanobrevibacter ruminantium (DSM 1093) cell suspensions were tested for a number of SFAs. Methane production rate was not influenced by low concentrations of lauric (C12; 1 μg/mL), myristic (C14; 1 and 5 μg/mL), or palmitic (C16; 3 and 5 μg/mL) acids, while higher concentrations were inhibitory. C12 and C14 were most inhibitory. Stearic acid (C18), tested at 10–80 μg/mL and ineffective at 37°C, decreased methane production rate by half or more at 50°C and ≥50 μg/mL. Potassium efflux was triggered by SFAs (C12 = C14 > C16 > C18 = control), corroborating data on methane inhibition. Moreover, the exposure to C12 and C14 decreased cell viability to close to zero, while 40% of control cells remained alive after 24 h. Generally, tested SFAs inhibited methanogenesis, increased cell membrane permeability, and decreased survival of M. ruminantium in a dose- and time-dependent way. These results give new insights into how the methane suppressing effect of SFAs could be mediated in methanogens. PMID:23710130

  13. [Effect of the B-group vitamin complex on the blood content of saturated and unsaturated fatty acids in patients with ischemic heart disease and hypertension].

    PubMed

    Vodoevich, V P; Buko, V U

    1986-01-01

    Gas-liquid chromatography was used to study the blood content of saturated and unsaturated fatty acids, under the influence of the functionally-associated vitamin-B complex, in 45 patients with coronary heart disease and essential hypertension. The vitamins were given daily in the following doses: thiamine diphosphate 50 mg, riboflavine 40 mg, calcium pantothenate 200 mg, nicotinic acid 200 mg and lipoic acid 50 mg. Favourable shifts leading to positive clinical effects were recorded in the fatty acid metabolism after 10-day taking the vitamin-B complex: the content of unsaturated (linoleic and arachidonic) fatty acids increased while that of saturated (stearic and palmitic) fatty acids decreased. PMID:3705551

  14. Endothelial Acyl-CoA Synthetase 1 is not Required for Inflammatory and Apoptotic Effects of a Saturated Fatty Acid-Rich Environment

    PubMed Central

    Li, Xin; Gonzalez, Oscar; Shen, Xia; Barnhart, Shelley; Kramer, Farah; Kanter, Jenny E.; Vivekanandan-Giri, Anuradha; Tsuchiya, Kyoichiro; Handa, Priya; Pennathur, Subramaniam; Kim, Francis; Coleman, Rosalind A.; Schaffer, Jean E.; Bornfeldt, Karin E.

    2013-01-01

    Objective Saturated fatty acids, such as palmitic and stearic acid, cause detrimental effects in endothelial cells (ECs) and have been suggested to contribute to macrophage accumulation in adipose tissue and the vascular wall in states of obesity and insulin resistance. Long-chain fatty acids are believed to require conversion into acyl-CoA derivatives to exert most of their detrimental effects, a reaction catalyzed by acyl-CoA synthetases (ACSL). The objective of this study was to investigate the role of ACSL1, an ACSL isoform previously shown to mediate inflammatory effects in myeloid cells, in regulating EC responses to a saturated fatty acid-rich environment in vitro and in vivo. Methods and Results Saturated fatty acids caused increased inflammatory activation, ER stress, and apoptosis in mouse microvascular ECs. Forced ACSL1 overexpression exacerbated the effects of saturated fatty acids on apoptosis and ER stress. However, endothelial ACSL1-deficiency did not protect against the effects of saturated fatty acids in vitro, nor did it protect insulin resistant mice fed a saturated fatty acid-rich diet from macrophage adipose tissue accumulation or increased aortic adhesion molecule expression. Conclusion Endothelial ACSL1 is not required for inflammatory and apoptotic effects of a saturated fatty acid-rich environment. PMID:23241406

  15. Prebiotic oligomerization of amino acids inside lipid vesicles of unsaturated and saturated fatty acids in hydrothermal environments

    NASA Astrophysics Data System (ADS)

    Imai, E.; Furuuchi, R.; Nemoto, A.; Hatori, K.; Honda, H.; Matsuno, K.

    We have already attempted an experimental model simulating seawater circulation in the vicinity of hydrothermal vents in the primitive ocean. We used a flow reactor that was constructed for simulating the pressure and temperature conditions of the hydrothermal vents. In the flow reactor, a high-temperature high-pressure fluid at 125˜ 250°C and at 20MPa was injected into a low temperature (0˜ 40°C ) chamber that was maintained at about the same high pressure as the fluid. We then experimentally examined a possibility of oligomerizing amino acids on or inside lipid vesicles. We compared three different kinds of lipid vesicles made of unsaturated fatty acids (oleic acid), saturated fatty acids (decanoic acid) and phospholipids (DPPC). Identification of the oligomeric products was made with the aid of an HPLC analysis. The oligomeric yields from glycine increased significantly in the presence of lipid vesicles compared to the case of their absence. On the other hand, there was found no significant difference in the yields of oligomers between in the presence of lipid vesicles dissolved by surfactant and in their absence. The possibility of lipid molecules serving as catalysts for oligomerization may be dismissed. The diameters of those lipid vesicles observed under a phase contrast microscope were about 10 micrometer or less. The total volume shared by oleic acid vesicles was about 5 % of the total volume of the suspension. Oligomerization of glycine inside oleic acid vesicles was enhanced more than 15 times compared to that proceeding in their outside. Enhancement of oligomerization of glycine in the presence of lipid vesicles was repeated as the reactants revisited the interface zone between the hot and cold regions. Even those lipid vesicles made of saturated fatty acid such as decanoic acid could have been functional in enhancing the oligomerization of monomers in their inside in the primitive ocean. References E. Imai, et al. (1999) Science 283, 831-833. H

  16. Increased saturated fatty acids in obesity alter resolution of inflammation in part by stimulating prostaglandin production.

    PubMed

    Hellmann, Jason; Zhang, Michael J; Tang, Yunan; Rane, Madhavi; Bhatnagar, Aruni; Spite, Matthew

    2013-08-01

    Extensive evidence indicates that nutrient excess associated with obesity and type 2 diabetes activates innate immune responses that lead to chronic, sterile low-grade inflammation, and obese and diabetic humans also have deficits in wound healing and increased susceptibility to infections. Nevertheless, the mechanisms that sustain unresolved inflammation during obesity remain unclear. In this study, we report that saturated free fatty acids that are elevated in obesity alter resolution of acute sterile inflammation by promoting neutrophil survival and decreasing macrophage phagocytosis. Using a targeted mass spectrometry-based lipidomics approach, we found that in db/db mice, PGE2/D2 levels were elevated in inflammatory exudates during the development of acute peritonitis. Moreover, in isolated macrophages, palmitic acid stimulated cyclooxygenase-2 induction and prostanoid production. Defects in macrophage phagocytosis induced by palmitic acid were mimicked by PGE2 and PGD2 and were reversed by cyclooxygenase inhibition or prostanoid receptor antagonism. Macrophages isolated from obese-diabetic mice expressed prostanoid receptors, EP2 and DP1, and contained significantly higher levels of downstream effector, cAMP, compared with wild-type mice. Therapeutic administration of EP2/DP1 dual receptor antagonist, AH6809, decreased neutrophil accumulation in the peritoneum of db/db mice, as well as the accumulation of apoptotic cells in the thymus. Taken together, these studies provide new insights into the mechanisms underlying altered innate immune responses in obesity and suggest that targeting specific prostanoid receptors may represent a novel strategy for resolving inflammation and restoring phagocyte defects in obese and diabetic individuals. PMID:23785121

  17. Dietary supplementation with either saturated or unsaturated fatty acids does not affect the mechanoenergetics of the isolated rat heart

    PubMed Central

    Goo, Soyeon; Han, June‐Chiew; Nisbet, Linley A.; LeGrice, Ian J.; Taberner, Andrew J.; Loiselle, Denis S.

    2014-01-01

    Abstract It is generally recognized that increased consumption of polyunsaturated fatty acids, fish oil (FO) in particular, is beneficial to cardiac and cardiovascular health, whereas equivalent consumption of saturated fats is deleterious. In this study, we explore this divergence, adopting a limited purview: The effect of dietary fatty acids on the mechanoenergetics of the isolated heart per se. Mechanical indices of interest include left‐ventricular (LV) developed pressure, stroke work, cardiac output, coronary perfusion, and LV power. The principal energetic index is whole‐heart oxygen consumption, which we subdivide into its active and basal moieties. The primary mechanoenergetic index of interest is cardiac efficiency, the ratio of work performance to metabolic energy expenditure. Wistar rats were divided into three Diet groups and fed, ad libitum, reference (REF), fish oil‐supplemented (FO), or saturated fatty acid‐supplemented (SFA) food for 6 weeks. At the end of the dietary period, hearts were excised, mounted in a working‐heart rig, and their mechanoenergetic performance quantified over a range of preloads and afterloads. Analyses of Variance revealed no difference in any of the individual mechanoenergetic indices among the three Diet groups. In particular, we found no effect of prior dietary supplementation with either saturated or unsaturated fatty acids on the global efficiency of the heart. PMID:24760525

  18. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  19. Impact of saturated, polyunsaturated and monounsaturated fatty acid-rich micelles on lipoprotein synthesis and secretion in Caco-2 cells.

    PubMed

    Jackson, Kim G; Bateman, Paul A; Yaqoob, Parveen; Williams, Christine M

    2009-12-01

    Meal fatty acids have been shown to modulate the size and composition of triacylglycerol (TAG)-rich lipoproteins influencing the magnitude and duration of the postprandial plasma TAG response. As a result there is considerable interest in the origin of these meal fatty-acid induced differences in particle composition. Caco-2 cells were incubated over 4 days with fatty acid mixtures resembling the composition of saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA)-rich meals fed in a previous postprandial study to determine their impact on lipoprotein synthesis and secretion. The MUFA- and PUFA-rich mixtures supported greater intracellular TAG, but not cholesterol accumulation compared with the SFA-rich mixture (P < 0.001). The MUFA-rich mixture promoted significantly greater TAG and cholesterol secretion than the other mixtures and significantly more apolipoprotein B-100 secretion than the PUFA-rich mixture (P < 0.05). Electron microscopy revealed the SFA-rich mixture had led to unfavourable effects on cellular morphology, compared with the unsaturated fatty acid-rich mixtures. Our findings suggest the MUFA-rich mixture, may support the formation of a greater number of TAG-rich lipoproteins, which is consistent with indirect observations from our human study. Our electron micrographs are suggestive that some endocytotic uptake of MUFA-rich taurocholate micelles may promote greater lipoprotein synthesis and secretion in Caco-2 cells. PMID:19898980

  20. Systematic review of saturated fatty acids on inflammation and circulating levels of adipokines.

    PubMed

    Santos, Susana; Oliveira, Andreia; Lopes, Carla

    2013-09-01

    Diet is one factor that plays a part in coronary heart disease risk through multiple biological mechanisms including subclinical inflammation. In this review, we aimed to systematically assess and summarize evidence regarding the association of saturated fatty acids (SFAs) with inflammatory markers and adipokines. An electronic search of the literature was conducted up to September 2010 using Medline, Scopus, Web of Science, and Science Direct (updated from September 2010 to August 2011 through Medline). Original studies that were written in Portuguese, English, Spanish, or French, and addressed the effects of SFA (not dietary sources or SFA-rich diets) on inflammatory markers or adipokines in adult populations were considered eligible. Data from 15 studies providing adjusted estimates were extracted. The publication year varied from 1995 to 2010 and the sample size from 54 to 4900. Most studies were cross sectional, with 3 studies using a prospective design. Twelve studies assessed total SFA, and 3 studies considered their subtypes, which were measured through dietary assessments (11 studies) or in blood samples (4 studies). Significant positive associations were observed between SFA and soluble intercellular adhesion molecule-1 and interleukin-6, whereas no significant associations were observed with E-selectin, tumor necrosis factor α, granulocyte-macrophage colony-stimulating factor, fibrinogen, and adiponectin. For high-sensitivity C-reactive protein, 2 studies showed significant positive associations, whereas 3 studies reported no significant associations. One study reported a significant inverse association of SFA with leptin, although the other 3 found no significant associations. Based on this systematic review, a potential positive association of SFA with high-sensitivity C-reactive protein but not with adipokines is suggested, which should be confirmed by future research. PMID:24034567

  1. Intake of small-to-medium-chain saturated fatty acids is associated with peripheral leukocyte telomere length in postmenopausal women.

    PubMed

    Song, Yan; You, Nai-Chieh Y; Song, Yiqing; Kang, Mo K; Hou, Lifang; Wallace, Robert; Eaton, Charles B; Tinker, Lesley F; Liu, Simin

    2013-06-01

    Dietary factors, including dietary fat, may affect the biological aging process, as reflected by the shortening of telomere length (TL), by affecting levels of oxidative stress and inflammatory responses. We examined the direct relations of total and types of dietary fats and fat-rich foods to peripheral leukocyte TL. In 4029 apparently healthy postmenopausal women who participated in the Women's Health Initiative, intakes of total fat, individual fatty acids, and fat-rich foods were assessed by a questionnaire. TL was measured by quantitative polymerase chain reaction. Intake of short-to-medium-chain saturated fatty acids (SMSFAs; aliphatic tails of ≤ 12 carbons) was inversely associated with TL. Compared with participants in other quartiles of SMSFA intake, women who were in the highest quartile (median: 1.29% of energy) had shorter TLs [mean: 4.00 kb (95% CI: 3.89, 4.11 kb)], whereas women in the lowest quartile of intake (median: 0.29% of energy) had longer TLs [mean: 4.13 kb (95% CI: 4.03, 4.24 kb); P-trend = 0.046]. Except for lauric acid, all other individual SMSFAs were inversely associated with TL (P < 0.05). In isoenergetic substitution models, the substitution of 1% of energy from SMSFAs with any other energy source was associated with 119 bp longer TLs (95% CI: 21, 216 bp). Intakes of nonskim milk, butter, and whole-milk cheese (major sources of SMSFAs) were all inversely associated with TL. No significant associations were found with long-chain saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids. In conclusion, we found that higher intakes of SMSFAs and SMSFA-rich foods were associated with shorter peripheral leukocyte TL among postmenopausal women. These findings suggest the potential roles of SMSFAs in the rate of biological aging. PMID:23616516

  2. Techno-economic analysis of an improved process for producing saturated branched-chain fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils provide a source of environmentally desirable lubricants, but they are not widely utilized because of their poor oxidative stability. Branched-chain fatty acid isomers are desirable products because they have excellent thermostabilities and lubricities when compared to the parent veg...

  3. The role of total fats, saturated/unsaturated fatty acids and cholesterol content in chicken meat as cardiovascular risk factors

    PubMed Central

    2014-01-01

    Background The objective of the study was to present information about the chemical composition, the fatty acids profile, and cholesterol content of chicken meat in order to investigate the impact of chicken meat consumption on cardiovascular risk in the general population. Methods A total of 48 6-wk-old broiler chickens broilers from two farms in June to November of 2012, and February of 2013, were used in this trial. Total lipid content was determined by extraction of fat by petrol ether (Soxhlet) after acid hydrolysis of samples. Fatty acids were determined by capillary gas chromatography. Cholesterol determination was performed by using HPLC/PDA system. Results The results indicate that the total free cholesterol content in raw breast and drumstick of chickens was in the range of 37,41–79,9 mg/100 g and 48,35-99,5 mg/100 g, respectively. The main fatty acids identified in all cuts were C18:1c9, C18:2n6, C16:0, C18:0, and C16:1. Decreasing the dietary n-6/n-3 clearly decreased the content in breast and drumstick muscle of C18:2n6, C18:3n3, and C20: 3n6, but increased that of C16:0, C18:0, and C20:2. Also, the major saturated fatty acid (SFA) (C16:0 and C18:0) was significantly differ among the four treatments. Conclusion Our study shows that dietary fat and fatty acid composition influence the concentrations of total cholesterol content, total fat content, and fatty acid composition in broiler muscle. This information will aid in determining the burden of chicken meat as a cardiovascular risk factors disease and act as a planning tool for public-health Programmes. PMID:24588940

  4. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content

    PubMed Central

    2016-01-01

    To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce. PMID:27015405

  5. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content.

    PubMed

    Welter, Katiéli Caroline; Martins, Cristian Marlon de Magalhães Rodrigues; de Palma, André Soligo Vizeu; Martins, Mellory Martinson; Dos Reis, Bárbara Roqueto; Schmidt, Bárbara Laís Unglaube; Saran Netto, Arlindo

    2016-01-01

    To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce. PMID:27015405

  6. Oil content and saturated fatty acids in sunflower (Helianthus annuus L.) as a function of planting date, N rate, and hybrid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acids (FA) composition of sunflower determines its uses and health effects on humans, while oil content determines the price paid to producers. The hypothesis of this study was that agronomic factors (genotype, planting date, and N rate) will affect total saturated fatty acid (TSFA) concen...

  7. Meta-Analysis of Saturated Fatty Acid Intake and Breast Cancer Risk.

    PubMed

    Xia, Hui; Ma, Shushu; Wang, Shaokang; Sun, Guiju

    2015-12-01

    The associations between saturated fatty acid (SFA) consumption and risk of breast cancer (BC) remains inconclusive. Therefore, we conducted this meta-analysis to determine the quantitative relations between dietary SFA intake and incidence of BC.Literatures published up to April 2015 were systematically screened through Pubmed and Web of Science. Relevant publication quality was evaluated by conducting the Newcastle-Ottawa scale. We used fixed effects models or random effect models to calculate the summary relative risks (RRs) and odds ratios (ORs), and conducted sensitivity analyses and evaluated the publication bias.We identified a total of 52 studies (24 cohort studies and 28 case-control studies), with over 50,000 females diagnosed with BC. The associations between dietary SFA intake and risk of BC were 1.18 for case-control studies (high vs low intake, 95% confidence interval [CI] = 1.03-1.34) and 1.04 for cohort studies (95% CI = 0.97-1.11). When restricted analyses to population-based studies, positive associations were observed for both cohort (RR [95% CI] = 1.11 [1.01-1.21]) and case-control studies (OR [95% CI] = 1.26 [1.03-1.53]). Additionally, for case-control studies, significant positive associations between higher SFA intake and BC risk were observed for Asian (OR [95% CI] = 1.17 [1.02-1.34]) and Caucasian (OR [95% CI] = 1.19 [1.00-1.41]), as well as for postmenopausal women (OR = 1.33, 95% CI: 1.02-1.73). In contrast, higher dietary SFA intake was not associated with risk of BC among premenopausal women, in cohort studies or hospital-based studies.A positive association between higher dietary SFA intake and postmenopausal BC risk was observed in case-control but not in cohort studies. More studies are warranted to confirm these findings. PMID:26717389

  8. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids.

    PubMed

    Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L

    2015-12-15

    We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. PMID:26468264

  9. Effects of Step-Wise Increases in Dietary Carbohydrate on Circulating Saturated Fatty Acids and Palmitoleic Acid in Adults with Metabolic Syndrome

    PubMed Central

    Volk, Brittanie M.; Kunces, Laura J.; Freidenreich, Daniel J.; Kupchak, Brian R.; Saenz, Catherine; Artistizabal, Juan C.; Fernandez, Maria Luz; Bruno, Richard S.; Maresh, Carl M.; Kraemer, William J.; Phinney, Stephen D.; Volek, Jeff S.

    2014-01-01

    Recent meta-analyses have found no association between heart disease and dietary saturated fat; however, higher proportions of plasma saturated fatty acids (SFA) predict greater risk for developing type-2 diabetes and heart disease. These observations suggest a disconnect between dietary saturated fat and plasma SFA, but few controlled feeding studies have specifically examined how varying saturated fat intake across a broad range affects circulating SFA levels. Sixteen adults with metabolic syndrome (age 44.9±9.9 yr, BMI 37.9±6.3 kg/m2) were fed six 3-wk diets that progressively increased carbohydrate (from 47 to 346 g/day) with concomitant decreases in total and saturated fat. Despite a distinct increase in saturated fat intake from baseline to the low-carbohydrate diet (46 to 84 g/day), and then a gradual decrease in saturated fat to 32 g/day at the highest carbohydrate phase, there were no significant changes in the proportion of total SFA in any plasma lipid fractions. Whereas plasma saturated fat remained relatively stable, the proportion of palmitoleic acid in plasma triglyceride and cholesteryl ester was significantly and uniformly reduced as carbohydrate intake decreased, and then gradually increased as dietary carbohydrate was re-introduced. The results show that dietary and plasma saturated fat are not related, and that increasing dietary carbohydrate across a range of intakes promotes incremental increases in plasma palmitoleic acid, a biomarker consistently associated with adverse health outcomes. PMID:25415333

  10. Mechanisms of cholesterol and saturated fatty acid lowering by Quillaja saponaria extract, studied by in vitro digestion model.

    PubMed

    Vinarova, Liliya; Vinarov, Zahari; Damyanova, Borislava; Tcholakova, Slavka; Denkov, Nikolai; Stoyanov, Simeon

    2015-04-01

    Quillaja saponin extracts are known to reduce plasma cholesterol levels in humans. Here we study the mechanism of this effect with Quillaja Dry saponin extract (QD). In vitro model of triglyceride lipolysis is used to quantify the effect of QD on the solubilization of cholesterol and of the lipolysis products (fatty acids and monoglycerides) in the dietary mixed micelles (DMM). We found that QD extract decreases significantly both the cholesterol (from 80% to 20%) and saturated fatty acids (SFA, from 70% to 10%) solubilised in DMM. Series of dedicated experiments prove that QD may act by two mechanisms: (1) direct precipitation of cholesterol and (2) displacement of cholesterol from the DMM. Both mechanisms lead to increased cholesterol precipitation and, thus, render cholesterol bio-inaccessible. We prove also that the saponin molecules are not the active component of QD, because highly purified Quillaja extract with very similar saponin composition does not exhibit cholesterol-lowering or SFA-lowering effect. The effect of QD extract on cholesterol solubilisation is most probably caused by the high-molecular weight polyphenol molecules, present in this extract. The reduced SFA solubilisation is caused by Ca(2+) ions of relatively high concentration (1.25 wt%), also present in QD extract, which precipitate the fatty acids into calcium soaps. PMID:25773645

  11. Marine n-3 and saturated fatty acids in relation to risk of colorectal cancer in Singapore Chinese: A prospective study

    PubMed Central

    Butler, Lesley M.; Wang, Renwei; Koh, Woon-Puay; Stern, Mariana C.; Yuan, Jian-Min; Yu, Mimi C.

    2009-01-01

    Experimental data support multiple roles for fatty acids in colorectal carcinogenesis. We examined dietary fatty acids and incidence of colorectal cancer, and evaluated effect modification by sex and stage of disease among a population-based cohort of 61,321 Singapore Chinese that was established between 1993 and 1998. As of December 31, 2005, 961 incident colorectal cancers were diagnosed. Presented hazard ratios (HRs) are for highest versus lowest quartiles with adjustment for potential confounders. Among women, we observed a dose-dependent, positive association between saturated fat and localized colorectal cancer (Dukes A or B) [(HR = 1.69, 95% confidence interval (CI) = 1.08–2.63, p for trend = 0.01)]. No such associations were noted in men (p for interaction by sex = 0.04). Marine n-3 polyunsaturated fatty acid (PUFA) intake was positively associated with advanced disease (Dukes C or D) (HR = 1.33, 95% CI = 1.05–1.70, p for trend = 0.01), regardless of sex. The association with marine n-3 PUFAs was strongest among those with the shortest (≤5 years) duration of follow-up (HR = 1.49, 95% CI = 1.00–2.21, p for trend = 0.04). In contrast, we observed a small, albeit imprecise, inverse association with marine n-3 PUFAs for localized colorectal cancer among those with the longest duration of follow-up (>10 years) (HR = 0.62, 95% CI = 0.29–1.34, p for trend = 0.55). Our findings suggest that subtypes of fatty acids may differentially influence risk of colorectal cancer of a specified stage. PMID:18973226

  12. Classification of vegetable oils based on their concentration of saturated fatty acids using laser induced breakdown spectroscopy (LIBS).

    PubMed

    Mbesse Kongbonga, Yvon G; Ghalila, Hassen; Onana, Marthe Boyomo; Ben Lakhdar, Zohra

    2014-03-15

    Spectrochemical analyses of organic liquid media such as vegetable oils and sweetened water were performed with the use of LIBS. The aim of this work is to study, on the basis of spectral analyses by LIBS technique of "Swan band" of C2 emitted by different vegetable oils in liquid phase, the characteristics of each organic media. Furthermore this paper proposes, as a classification, a single parameter that could be used to determine the concentration of saturated fatty acids of vegetable oils. A Nd:YAG operating at λ=532 nm and an energies per pulse of 30 mJ was focused onto the surface of the liquid in ambient air. Following ablation of vegetable oils and sweetened water, we find that vibrational bonds of C2 were released from the molecule containing carbon-carbon bonds linear. In the case of vegetable oils, we find a clear relationship between C2 emission from the plasma and the concentration of saturated fatty acids in the oil. PMID:24206726

  13. The adjuvant activity of fatty acid esters. The role of acyl chain length and degree of saturation.

    PubMed Central

    Bomford, R

    1981-01-01

    Water-in-oil emulsions of metabolizable fatty acid esters, with the non-toxic surfactant Pluronic L122 as emulsifying agent, potentiated the humoral response to bovine serum albumin and staphylococcal toxoid in the mouse. Adjuvant activity was increased by changing the chemical nature of the esters as follows: (i) using a series of ethyl esters, adjuvant activity appeared when the acyl chain length of the fatty acid component was 16 or greater; (ii) isobutyl and isopropyl esters of palmitic acid (C16:0) were superior to ethyl; (iii) the ethyl esters of oleic (C18:1) and linoleic (C18:2) acids were better than stearic (C18:0). Since emulsions prepared with longer chain saturated esters are very viscous or solid at room temperature, and unsaturated esters are chemically reactive, emulsions were prepared with differing proportions of ethyl caprate (C10:0) and butyl stearate. At a ratio of 9:1 the emulsions possessed the low viscosity of ethyl caprate, but gained the adjuvant activity of butyl stearate. 125I-labelled BSA was retained in the footpad to a significantly greater extent than with a caprate emulsion, but reasons are given for believing that slow release of antigen is not the only mechanism of adjuvant activity. The ester emulsions caused more acute but less chronic local inflammation (footpad swelling) than Freund's incomplete adjuvant. PMID:7275184

  14. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.

    PubMed

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2008-01-01

    The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem. J. 378, 899-908]. In the present paper, we focus on the role of SFH2/CSR1, a hypoxic gene related to SEC14 and its involvement in lipid metabolism upon haem depletion in the absence of oleic acid supplementation. We observed that inactivation of SFH2 results in enhanced accumulation of SFA and phospholipid metabolism alterations. It results in premature growth arrest and leads to an exacerbated sensitivity to exogenous SFA. This phenotype is suppressed in the presence of exogenous oleic acid, or by a controlled expression of FAS1, one of the two genes encoding FAS. We present several lines of evidence to suggest that Sfh2p and oleic acid regulate SFA synthase in yeast at different levels: whereas oleic acid acts on FAS2 at the transcriptional level, we show that Sfh2p inhibits fatty acid synthase activity in response to haem depletion. PMID:17803462

  15. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  16. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    PubMed

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637

  17. High-Throughput Screening of Saturated Fatty Acid Influence on Nanostructure of Lyotropic Liquid Crystalline Lipid Nanoparticles.

    PubMed

    Tran, Nhiem; Hawley, Adrian M; Zhai, Jiali; Muir, Benjamin W; Fong, Celesta; Drummond, Calum J; Mulet, Xavier

    2016-05-10

    Self-assembled lyotropic liquid crystalline lipid nanoparticles have been developed for a wide range of biomedical applications with an emerging focus for use as delivery vehicles for drugs, genes, and in vivo imaging agents. In this study, we report the generation of lipid nanoparticle libraries with information regarding mesophase and lattice parameter, which can aid the selection of formulation for a particular end-use application. In this study we elucidate the phase composition parameters that influence the internal structure of lipid nanoparticles produced from monoolein, monopalmitolein and phytantriol incorporating a variety of saturated fatty acids (FA) with different chain lengths at varying concentrations and temperatures. The material libraries were established using high throughput formulation and screening techniques, including synchrotron small-angle X-ray scattering. The results demonstrate the rich polymorphism of lipid nanoparticles with nonlamellar mesophases in the presence of saturated FAs. The inclusion of saturated FAs within the lipid nanoparticles promotes a gradual phase transition at all temperatures studied toward structures with higher negative surface curvatures (e.g., from inverse bicontinuous cubic phase to hexagonal phase and then emulsified microemulsion). The three partial phase diagrams produced are discussed in terms of the influence of FA chain length and concentration on nanoparticle internal mesophase structure and lattice parameters. The study also highlights a compositionally dependent coexistence of multiple mesophases, which may indicate the presence of multicompartment nanoparticles containing cubic/cubic and cubic/hexagonal mesophases. PMID:27023315

  18. Penetration depth of surfactant peptide KL4 into membranes is determined by fatty acid saturation.

    PubMed

    Antharam, Vijay C; Elliott, Douglas W; Mills, Frank D; Farver, R Suzanne; Sternin, Edward; Long, Joanna R

    2009-05-20

    KL(4) is a 21-residue functional peptide mimic of lung surfactant protein B, an essential protein for lowering surface tension in the alveoli. Its ability to modify lipid properties and restore lung compliance was investigated with circular dichroism, differential scanning calorimetry, and solid-state NMR spectroscopy. KL(4) binds fluid lamellar phase PC/PG lipid membranes and forms an amphipathic helix that alters lipid organization and acyl chain dynamics. The binding and helicity of KL(4) is dependent on the level of monounsaturation in the fatty acid chains. At physiologic temperatures, KL(4) is more peripheral and dynamic in fluid phase POPC/POPG MLVs but is deeply inserted into fluid phase DPPC/POPG vesicles, resulting in immobilization of the peptide. Substantial increases in the acyl chain order are observed in DPPC/POPG lipid vesicles with increasing levels of KL(4), and POPC/POPG lipid vesicles show small decreases in the acyl chain order parameters on addition of KL(4). Additionally, a clear effect of KL(4) on the orientation of the fluid phase PG headgroups is observed, with similar changes in both lipid environments. Near the phase transition temperature of the DPPC/POPG lipid mixtures, which is just below the physiologic temperature of lung surfactant, KL(4) causes phase separation with the DPPC remaining in a gel phase and the POPG partitioned between gel and fluid phases. The ability of KL(4) to differentially partition into lipid lamellae containing varying levels of monounsaturation and subsequent changes in curvature strain suggest a mechanism for peptide-mediated lipid organization and trafficking within the dynamic lung environment. PMID:19450480

  19. Penetration Depth of Surfactant Peptide KL4 into Membranes Is Determined by Fatty Acid Saturation

    PubMed Central

    Antharam, Vijay C.; Elliott, Douglas W.; Mills, Frank D.; Farver, R. Suzanne; Sternin, Edward; Long, Joanna R.

    2009-01-01

    KL4 is a 21-residue functional peptide mimic of lung surfactant protein B, an essential protein for lowering surface tension in the alveoli. Its ability to modify lipid properties and restore lung compliance was investigated with circular dichroism, differential scanning calorimetry, and solid-state NMR spectroscopy. KL4 binds fluid lamellar phase PC/PG lipid membranes and forms an amphipathic helix that alters lipid organization and acyl chain dynamics. The binding and helicity of KL4 is dependent on the level of monounsaturation in the fatty acid chains. At physiologic temperatures, KL4 is more peripheral and dynamic in fluid phase POPC/POPG MLVs but is deeply inserted into fluid phase DPPC/POPG vesicles, resulting in immobilization of the peptide. Substantial increases in the acyl chain order are observed in DPPC/POPG lipid vesicles with increasing levels of KL4, and POPC/POPG lipid vesicles show small decreases in the acyl chain order parameters on addition of KL4. Additionally, a clear effect of KL4 on the orientation of the fluid phase PG headgroups is observed, with similar changes in both lipid environments. Near the phase transition temperature of the DPPC/POPG lipid mixtures, which is just below the physiologic temperature of lung surfactant, KL4 causes phase separation with the DPPC remaining in a gel phase and the POPG partitioned between gel and fluid phases. The ability of KL4 to differentially partition into lipid lamellae containing varying levels of monounsaturation and subsequent changes in curvature strain suggest a mechanism for peptide-mediated lipid organization and trafficking within the dynamic lung environment. PMID:19450480

  20. Dietary saturated fatty acids reduce hepatic lipid accumulation but induce fibrotic change in alcohol-fed rats

    PubMed Central

    Chen, Ya-Ling; Peng, Hsiang-Chi; Wang, Xiang-Dong

    2015-01-01

    Background In this study, we evaluated the influence of an ethanol-containing diet with high saturated fatty acids (SFAs) on alcoholic liver disease (ALD) in rats. Methods Male Wistar rats weighing about 160 g were divided into four groups: an ethanol (E) group fed an ethanol-containing liquid diet with 36% total calories as fat (corn oil, olive oil and safflower oil); a control (C) group pair-fed an isoenergetic diet without ethanol; an ethanol with saturated fat (EHS) group fed an ethanol-containing diet which contained 40% total calories as fat (90% lard); and a control with saturated fat (CHS) group fed an isoenergetic diet without ethanol, which contained 40% total calories as fat. Results After 8 weeks of treatment, the liver weight and plasma aspartate aminotransferase (AST) activities in E and EHS groups were significantly higher than those of C group. Significantly higher scores of inflammation, necrosis, and fatty changes were found in E group, whereas significantly higher scores of necrosis, bile duct hyperplasia, and fibrosis were found in EHS group. Although significantly lower plasma adiponectin concentrations were observed in both E and EHS groups, compared to C group, plasma adiponectin in EHS group was significantly higher than that in E group. There was no change in hepatic peroxisome proliferator activated receptor (PPAR)-α expression between E and C groups, and rats in EHS group showed a significantly elevated level compared to the other groups. A lower hepatic sirtuins (SIRT)-1 level was found in E group, but it did not reach statistical significance. Moreover, the highest plasma TGF-β1 level was found in EHS group. Compared to C group, the hepatic reduced glutathione/oxidized glutathione ratio and thiobarbituric acid (TBA)-reactive substance level were significantly increased in E and EHS groups; however, there was no significant difference between E and EHS groups. Significantly increased hepatic CYP2E1 expression was observed in both E and

  1. Metabolic Flux Between Unsaturated and Saturated Fatty Acids is Controlled by the FabA:FabB Ratio in the Fully Reconstituted Fatty Acid Biosynthetic Pathway of E. coli#

    PubMed Central

    Xiao, Xirui; Yu, Xingye; Khosla, Chaitan

    2013-01-01

    The entire fatty acid biosynthetic pathway from Escherichia coli, starting from the acetyl-CoA carboxylase, has been reconstituted in vitro from fourteen purified protein components. Radiotracer analysis verified stoichiometric conversion of acetyl-CoA and NAD(P)H into the free fatty acid product, allowing implementation of a facile spectrophotometric assay for kinetic analysis of this multi-enzyme system. At steady state, a maximum turnover rate of 0.5 s−1 was achieved. Under optimal turnover conditions, the predominant products were C16 and C18 saturated as well as monounsaturated fatty acids. The reconstituted system allowed us to quantitatively interrogate the factors that influence metabolic flux toward unsaturated versus saturated fatty acids. In particular, the concentrations of the dehydratase FabA and the β-ketoacyl synthase FabB were found to be crucial for controlling this property. By altering these variables, the percentage of unsaturated fatty acid produced could be adjusted between 10 and 50% without significantly affecting the maximum turnover rate of the pathway. Our reconstituted system provides a powerful tool to understand and engineer rate-limiting and regulatory steps in this complex and practically significant metabolic pathway. PMID:24147979

  2. Seven-Day Caloric and Saturated Fat Restriction Increases Myocardial Dietary Fatty Acid Partitioning in Impaired Glucose-Tolerant Subjects.

    PubMed

    Noll, Christophe; Kunach, Margaret; Frisch, Frédérique; Bouffard, Lucie; Dubreuil, Stéphanie; Jean-Denis, Farrah; Phoenix, Serge; Cunnane, Stephen C; Guérin, Brigitte; Turcotte, Eric E; Carpentier, André C

    2015-11-01

    Subjects with impaired glucose tolerance (IGT) have increased myocardial partitioning of dietary fatty acids (DFAs) with left ventricular dysfunction, both of which are improved by modest weight loss over 1 year induced by lifestyle changes. Here, we determined the effects of a 7-day hypocaloric diet (-500 kcal/day) low in saturated fat (<7% of energy) (LOWCAL study) versus isocaloric with the usual amount saturated fat (∼10% of energy) diet (ISOCAL) on DFA metabolism in subjects with IGT. Organ-specific DFA partitioning and cardiac and hepatic DFA fractional uptake rates were measured in 15 IGT subjects (7 males/8 females) using the oral 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid positron emission tomography method after 7 days of an ISOCAL diet versus a LOWCAL diet using a randomized crossover design. The LOWCAL diet led to reductions in weight and postprandial insulin area under the curve. Myocardial DFA partitioning over 6 h was increased after the LOWCAL diet (2.3 ± 0.1 vs. 1.9 ± 0.2 mean standard uptake value, P < 0.04). However, the early (90-120 min) myocardial DFA fractional uptake was unchanged after the LOWCAL diet (0.055 ± 0.025 vs. 0.046 ± 0.009 min(-1), P = 0.7). Liver DFA partitioning was unchanged, but liver fractional uptake of DFA tended to be increased. Very short-term caloric and saturated fat dietary restrictions do not lead to the same changes in organ-specific DFA metabolism as those associated with weight loss in subjects with IGT. PMID:26224886

  3. Structural consequences of genetically engineered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR study.

    PubMed

    Szalontai, Balázs; Kóta, Zoltán; Nonaka, Hideko; Murata, Norio

    2003-04-15

    The role of phosphatidylglycerol (PG) in protein-lipid interactions and membrane dynamics has been studied in the thylakoids of wild type and manipulated tobacco plants transformed with complementary DNAs for glycerol-3-phosphate acyltransferases (GPATs) from squash and Arabidopsis. The expression of the foreign enzymes resulted in the level of saturation of the PG molecules being higher in the squash and lower in the Arabidopsis transformants, as compared with the level in wild-type tobacco. For the analysis of fatty acyl chain dynamics in the thylakoid membranes, the nu(sym)CH(2) vibration bands of the infrared specta were decomposed into two components, corresponding to ordered and disordered fatty acyl chain segments. With this approach, it was shown that in squash GPAT-transformed tobacco thylakoids a rigid lipid domain exists below 25 degrees C. Above 25 degrees C, the dynamics of all thylakoid membranes were very similar, regardless of the manipulations. PG seems to tune the dynamics at the protein-lipid interface rather than to affect the structure of the proteins directly. Above 50 degrees C, the frequencies of the disordered nu(sym)CH(2) component bands were decreased. This lipid-related phenomenon correlated with protein denaturing. It is demonstrated that the protein aggregation appearing upon heat denaturing changes the conformational distribution of the disordered lipid population. The data also reveal that the protein stability does not depend on the fatty acid composition of the PG molecules; other lipids should provide the environment governing the protein stability in the thylakoid membrane. This is the first such detailed analysis of the infrared spectra of biological membranes that permits a differentiation between structurally different lipid populations within a membrane. PMID:12680783

  4. Mammalian Fatty Acid Elongases

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Summary Very long chain fatty acids confer functional diversity on cells by variations in their chain length and degree of unsaturation. Microsomal fatty acid elongation represents the major pathway for determining the chain length of saturated, monounsaturated, and polyunsaturated fatty acids in cellular lipids. The overall reaction for fatty acid elongation involves four enzymes and utilizes malonyl CoA, NADPH, and fatty acyl CoA as substrates. While the fundamental pathway and its requirements have been known for many years, recent advances have revealed a family of enzymes involved in the first step of the reaction, i.e., the condensation reaction. Seven fatty acid elongase subtypes (Elovl #1–7) have been identified in the mouse, rat, and human genomes. These enzymes determine the rate of overall fatty acid elongation. Moreover, these enzymes also display differential substrate specificity, tissue distribution, and regulation, making them important regulators of cellular lipid composition as well as specific cellular functions. Herein, methods are described to measure elongase activity, analyze elongation products, and alter cellular elongase expression. PMID:19763486

  5. Characterization of the linoleic acid Δ9 hydratase catalyzing the first step of polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a.

    PubMed

    Takeuchi, Michiki; Kishino, Shigenobu; Hirata, Akiko; Park, Si-Bum; Kitamura, Nahoko; Ogawa, Jun

    2015-06-01

    Linoleic acid Δ9 hydratase, which is involved in linoleic acid saturation metabolism of Lactobacillus plantarum AKU 1009a, was cloned, expressed as a his-tagged recombinant enzyme, purified with an affinity column, and characterized. The enzyme required FAD as a cofactor and its activity was enhanced by NADH. The maximal activities for the hydration of linoleic acid and for the dehydration of 10-hydroxy-cis-12-octadecenoic acid (HYA) were observed at 37 °C in buffer at pH 5.5 containing 0.5 M NaCl. Free C16 and C18 fatty acids with cis-9 double bonds and 10-hydroxy fatty acids served as substrates for the hydration and dehydration reactions, respectively. The apparent Km value for linoleic acid was estimated to be 92 μM, with a kcat of 2.6∙10(-2) s(-1) and a Hill factor of 3.3. The apparent Km value for HYA was estimated to be 98 μM, with a kcat of 1.2∙10(-3) s(-1). PMID:25476761

  6. Effect of Physical Inactivity on the Oxidation of Saturated and Monounsaturated Dietary Fatty Acids: Results of a Randomized Trial

    PubMed Central

    Bergouignan, Audrey; Schoeller, Dale A; Normand, Sylvie; Gauquelin-Koch, Guillemette; Laville, Martine; Shriver, Timothy; Desage, Michel; Maho, Yvon Le; Ohshima, Hiroshi; Gharib, Claude; Blanc, Stéphane

    2006-01-01

    Objectives: Changes in the way dietary fat is metabolized can be considered causative in obesity. The role of sedentary behavior in this defect has not been determined. We hypothesized that physical inactivity partitions dietary fats toward storage and that a resistance exercise training program mitigates storage. Design: We used bed rest, with randomization to resistance training, as a model of physical inactivity. Setting: The trial took place at the Space Clinic (Toulouse, France). Participants: A total of 18 healthy male volunteers, of mean age ± standard deviation 32.6 ± 4.0 y and body mass index 23.6 ± 0.7 kg/m2, were enrolled. Interventions: An initial 15 d of baseline data collection were followed by 3 mo of strict bed-rest alone (control group, n = 9) or with the addition of supine resistance exercise training every 3 d (exercise group, n = 9). Outcome measures: Oxidation of labeled [d31]palmitate (the main saturated fatty acid of human diet) and [1-13C]oleate (the main monounsaturated fatty acid), body composition, net substrate use, and plasma hormones and metabolites were measured. Results: Between-group comparisons showed that exercise training did not affect oxidation of both oleate (mean difference 5.6%; 95% confidence interval [95% CI], −3.3% to 14.5%; p = 0.20) and palmitate (mean difference −0.2%; 95% CI, −4.1% to 3.6%; p = 0.89). Within-group comparisons, however, showed that inactivity changed oxidation of palmitate in the control group by −11.0% (95% CI, −19.0% to −2.9%; p = 0.01) and in the exercise group by −11.3% (95% CI, −18.4% to −4.2%; p = 0.008). In contrast, bed rest did not significantly affect oleate oxidation within groups. In the control group, the mean difference in oleate oxidation was 3.2% (95% CI, −4.2% to 10.5%; p = 0.34) and 6.8% (95% CI, −1.2% to 14.7%; p = 0.08) in the exercise group. Conclusions: Independent of changes in energy balance (intake and/or output), physical inactivity decreased the

  7. Influence of liposomes rich in unsaturated or saturated fatty acids on the growth of human xenotransplanted mammary carcinomas and on the levels of heart type fatty acid binding protein.

    PubMed

    Naundorf, H; Zschiesche, W; Reszka, R; Fichtner, I

    1995-01-01

    A panel of 4 human mammary carcinomas passaged in nude mice were subjected to intraperitoneal application of cholesterol-free liposomes enriched with linoleic (unsaturated fatty acid) or stearic acid (saturated fatty acid). The liposomes were examined with regard to their influence on the tumor growth and level of heart type fatty acid binding protein (FABP). Liposomes with different fatty acid composition influenced the growth of mammary carcinomas 3366, BO, 4000 and 4151 in distinct ways. Liposomes with a high content of stearic acid significantly inhibited the growth of mammary carcinomas 3366 and BO, whereas mammary carcinomas 4000 and 4151 were not affected. The growth of mammary carcinoma 3366 was moderately increased after supplementation of liposomes rich in linoleic acid, the tumor BO was significantly inhibited and the growth of MaCa 4000 and 4151 was unchanged. Liposome treatment led to a significant increase in heart type FABP in mammary carcinomas 3366 and BO regardless of whether the animals were treated with liposomes rich in stearic or linoleic acid. Such significant changes of FABP level could not be observed in mammary carcinomas 4000 or 4151. We suggest that the lipid-mediated growth modulation seems to be dependent on an increase of heart type FABPs in these tumor models. PMID:8562891

  8. Changes during leaf expansion of ΦPSII temperature optima in Gossypium hirsutum are associated with the degree of fatty acid lipid saturation.

    PubMed

    Hall, Trent D; Chastain, Daryl R; Horn, Patrick J; Chapman, Kent D; Choinski, John S

    2014-03-15

    In this project, we hypothesize that cotton (Gossypium hirsutum) leaf temperature and the responses of leaf photosynthesis to temperature will change as the leaves expand and that differences between young and mature leaves will be associated with the proportion of saturated fatty acids in thylakoid and other membrane lipids. To that end, we studied main stem leaves obtained from plants growing in a temperature controlled greenhouse and at different times in the field season. We found that young leaves (∼5d old) had higher mid day temperatures, lower stomatal conductance and higher thermal optima as measured by ΦPSII temperature curves than did more mature leaves (∼13d old). Young leaves also had significant differences in fatty acid saturation with the warmer, young leaves having a higher proportion of palmitic acid (16:0) and lower linoleic acid (18:3) in total lipid extracts and higher 16:0 and lower palmitoleic acid (16:1) in the chloroplast membrane phosphoglycerides, digalactosyldiacylglycerol (in the greenhouse) and phosphatidylglycerol when compared with cooler, more mature leaves. Later in the growing season, leaf temperature, stomatal conductance and ΦPSII temperature curves for young and more mature leaves were similar and the proportion of 16:0 fatty acids decreased and 16:1 increased in phosphatidylglycerol. We conclude that changes in temperature as cotton leaves expand leads to alterations in the fatty acid composition of thylakoid and other membranes and, consequently, influence photosynthesis/temperature responses. PMID:24594393

  9. Advances in the application of food emulsifier α-gel phases: Saturated monoglycerides, polyglycerol fatty acid esters, and their derivatives.

    PubMed

    Wang, Fan C; Marangoni, Alejandro G

    2016-12-01

    Emulsifiers form complex structures in colloidal systems. One of these structures, the α-gel phase, has drawn much research interest. α-gel phases are formed by emulsifiers that are stable in the α-crystalline structure in the presence of water. The α-gel phase has shown superior functionality in a variety of applications because it has a water-rich lamellar structure. Even though studies on emulsifier α-gel phases emerged over half a century ago, there is still a knowledge gap on fundamental properties of α-gel phases formed by a variety of emulsifiers. This article summarizes recent studies on the physical and chemical properties of α-gel phases formed by several food emulsifiers, specifically saturated monoglycerides, polyglycerol monoester and diesters of fatty acid, and sodium stearoyl lactylate. Recent research has advanced the understanding of factors affecting the stability and foamability of the α-gel phases. Current and potential applications of α-gel phases in baked food products and in personal care products are also reviewed here. PMID:27554171

  10. Simultaneous analysis of low plasma levels of deuterium-labeled saturated and unsaturated fatty acids as t-butyldimethylsilyl esters

    SciTech Connect

    Parsons, H.; Emken, E.M.; Marai, L.; Kuksis, A.

    1986-03-01

    A sensitive and accurate method for detection and quantitation of deuterated fatty acids in the presence of large amounts of unlabeled fatty acids is described using mass fragmentography in combination with the preparation of tertiarybutyldimethylsilyl esters (t-BDMS). The method has been applied to determination of deuterated stearic, oleic, elaidic and linoleic acids in human plasma lipoproteins following duodenal perfusion with a micellar mixture of acids. Over a concentration range of 10-1000 ng/ml, the average coefficient of variation for the linoleate was 3% and for the oleate (elaidate) ester was 2%.

  11. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder.

    PubMed

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Stanford, Kevin E; Hahn, Chang-Gyu; Richtand, Neil M

    2008-09-30

    Previous antemortem and postmortem tissue fatty acid composition studies have observed significant deficits in the omega-3 fatty acid docosahexaenoic acid (DHA, 22:6n-3) in red blood cell (RBC) and postmortem cortical membranes of patients with unipolar depression. In the present study, we determined the fatty acid composition of postmortem orbitofrontal cortex (OFC, Brodmann area 10) of patients with bipolar disorder (n=18) and age-matched normal controls (n=19) by gas chromatography. After correction for multiple comparisons, DHA (-24%), arachidonic acid (-14%), and stearic acid (C18:0) (-4.5%) compositions were significantly lower, and cis-vaccenic acid (18:1n-7) (+12.5%) composition significantly higher, in the OFC of bipolar patients relative to normal controls. Based on metabolite:precursor ratios, significant elevations in arachidonic acid, stearic acid, and palmitic acid conversion/metabolism were observed in the OFC of bipolar patients, and were inversely correlated with DHA composition. Deficits in OFC DHA and arachidonic acid composition, and elevations in arachidonic acid metabolism, were numerically (but not significantly) greater in drug-free bipolar patients relative to patients treated with mood-stabilizer or antipsychotic medications. OFC DHA and arachidonic acid deficits were greater in patients plus normal controls with high vs. low alcohol abuse severity. These results add to a growing body of evidence implicating omega-3 fatty acid deficiency as well as the OFC in the pathoaetiology of bipolar disorder. PMID:18715653

  12. Influence of environmental factors on content of saturated fatty acids at the sn-2 position in Iranian extra virgin olive oils.

    PubMed

    Alavian, Raheleh; Piravi, Zahra

    2014-01-01

    In this research the composition of fatty acids and saturated fatty acids at the sn-2 position [SFA (sn-2)] of triacylglycerols was determined in 9 samples of extra virgin olive oil from different regions of Iran, including Gilan, Golestan, Zanjan, and Qazvin in the north, Kermanshah in the west and Fars in the south of Iran. The analysis was performed using gas chromatography according to the standard methods of the International olive council (IOC). The relationship between SFA (sn-2) contents and some environmental factors such as temperature, annual rainfall and altitude was also investigated. 95% of confidence level and student test were used to analyze the data. Based on our findings, the main fatty acids in the samples were C18:1 (63.87%) and C16:0 as a saturated fatty acid (16.33%). The average amount of SFA (sn- 2) was 1.26% in extra virgin olive oils, which shows good agreement with Codex Alimentarius and IOC regulations. These results indicate that there is no relationship between the percentage of SFA (sn-2) and temperature or annual rainfall, but there is a direct relationship between the altitude of sampling region and SFA (sn-2) contents. PMID:25269695

  13. Differential effects of saturated versus unsaturated dietary fatty acids on weight gain and myocellular lipid profiles in mice

    PubMed Central

    Timmers, S; de Vogel-van den Bosch, J; de Wit, N; Schaart, G; van Beurden, D; Hesselink, M; van der Meer, R; Schrauwen, P

    2011-01-01

    Objective: In conditions of continuous high-fat (HF) intake, the degree of saturation of the fatty acids (FAs) in the diet might have a crucial role in the onset of obesity and its metabolic complications. In particular, the FA composition of the diet might influence the storage form of lipids inside skeletal muscle. The aim of the present study was to examine whether the FA composition of HF diets differentially affects weight gain and accumulation of myocellular triacylglycerol (TAG) and diacylglycerol (DAG). Furthermore, we examined whether the FA composition of the diet was reflected in the composition of the myocellular lipid intermediates. Design: C57Bl6 mice were fed HF diets (45% energy) mainly containing palm oil (PO), cocoa butter (CB), olive oil (OO) or safflower oil (SO; n=6 per group) for 8 weeks. A low-fat diet (10% energy, PO) was used as control. Body weight was monitored weekly. At the end of the dietary intervention, myocellular TAG and DAG content and profiles were measured. Results: We here show that HF_CB prevented weight gain after 8 weeks of HF feeding. Furthermore, the HF diet rich in SO prevented the accumulation of both myocellular TAG and DAG. Interestingly, the FA composition of DAG and TAG in skeletal muscle was a reflection of the dietary FA composition. Conclusion: Already after a relatively short period, the dietary FA intake relates to the FA composition of the lipid metabolites in the muscle. A diet rich in polyunsaturated FAs seems to prevent myocellular lipid accumulation. PMID:23449423

  14. Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated fatty acids are useful as specialty chemicals, plasticizers, and biomedicals. Microbial enzymes convert fatty acids to mono-, di-, and trihydroxy fatty acid products. Among them, Bacillus megaterium ALA2 converted n-6 and n-3 PUFAs to many new oxygenated fatty acids. Linoleic acid was ...

  15. The role of essential fatty acids in development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids are aliphatic monocarboxylic acids. They are classified as saturated, monounsaturated, or polyunsaturated fatty acids depending upon the number of double bonds in the carbon chain. Saturated fatty acids have no double bonds, monounsaturated fatty acids have 1 double bond, and polyunsat...

  16. Increased Dietary Intake of Saturated Fatty Acid Heptadecanoic Acid (C17:0) Associated with Decreasing Ferritin and Alleviated Metabolic Syndrome in Dolphins.

    PubMed

    Venn-Watson, Stephanie K; Parry, Celeste; Baird, Mark; Stevenson, Sacha; Carlin, Kevin; Daniels, Risa; Smith, Cynthia R; Jones, Richard; Wells, Randall S; Ridgway, Sam; Jensen, Eric D

    2015-01-01

    Similar to humans, bottlenose dolphins (Tursiops truncatus) can develop metabolic syndrome and associated high ferritin. While fish and fish-based fatty acids may protect against metabolic syndrome in humans, findings have been inconsistent. To assess potential protective factors against metabolic syndrome related to fish diets, fatty acids were compared between two dolphin populations with higher (n = 30, Group A) and lower (n = 19, Group B) mean insulin (11 ± 12 and 2 ± 5 μIU/ml, respectively; P < 0.0001) and their dietary fish. In addition to higher insulin, triglycerides, and ferritin, Group A had lower percent serum heptadecanoic acid (C17:0) compared to Group B (0.3 ± 0.1 and 1.3 ± 0.4%, respectively; P < 0.0001). Using multivariate stepwise regression, higher percent serum C17:0, a saturated fat found in dairy fat, rye, and some fish, was an independent predictor of lower insulin in dolphins. Capelin, a common dietary fish for Group A, had no detectable C17:0, while pinfish and mullet, common in Group B's diet, had C17:0 (41 and 67 mg/100g, respectively). When a modified diet adding 25% pinfish and/or mullet was fed to six Group A dolphins over 24 weeks (increasing the average daily dietary C17:0 intake from 400 to 1700 mg), C17:0 serum levels increased, high ferritin decreased, and blood-based metabolic syndrome indices normalized toward reference levels. These effects were not found in four reference dolphins. Further, higher total serum C17:0 was an independent and linear predictor of lower ferritin in dolphins in Group B dolphins. Among off the shelf dairy products tested, butter had the highest C17:0 (423mg/100g); nonfat dairy products had no detectable C17:0. We hypothesize that humans' movement away from diets with potentially beneficial saturated fatty acid C17:0, including whole fat dairy products, could be a contributor to widespread low C17:0 levels, higher ferritin, and metabolic syndrome. PMID:26200116

  17. Increased Dietary Intake of Saturated Fatty Acid Heptadecanoic Acid (C17:0) Associated with Decreasing Ferritin and Alleviated Metabolic Syndrome in Dolphins

    PubMed Central

    Venn-Watson, Stephanie K.; Parry, Celeste; Baird, Mark; Stevenson, Sacha; Carlin, Kevin; Daniels, Risa; Smith, Cynthia R.; Jones, Richard; Wells, Randall S.; Ridgway, Sam; Jensen, Eric D.

    2015-01-01

    Similar to humans, bottlenose dolphins (Tursiops truncatus) can develop metabolic syndrome and associated high ferritin. While fish and fish-based fatty acids may protect against metabolic syndrome in humans, findings have been inconsistent. To assess potential protective factors against metabolic syndrome related to fish diets, fatty acids were compared between two dolphin populations with higher (n = 30, Group A) and lower (n = 19, Group B) mean insulin (11 ± 12 and 2 ± 5 μIU/ml, respectively; P < 0.0001) and their dietary fish. In addition to higher insulin, triglycerides, and ferritin, Group A had lower percent serum heptadecanoic acid (C17:0) compared to Group B (0.3 ± 0.1 and 1.3 ± 0.4%, respectively; P < 0.0001). Using multivariate stepwise regression, higher percent serum C17:0, a saturated fat found in dairy fat, rye, and some fish, was an independent predictor of lower insulin in dolphins. Capelin, a common dietary fish for Group A, had no detectable C17:0, while pinfish and mullet, common in Group B’s diet, had C17:0 (41 and 67 mg/100g, respectively). When a modified diet adding 25% pinfish and/or mullet was fed to six Group A dolphins over 24 weeks (increasing the average daily dietary C17:0 intake from 400 to 1700 mg), C17:0 serum levels increased, high ferritin decreased, and blood-based metabolic syndrome indices normalized toward reference levels. These effects were not found in four reference dolphins. Further, higher total serum C17:0 was an independent and linear predictor of lower ferritin in dolphins in Group B dolphins. Among off the shelf dairy products tested, butter had the highest C17:0 (423mg/100g); nonfat dairy products had no detectable C17:0. We hypothesize that humans’ movement away from diets with potentially beneficial saturated fatty acid C17:0, including whole fat dairy products, could be a contributor to widespread low C17:0 levels, higher ferritin, and metabolic syndrome. PMID:26200116

  18. Prospective Associations between Plasma Saturated, Monounsaturated and Polyunsaturated Fatty Acids and Overall and Breast Cancer Risk – Modulation by Antioxidants: A Nested Case-Control Study

    PubMed Central

    Pouchieu, Camille; Chajès, Véronique; Laporte, François; Kesse-Guyot, Emmanuelle; Galan, Pilar; Hercberg, Serge; Latino-Martel, Paule; Touvier, Mathilde

    2014-01-01

    Background Mechanistic data suggest that different types of fatty acids play a role in carcinogenesis and that antioxidants may modulate this relationship but epidemiologic evidence is lacking. Our aim was to investigate the association between plasma saturated, monounsaturated and polyunsaturated fatty acids (SFAs, MUFAs and PUFAs) and overall and breast cancer risk and to evaluate the potential modulatory effect of an antioxidant supplementation on these relationships. Methods A nested case-control study included all first incident cancer cases diagnosed in the SU.VI.MAX study between 1994 and 2002 (n = 250 cases, one matched control/case). Participants to the SU.VI.MAX randomized controlled trial received either vitamin/mineral antioxidants or placebo during this intervention period. Baseline fatty acid composition of plasma total lipids was measured by gas chromatography. Conditional logistic regression was performed overall and stratified by intervention group. Results Dihomo-γ-linolenic acid (Ptrend = 0.002), the dihomo-γ-linolenic/linoleic acids ratio (Ptrend = 0.001), mead acid (Ptrend = 0.0004), and palmitoleic acid (Ptrend = 0.02) were inversely associated with overall cancer risk. The arachidonic/dihomo-γ-linolenic acids ratio (Ptrend = 0.02) and linoleic acid (Ptrend = 0.02) were directly associated with overall cancer risk. Similar results were observed for breast cancer specifically. In stratified analyses, associations were only observed in the placebo group. Notably, total PUFAs were directly associated with overall (Ptrend = 0.02) and breast cancer risk in the placebo group only. Conclusion Specific SFAs, MUFAs and PUFAs were prospectively differentially associated with cancer risk. In addition, this study suggests that antioxidants may modulate these associations by counteracting the potential effects of these fatty acids on carcinogenesis. PMID:24587366

  19. Effect of Saturated Very Long-Chain Fatty Acids on the Organization of Lipid Membranes: A Study Combining (2)H NMR Spectroscopy and Molecular Dynamics Simulations.

    PubMed

    Paz Ramos, Adrian; Lagüe, Patrick; Lamoureux, Guillaume; Lafleur, Michel

    2016-07-21

    Little is known about the interaction of very long-chain saturated fatty acids (VLCFAs) with biological membranes. However, this could play an important role on interleaflet interactions and signal transduction mechanisms in cells. The aim of this work is to determine how VLCFA structurally adapts in fluid phospholipid bilayers, since both species must exhibit a significant hydrophobic mismatch. The membrane organization has been described by means of (2)H NMR and molecular dynamics simulations. Our results show that the protonation state affects the position and order of free fatty acids (FFAs) in phospholipid membranes. It was shown that the protonated FFA-C24 carboxyl group is located slightly under the POPC head group and therefore its acyl chain can interact with the lipids of the opposite leaflet. This interdigitation of the end of the acyl chain causes a second plateau observed in SC-D profiles, a very unusual feature in lipid systems. PMID:27351151

  20. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  1. Changes in mean intake of fatty acids and intake of saturated and trans fats from potatoes: NHANES 2005-2006, 2007-2008, and 2009-2010.

    PubMed

    Storey, Maureen L; Anderson, Patricia A

    2015-05-01

    Studies have shown that higher than usual intakes of trans fatty acids (TFAs) have adverse effects on blood lipids. Because of this, in 2006 the US FDA mandated labeling of TFAs on food packages. The food and restaurant industries, including the potato industry, reformulated their foods to reduce or eliminate partially hydrogenated vegetable oils and TFAs. Before mandatory labeling, grain-based desserts, yeast breads, and French-fried potatoes (FFPs) were the top sources of TFAs in the food supply; by 2007, potato food manufacturers and quick-service restaurants had reduced or eliminated TFAs without increasing saturated fatty acids (SFAs). FFPs are no longer a source of TFAs in the food supply. This study examined energy and fatty acid intake among children aged 6-11 y, adolescents aged 12-18 y, and adults aged ≥19 y across 3 time periods by using data from the NHANES 2005-2006, 2007-2008, and 2009-2010. On average, intakes of total energy, total fat, SFAs, and monounsaturated fatty acids (MUFAs) decreased significantly between 2005-2006 and 2009-2010 among children and adolescents; however, the intake of polyunsaturated fatty acids (PUFAs) did not change. Among adults, intakes of total fat, SFAs, and MUFAs decreased; however, total energy and PUFA intake did not change. On the day of the 2009-2010 survey, ∼13% of children and 10% of adolescents reported consuming fried FFPs, whereas <7% of adults reported consumption of fried FFPs. Intakes of SFAs and TFAs from fried FFPs decreased significantly between 2005-2006 and 2009-2010 among children, adolescents, and adults. This study confirms that intake of TFAs from FFPs is trivial. PMID:25979511

  2. Changes in Mean Intake of Fatty Acids and Intake of Saturated and trans Fats from Potatoes: NHANES 2005–2006, 2007–2008, and 2009–201012

    PubMed Central

    Storey, Maureen L; Anderson, Patricia A

    2015-01-01

    Studies have shown that higher than usual intakes of trans fatty acids (TFAs) have adverse effects on blood lipids. Because of this, in 2006 the US FDA mandated labeling of TFAs on food packages. The food and restaurant industries, including the potato industry, reformulated their foods to reduce or eliminate partially hydrogenated vegetable oils and TFAs. Before mandatory labeling, grain-based desserts, yeast breads, and French-fried potatoes (FFPs) were the top sources of TFAs in the food supply; by 2007, potato food manufacturers and quick-service restaurants had reduced or eliminated TFAs without increasing saturated fatty acids (SFAs). FFPs are no longer a source of TFAs in the food supply. This study examined energy and fatty acid intake among children aged 6–11 y, adolescents aged 12–18 y, and adults aged ≥19 y across 3 time periods by using data from the NHANES 2005–2006, 2007–2008, and 2009–2010. On average, intakes of total energy, total fat, SFAs, and monounsaturated fatty acids (MUFAs) decreased significantly between 2005–2006 and 2009–2010 among children and adolescents; however, the intake of polyunsaturated fatty acids (PUFAs) did not change. Among adults, intakes of total fat, SFAs, and MUFAs decreased; however, total energy and PUFA intake did not change. On the day of the 2009–2010 survey, ∼13% of children and 10% of adolescents reported consuming fried FFPs, whereas <7% of adults reported consumption of fried FFPs. Intakes of SFAs and TFAs from fried FFPs decreased significantly between 2005–2006 and 2009–2010 among children, adolescents, and adults. This study confirms that intake of TFAs from FFPs is trivial. PMID:25979511

  3. New oral fat tolerance tests feature tailoring of the polyunsaturated/saturated fatty acid ratio to elicit a specific postprandial response.

    PubMed

    Dekker, Mark J; Wright, Amanda J; Mazurak, Vera C; Graham, Terry E; Marangoni, Alejandro G; Robinson, Lindsay E

    2007-12-01

    The impact of dietary fat on postprandial metabolic biomarkers for obesity-related chronic diseases, such as type-2 diabetes and cardiovascular disease, has received significant recent attention. However, there is no standard method to evaluate the postprandial response to dietary fat alone. Our goals were to develop a novel oral fat tolerance test (OFTT) consisting solely of emulsified lipids tailored for specific fatty acid compositions and to evaluate the functionality of specific ratios of polyunsaturated/saturated fatty acid (P/S) loading on postprandial triacylglyceride (TAG) concentrations. Two OFTTs of emulsified lipids were prepared with specific P/S ratios of 0.2 and 2.0. Physical characteristics of the fat blends, including TAG composition, melting point, and emulsion droplet size were quantified. Healthy, older (age>45 y) men (n=8) underwent an 8 h postprandial study wherein they received the OFTT treatment (either the P/S ratio of 0.2 or 2.0), with a total lipid load of 1 g/kg subject body mass. All subjects received both treatments separated by at least 1 week. Both the P/S 0.2 and 2.0 OFTT significantly elevated (p<0.05) blood TAG and free fatty acid concentrations for 8 h without increasing blood glucose or serum insulin concentrations. The predominant fatty acids contained in the P/S 0.2 (palmitic acid, 16:0) and 2.0 (linoleic acid, 18:2(n-6)) OFTT blends were significantly elevated in the blood (p<0.05) during their respective postprandial periods. We concluded that blood TAGs are elevated in a specific pattern through the administration of novel OFTTs with specific P/S blends without eliciting an insulin or glucose response. PMID:18059580

  4. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of medications ...

  5. Omega-6 Fatty Acids

    MedlinePlus

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  6. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  7. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  8. Identification of Anti-Long Chain Saturated Fatty Acid IgG Antibodies in Serum of Patients with Type 2 Diabetes

    PubMed Central

    Nicholas, Dequina A.; Salto, Lorena M.; Boston, Ava M.; Kim, Nan Sun; Larios, Marco; Beeson, W. Lawrence; Firek, Anthony F.; Casiano, Carlos A.; Langridge, William H. R.; Cordero-MacIntyre, Zaida; De Leon, Marino

    2015-01-01

    High levels of serum long chain saturated fatty acids (LCSFAs) have been associated with inflammation in type 2 diabetes. Dietary SFAs can promote inflammation, the secretion of IgG antibodies, and secretion of the proinflammatory cytokine IL-1β. This study characterizes anti-LCSFA IgG antibodies from patients with type 2 diabetes. Serum samples from several cohorts with type 2 diabetes were analyzed for the presence of anti-LCSFA IgG, the cytokine IL-1β, and nonesterified fatty acids. Anti-LCSFA IgG was isolated from patient samples and used for in vitro characterization of avidity and specificity. A cohort participating in En Balance, a diabetes health education program that improved diabetes management, tested positive for anti-LCSFA IgG. Following the 3-month program, the cohort showed a significant reduction in anti-LCSFA IgG levels. Anti-LCSFA antibodies isolated from these patients demonstrated high avidity, were specific for long chain SFAs, and correlated with serum fatty acids in patients with managed type 2 diabetes. Interestingly, anti-LCSFA IgG neutralized PA-induced IL-1β secretion by dendritic cells. Our data shows that nonesterified SFAs are recognized by IgG antibodies present in human blood. The identification of anti-LCSFA IgG antibodies in human sera establishes a basis for further exploration of lipid induced immune responses in diabetic patients. PMID:26633920

  9. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    PubMed

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus. PMID:26222672

  10. A genome-wide association study of saturated, mono- and polyunsaturated red blood cell fatty acids in the Framingham Heart Offspring Study.

    PubMed

    Tintle, N L; Pottala, J V; Lacey, S; Ramachandran, V; Westra, J; Rogers, A; Clark, J; Olthoff, B; Larson, M; Harris, W; Shearer, G C

    2015-03-01

    Most genome-wide association studies have explored relationships between genetic variants and plasma phospholipid fatty acid proportions, but few have examined apparent genetic influences on the membrane fatty acid profile of red blood cells (RBC). Using RBC fatty acid data from the Framingham Offspring Study, we analyzed over 2.5 million single nucleotide polymorphisms (SNPs) for association with 14 RBC fatty acids identifying 191 different SNPs associated with at least 1 fatty acid. Significant associations (p<1×10(-8)) were located within five distinct 1MB regions. Of particular interest were novel associations between (1) arachidonic acid and PCOLCE2 (regulates apoA-I maturation and modulates apoA-I levels), and (2) oleic and linoleic acid and LPCAT3 (mediates the transfer of fatty acids between glycerolipids). We also replicated previously identified strong associations between SNPs in the FADS (chromosome 11) and ELOVL (chromosome 6) regions. Multiple SNPs explained 8-14% of the variation in 3 high abundance (>11%) fatty acids, but only 1-3% in 4 low abundance (<3%) fatty acids, with the notable exception of dihomo-gamma linolenic acid with 53% of variance explained by SNPs. Further studies are needed to determine the extent to which variations in these genes influence tissue fatty acid content and pathways modulated by fatty acids. PMID:25500335

  11. Dietary fatty acids and minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accumulating evidence in animals and humans shows that dietary fatty acids influence the absorption and utilization of certain mineral elements. Fat intake exceeding 10% of energy intake reduces calcium uptake and use by the body, and this effect is more pronounced with saturated compared to unsatu...

  12. Extensive impact of saturated fatty acids on metabolic and cardiovascular profile in rats with diet-induced obesity: a canonical analysis

    PubMed Central

    2013-01-01

    Background Although hypercaloric interventions are associated with nutritional, endocrine, metabolic, and cardiovascular disorders in obesity experiments, a rational distinction between the effects of excess adiposity and the individual roles of dietary macronutrients in relation to these disturbances has not previously been studied. This investigation analyzed the correlation between ingested macronutrients (including sucrose and saturated and unsaturated fatty acids) plus body adiposity and metabolic, hormonal, and cardiovascular effects in rats with diet-induced obesity. Methods Normotensive Wistar-Kyoto rats were submitted to Control (CD; 3.2 Kcal/g) and Hypercaloric (HD; 4.6 Kcal/g) diets for 20 weeks followed by nutritional evaluation involving body weight and adiposity measurement. Metabolic and hormonal parameters included glycemia, insulin, insulin resistance, and leptin. Cardiovascular analysis included systolic blood pressure profile, echocardiography, morphometric study of myocardial morphology, and myosin heavy chain (MHC) protein expression. Canonical correlation analysis was used to evaluate the relationships between dietary macronutrients plus adiposity and metabolic, hormonal, and cardiovascular parameters. Results Although final group body weights did not differ, HD presented higher adiposity than CD. Diet induced hyperglycemia while insulin and leptin levels remained unchanged. In a cardiovascular context, systolic blood pressure increased with time only in HD. Additionally, in vivo echocardiography revealed cardiac hypertrophy and improved systolic performance in HD compared to CD; and while cardiomyocyte size was unchanged by diet, nuclear volume and collagen interstitial fraction both increased in HD. Also HD exhibited higher relative β-MHC content and β/α-MHC ratio than their Control counterparts. Importantly, body adiposity was weakly associated with cardiovascular effects, as saturated fatty acid intake was directly associated with most

  13. The action of peroxyl radicals, powerful deleterious reagents, explains why neither cholesterol nor saturated fatty acids cause atherogenesis and age-related diseases.

    PubMed

    Spiteller, Gerhard; Afzal, Mohammad

    2014-11-10

    Cells respond to alterations in their membrane structure by activating hydrolytic enzymes. Thus, polyunsaturated fatty acids (PUFAs) are liberated. Free PUFAs react with molecular oxygen to give lipid hydroperoxide molecules (LOOHs). In case of severe cell injury, this physiological reaction switches to the generation of lipid peroxide radicals (LOO(·)). These radicals can attack nearly all biomolecules such as lipids, carbohydrates, proteins, nucleic acids and enzymes, impairing their biological functions. Identical cell responses are triggered by manipulation of food, for example, heating/grilling and particularly homogenization, representing cell injury. Cholesterol as well as diets rich in saturated fat have been postulated to accelerate the risk of atherosclerosis while food rich in unsaturated fatty acids has been claimed to lower this risk. However, the fact is that LOO(·) radicals generated from PUFAs can oxidize cholesterol to toxic cholesterol oxides, simulating a reduction in cholesterol level. In this review it is shown how active LOO(·) radicals interact with biomolecules at a speed transcending usual molecule-molecule reactions by several orders of magnitude. Here, it is explained how functional groups are fundamentally transformed by an attack of LOO(·) with an obliteration of essential biomolecules leading to pathological conditions. A serious reconsideration of the health and diet guidelines is required. PMID:25318456

  14. Replacing coconut santan with palm oil santan: impact on dietary C12-16 saturated fatty acids, serum total cholesterol and cardiovascular risk.

    PubMed

    Ng, T; Tee, E S

    1998-12-01

    The theoretical impact of the use of coconut cream (santan) powder and palm oil santan powder on the dietary levels of C12-16 saturated fatty acids (SFAs) and linoleic acid (18:2), and on serum total cholesterol (TC), was evaluated holding non-santan dietary variables constant. The prediction was based on a 2,300-kcal hypothetical diet, containing one santan-based dish or snack in each of the 5 daily meals with fat contributing 30% of total calories, while the santan contributed a total of 14% kcal (36g). Replacing coconut santan with palm oil santan reduced the overall dietary C12-16 SFAs from 10.8% kcal to 4.8% kcal (i.e. 6.0% kcal) and the virtual removal of lauric (12:0) + myristic (14:0) acids, while palmitic acid (16:0) rose by 3.3% kcal, and the polyunsaturated linoleic acid (18:2) increased by 1.13% kcal. Applying the Hegsted equation to these dietary fatty acid (FA) changes, predicted a serum TC reduction of 24 -31 mg/dL (0.62- 0.80 mM/L), with the hypocholesterolemic effect being influenced by the low-density lipoprotein receptor (LDLr) set-point of the individual(s) concerned. Thus, the prediction indicated that replacing coconut santan with palm oil santan in santan-based Malaysian dishes or snacks would have a significant beneficial impact on serum TC and hence, cardiovascular risk. PMID:22692342

  15. High fat diet enriched with saturated, but not monounsaturated fatty acids adversely affects femur, and both diets increase calcium absorption in older female mice.

    PubMed

    Wang, Yang; Dellatore, Peter; Douard, Veronique; Qin, Ling; Watford, Malcolm; Ferraris, Ronaldo P; Lin, Tiao; Shapses, Sue A

    2016-07-01

    Diet induced obesity has been shown to reduce bone mineral density (BMD) and Ca absorption. However, previous experiments have not examined the effect of high fat diet (HFD) in the absence of obesity or addressed the type of dietary fatty acids. The primary objective of this study was to determine the effects of different types of high fat feeding, without obesity, on fractional calcium absorption (FCA) and bone health. It was hypothesized that dietary fat would increase FCA and reduce BMD. Mature 8-month-old female C57BL/6J mice were fed one of three diets: a HFD (45% fat) enriched either with monounsaturated fatty acids (MUFAs) or with saturated fatty acids (SFAs), and a normal fat diet (NFD; 10% fat). Food consumption was controlled to achieve a similar body weight gain in all groups. After 8wk, total body bone mineral content and BMD as well as femur total and cortical volumetric BMD were lower in SFA compared with NFD groups (P<.05). In contrast, femoral trabecular bone was not affected by the SFAs, whereas MUFAs increased trabecular volume fraction and thickness. The rise over time in FCA was greater in mice fed HFD than NFD and final FCA was higher with HFD (P<.05). Intestinal calbindin-D9k gene and hepatic cytochrome P450 2r1 protein levels were higher with the MUFA than the NFD diet (P<.05). In conclusion, HFDs elevated FCA overtime; however, an adverse effect of HFD on bone was only observed in the SFA group, while MUFAs show neutral or beneficial effects. PMID:27262536

  16. Granulocyte colony-stimulating factor (G-CSF): A saturated fatty acid-induced myokine with insulin-desensitizing properties in humans

    PubMed Central

    Ordelheide, Anna-Maria; Gommer, Nadja; Böhm, Anja; Hermann, Carina; Thielker, Inga; Machicao, Fausto; Fritsche, Andreas; Stefan, Norbert; Häring, Hans-Ulrich; Staiger, Harald

    2016-01-01

    Objective Circulating long-chain free fatty acids (FFAs) are important metabolic signals that acutely enhance fatty acid oxidation, thermogenesis, energy expenditure, and insulin secretion. However, if chronically elevated, they provoke inflammation, insulin resistance, and β-cell failure. Moreover, FFAs act via multiple signaling pathways as very potent regulators of gene expression. In human skeletal muscle cells differentiated in vitro (myotubes), we have shown in previous studies that the expression of CSF3, the gene encoding granulocyte colony-stimulating factor (G-CSF), is markedly induced upon FFA treatment and exercise. Methods and results We now report that CSF3 is induced in human myotubes by saturated, but not unsaturated, FFAs via Toll-like receptor 4-dependent and -independent pathways including activation of Rel-A, AP-1, C/EBPα, Src, and stress kinases. Furthermore, we show that human adipocytes and myotubes treated with G-CSF become insulin-resistant. In line with this, a functional polymorphism in the CSF3 gene affects adipose tissue- and whole-body insulin sensitivity and glucose tolerance in human subjects with elevated plasma FFA concentrations. Conclusion G-CSF emerges as a new player in FFA-induced insulin resistance and thus may be of interest as a target for prevention and treatment of type 2 diabetes. PMID:27069870

  17. New bioactive fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  18. New Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  19. Fatty acid uptake in normal human myocardium

    SciTech Connect

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R. )

    1991-09-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 {plus minus} 0.024 mumol/g and 0.37 {plus minus} 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells.

  20. Fats and fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The absolute fat requirement of the human species is the amount of essential fatty acids needed to maintain optimal fatty acid composition of all tissues and normal eicosanoid synthesis. At most, this requirement is no more than about 5% of an adequate energy intake. However, fat accounts for appro...

  1. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  2. STRUCTURES AND PHYSICOCHEMICAL PROPERTIES OF STARCH FROM IMMATURE SEEDS OF SOYBEAN VARIETIES (GLYCINE MAX (L.) MERR.) EXHIBITING NORMAL, LOW-LINOLENIC OR LOW-SATURATED FATTY ACID OIL PROFILES AT MATURITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean variety exhibiting at maturity, normal (NM), low-linolenic (LL) or low-saturate (LS) fatty acid seed oil composition had starch structure and functional properties studied from seeds collected 20 days prior to harvest. Soybean starch had small granules (0.4-4.5 micrometers diameter), and CB...

  3. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  4. Molecular and stable carbon isotopic compositions of saturated fatty acids within one sedimentary profile in the Shenhu, northern South China Sea: Source implications

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaowei; Mao, Shengyi; Wu, Nengyou; Sun, Yongge; Guan, Hongxiang

    2014-10-01

    This study examined the distributions and stable carbon isotopic compositions of saturated fatty acids (SaFAs) in one 300 cm long sedimentary profile, which was named as Site4B in Shenhu, northern South China Sea. The concentrations of total SaFAs in sediments ranged from 1.80 to 10.16 μg/g (μg FA/g dry sediment) and showed an even-over-odd predominance in the carbon chain of C12 to C32, mostly with n-C16 and n-C18 being the two major components. The short-chain fatty acids (ScFAs; n-C12 to n-C18) mainly from marine microorganisms had average δ13C values of -26.7‰ to -28.2‰, whereas some terrigenous-sourced long-chain fatty acids (LcFAs; n-C21 to n-C32) had average δ13C values of -29.6‰ to -34.1‰. The other LcFAs (n-C24 & n-C26 ∼ n-C28; average δ13C values are -26.1‰ to -28.0‰) as well as n-C19 and n-C20 SaFAs (average δ13C values are -29.1‰ and -29.3‰, respectively) showed a mixed signal of carbon isotope compositions. The relative bioproductivity calculation (marine vs. terrigenous) demonstrated that most of organic carbon accumulation throughout the sedimentary profile was contributed by marine organism. The high marine productivity in Shenhu, South China Sea may be related to the hydrocarbon seepage which evidenced by diapiric structures. Interestingly, there is a sever fluctuation of terrigenous inputs around the depth of 97 cm below the seafloor (bsf), probably resulting from the influence of the Dansgaard-Oeschger events and the Younger Dryas event as revealed by 14C age measurements.

  5. Saturated fatty acid palmitate induces extracellular release of histone H3: A possible mechanistic basis for high-fat diet-induced inflammation and thrombosis

    SciTech Connect

    Shrestha, Chandan; Ito, Takashi; Kawahara, Ko-ichi; Shrestha, Binita; Yamakuchi, Munekazu; Hashiguchi, Teruto; Maruyama, Ikuro

    2013-08-09

    Highlights: •High-fat diet feeding and palmitate induces the release of nuclear protein histone H3. •ROS production and JNK signaling mediates the release of histone H3. •Extracellular histones induces proinflammatory and procoagulant response. -- Abstract: Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type 2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infiltration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molecular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show that histone H3, a major protein component of chromatin, is released into the extracellular space when mice are fed a HFD or macrophages are stimulated with the saturated fatty acid palmitate. In a murine macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extracellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogenesis of HFD-induced inflammation and thrombosis.

  6. Desaturation of fatty acids in Trypanosoma cruzi

    SciTech Connect

    de Lema, M.G.; Aeberhard, E.E.

    1986-11-01

    Uptake and metabolism of saturated (16:0, 18:0) and unsaturated (18:1(n-9), 18:2(n-6), 18:3(n-3)) fatty acids by cultured epimastigotes of Trypanosoma cruzi were studied. Between 17.5 and 33.5% of the total radioactivity of (1-/sup 14/C)labeled fatty acids initially added to the culture medium was incorporated into the lipids of T. cruzi and mostly choline and ethanolamine phospholipids. As demonstrated by argentation thin layer chromatography, gas liquid chromatography and ozonolysis of the fatty acids synthesized, exogenous palmitic acid was elongated to stearic acid, and the latter was desaturated to oleic acid and 18:2 fatty acid. The 18:2 fatty acid was tentatively identified as linoleic acid with the first bond in the delta 9 position and the second bond toward the terminal methyl end. Exogenous stearic acid was also desaturated to oleic and 18:2 fatty acid, while oleic acid was only converted into 18:2. All of the saturated and unsaturated fatty acids investigated were also converted to a small extent (2-4%) into polyunsaturated fatty acids. No radioactive aldehyde methyl ester fragments of less than nine carbon atoms were detected after ozonolysis of any of the fatty acids studied. These results demonstrate the existence of delta 9 and either delta 12 or delta 15 desaturases, or both, in T. cruzi and suggest that delta 6 desaturase or other desaturases of the animal type are likely absent in cultured forms of this organism.

  7. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  8. Acute and chronic saturated fatty acid treatment as a key instigator of the TLR-mediated inflammatory response in human adipose tissue, in vitro☆

    PubMed Central

    Youssef-Elabd, Elham M.; McGee, Kirsty C.; Tripathi, Gyanendra; Aldaghri, Nasser; Abdalla, Mohga S.; Sharada, Hayat M.; Ashour, Esmat; Amin, Ashraf I.; Ceriello, Antonio; O'Hare, Joseph P.; Kumar, Sudhesh; McTernan, Philip G.; Harte, Alison L.

    2012-01-01

    A post-prandial increase in saturated fatty acids (SFAs) and glucose (Glc) activates an inflammatory response, which may be prolonged following restoration of physiological SFAs and Glc levels — a finding referred to as ‘metabolic memory'. This study examined chronic and oscillating SFAs and Glc on the inflammatory signalling pathway in human adipose tissue (AT) and adipocytes (Ads) and determined whether Ads are subject to “metabolic memory.” Abdominal (Abd) subcutaneous (Sc) explants and Ads were treated with chronic low glucose (L-Glc): 5.6 mM and high glucose (H-Glc): 17.5 mM, with low (0.2 mM) and high (2 mM) SFA for 48 h. Abd Sc explants and Ads were also exposed to the aforementioned treatment regimen for 12-h periods, with alternating rest periods of 12 h in L-Glc. Chronic treatment with L-Glc and high SFAs, H-Glc and high SFAs up-regulated key factors of the nuclear factor-κB (NFκB) pathway in Abd Sc AT and Ads (TLR4, NFκB; P<.05), whilst down-regulating MyD88. Oscillating Glc and SFA concentrations increased TLR4, NFκB, IKKβ (P<.05) in explants and Ads and up-regulated MyD88 expression (P<.05). Both tumor necrosis factor α and interleukin 6 (P<.05) secretion were markedly increased in chronically treated Abd Sc explants and Ads whilst, with oscillating treatments, a sustained inflammatory effect was noted in absence of treatment. Therefore, SFAs may act as key instigators of the inflammatory response in human AT via NFκB activation, which suggests that short-term exposure of cells to uncontrolled levels of SFAs and Glc leads to a longer-term inflammatory insult within the Ad, which may have important implications for patients with obesity and Type 2 diabetes. PMID:21414768

  9. Nutritional properties of trans fatty acids.

    PubMed

    Sambaiah, K; Lokesh, B R

    1999-08-01

    The role of trans fatty acids (TFA) present in partially hydrogenated fats widely consumed in food and their link with coronary heart disease has been examined in this review. Most of the studies carried out have been on the effects of TFA on blood-lipid profile. The perceived effects of TFA intake depend on the fat or oil with which they are compared and appears to be in between that of dietary saturated fats and monounsaturated fatty acids. When compared to saturated fat, TFA intake shows lower levels of total and LDL-cholesterol in blood. But when both TFA and saturated fatty acids are compared with cis fatty acids or native unhydrogenated oil, increase in total and LDL-cholesterol are noted. The effects of TFA on HDL-cholesterol and Lp(a) are not clearly established. The undesirable effects of TFA can be overcome by inclusion of essential fatty acids at a minimum of 2 energy per cent level in the diet. The link between trans fatty acid intake and coronary heart disease (CHD) are not unequivocally established. PMID:10650721

  10. Fatty Acids of Thiobacillus thiooxidans

    PubMed Central

    Levin, Richard A.

    1971-01-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C19 cyclopropane acid. PMID:4945206

  11. Evaluation of fatty acid content of some Iranian fast foods with emphasis on trans fatty acids.

    PubMed

    Asgary, Seddigheh; Nazari, Bahar; Sarrafzadegan, Nizal; Parkhideh, Sahar; Saberi, Salbali; Esmaillzadeh, Ahmad; Azadbakht, Leila

    2009-01-01

    Although the disadvantages of trans fatty acids (TFAs) are widely mentioned, limited data are available on the TFAs contents of Iranian foods, including fast foods. The aim of this study was to quantify the amounts of common fatty acids in several fast foods in Iran, with specific focus on TFAs. The most commonly consumed fast foods in Iran: sausage, calbas, hamburgers and pizzas, were randomly selected seven times from products available in supermarkets and restaurants. Each time a 10 g sample was drawn and prepared for fatty acid analysis. Total and individual fatty acids were quantified according to standard methods by gas chromatography with 60 meter capillary column and flame ionization detector. The most common saturated fatty acids in Iranian fast foods is stearic acid (C18:0) which ranged from 14.0% to 20.9%. Saturated fatty acid content in calbas was significantly higher than that found in other groups. Trans fatty acids constitute almost 23.6% to 30.6% of total fatty acids of these products. The most common TFA in these fast foods was elaidic acid (C18:1 9t). Total cis unsaturated fatty acid content of tested fast foods varied from 25.3%(in sausage) to 46.8(in calbas) with oleic acid (C18:1 9c) followed by linoleic acid (C18:2) being the most common fatty acids in these products. This study showed higher TFAs contents in commercially available fast foods compared to the amounts recommended by dietary guidelines in Iran. Further studies must assess the effects of these fatty acids on human health. PMID:19713177

  12. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration. PMID:24126964

  13. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae.

    PubMed

    Eriksen, Dawn T; HamediRad, Mohammad; Yuan, Yongbo; Zhao, Huimin

    2015-07-17

    Fatty acid ethyl esters (FAEEs) are a form of biodiesel that can be microbially produced via a transesterification reaction of fatty acids with ethanol. The titer of microbially produced FAEEs can be greatly reduced by unbalanced metabolism and an insufficient supply of fatty acids, resulting in a commercially inviable process. Here, we report on a pathway engineering strategy in Saccharomyces cerevisiae for enhancing the titer of microbially produced FAEEs by providing the cells with an orthogonal route for fatty acid synthesis. The fatty acids generated from this heterologous pathway would supply the FAEE production, safeguarding endogenous fatty acids for cellular metabolism and growth. We investigated the heterologous expression of a Type-I fatty acid synthase (FAS) from Brevibacterium ammoniagenes coupled with WS/DGAT, the wax ester synthase/acyl-coenzyme that catalyzes the transesterification reaction with ethanol. Strains harboring the orthologous fatty acid synthesis yielded a 6.3-fold increase in FAEE titer compared to strains without the heterologous FAS. Variations in fatty acid chain length and degree of saturation can affect the quality of the biodiesel; therefore, we also investigated the diversity of the fatty acid production profile of FAS enzymes from other Actinomyces organisms. PMID:25594225

  14. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  15. (Radioiodinated free fatty acids)

    SciTech Connect

    Knapp, Jr., F. F.

    1987-12-11

    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  16. Effects of a Diet Enriched with Polyunsaturated, Saturated, or Trans Fatty Acids on Cytokine Content in the Liver, White Adipose Tissue, and Skeletal Muscle of Adult Mice

    PubMed Central

    dos Santos, Bruno; Estadella, Debora; Hachul, Ana Cláudia Losinskas; Okuda, Marcos Hiromu; Moreno, Mayara Franzoi; Oyama, Lila Missae; Ribeiro, Eliane Beraldi; Oller do Nascimento, Claudia Maria da Penha

    2013-01-01

    This study analyzed the effect of diet enriched with 30% lipids on cytokines content in different tissues. Swiss male mice were distributed into four groups treated for 8 weeks with control (C, normolipidic diet); soybean oil (S); lard (L); and hydrogenated vegetable fat (H). We observed an increase in carcass fat in groups S and L, and the total amount of fatty deposits was only higher in group L compared with C group. The serum levels of free fatty acids were lower in the L group, and insulin, adiponectin, lipid profile, and glucose levels were similar among the groups. IL-10 was lower in group L in mesenteric and retroperitoneal adipose tissues. H reduced IL-10 only in retroperitoneal adipose tissue. There was an increase in IL-6 in the gastrocnemius muscle of the L group, and a positive correlation between TNF-α and IL-10 was observed in the livers of groups C, L, and H and in the muscles of all groups studied. The results suggested relationships between the quantity and quality of lipids ingested with adiposity, the concentration of free fatty acids, and cytokine production in white adipose tissue, gastrocnemius muscle, and liver. PMID:24027356

  17. Dietary fatty acids affect semen quality: a review.

    PubMed

    Esmaeili, V; Shahverdi, A H; Moghadasian, M H; Alizadeh, A R

    2015-05-01

    Mammalian spermatozoa are characterized by a high proportion of polyunsaturated fatty acids (PUFA) which play a crucial role in fertilization. This review focuses on analysis of sperm fatty acid profiles and the effects of omega-3, saturated and trans dietary and sperm fatty acids on sperm parameters. Two major points have been pivotal points of investigation in the field of sperm fatty acid profiles: first, the comparison between fatty acid profiles of fertile and infertile men and second, the effect of dietary fatty acids on sperm fatty acid profiles as well as sperm quality and quantity. Docosahexaenoic acid (DHA, C22:6n-3), and palmitic acid (C16:0) are the predominant PUFA and saturated fatty acids, respectively, in human sperm cells. Higher levels of DHA are concentrated on the sperm's head or tail varying among different species. However, the human sperm head contains a higher concentration of DHA. Dietary fatty acids influence on sperm fatty acid profiles and it seems that sperm fatty acid profiles are most sensitive to dietary omega-3 PUFA. Although improvements in sperm parameters are a response to omega-3 sources after more than 4 weeks of supplementation in the male diet, time-dependent and dose-dependent responses may explain the failure in some experiments. In human spermatozoa, elevated saturated or trans fatty acid concentration and a low DHA level is a concern. The regulations of the sperm fatty acid mean melting point as well as expression regulation of peroxisome proliferator-activated receptor gamma (PPARG) alongside with spermatozoon assembly, anti-apoptosis effects, eicosanoid formation, and hormone activity are the putative key factors that induce a response by inclusion of omega-3 PUFA. PMID:25951427

  18. Plasma fatty acid profile and alternative nutrition.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Klvanová, J

    1997-01-01

    Plasma profile of fatty acids was examined in a group of children consisting of 7 vegans, 15 lactoovovegetarians and 10 semivegetarians. The children were 11-15 years old and the average period of alternative nutrition was 3.4 years. The results were compared with a group of 19 omnivores that constituted an average sample with respect to biochemical and hematological parameters from a larger study of health and nutritional status of children in Slovakia. Alternative nutrition groups had significantly lower values of saturated fatty acids. The content of oleic acid was identical to omnivores. A significant increase was observed for linoleic and alpha-linolenic (n-3) acids. The dihomo-gamma-linolenic (n-6) acid and arachidonic (n-6) acid values were comparable to omnivores for all alternative nutrition groups. Values of n-3 polyunsaturated fatty acids in lactoovovegetarians were identical to those of omnivores whereas they were significantly increased in semivegetarians consuming fish twice a week. Due to the total exclusion of animal fats from the diet, vegans had significantly reduced values of palmitoleic acid as well as eicosapentaenoic (n-3) acid and docosahexaenoic (n-3) acid resulting in an increased n-6/n-3 ratio. Values of plasma fatty acids found in alternative nutrition groups can be explained by the higher intake of common vegetable oils (high content of linoleic acid), oils rich in alpha-linolenic acid (cereal germs, soybean oil, walnuts), as well as in n-3 polyunsaturated fatty acids (fish). The results of fatty acids (except n-3 in vegans) and other lipid parameters confirm the beneficial effect of vegetarian nutrition in the prevention of cardiovascular diseases. PMID:9491192

  19. Fatty acid-producing hosts

    SciTech Connect

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  20. 2-monoacylglycerol acyl migration: Affect of fatty acid desaturation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    2-Monoacylglycerols (2-MAG) are key synthetic intermediates used for the synthesis of ABA-type triacylglycerols where B is a highly unsaturated fatty acid at the glycerol sn-2 position and A are medium-chain saturated fatty acids at the glycerol sn-1,3 position. ABA-type structured lipids are an in...

  1. Ice core profiles of saturated fatty acids (C12:0-C30:0) and oleic acid (C18:1) from southern Alaska since 1734 AD: A link to climate change in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Pokhrel, Ambarish; Kawamura, Kimitaka; Seki, Osamu; Matoba, Sumio; Shiraiwa, Takayuki

    2015-01-01

    An ice core drilled at Aurora Peak in southeast Alaska was analyzed for homologous series of straight chain fatty acids (C12:0-C30:0) including unsaturated fatty acid (oleic acid) using gas chromatography (GC/FID) and GC/mass spectrometry (GC/MS). Molecular distributions of fatty acids are characterized by even carbon number predominance with a peak at palmitic acid (C16:0, av. 20.3 ± SD. 29.8 ng/g-ice) followed by oleic acid (C18:1, 19.6 ± 38.6 ng/g-ice) and myristic acid (C14:0, 15.3 ± 21.9 ng/g-ice). The historical trends of short-chain fatty acids, together with correlation analysis with inorganic ions and organic tracers suggest that short-chain fatty acids (except for C12:0 and C15:0) were mainly derived from sea surface micro layers through bubble bursting mechanism and transported over the glacier through the atmosphere. This atmospheric transport process is suggested to be linked with Kamchatka ice core δD record from Northeast Asia and Greenland Temperature Anomaly (GTA). In contrast, long-chain fatty acids (C20:0-C30:0) are originated from terrestrial higher plants, soil organic matter and dusts, which are also linked with GTA. Hence, this study suggests that Alaskan fatty acids are strongly influenced by Pacific Decadal Oscillation/North Pacific Gyre Oscillation and/or extra tropical North Pacific surface climate and Arctic oscillation. We also found that decadal scale variability of C18:1/C18:0 ratios in the Aurora Peak ice core correlate with the Kamchatka ice core δD, which reflects climate oscillations in the North Pacific. This study suggests that photochemical aging of organic aerosols could be controlled by climate periodicity.

  2. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. PMID:25577101

  3. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  4. Four Trypanosoma brucei fatty acyl-CoA synthetases: fatty acid specificity of the recombinant proteins.

    PubMed Central

    Jiang, D W; Englund, P T

    2001-01-01

    As part of our investigation of fatty acid metabolism in Trypanosoma brucei, we have expressed four acyl-CoA synthetase (TbACS) genes in Esherichia coli. The recombinant proteins, with His-tags on their C-termini, were purified to near homogeneity using nickel-chelate affinity chromatography. Although these enzymes are highly homologous, they have distinct specificities for fatty acid chain length. TbACS1 prefers saturated fatty acids in the range C(11:0) to C(14:0) and TbACS2 prefers shorter fatty acids, mainly C(10:0). TbACS3 and 4, which have 95% sequence identity, have similar specificities, favouring fatty acids between C(14:0) and C(17:0). In addition, TbACS1, 3 and 4 function well with a variety of unsaturated fatty acids. PMID:11535136

  5. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.

    PubMed

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  6. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  7. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    PubMed

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD. PMID:27485440

  8. Fatty acid and sterol composition of three phytomonas species.

    PubMed

    Nakamura, C V; Waldow, L; Pelegrinello, S R; Ueda-Nakamura, T; Filho, B A; Filho, B P

    1999-01-01

    Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine. PMID:10446013

  9. Inhibitors of fatty acid biosynthesis in sunflower seeds.

    PubMed

    Pleite, Rafael; Martínez-Force, Enrique; Garcés, Rafael

    2006-09-01

    During de novo fatty acid synthesis in sunflower seeds, saturated fatty acid production is influenced by the competition between the enzymes of the principal pathways and the saturated acyl-ACP thioesterases. Genetic backgrounds with more efficient saturated acyl-ACP thioesterase alleles only express their phenotypic effects when the alleles for the enzymes in the main pathway are less efficient. For this reason, we studied the incorporation of [2-(14)C]acetate into the lipids of developing sunflower seeds (Helianthus annuus L.) from several mutant lines in vivo. The labelling of different triacylglycerol fatty acids in different oilseed mutants reflects the fatty acid composition of the seed and supports the channelling theory of fatty acid biosynthesis. Incubation with methyl viologen diminished the conversion of stearoyl-ACP to oleoyl-ACP in vivo through a decrease in the available reductant power. In turn, this led to the accumulation of stearoyl-ACP to the levels detected in seeds from high stearic acid mutants. The concomitant reduction of oleoyl-ACP content inside the plastid allowed us to study the activity of acyl-ACP thioesterases on saturated fatty acids. In these mutants, we verified that the accumulation of saturated fatty acids requires efficient thioesterase activity on saturated-ACPs. By studying the effects of cerulenin on the in vivo incorporation of [2-(14)C]acetate into lipids and on the in vitro activity of beta-ketoacyl-ACP synthase II, we found that elongation to very long chain fatty acids can occur both inside and outside of the plastid in sunflower seeds. PMID:16500723

  10. [Fatty acid and lipid peroxidation in human atherosclerosis].

    PubMed

    Loeper, J; Goy, J; Emerit, J; Rozensztajn, L; Jeny, C; Bedu, O

    1983-06-01

    Plasma fatty acids and lipid peroxidation were studied in human atherosclerosis. Analysis of fatty acids in 16 controls and 32 hyperlipidemic patients showed, in the latter, a decrease in saturated fatty acids, especially palmitic and stearic acids, and an increase in unsaturated fatty acids, especially arachidonic acid. Compared to hyperlipidemic patients without arterial injury, patients with arterial injury exhibit a significant increase in malonaldehyde (MDA). In the former, MDA concentrations are significantly increased compared to controls. Therefore, peroxidation of unsaturated fatty acids may have a deleterious effect on arteries in atheroma, through the release of toxic endoperoxydes and the metabolization of arachidonic acid into thromboxane, which is a platelet aggregator. Lipid peroxidation can also be demonstrated in other diseases: we found very high MDA concentration in 11 alcoholic patients (alcoholic hepatitis, cirrhosis) and 6 patients with inflammatory conditions such as Crohn disease. PMID:6308785

  11. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  12. The science of fatty acids and inflammation.

    PubMed

    Fritsche, Kevin L

    2015-05-01

    Inflammation is believed to play a central role in many of the chronic diseases that characterize modern society. In the past decade, our understanding of how dietary fats affect our immune system and subsequently our inflammatory status has grown considerably. There are compelling data showing that high-fat meals promote endotoxin [e.g., lipopolysaccharide (LPS)] translocation into the bloodstream, stimulating innate immune cells and leading to a transient postprandial inflammatory response. The nature of this effect is influenced by the amount and type of fat consumed. The role of various dietary constituents, including fats, on gut microflora and subsequent health outcomes in the host is another exciting and novel area of inquiry. The impact of specific fatty acids on inflammation may be central to how dietary fats affect health. Three key fatty acid-inflammation interactions are briefly described. First, the evidence suggests that saturated fatty acids induce inflammation in part by mimicking the actions of LPS. Second, the often-repeated claim that dietary linoleic acid promotes inflammation was not supported in a recent systematic review of the evidence. Third, an explanation is offered for why omega-3 (n-3) polyunsaturated fatty acids are so much less anti-inflammatory in humans than in mice. The article closes with a cautionary tale from the genomic literature that illustrates why extrapolating the results from inflammation studies in mice to humans is problematic. PMID:25979502

  13. Fatty Acids Synthesized from Hexadecane by Pseudomonas aeruginosa

    PubMed Central

    Romero, Ethel M.; Brenner, Rodolfo R.

    1966-01-01

    Romero, Ethel M. (Universidad Nacional de la Plata, La Plata, Argentina), and Rodolfo M. Brenner. Fatty acids synthesized from hexadecane by Pseudomonas aeruginosa. J. Bacteriol. 91:183–188. 1966.—The lipids extracted from Pseudomonas aeruginosa incubated with hexadecane in a mineral medium were separated into a nonpolar and three polar fractions by thin-layer chromatography. The fatty acid composition of the four cellular fractions and that of the lipids excreted into the medium was studied by gas-liquid chromatography. Saturated fatty acids with 14 to 22 carbons were recognized, together with monoenoic, dienoic, and hydroxylated acids. Hydroxylated fatty acids were principally found in two polar fractions containing rhamnose and glucose; the other polar fraction, containing serine, alanine, ethanolamine, and leucine, was richer in monoenoic fatty acids. Octadecadienoic acid was found in the neutral fraction. PMID:4955247

  14. p38 MAPK Is Activated but Does Not Play a Key Role during Apoptosis Induction by Saturated Fatty Acid in Human Pancreatic β-Cells

    PubMed Central

    Šrámek, Jan; Němcová-Fürstová, Vlasta; Balušíková, Kamila; Daniel, Petr; Jelínek, Michael; James, Roger F.; Kovář, Jan

    2016-01-01

    Saturated stearic acid (SA) induces apoptosis in the human pancreatic β-cells NES2Y. However, the molecular mechanisms involved are unclear. We showed that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway in these cells. Therefore, we tested the role of p38 MAPK signaling pathway activation in apoptosis induction by SA in NES2Y cells. Crosstalk between p38 MAPK pathway activation and accompanying ERK pathway inhibition after SA application was also tested. The inhibition of p38 MAPK expression by siRNA silencing resulted in a decrease in MAPKAPK-2 activation after SA application, but it had no significant effect on cell viability or the level of phosphorylated ERK pathway members. The inhibition of p38 MAPK activity by the specific inhibitor SB202190 resulted in inhibition of MAPKAPK-2 activation and noticeable activation of ERK pathway members after SA treatment but in no significant effect on cell viability. p38 MAPK overexpression by plasmid transfection produced an increase in MAPKAPK-2 activation after SA exposure but no significant influence on cell viability or ERK pathway activation. The activation of p38 MAPK by the specific activator anisomycin resulted in significant activation of MAPKAPK-2. Concerning the effect on cell viability, application of the activator led to apoptosis induction similar to application of SA (PARP cleavage and caspase-7, -8, and -9 activation) and in inhibition of ERK pathway members. We demonstrated that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway and that this activation could be involved in apoptosis induction by SA in the human pancreatic β-cells NES2Y. However, this involvement does not seem to play a key role. Crosstalk between p38 MAPK pathway activation and ERK pathway inhibition in NES2Y cells seems likely. Thus, the ERK pathway inhibition by p38 MAPK activation does not also seem to be essential for SA-induced apoptosis. PMID:26861294

  15. Plasma concentrations of trans fatty acids in persons with Type 2 diabetes between September 2002 and April 2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TransFatty acids (TFAs) increase cardiovascular disease risk. TFAs and polyunsaturated fatty acids (PUFAs) in the food supply may be declining, with reciprocal increases in cis-monounsaturated fatty acids (MUFAs) and saturated fatty acids (SFAs). We sought to determine whether plasma 18-carbon TFA a...

  16. Fatty acid composition of the edible sea cucumber Athyonidium chilensis.

    PubMed

    Careaga, Valeria P; Muniain, Claudia; Maier, Martas S

    2013-04-01

    The edible sea cucumber Athyonidium chilensis is a fishery resource of high commercial value in Chile, but no information on its lipid and fatty acid composition has been previously reported. Phospholipids were the major lipid contents of the ethanolic extracts of tubules, internal organs and body wall of A. chilensis. Saturated fatty acids predominated in tubule phospholipids (40.69%), while in internal organs and body wall phospholipids, the monounsaturated fatty acids were in higher amounts (41.99% and 37.94%, respectively). The main polyunsaturated fatty acids in phospholipids were C20 : 2ω-6, arachidonic (C20 : 4ω-6) and eicosapentaenoic (C20 : 5ω-3) acids. These results demonstrate for the first time that A. chilensis is a valuable food for human consumption in terms of fatty acids. PMID:22583008

  17. Acyl-carrier protein - Phosphopantetheinyltransferase partnerships in fungal fatty acid synthases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of fatty acids is an essential primary metabolic process for energy storage and cellular structural integrity. Assembly of saturated fatty acids is achieved by fatty acid synthases (FASs) that combine acetyl- and malonyl-CoAs by repetitive decarboxylative Claisen condensations with su...

  18. Identification of Characteristic Fatty Acids to Quantify Triacylglycerols in Microalgae

    PubMed Central

    Shen, Pei-Li; Wang, Hai-Tao; Pan, Yan-Fei; Meng, Ying-Ying; Wu, Pei-Chun; Xue, Song

    2016-01-01

    The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG). Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3) were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content, and thus, the correlation coefficient presenting r2 were 0.96, 0.94, and 0.97, respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0 and EPA were 0.94 and 0.97, respectively, and in Chlorella pyrenoidosa r2-values for C18:1 and C18:3 with TAG content were 0.91 and 0.99, repectively. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods. PMID:26941747

  19. Identification of Characteristic Fatty Acids to Quantify Triacylglycerols in Microalgae.

    PubMed

    Shen, Pei-Li; Wang, Hai-Tao; Pan, Yan-Fei; Meng, Ying-Ying; Wu, Pei-Chun; Xue, Song

    2016-01-01

    The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG). Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3) were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content, and thus, the correlation coefficient presenting r (2) were 0.96, 0.94, and 0.97, respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r (2) of C16:0 and EPA were 0.94 and 0.97, respectively, and in Chlorella pyrenoidosa r (2)-values for C18:1 and C18:3 with TAG content were 0.91 and 0.99, repectively. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods. PMID:26941747

  20. Polyunsaturated Fatty Acids in Children

    PubMed Central

    2013-01-01

    Polyunsaturated fatty acids (PUFAs) are the major components of brain and retina, and are the essential fatty acids with important physiologically active functions. Thus, PUFAs should be provided to children, and are very important in the brain growth and development for fetuses, newborn infants, and children. Omega-3 fatty acids decrease coronary artery disease and improve blood flow. PUFAs have been known to have anti-inflammatory action and improved the chronic inflammation such as auto-immune diseases or degenerative neurologic diseases. PUFAs are used for metabolic syndrome related with obesity or diabetes. However, there are several considerations related with intake of PUFAs. Obsession with the intake of unsaturated fatty acids could bring about the shortage of essential fatty acids that are crucial for our body, weaken the immune system, and increase the risk of heart disease, arrhythmia, and stroke. In this review, we discuss types, physiologic mechanism of action of PUFAs, intake of PUFAs for children, recommended intake of PUFAs, and considerations for the intake of PUFAs. PMID:24224148

  1. Fatty acids as modulators of neutrophil recruitment, function and survival.

    PubMed

    Rodrigues, Hosana G; Takeo Sato, Fabio; Curi, Rui; Vinolo, Marco A R

    2016-08-15

    Neutrophils are well-known to act in the destruction of invading microorganisms. They have also been implicated in the activation of other immune cells including B- and T-lymphocytes and in the resolution of inflammation and tissue regeneration. Neutrophils are produced in the bone marrow and released into the circulation from where they migrate to tissues to perform their effector functions. Neutrophils are in constant contact with fatty acids that can modulate their function, activation and fate (survival or cell death) through different mechanisms. In this review, the effects of fatty acids pertaining to five classes, namely, long-chain saturated fatty acids (LCSFAs), short-chain fatty acids (SCFAs), and omega-3 (n-3), omega-6 (n-6) and omega-9 (n-9) unsaturated fatty acids, on neutrophils and the relevance of these effects for disease development are discussed. PMID:25987417

  2. [Fatty acid content of sausages manufactured in Venezuela].

    PubMed

    Araujo de Vizcarrondo, C; Martín, E

    1997-06-01

    The moisture and lipid content as well as the fatty acid composition of sausages were determined. Lipids were extracted and purified with a mixture of cloroform/methanol 2:1. Fatty acids in the lipid extract were methylated with 4% sulfuric acid/methanol solution and later were separated as methyl esters by gas liquid cromatography (GLC). Sausages presented a lipid content between 7.10% for canned sausages and 35.23% for the cocktail type. Most of the fatty acids were monounsatured with oleic acid as the major component with values between 42.54% for ham sausage and 48.83% for francfort type. Satured fatty acids followed, with palmitic acid as the major component in a range between 21.46% and 26.59% for bologna and Polaca sausage respectively. Polyunsaturated fatty acids were present in less quantities with concentration of linoleic acid between 8.5% (cotto salami type) and 12.60% (cocktail type). Turkey and poultry sausages presented a higher content of polyunsaturated and less saturated fatty acids than the other types of sausages studied. PMID:9659435

  3. Mechanisms by which saturated triacylglycerols elevate the plasma low density lipoprotein-cholesterol concentration in hamsters. Differential effects of fatty acid chain length.

    PubMed Central

    Woollett, L A; Spady, D K; Dietschy, J M

    1989-01-01

    These studies were designed to elucidate how shorter (MCT) and longer (HCO) chain-length saturated triacylglycerols and cholesterol interact to alter steady-state plasma LDL-cholesterol levels. When either MCT or HCO was fed in the absence of cholesterol, there was little effect on receptor-dependent LDL transport but a 36-43% increase in LDL-cholesterol production. Cholesterol feeding in the absence of triacylglycerol led to significant suppression of receptor-dependent LDL transport and a 26-31% increase in LDL-cholesterol production. However, when the longer chain-length saturated triacylglycerol was fed together with cholesterol there was a marked increase in the suppression of receptor-dependent LDL transport and an 82% increase in production rate. Together, these two alterations accounted for the observed eightfold increase in plasma LDL-cholesterol concentration. In contrast, feeding the shorter chain-length saturated triacylglycerol with cholesterol actually enhanced receptor-dependent LDL transport while also causing a smaller increase (52%) in the LDL-cholesterol production rate. As a result of these two opposing events, MCT feeding had essentially no net effect on plasma LDL-cholesterol levels beyond that induced by cholesterol feeding alone. PMID:2738148

  4. Synthesis of fatty acids in the perused mouse liver.

    PubMed

    Salmon, D M; Bowen, N L; Hems, D A

    1974-09-01

    1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of (3)H from (3)H(2)O (1-7mumol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-(14)C]lactic acid and [U-(14)C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of (3)H(2)O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12-16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with (3)H(2)O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors. PMID:4464843

  5. [Fatty acid content of the lipid fraction of the liver and fatty tissues of fattened geese].

    PubMed

    Kostadinov, K; Monov, G

    1986-01-01

    The content of fatty acids in the lipid fraction of the liver and in the body fats of fattened gray Landen geese. Determinations were carried out with a gas chromatography Chrom 41 supplied with Determinations were carried out with a gas chromatograph Chrom 41 supplied with a flame-ionization detector. It was found that the average content of fatty acids (saturated and unsaturated) as expressed by percent of their total amount was 45.90% and 54.10% (liver), 36.58% and 63.42% (subcutaneous fatty tissue), 42.79% and 57.31% (inner lard), and 39.01% and 60.99% (skin fats). PMID:3727379

  6. A high-fat, high-oleic diet, but not a high-fat, saturated diet, reduces hepatic n3 fatty acid content in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While considerable research has centered upon the role of linoleic acid (LNA; 18:2n6) as a competitive inhibitor of alpha-linolenic (ALA; 18:3n3) metabolism, a growing literature indicates that the amount of fat consumed can reduce the elongation and desaturation process. However, little data exist ...

  7. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  8. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  9. Production of extracellular fatty acid using engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background As an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics. Results In this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL) produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain p

  10. New radiohalogenated alkenyl tellurium fatty acids

    SciTech Connect

    Srivastava, P.C.; Knapp, F.F. Jr.; Kabalka, G.W.

    1987-01-01

    Radiolabeled long-chain fatty acids have diagnostic value as radiopharmaceutical tools in myocardial imaging. Some applications of these fatty acids are limited due to their natural metabolic degradation in vivo with subsequent washout of the radioactivity from the myocardium. The identification of structural features that will increase the myocardial residence time without decreasing the heart uptake of long-chain fatty acids is of interest. Fatty acids containing the tellurium heteroatom were the first modified fatty acids developed that show unique prolonged myocardial retention and low blood levels. Our detailed studies with radioiodinated vinyliodide substituted tellurium fatty acids demonstrate that heart uptake is a function of the tellurium position. New techniques of tellurium and organoborane chemistry have been developed for the synthesis of a variety of radioiodinated iodoalkenyl tellurium fatty acids. 9 refs., 3 figs., 2 tabs.

  11. Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.

  12. It is all about fluidity: Fatty acids and macrophage phagocytosis.

    PubMed

    Schumann, Julia

    2016-08-15

    Phagocytosis is an early and fundamental step for the effective clearance of disease causing agents. The ability to engulf and kill pathogens is considered as a major effector function of macrophages. In their phagocytic role macrophages are part of the first line of innate immune defense. A number of studies investigating fatty acid effects on macrophage phagocytosis have been conducted over many years. In vitro-data consistently report that alterations in macrophage membrane fatty acid composition are linked to an altered phagocytic capacity, i.e. an increase in membrane unsaturated fatty acid content is associated with an increase in engulfment and killing rate. The mode of action of fatty acids seems to be the modulation of the physical nature of the macrophage plasma membrane. It appears that the saturated-to-unsaturated fatty acid ratio of macrophage membrane phospholipids is of importance in determining macrophage phagocytic capacity. Available in vivo-data are less clear. At present, there is a lack of systematic studies elucidating key factors such as fatty acid efficacy, effective dose or dosing intervals. Without this knowledge the targeted modulation of macrophage phagocytosis in vivo by fatty acids is still a distant possibility. PMID:25987422

  13. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids.

    PubMed

    Papina, M; Meziane, T; van Woesik, R

    2003-07-01

    We compared the fatty acid composition of the host-coral Montipora digitata with the fatty acid composition in the coral's endosymbiotic dinoflagellates (zooxanthellae). Fatty acids as methyl esters were determined using gas chromatography (GC) and verified by GC-mass spectrometry. We found the main difference between the fatty acids in the host and their symbionts were that zooxanthellae supported higher proportions of polyunsaturated fatty acids. The presence of fatty acids specific to dinoflagellates (i.e. 18:4omega3, 22:5omega3 and 22:6omega3) in the host tissue suggests that zooxanthellae provide the coral host not only with saturated fatty acids, but also with diverse polyunsaturated fatty acids. PMID:12831773

  14. Molten fatty acid based microemulsions.

    PubMed

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound. PMID:27241163

  15. Fatty acids in cardiovascular health and disease: a comprehensive update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research dating back to the 1950s reported an association between the consumption of saturated fatty acids (SFAs) and risk of coronary heart disease. Recent epidemiological evidence, however, challenges these findings. It is well accepted that the consumption of SFAs increases low-density lipoprotei...

  16. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage

    PubMed Central

    Vieira, C. P.; Álvares, T. S.; Gomes, L. S.; Torres, A. G.; Paschoalin, V. M. F.; Conte-Junior, C. A.

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8g/100g fatty acids) and lower saturated fatty acid (72.7g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality. PMID:26444286

  17. Fatty Acids Inhibit Apical Membrane Chloride Channels in Airway Epithelia

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew P.; Welsh, Michael J.

    1990-09-01

    Apical membrane Cl^- channels control the rate of transepithelial Cl^- secretion in airway epithelia. cAMP-dependent protein kinase and protein kinase C regulate Cl^- channels by phosphorylation; in cystic fibrosis cells, phosphorylation-dependent activation of Cl^- channels is defective. Another important signaling system involves arachidonic acid, which is released from cell membranes during receptor-mediated stimulation. Here we report that arachidonic acid reversibly inhibited apical membrane Cl^- channels in cell-free patches of membrane. Arachidonic acid itself inhibited the channel and not a cyclooxygenase or lipoxygenase metabolite because (i) inhibitors of these enzymes did not block the response, (ii) fatty acids that are not substrates for the enzymes had the same effect as arachidonic acid, and (iii) metabolites of arachidonic acid did not inhibit the channel. Inhibition occurred only when fatty acids were added to the cytosolic surface of the membrane patch. Unsaturated fatty acids were more potent than saturated fatty acids. Arachidonic acid inhibited Cl^- channels from both normal and cystic fibrosis cells. These results suggest that fatty acids directly inhibit apical membrane Cl^- channels in airway epithelial cells.

  18. Fatty acid activation of peroxisome proliferator-activated receptor (PPAR).

    PubMed

    Bocos, C; Göttlicher, M; Gearing, K; Banner, C; Enmark, E; Teboul, M; Crickmore, A; Gustafsson, J A

    1995-06-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate peroxisome proliferator-activated receptor (PPAR), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from rat that is homologous to that from mouse, which encodes a 97% similar protein. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activated the receptor chimera. In addition, saturated fatty acids induced the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. To test whether a common PPAR binding metabolite might be formed from free fatty acids we tested the effects of differentially beta-oxidizable fatty acids and inhibitors of fatty acid metabolism. The peroxisomal proliferation-inducing, non-beta-oxidizable, tetradecylthioacetic acid activated PPAR to the same extent as the strong peroxisomal proliferator WY-14,643, whereas the homologous beta-oxidizable tetradecylthiopropionic acid was only as potent as a non-substituted fatty acid. Cyclooxygenase inhibitors, radical scavengers or cytochrome P450 inhibitors did not affect activation of PPAR. In conclusion, beta-oxidation is apparently not required for the formation of the PPAR-activating molecule and this moiety might be a fatty acid, its ester with CoA, or a further derivative of the activated fatty acid prior to beta-oxidation of the acyl-CoA ester. PMID:7626496

  19. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans

    PubMed Central

    Watts, Jennifer L.; Browse, John

    2002-01-01

    Polyunsaturated fatty acids (PUFAs) are important membrane components and precursors of signaling molecules. To investigate the roles of these fatty acids in growth, development, and neurological function in an animal system, we isolated Caenorhabditis elegans mutants deficient in PUFA synthesis by direct analysis of fatty acid composition. C. elegans possesses all the desaturase and elongase activities to synthesize arachidonic acid and eicosapentaenoic acid from saturated fatty acid precursors. In our screen we identified mutants with defects in each fatty acid desaturation and elongation step of the PUFA biosynthetic pathway. The fatty acid compositions of the mutants reveal the substrate preferences of the desaturase and elongase enzymes and clearly demarcate the steps of this pathway. The mutants show that C. elegans does not require n3 or Δ5-unsaturated PUFAs for normal development under laboratory conditions. However, mutants with more severe PUFA deficiencies display growth and neurological defects. The mutants provide tools for investigating the roles of PUFAs in membrane biology and cell function in this animal model. PMID:11972048

  20. Dietary omega-3 and polyunsaturated fatty acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma.

    PubMed

    Liu, S; Baracos, V E; Quinney, H A; Clandinin, M T

    1994-05-01

    Feeding animals with diets high in saturated fat induces insulin resistance, and replacing saturated fat isocalorically with poly-unsaturated fat, especially long-chain omega-3 fatty acids, will prevent the development of insulin resistance in skeletal-muscle tissue. To investigate the mechanism, rats were fed on high-fat (20%, w/w) semipurified diets for 6 weeks. Diets containing ratios of polyunsaturated/saturated (P/S) fatty acid of 0.25 (low-P/S diet) and 1.0 (high-P/S diet) were used to study the effect of the level of saturated fat. To study the effects of omega-3 fatty acids, diets with a low-P/S ratio containing either 0 (low-omega-3 diet) or 3.3% (high-omega-3 diet) long-chain omega-3 fatty acids from fish oil were fed. Plasma membrane from skeletal muscle was purified. The content of fatty acids in sarcolemmal phospholipid was significantly related to the dietary composition. Insulin binding to intact sarcolemmal vesicles prepared from rats fed on diets high in omega-3 fatty acids increased 14-fold compared with animals fed on the low-omega-3 diet (P < 0.0001). Feeding rats on a diet with a high P/S ratio increased sarcolemmal insulin binding by 2.3-fold (P < 0.05). Increased insulin binding was due to increased receptor number at the low-affinity high-capacity binding site. Dietary effects on insulin binding were eliminated when studies were carried out on detergent-solubilized membranes, indicating the importance of the phospholipid fatty acyl composition for insulin binding. The results suggest that dietary omega-3 and polyunsaturated fatty acids increase insulin binding to sarcolemma by changing the fatty acyl composition of phospholipid surrounding the insulin receptor, and this might be the mechanism by which dietary fatty acids modify insulin action. PMID:8192673

  1. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    NASA Astrophysics Data System (ADS)

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts.

  2. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    PubMed Central

    Refsgaard, Hanne H. F.; Tsai, Lin; Stadtman, Earl R.

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(III)/O2] depends on the degree of unsaturation of the fatty acid. The fatty acid-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate < methyl linolenate < methyl arachidonate. The amounts of alkyl hydroperoxides, malondialdehyde, and a number of other aldehydes that accumulated when polyunsaturated fatty acids were oxidized in the presence of BSA were significantly lower than that observed in the absence of BSA. Direct treatment of proteins with various lipid hydroperoxides led to a slight increase in the formation of protein carbonyl derivatives, whereas treatment with the hydroperoxides together with Fe(II) led to a substantial increase in the formation of protein carbonyls. These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (α,β-unsaturated aldehydes) with lysine residues (Michael addition reactions) and also by interactions with alkoxyl radicals obtained by Fe(II) cleavage of lipid hydroperoxides that are formed. In addition, saturated aldehydes derived from the polyunsaturated fatty acids likely react with lysine residues to form Schiff base adducts. PMID:10639127

  3. Response to the Letter to the Editor regarding "Determination of the fatty acid profile by 1H-NMR spectroscopy."

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In expansion of previous work (G. Knothe, J.A. Kenar, Determination of the fatty acid profile by 1H-NMR spectroscopy, Eur. J. Lipid Sci. Technol. 2004, 106, 88-96), an additional approach is discussed for quantitating saturated fatty acids in the fatty acid profiles of common vegetable oils by 1H-NM...

  4. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  5. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  6. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  7. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  8. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  9. Effect of fatty acids on self-assembly of soybean lecithin systems.

    PubMed

    Godoy, C A; Valiente, M; Pons, R; Montalvo, G

    2015-07-01

    With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids. PMID:25938851

  10. Fatty acid biosynthesis by a particulate preparation from germinating pea

    PubMed Central

    Bolton, Paul; Harwood, John L.

    1977-01-01

    1. Fatty acid synthesis was studied in microsomal preparations from germinating pea (Pisum sativum). 2. The preparations synthesized a mixture of saturated fatty acids up to a chain length of C24 from [14C]malonyl-CoA. 3. Whereas hexadecanoic acid was made de novo, octadecanoic acid and icosanoic acid were synthesized by elongation. 4. The products formed during [14C]malonyl-CoA incubation were analysed, and unesterified fatty acids and polar lipids were found to be major products. [14C]Palmitic acid represented a high percentage of the acyl-carrier protein esters, whereas 14C-labelled very-long-chain fatty acids were mainly present as unesterified fatty acids. CoA esters were minor products. 5. The addition of exogenous lipids to the incubation system usually resulted in stimulation of [14C]malonyl-CoA incorporation into fatty acids. The greatest stimulation was obtained with dipalmitoyl phosphatidylcholine. Both exogenous palmitic acid and dipalmitoyl phosphatidylcholine increased the amount of [14C]-stearic acid synthesized, relative to [14C]palmitic acid. Addition of stearic acid increased the amount of [14C]icosanoic acid formed. 6. [14C]Stearic acid was elongated more effectively to icosanoic acid than [14C]stearoyl-CoA, and its conversion was not decreased by addition of unlabelled stearoyl-CoA. 7. Incorporation of [14C]malonyl-CoA into fatty acids was markedly decreased by iodoacetamide and 5,5′-dithiobis-(2-nitrobenzoic acid). Palmitate elongation was sensitive to arsenite addition, and stearate elongation to the presence of Triton X-100 or fluoride. The action of fluoride was not, apparently, due to chelation. 8. The microsomal preparations differed from soluble fractions from germinating pea in (a) synthesizing very-long-chain fatty acids, (b) not utilizing exogenous palmitate–acyl-carrier protein as a substrate for palmitate elongation and (c) having fatty acid synthesis stimulated by the addition of certain complex lipids. PMID:579600

  11. Fatty acids of Pinus elliottii tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Lawler, G. C.; Walkinshaw, C. H.; Weete, J. D.

    1973-01-01

    The total fatty constituents of slash pine (Pinus elliottii) tissue cultures, seeds, and seedlings were examined by GLC and MS. Qualitatively, the fatty acid composition of these tissues was found to be very similar to that reported for other pine species. The fatty acid contents of the tissue cultures resembled that of the seedling tissues. The branched-chain C(sub 17) acid reported for several other Pinus species was confirmed as the anteiso isomer.

  12. Fatty acid profile of kenaf seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profile of kenaf (Hibiscus cannabinus L.) seed oil has been the subject of several previous reports in the literature. These reports vary considerably regarding the presence and amounts of specific fatty acids, notably epoxyoleic acid but also cyclic (cyclopropene and cyclopropane) fa...

  13. A high-fat, high-oleic diet, but not a high-fat, saturated diet, reduces hepatic alpha-linolenic acid and eicosapentaenoic acid content in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Considerable research centers upon the role of linoleic acid (LNA; 18:2n6) as a competitive inhibitor of a-linolenic (ALA; 18:3n3) metabolism; however, little data exist as to the impact of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) on ALA metabolism. We tested the hypothesi...

  14. The scope for manipulating the polyunsaturated fatty acid content of beef: a review.

    PubMed

    Vahmani, Payam; Mapiye, Cletos; Prieto, Nuria; Rolland, David C; McAllister, Tim A; Aalhus, Jennifer L; Dugan, Michael E R

    2015-01-01

    Since 1950, links between intake of saturated fatty acids and heart disease have led to recommendations to limit consumption of saturated fatty acid-rich foods, including beef. Over this time, changes in food consumption patterns in several countries including Canada and the USA have not led to improvements in health. Instead, the incidence of obesity, type II diabetes and associated diseases have reached epidemic proportions owing in part to replacement of dietary fat with refined carbohydrates. Despite the content of saturated fatty acids in beef, it is also rich in heart healthy cis-monounsaturated fatty acids, and can be an important source of long-chain omega-3 (n-3) fatty acids in populations where little or no oily fish is consumed. Beef also contains polyunsaturated fatty acid biohydrogenation products, including vaccenic and rumenic acids, which have been shown to have anticarcinogenic and hypolipidemic properties in cell culture and animal models. Beef can be enriched with these beneficial fatty acids through manipulation of beef cattle diets, which is now more important than ever because of increasing public understanding of the relationships between diet and health. The present review examines recommendations for beef in human diets, the need to recognize the complex nature of beef fat, how cattle diets and management can alter the fatty acid composition of beef, and to what extent content claims are currently possible for beef fatty acids. PMID:26199725

  15. Determination of free fatty acids in beer.

    PubMed

    Bravi, Elisabetta; Marconi, Ombretta; Sileoni, Valeria; Perretti, Giuseppe

    2017-01-15

    Free fatty acids (FFA) content of beer affects the ability to form a stable head of foam and plays an important role in beer staling. Moreover, the presence of saturated FAs is related sometimes to gushing problems in beer. The aim of this research was to validate an analytical method for the determination of FFAs in beer. The extraction of FFAs in beer was achieved via Liquid-Liquid Cartridge Extraction (LLCE), the FFAs extract was purified by Solid Phase Extraction (SPE), methylated by boron trifluoride in methanol, and injected into GC-FID system. The performance criteria demonstrate that this method is suitable for the analysis of medium and long chain FFAs in beer. The proposed method was tested on four experimental beers. PMID:27542484

  16. Fatty acid extracts from Lucilia sericata larvae promote murine cutaneous wound healing by angiogenic activity

    PubMed Central

    2010-01-01

    Background fatty acids are considered to be effective components to promote wound healing and Lucilia sericata larvae are applied clinically to treat intractable wounds. We aimed to investigat the effect of fatty acid extracts from dried Lucilia sericata larvae on murine cutaneuous wound healing as well as angiogenesis. Results On day 7 and 10 after murine acute excision wounds creation, the percent wound contraction of fatty acid extracts group was higher than that of vaseline group. On day 3, 7 and 10 after wounds creation, the wound healing quality of fatty acid extracts group was better than that of vaseline group on terms of granulation formation and collagen organization. On day 3 after wounds creation, the micro vessel density and vascular endothelial growth factor expression of fatty acid extracts group were higher than that of vaseline group. Component analysis of the fatty acid extracts by gas chromatography-mass spectrometry showed there were 10 kinds of fatty acids in total and the ratio of saturated fatty acid, monounsaturated fatty acid and polyunsaturated fatty acid (PUFA) was: 20.57%:60.32%:19.11%. Conclusions Fatty acid extracts from dried Lucilia sericata larvae, four fifths of which are unsaturated fatty acids, can promote murine cutaneous wound healing probably resulting from the powerful angiogenic activity of the extracts. PMID:20211009

  17. Margarine and spread products with oils rich in polyunsaturated fatty acid – organogel approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organogels have drawn increasing interest as alternatives to trans fatty acids and saturated fatty acids-containing hardstocks used in structured food products such as margarine, spread and shortening. In this research, organogels formed by plant wax and vegetable oil were evaluated in an actual mar...

  18. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  19. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  20. Fatty acids profiles of some Spanish wild vegetables.

    PubMed

    Morales, P; Ferreira, I C F R; Carvalho, A M; Sánchez-Mata, M C; Cámara, M; Tardío, J

    2012-06-01

    Polyunsaturated fatty acids play an important role in human nutrition, being associated with several health benefits. The analyzed vegetables, in spite of its low fat content, lower than 2%, present a high proportion of polyunsaturated fatty acids of n-3, n-6 and n-9 series, such as α-linolenic, linoleic and oleic acids, respectively. Wild edible plants contain in general a good balance of n-6 and n-3 fatty acids. The present study tries to contribute to the preservation and valorization of traditional food resources, studying the fatty acids profile of 20 wild vegetables by gas-liquid chromatography with flame ionization detection. Results show that species in which leaves are predominant in their edible parts have in general the highest polyunsaturated fatty acid/saturated fatty acid ratios: Rumex pulcher (5.44), Cichorium intybus (5.14) and Papaver rhoeas (5.00). Due to the low n-6/n-3 ratios of the majority of the samples, they can be considered interesting sources of n-3 fatty acids, especially those with higher total fat amount, such as Bryonia dioica, Chondrilla juncea or Montia fontana, with the highest contents of α-linolenic acid (67.78, 56.27 and 47.65%, respectively). The wild asparaguses of Asparagus acutifolius and Tamus communis stand out for their linoleic acid content (42.29 and 42.45%, respectively). All these features reinforce the interest of including wild plants in diet, as an alternative to the variety of vegetables normally used. PMID:22701061

  1. Major lipid classes and their fatty acids in a parasitic nematode, Ascaridia galli.

    PubMed

    Ghosh, Amit; Kar, Kumkum; Ghosh, D; Dey, C; Misra, K K

    2010-04-01

    The paper presents major lipid classes and their fatty acids investigated from Ascaridia galli, a nematode parasite of country fowl. Thin layer chromatography (TLC) reveals that the percent of total lipid, neutral lipid, phospholipids, and glycolipids are 1.94, 54.39, 26.95 and 18.66, respectively. Gas-liquid chromatography (GLC) analysis shows that the saturated fatty acids are the major components in all the lipid fractions followed by monoenes and dienes. Polyunsaturated fatty acids (PUFA) were present in low amount. Stearic acids (C(18)) were the chief components among all the fatty acids in all the lipid fractions. PMID:21526035

  2. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  3. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans. PMID:26850107

  4. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  5. Historical perspectives on fatty acid chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids are basic renewable chemical building blocks that can be used as intermediates for a multitude of products. Today the global value of fatty acids exceeds 18 billion dollars and is expected to increase to nearly 26 billion over the period from 2014-2019. From it auspicious beginnings, the...

  6. Physiological activities of hydroxyl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  7. Phylogenomic reconstruction of archaeal fatty acid metabolism

    PubMed Central

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  8. Polyunsaturated fatty acids and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reviewed results from published studies regarding the effects of polyunsaturated fatty acids (PUFA) intake on insulin resistance (IR) in human subjects. Evidence has been gathered from epidemiological, cross-sectional and interventions studies. Increased intake of trans fatty acids (TFA) inc...

  9. Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults.

    PubMed

    Vannice, Gretchen; Rasmussen, Heather

    2014-01-01

    It is the position of the Academy of Nutrition and Dietetics (the Academy) that dietary fat for the healthy adult population should provide 20% to 35% of energy, with an increased consumption of n-3 polyunsaturated fatty acids and limited intake of saturated and trans fats. The Academy recommends a food-based approach through a diet that includes regular consumption of fatty fish, nuts and seeds, lean meats and poultry, low-fat dairy products, vegetables, fruits, whole grains, and legumes. These recommendations are made within the context of rapidly evolving science delineating the influence of dietary fat and specific fatty acids on human health. In addition to fat as a valuable and calorically dense macronutrient with a central role in supplying essential nutrition and supporting healthy body weight, evidence on individual fatty acids and fatty acid groups is emerging as a key factor in nutrition and health. Small variations in the structure of fatty acids within broader categories of fatty acids, such as polyunsaturated and saturated, appear to elicit different physiological functions. The Academy recognizes that scientific knowledge about the effects of dietary fats on human health is young and takes a prudent approach in recommending an increase in fatty acids that benefit health and a reduction in fatty acids shown to increase risk of disease. Registered dietitian nutritionists are uniquely positioned to translate fat and fatty acid research into practical and effective dietary recommendations. PMID:24342605

  10. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents.

    PubMed

    Jin, Peng; Zhu, Hong; Wang, Lei; Shan, Timin; Zheng, Yonghua

    2014-10-15

    The effects of postharvest oxalic acid (OA) treatment on chilling injury, energy metabolism and membrane fatty acid content in 'Baifeng' peach fruit stored at 0°C were investigated. Internal browning was significantly reduced by OA treatment in peaches. OA treatment markedly inhibited the increase of ion leakage and the accumulation of malondialdehyde. Meanwhile, OA significantly increased the contents of adenosine triphosphate and energy charge in peach fruit. Enzyme activities of energy metabolism including H(+)-adenosine triphosphatase, Ca(2+)-adenosine triphosphatase, succinic dehydrogenase and cytochrome C oxidase were markedly enhanced by OA treatment. The ratio of unsaturated/saturated fatty acid in OA-treated fruit was significantly higher than that in control fruit. These results suggest that the alleviation in chilling injury by OA may be due to enhanced enzyme activities related to energy metabolism and higher levels of energy status and unsaturated/saturated fatty acid ratio. PMID:24837925

  11. Trans fatty acid intake and emotion regulation.

    PubMed

    Holt, Megan E; Lee, Jerry W; Morton, Kelly R; Tonstad, Serena

    2015-06-01

    We examined whether there is a relationship between trans fatty acid intakes and emotion regulation, mediated by positive or negative affect. Archival data on 1699 men and 3293 women were used to measure trans fatty acid intake at baseline, positive, and negative affects and emotion regulation at follow-up. Higher trans fatty acid intake related to subsequent difficulties with emotional awareness (p = 0.045), clarity (p = 0.012), and regulation strategies (p = 0.009). Affect mediated these relationships. Lower trans fatty acid intake associated with increased positive and decreased negative affects which, in turn, associated with improved emotion regulation. Trans fatty acid intakes may be associated with subsequent ability to regulate emotions. PMID:26032795

  12. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  13. The type I fatty acid and polyketide synthases: a tale of two megasynthases

    PubMed Central

    Tsai, Shiou-Chuan

    2008-01-01

    This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity. PMID:17898897

  14. Omega-3 enriched egg production: the effect of α -linolenic ω -3 fatty acid sources on laying hen performance and yolk lipid content and fatty acid composition.

    PubMed

    Antruejo, A; Azcona, J O; Garcia, P T; Gallinger, C; Rosmini, M; Ayerza, R; Coates, W; Perez, C D

    2011-12-01

    1. Diets high in total lipids, saturated fatty acids, trans fatty acids, and having high ω-6:ω-3 fatty acid ratios, have been shown to be related to increased instances of coronary heart disease, while diets high in ω-3 fatty acids have been shown to decrease the risk. 2. Feeding ω-3 fatty acid diets to laying hens has been shown to improve the quality of eggs produced in terms of saturation and ω-3 content. 3. A study was undertaken to determine if the ω-3 fatty acid source, when fed to hens, influences the amount transferred to eggs. 4. Flaxseed and flaxseed oil, along with chia seed and chia seed oil, were the two main sources of ω-3 fatty acid examined during the 84 d trial. 5. All α-linolenic enriched treatments yielded significantly higher ω-3 fatty acid contents per g of yolk and per yolk, than the non-α-linolenic enriched diets. Chia oil and chia seed yielded 54·5 and 63·5% more mg of ω-3 fatty acid per g of yolk for the 56 d test period, and 13·4 and 66·2% more for the 84 d test period, than flaxseed oil and flaxseed, respectively. 6. The differences in omega-3 content were significant, except for the chia oil compared with the flax oil, at the end of the trial. 7. This trial has shown that differences in conversion exist among ω-3 fatty acid sources, at least when fed to hens, and indicates that chia may hold a significant potential as a source of ω-3 fatty acid for enriching foods, thereby making these foods a healthier choice for consumers. PMID:22221241

  15. Fatty acid composition and egg components of specialty eggs.

    PubMed

    Cherian, G; Holsonbake, T B; Goeger, M P

    2002-01-01

    Egg components, total fat, and fatty acid content of specialty eggs were compared. One dozen eggs were collected and analyzed from each of five different brands from hens fed a diet free of animal fat (SP1), certified organic free-range brown eggs (SP2), uncaged unmedicated brown eggs (SP3), cage-free vegetarian diet brown eggs (SP4), or naturally nested uncaged (SP5). Regular white-shelled eggs were the control. A significant (P < 0.05) difference was observed in the egg components and fatty acid content in different brands. The percentage of yolk was lower (P < 0.05) in SP2 and SP4 with a concomitant increase (P < 0.05) in the percentage of white. The percentage of shell was lower (P < 0.05) in SP4 and SP5. The total edible portion was greater in SP4 and SP5. The yolk:white ratio was greater (P < 0.05) in SP3. The total lipid content was lower in SP4 eggs. The content of palmitic (C16:0), stearic (C18:0), and total saturated fatty acids were lower (P < 0.05) in SP1. No difference was observed in the content of palmitoleic (C16:1), oleic (C18:1), or total monounsaturated fatty acids. The content of n-3 fatty acids in SP2, SP4, and SP5 were similar to control eggs. The ratio of total n-6:n-3 polyunsaturated fatty acids ranged from 39.2 for SP5 to 11.5 for SP1 (P < 0.05). No difference was observed in the total polyunsaturated fatty acid content of eggs (P > 0.05). PMID:11885896

  16. Fatty Acid use in Diving Mammals: More than Merely Fuel

    PubMed Central

    Trumble, Stephen J.; Kanatous, Shane B.

    2012-01-01

    Diving mammals, are under extreme pressure to conserve oxygen as well as produce adequate energy through aerobic pathways during breath-hold diving. Typically a major source of energy, lipids participate in structural and regulatory roles and have an important influence on the physiological functions of an organism. At the stoichiometric level, the metabolism of polyunsaturated fatty acids (PUFAs) utilizes less oxygen than metabolizing either monounsaturated fatty acids or saturated fatty acids (SFAs) and yields fewer ATP per same length fatty acid. However, there is evidence that indicates the cellular metabolic rate is directly correlated to the lipid composition of the membranes such that the greater the PUFA concentration in the membranes the greater the metabolic rate. These findings appear to be incompatible with diving mammals that ingest and metabolize high levels of unsaturated fatty acids while relying on stored oxygen. Growing evidence from birds to mammals including recent evidence in Weddell seals also indicates that at the whole animal level the utilization of PUFAs to fuel their metabolism actually conserves oxygen. In this paper, we make an initial attempt to ascertain the beneficial adaptations or limitations of lipids constituents and potential trade-offs in diving mammals. We discuss how changes in Antarctic climate are predicted to have numerous different environmental effects; such potential shifts in the availability of certain prey species or even changes in the lipid composition (increased SFA) of numerous fish species with increasing water temperatures and how this may impact the diving ability of Weddell seals. PMID:22707938

  17. Dietary Fatty Acids: Is it Time to Change the Recommendations?

    PubMed

    Nettleton, Joyce A; Lovegrove, Julie A; Mensink, Ronald P; Schwab, Ursula

    2016-01-01

    Limiting the saturated fatty acid (SAFA) consumption forms the basis of dietary fat recommendations for heart health, despite several meta-analyses demonstrating no link between dietary SAFA and the risk of cardiovascular disease (CVD). Three experts on dietary fat and health discussed the evidence of reducing SAFA intake at a symposium of the Federation of European Nutrition Societies in Berlin, Germany, October 23, 2015. Ronald P. Mensink, Maastricht University, the Netherlands, discussed the evidence linking dietary fatty acids and CVD risk. He emphasized the importance of the replacement nutrient(s) when SAFA intake is reduced. Julie Lovegrove, University of Reading, UK, addressed the question of whether higher intakes of unsaturated fatty acids are beneficial. She discussed the replacement of SAFA by polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA), noting the reduction in CVD risk with PUFA replacement and in CVD risk markers with MUFA replacement of SAFA. Ursula Schwab, University of Eastern Finland, Kuopio, Finland, discussed the importance of dietary patterns in achieving reduced risk of CVD, observing that several dietary patterns following the principles of a health-promoting diet and adapted to local customs, food preferences and seasonality are effective in reducing the risk of CVD, type 2 diabetes and other chronic diseases. This paper summarizes the symposium presentations. PMID:27251664

  18. Improving the fatty acid profile of winter milk from housed cows with contrasting feeding regimes by oilseed supplementation.

    PubMed

    Stergiadis, S; Leifert, C; Seal, C J; Eyre, M D; Steinshamn, H; Butler, G

    2014-12-01

    Many studies show concentrations of nutritionally desirable fatty acids in bovine milk are lower when cows have no access to grazing, leading to seasonal fluctuations in milk quality if cows are housed for part of the year. This study investigated the potential to improve the fatty acid profiles of bovine milk by oilseed supplementation (rolled linseed and rapeseed) during a period of indoor feeding in both organic and conventional production systems. Both linseed and rapeseed increased the concentrations of total monounsaturated fatty acids, vaccenic acid, oleic acid and rumenic acid in milk, but decreased the concentration of the total and certain individual saturated fatty acids. Linseed resulted in greater changes than rapeseed, and also significantly increased the concentrations of α-linolenic acid, total polyunsaturated fatty acids and total omega-3 fatty acids. The response to oilseed supplementation, with respect to increasing concentrations of vaccenic acid and omega-3 fatty acids, appeared more efficient for organic compared with conventional diets. PMID:24996337

  19. Fatty acid composition of brown adipose tissue in genetically heat-tolerant FOK rats

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Furuyama, F.; Kuroshima, A.

    The phospholipid fatty acid composition of brown adipose tissue (BAT) was examined in inbred heat-tolerant FOK rats and compared with that in conventional Wistar rats not previously exposed to heat. The FOK rats showed higher unsaturation states, as indicated by higher levels of polyunsaturated fatty acids and a higher unsaturation index and polyunsaturated fatty acids/saturated fatty acids ratio. This higher level of unsaturation was characterized by the higher amount of polyunsaturated fatty acids such as linoleic acid, arachidonic acid and docosahexaenoic acid. It may be concluded that the increased docosahexaenoic acid level in BAT phospholipids brings about the hyperplasia of BAT, causing an enhancement of its in vivo thermogernic activity as well as the systemic non-shivering thermogenesis observed in heat-tolerant FOK rats.

  20. Fatty acid profiles of fin fish in Langkawi Island, Malaysia.

    PubMed

    Osman, Farida; Jaswir, Irwandi; Khaza'ai, Huzwah; Hashim, Ridzwan

    2007-01-01

    Total lipid contents and fatty acid composition of 13 marine fish species namely, "jenahak" (Lutianus agentimaculatus), "kebasi" (Anadontostoma chacunda), "duri" (Arius cumatranus), "tenggiri batang" (Scomberomorus commersoni), "kembong" (Rastrelliger kanagurta), "kintan" or "sebalah" (Psettodes crumei), "kerisi" (Pristipomodes typus), "kerapu" (Epinephelus sexfasciatus), "gelama kling" (Sciaena dussumieri), "malong" (Congresax talabon), "laban" (Cynoglossus lingua), "yu 9" (Scolidon sorrakowah) and "bagi" (Aacnthurs nigrosis) commonly found in Pulau Tuba, one of the islands surrounding the popular tourist destination Langkawi in Malaysia were determined. All fish showed a considerable amount of unsaturated fatty acids particularly those with 4, 5 and 6 double bonds. Two physiologically important n-3 polyunsaturated fatty acids (PUFAs), i.e. eicosapentaenoic acid (EPA) and docasahaexaenoic acid (DHA), made up of more than 50% of the total PUFAs. For saturated fatty acids, palmitic was found to be the major one in all types of fish studied. Based on DHA, EPA and arachidonic acid (AA) contents, "gelama kling" was found to be the best source (23, 11 and 7%, respectively) followed by "kerapu" (21, 10, 9%) and "sebalah" (19, 14, 4%). PMID:17898471

  1. Designer laying hen diets to improve egg fatty acid profile and maintain sensory quality

    PubMed Central

    Goldberg, Erin M; Ryland, Donna; Gibson, Robert A; Aliani, Michel; House, James D

    2013-01-01

    The fatty acid composition of eggs is highly reflective of the diet of the laying hen; therefore, nutritionally important fatty acids can be increased in eggs in order to benefit human health. To explore the factors affecting the hen's metabolism and deposition of fatty acids of interest, the current research was divided into two studies. In Study 1, the fatty acid profile of eggs from Bovan White hens fed either 8%, 14%, 20%, or 28% of the omega-6 fatty acid, linoleic acid (LA) (expressed as a percentage of total fatty acids), and an additional treatment of 14% LA containing double the amount of saturated fat (SFA) was determined. Omega-6 fatty acids and docosapentaenoic acid (DPA) in the yolk were significantly (P < 0.05) increased, and oleic acid (OA) and eicosapentaenoic acid (EPA) were significantly decreased with an increasing dietary LA content. In Study 2, the fatty acid and sensory profiles were determined in eggs from Shaver White hens fed either (1) 15% or 30% of the omega-3 fatty acid, alpha-linolenic acid (ALA) (of total fatty acids), and (2) low (0.5), medium (1), or high (2) ratios of SFA: LA+OA. Increasing this ratio resulted in marked increases in lauric acid, ALA, EPA, DPA, and docosahexaenoic acid (DHA), with decreases in LA and arachidonic acid. Increasing the dietary ALA content from 15% to 30% (of total fatty acids) did not overcome the DHA plateau observed in the yolk. No significant differences (P ≥ 0.05) in aroma or flavor between cooked eggs from the different dietary treatments were observed among trained panelists (n = 8). The results showed that increasing the ratio of SFA: LA+OA in layer diets has a more favorable effect on the yolk fatty acid profile compared to altering the LA content at the expense of OA, all while maintaining sensory quality. PMID:24804037

  2. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly

    PubMed Central

    Bates, Philip D.; Johnson, Sean R.; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G.; Ohlrogge, John B.; Browse, John

    2014-01-01

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid. PMID:24398521

  3. Lipid content and fatty acid composition of 11 species of Queensland (Australia) fish.

    PubMed

    Belling, G B; Abbey, M; Campbell, J H; Campbell, G R

    1997-06-01

    The fatty acid composition of 11 species of fish caught of the northeast coast of Australia was determined. No fatty acid profiles have been previously published for fish from this area nor for nine of these species. Although the percentage of polyunsaturated fatty acid (PUFA) was the same as the calculated average for Australian fish (42.3%), the percentage of n-3 fatty acids was lower (24.4 +/- 5.4% vs. 30.7 +/- 10.1%) and the n-6 fatty acids higher (16.5 +/- 4.5% vs. 11.2 +/- 5.9%), P < 0.001 in each case. The major n-3 PUFA were docosahexaenoic (15.6 +/- 6.3%) and eicosapentaenoic acid (4.3 +/- 1.1%) while the major n-6 PUFA were arachidonic (8.3 +/- 3.2%) and n-6 docosatetraenoic acid (3.1 +/- 1.3%). The second-most abundant class of fatty acid was the saturates (31.6 +/- 3.5%) while the monounsaturates accounted for 17.4 +/- 4.3% of the total fatty acids. The monounsaturate with the highest concentration was octadecenoic acid (11.8 +/- 2.6%). There was a positive correlation between the total lipid content and saturated and monounsaturated fatty acids (r = 0.675 and 0.567, respectively) and a negative correlation between the total lipid content and PUFA (r = 0.774). PMID:9208391

  4. C18-unsaturated branched-chain fatty acid isomers: characterization and physical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iso-oleic acid is a mixture of C18-unsaturated branched-chain fatty acid isomers with a methyl group on various positions of the alkyl chain, which is the product of the skeletal isomerization reaction of oleic acid and is the intermediate used to make isostearic acid (C18-saturated branched-chain f...

  5. Omega-3 Fatty Acid supplementation during pregnancy.

    PubMed

    Greenberg, James A; Bell, Stacey J; Ausdal, Wendy Van

    2008-01-01

    Omega-3 fatty acids are essential and can only be obtained from the diet. The requirements during pregnancy have not been established, but likely exceed that of a nonpregnant state. Omega-3 fatty acids are critical for fetal neurodevelopment and may be important for the timing of gestation and birth weight as well. Most pregnant women likely do not get enough omega-3 fatty acids because the major dietary source, seafood, is restricted to 2 servings a week. For pregnant women to obtain adequate omega-3 fatty acids, a variety of sources should be consumed: vegetable oils, 2 low-mercury fish servings a week, and supplements (fish oil or algae-based docosahexaenoic acid). PMID:19173020

  6. Lipid and fatty acid analysis of uninfected and granulosis virus-infected Plodia interpunctella larvae

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A comparative study on the lipid and fatty acid composition of the uninfected and GV-infected Plodia interpunctella larvae was performed. Higher levels of free fatty acids were found in GV-infected larvae compared to those of the uninfected larvae, while the latter had more triacylglycerol compared to the former. The known identified phospholipids were fewer in the GV-infected larvae compared to those in the uninfected larvae. However, an unidentified phospholipid was found to be approximately two times higher in GV-infected larvae. The total lipid of both larvae had palmitic, oleic, and linoleic as the major fatty acids. The fatty acid composition of the GV-infected larval phospholipid differed considerably compared to that of the uninfected larvae, in that the ratio of unsaturated fatty acid to saturated fatty acid was 3.5 times less in the GV-infected larvae.

  7. Determination of fatty acid composition of γ-irradiated hazelnuts, walnuts, almonds, and pistachios

    NASA Astrophysics Data System (ADS)

    Gecgel, Umit; Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet

    2011-04-01

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  8. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    PubMed

    Ranjan Moharana, Tushar; Byreddy, Avinesh R; Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids. PMID:26978518

  9. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1

    PubMed Central

    Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids. PMID:26978518

  10. Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR-/- mice by suppressing fatty acid desaturases.

    PubMed

    Njoroge, Sarah W; Laposata, Michael; Boyd, Kelli L; Seegmiller, Adam C

    2015-01-01

    Cystic fibrosis patients and model systems exhibit consistent abnormalities in metabolism of polyunsaturated fatty acids that appear to play a role in disease pathophysiology. Recent in vitro studies have suggested that these changes are due to overexpression of fatty acid desaturases that can be reversed by supplementation with the long-chain polyunsaturated fatty acids docosahexaenoate and eicosapentaenoate. However, these findings have not been tested in vivo. The current study aimed to test these results in an in vivo model system, the CFTR(-/-) knockout mouse. When compared with wild-type mice, the knockout mice exhibited fatty acid abnormalities similar to those seen in cystic fibrosis patients and other model systems. The abnormalities were confined to lung, ileum and pancreas, tissues that are affected by the disease. Similar to in vitro models, these fatty acid changes correlated with increased expression of Δ5- and Δ6-desaturases and elongase 5. Dietary supplementation with high-dose free docosahexaenoate or a combination of lower-dose docosahexaenoate and eicosapentaenoate in triglyceride form corrected the fatty acid abnormalities and reduced expression of the desaturase and elongase genes in the ileum and liver of knockout mice. Only the high-dose docosahexaenoate reduced histologic evidence of disease, reducing mucus accumulation in ileal sections. These results provide in vivo support for the hypothesis that fatty acid abnormalities in cystic fibrosis result from abnormal expression and activity of metabolic enzymes in affected cell types. They further demonstrate that these changes can be reversed by dietary n-3 fatty acid supplementation, highlighting the potential therapeutic benefit for cystic fibrosis patients. PMID:25448610

  11. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.860 Fatty...

  12. Serum fatty acids and breast cancer incidence.

    PubMed

    Rissanen, Harri; Knekt, Paul; Järvinen, Ritva; Salminen, Irma; Hakulinen, Timo

    2003-01-01

    Fatty acid composition of the diet may be essential to the development of breast cancer. We studied the ability of several fatty acids of serum total lipids to predict breast cancer incidence in a case-control study nested within a longitudinal population study. The proportions of fatty acids in serum total lipids were determined from stored serum samples collected at baseline for 127 incident breast cancer cases and 242 matched controls. Women with a higher proportion of total polyunsaturated fatty acids (PUFAs) in serum had a reduced risk of breast cancer. The odds ratio (OR) between the highest and lowest tertiles of serum PUFA was 0.31 (95% confidence interval, CI = 0.12-0.77). This association was mainly due to n-6 PUFAs and especially to linoleic acid. The ORs were 0.35 (CI = 0.14-0.84) and 0.29 (CI = 0.12-0.73), respectively. Of the monounsaturated fatty acids (MUFAs), higher trans-11-18:1 levels were related to an increased breast cancer risk (OR = 3.69, CI = 1.35-10.06). The association was stronger in postmenopausal than in premenopausal women. The present study suggests that higher serum proportions of the n-6 PUFA linoleic acid and lower proportions of the MUFA trans-11-18:1 fatty acid predict a reduced incidence of breast cancer. PMID:12881010

  13. Splanchnic free fatty acid kinetics.

    PubMed

    Jensen, Michael D; Cardin, Sylvain; Edgerton, Dale; Cherrington, Alan

    2003-06-01

    These studies were conducted to assess the relationship between visceral adipose tissue free fatty acid (FFA) release and splanchnic FFA release. Steady-state splanchnic bed palmitate ([9,10-(3)H]palmitate) kinetics were determined from 14 sampling intervals from eight dogs with chronic indwelling arterial, portal vein, and hepatic vein catheters. We tested a model designed to predict the proportion of FFAs delivered to the liver from visceral fat by use of hepatic vein data. The model predicted that 15 +/- 2% of hepatic palmitate delivery originated from visceral lipolysis, which was greater (P = 0.004) than the 11 +/- 2% actually observed. There was a good relationship (r(2) = 0.63) between the predicted and observed hepatic palmitate delivery values, but the model overestimated visceral FFA release more at lower than at higher palmitate concentrations. The discrepancy could be due to differential uptake of FFAs arriving from the arterial vs. the portal vein or to release of FFAs in the hepatic circulatory bed. Splanchnic FFA release measured using hepatic vein samples was strongly related to visceral adipose tissue FFA release into the portal vein. This finding suggests that splanchnic FFA release is a good indicator of visceral adipose tissue lipolysis. PMID:12736157

  14. Fatty acid composition of the postmortem prefrontal cortex of adolescent male and female suicide victims.

    PubMed

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Dwivedi, Yogesh; Roberts, Rosalinda C; Conley, Robert R; Pandey, Ghanshyam N

    2009-01-01

    Prior epidemiological, prospective intervention, and peripheral and central fatty acid composition studies suggest that omega-3 fatty acid deficiency may be associated with the pathoaetiology of depression and suicide. In the present study, we determined the fatty acid composition of the postmortem prefrontal cortex (PFC) of adolescent male and female suicide victims and age-matched controls. Fatty acid composition (wt% total fatty acids) and concentrations (micromol/g) were determined in the postmortem PFC (Brodmann area 10) of male and female adolescent (aged 13-20 years) suicide victims (n=20) and age-matched controls (n=20) by gas chromatography. None of the major polyunsaturated fatty acids including the principle brain omega-3 fatty acid, docosahexaenoic acid (DHA), monounsaturated fatty acids, or saturated fatty acids differed significantly between adolescent suicide victims and controls before or after segregation by gender. The arachidonic acid (AA, 20:4n-6): DHA ratio and adrenic acid (22:4n-6) composition were negatively correlated with age at death in controls but not in suicides, and males exhibited a greater AA:DHA ratio irrespective of cause-of-death. These results demonstrate that adolescent male and female suicide victims do not exhibit DHA deficits in the postmortem PFC relative to age-matched controls, and suggest that suicide victims do not exhibit the normal age-related decrease in adrenic acid composition and the AA:DHA ratio. PMID:19064316

  15. Lipid production on free fatty acids by oleaginous yeasts under non-growth conditions.

    PubMed

    Yang, Xiaobing; Jin, Guojie; Wang, Yandan; Shen, Hongwei; Zhao, Zongbao K

    2015-10-01

    Microbial lipids produced by oleaginous yeasts serve as promising alternatives to traditional oils and fats for the production of biodiesel and oleochemicals. To improve its techno-economics, it is pivotal to use wastes and produce high quality lipids of special fatty acid composition. In the present study, four oleaginous yeasts were tested to use free fatty acids for lipid production under non-growth conditions. Microbial lipids of exceptionally high fatty acid relative contents, e.g. those contained over 70% myristic acid or 80% oleic acid, were produced that may be otherwise inaccessible by growing cells on various carbon sources. It was found that Cryptococcus curvatus is a robust strain that can efficiently use oleic acid as well as even-numbered saturated fatty acids with carbon atoms ranging from 10 to 20. Our results provided new opportunity for the production of functional lipids and for the exploitation of organic wastes rich in free fatty acids. PMID:26159379

  16. Influence of monochromatic light on quality traits, nutritional, fatty acid, and amino acid profiles of broiler chicken meat.

    PubMed

    Kim, M J; Parvin, R; Mushtaq, M M H; Hwangbo, J; Kim, J H; Na, J C; Kim, D W; Kang, H K; Kim, C D; Cho, K O; Yang, C B; Choi, H C

    2013-11-01

    The role of monochromatic lights was investigated on meat quality in 1-d-old straight-run broiler chicks (n = 360), divided into 6 light sources with 6 replicates having 10 chicks in each replicate. Six light sources were described as incandescent bulbs (IBL, as a control) and light-emitting diode (LED) light colors as white light (WL), blue light, red light (RL), green light, and yellow light. Among LED groups, the RL increased the concentration of monounsaturated fatty acids (P < 0.001), saturated fatty acids (P < 0.001), and the saturated:polyunsaturated fatty acid ratio (P < 0.001), but reduced the concentration of polyunsaturated fatty acid, n-3 fatty acid, and n-6 fatty acid. The IBL increased the n-3 and sulfur-containing amino acids but reduced the n-6:n-3 nonessential amino acids. The WL improved the concentration of most of the essential amino acids (P < 0.01) and nonessential amino acids (P < 0.01) of breast meat. It can be extracted that the light produced by LED responded similar to the IBL light in influencing nutrient contents of meat. Moreover, LED is not decisive in improving fatty acid composition of meat. However, the role of IBL in reducing n-6:n-3 ratio and enhancing n-3 cannot be neglected. Among LED, WL is helpful in improving essential and nonessential amino acid contents of broiler meat. PMID:24135586

  17. Efficiency of Fatty Acids as Chemical Penetration Enhancers: Mechanisms and Structure Enhancement Relationship

    PubMed Central

    Ibrahim, Sarah A.; Li, S. Kevin

    2010-01-01

    Purpose The present study evaluated the effects of fatty acids commonly present in cosmetic and topical formulations on permeation enhancement across human epidermal membrane (HEM) lipoidal pathway when the fatty acids saturated the SC lipid domain without cosolvents (Emax). Methods HEM was treated with neat fatty acids or fatty acid suspensions to determine Emax. A volatile solvent system was used to deposit fatty acids on HEM surface to compare fatty acid enhancer efficiency in topical volatile formulations with Emax. To elucidate permeation enhancement mechanism(s), estradiol (E2β) uptake into fatty acid-treated SC lipid domain was determined. Results Emax of fatty acids was shown to increase with their octanol solubilities and decrease with their lipophilicities, similar to our previous findings with other enhancers. Emax of solid fatty acids was shown to depend on their melting points, an important parameter to the effectiveness of the enhancers. The E2β uptake results suggest that enhancer-induced permeation enhancement across HEM is related to enhanced permeant partitioning into the SC lipid domain. Conclusions The results suggest Emax as a model for studying the permeation enhancement effect of the fatty acids and their structure enhancement relationship. PMID:19911256

  18. Functional Roles of Fatty Acids and Their Effects on Human Health.

    PubMed

    Calder, Philip C

    2015-09-01

    A variety of fatty acids exists in the diet of humans, in the bloodstream of humans, and in cells and tissues of humans. Fatty acids are energy sources and membrane constituents. They have biological activities that act to influence cell and tissue metabolism, function, and responsiveness to hormonal and other signals. The biological activities may be grouped as regulation of membrane structure and function; regulation of intracellular signaling pathways, transcription factor activity, and gene expression; and regulation of the production of bioactive lipid mediators. Through these effects, fatty acids influence health, well-being, and disease risk. The effects of saturated, cis monounsaturated, ω-6 and ω-3 polyunsaturated, and trans fatty acids are discussed. Although traditionally most interest in the health impact of fatty acids related to cardiovascular disease, it is now clear that fatty acids influence a range of other diseases, including metabolic diseases such as type 2 diabetes, inflammatory diseases, and cancer. Scientists, regulators, and communicators have described the biological effects and the health impacts of fatty acids according to fatty acid class. However, it is now obvious that within any fatty acid class, different members have different actions and effects. Thus, it would seem more appropriate to describe biological effects and health impacts of individual named fatty acids, although it is recognized that this would be a challenge when communicating outside of an academic environment (eg, to consumers). PMID:26177664

  19. Oxygenases for aliphatic hydrocarbons and fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenases catalyzing the insertion of oxygen into either aliphatic hydrocarbons or fatty acids have great similarity. There are two classes of oxygenases: monooxygenases and dioxygenases. Dioxygenase inserts both atoms of molecular oxygen into a substrate, whereas monooxygenase incorporates one a...

  20. Sphingophosphonolipids, phospholipids, and fatty acids from Aegean jellyfish Aurelia aurita.

    PubMed

    Kariotoglou, D M; Mastronicolis, S K

    2001-11-01

    The goal of this study is to elucidate and identify several sphingophosphonolipids from Aurelia aurita, an abundant but harmless Aegean jellyfish, in which they have not previously been described. Total lipids of A. aurita were 0.031-0.036% of fresh tissue, and the lipid phosphorus content was 1.3-1.7% of total lipids. Phosphonolipids were 21.7% of phospholipids and consisted of a major ceramide aminoethylphosphonate (CAEP-I; 18.3%), as well as three minor CAEP (II, III, IV) methyl analogs at 1.3, 1.1, and 1.0%, respectively. The remaining phospholipid composition was: phosphatidylcholine, 44.5%, including 36.2% glycerylethers; phosphatidylethanolamine, 18.6%, including 4.5% glycerylethers; cardiolipin, 5.6%; phosphatidylinositol, 2.6%; and lysophosphatidylcholine, 5.0%. In CAEP-I, saturated fatty acids of 14-18 carbon chain length were 70.8% and were combined with 57.3% dihydroxy bases and 23.4% trihydroxy bases. The suite of the three minor CAEP methyl analogs were of the same lipid class based on the head group, but they separated into three different components because of their polarity as follows: CAEP-II and CAEP-III differentiation from the major CAEP-I was mainly due to the increased fatty acid unsaturation and not to a different long-chain base, but the CAEP-IV differentiation from CAEP-I, apart from fatty acid unsaturation, was due to the increased content of hydroxyl groups originated from both hydroxy fatty acids and trihydroxy long-chain bases. Saturated fatty acids were predominant in total (76.7%), polar (83.0%), and neutral lipids (67.6%) of A. aurita. The major phospholipid components of A. aurita were comparable to those previously found in a related organism (Pelagia noctiluca), which can injure humans. PMID:11795859

  1. Polyhydroxy Fatty Acids Derived from Sophorolipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starting from 17-hydroxyoleic acid, which is readily available from acid alcoholysis of sophorolipids, several new polyhydroxy fatty acids have been synthesized. These compounds contain from 2 to 5 hydroxy groups, in some instances combined with other functional groups. The added hydroxy groups ca...

  2. Dietary omega-3 fatty acids for women.

    PubMed

    Bourre, Jean-Marie

    2007-01-01

    This review details the specific needs of women for omega-3 fatty acids, including alpha linoleic acid (ALA) and the very long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acid (dietary or in capsules) ensures that a woman's adipose tissue contains a reserve of these fatty acids for the developing fetus and the breast-fed newborn infant. This ensures the optimal cerebral and cognitive development of the infant. The presence of large quantities of EPA and DHA in the diet slightly lengthens pregnancy, and improves its quality. Human milk contains both ALA and DHA, unlike that of other mammals. Conditions such as diabetes can alter the fatty acid profile of mother's milk, while certain diets, like those of vegetarians, vegans, or even macrobiotic diets, can have the same effect, if they do not include seafood. ALA, DHA and EPA, are important for preventing ischemic cardiovascular disease in women of all ages. Omega-3 fatty acids can help to prevent the development of certain cancers, particularly those of the breast and colon, and possibly of the uterus and the skin, and are likely to reduce the risk of postpartum depression, manic-depressive psychosis, dementias (Alzheimer's disease and others), hypertension, toxemia, diabetes and, to a certain extend, age-related macular degeneration. Omega-3 fatty acids could play a positive role in the prevention of menstrual syndrome and postmenopausal hot flushes. The normal western diet contains little ALA (less than 50% of the RDA). The only adequate sources are rapeseed oil (canola), walnuts and so-called "omega-3" eggs (similar to wild-type or Cretan eggs). The amounts of EPA and DHA in the diet vary greatly from person to person. The only good sources are fish and seafood, together with "omega-3" eggs. PMID:17254747

  3. Fatty acid oxidation and ketogenesis in astrocytes

    SciTech Connect

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  4. Proximate and fatty acid composition of some commercially important fish species from the Sinop region of the Black Sea.

    PubMed

    Kocatepe, Demet; Turan, Hülya

    2012-06-01

    The proximate and fatty acid compositions of the commercially important fish species (Engraulis encrasicolus, Alosa alosa, Belone belone, Scorpaena porcus, Pomatomus saltatrix, Mullus barbatus) from the Sinop region of the Black Sea were examined. The fat contents ranged from 1.26% (for scorpion fish) to 18.12% (for shad). The protein contents were min 14.54% (for red mullet) and maximum 20.26% (for belone). The fatty acid compositions of the fish ranged from 27.83 to 35.91% for saturated fatty acids, 19.50-33.80% for monounsaturated fatty acids and 15.25-40.02% for polyunsaturated fatty acids. Among the saturated fatty acids, palmitic acid (16:0) (17.75-22.20%) was the dominant fatty acid for all the fish species. As a second saturated fatty acid, myristic acid (14:0) was observed in four of the fish species and its content ranged from 4.72 to 7.31%. Whereas, for the other two fish species, the second saturated fatty acid was stearic acid (18:0) ranging between 4.54 and 10.64%. Among the monounsaturated fatty acids, those occurring in the highest proportions were oleic acid (18:1n-9c) (11.67-22.45%) and palmitoleic acid (16:1) (4.50-9.40%). Docosahexaenoic acid (22:6n-3) (5.41-28.52%), eicosapentaenoic acid (20:5n-3) (4.68-11.06) and linoleic acid (18:2n-6) (1.38-3.49%) were dominant polyunsaturated fatty acids, respectively. All the species, in particular the belone, the anchovy and the shad had high levels of the n-3 series. PMID:22322400

  5. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting the requirements of § 172.862. (b) They are used...

  6. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with the following prescribed conditions: (a) They are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting...

  7. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting the requirements of § 172.862. (b) They are used...

  8. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting the requirements of § 172.862. (b) They are used...

  9. Fatty acid composition of Euphausia superba, Thysanoessa macrura and Euphausia crystallorophias collected from Prydz Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Li, Chaolun; Wang, Yanqing

    2016-04-01

    The information of trophic relationship is important for studying the Southern Ocean ecosystems. In this study, three dominant krill species, Euphausia superba, Thysanoessa macrura and Euphausia crystallorophias, were collected from Prydz Bay, Antarctica, during austral summer of 2009/2010. The composition of fatty acids in these species was studied. E. superba and T. macrura showed a similar fatty acid composition which was dominated by C14:0, C16:0, EPA (eicosapentenoic acid) and DHA (decosahexenoic acid) while E. crystallorophias showed higher contents of C18:1(n-9), C18:1(n-7), DHA and EPA than the former two. Higher fatty acid ratios of C18:1(n-9)/18:1(n-7), PUFA (polyunsaturated fatty acid)/SFA (saturated fatty acid), and 18PUFA/16PUFA indicated that E. crystallorophias should be classified as a typical omnivore with a higher trophic position compared with E. superba and T. macrura.

  10. Changes in lipid composition, fatty acid profile and lipid oxidative stability during Cantonese sausage processing.

    PubMed

    Qiu, Chaoying; Zhao, Mouming; Sun, Weizheng; Zhou, Feibai; Cui, Chun

    2013-03-01

    Lipid composition, fatty acid profile and lipid oxidative stability were evaluated during Cantonese sausage processing. Free fatty acids increased with concomitant decrease of phospholipids. Total content of free fatty acids at 72 h in muscle and adipose tissue was 7.341 mg/g and 3.067 mg/g, respectively. Total amount of saturated, monounsaturated and polyunsaturated fatty acids (SFA, MUFA, and PUFA) in neutral lipid exhibited a little change during processing, while the proportion of PUFA significantly decreased in the PL fraction. The main triacylglycerols were POO+SLO+OOO, PSO (P = palmitic acid, O = oleic acid, L = linoleic acid, S = stearic acid), and a preferential hydrolysis of palmitic, oleic and linoleic acid was observed. Phosphatidylcholines (PC) and phosphatidylethanolamines (PE) were the main components of phospholipids and PE exhibited the most significant degradation during processing. Thiobarbituric acid values (TBARS) increased while peroxide values and hexanal contents varied during processing. PMID:23273460

  11. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    SciTech Connect

    Yu X. H.; Shanklin J.; Rawat, R.

    2011-05-01

    Cyclopropane fatty acids (CPA) have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE) are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA) distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model plant systems, it represents a strong candidate gene for

  12. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    PubMed Central

    2011-01-01

    Background Cyclopropane fatty acids (CPA) have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE) are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Results Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA) distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. Conclusions In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model plant systems, it

  13. Expression of fatty acid synthase in nonalcoholic fatty liver disease

    PubMed Central

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD. PMID:20606731

  14. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    PubMed

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD. PMID:20606731

  15. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy

    PubMed Central

    Albishri, Hassan M.; Almaghrabi, Omar A.; Moussa, Tarek A. A.

    2013-01-01

    Background: The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Objective: Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Materials and Methods: Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. Results: The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). Conclusion: The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants. PMID:23661995

  16. Genetics and Breeding for Modified Fatty Acid Profile in Soybean Seed Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] oil is versatile and used in many products. Modifying the fatty acid profile would make soy oil more functional in food and other products. The ideal oil with the most end uses would have saturates (palmitic + stearic acids) reduced from 15 to < 7%, oleic acid increa...

  17. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... of fatty acids. The food additive salts of fatty acids may be safely used in food and in the... salts of the fatty acids conforming with § 172.860 and/or oleic acid derived from tall oil fatty...

  18. The Science of Fatty Acids and Inflammation123

    PubMed Central

    Fritsche, Kevin L

    2015-01-01

    Inflammation is believed to play a central role in many of the chronic diseases that characterize modern society. In the past decade, our understanding of how dietary fats affect our immune system and subsequently our inflammatory status has grown considerably. There are compelling data showing that high-fat meals promote endotoxin [e.g., lipopolysaccharide (LPS)] translocation into the bloodstream, stimulating innate immune cells and leading to a transient postprandial inflammatory response. The nature of this effect is influenced by the amount and type of fat consumed. The role of various dietary constituents, including fats, on gut microflora and subsequent health outcomes in the host is another exciting and novel area of inquiry. The impact of specific fatty acids on inflammation may be central to how dietary fats affect health. Three key fatty acid–inflammation interactions are briefly described. First, the evidence suggests that saturated fatty acids induce inflammation in part by mimicking the actions of LPS. Second, the often-repeated claim that dietary linoleic acid promotes inflammation was not supported in a recent systematic review of the evidence. Third, an explanation is offered for why omega-3 (n–3) polyunsaturated fatty acids are so much less anti-inflammatory in humans than in mice. The article closes with a cautionary tale from the genomic literature that illustrates why extrapolating the results from inflammation studies in mice to humans is problematic. PMID:25979502

  19. Fatty acids from diet and microbiota regulate energy metabolism

    PubMed Central

    Alcock, Joe; Lin, Henry C.

    2015-01-01

    A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids) are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system. PMID:27006755

  20. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies

    PubMed Central

    de Souza, Russell J; Mente, Andrew; Maroleanu, Adriana; Cozma, Adrian I; Kishibe, Teruko; Uleryk, Elizabeth; Budylowski, Patrick; Schünemann, Holger; Beyene, Joseph

    2015-01-01

    (1.28, 1.09 to 1.50), and total CHD (1.21, 1.10 to 1.33) but not ischemic stroke (1.07, 0.88 to 1.28) or type 2 diabetes (1.10, 0.95 to 1.27). Industrial, but not ruminant, trans fats were associated with CHD mortality (1.18 (1.04 to 1.33) v 1.01 (0.71 to 1.43)) and CHD (1.42 (1.05 to 1.92) v 0.93 (0.73 to 1.18)). Ruminant trans-palmitoleic acid was inversely associated with type 2 diabetes (0.58, 0.46 to 0.74). The certainty of associations between saturated fat and all outcomes was “very low.” The certainty of associations of trans fat with CHD outcomes was “moderate” and “very low” to “low” for other associations. Conclusions Saturated fats are not associated with all cause mortality, CVD, CHD, ischemic stroke, or type 2 diabetes, but the evidence is heterogeneous with methodological limitations. Trans fats are associated with all cause mortality, total CHD, and CHD mortality, probably because of higher levels of intake of industrial trans fats than ruminant trans fats. Dietary guidelines must carefully consider the health effects of recommendations for alternative macronutrients to replace trans fats and saturated fats. PMID:26268692

  1. Fatty acid composition of twelve algae from the coastal zones of Qatar.

    PubMed

    Heiba, H I; Al-Easa, H S; Rizk, A F

    1997-01-01

    Fatty acid compositions of twelve algal species from two different classes were determined. Three Chlorophyta species (Acetabularia calyculus, Cladophora sericoides and Dictyosphaeria cavernosa) and nine Phaeophyta species (Colpomenia sinuosa, Cystoseria trinodis, Dictyota cervicornis, Hormophysa triquetra, Padina gymnospora, Sargassum binderi, S. boveanum, S. denticulatum and S. heteromorpha) were investigated. Thirty-four fatty acids were identified. Myristic, palmitic, oleic, linoleic, eicosodienic and lignoceric acids were predominant in all examined algal species. Branched saturated fatty acids were also found in all investigated species except Cladophora sericoides. PMID:9498691

  2. Fatty acid constituents of Peganum harmala plant using Gas Chromatography–Mass Spectroscopy

    PubMed Central

    Moussa, Tarek A.A.; Almaghrabi, Omar A.

    2015-01-01

    Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol. PMID:27081366

  3. Fatty acid constituents of Peganum harmala plant using Gas Chromatography-Mass Spectroscopy.

    PubMed

    Moussa, Tarek A A; Almaghrabi, Omar A

    2016-05-01

    Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC-MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol. PMID:27081366

  4. Elaidate, an 18-Carbon Trans-monoenoic Fatty Acid, but not Physiological Fatty Acids Increases Intracellular Zn2+ in Human Macrophages

    PubMed Central

    Zacherl, Janelle R.; Tourkova, Irina; St Croix, Claudette M.; Robinson, Lisa J.; Peck Palmer, Octavia M.; Mihalik, Stephanie J.; Blair, Harry C.

    2015-01-01

    Artificial trans fatty acids promote atherosclerosis by blocking macrophage clearance of cell debris. Classical fatty-acid response mechanisms include TLR4-NF-κB activation, and Erk1/2 phosphorylation, but these may not indicate long-term mechanisms. Indeed, nuclear NF-κB was increased by 60 minute treatment by 30 μM of the 18 carbon trans unsaturated fatty acid elaidic acid (elaidate), the physiological cis-unsaturated fatty acid oleic acid (oleate), and the 18 or 16 carbon saturated fatty acids stearic and palmitic acid (stearate or palmitate). However, except for stearate, effects on related pathways were minimal at 44 hours. To determine longer term effects of trans fatty acids, we compared whole exome mRNA expression of (trans) elaidate to (cis) oleate, 30 μM, at 44 hours in human macrophages. We found that elaidate changed Zn2+-homeostasis gene mRNAs markedly. This might be important because Zn2+ is a major regulator of macrophage activity. Messenger RNAs of seven Zn2+-binding metallothioneins decreased 2–4 fold; the zinc importer SLC39A10 increased 2-fold, in elaidate relative to oleate-treated cells. Results were followed by quantitative PCR comparing cis, trans, and saturated fatty acid effects on Zn2+-homeostasis gene mRNAs. This confirmed that elaidate uniquely decreased metallothionein expression and increased SLC39A10 at 44 hours. Further, intracellular Zn2+ was measured using N-(carboxymethyl)-N-[2-[2-[2(carboxymethyl)amino]-5-(2,7,-difluoro-6-hydroxy-3-oxo-3H-xanthen-9-yl)-phenoxy]-ethoxy]-4-methoxyphenyl]glycine, acetoxymethyl ester (FluoZin-3-AM). This showed that, at 44 hours, only cells treated with elaidate had increased Zn2+. The durable effect of elaidate on Zn2+ activation is a novel and specific effect of trans fatty acids on peripheral macrophage metabolism. PMID:25358453

  5. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  6. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  7. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  8. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  9. Genotype, production system and sex effects on fatty acid composition of meat from goat kids.

    PubMed

    Özcan, Mustafa; Demirel, Gulcan; Yakan, Akın; Ekiz, Bülent; Tölü, Cemil; Savaş, Türker

    2015-02-01

    Two trials were performed to assess the meat fatty acid profile of goat kids from different genotypes, production systems and sex. In the first trial, genotype effect was determined in 24 suckling male kids from Turkish Saanen, Maltese and Gokceada breeds. In the second trial, male and female Gokceada Goat kids were used to compare the effect of extensive and semi-intensive production systems on fatty acid composition of meat. Significant genotype effect was observed in the percentages of myristic acid (C14:0), palmitic acid (C16:0), oleic acid (C18:1 n-9), linolenic acid (C18:3 n-3), arachidonic acid (C20:4 n-6) and docosahexaenoic acid (C22:6 n-3), despite no differences on the ratios of polyunsaturated fatty acids to saturated fatty acids (PUFA/SFA) and n-6/n-3 (P > 0.05). The effect of production system had also significant effects on fatty acids, but sex only influenced significantly stearic acid (C18:0), C18:1 n-9 and C18:3 n-3 fatty acids and total PUFA level and PUFA/SFA ratio. This study confirms that dairy breeds are prone to produce higher levels of unsaturated fatty acids in their muscle. Meanwhile, meat from Gokceada goat kids, which is one of the indigenous breeds in Turkey, had similar PUFA/SFA and n-6/n-3 ratios to Turkish Saanen and Maltase. PMID:25186278

  10. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  11. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  12. Molar extinction coefficients of some fatty acids

    NASA Astrophysics Data System (ADS)

    Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.

    2002-10-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.

  13. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.

    PubMed

    Zhang, Xiujun; Li, Mai; Agrawal, Arpita; San, Ka-Yiu

    2011-11-01

    Microbial biosynthesis of fatty acid-like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Free fatty acids can be produced by introducing an acyl-acyl carrier protein thioesterase gene into Escherichia coli. The presence of the acyl-ACP thioesterase will break the fatty acid elongation cycle and release free fatty acid. Depending on their sequence similarity and substrate specificity, class FatA thioesterase is active on unsaturated acyl-ACPs and class FatB prefers saturated acyl group. Different acyl-ACP thioesterases have different degrees of chain length specificity. Although some of these enzymes have been characterized from a number of sources, information on their ability to produce free fatty acid in microbial cells has not been extensively examined until recently. In this study, we examined the effect of the overexpression of acyl-ACP thioesterase genes from Diploknema butyracea, Gossypium hirsutum, Ricinus communis and Jatropha curcas on free fatty acid production. In particular, we are interested in studying the effect of different acyl-ACP thioesterase on the quantities and compositions of free fatty acid produced by an E. coli strain ML103 carrying these constructs. It is shown that the accumulation of free fatty acid depends on the acyl-ACP thioesterase used. The strain carrying the acyl-ACP thioesterase gene from D. butyracea produced approximately 0.2g/L of free fatty acid while the strains carrying the acyl-ACP thioesterase genes from R. communis and J. curcas produced the most free fatty acid at a high level of more than 2.0 g/L at 48 h. These two strains accumulated three major straight chain free fatty acids, C14, C16:1 and C16 at levels about 40%, 35% and 20%, respectively. PMID:22001432

  14. Lower fetal status of docosahexaenoic acid, arachidonic acid and essential fatty acids is associated with less favorable neonatal neurological condition.

    PubMed

    Dijck-Brouwer, D A Janneke; Hadders-Algra, Mijna; Bouwstra, Hylco; Decsi, Tamás; Boehm, Günther; Martini, Ingrid A; Boersma, E Rudy; Muskiet, Frits A J

    2005-01-01

    Long-chain polyunsaturated fatty acids, notably arachidonic (AA) and docosahexaenoic (DHA) acids are abundant in brain and may be conditionally essential in fetal life. We investigated umbilical artery (UA) and vein (UV) fatty acid compositions and early neonatal neurological condition in 317 term infants. Neurological condition was summarized as a clinical classification and a 'neurological optimality score' (NOS). Neurologically abnormal infants (n=27) had lower UV DHA and essential fatty acid (EFA) status. NOS correlated positively with AA (UV), and EFA (UV) and DHA status (UV and UA) and negatively with 18:2omega6 and omega9 (UV), and 20:3omega9, omega7 and C18 trans fatty acids (UV and UA). UV DHA, AA, saturated fatty acids, gestational age and obstetrical optimality score explained 16.2% of the NOS variance. Early postnatal neurological condition seems negatively influenced by lower fetal DHA, AA and EFA status. C18 trans fatty acids and 18:2omega6 may exert negative effects by impairment of LCP status. PMID:15589396

  15. Serum Fatty Acids Are Correlated with Inflammatory Cytokines in Ulcerative Colitis

    PubMed Central

    Wiese, Dawn M.; Horst, Sara N.; Brown, Caroline T.; Allaman, Margaret M.; Hodges, Mallary E.; Slaughter, James C.; Druce, Jennifer P.; Beaulieu, Dawn B.; Schwartz, David A.; Wilson, Keith T.; Coburn, Lori A.

    2016-01-01

    Background and Aims Ulcerative colitis (UC) is associated with increased dietary intake of fat and n-6 polyunsaturated fatty acids (PUFA). Modification of fat metabolism may alter inflammation and disease severity. Our aim was to assess differences in dietary and serum fatty acid levels between control and UC subjects and associations with disease activity and inflammatory cytokines. Methods Dietary histories, serum, and colonic tissue samples were prospectively collected from 137 UC subjects and 38 controls. Both histologic injury and the Mayo Disease Activity Index were assessed. Serum and tissue cytokines were measured by Luminex assay. Serum fatty acids were obtained by gas chromatography. Results UC subjects had increased total fat and oleic acid (OA) intake, but decreased arachidonic acid (AA) intake vs controls. In serum, there was less percent saturated fatty acid (SFA) and AA, with higher monounsaturated fatty acids (MUFA), linoleic acid, OA, eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA) in UC. Tissue cytokine levels were directly correlated with SFA and inversely correlated with PUFA, EPA, and DPA in UC subjects, but not controls. 5-aminosalicylic acid therapy blunted these associations. Conclusions In summary, we found differences in serum fatty acids in UC subjects that correlated with pro-inflammatory tissue cytokines. We propose that fatty acids may affect cytokine production and thus be immunomodulatory in UC. PMID:27227540

  16. Essential fatty acid consumption and risk of breast cancer.

    PubMed

    Godley, P A

    1995-07-01

    Animal and ecological studies of essential fatty acids suggest that omega-3 fatty acids found in fish oils and omega-6 fatty acids found in vegetable oils may be playing a role in the etiology of breast cancer. Essential fatty acids may modulate breast cancer risk by interacting with prostaglandins, which have immunosuppressive and platelet aggregative capabilities. The fatty acid composition of adipose tissue reflects the dietary consumption of essential fatty acids over a period of years. Biochemical techniques have been used in epidemiological studies to accurately estimate fatty acid consumption. However, analytical epidemiology studies that have used biochemical measurements of adipose tissue fatty acid composition, have not supported a relationship between consumption of these essential fatty acids and breast cancer risk. PMID:7612909

  17. A Thioesterase Bypasses the Requirement for Exogenous Fatty Acids in the plsX Deletion of Streptococcus pneumoniae

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Eleveld, Marc J.; Schalkwijk, Joost; Broussard, Tyler C.; de Jonge, Marien I.; Rock, Charles O.

    2015-01-01

    Summary PlsX is an acyl-acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram-positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid biosynthesis. Deletion of plsX (SP0037) in Streptococcus pneumoniae did not result in an auxotrophic phenotype. The ΔplsX S. pneumoniae strain was refractory to myristic acid-dependent growth arrest, and unlike the wild-type strain, was susceptible to fatty acid synthesis inhibitors in the presence of exogenous oleate. The ΔplsX strain contained longer-chain saturated fatty acids imparting a distinctly altered phospholipid molecular species profile. An elevated pool of 18- and 20-carbon saturated fatty acids was detected in the ΔplsX strain. A S. pneumoniae thioesterase (TesS, SP1408) hydrolyzed acyl-ACP in vitro, and the ΔtesS ΔplsX double knockout strain was a fatty acid auxotroph. Thus, the TesS thioesterase hydrolyzed the accumulating acyl-ACP in the ΔplsX strain to liberate fatty acids that were activated by fatty acid kinase to bypass a requirement for extracellular fatty acid. This work identifies tesS as the gene responsible for the difference in exogenous fatty acid growth requirement of the ΔplsX strains of S. aureus and S. pneumoniae. PMID:25534847

  18. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-22

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  19. Bioluminescent determination of free fatty acids.

    PubMed

    Kather, H; Wieland, E

    1984-08-01

    A simple, highly specific, and sensitive bioluminescent method for determination of free fatty acids in unextracted plasma or serum has been developed. The method is based on the activation of free fatty acids by acyl-CoA synthetase (EC 6.2.1.3). The pyrophosphate formed is used to phosphorylate fructose 6-phosphate in a reaction catalyzed by the enzyme pyrophosphate-fructose-6-phosphate phosphotransferase (EC 4.1.2.13). The triosephosphates produced from fructose 1,6-bisphosphate by aldolase are oxidized by NAD in the presence of arsenate to 3-phosphoglycerate. The NADH is detected via the bacterial NADH-linked luciferase system. Excellent agreement has been obtained by comparison with accepted methods. In addition, for the determination of serum free fatty acids, the method is particularly applicable for following lipolysis of isolated adipocytes. PMID:6486422

  20. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  1. The effect of diet on the fatty acid compositions of serum, brain, brain mitochondria and myelin in the rat

    PubMed Central

    Rathbone, L.

    1965-01-01

    1. Three groups of female rats (8–12 weeks old) were maintained respectively on a linoleic acid-rich diet, a linoleic acid-poor predominantly saturated-fatty acid diet and a normal diet. Changes in the fatty acid compositions of serum, brain, brain mitochondria-rich fraction and myelin were observed. 2. Of the serum fatty acids, linoleic acid showed the greatest change in the percentage of the total acids in response to diet; the change in the proportion of oleic acid was considerable. The percentages of arachidonic acid in serum fatty acids in the groups on the linoleic acid-rich and linoleic acid-poor diets were similar, but higher than those in the normal group. 3. Changes in the proportions of linoleic acid, arachidonic acid and docosahexaenoic acid occurred in brain fatty acids that to some extent paralleled those occurring in the serum. Changes in the proportions of most other acids in the serum fatty acids were not accompanied by corresponding changes in the brain fatty acids. 4. The percentage fatty acid compositions of a mitochondria-rich fraction and myelin are given, and changes in the relative proportions of linoleic acid, arachidonic acid and possibly some docosapolyenoic acids were demonstrated to occur as a result of diet. 5. The results are discussed in relation to the possible aetiology of multiple sclerosis. PMID:5881652

  2. Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli

    PubMed Central

    2014-01-01

    Background Monounsaturated fatty acids (MUFAs) are the best components for biodiesel when considering the low temperature fluidity and oxidative stability. However, biodiesel derived from vegetable oils or microbial lipids always consists of significant amounts of polyunsaturated and saturated fatty acids (SFAs) alkyl esters, which hampers its practical applications. Therefore, the fatty acid composition should be modified to increase MUFA contents as well as enhancing oil and lipid production. Results The model microorganism Escherichia coli was engineered to produce free MUFAs. The fatty acyl-ACP thioesterase (AtFatA) and fatty acid desaturase (SSI2) from Arabidopsis thaliana were heterologously expressed in E. coli BL21 star(DE3) to specifically release free unsaturated fatty acids (UFAs) and convert SFAs to UFAs. In addition, the endogenous fadD gene (encoding acyl-CoA synthetase) was disrupted to block fatty acid catabolism while the native acetyl-CoA carboxylase (ACCase) was overexpressed to increase the malonyl coenzyme A (malonyl-CoA) pool and boost fatty acid biosynthesis. The finally engineered strain BL21ΔfadD/pE-AtFatAssi2&pA-acc produced 82.6 mg/L free fatty acids (FFAs) under shake-flask conditions and FFAs yield on glucose reached about 3.3% of the theoretical yield. Two types of MUFAs, palmitoleate (16:1Δ9) and cis-vaccenate (18:1Δ11) made up more than 75% of the FFA profiles. Fed-batch fermentation of this strain further enhanced FFAs production to a titer of 1.27 g/L without affecting fatty acid compositions. Conclusions This study demonstrated the possibility to regulate fatty acid composition by using metabolic engineering approaches. FFAs produced by the recombinant E. coli strain consisted of high-level MUFAs and biodiesel manufactured from these fatty acids would be more suitable for current diesel engines. PMID:24716602

  3. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides.

    PubMed Central

    Thormar, H; Isaacs, C E; Brown, H R; Barshatzky, M R; Pessolano, T

    1987-01-01

    Lipids in fresh human milk do not inactivate viruses but become antiviral after storage of the milk for a few days at 4 or 23 degrees C. The appearance of antiviral activity depends on active milk lipases and correlates with the release of free fatty acids in the milk. A number of fatty acids which are normal components of milk lipids were tested against enveloped viruses, i.e., vesicular stomatitis virus, herpes simplex virus, and visna virus, and against a nonenveloped virus, poliovirus. Short-chain and long-chain saturated fatty acids had no or a very small antiviral effect at the highest concentrations tested. Medium-chain saturated and long-chain unsaturated fatty acids, on the other hand, were all highly active against the enveloped viruses, although the fatty acid concentration required for maximum viral inactivation varied by as much as 20-fold. Monoglycerides of these fatty acids were also highly antiviral, in some instances at a concentration 10 times lower than that of the free fatty acids. None of the fatty acids inactivated poliovirus. Antiviral fatty acids were found to affect the viral envelope, causing leakage and at higher concentrations, a complete disintegration of the envelope and the viral particles. They also caused disintegration of the plasma membranes of tissue culture cells resulting in cell lysis and death. The same phenomenon occurred in cell cultures incubated with stored antiviral human milk. The antimicrobial effect of human milk lipids in vitro is therefore most likely caused by disintegration of cellular and viral membranes by fatty acids. Studies are needed to establish whether human milk lipids have an antimicrobial effect in the stomach and intestines of infants and to determine what role, if any, they play in protecting infants against gastrointestinal infections. Images PMID:3032090

  4. Neutrophil fatty acid composition: effect of a single session of exercise and glutamine supplementation.

    PubMed

    Lagranha, C J; Alba-Loureiro, T C; Martins, E F; Pithon-Curi, T C; Curi, R

    2008-06-01

    The fatty acid composition of immune cells appears to contribute to variations of cell function. The independent and combined effects of a single session of exercise (SSE) and glutamine supplementation (GS) on neutrophil fatty acid composition were investigated. Compared to control (no treatment given--i.e. neither SSE or GS), single session of exercise decreased myristic, palmitic and eicosapentaenoic (EPA) acids, and increased lauric, oleic, linoleic, arachidonic (AA) and docosahexaenoic (DHA) acids whereas glutamine supplementation combined with SSE (GS+SSE) increased oleic acid. Polyunsaturated/saturated fatty acid ratio and Unsaturation index were higher in neutrophils from the SSE and GS groups as compared with control. These findings support the proposition that SSE and GS may modulate neutrophil function through alterations in fatty acid composition. PMID:17721676

  5. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production.

    PubMed

    Krzemińska, Izabela; Oleszek, Marta

    2016-10-01

    This study evaluates the effect of different concentrations of glucose supplementation on growth, lipid accumulation, and the fatty acid profile in the Auxenochlorella protothecoides. Addition of glucose promoted the growth rate and decreased the chlorophyll content. Compared with photoautotrophic cells, an increase in the lipid content was observed in mixotrophic cells. The glucose addition induced changes in the fatty acid profile. Higher content of saturated fatty acids was found in the case of cells growing in the glucose-free medium. Oleic acid was the predominant component in mixotrophic cells supplemented with 5gL(-1) glucose, while linoleic acids dominated in cultures supplemented with both 1 and 3gL(-1) glucose. The use of glucose was associated with decreased levels of linolenic acid and PUFA. The changes in the fatty acid profile in mixotrophic cells are favourable for biodiesel production. PMID:27485282

  6. In vivo incorporation of labeled fatty acids in rat liver lipids after oral administration

    SciTech Connect

    Leyton, J.; Drury, P.J.; Crawford, M.A.

    1987-08-01

    Striking differences were found in the compartmentalization of fatty acids into liver lipid fractions. The saturated fatty acids--lauric, myristic, palmitic and stearic--were incorporated into phosphoglycerides at faster rates with increasing chain lengths, while triglyceride incorporation was almost uniform. The degree of incorporation of the unsaturated fatty acids into phosphoglycerides (structural) compared to triglyceride (storage and energy) was the converse of their oxidation rates. The incorporation of oleic, linoleic and alpha-linolenic acids was mainly into triglyceride, whereas dihomo-gamma-linolenic acid and arachidonic acid were preferentially incorporated into phosphoglycerides. The data suggest that distribution of each fatty acid is different depending on its destination for structural or energy function.

  7. Fatty acid profile of different species of algae of the Cystoseira genus: a nutraceutical perspective.

    PubMed

    Vizetto-Duarte, Catarina; Pereira, Hugo; Bruno de Sousa, Carolina; Pilar Rauter, Amélia; Albericio, Fernando; Custódio, Luísa; Barreira, Luísa; Varela, João

    2015-01-01

    The fatty acid (FA) composition of six macroalgae from the Cystoseira genus, namely Cystoseira compressa, Cystoseira humilis, Cystoseira tamariscifolia, Cystoseira nodicaulis, Cystoseira baccata and Cystoseira barbata, was determined. Polyunsaturated fatty acids (PUFA) corresponded to 29-46% of the total FA detected. C. compressa, C. tamariscifolia and C. nodicaulis stood out for their low PUFA/saturated fatty acid, low n-6 PUFA/n-3 PUFA ratios as well as favourable unsaturation, atherogenicity and thrombogenicity indices, suggesting a high nutritional value with potential applications in the nutraceutical industry. PMID:25554366

  8. Impact of fatty acids on brain circulation, structure and function.

    PubMed

    Haast, Roy A M; Kiliaan, Amanda J

    2015-01-01

    The use of dietary intervention has evolved into a promising approach to prevent the onset and progression of brain diseases. The positive relationship between intake of omega-3 long chain polyunsaturated fatty acids (ω3-LCPUFAs) and decreased onset of disease- and aging-related deterioration of brain health is increasingly endorsed across epidemiological and diet-interventional studies. Promising results are found regarding to the protection of proper brain circulation, structure and functionality in healthy and diseased humans and animal models. These include enhanced cerebral blood flow (CBF), white and gray matter integrity, and improved cognitive functioning, and are possibly mediated through increased neurovascular coupling, neuroprotection and neuronal plasticity, respectively. Contrary, studies investigating diets high in saturated fats provide opposite results, which may eventually lead to irreversible damage. Studies like these are of great importance given the high incidence of obesity caused by the increased and decreased consumption of respectively saturated fats and ω3-LCPUFAs in the Western civilization. This paper will review in vivo research conducted on the effects of ω3-LCPUFAs and saturated fatty acids on integrity (circulation, structure and function) of the young, aging and diseased brain. PMID:24485516

  9. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    PubMed

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  10. The Erythrocyte Fatty Acid Profile and Cognitive Function in Old Chinese Adults

    PubMed Central

    Yuan, Linhong; Zhen, Jie; Ma, Weiwei; Cai, Can; Huang, Xiaochen; Xiao, Rong

    2016-01-01

    Objective: To explore the relationship between the erythrocyte fatty acid profile and cognition in elderly Chinese adults. Methods: 60 mild cognitive impairment (MCI) subjects and 60 age- and gender-matched control adults (aged 55 years and above) were involved in this cross-sectional study. Cognitive function was measured by using the Montreal Cognitive Assessment (MoCA) test. Information regarding the demographic characteristics and lifestyle of the participants was collected with a questionnaire. A semi-quantified food frequency questionnaire (FFQ) method was used for dietary assessment. The erythrocytes fatty acid profile was measured. Results: The MCI subjects had a lower education level than the control subjects (p < 0.05). Compared with control subjects, MCI subjects had higher daily poultry intake and lower fish intake (p < 0.05). Erythrocyte fatty acid profile of the MCI subjects was characterized as lower erythrocyte proportions of 20:4 n-6, 20:5 n-3, and total n-3 fatty acids compared with control subjects (p < 0.05). An association of erythrocyte proportions of 18:0, 22:0, total SFA, 18:2 n-6, 24:4 n-6 fatty acids, docosahexaenoic acid (DHA), and total n-6 PUFAs with cognition in elderly Chinese adults was detected. Conclusion: The erythrocyte fatty acid profile was related to cognitionin the elderly. Lower erythrocyte unsaturated fatty acid and higher saturated fatty acid proportions might predict cognitive function decline in elderly Chinese adults. PMID:27347995

  11. Effect of dietary Fatty acids on human lipoprotein metabolism: a comprehensive update.

    PubMed

    Ooi, Esther M M; Watts, Gerald F; Ng, Theodore W K; Barrett, P Hugh R

    2015-06-01

    Dyslipidemia is a major risk factor for cardiovascular disease (CVD). Dietary fatty-acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty-acids on human lipoprotein metabolism. In elderly participants with hyperlipidemia, high n-3 polyunsaturated fatty-acids (PUFA) consumption diminished hepatic triglyceride-rich lipoprotein (TRL) secretion and enhanced TRL to low-density lipoprotein (LDL) conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased very low-density lipoprotein (VLDL) cholesterol and triglyceride concentrations by up-regulating VLDL lipolysis and uptake. In a study of healthy subjects, the intake of saturated fatty-acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia. Low medium-chain triglyceride may not appreciably alter TRL metabolism. Replacing carbohydrate with monounsaturated fatty-acids increased TRL catabolism. Trans-fatty-acid decreased LDL and enhanced high-density lipoprotein catabolism. Interactions between APOE genotype and n-3 PUFA in regulating lipid responses were also described. The major advances in understanding the effect of dietary fatty-acids on lipoprotein metabolism has centered on n-3 PUFA. This knowledge emphasizes the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potentially CVD risk. Additional studies are required to better characterize the cardiometabolic effects of other dietary fatty-acids. PMID:26043038

  12. Neutrophil migration inhibitory properties of polyunsaturated fatty acids. The role of fatty acid structure, metabolism, and possible second messenger systems.

    PubMed Central

    Ferrante, A; Goh, D; Harvey, D P; Robinson, B S; Hii, C S; Bates, E J; Hardy, S J; Johnson, D W; Poulos, A

    1994-01-01

    The n-3 polyunsaturated fatty acids (PUFA) appear to have antiinflammatory properties that can be partly explained by their biological activity on leukocytes. Since leukocyte emigration is an essential component of the inflammatory response, we have examined the effects of the n-3 PUFA (eicosapentaenoic and docosahexaenoic acids) on neutrophil random and chemotactic movement. Preexposure of neutrophils for 15-30 min to 1-10 micrograms/ml PUFA reduced the random and chemotactic migration to both FMLP- and fungi-activated complement. The inhibitory effect diminished with increasing saturation and carbon chain length, and methylation abolished this activity. Arachidonic and docosahexaenoic acids were the most active fatty acids. The PUFA concentration required to inhibit migration was dependent on cell number, suggesting that the fatty acid effects on leukocyte migration in vivo may be governed by the stage of the inflammatory response. It was concluded that the PUFA rather than their metabolites were responsible for the inhibition since: (a) antioxidants did not prevent the PUFA-induced migration inhibition and the hydroxylated intermediates were less active, and (b) inhibitors of the cyclooxygenase and lipoxygenase pathways were without effect. Inhibitors of protein kinases and calmodulin-dependent enzyme system did not prevent the PUFA-induced migration inhibition, which was also independent of phospholipase D-catalyzed hydrolysis of phospholipids. It is also shown that PUFA decrease the FMLP-induced Ca2+ mobilization. Images PMID:8132744

  13. A Novel Protocol to Analyze Short- and Long-Chain Fatty Acids Using Nonaqueous Microchip Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Cable, M. L.; Stockton, A. M.; Mora, Maria F; Willis, P. A.

    2013-01-01

    We propose a new protocol to identify and quantify both short- and long-chain saturated fatty acids in samples of astrobiological interest using non-aqueous microchip capillary electrophoresis (micronNACE) with laser induced fluorescence (LIF).

  14. Hydrogen Isotopic Composition of Particulate-Bound Fatty Acids From the California Borderland Basins

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Sessions, A. L.; Campbell, B. J.; Valentine, D. L.

    2006-12-01

    We examined the hydrogen-isotopic composition of fatty acids associated with particulate organic matter (POM) from depth transects in three California Borderland stations. Our goals were to determine (1) the natural variability of δD values in POM-associated fatty acids and (2) the magnitude of isotopic fractionations associated with fatty acid degradation in the marine environment. Some differences in molecular abundance were observed between completely ventilated and occasionally suboxic sites, but no corresponding shifts in δD values were measured. Values of δD for specific fatty acids were generally consistent between stations. Saturated fatty acids (C14, C16, and C18) yielded δD values ranging from -230‰ to -132‰, with δD values generally decreasing with chain length. We found no evidence of extreme D-enrichment of the C18 fatty acid as has been observed in studies of isolated macroalgae (Chikaraishi, et al, 2004). The unsaturated C16 and C18 fatty acids showed a similar trend while the polyunsaturated fatty acid 22:6 was somewhat enriched in D (δD values ranging from -186‰ to -68‰) relative to 20:5 (-208‰ to -93‰). Unsaturated fatty acids tended to have more positive δD values than their saturated counterparts, opposite the trend observed in sediments from the same location. The bacterial fatty acid C15 showed even greater deuterium enrichment with δD values ranging from - 145‰ to -88‰. This offset can likely be attributed to differences in biosynthetic fractionation between bacteria and eukaryotes, to differences in hydrogen isotopic composition of the food sources of these organisms, or some combination of these two factors. Within the surface waters, fatty acids become enriched with depth by an average of 25‰. The C18:0 acid is a significant exception, becoming depleted by 48‰ over that same interval. Below 100 meters depth, all fatty acids tend to become slightly depleted in D with increasing depth. The difference in δD values

  15. The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p

    PubMed Central

    De Smet, Cedric H.; Vittone, Elisa; Scherer, Max; Houweling, Martin; Liebisch, Gerhard; Brouwers, Jos F.; de Kroon, Anton I.P.M.

    2012-01-01

    The degree of fatty acid unsaturation, that is, the ratio of unsaturated versus saturated fatty acyl chains, determines membrane fluidity. Regulation of expression of the fatty acid desaturase Ole1p was hitherto the only known mechanism governing the degree of fatty acid unsaturation in Saccharomyces cerevisiae. We report a novel mechanism for the regulation of fatty acid desaturation that is based on competition between Ole1p and the glycerol-3-phosphate acyltransferase Sct1p/Gat2p for the common substrate C16:0-CoA. Deletion of SCT1 decreases the content of saturated fatty acids, whereas overexpression of SCT1 dramatically decreases the desaturation of fatty acids and affects phospholipid composition. Whereas overexpression of Ole1p increases desaturation, co-overexpression of Ole1p and Sct1p results in a fatty acid composition intermediate between those obtained upon overexpression of the enzymes separately. On the basis of these results, we propose that Sct1p sequesters C16:0-CoA into lipids, thereby shielding it from desaturation by Ole1p. Ta­king advantage of the growth defect conferred by overexpressing SCT1, we identified the acyltransferase Cst26p/Psi1p as a regulator of Sct1p activity by affecting the phosphorylation state and overexpression level of Sct1p. The level of Sct1p phosphorylation is increased when cells are supplemented with saturated fatty acids, demonstrating the physiological relevance of our findings. PMID:22323296

  16. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review.

    PubMed

    Milchert, Eugeniusz; Malarczyk, Kornelia; Kłos, Marlena

    2015-01-01

    The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained. PMID:26633342

  17. Plasma fatty acid profile in multiple myeloma patients.

    PubMed

    Jurczyszyn, Artur; Czepiel, Jacek; Gdula-Argasińska, Joanna; Paśko, Paweł; Czapkiewicz, Anna; Librowski, Tadeusz; Perucki, William; Butrym, Aleksandra; Castillo, Jorge J; Skotnicki, Aleksander B

    2015-04-01

    New membrane formation in the proliferating tumor cells consequently results in hypermetabolism of fatty acids (FA), as seen in many cancer patients, including multiple myeloma (MM). The FA composition of plasma reflects both endogenous synthesis as well as the dietary supply of these compounds. Additionally, obesity is a risk factor for the development of MM. The aim of this study was to compare the FA composition of plasma in 60 MM patients and 60 healthy controls. We noted significant differences in the FA profile of plasma from patients with MM when compared to the control group. Increased levels of saturated and n-6 polyunsaturated fatty acids in MM patients suggest that there may be increased endogenous synthesis of these fatty acids, likely due to increased expression of desaturase and elongase. Furthermore, cluster analysis showed differences in the distribution of FA in plasma from MM patients compared to controls. Dietary fat and a deranged endogenous FA metabolism may contribute to cancer-associated inflammation through an abnormal arachidonic acid metabolism, caused by pro-inflammatory derivatives. Our study supports further research on the biochemistry of lipids in patients with MM. PMID:25666255

  18. Utilization of fats and fatty acids by turkey poults.

    PubMed

    Leeson, S; Atteh, J O

    1995-12-01

    Two experiments were carried out with young, Large White male turkey poults maintained in either floor pens or metabolism cages. In Experiment 1, poults were fed isoenergetic diets containing either no supplemental fat, or 5% of either tallow, corn oil, soybean oil, animal-vegetable blend fat, or canola oil. Poults generally ate less of the fat-supplemented diets and showed improved feed utilization, although weight gain was little affected. There was improved fat retention when vegetable oils were used (P < .01) and this was reflected in a slight improvement in diet energy level (P > .05). Poults fed tallow or animal-vegetable blend fat also excreted most fat. Diet had no effect (P > .05) on apparent retention of calcium or phosphorus, although retention of magnesium was less with more saturated fats. In Experiment 2, poults were fed diets containing palmitic acid, oleic acid, or a 50:50 (wt/wt) mixture of these fatty acids. There was a reduction (P < .05) in apparent retention of nitrogen, magnesium, calcium, and fat for poults fed palmitic acid, oleic acid, or the mixture. Mixing palmitic acid with oleic acid corrected some of these problems. However, reduced mineral retention was not reflected in any change in levels of bone ash, calcium, or phosphorus. Feeding palmitic acid did result in the most dramatic reduction of bone magnesium content (P < .05). It is concluded that turkey poults, like chicks, are less able to digest saturated fatty acids, and that such undigested fats can lead to reduced retention of some minerals through increased soap formation. However, there is no direct evidence that such soap formation causes a major change in bone calcium or phosphorus content or in gross bone development or poult well-being. PMID:8825591

  19. Enzymatic Synthesis of l-Ascorbyl Fatty Acid Esters Under Ultrasonic Irradiation and Comparison of Their Antioxidant Activity and Stability.

    PubMed

    Jiang, Chen; Lu, Yuyun; Li, Zhuo; Li, Cunzhi; Yan, Rian

    2016-06-01

    A series of novel l-ascorbyl fatty acid esters were synthesized by catalization of Novozym(®) 435 under ultrasonic irradiation and characterized by infrared spectroscopy, electrospray ionization mass spectra, and nuclear magnetic resonance. Their properties especially antioxidant activity and stability were investigated. The results showed that the reducing power, the scavenging activity of hydroxyl radical and 2,2-diphenyl-1-picrylhydrazyl radical were decreased with the increase of the number of carbon atoms in fatty acid. The hydroxyl radical scavenging activity and reducing power of l-ascorbyl saturated fatty acid esters were better than that of tert-butylhydroquinone. The induction period in lipid oxidation of l-ascorbyl saturated fatty acid esters and tert-butylhydroquinone were longer than that of l-ascorbyl unsaturated fatty acid esters and l-ascorbic acid both in soybean oil and lard. Besides, the l-ascorbyl fatty acid esters showed different stabilities in different conditions by comparing with l-ascorbic acid, and the l-ascorbyl saturated fatty acid esters were more stable than l-ascorbyl unsaturated fatty acid esters in ethanol solution. PMID:27100741

  20. Cholestane as a digestibility marker in the absorption of polyunsaturated fatty acid ethyl esters in Atlantic salmon.

    PubMed

    Sigurgisladottir, S; Lall, S P; Parrish, C C; Ackman, R G

    1992-06-01

    Salmonid fish require long-chain n-3 fatty acids in their diet. The digestibility of different chemical forms of fish oil fatty acids, fed as triacylglycerols, free fatty acids or ethyl esters, was examined in 300 g farmed Atlantic salmon (Salmo salar) using cholestane as an indicator of fat absorption in lieu of the chromium oxide (Cr2O3) which is commonly used as a marker in digestibility studies. It was established that the two digestibility markers gave similar results. Conveniently, cholestane does not require a separate analysis if fatty acids are to be determined by appropriate gas-liquid chromatography. The long-chain polyunsaturated fatty acids were particularly well absorbed, the apparent digestibility being 90-98% when feeding triacylglycerols or free fatty acids. However, the digestibility of monounsaturated fatty acids (75-94%) was lower, and lower still for saturated fatty acids (50-80%). Ethyl esters of fatty acids were significantly less well absorbed (P less than 0.05) than were the corresponding fatty acids in free acid or triacylglycerol form. Irrespective of dietary fat type, only free fatty acids were identified in feces, indicating total hydrolysis of triacylglycerols and ethyl esters. PMID:1630276

  1. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  2. Composition of fatty acids in the Varroa destructor mites and their hosts, Apis mellifera drone-prepupae.

    PubMed

    Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna

    2015-01-01

    The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones. PMID:25911034

  3. Triacylglyceride composition and fatty acyl saturation profile of a psychrophilic and psychrotolerant fungal species grown at different temperatures.

    PubMed

    Pannkuk, Evan L; Blair, Hannah B; Fischer, Amy E; Gerdes, Cheyenne L; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-01-01

    Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats. PMID:25209638

  4. Fatty acid biosynthesis in pea root plastids

    SciTech Connect

    Stahl, R.J.; Sparace, S.A. )

    1989-04-01

    Fatty acid biosynthesis from (1-{sup 14}C)acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 {mu}M acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl{sub 2}, 1 mM each of the MnCl{sub 2} and glycerol-3-phosphate, 15 mM KHCO{sub 3}, and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 {mu}g/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO{sub 3}, divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg{sup 2+} and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor.

  5. n-3 Fatty acids and asthma.

    PubMed

    Kumar, Aishwarya; Mastana, Sarabjit S; Lindley, Martin R

    2016-06-01

    Asthma is one of the most common and prevalent problems worldwide affecting over 300 million individuals. There is some evidence from observational and intervention studies to suggest a beneficial effect of n-3 PUFA in inflammatory diseases, specifically asthma. Marine-based n-3 PUFA have therefore been proposed as a possible complementary/alternative therapy for asthma. The proposed anti-inflammatory effects of n-3 fatty acids may be linked to a change in cell membrane composition. This altered membrane composition following n-3 fatty acid supplementation (primarily EPA and DHA) can modify lipid mediator generation via the production of eicosanoids with a reduced inflammatory potential/impact. A recently identified group of lipid mediators derived from EPA including E-series resolvins are proposed to be important in the resolution of inflammation. Reduced inflammation attenuates the severity of asthma including symptoms (dyspnoea) and exerts a bronchodilatory effect. There have been no major health side effects reported with the dietary supplementation of n-3 fatty acids or their mediators; consequently supplementing with n-3 fatty acids is an attractive non-pharmacological intervention which may benefit asthma. PMID:26809946

  6. Hydroxyl Fatty Acids and Hydroxyl Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is produced domestically in large supply, averaging over 20 billion pounds per year with an annual carryover of more than one billion pounds. It is important to find new uses for this surplus soybean oil. Hydroxyl fatty acids and hydroxyl oils are platform materials for specialty chemi...

  7. Polyunsaturated fatty acids and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review. This review focuses on the effect(s) of n-3 polyunsaturated fatty acids (PUFA) on gene transcription as determined from data generated using cDNA microarrays. Introduced within the past decade, this methodology allows detection of the expression of thousands of genes simultaneo...

  8. Fatty acids of Beef Longissimus Muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the fatty acid (FA) composition of the intramuscular (i.m. fat of the longissimus muscle (LM) from three divergent breeds of cattle: Angus (AN, n=9), Brahman (BR, n=7), and Romosinuano (RM, n=11). Cattle were blocked by breed and finished within an average ...

  9. Lipid and Fatty Acid Requirements of Tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary lipids are an important source of highly digestible energy and are the only source of essential fatty acids required for normal growth and development. They are also carriers and assist in the absorption of fat-soluble nutrients, such as sterols and fat-soluble vitamins, serve as a source of...

  10. PLANT FATTY ACID (ETHANOL) AMIDE HYDROLASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amide hydrolase (FAAH) plays a central role in modulating endogenous N-acylethanolamine (NAE) levels in vertebrates, and, in part, constitutes an “endocannabinoid” signaling pathway that regulates diverse physiological and behavioral processes in animals. Recently, an Arabidopsis FAAH hom...

  11. Lipid and fatty acid requirements of tilapias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tilapia have been shown to have a dietary requirement for linoleic (n-6) series fatty acids (18:2n-6 or 20:4n-6). The optimum dietary levels of n-6 reported were 0.5 and 1% for redbelly tilapia (Tilapia zillii) and Nile tilapia (Oreochromis niloticus), respectively. Tilapia have been suggested to al...

  12. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  13. Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake.

    PubMed

    Smith, Jill; Su, Xiong; El-Maghrabi, Raafat; Stahl, Philip D; Abumrad, Nada A

    2008-05-16

    FAT/CD36 is a membrane scavenger receptor that facilitates long chain fatty acid uptake by muscle. Acute increases in membrane CD36 and fatty acid uptake have been reported in response to insulin and contraction. In this study we have explored protein ubiquitination as one potential mechanism for the regulation of CD36 level. CD36 expressed in Chinese hamster ovary (CHO) or HEK 293 cells was found to be polyubiquitinated via a process involving both lysines 48 and 63 of ubiquitin. Using CHO cells expressing the insulin receptor (CHO/hIR) and CD36, it is shown that addition of insulin (100 nm, 10 and 30 min) significantly reduced CD36 ubiquitination. In contrast, ubiquitination was strongly enhanced by fatty acids (200 microm palmitate or oleate, 2 h). Similarly, endogenous CD36 in C2C12 myotubes was ubiquitinated, and this was enhanced by oleic acid treatment, which also reduced total CD36 protein in cell lysates. Insulin reduced CD36 ubiquitination, increased CD36 protein, and inhibited the opposite effects of fatty acids on both parameters. These changes were paralleled by changes in fatty acid uptake, which could be blocked by the CD36 inhibitor sulfosuccinimidyl oleate. Mutation of the two lysine residues in the carboxyl-terminal tail of CD36 markedly attenuated ubiquitination of the protein expressed in CHO cells and was associated with increased CD36 level and enhanced oleate uptake and incorporation into triglycerides. In conclusion, fatty acids and insulin induce opposite alterations in CD36 ubiquitination, modulating CD36 level and fatty acid uptake. Altered CD36 turnover may contribute to abnormal fatty acid uptake in the insulin-resistant muscle. PMID:18353783

  14. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  15. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  16. Phospholipids and fatty acids of Neisseria gonorrhoeae.

    PubMed Central

    Sud, I J; Feingold, D S

    1975-01-01

    The phospholipids and fatty acids of two strains of Neisseria gonorrhoeae of different penicillin susceptibilities were examined. The phospholipids, which comprise about 8% of the dry weight of the cells, consisted of phosphatidylethanolamine (70%) and phosphatidylglycerol (20%); small amounts of phosphatidylcholine and traces of cardiolipin were also present. Growing and stationary-phase cells were similar in content and composition of phospholipids except for phosphatidylcholine, which increased two- to fivefold in the stationary-phase cells. The fatty acids of the phospholipids were characterized by two major acids, palmitic and a C16:1, with myristic and a C18:1 acid present in smaller amounts. The fatty acids present in purified phospholipid fractions varied considerably in relative proportions from fraction to fraction. No significant difference in the composition of phospholipids from the two strains was evident. Large amounts of beta-hydroxy lauric acid were detected only after saponification of the organisms. Differences in the lipid composition between the gonococcus and other gram-negative bacteria are discussed. PMID:810478

  17. Astrocytes Release Polyunsaturated Fatty Acids by Lipopolysaccharide Stimuli.

    PubMed

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Koyama, Yutaka; Kasuya, Fumiyo; Tokuyama, Shogo

    2016-01-01

    We previously reported that levels of long-chain fatty acids (FAs) including docosahexaenoic acids (DHA) increase in the hypothalamus of inflammatory pain model mice. However, the precise mechanisms underlying the increment of free fatty acids (FFAs) in the brain during inflammation remains unknown. In this study, we characterized FFAs released by inflammatory stimulation in rat primary cultured astrocytes, and tested the involvement of phospholipase A2 (PLA2) on these mechanisms. Lipopolysaccharide (LPS) stimulation significantly increased the levels of several FAs in the astrocytes. Under these conditions, mRNA expression of cytosolic PLA2 (cPLA2) and calcium-independent PLA2 (iPLA2) in LPS-treated group increased compared with the control group. Furthermore, in the culture media, the levels of DHA and arachidonic acid (ARA) significantly increased by LPS stimuli compared with those of a vehicle-treated control group whereas the levels of saturated FAs (SFAs), namely palmitic acid (PAM) and stearic acid (STA), did not change. In summary, our findings suggest that astrocytes specifically release DHA and ARA by inflammatory conditions. Therefore astrocytes might function as a regulatory factor of DHA and ARA in the brain. PMID:27374285

  18. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  19. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  20. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  1. Effects of fatty acids on motility retention by Treponema pallidum in vitro.

    PubMed Central

    Matthews, H M; Jenkin, H M; Crilly, K; Sandok, P L

    1978-01-01

    Treponema pallidum (Nichols virulent strain) was incubated under 75% N2 + 20% H2 + 5% CO2 in prereduced serum-free modified Eagle-Richter medium supplemented with different concentrations of various long-chain fatty acids complexed with fatty acid-free bovine serum albumin. Motility retention was greater in medium with oleic acid containing 15 rather than 2 mg of albumin per ml. Palmitic, stearic, oleic, or linoleic acid alone caused rapid loss of motility at concentrations as low as 5 microgram/ml. Elaidic acid (92 microgram/ml) alone had no effect on motility. Various combinations of saturated plus unsaturated fatty acids did not inhibit motility retention or were less inhibitory than either of the individual fatty acid components. The combination of palmitic plus oleic acids was least toxic. Rapid loss of motility occurred with pairs of unsaturated or saturated fatty acids, or with Tween 40, 60, or 80, alone or combined. Autoxidation of oleic acid resulted in decreased toxicity for T. pallidum but increased toxicity for baby hamster kidney cells. PMID:346485

  2. Directed evolution increases desaturation of a cyanobacterial fatty acid desaturase in eukaryotic expression systems.

    PubMed

    Bai, Shuangyi; Wallis, James G; Denolf, Peter; Browse, John

    2016-07-01

    Directed evolution of a cyanobacterial Δ9 fatty acid desaturase (DSG) from Synechococcus elongatus, PCC6301 created new, more productive desaturases and revealed the importance of certain amino acid residues to increased desaturation. A codon-optimized DSG open reading frame with an endoplasmic-reticulum retention/retrieval signal appended was used as template for random mutagenesis. Increased desaturation was detected using a novel screen based on complementation of the unsaturated fatty acid auxotrophy of Saccharomyces cerevisiae mutant ole1Δ. Amino acid residues whose importance was discovered by the random processes were further examined by saturation mutation to determine the best amino acid at each identified location in the peptide chain and by combinatorial analysis. One frequently-detected single amino acid change, Q240R, yielded a nearly 25-fold increase in total desaturation in S. cerevisiae. Several other variants of the protein sequence with multiple amino acid changes increased total desaturation more than 60-fold. Many changes leading to increased desaturation were in the vicinity of the canonical histidine-rich regions known to be critical for electron transfer mediated by these di-iron proteins. Expression of these evolved proteins in the seed of Arabidopsis thaliana altered the fatty acid composition, increasing monounsaturated fatty acids and decreasing the level of saturated fatty acid, suggesting a potential application of these desaturases in oilseed crops. Biotechnol. Bioeng. 2016;113: 1522-1530. © 2016 Wiley Periodicals, Inc. PMID:26724425

  3. Intake of trans fatty acid in Japanese university students.

    PubMed

    Kawabata, Terue; Shigemitsu, Sachiko; Adachi, Naoko; Hagiwara, Chie; Miyagi, Shigeji; Shinjo, Sumie; Maruyama, Takenori; Sugano, Michihiro

    2010-01-01

    Because trans fatty acids (TFAs) are a potent risk factor for coronary heart disease, it is important to know the amount of TFA consumed. We estimated TFA intakes of Japanese university students by direct measurement. Subjects included 118 students (57 males and 61 females) in two regions of Japan: Kanto (Tokyo area) and Okinawa. A dietary survey was conducted over six consecutive days using dietary records and photographic records. A single-day meal in the survey period was reproduced to measure TFA content by gas chromatography. The median values of TFA intakes (and energy percentage) estimated by the contents of reproduced meals for men were 0.43 g/d (0.22%) in Kanto and 0.30 g/d (0.14%) in Okinawa. Corresponding values for women were 0.49 g/d (0.29%) and 0.73 g/d (0.35%), respectively. Compared to the group with a low TFA intake, the subjects with a high TFA intake consumed significantly more energy from total fat and saturated fatty acids, and had a high ratio of TFA/linoleic acid. In addition, multiple regression analysis showed the intakes of TFA were positively associated with those of saturated fatty acids and groups of nonessential groceries such as cookies, cakes and pastries. In conclusion, the TFA intakes of these survey subjects were relatively lower than the WHO recommended energy ratio (<1%). However, nutritional education on dietary habits seems indispensable for those subjects who are consuming high volumes of TFA. PMID:20651456

  4. Dietary total fat and fatty acids intake, serum fatty acids and risk of breast cancer: A meta-analysis of prospective cohort studies.

    PubMed

    Cao, Yi; Hou, Lin; Wang, Weijing

    2016-04-15

    Results from prospective cohort studies on the association between dietary total fat and fatty acids intake and risk of breast cancer remain controversial. Pertinent prospective cohort studies were identified by a search of Embase and PubMed from inception to September 2015. Study-specific relative risks (RRs) with 95% confidence intervals were pooled using a random-effect model. Between-study heterogeneity and publication bias were assessed, and sensitivity analysis was conducted. Twenty-four independent studies on dietary total fat and fatty acids intake and seven studies on serum fatty acids were included. The pooled RR of breast cancer for the highest vs. lowest category of dietary total fat intake was 1.10 (1.02-1.19); however, no association was observed in studies adjusting for traditional risk factors of breast cancer. No association was observed between animal fat, vegetable fat, saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), n-3 PUFA, n-6 PUFA, eicosapentaenoic acid, docosahexaenoic acid, alpha-linolenic acid, oleic acid, linoleic acid and arachidonic acid and risk of breast cancer. The pooled RRs of breast cancer for the highest vs. lowest category of serum SFA, MUFA, PUFA, n-3 PUFA and n-6 PUFA were 1.00 (0.78-1.28), 1.41 (0.99-2.03), 0.59 (0.27-1.30), 0.81 (0.60-1.10) and 0.84 (0.60-1.18), respectively. Results from this meta-analysis suggested that dietary total fat and fatty acids might be not associated with risk of breast cancer. PMID:26595162

  5. Bioconverted Products of Essential Fatty Acids as Potential Antimicrobial Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review deals with the recent findings on the microbial conversion of essential fatty acids (EFAs) through Pseudomonas aeruginosa PR3 NRRL-B-18602, and the antimicrobial properties of bioconverted essential fatty acids, with particular emphasis on n-3 or n-6 fatty acids. The first section deals...

  6. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely... conditions: (a) The additive consists of one or any mixture of two or more of the aluminum, calcium... derived from tall oil fatty acids conforming with § 172.862. (b) The food additive is used or intended...

  7. Naturally occurring fatty acids: source, chemistry and uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  8. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  9. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  10. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is...

  11. 40 CFR 721.10463 - Fatty acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amides (generic). 721.10463... Substances § 721.10463 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amides (PMN...

  12. Fatty acid profile of biscuits and salty snacks consumed by Brazilian college students.

    PubMed

    Dias, Flávia da Silva Lima; Passos, Maria Eliza Assis; do Carmo, Maria das Graças Tavares; Lopes, Maria Lúcia Mendes; Valente Mesquita, Vera Lúcia

    2015-03-15

    High levels of biscuit and salty snack consumption have an effect on human health. This aim of this study was to determine the fatty acid (FA) composition of 19 different biscuits and 10 types of salty snacks by gas chromatography. Palmitic acid was predominant in 79% of biscuits and represented more than 55% of the total saturated fatty acids (SFAs) in salty snacks. Low concentrations of trans fatty acids were observed in biscuits (0.86% of total FAs), and the highest values were observed in salty snacks (7.94% of total FAs). The results indicate a high daily intake of SFAs and trans fatty acids, which may have an unfavourable effect on health. Changes in dietary habits and appropriate food choices by students are strongly recommended to prevent the risk of chronic disease. Furthermore, knowledge of the FA profile of food can help to establish health programs targeted to this population. PMID:25308679

  13. Changes in fatty acid composition in plant tissues expressing a mammalian delta9 desaturase.

    PubMed

    Moon, H; Hazebroek, J; Hildebrand, D F

    2000-05-01

    Plant tissues expressing a mammalian stearoyl-CoA delta9 desaturase were reported to accumulate delta9 hexadecenoic acid (16:1), normally very minor in most plant tissues. The transgenic plants were thoroughly analyzed for alterations of individual lipids in different subcellular sites. Western blot analysis indicated that the animal desaturase was targeted to the microsomes. The delta9 16:1 was incorporated into both the sn-1 and sn-2 positions of all the major membrane lipids tested, indicating that the endoplasmic reticulum acyltransferases do not exclude unsaturated C16 fatty acids from the sn-2 position. In addition to increases in monounsaturated and decreases in saturated fatty acids, accumulation of 16:1 was accompanied by a reduction in 18:3 in all the lipids tested except phosphatidylglycerol, and increases in 18:2 in phospholipids. Total C16 fatty acid content in the galactolipids of the transgenics was significantly higher than that in the control, but those in the phospholipids were unchanged. In transgenics, delta11 18:1 was detected in the sn-1 position of the lipids tested except phosphatidylinositol and phosphatidylserine. Introduction of the animal desaturase, controlled by a seed-specific phaseolin promoter, into soybean somatic embryo resulted in a significant reduction in saturated fatty acids. Such effects were greater in cotyledons than hypocotyl-radicles. This study demonstrated that the animal desaturase can be used to decrease the levels of saturated fatty acids in a crop plant. PMID:10907781

  14. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  15. The behavior of fatty acids in the blood plasma of monkeys following exposure to short term stresses

    NASA Technical Reports Server (NTRS)

    Michailov, M. L.; Gnuechtel, U.; Nitschkoff, S.; Baumann, R.; Gnauck, G.

    1980-01-01

    Monkeys exposed to short term stresses (immobilization, jealousy) were found to develop hyperlipacidemia with a rise in concentration of unsaturated fatty acids in blood plasma, especially of oleic acid, and a relative decrease of saturated free fatty acids, chiefly of palmitinic acid. This finding was more pronounced under immobilization stress than in the jealousy situation. Meanwhile, the composition of triglycerides did not change essentially under the conditions used.

  16. Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychrotrophic bacterium

    SciTech Connect

    Wada, M.; Fukunaga, N.; Sasaki, S. )

    1989-08-01

    Biosynthesis of palmitic, palmitoleic, and cis-vaccenic acids in Pseudomonas sp. strain E-3 was investigated with in vitro and in vivo systems. (1-{sup 14}C)palmitic acid was aerobically converted to palmitoleate and cis-vaccenate, and the radioactivities on their carboxyl carbons were 100 and 43%, respectively, of the total radioactivity in the fatty acids. Palmitoyl coenzyme A desaturase activity was found in the membrane fraction. (1-{sup 14}C)stearic acid was converted to octadecenoate and C16 fatty acids. The octadecenoate contained oleate and cis-vaccenate, but only oleate was produced in the presence of cerulenin. (1-{sup 14}C)lauric acid was aerobically converted to palmitate, palmitoleate, and cis-vaccenate. Under anaerobic conditions, palmitate (62%), palmitoleate (4%), and cis-vaccenate (34%) were produced from (1-{sup 14}C)acetic acid, while they amounted to 48, 39, and 14%, respectively, under aerobic conditions. In these incorporation experiments, 3 to 19% of the added radioactivity was detected in released {sup 14}CO{sub 2}, indicating that part of the added fatty acids were oxidatively decomposed. Partially purified fatty acid synthetase produced saturated and unsaturated fatty acids with chain lengths of C10 to C18. These results indicated that both aerobic and anaerobic mechanisms for the synthesis of unsaturated fatty acid are operating in this bacterium.

  17. A Systems Genetics Approach Identifies Gene Regulatory Networks Associated with Fatty Acid Composition in Brassica rapa Seed.

    PubMed

    Basnet, Ram Kumar; Del Carpio, Dunia Pino; Xiao, Dong; Bucher, Johan; Jin, Mina; Boyle, Kerry; Fobert, Pierre; Visser, Richard G F; Maliepaard, Chris; Bonnema, Guusje

    2016-01-01

    Fatty acids in seeds affect seed germination and seedling vigor, and fatty acid composition determines the quality of seed oil. In this study, quantitative trait locus (QTL) mapping of fatty acid and transcript abundance was integrated with gene network analysis to unravel the genetic regulation of seed fatty acid composition in a Brassica rapa doubled haploid population from a cross between a yellow sarson oil type and a black-seeded pak choi. The distribution of major QTLs for fatty acids showed a relationship with the fatty acid types: linkage group A03 for monounsaturated fatty acids, A04 for saturated fatty acids, and A05 for polyunsaturated fatty acids. Using a genetical genomics approach, expression quantitative trait locus (eQTL) hotspots were found at major fatty acid QTLs on linkage groups A03, A04, A05, and A09. An eQTL-guided gene coexpression network of lipid metabolism-related genes showed major hubs at the genes BrPLA2-ALPHA, BrWD-40, a number of seed storage protein genes, and the transcription factor BrMD-2, suggesting essential roles for these genes in lipid metabolism. Three subnetworks were extracted for the economically important and most abundant fatty acids erucic, oleic, linoleic, and linolenic acids. Network analysis, combined with comparison of the genome positions of cis- or trans-eQTLs with fatty acid QTLs, allowed the identification of candidate genes for genetic regulation of these fatty acids. The generated insights in the genetic architecture of fatty acid composition and the underlying complex gene regulatory networks in B. rapa seeds are discussed. PMID:26518343

  18. Odd-chain polyunsaturated fatty acids in thraustochytrids.

    PubMed

    Chang, Kim Jye Lee; Mansour, Maged P; Dunstan, Graeme A; Blackburn, Susan I; Koutoulis, Anthony; Nichols, Peter D

    2011-08-01

    A series of unusual odd-chain fatty acids (OC-FA) were identified in two thraustochytrid strains, TC 01 and TC 04, isolated from waters off the south east coast of Tasmania, Australia. FA compositions were determined by capillary GC and GC-MS, with confirmation of polyunsaturated fatty acids (PUFA) structure performed by analysis of 4,4-dimethyloxazoline derivatives. PUFA constituted 68-74% of the total FA, with the essential PUFA; eicosapentaenoic acid (20:5ω3, EPA), arachidonic acid (20:4ω6, AA) and docosahexaenoic acid (22:6ω3, DHA), accounting for 42-44% of the total FA. High proportions of the saturated OC-FA 15:0 (7.1% in TC 01) and 17:0 (6.2% in TC 04) were detected. The OC-FA 17:1ω8 was present at 2.8% in TC 01. Of particular interest, the C₂₁ PUFA 21:5ω5 and 21:4ω7 were detected at 3.5% and 4.1%, respectively, in TC 04. A proposed biosynthesis pathway for these OC-PUFA is presented. It is possible that the unsaturated OC-PUFA found previously in a number of marine animals were derived from dietary thraustochytrids and they could be useful biomarkers in environmental and food web studies. PMID:21546043

  19. Fatty acid profile of beef from immunocastrated (BOPRIVA(®)) Nellore bulls.

    PubMed

    Andreo, Nayara; Bridi, Ana Maria; Soares, Adriana Lourenço; Prohmann, Paulo Emílio Fernandes; Peres, Louise Manha; Tarsitano, Marina Avena; de Lima Giangareli, Barbara; Takabayashi, Alyson Akira

    2016-07-01

    Twenty Nellore bulls (ABW=357.7±9.65kg) were divided into 2 groups: intact and immunocastrated - Bopriva®. After the trial period, the cattle were slaughtered and carcass fat thickness was evaluated, ether extract and fatty acid composition of the longissimus thoracis analyses were performed, and the activity indices of relevant enzymes were calculated. The means were calculated and compared by Student's t-test and Pearson's correlation coefficients (p<0.05). The immunocastrated group showed higher back fat thickness, ether extract, monounsaturated fatty acids (MUFAs), and activity index of Δ(9) desaturase C18 and lower polyunsaturated fatty acids (PUFAs) and n-6 fatty acids when compared to the intact group. The correlations between ether extract and the saturated and monounsaturated fatty acids were positive, and negative with polyunsaturated, n-3, n-6 and PUFA/SFA. Therefore, immunocastration may improve the fatty acid profile in the longissimus thoracis by increasing MUFAs, mainly oleic acid that is the most representative fatty acid in the meat and is considered beneficial to health. PMID:26930361

  20. Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF.

    PubMed

    Henry, Parise; Owopetu, Olufunmilayo; Adisa, Demilade; Nguyen, Thao; Anthony, Kevin; Ijoni-Animadu, David; Jamadar, Sakha; Abdel-Rahman, Fawzia; Saleh, Mahmoud A

    2016-08-01

    The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform and methanol in 2:1 ratio (v/v). Fatty acids composition of the extracted total lipids was converted to their corresponding fatty acids methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry using both electron ionization and chemical ionization techniques. Twenty-eight fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso- 17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids in C. elegans using chemical ionization compared to electron ionization which produced fragmentations of the FAMEs. PMID:27166662

  1. Determination of fatty acid profile in ram spermatozoa and seminal plasma.

    PubMed

    Díaz, R; Torres, M A; Bravo, S; Sanchez, R; Sepúlveda, N

    2016-08-01

    Fatty acids are important in male reproductive function because they are associated with membrane fluidity, acrosome reaction, sperm motility and viability, but limited information exists about the fatty acid profile of ram semen. Our aim was to determine the fatty acid composition in ram spermatozoa and seminal plasma. Sixty ejaculates were obtained from three ram (20 ejaculates/ram) using artificial vagina. Ram spermatozoa (RS) and seminal plasma (SP) were separated using centrifugation, and the fatty acids were analysed by gas chromatography. Total lipids obtained in ram spermatozoa were 1.8% and 1.6% in seminal plasma. Saturated fatty acid (SFA) was proportionally major in SP (66.6%) that RS (49.9%). The highest proportions of SFA corresponded to C4:0 (RS = 16.3% and SP = 28.8%) and C16:0 (RS = 16.3% and PS = 20%). The most important unsaturated fatty acid (UFA) was docosahexaenoic acid (DHA), 44.9% in RS and 31.5% in SP. The profile of fatty acid and their proportions showed differences between spermatozoa and seminal plasma. PMID:26707342

  2. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %. PMID:17898456

  3. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10629 Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic)....

  4. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10629 Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic)....

  5. Macrophage polarisation by fatty acids is PPARgamma-dependent.

    PubMed

    Pararasa, Chatyan; Bailey, Clifford; Griffiths, Helen

    2014-10-01

    Elevated plasma free fatty acids (FAs) are associated with increased risk of cardiovascular disease. We investigated the effects of the saturated FA palmitate and unsaturated FA oleate on monocyte phenotype and function. Palmitate increased cell surface expression of integrin CD11b and scavenger receptor CD36 in a concentration-dependent manner with some decrease in mitochondrial reducing capacity at high concentration (300µM). Monocytes incubated with palmitate, but not oleate, showed increased uptake of oxidized LDL and increased adhesion to rat aortic endothelium, particularly at bifurcations. The palmitate-induced increase in CD11b and CD36 expression was associated with increased cellular C16 ceramide and sphingomyelin, loss of reduced glutathione, and increased reactive oxygen species (ROS). Increased monocyte surface CD11b and CD36 was inhibited by fumonisin B1, an inhibitor of de novo ceramide synthesis, but not by the superoxide dismutase mimetic MnTBap. In contrast, MnTBap prevented the mitochondrial ROS increase and metabolic inhibition due to 300µM palmitate. This study demonstrates that in viable monocytes, palmitate but not oleate increases expression of surface CD11b and CD36. Palmitate increases monocyte adhesion to the aortic wall and promotes uptake of oxidized LDL and this involves de novo ceramide synthesis. We have also explored whether specific dietary fatty acids drive monocyte to macrophage polarisation via metabolic pathways. Here we show that monocytes pre-incubated with the saturated fatty acid palmitate increase production of inflammatory cytokines such as TNFa and IL-6 in response to a phorbol myristate differentiation trigger. This increases mitochondrial superoxide production, reduces dependency on oxidative phosphorylation through ceramide-dependent inhibition of PPARgamma activity and increases TNFa production, again via a mechanism that requires ceramide production. PMID:26461339

  6. Chemical characteristics, fatty acid composition and conjugated linoleic acid (CLA) content of traditional Greek yogurts.

    PubMed

    Serafeimidou, Amalia; Zlatanos, Spiros; Laskaridis, Kostas; Sagredos, Angelos

    2012-10-15

    Many studies with conjugated linoleic acid (CLA) indicate that it has a protective effect against mammary cancer. Because dairy products are the most important dietary sources of CLA, we have investigated the CLA concentrations and additionally the fatty acid profiles and chemical composition of several commercial, traditional, Greek yogurts from different geographical origin. The fat content of yogurts was in the order of goatsaturated fatty acids (SFA) were found in low-fat yogurts, of monounsaturated fatty acids (MUFA) in sheep milk yogurts and of polyunsaturated fatty acid (PUFA) in low-fat cow milk yogurts. PMID:23442628

  7. Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition.

    PubMed Central

    Avery, S V; Howlett, N G; Radice, S

    1996-01-01

    One major mechanism of copper toxicity towards microorganisms is disruption of plasma membrane integrity. In this study, the influence of plasma membrane fatty acid composition on the susceptibility of Saccharomyces cerevisiae to Cu2+ toxicity was investigated. Microbial fatty acid composition is highly variable, depending on both intrinsic and environmental factors. Manipulation was achieved in this study by growth in fatty acid-supplemented medium. Whereas cells grown under standard conditions contained only saturated and monounsaturated fatty acids, considerable incorporation of the diunsaturated fatty acid linoleate (18:2) (to more than 65% of the total fatty acids) was observed in both whole-cell homogenates and plasma membrane-enriched fractions from cells grown in linoleate-supplemented medium. Linoleate enrichment had no discernible effect on the growth of S. cerevisiae. However, linoleate-enriched cells were markedly more susceptible to copper-induced plasma membrane permeabilization. Thus, after addition of Cu(NO3)2, rates of cellular K+ release (loss of membrane integrity) were at least twofold higher from linoleate-supplemented cells than from unsupplemented cells; this difference increased with reductions in the Cu2+ concentration supplied. Levels of cellular Cu accumulation were also higher in linoleate-supplemented cells. These results were correlated with a very marked dependence of whole-cell Cu2+ toxicity on cellular fatty acid unsaturation. For example, within 10 min of exposure to 5 microM Cu2+, only 3% of linoleate-enriched cells remained viable (capable of colony formation). In contrast, 100% viability was maintained in cells previously grown in the absence of a fatty acid supplement. Cells displaying intermediate levels of linoleate incorporation showed intermediate Cu2+ sensitivity, while cells enriched with the triunsaturated fatty acid linolenate (18:3) were most sensitive to Cu2+. These results demonstrate for the first time that changes

  8. [Sources, Migration and Conversion of Dissolved Alkanes, Dissolved Fatty Acids in a Karst Underground River Water, in Chongqing Area].

    PubMed

    Liang, Zuo-bing; Sun, Yu-chuan; Wang, Zun-bo; Shi, Yang; Jiang, Ze-li; Zhang, Mei; Xie, Zheng-Lan; Liao, Yu

    2015-09-01

    Dissolved alkanes and dissolved fatty acids were collected from Qingmuguan underground river in July, October 2013. By gas chromatography-mass spectrometer (GC-MS), alkanes and fatty acids were quantitatively analyzed. The results showed that average contents of alkanes and fatty acids were 1 354 ng.L-1, 24203 ng.L-1 in July, and 667 ng.L-1, 2526 ng.L-1 in October respectively. With the increasing migration distance of dissolved alkanes and dissolved fatty acids in underground river, their contents decreased. Based on the molecular characteristic indices of alkanes, like CPI, OEP, Paq and R, dissolved alkanes were mainly originated from microorganisms in July, and aquatic plants in October. Saturated straight-chain fatty acid had the highest contents in all samples with the dominant peak in C16:0, combined with the characteristics of carbon peak, algae or bacteria might be the dominant source of dissolved fatty acids. PMID:26717680

  9. Properties and biosynthesis of cyclopropane fatty acids in Escherichia coli.

    PubMed Central

    Cronan, J E; Reed, R; Taylor, F R; Jackson, M B

    1979-01-01

    The lipid phase transition of Escherichia coli phospholipids containing cyclopropane fatty acids was compared with the otherwise homologous phospholipids lacking cyclopropane fatty acids. The phase transitions (determined by scanning calorimetry) of the two preparations were essentially identical. Infection of E. coli with phage T3 inhibited cyclopropane fatty acid formation over 98%, whereas infection with mutants which lack the phage coded S-adenosylmethionine cleavage enzyme had no effect on cyclopropane fatty acid synthesis. These data indicate that S-adenosylmethionine is the methylene in cyclopropane fatty acid synthesis. PMID:374358

  10. Seamustard (Undaria pinnatifida) Improves Growth, Immunity, Fatty Acid Profile and Reduces Cholesterol in Hanwoo Steers.

    PubMed

    Hwang, J A; Islam, M M; Ahmed, S T; Mun, H S; Kim, G M; Kim, Y J; Yang, C J

    2014-08-01

    The study was designed to evaluate the effect of 2% seamustard (Undaria pinnatifida) by-product (SW) on growth performance, immunity, carcass characteristics, cholesterol content and fatty acid profile in Hanwoo steers. A total of 20 Hanwoo steers (ave. 22 months old; 619 kg body weight) were randomly assigned to control (basal diet) and 2% SW supplemented diet. Dietary SW supplementation significantly (p<0.05) improved average daily gain and gain:feed ratio as well as serum immunoglobulin G concentration. Chemical composition and quality grade of meat and carcass yield grades evaluated at the end of the trial were found to be unaffected by SW supplementation. Dietary SW significantly reduced meat cholesterol concentration (p<0.05). Dietary SW supplementation significantly reduced the myristic acid (C14:0) and palmitoleic acid (C16:ln-7) concentration, while SW increased the concentration of stearic acid (C18:0) and linolenic acid (C18:3n-3) compared to control (p<0.05). Dietary SW supplementation had no effect on saturated fatty acids (SFA), unsaturated fatty acids, poly unsaturated fatty acid (PUFA) or mono unsaturated fatty acid content in muscles. A reduced ratio of PUFA/SFA and n-6/n-3 were found in SW supplemented group (p<0.05). In conclusion, 2% SW supplementation was found to improve growth, immunity and fatty acid profile with significantly reduced cholesterol of beef. PMID:25083105

  11. Fatty acid composition of six Centaurea species growing in Konya, Turkey.

    PubMed

    Tekeli, Yener; Sezgin, Mehmet; Aktumsek, Abdurrahman; Ozmen Guler, Gokalp; Aydin Sanda, Murad

    2010-12-01

    In this study, fatty acid compositions of six Centaurea species growing in the Konya region were determined. The fatty acid composition of Centaurea balsamita, Centaurea calolepis, Centaurea carduiformis subsp. carduiformis, Centaurea cariensis subsp. maculiceps, C. cariensis subsp. microlepis and Centaurea iberica were analysed. Four species of these six Centaurea are endemic to Turkey. The endemic Centaurea species are C. calolepis, C. carduiformis subsp. carduiformis, C. cariensis subsp. maculiceps and C. cariensis subsp. microlepis. Generally, C 18:2 ω6 linoleic acid, C 16:0 palmitic acid, C 18:3 ω3 linolenic acid and C 18:1 oleic acid were found to be the major fatty acids in all species. Polyunsaturated fatty acids (PUFAs) were found in higher amounts than saturated fatty acids and monounsaturated fatty acids in all species. PUFAs were determined at 55.10%, 50.25%, 51.41%, 41.02%, 46.18% and 58.80% in C. balsamita, C. calolepis, C. carduiformis subsp. carduiformis, C. cariensis subsp. maculiceps, C. cariensis subsp. microlepis and C. iberica, respectively. PMID:21108113

  12. Seamustard (Undaria pinnatifida) Improves Growth, Immunity, Fatty Acid Profile and Reduces Cholesterol in Hanwoo Steers

    PubMed Central

    Hwang, J. A.; Islam, M. M.; Ahmed, S. T.; Mun, H. S.; Kim, G. M.; Kim, Y. J.; Yang, C. J.

    2014-01-01

    The study was designed to evaluate the effect of 2% seamustard (Undaria pinnatifida) by-product (SW) on growth performance, immunity, carcass characteristics, cholesterol content and fatty acid profile in Hanwoo steers. A total of 20 Hanwoo steers (ave. 22 months old; 619 kg body weight) were randomly assigned to control (basal diet) and 2% SW supplemented diet. Dietary SW supplementation significantly (p<0.05) improved average daily gain and gain:feed ratio as well as serum immunoglobulin G concentration. Chemical composition and quality grade of meat and carcass yield grades evaluated at the end of the trial were found to be unaffected by SW supplementation. Dietary SW significantly reduced meat cholesterol concentration (p<0.05). Dietary SW supplementation significantly reduced the myristic acid (C14:0) and palmitoleic acid (C16:ln-7) concentration, while SW increased the concentration of stearic acid (C18:0) and linolenic acid (C18:3n-3) compared to control (p<0.05). Dietary SW supplementation had no effect on saturated fatty acids (SFA), unsaturated fatty acids, poly unsaturated fatty acid (PUFA) or mono unsaturated fatty acid content in muscles. A reduced ratio of PUFA/SFA and n-6/n-3 were found in SW supplemented group (p<0.05). In conclusion, 2% SW supplementation was found to improve growth, immunity and fatty acid profile with significantly reduced cholesterol of beef. PMID:25083105

  13. Fatty acids, eicosanoids and PPAR gamma.

    PubMed

    Marion-Letellier, Rachel; Savoye, Guillaume; Ghosh, Subrata

    2016-08-15

    Peroxisome proliferator-activated receptor γ (PPARγ) belongs to the family of nuclear nuclear receptors and is mainly expressed in adipose tissue, hematopoietic cells and the large intestine. Contrary to other nuclear receptors that mainly bind a single specific ligand, there are numerous natural PPARγ ligands, in particular fatty acids or their derivatives called eicosanoids. PPARγ have pleiotropic functions: (i) glucose and lipid metabolism regulation, (ii) anti-inflammatory properties, (iii) oxidative stress inhibition, (iv) improvement of endothelial function. Its role has been mainly studied by the use synthetic agonists. In this review, we will focus on the effects of PPARγ mediated through fatty acids and how these have beneficial health properties. PMID:26632493

  14. Imaging of myocardial fatty acid oxidation.

    PubMed

    Mather, Kieren J; DeGrado, Timothy R

    2016-10-01

    Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide non-invasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26923433

  15. Fatty acid-binding site environments of serum vitamin D-binding protein and albumin are different

    PubMed Central

    Swamy, Narasimha; Ray, Rahul

    2008-01-01

    Vitamin D-binding protein (DBP) and albumin (ALB) are abundant serum proteins and both possess high-affinity binding for saturated and unsaturated fatty acids. However, certain differences exist. We surmised that in cases where serum albumin level is low, DBP presumably can act as a transporter of fatty acids. To explore this possibility we synthesized several alkylating derivatives of 14C-palmitic acid to probe the fatty acid binding pockets of DBP and ALB. We observed that N-ethyl-5-phenylisooxazolium-3′-sulfonate-ester (WRK ester) of 14C-palmitic acid specifically labeled DBP; but p-nitrophenyl- and N-hydroxysuccinimidyl-esters failed to do so. However, p-nitrophenyl ester of 14C-palmitic acid specifically labeled bovine ALB, indicating that the micro-environment of the fatty acid-binding domains of DBP and ALB may be different; and DBP may not replace ALB as a transporter of fatty acids. PMID:18374965

  16. Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis

    PubMed Central

    2009-01-01

    Background The original anaerobic unsaturated fatty acid biosynthesis pathway proposed by Goldfine and Bloch was based on in vivo labeling studies in Clostridium butyricum ATCC 6015 (now C. beijerinckii) but to date no dedicated unsaturated fatty acid biosynthetic enzyme has been identified in Clostridia. C. acetobutylicium synthesizes the same species of unsaturated fatty acids as E. coli, but lacks all of the known unsaturated fatty acid synthetic genes identified in E. coli and other bacteria. A possible explanation was that two enzymes of saturated fatty acid synthesis of C. acetobutylicium, FabZ and FabF might also function in the unsaturated arm of the pathway (a FabZ homologue is known to be an unsaturated fatty acid synthetic enzyme in enterococci). Results We report that the FabF homologue located within the fatty acid biosynthetic gene cluster of C. acetobutylicium functions in synthesis of both unsaturated fatty acids and saturated fatty acids. Expression of this protein in E. coli functionally replaced both the FabB and FabF proteins of the host in vivo and replaced E. coli FabB in a defined in vitro fatty acid synthesis system. In contrast the single C. acetobutylicium FabZ homologue, although able to functionally replace E. coli FabZ in vivo and in vitro, was unable to replace FabA, the key dehydratase-isomerase of E. coli unsaturated fatty acid biosynthesis in vivo and lacked isomerase activity in vitro. Conclusion Thus, C. acetobutylicium introduces the double of unsaturated fatty acids by use of a novel and unknown enzyme. PMID:19493359

  17. Cellular fatty acid composition of Haemophilus equigenitalis.

    PubMed Central

    Sugimoto, C; Miyagawa, E; Mitani, K; Nakazawa, M; Isayama, Y

    1982-01-01

    The cellular fatty acid composition of eight Haemophilus equigenitalis strains was determined by gas-liquid chromatography. All strains showed a grossly similar pattern characterized by large amounts of 18:1 and 16:0. The amounts of 16:1, 18:2, 18:0, 3-OH 14:0, 3-OH 16:0, and 3-OH 18:1 were relatively small. PMID:7096556

  18. Anorexia nervosa, seasonality, and polyunsaturated fatty acids.

    PubMed

    Scolnick, Barbara; Mostofsky, David I

    2015-09-01

    Anorexia nervosa is a serious neurobehavioral disorder marked by semistarvation, extreme fear of weight gain, frequently hyperactivity, and low body temperature. The etiology remains unknown. We present a speculation that a primary causative factor is that polyunsaturated fatty acids are skewed to prevent oxidative damage in phospholipid membranes. This causes a change in the trade off of oxidation protection vs homeoviscous adaptation to lower temperatures, which sets off a metabolic cascade that leads to the rogue state of anorexia nervosa. PMID:25981875

  19. Molecular Dynamic Simulations Reveal the Structural Determinants of Fatty Acid Binding to Oxy-Myoglobin

    PubMed Central

    Chintapalli, Sree V.; Bhardwaj, Gaurav; Patel, Reema; Shah, Natasha; Patterson, Randen L.; van Rossum, Damian B.; Anishkin, Andriy; Adams, Sean H.

    2015-01-01

    The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a “U” shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state. PMID:26030763

  20. Molecular dynamic simulations reveal the structural determinants of Fatty Acid binding to oxy-myoglobin.

    PubMed

    Chintapalli, Sree V; Bhardwaj, Gaurav; Patel, Reema; Shah, Natasha; Patterson, Randen L; van Rossum, Damian B; Anishkin, Andriy; Adams, Sean H

    2015-01-01

    The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a "U" shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state. PMID:26030763

  1. Regulation of hypothalamic-pituitary-adrenal axis by circulating free fatty acids in male Wistar rats: role of individual free fatty acids.

    PubMed

    Oh, Young Taek; Kim, Jinyub; Kang, Insug; Youn, Jang H

    2014-03-01

    We previously showed that a fall in the plasma free fatty acid (FFA) level increases plasma corticosterone levels in rats by activating the hypothalamic-pituitary-adrenal axis. In the present study, we tested whether this regulation is mediated by specific or all species of FFAs. Nicotinic acid (NA) (30 μmol/h) was infused in rats to decrease plasma FFAs and increase plasma ACTH and corticosterone. The NA infusion was combined with an infusion of lipids with different FFA compositions to selectively prevent falls in individual FFA levels; coconut, olive, and safflower oils (n = 7 for each), which are predominantly (>70%) composed of saturated, monounsaturated (oleic acid), and polyunsaturated (linoleic acid) FFAs, respectively, were used. At an infusion rate (0.1 g/h) that only partially prevented a fall in the total FFA level, coconut oil, but not olive or safflower oil, completely prevented NA-induced increases in plasma ACTH or corticosterone, suggesting that these responses are mainly mediated by saturated FFAs. In addition, quantification of individual FFA species in the blood using FFA-specific fluorescent probes revealed that plasma corticosterone and ACTH correlated significantly with plasma palmitate but not with other FFAs, such as oleate, linoleate, or arachidonate. Taken together, our data suggest that the regulation of the hypothalamic-pituitary-adrenal axis by FFAs is mainly mediated by the saturated fatty acid palmitate, but not by unsaturated fatty acids, such as oleate and linoleate. PMID:24424035

  2. Variation in Lake Michigan alewife (Alosa pseudoharengus) thiaminase and fatty acids composition

    USGS Publications Warehouse

    Honeyfield, D.C.; Tillitt, D.E.; Fitzsimons, J.D.; Brown, S.B.

    2010-01-01

    Thiaminase activity of alewife (Alosa pseudoharengus) is variable across Lake Michigan, yet factors that contribute to the variability in alewife thiaminase activity are unknown. The fatty acid content of Lake Michigan alewife has not been previously reported. Analysis of 53 Lake Michigan alewives found a positive correlation between thiaminase activity and the following fatty acid: C22:ln9, sum of omega-6 fatty acids (Sw6), and sum of the polyunsaturated fatty acids. Thiaminase activity was negatively correlated with C15:0, C16:0, C17:0, C18:0, C20:0, C22:0, C24:0, C18:ln9t, C20:3n3, C22:2, and the sum of all saturated fatty acids (SAFA). Multi-variant regression analysis resulted in three variables (C18:ln9t, Sw6, SAFA) that explained 71% (R2=0.71, P<0.0001) of the variation in thiaminase activity. Because the fatty acid content of an organism is related is food source, diet may be an important factor modulating alewife thiaminase activity. These data suggest there is an association between fatty acids and thiaminase activity in Lake Michigan alewife.

  3. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    PubMed

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  4. Erythrocyte Membrane Fatty Acid Composition in Premenopausal Patients with Iron Deficiency Anemia.

    PubMed

    Aktas, Mehmet; Elmastas, Mahfuz; Ozcicek, Fatih; Yilmaz, Necmettin

    2016-03-01

    Iron deficiency anemia (IDA) is one of the most common nutritional disorders in the world. In the present study, we evaluated erythrocyte membrane fatty acid composition in premenopausal patients with IDA. Blood samples of 102 premenopausal women and 88 healthy control subjects were collected. After the erythrocytes were separated from the blood samples, the membrane lipids were carefully extracted, and the various membrane fatty acids were measured by gas chromatography (GC). Statistical analyses were performed with the SPSS software program. We used blood ferritin concentration <15 ng/mL as cut-off for the diagnosis of IDA. The five most abundant individual fatty acids obtained were palmitic acid (16:0), oleic acid (18:1, n-9c), linoleic acid (18:2, n-6c), stearic acid (18:0), and erucic acid (C22:1, n-9c). These compounds constituted about 87% of the total membrane fatty acids in patients with IDA, and 79% of the total membrane fatty acids in the control group. Compared with control subjects, case patients had higher percentages of palmitic acid (29.9% case versus 25.3% control), oleic acid (16.8% case versus 15.1% control), and stearic acid (13.5% case versus 10.5% control), and lower percentages of erucic acid (11.5% case versus 13.6% control) and linoleic acid (15.2% case versus 15.4% control) in their erythrocyte membranes. In conclusion, the total-erythrocyte-membrane saturated fatty acid (SFA) composition in premenopausal women with IDA was found to be higher than that in the control group; however, the total-erythrocyte-membrane unsaturated fatty acid (UFA) composition in premenopausal women with IDA was found to be lower than that in the control group. The differences in these values were statistically significant. PMID:26876679

  5. Postnatal changes in fatty acids composition of brown adipose tissue

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Ogawa, K.; Kuroshima, A.

    1992-03-01

    It has been demonstrated that thermogenic activity of brown adipose tissue (BAT) is higher during the early postnatal period, decreasing towards a low adult level. The present study examined postnatal changes in the lipid composition of BAT. BAT from pre-weaning rats at 4 and 14 days old showed the following differences in lipid composition compared to that from adults of 12 weeks old. (i) Relative weight of interscapular BAT to body weight was markedly greater. (ii) BAT-triglyceride (TG) level was lower, while BAT-phospholipid (PL)level was higher. (iii) In TG fatty acids (FA) polyunsaturated fatty acids (PU; mol %), arachidonate index (AI), unsaturation index (UI) and PU/saturated FA (SA) were higher; rare FA such as eicosadienoate, bishomo- γ-linolenic acid and lignoceric acid in mol % were also higher. (iv) In PL-FA monounsaturated FA (MU) in mol % was lower; PU mol %, AI and UI were higher. These features in BAT of pre-weaning rats resembled those in the cold-acclimated adults, suggesting a close relationship of the PL-FA profile to high activity of BAT.

  6. Lipidomics of oxidized polyunsaturated fatty acids

    PubMed Central

    Massey, Karen A.; Nicolaou, Anna

    2013-01-01

    Lipid mediators are produced from the oxidation of polyunsaturated fatty acids through enzymatic and free radical-mediated reactions. When subject to oxygenation via cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases, polyunsaturated fatty acids give rise to an array of metabolites including eicosanoids, docosanoids, and octadecanoids. These potent bioactive lipids are involved in many biochemical and signaling pathways, with inflammation being of particular importance. Moreover, because they are produced by more than one pathway and substrate, and are present in a variety of biological milieus, their analysis is not always possible with conventional assays. Liquid chromatography coupled to electrospray mass spectrometry offers a versatile and sensitive approach for the analysis of bioactive lipids, allowing specific and accurate quantitation of multiple species present in the same sample. Here we explain the principles of this approach to mediator lipidomics and present detailed protocols for the assay of enzymatically produced oxygenated metabolites of polyunsaturated fatty acids that can be tailored to answer biological questions or facilitate assessment of nutritional and pharmacological interventions. PMID:22940496

  7. Fatty acids of Thespesia populnea: Mass spectrometry of picolinyl esters of cyclopropene fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thespesia populnea belongs to the plant family of Malvaceae which contain cyclopropane and cyclopropene fatty acids. However, previous literature reports vary regarding the content of these compounds in Thespesia populnea seed oil. In this work, the content of malvalic acid (8,9-methylene-9-heptade...

  8. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  9. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  10. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  11. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  12. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  13. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  14. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  15. Lethal effect of butylated hydroxyanisole as related to bacterial fatty acid composition.

    PubMed

    Post, L S; Davidson, P M

    1986-07-01

    Bacillus cereus, Clostridium perfringens, Staphylococcus aureus, Pseudomonas fluorescens, Pseudomonas fragi, Escherichia coli, and Salmonella "anatum" were challenged with butylated hydroxyanisole (BHA). Susceptibility was measured as the concentration of BHA required to cause a 90% reduction in bacterial survivors. Staphylococcus aureus LP and P. fragi were two of the most resistant species examined; C. perfringens and P. fluorescens were the most susceptible. Gram stain reaction was found not to be a strict indicator of bacterial susceptibility to BHA. There was no obvious relationship between individual fatty acids and susceptibility. The ratio of saturated to unsaturated fatty acids in the total lipid fraction of only the gram-positive species was related to susceptibility. The ratios of saturated to unsaturated fatty acids of other fractions were not related to susceptibility. PMID:2873790

  16. Diets containing traditional and novel green leafy vegetables improve liver fatty acid profiles of spontaneously hypertensive rats

    PubMed Central

    2013-01-01

    Background The consumption of green leafy vegetables (GLVs) has been demonstrated to reduce the risks associated with cardiovascular and other diseases. However, no literature exists that examines the influence of traditional and novel GLVs on the liver fatty acid profile of an animal model genetically predisposed to developing hypertension. The aim of the present study was to examine the effects of diets containing 4% collard greens, purslane or sweet potato greens on the liver fatty acid profiles of four-week old male spontaneously hypertensive rats (SHRs, N = 44). Following four weeks consumption of the diets, liver fatty acid profiles were determined by gas–liquid chromatography of transesterified fatty acid methyl esters. Results SHRs consuming the control diet had greater percentages of liver saturated fatty acid and less omega-3 fatty acid percentages. SHRs consuming the diets containing vegetables had significantly greater liver concentrations of γ- linolenic, docosahexaenoic and docosahexaenoic acids, as well as lower levels of lauric, palmitic and arachidonic acids. SHRs consuming the control diet had significantly greater percentages (p < 0.05) of oleic; significantly less γ-linolenic and docosahexaenoic acids. Conclusions This study demonstrates the ability of GLVs to modulate liver fatty acid composition, thus providing protection against elevations in atherogenic fatty acids, which may be involved in CVD pathogenesis. Consequently, dietary recommendations for the prevention of CVD should consider the possible cardioprotective benefits and the subsequent alterations in fatty acid profiles afforded by diets containing collard greens, purslane and sweet potato greens. PMID:24192144

  17. The role of phosphatidylcholine in fatty acid exchange and desaturation in Brassica napus L. leaves.

    PubMed Central

    Williams, J P; Imperial, V; Khan, M U; Hodson, J N

    2000-01-01

    The role of phosphatidylcholine (PC) in fatty acid exchange and desaturation was examined and compared with that of monogalactosyldiacylglycerol (MGDG) in Brassica napus leaves using (14)C-labelling in vivo. Data are presented which indicate that in the chloroplast newly formed saturated (palmitic acid, 16:0) and monounsaturated (oleic acid, 18:1) fatty acid is incorporated into MGDG and desaturated in situ. In the non-plastidic compartments, however, newly formed fatty acid is exchanged with polyunsaturated fatty acid in PC, the probable major site of subsequent desaturation. The unsaturated fatty acid is released to the acyl-CoA pool, which is then used to synthesize diacylglycerol (DAG) containing a high level of unsaturated fatty acid. This highly unsaturated DAG may be the source for the biosynthesis of other cellular glycerolipids. The generally accepted pathway in which PC is synthesized from molecular species of DAG containing 16:0 and 18:1 followed by desaturation of the 18:1 to linoleic (18:2) and linolenic (18:3) acids is questioned. PMID:10861220

  18. Fatty acid profiles of some Fabaceae seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  19. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  20. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  1. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  2. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  3. Defining a relationship between dietary fatty acids and the cytochrome P450 system in a mouse model of fatty liver disease

    PubMed Central

    Gonzalez, Monika; Sealls, Whitney; Jesch, Elliot D.; Brosnan, M. Julia; Ladunga, Istvan; Ding, Xinxin; Black, Paul N.

    2011-01-01

    Liver-specific ablation of cytochrome P450 reductase in mice (LCN) results in hepatic steatosis that can progress to steatohepatitis characterized by inflammation and fibrosis. The specific cause of the fatty liver phenotype is poorly understood but is hypothesized to result from elevated expression of genes encoding fatty acid synthetic genes. Since expression of these genes is known to be suppressed by polyunsaturated fatty acids, we performed physiological and genomics studies to evaluate the effects of dietary linoleic and linolenic fatty acids (PUFA) or arachidonic and decosahexaenoic acids (HUFA) on the hepatic phenotypes of control and LCN mice by comparison with a diet enriched in saturated fatty acids. The dietary interventions with HUFA reduced the fatty liver phenotype in livers of LCN mice and altered the gene expression patterns in these livers to more closely resemble those of control mice. Importantly, the expression of genes encoding lipid pathway enzymes were not different between controls and LCN livers, indicating a strong influence of diet over POR genotype. These analyses highlighted the impact of POR ablation on expression of genes encoding P450 enzymes and proteins involved in stress and inflammation. We also found that livers from animals of both genotypes fed diets enriched in PUFA had gene expression patterns more closely resembling those fed diets enriched in saturated fatty acids. These results strongly suggest only HUFA supplied from an exogenous source can suppress hepatic lipogenesis. PMID:21098682

  4. Dietary essential fatty acids change the fatty acid profile of rat neural mitochondria over time.

    PubMed

    Dyer, J R; Greenwood, C E

    1991-10-01

    This experiment examined the time course over which the amount of dietary essential fatty acids (EFA) affects brain mitochondrial fatty acids. Weanling rats were fed 20% (wt/wt) fat diets that contained either 4 or 15% (wt/wt of diet) EFA for 1, 2, 3 or 6 wk or a 10% EFA diet for 3 or 6 wk. The EFA ratio [18:2(n-6)/18:3(n-3)] of all diets was approximately 30. Fatty acid analysis of brain mitochondrial phosphatidylethanolamine, phosphatidylcholine and cardiolipin revealed that the largest dietary effect was on 18:2(n-6), which was 30% higher in rats fed the 15 vs. 4% EFA diets after 1 wk. This difference increased to twofold by 3 wk and was still twofold after 6 wk. These results demonstrate several facts: 1) the response of 18:2(n-6) in cardiolipin to dietary EFA is very fast and large, relative to changes in other quantitatively major fatty acids observed in weanling rats; 2) the 18:2(n-6) level in neural cardiolipin stabilizes after 3 wk of feeding at a level dependent upon the amount of dietary EFA; and 3) at least one neural fatty acid, 18:2(n-6), is very sensitive to amounts of dietary EFA that are well above the animal's EFA requirement. PMID:1765818

  5. Temperature Affects Fatty Acids In Methylococcus Capsulatus

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1993-01-01

    According to report, temperature of growth of thermotolerant, methane-oxidizing bacterium Methylococcus capsulatus (Bath) affects both proportion of monounsaturated fatty acids and cis/trans ratio of these acids in cell membrane. Because suboptimum growth temperature is potential stress factor, it may be possible to use such cis/trans ratios as indices of stresses upon methane-oxidizing microbial communities. Research in microbiology of methanotrophs increasing because of possible commercial exploitation of these organisms as biocatalysts or as sources of useful polymers; knowledge of effect of temperature on ability of methanotrophs to utilize methane useful in optimization of conditions of growth.

  6. Angiotensin (1-7)/Mas receptor axis activation ameliorates the changes in fatty acid composition in diabetic rats with nephropathy

    PubMed Central

    Singh, Kulwinder; Singh, Tajinder; Sharma, PL

    2010-01-01

    Diabetes mellitus is often associated with altered fatty acids composition. This study was designed to investigate the role of angiotensin (Ang) (1-7)/Mas receptor in improving fatty acids composition in streptozotocin (STZ)-induced diabetic nephropathy (DN) in rats. Rats treated with STZ (50 mg/kg, i.p. once) developed DN after 8 weeks. Fatty acid composition was estimated in renal cortical tissue by gas chromatography. Treatment with Ang (1-7), A-779, and Ang (1-7) plus A-779 was given from week 4 to week 8. Diabetic rats exhibited a significant increase in levels of saturated fatty acids and a significant decrease in levels of polyunsaturated fatty acids (PUFAs). Treatment with Ang (1-7) significantly attenuated these diabetes-induced changes. In diabetic rats, prior administration of A-779 significantly attenuated the increase in PUFAs produced by Ang (1-7); however, for saturated fatty acids, A-779 significantly blocked the decrease in palmitic acid only. Our study, for the first time, documented that endogenous Ang (1-7) modulates fatty acid composition in rats. Further, treatment with Ang (1-7) significantly attenuated diabetes-induced changes in fatty acids composition. This may be an additional mechanism implying the renoprotective role of Ang (1-7) in diabetic rats.

  7. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  8. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    PubMed

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  9. Understanding the Complexity of Trans Fatty Acid Reduction in the American Diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-day forum was convened to discuss the current status and future implications of reducing trans fatty acids withoutincreasing saturated fats in the food supply while maintaining functionality and consumer acceptance of packaged, processed, andprepared foods. Attendees represented the agriculture ...

  10. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new class of compounds has been isolated from the regurgitant of the grasshopper species Schistocerca americana. These compounds (named here caeliferins) are comprised of saturated and monounsaturated, sulfated alpha-hydroxy fatty acids in which the omega carbon is functionalized with either a su...

  11. Mapping quantitative trait loci for fatty acid composition that segregate between Wagyu and Limousin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to search for quantitative trait loci (QTL) that segregate between Wagyu and Limousin and affect relative amounts of saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids. Six F*1 Wagyu-Limousin cross bulls were joined with 121 F*1 females ove...

  12. Novel fatty acid-related compounds from the American bird grasshopper, Schistocerca americana, elicit plant volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new class of compounds has been isolated from the regurgitant of the grasshopper, Schistocerca americana. These compounds (named caeliferins) are comprised of unusual saturated and monounsaturated, alpha- and omega-substituted fatty acids. The regurgitant contains a series of these compounds wit...

  13. [Fatty acids composition of the marine snails Phyllonotus pomum and Chicoreus brevifrons (Muricidae)].

    PubMed

    D'Armas, Haydelba; Yáñez, Dayanis; Reyes, Dilia; Salazar, Gabriel

    2010-06-01

    Muricid species of P. pomum and C. brevifrons are of economic importance in the Caribbean. This study includes a comparative evaluation of fatty acid content in the total lipid composition of Phyllonotus pomum and Chicoreus brevifrons. Snail samples were collected during the rainy, dry and transition seasons, in Punta Arena, Sucre (Venezuela). Total lipids were extracted and the specific fatty acid contents were analyzed by gas chromatography. Lipid concentrations varied between 0.87 and 1.85%, with minimum and maximum values corresponding to C. brevifrons collected during rainy and dry seasons, respectively. In the case of total lipids, a high concentration of unsaturated fatty acids (57.21-70.05%) was observed followed by saturated fatty acids (20.33-31.94%), during all seasons. The polyunsaturated occurred in higher proportion among the unsaturated fatty acids, except for P. pomum which showed higher proportion of monounsaturated fatty acids (38.95%) during the transition season. The prevailing fatty acids were: C14:0, C16:0, C18:0, C20:1, C22:1 omega-11, C22:1 omega-9, C18:3 omega-3, C20:5 omega-3 and C22:6 omega-3, among which docosahexaenoic acid was the predominant polyunsaturated fatty acid, showing values between 4.62 and 33.11%. The presence of high concentrations of polyunsaturated fatty acids found in P. Pomum and C. brevifrons allow their recommendation for human consumption with appropriate resource utilization. PMID:20527465

  14. [Fatty acids contained in 4 pejibaye palm species, Bactris gasipaes (Palmae)].

    PubMed

    Fernández-Piedra, M; Blanco-Metzler, A; Mora-Urpí, J

    1995-01-01

    Cooked and uncooked samples from four pejibaye palm races were analyzed to determine the moisture content, ether extract and the content of six fatty acids (C16:0 to C18:3). There was an increase in moisture and a decrease in ether extract (p < 0.05) in the cooked samples in comparison with the uncooked ones. No significant differences were found in fatty acid content between cooked and uncooked samples, but there were differences (p < 0.05) among races concerning the content of four fatty acids. Pejibaye fat is mainly mono-unsaturated (45.6%) and has a low poly-unsaturated to saturated fatty acid ratio (0.5). The fatty acid profile of uncooked pejibaye samples was: oleic acid, 32.6 to 47.8%; palmitic acid, 30.5 to 40.3%; linoleic acid, 11.2 to 21.1%; palmitoleic acid, 5.7 to 7.1%; linoleic acid, 1.5 to 5.5%; and stearic acid, 1.7 to 2.4%. PMID:8728758

  15. Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strategies to enrich ruminant-derived foods with unsaturated fatty acids are desired as these are considered beneficial for good human health. Ruminant-derived foods contain high proportions of saturated fats, a result of ruminal biohydrogenation, which rapidly saturates and thus limits the availab...

  16. Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli.

    PubMed

    Doi, Hidetaka; Hoshino, Yasushi; Nakase, Kentaro; Usuda, Yoshihiro

    2014-01-01

    Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H₂O₂) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H₂O₂ concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H₂O₂ concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H₂O₂ concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H₂O₂ concentrations. Among the ROS generated by fatty-acid β-oxidation, H₂O₂ critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production. PMID:24169950

  17. Use of tocopherol with polyunsaturated fatty acids in poultry feeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tocopherol can inhibit the oxidative degradation of polyunsaturated fatty acids by stabilizing lipid radicals that form at elevated temperatures or pro-oxidant conditions. This is particularly relevant for feeds formulated with fatty acids such as docosahexaenoic acid (DHA) or linolenic acid (ALA) T...

  18. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity.

    PubMed

    Simopoulos, Artemis P

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  19. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    PubMed Central

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  20. Regulation of plasma lipoprotein levels by dietary triglycerides enriched with different fatty acids.

    PubMed

    Nicolosi, R J; Rogers, E J

    1997-11-01

    Saturated vegetable oils (coconut, palm, and palm kernel oil) containing predominantly saturated fatty acids, lauric (12:0) or myristic (14:0 and palmitic (16:0), raise plasma total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels in animals and humans, presumably by decreasing LDL receptor activity and/or increasing LDL-C production rate. Although stearic acid (18:0) is chemically a saturated fatty acid, both human and animal studies suggest it is biologically neutral (neither raising nor lowering) blood cholesterol levels. Although earlier studies indicated that medium chain fatty acids (8:0-10:0) were also thought to be neutral, more recent studies in animals and humans suggest otherwise. Unsaturated vegetable oils such as corn, soybean, olive, and canola oil, by virtue of their predominant levels of either linoleic acid (18:2) or oleic acid (18:1), are hypocholesterolemic, probably as a result of their ability to upregulate LDL receptor activity and/or decrease LDL-C production rate. Whether trans fatty acids such as trans oleate (t18:1), in hydrogenated products such as margarine, are hypercholesterolemic remains controversial. Studies in humans suggest that their cholesterol-raising potential falls between the native nonhydrogenated vegetable oil and the more saturated dairy products such as butter. Assessment of the magnitude of the cholesterolemic response of trans 18:1 is difficult because in most diet studies its addition is often at the expense of cholesterol-lowering unsaturated fatty acids, making an independent evaluation almost impossible. PMID:9372477

  1. Specific high-affinity binding of fatty acids to epidermal cytosolic proteins

    SciTech Connect

    Raza, H.; Chung, W.L.; Mukhtar, H. )

    1991-08-01

    Cytosol from rat, mouse, and human skin or rat epidermis was incubated with (3H)arachidonic acid, (14C)retinoic acid, (14C)oleic acid, (3H)leukotriene A4, (3H)prostaglandin E2 (PGE2) or (3H) 15-hydroxyeicosatetraenoic acid (15-HETE), and protein-bound ligands were separated using Lipidex-1000 at 4C to assess the binding specificity. The binding of oleic acid and arachidonic acid with rat epidermal cytosol was rapid, saturable, and reversible. Binding of oleic acid was competed out with the simultaneous addition of other ligands and found to be in the following order: arachidonic acid greater than oleic acid greater than linoleic acid greater than lauric acid greater than leukotriene A4 greater than 15-HETE = PGE1 greater than PGE2 = PGF2. Scatchard analysis of the binding with arachidonic acid, oleic acid, and retinoic acid revealed high-affinity binding sites with the dissociation constant in the nM range. SDS-PAGE analysis of the oleic acid-bound epidermal cytosolic protein(s) revealed maximum binding at the 14.5 kDa region. The presence of the fatty acid-binding protein in epidermal cytosol and its binding to fatty acids and retinoic acid may be of significance both in the trafficking and the metabolism of fatty acids and retinoids across the skin.

  2. Enrichment of decanoic acid in cuphea fatty acids via distillation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The introduction of a new crop often requires the development of new products and purification techniques of either the oil or fatty acids. Most new crops enter the cosmetic market first due to their high rates of returns. However, the cosmetic market often demands high purity and colorless materi...

  3. Susceptibility of mammary tumor cells to complement-mediated cytolysis after in vitro or in vivo fatty acid manipulation.

    PubMed

    Erickson, K L; Thomas, I K

    1985-08-01

    The susceptibility of line 168 murine mammary tumor cells to complement (C)-mediated lysis was tested after in vitro treatment with several saturated or unsaturated fatty acids dissolved in different solvents or presented in the form of micelles to the cells. The lytic susceptibility of these cultured cells was compared with similar tumor cells obtained either from mice maintained on diets containing different concentrations and saturations of fatty acids or from cultures supplemented with serum from tumor-free control mice fed pair-matched diets. Although changes in dietary fat concentration and saturation resulted in alterations of the tumor cell fatty acid composition, those alterations did not influence the susceptibility of tumor cells to C-mediated lysis. However, single, or combinations of, unsaturated fatty acids dissolved in ethanol, unlike saturated fatty acids, reduced the lytic susceptibility of tumor cells in vitro. Hexane added to culture medium significantly suppressed the lytic susceptibility; however, when used as a carrier no significant differences were observed among treatments with the individual fatty acids at several concentrations. This result may be due to the effect of hexane on the cell membrane because this treatment also affected the osmotic fragility of the cells. Fatty acids as micelles did not influence the susceptibility of tumor cells to lysis. We concluded that only in vitro manipulation of fatty acids in some vehicles influenced the susceptibility of target tumor cells to C-mediated lysis; this finding did not parallel the situation that occurred in vivo. Moreover, the use of different vehicles to present fatty acids to tumor cells may further alter the susceptibility to C-mediated lysis. PMID:3860685

  4. Analysis of fatty acid content and composition in microalgae.

    PubMed

    Breuer, Guido; Evers, Wendy A C; de Vree, Jeroen H; Kleinegris, Dorinde M M; Martens, Dirk E; Wijffels, René H; Lamers, Packo P

    2013-01-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes. With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other. The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification. PMID:24121679

  5. Analysis of Fatty Acid Content and Composition in Microalgae

    PubMed Central

    Breuer, Guido; Evers, Wendy A. C.; de Vree, Jeroen H.; Kleinegris, Dorinde M. M.; Martens, Dirk E.; Wijffels, René H.; Lamers, Packo P.

    2013-01-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes. With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other. The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification. PMID:24121679

  6. Fatty Acid and Transcriptome Profiling of Longissimus Dorsi Muscles between Pig Breeds Differing in Meat Quality

    PubMed Central

    Yu, Kaifan; Shu, Gang; yuan, Fangfang; Zhu, Xiaotong; Gao, Ping; Wang, Songbo; Wang, Lina; Xi, Qianyun; Zhang, Shouquan; Zhang, Yongliang; Li, Yan; Wu, Tongshan; Yuan, Li; Jiang, Qingyan

    2013-01-01

    Fat and lean pig breeds show obvious differences in meat quality characteristics including the fatty acid composition of muscle. However, the molecular mechanism underlying these phenotypes differences remains unknown. This study compared meat quality traits between Lantang (a Chinese indigenous breed) and Landrace (a typical lean breed). The Lantang pigs showed higher L* values and intramuscular fat content, lower pH45min, pH24h and shear force in longissimus dorsi (LD) muscle than Landrace (P < 0.05). Fatty acid analysis demonstrated the lower monounsaturated fatty acids (MUFA) and higher polyunsaturated fatty acids (PUFA) percentage in Lantang LD than that in Landrace LD (P < 0.05). To further identify candidate genes for fatty acid composition, the transcriptome of LD muscle from the two breeds were measured by microarrays. There were 586 transcripts differentially expressed, of which 267 transcripts were highly expressed in Lantang pigs. After the validation by real-time quantitative PCR, 13 genes were determined as candidate genes for fatty acid composition of muscle, including Stearoyl-CoA desaturase (SCD). Then, a SCD over-expression plasmid was transfected into C2C12 cells to reveal the effect of SCD on the fatty acid composition in vitro. The results showed that SCD over-expression significantly increased PUFA proportion, while reduced that of saturated fatty acids (SFA) in C2C12 cells (P < 0.05). In summary, this study compared the differences of fatty acid composition and transcriptome in two breeds differing in meat quality, and further identified the novel role of SCD in the regulation of PUFA deposition. PMID:23355796

  7. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol. PMID:10578059

  8. Fatty acid profile of gamma-irradiated and cooked African oil bean seed (Pentaclethra macrophylla Benth).

    PubMed

    Olotu, Ifeoluwa; Enujiugha, Victor; Obadina, Adewale; Owolabi, Kikelomo

    2014-11-01

    The safety and shelf-life of food products can be, respectively, ensured and extended with important food-processing technologies such as irradiation. The joint effect of cooking and 10 kGy gamma irradiation on the fatty acid composition of the oil of Pentaclethra macrophylla Benth was evaluated. Oils from the raw seed, cooked seeds, irradiated seeds (10 kGy), cooked, and irradiated seeds (10 kGy) were extracted and analyzed for their fatty acid content. An omega-6-fatty acid (linoleic acid) was the principal unsaturated fatty acid in the bean seed oil (24.6%). Cooking significantly (P < 0.05) increased Erucic acid by 3.3% and Linolenic acid by 23.0%. Combined treatment significantly (P < 0.05) increased C18:2, C6:0, C20:2, C18:3, C20:3, C24:0, and C22:6 being linoleic, caproic, eicosadienoic, linolenic, eicosatrienoic, ligoceric, and docosahexaenoic acid, respectively, and this increase made the oil sample to have the highest total fatty acid content (154.9%), unsaturated to saturated fatty acid ratio (109.6), and unsaturated fatty acid content (153.9%). 10 kGy irradiation induces the formation of C20:5 (eicosapentaenoic), while cooking induced the formation of C20:4 (arachidic acid), C22:6 (Heneicosanoic acid), and C22:2 (docosadienoic acid). Combined 10 kGy cooking and irradiation increased the susceptibility of the oil of the African oil bean to rancidity. PMID:25493197

  9. Fatty acids in mountain gorilla diets: implications for primate nutrition and health.

    PubMed

    Reiner, Whitney B; Petzinger, Christina; Power, Michael L; Hyeroba, David; Rothman, Jessica M

    2014-03-01

    Little is known about the fatty acid composition of foods eaten by wild primates. A total of 18 staple foods that comprise 97% of the annual dietary intake of the mountain gorilla (Gorilla beringei) were analyzed for fatty acid concentrations. Fruits and herbaceous leaves comprise the majority of the diet, with fruits generally having a higher mean percentage of fat (of dry matter; DM), as measured by ether extract (EE), than herbaceous leaves (13.0% ± SD 13.0% vs. 2.3 ± SD 0.8%). The mean daily EE intake by gorillas was 3.1% (DM). Fat provided ≈14% of the total dietary energy intake, and ≈22% of the dietary non-protein energy intake. Saturated fatty acids accounted for 32.4% of the total fatty acids in the diet, while monounsaturated fatty acids accounted for 12.5% and polyunsaturated fatty acids (PUFA) accounted for 54.6%. Both of the two essential PUFA, linoleic acid (LA, n-6) and α-linolenic acid (ALA, n-3), were found in all of the 17 staple foods containing crude fat and were among the three most predominant fatty acids in the diet: LA (C18:2n-6) (30.3%), palmitic acid (C16:0) (23.9%), and ALA (C18:3n-3) (21.2%). Herbaceous leaves had higher concentrations of ALA, while fruit was higher in LA. Fruits provided high amounts of fatty acids, especially LA, in proportion to their intake due to the higher fat concentrations; despite being low in fat, herbaceous leaves provided sufficient ALA due to the high intake of these foods. As expected, we found that wild mountain gorillas consume a diet lower in EE, than modern humans. The ratio of LA:ALA was 1.44, closer to agricultural paleolithic diets than to modern human diets. PMID:24243235

  10. Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium

    SciTech Connect

    Kieft, T.L.; Ringelberg, D.B.; White, D.C.

    1994-09-01

    Ester-linked phospholipid fatty acid (PLFA) profiles of a Pseudomonas aureofaciens strain and an Arthrobacter protophormiae strain, each isolated from a subsurface sediment, were quantified in a starvation experiment in a silica sand porous medium under moist and dry conditions. Washed cells were added to sand microcosms and maintained under saturated conditions or subjected to desiccation by slow drying over a period of 16 days. In a third treatment, cells were added to saturated microcosms along with organic nutrients and maintained under saturated conditions. The numbers of culturable cells of both bacterial strains declined to below detection level within 16 days in both the moist and dried nutrient-deprived conditions, while direct counts and total PLFAs remained relatively constant. Both strains of bacteria maintained culturability in the nutrient-amended microcosms. The dried P. aureofaciens cells showed increased ratios of saturated to unsaturated fatty acids, increased ratios of trans- to cis-monoenoic fatty acids, and increased ratios of cyclopropyl fatty acids to their monoenoic precursors. P. aureofaciens starved under moist conditions showed few changes in PLFA profiles during the 16-day incubation, whereas cells incubated in the presence of nutrients showed decreases in the ratios of both saturated fatty acids to unsaturated fatty acids and cyclopropyl fatty acids to their monoenoic precursors. The PLFA profiles of A. protophormiae changed very little in response to either nutrient deprivation or desiccation. Diglyceride fatty acids, proposedindicators of dead or lysed cells, remained relatively constant throughout the experiment. The results of this laboratory experiment can be useful for interpreting PLFA profiles of subsurface communities of microorganisms for the purpose of determining their physiological status. 43 refs., 8 figs.

  11. New crystallization of fatty acids from aqueous ethanol solution combined with liquid-liquid extraction

    SciTech Connect

    Maeda, Kouji; Nomura, Yoshihisa; Tai, Kimihiko; Ueno, Yoshitaka; Fukui, Keisuke; Hirota, Syouji

    1999-06-01

    A new separation process of saturated fatty acids (lauric acid-myristic acid) using crystallization from an aqueous ethanol solution has been examined. There were two vessels in this separation process: an extraction vessel and a crystallization vessel. The fatty acids in the aqueous phase were first extracted from their organic phase (melt) in the extraction vessel. The fatty acids in the aqueous phase were continuously introduced to the crystallization vessel, and then the fatty acids were crystallized there. The crystals of the fatty acids were collected continuously above the aqueous phase in the crystallization vessel. In this process, the yield and the purity of the crystals over time were measured, and it was found that the purity of lauric acid increased unsteadily up to 0.98 mole fraction of lauric acid with an increase in the yield of the low yield range. The mole fraction of ethanol in the aqueous phase could be significant to control the relationship between the yield and the purity of the crystals. Three different mole fractions of lauric acid in the organic phase were used to be separated in this process. Moreover, the authors have considered the effective separations of this process, and the maximum yield and purity of the crystals have been estimated by a simple mass balance.

  12. Increase of Unsaturated Fatty Acids (Low Melting Point) of Broiler Fatty Waste Obtained Through Staphylococcus xylosus Fermentation.

    PubMed

    Marques, Roger V; Duval, Eduarda H; Corrêa, Luciara B; Corrêa, Érico K

    2015-11-01

    The increasing rise in the production of meat around the world causes a significant generation of agro-industrial waste--most of it with a low value added. Fatty wastes have the potential of being converted into biodiesel, given the overcome of technological and economical barriers, as well as its presentation in solid form. Therefore, the aim of this work was to investigate the capacity of Staphylococcus xylosus strains to modify the chemical structure of chicken fatty wastes intending to reduce the melting points of the wastes to mild temperatures, thereby breaking new ground in the production of biodiesel from these sources in an economically attractive and sustainable manner. The effects in time of fermentation and concentration of the fat in the medium were investigated, assessing the melting point and profile of fatty acids. The melting temperature showed a decrease of approximately 22 °C in the best operational conditions, due to reduction in the content of saturated fatty acids (high melting point) and increase of unsaturated fatty acids (low melting point). PMID:26289722

  13. Free fatty-acid uptake by isolated rat hepatocytes.

    PubMed

    Renaud, G; Bouma, M E; Foliot, A; Infante, R

    1985-11-01

    In isolated rat hepatocytes, the rate of palmitic acid binding and uptake is directly related to the concentration of free fatty acid (FFA) in the medium. After their entry into the cell, FFA are immediately incorporated into cellular phospholipids and triglycerides and no accumulation of free fatty acids can be demonstrated inside the cell. The rate of free fatty-acid uptake remains unchanged after incubation in a 2 mM KCN containing medium, indicating that in the range of fatty-acid concentrations used in this study, this phenomenon does not require energy. PMID:2421669

  14. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material

    NASA Astrophysics Data System (ADS)

    Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

    2014-03-01

    A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry.

  15. Dehydration of multilamellar fatty acid membranes: Towards a computational model of the stratum corneum

    NASA Astrophysics Data System (ADS)

    MacDermaid, Christopher M.; DeVane, Russell H.; Klein, Michael L.; Fiorin, Giacomo

    2014-12-01

    The level of hydration controls the cohesion between apposed lamellae of saturated free fatty acids found in the lipid matrix of stratum corneum, the outermost layer of mammalian skin. This multilamellar lipid matrix is highly impermeable to water and ions, so that the local hydration shell of its fatty acids may not always be in equilibrium with the acidity and relative humidity, which significantly change over a course of days during skin growth. The homeostasis of the stratum corneum at each moment of its growth likely requires a balance between two factors, which affect in opposite ways the diffusion of hydrophilic species through the stratum corneum: (i) an increase in water order as the lipid lamellae come in closer contact, and (ii) a decrease in water order as the fraction of charged fatty acids is lowered by pH. Herein molecular dynamics simulations are employed to estimate the impact of both effects on water molecules confined between lamellae of fatty acids. Under conditions where membrane undulations are energetically favorable, the charged fatty acids are able to sequester cations around points of contact between lamellae that are fully dehydrated, while essentially maintaining a multilamellar structure for the entire system. This observation suggests that the undulations of the fatty acid lamellae control the diffusion of hydrophilic species through the water phase by altering the positional and rotational order of water molecules in the embedded/occluded "droplets."

  16. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity.

    PubMed

    Gupta, Adarsha; Singh, Dilip; Byreddy, Avinesh R; Thyagarajan, Tamilselvi; Sonkar, Shailendra P; Mathur, Anshu S; Tuli, Deepak K; Barrow, Colin J; Puri, Munish

    2016-03-01

    The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were shown to be rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), together constituting 51-76% of total fatty acids (TFA). Indian and Australian thraustochytrids occupy separate positions in the dendrogram, showing significant differences exist in the fatty acid profiles in these two sets of thraustochytrid strains. In general, Australian strains had a higher docosahexaenoic acid (DHA) content than Indian strains with DHA at 17-31% of TFA. A range of enzyme activities were observed in the strains, with Australian strains showing overall higher levels of enzyme activity, with the exception of one Indian strain (DBTIOC-1). Comparative analysis of the fatty acid profile of 34 strains revealed that Indian thraustochytrids are more suitable for biodiesel production since these strains have higher fatty acids content for biodiesel (FAB, 76%) production than Australian thraustochytrids, while the Australian strains are more suitable for omega-3 (40%) production. PMID:26580151

  17. Composition, assimilation and degradation of Phaeocystis globosa-derived fatty acids in the North Sea

    NASA Astrophysics Data System (ADS)

    Hamm, Christian E.; Rousseau, Veronique

    2003-12-01

    The fate of a Phaeocystis globosa bloom in the southern North Sea off Belgium, the Netherlands and Germany in May 1995 was investigated during a cruise with RV 'Belgica'. We used fatty acids as biomarkers to follow the fate of Phaeocystis-derived biomass of a Phaeocystis-dominated spring bloom. The bloom, in which up to >99% of the biomass was contributed by Phaeocystis, showed a fatty acid composition with a characteristically high abundance of polyunsaturated C 18-fatty acids, which increased in concentration with number of double bonds up to 18:5 (n-3), and high concentrations of 20:5 (n-3) and 22:6 (n-3). In contrast to most previous studies, fatty acid analysis of the mesozooplankton community (mainly calanoid copepods) and meroplankton ( Carcinus maenas megalope) indicated that P. globosa was a major component (ca. 70% and 50%, respectively) in the diet of these organisms. Massive accumulations of amorphous grey aggregates, in which Phaeocystis colonies were major components, were dominated by saturated fatty acids and contained only few of the polyunsaturated C 18-fatty acids. A hydrophobic surface slick that covered the water surface during the bloom showed very similar patterns. Foam patches contained few Phaeocystis-typical fatty acids, but increased amounts of diatom-typical compounds such as 16:1 (n-7) and 20:5 (n-3), and 38% fatty alcohols, indicating that wax esters dominated the lipid fraction in the foam with ca. 76% (w/w). The fatty acid compositions of surface sediment showed that no sedimentation of fresh Phaeocystis occurred during the study. The results indicate that Phaeocystis-derived organic matter degraded while floating or in suspension, and had not reached the sediment in substantial amounts.

  18. Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers

    PubMed Central

    Beermann, Christopher; Jelinek, J; Reinecker, T; Hauenschild, A; Boehm, G; Klör, H-U

    2003-01-01

    Background The amount and quality of dietary fatty acids can modulate the fat metabolism. Objective This dietary intervention is based on the different metabolic pathways of long-chain saturated fatty acids (LCFA), which are mostly stored in adipocytic triacylglycerols, medium-chain fatty acids (MCFA) which are preferentially available for hepatic mitochondrial β-oxidation and n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) suggested to modulate fat oxidation and storage by stimulating the peroxisomal β-oxidation. Combined dietary MCFA and n-3 LCPUFA without LCFA may synergistically stimulate fatty acid oxidation resulting in blood lipid clearance and LCFA release from adipocytes. Design In a short term, parallel, randomized, double-blind trial effects on the fatty acid metabolism of 10 healthy volunteers (Body Mass Index 25–30) of a formula containing 72% MCFA and 22% n-3 LCPUFA without LCFA (intake: 1.500 kcal/day; fat: 55.5% of energy) were measured in comparison to an isoenergetic formula with equal fat amount and LCFA dominated lipid profile. Results The plasma triacylglycerol (p < 0.1) and cholesterol (p < 0.05) content decreased in the test group. The n-3/n-6 LCPUFA (≥ C 20) ratio increased (p < 0.0001) after 4 days treatment. The LCFA content was similar in both groups despite missing LCFA in the test formula indicating LCFA release from adipocytes into the plasma. Both groups significantly reduced body weight considerably 4 kg (p < 0.01) and fat mass up to 50% of weight loss (p < 0.05). Conclusion Combined dietary 72% MCFA and 22% n-3 LCPUFA without LCFA stimulate the fatty acid oxidation and release from adipocytes without affecting any safety parameters measured. PMID:14622442

  19. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... acids are used as a cloud inhibitor in vegetable and salad oils when use is not precluded by standards... to perform its cloud-inhibiting effect. Oleic acid derived from tall oil fatty acids conforming...

  20. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acids are used as a cloud inhibitor in vegetable and salad oils when use is not precluded by standards... to perform its cloud-inhibiting effect. Oleic acid derived from tall oil fatty acids conforming...

  1. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... acids are used as a cloud inhibitor in vegetable and salad oils when use is not precluded by standards... to perform its cloud-inhibiting effect. Oleic acid derived from tall oil fatty acids conforming...

  2. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... acids are used as a cloud inhibitor in vegetable and salad oils when use is not precluded by standards... to perform its cloud-inhibiting effect. Oleic acid derived from tall oil fatty acids conforming...

  3. The influence of thermal processing on the fatty acid profile of pork and lamb meat fed diet with increased levels of unsaturated fatty acids.

    PubMed

    Janiszewski, Piotr; Grześkowiak, Eugenia; Lisiak, Dariusz; Borys, Bronisław; Borzuta, Karol; Pospiech, Edward; Poławska, Ewa

    2016-01-01

    The research was carried out on 32 crossbred pigs of Polish Large White × Danish Landrace with Duroc and 80 rams, crossbreds of the Prolific-Dairy Koludzka Sheep with the Ile de France, a meat sheep. The fodder for the animals was enriched with the unsaturated fatty acids originated mainly from linseed and rapeseed oils. The fatty acid profile was determined in cooked longissimus lumborum, roasted triceps brachii and raw ripened rump from pigs as well as in grilled lambs' legs and their corresponding raw materials. Roasting caused the most pronounced increase of the saturated fatty acids and decrease in the polyunsaturated fatty acids of heated pork muscles. The smallest changes were observed in grilled lamb legs. The heating processes applied in this study, in most cases, did not cause essential changes in the indices of pro-health properties of fatty acid, therefore meat in the majority fulfil the latest recommendations of EFSA and FAO/WHO according to human health. PMID:26422798

  4. Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: importance of fatty acid structure.

    PubMed Central

    Kumaratilake, L M; Ferrante, A; Robinson, B S; Jaeger, T; Poulos, A

    1997-01-01

    Effects of fatty acids on human neutrophil-mediated killing of Plasmodium falciparum asexual blood forms were investigated by using a quantitative radiometric assay. The results showed that the antiparasitic activity of neutrophils can be greatly increased (>threefold) by short-term treatment with fatty acids with 20 to 24 carbon atoms and at least three double bonds. In particular, the n-3 polyenoic fatty acids, eicosapentaenoic and docosahexaenoic acids, and the n-6 fatty acid, arachidonic acid, significantly enhanced neutrophil antiparasitic activity. This effect was >1.5-fold higher than that induced by an optical concentration of the known agonist cytokine tumor necrosis factor alpha (TNF-alpha). At suboptimal concentrations, the combination of arachidonic acid and TNF-alpha caused a synergistic increase in neutrophil-mediated parasite killing. The fatty acid-induced effect was independent of the availability of serum opsonins but dependent on the structure of the fatty acids. The length of the carbon chain, degree of unsaturation, and availability of a free carboxyl group were important determinants of fatty acid activity. The fatty acids which increased neutrophil-mediated killing primed the enhanced superoxide radical generation of neutrophils in response to P. falciparum as detected by chemiluminescence. Scavengers of oxygen radicals significantly reduced the fatty acid-enhanced parasite killing, but cyclooxygenase and lipoxygenase inhibitors had no effect. These findings have identified a new class of immunoenhancers that could be exploited to increase resistance against Plasmodium species. PMID:9317021

  5. Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes

    PubMed Central

    den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C

    2010-01-01

    One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007

  6. Metabolism of fatty acids in rat brain in microsomal membranes

    SciTech Connect

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool.

  7. [Fatty acids in different edible fish species from Mexico].

    PubMed

    Castro González, María Isabel; Rodríguez, Ana Gabriela Maafs; Galindo Gómez, Carlos

    2013-12-01

    Different biotic and abiotic factors determine the fatty acid (FA) composition of fish tissues and organs. This information is useful for humans due to the fact that fish consumption is associated with health benefits. The aim of the present study was to identify the variation in the concentration of fatty acids, according to different factors, among ten edible marine fish species in Mexico, collected from June to December 2009 in the largest fish market in Mexico City: Euthynnus alletteratus, Sciaenops ocellatus, Bairdiella chrysoura, Sphyraena guachancho, Symphurus elongatus, Istiophorus platypterus, Ophichthus rex, Eugerres plumieri, Eucinostomus entomelas and Oreochromrnis mossambicus. Lipid content was gravimetrically quantified, the fatty acids were determined using a gas chromatograph and the results were statistically analyzed. Total lipid content ranged from 0.93 to 1.95 g/100 g in E. entomelas and O. urolepis hornorum, respectively. E. alletteratus, B. chrysoura, S. elongatus, I. platypterus, O. rex and E. plumieri presented the following order in FA concentration: Polyunsaturated FA (PUFA)>Saturated FA (SFA)>Monounsaturated FA (MUFA). S. ocellatus, S. guachancho and E. entomelas presented SFA>PUFA>MUFA; and only O. mossambicus presented SFA>MUFA>PUFA. O. mossambicus had the highest concentration (mg/100 g) of SFA (559.40) and MUFA (442.60), while B. chrysoura presented the highest content (mg/100 g) of PUFA (663.03), n-3 PUFA (514.03), EPA+DHA (506.10) and n-6 PUFA (145.80). Biotic and abiotic factors of the analyzed fish significantly influenced their FA concentration. Subtropical species presented 42.1% more EPA+DHA than tropical specie. Values presented here will vary according to the changes in the ecosystem and characteristics of each fish species, however the information generated in the present study is useful for improving fish consumption recommendations. PMID:24432548

  8. High Sensitivity Quantitative Lipidomics Analysis of Fatty Acids in Biological Samples by Gas Chromatography-Mass Spectrometry

    PubMed Central

    Quehenberger, Oswald; Armando, Aaron M.; Dennis, Edward A.

    2011-01-01

    Historically considered to be simple membrane components serving as structural elements and energy storing entities, fatty acids are now increasingly recognized as potent signaling molecules involved in many metabolic processes. Quantitative determination of fatty acids and exploration of fatty acid profiles have become common place in lipid analysis. We present here a reliable and sensitive method for comprehensive analysis of free fatty acids and fatty acid composition of complex lipids in biological material. The separation and quantitation of fatty acids is achieved by capillary gas chromatography. The analytical method uses pentafluorobenzyl bromide derivatization and negative chemical ionization gas chromatography-mass spectrometry. The chromatographic procedure provides base line separation between saturated and unsaturated fatty acids of different chain lengths as well as between most positional isomers. Fatty acids are extracted in the presence of isotope-labeled internal standards for high quantitation accuracy. Mass spectrometer conditions are optimized for broad detection capacity and sensitivity capable of measuring trace amounts of fatty acids in complex biological samples. PMID:21787881

  9. Seasonal patterns in stream periphyton fatty acids and community benthic algal composition in six high quality headwater streams

    USGS Publications Warehouse

    Honeyfield, Dale C.; Maloney, Kelly O.

    2015-01-01

    Fatty acids are integral components of periphyton and differ among algal taxa. We examined seasonal patterns in periphyton fatty acids in six minimally disturbed headwater streams in Pennsylvania’s Appalachian Mountains, USA. Environmental data and periphyton were collected across four seasons for fatty acid and algal taxa content. Non-metric multidimensional scaling ordination suggested significant seasonal differences in fatty acids; an ordination on algal composition revealed similar seasonal patterns, but with slightly weaker separation of summer and fall. Summer and fall fatty acid profiles were driven by temperature, overstory cover, and conductivity and winter profiles by measures of stream size. Ordination on algal composition suggested that summer and fall communities were driven by overstory and temperature, whereas winter communities were driven by velocity. The physiologically important fatty acid 18:3ω6 was highest in summer and fall. Winter samples had the highest 20:3ω3. Six saturated fatty acids differed among the seasons. Periphyton fatty acids profiles appeared to reflect benthic algal species composition. This suggests that periphyton fatty acid composition can be useful in characterizing basal food resources and stream water quality.

  10. Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications.

    PubMed

    Davis, Brenda C; Kris-Etherton, Penny M

    2003-09-01

    Although vegetarian diets are generally lower in total fat, saturated fat, and cholesterol than are nonvegetarian diets, they provide comparable levels of essential fatty acids. Vegetarian, especially vegan, diets are relatively low in alpha-linolenic acid (ALA) compared with linoleic acid (LA) and provide little, if any, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Clinical studies suggest that tissue levels of long-chain n-3 fatty acids are depressed in vegetarians, particularly in vegans. n-3 Fatty acids have numerous physiologic benefits, including potent cardioprotective effects. These effects have been demonstrated for ALA as well as EPA and DHA, although the response is generally less for ALA than for EPA and DHA. Conversion of ALA by the body to the more active longer-chain metabolites is inefficient: < 5-10% for EPA and 2-5% for DHA. Thus, total n-3 requirements may be higher for vegetarians than for nonvegetarians, as vegetarians must rely on conversion of ALA to EPA and DHA. Because of the beneficial effects of n-3 fatty acids, it is recommended that vegetarians make dietary changes to optimize n-3 fatty acid status. PMID:12936959

  11. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli.

    PubMed

    Chen, Yuan Yao; Gänzle, Michael G

    2016-04-01

    Heat and high pressure resistant strains of Escherichia coli are a challenge to food safety. This study investigated effects of cyclopropane fatty acids (CFAs) on stress tolerance in the heat- and pressure-resistant strain E. coli AW1.7 and the sensitive strain E. coli MG1655. The role of CFAs was explored by disruption of cfa coding for CFA synthase with an in-frame, unmarked deletion method. Both wild-type strains consumed all the unsaturated fatty acids (C16:1 and C18:1) that were mostly converted to CFAs and a low proportion to saturated fatty acid (C16:0). Moreover, E. coli AW1.7 contained a higher proportion of membrane C19:0 cyclopropane fatty acid than E. coli MG1655 (P<0.05). The Δcfa mutant strains did not produce CFAs, and the corresponding substrates C16:1 and C18:1 accumulated in membrane lipids. The deletion of cfa did not alter resistance to H2O2 but increased the lethality of heat, high pressure and acid treatments in E. coli AW1.7, and E. coli MG1655. E. coli AW1.7 and its Δcfa mutant were more resistant to pressure and heat but less resistant to acid stress than E. coli MG1655. Heat resistance of wild-type strains and their Δcfa mutant was also assessed in beef patties grilled to an internal temperature of 71 °C. After treatment, cell counts of wild type strains were higher than those of the Δcfa mutant strains. In conclusion, CFA synthesis in E. coli increases heat, high pressure and acid resistance, and increases heat resistance in food. This knowledge on mechanisms of stress resistance will facilitate the design of intervention methods for improved pathogen control in food production. PMID:26828814

  12. Medium-chain fatty acid binding to albumin and transfer to phospholipid bilayers

    SciTech Connect

    Hamilton, J.A. )

    1989-04-01

    Temperature-dependent (5-42{degree}C) {sup 13}C NMR spectra of albumin complexes with 90% isotopically substituted (1-{sup 13}C)octanoic or (1-{sup 13}C)decanoic acids showed a single peak at >30{degree}C but three peaks at lower temperatures. The chemical-shift differences result from different ionic and/or hydrogen-bonding interactions between amino acid side chains and the fatty acid carboxyl carbon. Rapid exchange of fatty acid among binding sites obscures these sites at temperatures >30{degree}C. Rate constants for exchange at 33{degree}C were 350 sec{sup {minus}1} for octanoate and 20 sec {sup {minus}1} for decanoate. Temperature-dependent data for octanoate showed an activation energy of 2 kcal/mol for exchange. Spectra of albumin complexes with the 12-carbon saturated fatty acid, lauric acid, had several narrow laurate carboxyl peaks at 35{degree}C, indicating longer lifetimes in the different binding sites. Fatty acid exchange between albumin and model membranes (phosphatidylcholine bilayers) occurred on a time scale comparable to that for exchange among albumin binding sites, following the order octanoate > decanoate > laurate. The equilibrium distribution of fatty acid between lipid bilayers and protein was measured directly from NMR spectra. Decreasing pH increased the relative affinity of fatty acid for the lipid bilayer. The results predict that the relative affinity of octanoic acid for albumin and membranes will be similar to that of long-chain fatty acids, but the rate of equilibration will be {approx} 10{sup 4} faster for octanoic acid.

  13. Effect of fatty acids on energy coupling processes in mitochondria.

    PubMed

    Wojtczak, L; Schönfeld, P

    1993-11-01

    Long-chain fatty acids are natural uncouplers of oxidative phosphorylation in mitochondria. The protonophoric mechanism of this action is due to transbilayer movement of undissociated fatty acid in one direction and the passage of its anion in the opposite direction. The transfer of the dissociated form of fatty acid can be, at least in some kinds of mitochondrion, facilitated by adenine nucleotide translocase. Apart from dissipating the electrochemical proton gradient, long-chain fatty acids decrease the activity of the respiratory chain by mechanism(s) not fully understood. In intact cells and tissues fatty acids operate mostly as excellent respiratory substrates, providing electrons to the respiratory chain. This function masks their potential uncoupling effect which becomes apparent only under special physiological or pathological conditions characterized by unusual fatty acid accumulation. Short- and medium-chain fatty acids do not have protonophoric properties. Nevertheless, they contribute to energy dissipation because of slow intramitochondrial hydrolysis of their activation products, acyl-AMP and acyl-CoA. Long-chain fatty acids increase permeability of mitochondrial membranes to alkali metal cations. This is due to their ionophoric mechanism of action. Regulatory function of fatty acids with respect to specific cation channels has been postulated for the plasma membrane of muscle cells, but not demonstrated in mitochondria. Under cold stress, cold acclimation and arousal from hibernation the uncoupling effect of fatty acids may contribute to increased thermogenesis, especially in the muscle tissue. In brown adipose tissue, the special thermogenic organ of mammals, long-chain fatty acids promote operation of the unique natural uncoupling protein, thermogenin. As anionic amphiphiles, long-chain fatty acids increase the negative surface charge of biomembranes, thus interfering in their enzymic and transporting functions. PMID:8399375

  14. Production of Lipase and Oxygenated Fatty Acids from Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils such as soybean oil and corn oil are cheap raw materials. Various value-added oxygenated fatty acids have been produced from unsaturated fatty acids such as oleic and linoleic acid by biotransformation. Lipase from the non-pathogenic yeast Candida cylindracea is another important va...

  15. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  16. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  17. Genotypic variation in fatty acid content of blackcurrant seeds.

    PubMed

    Ruiz del Castillo, M L; Dobson, G; Brennan, R; Gordon, S

    2002-01-16

    The fatty acid composition and total fatty acid content of seeds from 36 blackcurrant genotypes developed at the Scottish Crop Research Institute were examined. A rapid small-scale procedure, involving homogenization of seeds in toluene followed by sodium methoxide transesterification and gas chromatography, was used. There was considerable variation between genotypes. The gamma-linolenic acid content generally varied from 11 to 19% of the total fatty acids, but three genotypes had higher values of 22-24%, levels previously not reported for blackcurrant seed and similar to those for borage seed. Other nutritionally important fatty acids, stearidonic acid and alpha-linolenic acid, varied from 2 to 4% and 10-19%, respectively. The mean total fatty acid contents ranged from 14 to 23% of the seed, but repeatability was poor. The results are discussed. Blackcurrant seeds are mainly byproducts from juice production, and the study shows the potential for developing blackcurrant genotypes with optimal added value. PMID:11782203

  18. Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca

    PubMed Central

    Bruns, Hilke; Riclea, Ramona

    2011-01-01

    Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549

  19. Omega-3 fatty acids, lipid rafts, and T cell signaling.

    PubMed

    Hou, Tim Y; McMurray, David N; Chapkin, Robert S

    2016-08-15

    n-3 polyunsaturated fatty acids (PUFA) have been shown in many clinical studies to attenuate inflammatory responses. Although inflammatory responses are orchestrated by a wide spectrum of cells, CD4(+) T cells play an important role in the etiology of many chronic inflammatory diseases such as inflammatory bowel disease and obesity. In light of recent concerns over the safety profiles of non-steroidal anti-inflammatory drugs (NSAIDs), alternatives such as bioactive nutraceuticals are becoming more attractive. In order for these agents to be accepted into mainstream medicine, however, the mechanisms by which nutraceuticals such as n-3 PUFA exert their anti-inflammatory effects must be fully elucidated. Lipid rafts are nanoscale, dynamic domains in the plasma membrane that are formed through favorable lipid-lipid (cholesterol, sphingolipids, and saturated fatty acids) and lipid-protein (membrane-actin cytoskeleton) interactions. These domains optimize the clustering of signaling proteins at the membrane to facilitate efficient cell signaling which is required for CD4(+) T cell activation and differentiation. This review summarizes novel emerging data documenting the ability of n-3 PUFA to perturb membrane-cytoskeletal structure and function in CD4(+) T cells. An understanding of these underlying mechanisms will provide a rationale for the use of n-3 PUFA in the treatment of chronic inflammation. PMID:26001374

  20. Determination of free fatty acids in beer wort.

    PubMed

    Bravi, Elisabetta; Benedetti, Paolo; Marconi, Ombretta; Perretti, Giuseppe

    2014-05-15

    The importance of free fatty acids (FFAs) in wort has been known for a long time because of their influence on beer quality and yeast metabolism. Lipids have a beneficial effect on yeast growth during fermentation as well as negative effects on beer quality. Lipids content of beer affects the ability to form a stable head of foam and plays an important role in beer staling. Moreover, the ratio of unsaturated and saturated fatty acids seems to be related to gushing problems. A novel, simple, and reliable procedure for quantitative analysis of FFAs in wort was developed and validated. The determination of FFAs in wort was achieved via liquid-liquid cartridge extraction, purification of FFA fraction by solid phase extraction, boron trifluoride in methanol methylation, and injection into GC-FID system. The proposed method has high accuracy (<0.3%, expressed as the bias), high precision (<1.2%, RSD), and recoveries ranging from 74% to 98%. The method was tested on two different wort samples (9° and 12° Plato). PMID:24423546

  1. An 11-bp Insertion in Zea mays fatb Reduces the Palmitic Acid Content of Fatty Acids in Maize Grain

    PubMed Central

    Li, Qing; Yang, Xiaohong; Zheng, Debo; Warburton, Marilyn; Chai, Yuchao; Zhang, Pan; Guo, Yuqiu; Yan, Jianbing; Li, Jiansheng

    2011-01-01

    The ratio of saturated to unsaturated fatty acids in maize kernels strongly impacts human and livestock health, but is a complex trait that is difficult to select based on phenotype. Map-based cloning of quantitative trait loci (QTL) is a powerful but time-consuming method for the dissection of complex traits. Here, we combine linkage and association analyses to fine map QTL-Pal9, a QTL influencing levels of palmitic acid, an important class of saturated fatty acid. QTL-Pal9 was mapped to a 90-kb region, in which we identified a candidate gene, Zea mays fatb (Zmfatb), which encodes acyl-ACP thioesterase. An 11-bp insertion in the last exon of Zmfatb decreases palmitic acid content and concentration, leading to an optimization of the ratio of saturated to unsaturated fatty acids while having no effect on total oil content. We used three-dimensional structure analysis to explain the functional mechanism of the ZmFATB protein and confirmed the proposed model in vitro and in vivo. We measured the genetic effect of the functional site in 15 different genetic backgrounds and found a maximum change of 4.57 mg/g palmitic acid content, which accounts for ∼20–60% of the variation in the ratio of saturated to unsaturated fatty acids. A PCR-based marker for QTL-Pal9 was developed for marker-assisted selection of nutritionally healthier maize lines. The method presented here provides a new, efficient way to clone QTL, and the cloned palmitic acid QTL sheds lights on the genetic mechanism of oil biosynthesis and targeted maize molecular breeding. PMID:21931818

  2. Fatty acids intake in the Mexican population. Results of the National Nutrition Survey 2006

    PubMed Central

    2011-01-01

    Background There is growing evidence that quality, rather that quantity of fat is the determinant of cardiovascular risk. The objective of the study is to describe quantitatively the intake and adequacy of fatty acid classes among the Mexican population aged 5-90 years from a probabilistic survey. Methods Dietary intake of individual and classes of fatty acids was computed from the dataset of the 2006 Mexican National Health and Nutrition Survey (ENSANUT2006), collected by a food frequency questionnaire. Adequacy was calculated in reference to authoritative recommendations. Results The mean intake of total fatty acids (TFA ≈ 25%E) fell within WHO recommendations; the intakes of saturated fatty acids (SFA) among all age-groups (45-60%) and of trans fatty acids (TrFA) in 30% of school-age children and adolescents and 20% of adults exceeded international recommendations. The mean intake of polyunsaturated fatty acids (PUFA) and particularly of n6 and n3 PUFAS, was inadequately insufficient in 50% of the sample. Conclusions The main public health concerns are the high intake of SFA and the suboptimal intake of PUFA in Mexican population. The TrFA intake represents a low public health risk. PMID:21651771

  3. Characterization of Fatty Acid Composition in Bone Marrow Fluid From Postmenopausal Women: Modification After Hip Fracture.

    PubMed

    Miranda, Melissa; Pino, Ana María; Fuenzalida, Karen; Rosen, Clifford J; Seitz, Germán; Rodríguez, J Pablo

    2016-10-01

    Bone marrow adipose tissue (BMAT) is associated with low bone mass, although the functional consequences for skeletal maintenance of increased BMAT are currently unclear. BMAT might have a role in systemic energy metabolism, and could be an energy source as well as an endocrine organ for neighboring bone cells, releasing cytokines, adipokines and free fatty acids into the bone marrow microenvironment. The aim of the present report was to compare the fatty acid composition in the bone marrow supernatant fluid (BMSF) and blood plasma of postmenopausal women women (65-80 years old). BMSF was obtained after spinning the aspirated bone marrow samples; donors were classified as control, osteopenic or osteoporotic after dual-energy X-ray absorptiometry. Total lipids from human bone marrow fluid and plasma were extracted, converted to the corresponding methyl esters, and finally analyzed by a gas chromatographer coupled with a mass spectrometer. Results showed that fatty acid composition in BMSF was dynamic and distinct from blood plasma, implying significance in the locally produced lipids. The fatty acid composition in the BMSF was enriched in saturated fatty acid and decreased in unsaturated fatty acids as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. On the other hand, there was no relationship between BMSF and bone mineral density. In conclusion, lipid composition of BMSF is distinct from the circulatory compartment, most likely reflecting the energy needs of the marrow compartment. J. Cell. Biochem. 117: 2370-2376, 2016. © 2016 Wiley Periodicals, Inc. PMID:27416518

  4. High Fat Feeding Induces Hepatic Fatty Acid Elongation in Mice

    PubMed Central

    Oosterveer, Maaike H.; van Dijk, Theo H.; Tietge, Uwe J. F.; Boer, Theo; Havinga, Rick; Stellaard, Frans; Groen, Albert K.; Kuipers, Folkert; Reijngoud, Dirk-Jan

    2009-01-01

    Background High-fat diets promote hepatic lipid accumulation. Paradoxically, these diets also induce lipogenic gene expression in rodent liver. Whether high expression of these genes actually results in an increased flux through the de novo lipogenic pathway in vivo has not been demonstrated. Methodology/Principal Findings To interrogate this apparent paradox, we have quantified de novo lipogenesis in C57Bl/6J mice fed either chow, a high-fat or a n-3 polyunsaturated fatty acid (PUFA)-enriched high-fat diet. A novel approach based on mass isotopomer distribution analysis (MIDA) following 1-13C acetate infusion was applied to simultaneously determine de novo lipogenesis, fatty acid elongation as well as cholesterol synthesis. Furthermore, we measured very low density lipoprotein-triglyceride (VLDL-TG) production rates. High-fat feeding promoted hepatic lipid accumulation and induced the expression of lipogenic and cholesterogenic genes compared to chow-fed mice: induction of gene expression was found to translate into increased oleate synthesis. Interestingly, this higher lipogenic flux (+74 µg/g/h for oleic acid) in mice fed the high-fat diet was mainly due to an increased hepatic elongation of unlabeled palmitate (+66 µg/g/h) rather than to elongation of de novo synthesized palmitate. In addition, fractional cholesterol synthesis was increased, i.e. 5.8±0.4% vs. 8.1±0.6% for control and high fat-fed animals, respectively. Hepatic VLDL-TG production was not affected by high-fat feeding. Partial replacement of saturated fat by fish oil completely reversed the lipogenic effects of high-fat feeding: hepatic lipogenic and cholesterogenic gene expression levels as well as fatty acid and cholesterol synthesis rates were normalized. Conclusions/Significance High-fat feeding induces hepatic fatty acid synthesis in mice, by chain elongation and subsequent desaturation rather than de novo synthesis, while VLDL-TG output remains unaffected. Suppression of lipogenic fluxes

  5. Quantitation of myocardial fatty acid metabolism using PET

    SciTech Connect

    Bergmann, S.R.; Weinheimer, C.J.; Markham, J.; Herrero, P.

    1996-10-01

    Abnormalities of fatty acid metabolism in the heart presage contractile dysfunction and arrhythmias. This study was performed to determine whether myocardial fatty acid metabolism could be quantified noninvasively using PET and 1-{sup 11}C-palmitate. Anesthetized dogs were studied during control conditions; during administration of dobutamine; after oxfenicine; and during infusion of glucose. Dynamic PET data after administration of 1-{sup 11}C-palmitate were fitted to a four-compartment mathematical model. Modeled rates of palmitate utilization correlated closely with directly measured myocardial palmitate and total long-chain fatty acid utilization (r = 0.93 and 0.96, respectively, p < 0.001 for each) over a wide range of arterial fatty acid levels and altered patterns of myocardial substrate use (fatty acid extraction fraction ranging from 1% to 56%, glucose extraction fraction from 1% to 16% and myocardial fatty acid utilization from 1 to 484 nmole/g/min). The percent of fatty acid undergoing oxidation could also be measured. The results demonstrate the ability to quantify myocardial fatty acid utilization with PET. The approach is readily applicable for the determination of fatty acid metabolism noninvasively in patients. 37 refs., 5 figs., 4 tabs.

  6. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. PMID:26873273

  7. Essential Fatty Acids as Transdermal Penetration Enhancers.

    PubMed

    van Zyl, Lindi; du Preez, Jan; Gerber, Minja; du Plessis, Jeanetta; Viljoen, Joe

    2016-01-01

    The aim of this study was to investigate the effect of different penetration enhancers, containing essential fatty acids (EFAs), on the transdermal delivery of flurbiprofen. Evening primrose oil (EPO), vitamin F, and Pheroid technology all contain fatty acids and were compared using a cream-based formulation. This selection was to ascertain whether EFAs solely, or EFAs in a Pheroid delivery system, would have a significant increase in the transdermal delivery of a compound. Membrane release studies were performed, and the results indicated the following rank order for flurbiprofen release from the different formulations: vitamin F > control > EPO > Pheroid. Topical skin delivery results indicated that flurbiprofen was present in the stratum corneum-epidermis and the epidermis-dermis. The average percentage flurbiprofen diffused to the receptor phase (representing human blood) indicated that the EPO formulation showed the highest average percentage diffused. The Pheroid formulation delivered the lowest concentration with a statistical significant difference (p < 0.05) compared with the control formulation (containing 1% flurbiprofen and no penetration enhancers). The control formulation presented the highest average flux, with the EPO formulation following the closest. It could, thus, be concluded that EPO is the most favorable chemical penetration enhancer when used in this formulation. PMID:26852854

  8. Long-chain polyunsaturated fatty acids stimulate cellular fatty acid uptake in human placental choriocarcinoma (BeWo) cells.

    PubMed

    Johnsen, G M; Weedon-Fekjaer, M S; Tobin, K A R; Staff, A C; Duttaroy, A K

    2009-12-01

    Supplementation of long-chain polyunsaturated fatty acids (LCPUFAs) is advocated during pregnancy in some countries although very little information is available on their effects on placental ability to take up these fatty acids for fetal supply to which the fetal growth and development are critically dependent. To identify the roles of LCPUFAs on placental fatty acid transport function, we examined the effects of LCPUFAs on the uptake of fatty acids and expression of fatty acid transport/metabolic genes using placental trophoblast cells (BeWo). Following 24 h incubation of these cells with 100 microM of LCPUFAs (arachidonic acid, 20:4n-6, eicosapentaenoic acid, 20:5n-3, or docosahexaenoic acid, 22:6n-3), the cellular uptake of [(14)C] fatty acids was increased by 20-50%, and accumulated fatty acids were preferentially incorporated into phospholipid fractions. Oleic acid (OA, 18:1n-9), on the other hand, could not stimulate fatty acid uptake. LCPUFAs and OA increased the gene expression of ADRP whilst decreased the expression of ASCL3, ACSL4, ACSL6, LPIN1, and FABP3 in these cells. However, LCPUFAs but not OA increased expression of ACSL1 and ACSL5. Since acyl-CoA synthetases are involved in cellular uptake of fatty acids via activation for their channelling to lipid metabolism and/or for storage, the increased expression of ACSL1 and ACLS5 by LCPUFAs may be responsible for the increased fatty acid uptake. These findings demonstrate that LCPUFA may function as an important regulator of general fatty acid uptake in trophoblast cells and may thus have impact on fetal growth and development. PMID:19880178

  9. Acetylenes and fatty acids from Codonopsis pilosula

    PubMed Central

    Jiang, Yueping; Liu, Yufeng; Guo, Qinglan; Jiang, Zhibo; Xu, Chengbo; Zhu, Chenggen; Yang, Yongchun; Lin, Sheng; Shi, Jiangong

    2015-01-01

    Four new acetylenes (1–4) and one new unsaturated ω-hydroxy fatty acid (5), together with 5 known analogues, were isolated from an aqueous extract of Codonopsis pilosula roots. Their structures were determined by spectroscopic and chemical methods. The new acetylenes are categorized as an unusual cyclotetradecatrienynone (1), tetradecenynetriol (2), and rare octenynoic acids (3 and 4), respectively, and 3 and 4 are possibly derived from oxidative metabolic degradation of 1 and/or 2. The absolute configuration of 1 was assigned by comparison of the experimental circular dichroism (CD) spectrum with the calculated electronic circular dichroism (ECD) spectra of stereoisomers based on the quantum-mechanical time-dependent density functional theory, while the configuration of 2 was assigned by using modified Mosher׳s method based on the MPA determination rule of ΔδRS values for diols. PMID:26579449

  10. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  11. Fatty acid composition of breast milk from three racial groups from Penang, Malaysia.

    PubMed

    Kneebone, G M; Kneebone, R; Gibson, R A

    1985-04-01

    The fatty acid composition of samples of breast milk obtained from 51 mothers (26 Malay, 15 Chinese, 10 Indian) residing in Penang, Malaysia was determined by gas chromatography. Despite living in close physical proximity the mothers from the three racial groups showed distinct cultural differences in dietary intake. These differences were reflected in differences in the fatty acid composition of breast milk samples. The milk of Chinese mothers was generally less saturated (41%) than that of Malay and Indian mothers (52 and 50% respectively). The milk of Chinese mothers was also richer in linoleic acid (17%) than that of Malay and Indian mothers (9% and 11% respectively). Overall the level of individual fatty acids fell within the range of values reported for Western mothers on well nourished diets and pointed to breast milk of high standard despite large variations in the diet of Malaysian mothers. PMID:3984928

  12. Biomass, lipid productivities and fatty acids composition of marine Nannochloropsis gaditana cultured in desalination concentrate.

    PubMed

    Matos, Ângelo Paggi; Feller, Rafael; Moecke, Elisa Helena Siegel; Sant'Anna, Ernani Sebastião

    2015-12-01

    In this study the feasibility of growing marine Nannochloropsis gaditana in desalination concentrate (DC) was explored and the influence of the DC concentration on the biomass growth, lipid productivities and fatty acids composition was assessed. The reuse of the medium with the optimum DC concentration in successive algal cultivation cycles and the additional of a carbon source to the optimized medium were also evaluated. On varying the DC concentration, the maximum biomass concentration (0.96gL(-1)) and lipid content (12.6%) were obtained for N. gaditana in the medium with the optimum DC concentration (75%). Over the course of the reuse of the optimum DC medium, three cultivation cycles were performed, observing that the biomass productivity is directly correlated to lipid productivity. Palmitic acid was the major fatty acid found in N. gaditana cells. The saturated fatty acids content of the algae enhanced significantly on increasing the DC concentration. PMID:26318921

  13. Fatty acids and oxidative stability of meat from lambs fed carob-containing diets.

    PubMed

    Gravador, Rufielyn S; Luciano, Giuseppe; Jongberg, Sisse; Bognanno, Matteo; Scerra, Manuel; Andersen, Mogens L; Lund, Marianne N; Priolo, Alessandro

    2015-09-01

    Male Comisana lambs were individually stalled and, for 56 days, were fed concentrates with 60% barley (n = 8 lambs), or concentrates in which barley was partially replaced by 24% or 35% carob pulp (n = 9 lambs in each group). The intramuscular fatty acids were analyzed and the color stability, lipid and protein oxidation were measured in fresh meat overwrapped with polyvinyl chloride film at 0, 3 or 6 days of storage at 4 °C in the dark. Carob pulp increased the concentration of polyunsaturated fatty acids (PUFA) in muscle, including the rumenic acid (P < 0.01), and reduced the saturated fatty acids (P < 0.01) and the n-6/n-3 PUFA ratio (P = 0.01). The meat did not undergo extensive oxidative deterioration and the diet did not affect the oxidative stability parameters. Therefore, carob in lamb diet could increase PUFA in muscle without compromising meat oxidative stability. PMID:25842304

  14. 40 CFR 721.10297 - Tin, C16-18 and C18-unsatd. fatty acids castor-oil fatty acids complexes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... acids castor-oil fatty acids complexes. 721.10297 Section 721.10297 Protection of Environment.... fatty acids castor-oil fatty acids complexes. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as tin, C16-18 and C18-unsatd. fatty acids...

  15. 40 CFR 721.10297 - Tin, C16-18 and C18-unsatd. fatty acids castor-oil fatty acids complexes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... acids castor-oil fatty acids complexes. 721.10297 Section 721.10297 Protection of Environment.... fatty acids castor-oil fatty acids complexes. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as tin, C16-18 and C18-unsatd. fatty acids...

  16. 40 CFR 721.10297 - Tin, C16-18 and C18-unsatd. fatty acids castor-oil fatty acids complexes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... acids castor-oil fatty acids complexes. 721.10297 Section 721.10297 Protection of Environment.... fatty acids castor-oil fatty acids complexes. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as tin, C16-18 and C18-unsatd. fatty acids...

  17. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed Central

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  18. Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: effects of omega-3 polyunsaturated fatty acid supplementation.

    PubMed

    Signorini, Cinzia; De Felice, Claudio; Leoncini, Silvia; Durand, Thierry; Galano, Jean-Marie; Cortelazzo, Alessio; Zollo, Gloria; Guerranti, Roberto; Gonnelli, Stefano; Caffarelli, Carla; Rossi, Marcello; Pecorelli, Alessandra; Valacchi, Giuseppe; Ciccoli, Lucia; Hayek, Joussef

    2014-11-01

    This study mainly aims at examining the erythrocyte membrane fatty acid (FAs) profile in Rett syndrome (RTT), a genetically determined neurodevelopmental disease. Early reports suggest a beneficial effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on disease severity in RTT. A total of 24 RTT patients were assigned to ω-3 PUFAs-containing fish oil for 12 months in a randomized controlled study (average DHA and EPA doses of 72.9, and 117.1mg/kgb.w./day, respectively). A distinctly altered FAs profile was detectable in RTT, with deficient ω-6 PUFAs, increased saturated FAs and reduced trans 20:4 FAs. FAs changes were found to be related to redox imbalance, subclinical inflammation, and decreased bone density. Supplementation with ω-3 PUFAs led to improved ω-6/ω-3 ratio and serum plasma lipid profile, decreased PUFAs peroxidation end-products, normalization of biochemical markers of inflammation, and reduction of bone hypodensity as compared to the untreated RTT group. Our data indicate that a significant FAs abnormality is detectable in the RTT erythrocyte membranes and is partially rescued by ω-3 PUFAs. PMID:25240461

  19. Effect of lipid supplementation on milk odd- and branched-chain fatty acids in dairy cows.

    PubMed

    Baumann, E; Chouinard, P Y; Lebeuf, Y; Rico, D E; Gervais, R

    2016-08-01

    Eight ruminally fistulated, multiparous Holstein cows were arranged in a double 4×4 Latin square with 14-d periods to investigate the effects of lipid supplementation on performance, rumen parameters, the milk odd- and branched-chain fatty acid (OBCFA) profile, and the relationships between milk OBCFA and rumen parameters. Lipid supplementation is known to inhibit microbial growth in the rumen, decrease de novo microbial fatty acid synthesis, and increase the uptake of circulating fatty acids by the mammary gland; treatments were selected to isolate these effects on the milk OBCFA profile. The 4 treatments were (1) a lipid-free emulsion medium infused in the rumen (CTL), (2) soybean oil as a source of polyunsaturated fatty acids infused in the rumen (RSO), (3) saturated fatty acids (38% 16:0, 40% 18:0) infused in the rumen (RSF), and (4) saturated fatty acids infused in the abomasum (ASF). Fat supplements were provided continuously as emulsions at a rate of 450g/d. Preplanned contrasts compared CTL to RSO, RSO to RSF, and RSF to ASF. Infusing RSO slightly decreased ruminal pH, but did not affect volatile fatty acids profile and milk fat concentration as compared with CTL. The yields of energy-corrected milk, fat, and protein were greater with RSF compared with RSO. The concentration of odd-chain fatty acids was decreased by RSO, whereas even-chain iso fatty acids were not affected. Milk fat concentration of 17:0 + cis-9 17:1 was higher for RSF than for RSO, due to the saturated fatty acids supplement containing 2% 17:0 + cis-9 17:1. Limited differences were observed in the milk OBCFA profile between RSF and ASF. A multiple regression analysis yielded the following equation for predicting rumen pH based on milk fatty acids: pH=6.24 - (0.56×4:0) + (1.67 × iso 14:0) + (4.22 × iso 15:0) + (9.41×22:0). Rumen propionate concentration was negatively correlated with milk fat concentration of iso 14:0 and positively correlated with milk 15:0, whereas the acetate

  20. Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase.

    PubMed

    Morita, Masashi; Kawamichi, Misato; Shimura, Yusuke; Kawaguchi, Kosuke; Watanabe, Shiro; Imanaka, Tsuneo

    2015-12-01

    The dysfunction of ABCD1, a peroxisomal ABC protein, leads to the perturbation of very long chain fatty acid (VLCFA) metabolism and is the cause of X-linked adrenoleukodystrophy. Abcd1-deficient mice exhibit an accumulation of saturated VLCFAs, such as C26:0, in all tissues, especially the brain. The present study sought to measure microsomal fatty acid elongation activity in the brain of wild-type (WT) and abcd1-deficient mice during the course of development. The fatty acid elongation activity in the microsomal fraction was measured by the incorporation of [2-(14)C]malonyl-CoA into fatty acids in the presence of C16:0-CoA or C20:0-CoA. Cytosolic fatty acid synthesis activity was completely inhibited by the addition of N-ethylmaleimide (NEM). The microsomal fatty acid elongation activity in the brain was significantly high at 3 weeks after birth and decreased substantially at 3 months after birth. Furthermore, we detected two different types of microsomal fatty acid elongation activity by using C16:0-CoA or C20:0-CoA as the substrate and found the activity toward C20:0-CoA in abcd1-deficient mice was higher than the WT 3-week-old animals. These results suggest that during the active myelination phase the microsomal fatty acid elongation activity is stimulated in abcd1-deficient mice, which in turn perturbs the lipid composition in myelin. PMID:26108493

  1. Liquid chromatography – high resolution mass spectrometry analysis of fatty acid metabolism

    PubMed Central

    Kamphorst, Jurre J.; Fan, Jing; Lu, Wenyun; White, Eileen; Rabinowitz, Joshua D.

    2011-01-01

    We present a liquid chromatography – mass spectrometry (LC-MS) method for long-chain and very-long-chain fatty acid analysis, and its application to 13C-tracer studies of fatty acid metabolism. Fatty acids containing 14 to 36 carbon atoms are separated by C8 reversed-phase chromatography using a water-methanol gradient with tributylamine as ion pairing agent, ionized by electrospray, and analyzed by a stand-alone orbitrap mass spectrometer. The median limit of detection is 5 ng/ml with a linear dynamic range of 100-fold. Ratios of unlabeled to 13C-labeled species are quantitated precisely and accurately (average relative standard deviation 3.2% and deviation from expectation 2.3%). In samples consisting of fatty acids saponified from cultured mammalian cells, 45 species are quantified, with average intraday relative standard deviations for independent biological replicates of 11%. The method enables quantitation of molecular ion peaks for all labeled forms of each fatty acid. Different degrees of 13C-labeling from glucose and glutamine correspond to fatty acid uptake from media, de novo synthesis, and elongation. To exemplify the utility of the method, we examined isogenic cell lines with and without activated Ras oncogene expression. Ras increases the abundance and alters the labeling patterns of saturated and monounsaturated very-long-chain fatty acids, with the observed pattern consistent with Ras leading to enhanced activity of ELOVL4 or an enzyme with similar catalytic activity. This LC-MS method and associated isotope tracer techniques should be broadly applicable to investigating fatty acid metabolism. PMID:22004349

  2. Pseudo catalytic transformation of volatile fatty acids into fatty acid methyl esters.

    PubMed

    Jung, Jong-Min; Cho, Jinwoo; Kim, Ki-Hyun; Kwon, Eilhann E

    2016-03-01

    Instead of anaerobic digestion of biodegradable wastes for producing methane, this work introduced the transformation of acidogenesis products (VFAs) into fatty acid methyl esters (FAMEs) to validate the feasible production of short-chained fatty alcohols via hydrogenation of FAMEs. In particular, among VFAs, this work mainly described the mechanistic explanations for transforming butyric acid into butyric acid methyl ester as a case study. Unlike the conventional esterification process (conversion efficiency of ∼94%), the newly introduced esterification under the presence of porous materials via the thermo-chemical process reached up to ∼99.5%. Furthermore, the newly introduced esterification via the thermo-chemical pathway in this work showed extremely high tolerance of impurities: the conversion efficiency under the presence of impurities reached up to ∼99±0.3%; thus, the inhibition behaviors attributed from the impurities used for the experimental work were negligible. PMID:26720136

  3. Fatty acid profiles of marine benthic microorganisms isolated from the continental slope of bay of bengal: a possible implications in the benthic Food web

    NASA Astrophysics Data System (ADS)

    Das, Surajit; Lyla, P. S.; Khan, S. Ajmal

    2007-12-01

    Marine bacteria, actinomycetes and fungal strains were isolated from continental slope sediment of the Bay of Bengal and studied for fatty acid profile to investigate their involvement in the benthic food-web. Fifteen different saturated and unsaturated fatty acids from bacterial isolates, 14 from actinomycetes and fungal isolates were detected. The total unsaturated fatty acids in bacterial isolates ranged from 11.85 to 37.26%, while the saturated fatty acid ranged between 42.34 and 80.74%. In actinomycetes isolates, total unsaturated fatty acids varied from 27.86 to 38.85% and saturated fatty acids ranged from 35.29 to 51.25%. In fungal isolates unsaturated fatty acids ranged between 44.62 and 65.52% while saturated FA ranged from 20.80 to 46.30%. The higher percentages of unsaturated fatty acids from the microbial isolates are helpful in anticipating the active participation in the benthic food-web of Bay of Bengal.

  4. Effect of propionic acid on fatty acid oxidation and ureagenesis.

    PubMed

    Glasgow, A M; Chase, H P

    1976-07-01

    Propionic acid significantly inhibited 14CO2 production from [1-14C] palmitate at a concentration of 10 muM in control fibroblasts and 100 muM in methylmalonic fibroblasts. This inhibition was similar to that produced by 4-pentenoic acid. Methylmalonic acid also inhibited 14CO2 production from [1-14C] palmitate, but only at a concentration of 1 mM in control cells and 5 mM in methylmalonic cells. Propionic acid (5 mM) also inhibited ureagenesis in rat liver slices when ammonia was the substrate but not with aspartate and citrulline as substrates. Propionic acid had no direct effect on either carbamyl phosphate synthetase or ornithine transcarbamylase. These findings may explain the fatty degeneration of the liver and the hyperammonemia in propionic and methylmalonic acidemia. PMID:934734

  5. The relationship between different fatty acids intake and frequency of migraine attacks

    PubMed Central

    Sadeghi, Omid; Maghsoudi, Zahra; Khorvash, Fariborz; Ghiasvand, Reza; Askari, Gholamreza

    2015-01-01

    Background: Migraine is a primary headache disorder that affects the neurovascular system. Recent studies have shown that consumption of some fatty acids such as omega-3 fatty acids improves migraine symptoms. The aim of the present study is to assess the association between usual intake of fatty acids such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and saturated fatty acids (SFA) with the frequency of migraine attacks. Materials and Methods: 105 migraine patients with age ranging from 15 to 50 years participated in this cross-sectional study. Usual dietary consumption was assessed by using a semi-quantitative food frequency questionnaire (FFQ). Moreover, frequency of migraine attacks during 1 month period was determined in all participants. Data had been analyzed using independent sample t-test and linear regression test with adjustment of confounding variables. Results: In this study, we found that lower intake of EPA (β = −335.07, P = 0.006) and DHA (β = −142.51, P = 0.001) was associated with higher frequency of migraine attacks. In addition, we observed similar relationship either in men or women. No significant association was found between dietary intake of SFA and the frequency of migraine attacks (β = −0.032, P = 0.85). Conclusions: Frequency of migraine attacks was negatively associated with dietary intake of omega-3 polyunsaturated fatty acids. No significant relationship was found between SFA intake and migraine frequency. Further studies are required to shed light on our findings. PMID:26120333

  6. Dietary fatty acids and kidney transplantation in the rat.

    PubMed

    Kort, W J; de Keijzer, M H; Hekking-Weijma, I; Vermeij, M

    1991-01-01

    In five groups of 15 rats allogeneic kidney transplantations were performed. Four groups received pre- and postoperatively a semisynthetic diet, isocalorically but differing in quantity and quality of fatty acids: group I received a diet high in saturated fat; group II, a diet high in linoleic acid; group III, a diet containing fish oil; group IV, a diet high in monoenoic acid. Finally, the fifth group of rats was fed a standard commercial chow and served as a control for the procedure of technique and immunological regimen. All groups received the same immunosuppressive regimen of immunological enhancement induced by pretreatment with complete donor blood. Survival and several parameters of graft function were studied. The results showed that the technical mortality, i.e. animals dying in the first week after transplantation, was substantially higher in rats on the semisynthetic diets in comparison with the group of rats on the commercial diet. A statistically significant better graft function could be observed in the group of rats on the diet high in linoleic acid in the first period after kidney transplantation, compared to the other groups on semisynthetic diets. This difference disappeared in the course of the study when a number of animals was lost due to graft rejection. Furthermore, in the same diet group mortality due to rejection was significantly decreased as well. PMID:1952815

  7. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    PubMed

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis. PMID:26968402

  8. Relationship between Fecal Content of Fatty Acids and Cyclooxygenase mRNA Expression and Fatty Acid Composition in Duodenal Biopsies, Serum Lipoproteins, and Dietary Fat in Colectomized Familial Adenomatous Polyposis Patients

    PubMed Central

    Almendingen, K.; Høstmark, A. T.; Larsen, L. N.; Fausa, O.; Bratlie, J.; Aabakken, L.

    2010-01-01

    A few familial adenomatous polyposis studies have focused upon faecal sterols and bile acids but none has analysed the fecal content of fatty acids. We report here findings of an observational study on 29 colectomized familial adenomatous polyposis patients that describe the fecal content of fatty acids, and relate this to the proportions of fatty acids and levels of cyclooxygenase mRNA expression in duodenal biopsies, levels of serum lipoproteins, and diet. In the ileostomy group separately (n = 12), the fecal content of arachidonic acid was correlated negatively to the proportions of eicosapentaenoic acid and docosahexaenoic acid in duodenal biopsies. Total serum-cholesterol was negatively correlated to the fecal content of saturates and monounsaturates. The fecal palmitoleic acid/palmitic acid ratio was positively correlated to the levels of cyclooxygease-2 expression in duodenal biopsies.In the ileal-pouch-anal anastomosis group separately (n = 17), significant correlations were found between the fecal contents of oleic acid, linoleic acid, and alpha-linolenic acid, and the proportions of myristic acid, oleic acid and eicosaenoic acid in duodenal biopsies. Dietary monounsaturates were positively correlated to different fecal fatty acids. Future studies should focus on molecular mechanisms relevant to fatty acid metabolism, inflammation, and angiogenesis, in addition to nutrition. PMID:21052495

  9. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid... conditions: (a) They are manufactured from glycerin, lactic acid, and fatty acids conforming with § 172.860 and/or oleic acid derived from tall oil fatty acids conforming with § 172.862 and/or edible fats...

  10. Effect of monoglycerides and fatty acids on a ceramide bilayer.

    PubMed

    Akinshina, Anna; Das, Chinmay; Noro, Massimo G

    2016-07-14

    Monoglycerides and unsaturated fatty acids, naturally present in trace amounts in the stratum corneum (top layer of skin) lipid matrix, are commonly used in pharmaceutical, cosmetic and health care formulations. However, a detailed molecular understanding of how the oil additives get incorporated into the skin lipids from topical application and, once incorporated, how they affect the properties and integrity of the lipid matrix remains unexplored. Using ceramide 2 bilayers as skin lipid surrogates, we use a series of molecular dynamics simulations with six different natural oil ingredients at multiple concentrations to investigate the effect of the oils on the properties and stability of the bilayers. The six oils: monoolein, monostearin, monoelaidin, oleic acid, stearic acid and linoleic acid - all having the same length of the alkyl chain, C18, but a varying degree of saturation, allow us to systematically address the effect of unsaturation in the additives. Our results show that at low oil concentration (∼5%) the mixed bilayers containing any of the oils and ceramide 2 (CER2) become more rigid than pure CER2 bilayers due to more efficient lipid packing. Better packing also results in the formation of larger numbers of hydrogen bonds between the lipids, which occurs at the expense of the hydrogen bonds between lipids and water. The mixed bilayers with saturated or trans-unsaturated oils remain stable over the whole range of oil concentration. In contrast, the presence of the oils with at least one cis-double bond leads to bilayer instability and complete loss of bilayer structure at the oil content of about 50-65%. Two cis-double bonds in the lipid tail induce bilayer disruption at even lower concentration (∼30%). The mixed bilayers remain in the gel phase (without melting to a fluid phase) until the phase transition to a non-bilayer phase occurs. We also demonstrate that the stability of the bilayer strongly correlates with the order parameter of the lipid

  11. The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

    NASA Astrophysics Data System (ADS)

    Stemmler, K.; Vlasenko, A.; Guimbaud, C.; Ammann, M.

    2008-01-01

    Surface active organic compounds have been observed in marine boundary layer aerosol. Here, we investigate the effect such surfactants have on the uptake of nitric acid (HNO3), an important removal reaction of nitrogen oxides in the marine boundary layer. The uptake of gaseous HNO3 on deliquesced NaCl aerosol was measured in a flow reactor using HNO3 labelled with the short-lived radioactive isotope 13N. The uptake coefficient γ on pure deliquesced NaCl aerosol was γ=0.5±0.2 at 60% relative humidity and 30 ppb HNO3(g). The uptake coefficient was reduced by a factor of 5-50 when the aerosol was coated with saturated linear fatty acids with carbon chain lengths of 18 and 15 atoms in monolayer quantities. In contrast, neither shorter saturated linear fatty acids with 12 and 9 carbon atoms, nor coatings with the unsaturated oleic acid (C18, cis-double bond) had a detectable effect on the rate of HNO3 uptake. It is concluded that it is the structure of the monolayers formed, which determines their resistance towards HNO3 uptake. Fatty acids (C18 and C15), which form a highly ordered film in the so-called liquid condensed state, represent a significant barrier towards HNO3 uptake, while monolayers of shorter-chain fatty acids (C9, C12) and of the unsaturated oleic acid form a less ordered film in the liquid expanded state and do not hinder the uptake. Similarly, high contents of humic acids in the aerosol, a structurally inhomogeneous, quite water soluble mixture of oxidised high molecular weight organic compounds did not affect HNO3 uptake. As surfactant films on naturally occurring aerosol are expected to be less structured due to their chemical inhomogeneity, it is likely that their inhibitory effect on HNO3 uptake is smaller than that observed here for the C15 and C18 fatty acid monolayers.

  12. The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

    NASA Astrophysics Data System (ADS)

    Stemmler, K.; Vlasenko, A.; Guimbaud, C.; Ammann, M.

    2008-09-01

    Surface active organic compounds have been observed in marine boundary layer aerosol. Here, we investigate the effect such surfactants have on the uptake of nitric acid (HNO3), an important removal reaction of nitrogen oxides in the marine boundary layer. The uptake of gaseous HNO3 on deliquesced NaCl aerosol was measured in a flow reactor using HNO3 labelled with the short-lived radioactive isotope 13N. The uptake coefficient γ on pure deliquesced NaCl aerosol was γ=0.5±0.2 at 60% relative humidity and 30 ppb HNO3(g). The uptake coefficient was reduced by a factor of 5 50 when the aerosol was coated with saturated linear fatty acids with carbon chain lengths of 18 and 15 atoms in monolayer quantities. In contrast, neither shorter saturated linear fatty acids with 12 and 9 carbon atoms, nor coatings with the unsaturated oleic acid (C18, cis-double bond) had a detectable effect on the rate of HNO3 uptake. It is concluded that it is the structure of the monolayers formed, which determines their resistance towards HNO3 uptake. Fatty acids (C18 and C15), which form a highly ordered film in the so-called liquid condensed state, represent a significant barrier towards HNO3 uptake, while monolayers of shorter-chain fatty acids (C9, C12) and of the unsaturated oleic acid form a less ordered film in the liquid expanded state and do not hinder the uptake. Similarly, high contents of humic acids in the aerosol, a structurally inhomogeneous, quite water soluble mixture of oxidised high molecular weight organic compounds did not affect HNO3 uptake. As surfactant films on naturally occurring aerosol are expected to be less structured due to their chemical inhomogeneity, it is likely that their inhibitory effect on HNO3 uptake is smaller than that observed here for the C15 and C18 fatty acid monolayers.

  13. Distillation of natural fatty acids and their chemical derivatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Well over 1,000 different fatty acids are known which are natural components of fats, oils (triacylglycerols), and other related compounds. These fatty acids can have different alkyl chain lengths, 0-6 carbon-carbon double bonds possessing cis- or trans-geometry, and can contain a variety of functio...

  14. EFFECTS OF ETHYLENE CHLOROHYDRIN ON FATTY ACID SYNTHESIS

    EPA Science Inventory

    Male chicks weighing 700 to 900 g. received an acute or eight doses IG of 60 or 40 mg/kg ethylene chlorohydrin (ECH) respectively and were sacrificed eighteen hours after the last dose. Mitochondrial elongation of fatty acids was decreased significantly while fatty acid synthetas...

  15. Fatty acid profile of 25 alternative lipid feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  16. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Salts of volatile fatty acids. 573.914 Section...

  17. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section...

  18. Fatty acid composition of Tilia spp. seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a study of the seed oil fatty acid composition of Malvaceae plants, seeds of seven Tilia species (limes or linden trees) were evaluated for their fatty acid profiles. Seeds were obtained from the Germplasm Research Information Network and from various commercial sources. After extractio...

  19. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%). PMID:11014298

  20. Associations of erythrocyte fatty acid patterns with insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Synergistic and/or additive effects on cardiometabolic risk may be missed by examining individual fatty acids (FA). A pattern analysis may be a more useful approach. As well, it remains unclear whether erythrocyte fatty acid composition relates to insulin resistance among Hispanic/Latino...

  1. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  2. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  3. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  4. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  5. 40 CFR 721.3629 - Triethanolamine salts of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Triethanolamine salts of fatty acids... Substances § 721.3629 Triethanolamine salts of fatty acids. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as triethanolamine salts of...

  6. Differentiation in fatty acid profiles of pigmented and nonpigmented Aurantiochytrium isolated from Hong Kong mangroves.

    PubMed

    Fan, King-Wai; Jiang, Yue; Ho, Lok-Tang; Chen, Feng

    2009-07-22

    Twenty-five thraustochytrids that belong to the genus Aurantiochytrium were isolated from subtropical mangroves in Hong Kong. Although they have similar morphological and physiological characteristics, they have different colors on a yeast extract-glucose agar plate, which were largely ignored before. On the basis of the differences in their colony color, 25 Aurantiochytrium strains were further classified into pigmented and nonpigmented subgroups and their fatty acid profiles were analyzed and compared. In general, nonpigmented Aurantiochytrium strains were found to contain biomass concentrations and growth yield coefficients statistically higher than pigmented Aurantiochytrium strains (p < 0.01). Among all isolates, a significantly higher content of polyunsaturated fatty acid (PUFA, 123.41-179.64 mg/g) was found in the nonpigmented Aurantiochytrium (p < 0.01), whereas the pigmented strains contained a higher amount of saturated fatty acids. Docosahexaenoic acid (DHA) was identified as the most abundant PUFA in both nonpigmented and pigmented Aurantiochytrium. According to the result of principal component analysis, the contents and composition of saturated fatty acids and PUFAs are the major varieties to distinguish these two Aurantiochytrium groups, especially the contents of C15:0, C13:0, C16:0, C17:0, and DHA. With a rapid growth rate and high DHA yield, the strain from the nonpigmented Aurantiochytrium group was regarded as the ideal candidate for PUFA production. PMID:19534536

  7. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes.

    PubMed Central

    Skorin, C; Necochea, C; Johow, V; Soto, U; Grau, A M; Bremer, J; Leighton, F

    1992-01-01

    Fatty acid oxidation was studied in the presence of inhibitors of carnitine palmitoyltransferase I (CPT I), in normal and in peroxisome-proliferated rat hepatocytes. The oxidation decreased in mitochondria, as expected, but in peroxisomes it increased. These two effects were seen, in variable proportions, with (+)-decanoylcarnitine, 2-tetradecylglycidic acid (TDGA) and etomoxir. The decrease in mitochondrial oxidation (ketogenesis) affected saturated fatty acids with 12 or more carbon atoms, whereas the increase in peroxisomal oxidation (H2O2 production) affected saturated fatty acids with 8 or more carbon atoms. The peroxisomal increase was sensitive to chlorpromazine, a peroxisomal inhibitor. To study possible mechanisms, palmitoyl-, octanoyl- and acetyl-carnitine acyltransferase activities were measured, in homogenates and in subcellular fractions from control and TDGA-treated cells. The palmitoylcarnitine acyltransferase was inhibited, as expected, but the octanoyltransferase activity also decreased. The CoA derivative of TDGA was synthesized and tentatively identified as being responsible for inhibition of the octanoylcarnitine acyltransferase. These results show that inhibitors of the mitochondrial CPT I may also inhibit the peroxisomal octanoyl transferase; they also support the hypothesis that the octanoyltransferase has the capacity to control or regulate peroxisomal fatty acid oxidation. PMID:1736904

  8. Polyunsaturated fatty acid supplementation: effects of seaweed Ascophyllum nodosum and flaxseed on milk production and fatty acid profile of lactating ewes during summer.

    PubMed

    Caroprese, Mariangela; Ciliberti, Maria Giovanna; Marino, Rosaria; Santillo, Antonella; Sevi, Agostino; Albenzio, Marzia

    2016-08-01

    The research reported in this Research Communication was undertaken to evaluate the effects of different sources of polyunsaturated fatty acids (PUFA) supplemented in the diet on milk production and milk fatty acid profile of lactating ewes exposed to long term heat stress. The experiment was conducted during summer, involved 32 ewes divided into 4 groups of 8 each, and lasted 6 weeks. The ewes in all groups were fed twice daily and received 1·8 kg/d of oat hay and 1 kg/d of concentrate. Flaxseed group (FS) was supplemented with 250 g/d of whole flaxseed, Ascophyllum nodosum group (AG) was supplemented with 25 g/d of seaweed Ascophyllum nodosum, and the combination group (FS + AG) received both flaxseed and Ascophyllum nodosum supplementation. The control group (CON) was fed with 1 kg/d of pelleted concentrate without PUFA supplementation. Milk samples were collected twice daily per week, and analysed for fat, total protein, casein, and lactose content. At the beginning and then at 2, 4 and 6 week of the experiment each milk sample was analysed for milk fatty acids. Temperature-humidity index (THI) was calculated daily. Supplementation of flaxseed and of the combination of flaxseed and Ascophyllum nodosum increased milk yield. The total content of saturated fatty acids (SFA) in milk decreased for ewes fed FS, followed by FS + AG. On the contrary, monounsaturated fatty acids (MUFA) increased for ewes fed FS and FS + AG. The total n-3 FA was found higher in FS and FS + AG than in AG and CON groups mainly because of the increase in C 18 : 3 n-3 in FS and FS + AG milk. Milk from FS + AG resulted in the highest n-3/n-6 ratio and decreases in atherogenic and thrombogenic indices. The combination of seaweed Ascophyllum nodosum and flaxseed can be suggested as an adequate supplementation to sustain milk production and milk fatty acid profile of sheep during summer season. PMID:27600962

  9. Omega-3 polyunsaturated fatty acids: photoprotective macronutrients.

    PubMed

    Pilkington, Suzanne M; Watson, Rachel E B; Nicolaou, Anna; Rhodes, Lesley E

    2011-07-01

    Ultraviolet radiation (UVR) in sunlight has deleterious effects on skin, while behavioural changes have resulted in people gaining more sun exposure. The clinical impact includes a year-on-year increase in skin cancer incidence, and topical sunscreens alone provide an inadequate measure to combat overexposure to UVR. Novel methods of photoprotection are being targeted as additional measures, with growing interest in the potential for systemic photoprotection through naturally sourced nutrients. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are promising candidates, showing potential to protect the skin from UVR injury through a range of mechanisms. In this review, we discuss the biological actions of n-3 PUFA in the context of skin protection from acute and chronic UVR overexposure and describe how emerging new technologies such as nutrigenomics and lipidomics assist our understanding of the contribution of such nutrients to skin health. PMID:21569104

  10. Fatty acid composition and interrelationships among eight retail cuts of grass-feed beef.

    PubMed

    Pavan, Enrique; Duckett, Susan K

    2013-03-01

    The aim of this research was to evaluate: 1) fatty acid (FA) profile of eight retail cuts (eye of round, ribeye, top round, striploin, tenderloin, top-sirloin, underblade, ground beef) from grass-fed steers, 2) the association between striploin (longissimus muscle) FA profile and that from the other retail cuts, and 3) the changes in FA profile associated with retail cut total FA content. All of the retail cuts, except underblade and ground beef, would be considered lean (<10 g) based on total FA content. Total saturated fatty acids were positively correla